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Introduction 1

Complex systems are, by definition, systems composed of many, pos-

sibly simple, elements interacting with each other. Such interactions

can give rise to unexpected and remarkable collective behaviors. A vast

plethora of physical phenomena occurring in nature can indeed be as-

cribed to collective dynamics which spontaneously emerge at the macro-

scopic level in systems made up of microscopically interacting constituents

[48, 93]. This is a widespread observation in nature which, fertilized in a

cross-disciplinary perspective, can ideally embrace distinct realms of in-

vestigation. Convection instabilities in fluid dynamics, weak turbulences

and defects are among the examples that testify on the inherent ability

of physical systems to yield coherent dynamical behaviors [58]. Insect

swarms and fish schools exemplify the degree of spontaneous coordination

that can be reached in ecological applications [140], while rhythm produc-

tion and the brain functions refer to archetypical illustrations drawn from

biology and life science in general [13,17,75,142,182,202].

In many cases of interest, it is useful to schematize a complex sys-

tem at the microscopic level as a network, where the nodes represent the

components and the links their interactions [117, 143]. The architecture

of numerous systems can be well described in terms of complex networks.

Network theory is therefore able to provide new insights into many real

world problems, with applications in biology, social sciences, transport in-

frastructures, communications, financial markets, and more.

In the simplest implementation of graph theory the network nodes config-

ure as the theoretical representation of physical space regions, e.g. cities,

urban areas, foraging spots, or even virtual spaces like web sites. In this

configuration, the connections between nodes therefore represent the pos-

sible ways an agent (a citizen, an animal, a web surfer...) can use to move

when exploring the network. However, graph theory can also provide a

framework of coupling for general systems composed by individual enti-

ties which, either individually or grouped in families, can be schematized

by mutually interacting vertices. Irrespectively of the specific realm of

investigation, the topological structure of the network of interactions is

therefore exemplified by directed or indirected edges among nodes [27,28].

These fundamental ingredients, flexibly combined and properly integrated,

are at the roots of any plausible mathematical model targeted to commu-

nity interactions [37], from ecology [47] to neuroscience [16, 106], passing

through genetic, human health [128], and a full load of man-made techno-



2 Introduction

logical applications [169].

During the last years, network theory has proven to be a convenient,

often crucial instrument not only to model the structure of many com-

plex systems, but also to properly describe the dynamical processes they

are involved into. Complex networks will configure, in our representation

scheme, as the discrete irregular supports for specific dynamical processes

built to describe, in a mathematical framework, the behavior of real world

phenomena [21]. For each node we can indeed define a multidimensional

variable whose evolution in time, modeled by resorting to a collection of

ordinary differential equation, will represent one of the main characters of

our analysis.

The dynamics can either simply stem from interactions, i.e. how adjacent

nodes affect each others, like in random walk, spreading, diffusion or other

linear processes, or it can additionally involve a local reaction. The sin-

gle nodes of the network indeed, instead of being merely crossing points,

could represent nonlinear dynamical systems, each one evolving according

to specific differential equations. For instance, when the entities that com-

pose the whole set are subject to specific self-reactions and, at the same

time, diffuse across the embedding spatial medium, the system goes under

the name of reaction-diffusion [10, 16, 139, 142, 155, 156, 192]. Examples

are invasion models in ecology [92], epidemic spreading [138], and also the

celebrated Turing patterns that arise, for instance, from the dynamical

interplay between reaction and diffusion in a chemical system [192].

If we consider for a moment the dynamics that each node would exhibit

if it was isolated, we observe that the long-term behavior of each of these

generic dynamical systems is usually given by stable equilibria like fixed

points and limit cycles or chaotic attractors. However, once the isolated

systems are coupled together, so becoming the nodes of a network, noth-

ing much can be a priori said about their collective behavior [183]. We

know, for instance, that, if the single node dynamics admits a fixed point

as an equilibrium, the insertion of couplings between them will lead to

the emergence of static patterns, however these can be characterized by

a wide number of locally stable equilibria [179]. At the same time, curi-

ously, a network of identical chaotic systems can synchronize to the same

solution [163]. Instead, if a set of uncoupled dynamical systems evolve to-

wards limit cycles, once connected they can either synchronize or generate

patterns that depend on the topology of the underlying network [45].
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This rises one of the main points of our analysis: why are we interested in

characterizing network structure? Because architecture always affects the

dynamical behavior, the form always affects the substance. For instance,

the topology of species interaction networks influences the ecosystems sta-

bility, as well as the structure of social networks shapes the spread of

epidemics and information, and the network of power grids affects the

robustness of power transmission [21, 183]. In general, the observed dy-

namical behavior is intimately connected to the underlying topology. In-

genious techniques have been proposed to reconstruct the topology of a

given network from direct inspection of its emerging dynamics, combining

fundamental [14,41,52] and applied expertise [42,126]. However, a general

theory to fully resolve the subtle interplay between network structure and

ensuing dynamics is still lacking and is considered today as one of the

great challenges of network science. Our way to contribute to this open

question involves thoroughly studying the repercussion of topology on the

emerging dynamics with the twofold goal of predicting the system perfor-

mance and, mainly, of influencing such functional behavior and steering it

at will. Instead of altering the local dynamics on each network node, we

focus here on devising possible innovative ways to customize the effective

network structure in order to obtain various desired effects [149].

In the next chapters, after Chapter 1 which provides a brief introduc-

tion of the mathematical tools needed in the subsequent chapters, we will

directly go inside the topic of topology-reflecting dynamics. In Chapter 2

we propose two different techniques to modify the network structure of a

reaction-diffusion model, while preserving its dynamical behavior. In the

region of parameters where the homogeneous solution gets spontaneously

destabilized, perturbations grow along the unstable directions made avail-

able across the network of connections, yielding irregular spatio-temporal

patterns. We exploit the spectral properties of the Laplacian operator as-

sociated to the graph in order to modify its topology, while preserving the

unstable manifold of the underlying equilibrium. The resulting network is

isodynamic to the former, meaning that it reproduces the dynamical re-

sponse to a perturbation, as displayed by the original system. This work

opens up a new perspective on the multiple possibilities for identifying the

family of discrete supports that generate equivalent dynamical responses

on a generic reaction-diffusion system.
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The same fundamental idea is pursued in Chapter 3 where the spectral

control is used to reach a different goal: instead of reproducing irregu-

lar network patterns, we aim to dampen the perturbations which bear

instability, avoiding pattern formation. We thus act on the topology of

the inter-node contacts (without altering the dynamical parameters of the

model) in order to achieve stabilization of a synchronized dynamics where

all the nodes reach consensus and oscillate together.

As anticipated before, dynamics on networks is central also when the sys-

tem being examined is not spatially extended. In this case, the interac-

tions, as encoded in the structure of the assigned network, might follow

non-diffusive rules. In ecosystems, for instance, inter-species interactions

are assumed to be mediated by pairwise, hence quadratic, exchange, to

some level of approximation. Each population (species) is characterized

by a self-reaction dynamics, typically described via a suitable nonlinear

function of the concentration amounts, and different populations can be

abstractly assigned to given nodes of a virtual graph [187]. The network

then represents the interactions between different species and the sign of

the weighted entries of the associated adjacency matrix define the nature

of coupling (competitive, cooperative, predator-prey, etc...). The concept

of stability is in such systems of paramount importance as it relates to

resilience, the ability of the system to counteract external perturbations

that would tend to get away from the existing equilibrium. It is therefore

crucial to devise possible strategies aimed at interfering with the system

of interest so as to enforce the desired stability [56,70,81,188]. This topic

is analyzed in detail in chapter 4.

By playing with ecosystem stability analysis, we can address different ap-

plications, for example, hostile pathogens could be forced to go extinct:

the stability of the attained equilibrium would efficaciously shield from

subsequent harmful invasion and outbreaks. Alternatively, it could prove

vital to robustly enhance the expression of species identified as beneficial

for the system at hand. Building on these premises, in Chapter 5 we de-

velop and test a general control strategy targeted to systems consisting of

a large number of components that interact through a complex network.

By inserting one additional species, the controller, which configures as a

further node of the collection, we will be able to locally manipulate the

asymptotic dynamics of the system, in terms of existence and stability of

the allowed fixed points.
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In Chapter 6, a different control method is devised, where the process

under exam is a random walk and we will analyze the way a set of mi-

croscopical agents asymptotically distribute on the different nodes when

traveling a complex network. Random walks are one of the most funda-

mental types of stochastic processes. They can be used to model numerous

phenomena and to extract information about the network structure. In

this chapter we do not modify the network structure at the level of nodes

and edges, but we deal with the role that specific nodes play in the ran-

dom walk process. In particular we insert absorbing sinks for agents in the

graph and study their performances so as to identify strategic positioning

and consequently customize the flux of agents on graphs.

While random walks are the basic ingredient to describe mobility, they do

not take into account the possibile interactions between agents present in

the same node of a network. The last chapter before conclusions, Chap-

ter 7 is devoted to study a process, called “reactive random walk” where,

inspired by reaction-diffusion, we take up the challenge to associate reac-

tion terms to the random walk process on network. Generalized biased

random walkers not only navigate the system, but also interact when they

meet at the nodes of the network. Contrarily to conventional random walk,

for these walkers the probability of relocation between adjacent nodes is

also sensitive to local reactions, which ultimately confers to each node a

self-identity. For such a reason, the occupation probability of a given node

depends not only on the connectivity pattern but also on the ability of the

node itself to attract walkers. This last property can be tuned at will by

properly shaping the reaction term, and this enables in turn to highlight

different characteristics of the network structure. We will in particular

focus on: (i) the definition of a novel functional centrality measure, (ii)

the issue of revealing hidden symmetries in a graph and (iii) the problem

of characterizing node degree-degree correlations in complex networks.

Finally, in the last chapter we will sum up and draw our conclusions, also

discussing possible further extensions of the proposed models and tech-

niques. Relevant technical material is provided in the Appendices.
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Chapter 1

Dynamics on complex

networks: from mobility to

equilibrium stability

1.1 Complex networks

The mathematical branch devoted to the study of complex networks is

called graph theory [117, 143], where with the word graph we refer to the

mathematical structure implemented to represent pairwise relations be-

tween a set of items. The networks that model real systems, be they

biological, social, environmental or other, are typically represented as a

set of nodes, or vertices, connected by links, or edges. This general frame-

work includes a huge amount of samples, thus giving an (initial) idea of the

potential versatility of networks. Furthermore, the edges can be charac-

terized by different weights quantifying the strength of the connections, in

this case the network is called weighted, and signed if the weights can also

assume negative values. Moreover a network is said directed if each edge

is associated to a specific direction, implying a non symmetric relation

between connected nodes. Each node is identified by an index i = 1, ..., N

and the mathematical tool which allows us to describe a network is the

adjacency matrix, A ∈ RN×N , whose generic entry Aij is equal to the

weight of the link from node j to node i and is 0 if there is no connection.

For undirected networks, A is a symmetric matrix and is said binary if its

entries are only zeros and ones. Clearly, there is a one-to-one correspon-

7
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stability

dence between networks and adjacency matrices. We define connectivity

or degree the N -dimensional vector k whose elements account for the total

number of links involving each node of the network. For directed graphs

two kinds of connectivities exist: the in-degree kini =
∑
j Aij and the out-

degree kouti =
∑
j Aji, which coincide for undirected networks.

The concept of complex networks is very general and each graph is

different from the others, but it is useful to group them into families that

share some common characteristics. Let us shortly introduce some of the

different classes of networks [182]. The simplest one is represented by

regular lattices, characterized by a highly regular geometrical structure

periodically repeated, like the arrangement of atoms, ions or molecules in

a crystalline material.

A more interesting class is that of random graphs, which for example can

be generated following the Erdös-Rènyi (ER) model [60]. These graphs

essentially are anything but regular and are built by adding random edges

to a set of N nodes initially disconnected. It is necessary to add a large

enough number of links (at least of the order of N) in order to end up with

a completely connected graph, i.e. where all nodes are reachable in a fi-

nite number of steps. These kinds of networks have been for instance used

to represent gene networks [108], ecosystems [133] and often man-made

networks like the electricity network, which exhibit sufficient randomness

because their structure has often developed over time subject to random

constraints [107].

A network structure that falls in the middle between regular lattices and

random graphs is represented by small-world networks. The building

recipe proposed by Watts and Strogatz [200] consists of a random rewiring

(with a probability 0 < p < 1) of the edges of a regular lattice. This process

endows the network with long-range connections, actually decreasing the

distance between vertices and “making the world smaller”, phenomenon

also referred to as six degrees of separation [83, 190]. Many empirical ex-

amples of small-world networks have been found in different fields, like

biology, social sciences and business [1, 99, 111, 144, 198]. In general, as a

result of the combination of local clustering and long-distance contacts,

this family of graphs is very rich and interesting also from the theoretical

point of view, as we will see in the following.

A last network structure that is worth citing is the scale-free, correspond-
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ing to a topology characterized by an exponential degree distribution

pk ∝ k−γ . This indicates the presence of many nodes with small degree

and a few highly connected nodes, or hubs. Examples of these topolo-

gies are surprisingly common in nature, from the Internet backbone [62],

to metabolic reaction networks [99], passing through social and trans-

portation connections [19], where the exponent γ always exhibits a value

between 2 and 3. Many scientists have wondered about the functional

advantages of scale-free architectures and have invented building mod-

els, the most famous one being the preferential attachment method by

Albert and Barabasi [20], based on linking nodes according to a degree-

dependent probability, following the concept that “the rich (of connec-

tions) gets richer”.

Figure 1.1: Example of scale-free network.
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1.2 Random walk on networks

Let us suppose now that a microscopic agent, a walker, travels a network,

moving from node to node by using the existing connections. Let us sup-

pose also that the only information he/she has access to is local and is

represented by the nodes which are adjacent to the one he/she is currently

occupying. Then, if more than one outgoing edge is at his/her disposal,

the choice will be random (or proportional to the couplings strength for

weighted networks), irrespective of the global network structure, since the

walker does not have a global perspective of the network and it is hence

impossible for him/her to make far-sighted decisions. This mobility pro-

cess may at first glance appear trivial and not interesting but is at the base

of the random walk concept, and turns out to be a very common process

as well as exceptionally useful for the purpose of unveiling the network

topology.

Probing a random walk process on a complex network defines a topic of

paramount importance and inter-disciplinary breath [3, 21, 28]. Random

walks probably are the simplest among the many dynamical processes

which have been studied on networks. Since the pioneering works of Pear-

son [161], who also coined the term, random walks have been extensively

investigated in different fields ranging from probability theory to statisti-

cal physics and computer science, and have found a number of practical

applications, on both regular lattices and (especially in the last couple

of decades) on networks with a variety of structures. Typical examples,

inspired by applications, are represented by financial markets [18], epi-

demic spreading [7, 158], social contagions [194], animal movement [43],

decision-making in the brain [105, 199], and also swarming behaviors me-

diated by the diffusive sharing of resources, in robotics [170] as well as in

insects [78,109].

A random walk on a network consists of an agent that performs local

hops from one node to one of its neighbours, producing in this way random

sequences of adjacent nodes [4,151,204]. They are generally introduced as

a discrete time process governed by the system of equations

xi(n+ 1) =
∑
j

Πijxj(n) (1.1)

where xi(n) denotes the probability that node i is visited at time step n

and Π is the transition matrix between nodes. The stationary distribution



1.2 Random walk on networks 11

x∗ = limn→∞ x(n) satisfies the equation x∗ = Πx∗ and, for undirected

networks Πijx
∗
j = Πjix

∗
i , meaning that the flow of probability in each di-

rection must equal each other at equilibrium, phenomenon which takes the

name of detailed balance [173]. The standard and simpler definition of the

transition matrix is Πij = Aij/kj , implying that from node j one can only

move to its adjacent nodes and the transition probability is normalized

with the degree, i.e. if node j is highly connected the probability of falling

on one of its adjacent nodes is smaller than in the case where j has few

neighbors. In this case the stationary distribution is proportional to the

degree of nodes: x∗i = ki/2K, where K is the total number of links.

Switching from discrete to continuous time when the spatial support is dis-

crete, as in the case of a network, is not trivial. The main point is to set the

time scale, which is no longer simply defined by discrete steps. Two dif-

ferent types of continuous-time processes can be defined: the node-centric

random walk, to which in the following we will simply refer as random

walk, and the edge-centric random walk, also know as diffusion on net-

work [132]. More specifically, in the node-centric version we consider that

a walker sitting on a node waits until the next move for a time τ , where τ

is a random variable. If we assume that there are independent, identical

Poisson processes at each node of the graph such that the walkers jump

at a constant rate, the corresponding continuous-time process is governed

by:

ẋi =
∑
j

(Πij − δij)xj ≡
∑
j

LRW
ij xj . (1.2)

where δij is a Kronecker delta and LRW
ij = Πij − δij is the (ij) element of

the random walk Laplacian. The concept of Laplacian operator is general

and is always characterized by N − 1 eigenvalues with negative real part

and one null eigenvalue, associated to a basis of N eigenvectors, which

encode the network structure. For undirected networks the eigenvalues are

real and the eigenvectors constitute a orthonormal basis. If we examine

the processes governed by this Laplacian we discover that the trajectories

are statistically the same as those of the discrete time random walk. In

particular, the stationary state is obtained by setting ẋi equal to zero,

which gives
∑
j L

RW
ij x∗j = 0, thus yielding the same stationary point of

the discrete time version. This also corresponds to the right eigenvector

of matrix LRW associated to the maximum eigenvalue, Λ = 0. Node-

centric random walks are considered to be at the heart of several real-
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world dynamical systems, like diseases spreading [44, 97, 197], foraging

of animals [172], innovation growth [96] and more. They have also found

applications in the context of metapopulation models [86,122,148,157,193],

where the nodes of the network represent discrete patches occupied by

members of a local population, and the random walk process describes

the migration from patch to patch.

In diffusion processes, or fluid models [4, 91, 171], a step occurs when the

walker decides to move to another node by using one of the outbound

edges of its vertex, or in other words, when an edge is activated. Clearly,

the more connected is the starting node the larger the set of options that

can be alternatively selected to jump away. The walker therefore leaves a

node with large degree more quickly than a node with small degree, and

the transition rate for a walker starting from node i is equal to ki. The

occupation probability evolves in this case according to:

ẋi =
∑
j

(Aij − kjδij)xj ≡
∑
j

LDijxj (1.3)

which defines another Laplacian operator with LDij = Aij − kjδij , associ-

ated to diffusion. More in general, the diffusion process refers to the flow

of a (material or immaterial) substance, on a continuous or discrete sup-

port, from regions of high concentration to regions of low concentration.

This process inevitably yields a space-homogeneous redistribution of the

density, which is forcefully subject to detailed balance constraints. When

diffusion occurs on a network, the system evolves towards an asymptotic

state where all nodes are equally activated, often termed as synchroniza-

tion [12, 167] or consensus [53]. The homogeneous stationary distribution

associated to a purely diffusive process indeed corresponds to the nor-

malized right eigenvector of LD associated to 0, represented by an N -

dimensional vector with all entries equal to 1
N

∑
i xi(0). All remaining

eigenvalues are real and negative, associated to N orthonormal eigenvec-

tors.

Let us observe that the Laplacian matrix is named after the similarity

of mobility equations (1.2) and (1.3) with the well-known heat equation

u̇(x, t) = ∇2u(x, t) which describes the distribution of heat in a given

region over time. When the spatial support is represented by a complex

network, the Laplace operator ∇2 is substituted by the Laplacian matrix.

The latter is bound to take into account a non-trivial underlying space,

thus becoming a powerful instrument which completely defines the con-
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sidered graph.

All the above considerations can be easily extended to directed net-

works, that represent the necessary support for many important applica-

tions. Human mobility flows on veritable networks with asymmetric edges

between nodes, as often roads can be trodden in one direction only. In-

formation spreads on Internet, the cyberspace being de facto schematized

as a network with asymmetric routing of the links. Directed networks are

characterized by asymmetric Laplacian matrices and consequently com-

plex eigenvalues. Observe also that the Laplacian operator for diffusion

on directed networks is defined as LDij = Aij − kini δij , with uniform eigen-

vector corresponding to the null eigenvalue.

1.3 Reaction-diffusion systems

While diffusion and random walks are the basic ingredients to describe

mobility, they do not take into account interactions between agents at the

node of a network. These are typically described by a local dynamics,

which can be different for each node. Local dynamics have been routinely

coupled with diffusive processes to describe the self-consistent evolution

of mutually coupled species, when subject to the combined influence of

diffusion and reaction terms [10, 16, 139]. These processes go under the

name of reaction-diffusion and are usually associated to time-evolution

equations of the form

ẋi = fi(xi) +
∑
j

LDijxj

where fi is a generic non-linear function accounting for the local reactions.

If the function fi is identical for each node of the network, the homoge-

neous state is still a solution of the system.

Examples of real-world situations that can be described by reaction-diffusion

processes on networks are represented by the spreading of infectious dis-

eases [7,95], animal migration among different habitats [8,136], metapop-

ulation models in general [44], or traffic behavior in technological systems

such as the Internet [160]. In the continuum limit, where instead of a

network the spatial support is represented by a continuous space region,

the interplay between local dynamics and diffusing coupling can give rise
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to intriguing phenomena like the formation of travelling waves as well as

other self-organized patterns like stripes, generally known as ”Turing pat-

terns”. These made their first appearance in 1952 after the seminal paper

by Alan Turing [192] and have subsequently been theoretically analyzed

and experimentally confirmed for various chemical, biological, and ecolog-

ical systems. They are also supposed to be connected to morphogenesis

in biology [87] and to animal coats and skin pigmentation [134,139]. The

important idea proposed by Alan Turing is that a state characterized by

local stability to small perturbations can become unstable when a spa-

tial coupling, mediated by diffusion, is introduced. In other words, if,

in absence of diffusion, the system under exam tends to a linearly stable

uniform steady state, then, under certain conditions, spatially inhomo-

geneous patterns can evolve by diffusion-driven instability, even though

diffusion is usually considered a stabilizing and homogenizing process.

This phenomenon is called Turing instability. Even on network-organized

systems, collective behaviors consisting of spontaneously emerging spatio-

temporal patterns are observed. It has been firstly pointed out by Othmer

and Scriven in 1971 [155], trying to describe multi-cellular morphogene-

sis. They indeed conjectured that the differentiation between cells could

be induced by the diffusion on the network of inter-cellular connections

where the morphogens are transported. A theoretical study focusing on

nonlinear patterns emerging in large random networks has more recently

been performed by Nakao and Mikhailov [142], where a network-organized

activator-inhibitor system is considered. Here the combined effect of local

reaction and network diffusion leads to spontaneous differentiation of the

network nodes into activator-rich and activator-low groups. A generaliza-

tion of this work has been proposed by Asllani, Di Patti and Fanelli [17]

where also finite size fluctuations have been introduced into the model.

Stochasticity has proven to have the effect of allowing the appearance of

self-organized patterns also outside the region of parameters associated to

the deterministic Turing instability.

A typical example of reaction-diffusion system, that we will use in

chapters 2 and 3 is represented by a set of coupled oscillators which can

be described by the Complex Ginzburg-Landau equation (CGLE) [11,11,

71, 195], a prototypical model for nonlinear physics, whose applications

range from superconductivity, superfluidity and Bose-Einstein condensa-
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tion to liquid crystals and strings in field theory. Let us assume that

the function fi, which specifies the oscillator dynamics, also depends on

a bifurcation parameter µ, such that the system undergoes a supercritical

Hopf bifurcation at µ = 0: there exists a linearly stable fixed point when

µ < 0 and a stable limit cycle when µ > 0. Near the supercritical Hopf bi-

furcation, we can derive the CGLE from this general model, following the

method of multiple timescales used by Kuramoto [115]. In particular, we

can extract slow spatio-temporal dynamics of the complex oscillations am-

plitude near the bifurcation point. The only difference from Kuramoto’s

derivation [115] is that the oscillators are discrete and the diffusion term

has a different form [141]. We end up with the following approximate

equation governing the dynamics of each node j:

ẋj = xj − (1 + ic2)|xj |2xj + (1 + ic1)K

N∑
k=1

LDjkxk (1.4)

where i denotes the imaginary unit; c1 and c2 are real parameters, which

can be externally assigned; K is a suitable parameter setting the coupling

strength.

1.4 Equilibria stability in reaction-diffusion

systems

It is important at this stage to introduce the concept of stability together

with the standard tools which are commonly used to analyze the stability

conditions of a multi-species reaction-diffusion system on a complex net-

work.

Let us suppose that we deal with a generic system composed of N identical

entities linked through a complex network. We consider the general case

where at time t the activity of node j is described by an m-dimensional

variable xj(t) ∈ Rm (vector notation). Starting from a specific initial state

xj(0), the dynamics of xj evolves according to

ẋj = F(xj) +K

N∑
k=1

LDjkxk j = 1, . . . , N (1.5)

where the function F : Rm → Rm is identical for each node of the network

and K is a constant representing the diffusion coefficient. From the above
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considerations we know that such system always admits as an equilibrium

a homogeneous state x∗, which can be either stationary (a fixed point) or

time-dependent (a limit cycle). The stability of this equilibrium can be

assessed by perturbing the homogeneous state with a non-uniform small

disturbance δxj , thus analyzing the system in the perturbed state xj =

x∗+δxj . Consequently, by Taylor expanding equations (1.5) to the linear

order in the perturbation, we end up with:

˙δxj = ∂xF(x∗)δxj +K

N∑
k=1

LDjkδxk ≡
N∑
k=1

Jjkδxk (1.6)

where we used the diffusion Laplacian property
∑
k L

D
jk = 0, ∂xF(x∗)

is an m-dimensional matrix of derivatives, and the Nm × Nm matrix J

is denoted as Jacobian. By exploiting the Laplacian eigenvector basis it

is possible to convert J in a block-diagonal matrix, thus decoupling the

equations and significantly reducing the mathematical complexity of the

system. The expansion of the state vector δxj on such basis represents

an analogy with the Fourier series expansion, that one would obtain if

the network were a regular lattice. We then diagonalize the Laplacian,∑
k L

D
jkφ

(α)
k = Λ(α)φ

(α)
j , and express the perturbation on the new basis:

δxj(t) =

N∑
α=1

cα(t)φ
(α)
j , (1.7)

where cα ∈ Rm. Consequently, eqs. (1.6) can be decoupled as:

N∑
α=1

ċα(t)φ
(α)
j = ∂xF(x∗)

N∑
α=1

cα(t)φ
(α)
j +K

N∑
α=1

Λ(α)cα(t)φ
(α)
j (1.8)

and using the linear independence of the eigenvectors, it is reduced to a

set of N m-dimensional systems indexed by α:

ċα(t) = Jαcα(t) (1.9)

where the m × m matrix Jα ≡ ∂xF(x∗) + KΛ(α) is the α-th diagonal

block of J . A distinction becomes necessary at this stage: if x∗ is a fixed

point the Jacobian is constant in time and a simple solution of (1.9) takes

the form

cα(t) = cα(0)eλ
(α)t (1.10)
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and it is straightforward that in order to admit a non-trivial solution of the

system the determinant of Jα−λ(α)Im must be zero. From this condition

we obtain λ(α) which configures as the set of eigenvalues of the block

Jα. The maximum eigenvalue, corresponding to the largest Lyapunov

exponent of eq. (1.9), is also denoted as Master Stability Function [94,162].

If instead the Jacobian is periodic in time due to the limit cycle solution

(Jα(t + T ) = Jα(t)), the Floquet theory [40, 82, 130] comes into play.

This latter allows us to again express the temporal dependence of the

perturbations δx as an exponential function: eµ
(α)
k t, but here µ

(α)
k are the

Floquet exponents, defined by µ
(α)
k = log(ρ

(α)
k )/T with ρ

(α)
k eigenvalues of

the constant matrix B such that det(B) = exp
[∫ T

0
Tr(Jα(t))dt

]
.

In both, the static and the periodic case, the stability of the system is

assessed by the component of respectively λ(α) or µ(α) with maximum real

part. Its relation with the Laplacian eigenvalues is called the dispersion

relation and represents the network extension of the dispersion relation

defined on a regular (continuous or discrete) medium. The analogy relies

on the identification of the eigenvalues and eigenvectors of the network

Laplacian with the Fourier wavelengths and modes used when the support

is periodic.

Finally, the exponential time evolution of the linear perturbations im-

plies that the system can only be stable if all the exponents λ(α) or µ(α) are

negative, because if even just one of them has a positive real part, then the

perturbation grows through the direction associated to the corresponding

eigenvector, resulting in an irregular behavior.

Let us observe that the above stability analysis can be extended to

the case where the coupling is not necessarily diffusive but still dependent

on the concentration difference between adjacent nodes by means of a

function G, like:

ẋj = F(xj) +K

N∑
k=1

AjkG(xk − xj). (1.11)

Indeed, during the linearization process the Laplacian matrix emerges any-

way and we again obtain a system of the form ˙δxj =
∑N
k=1 Jjkδxk, with

the difference that the Jacobian matrix results defined by:

J = ∂xF(x∗)IN +K∂xG(0)LD, (1.12)
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see eq. (1.6) for a comparison.

Let us say a brief word on the possibility that some of the Jaco-

bian eigenvalues have algebraic multiplicity ma larger than one and ge-

ometric multiplicity mg 6= ma. In this case the Jacobian eigenvectors

do not constitute a basis and the solution takes a different form. Let

us consider for instance the case where we only have N − 1 indepen-

dent eigenvectors φ(1), ...,φ(N−1) where Λ(1) is characterized by ma = 2

and mg = 1. The basis that we choose for the expansion should be

ξ(0), ξ(1) ≡ φ(1), ..., ξ(N−1) ≡ φ(N−1) where ξ(0) is a generic vector which

is linearly independent on the others. The analogous of (1.7) will take the

form:

δxj(t) = [c0ξ
(0)
j + (c1 + at)ξ

(1)
j ]eλ

(1)t +

N−1∑
α=2

cαe
λ(α)tξ

(α)
j (1.13)

with c0, c1, ..., cN−1,a arbitrary constant vectors ∈ Rm to be fixed by the

initial conditions.

In general, the Jacobian eigenvalues degeneracy has the effect of modi-

fying the exponential time behaviour by introducing a multiplicative poly-

nomial in t. The asymptotic state still only depends on the eigenvalues

and the system is stable if all their real parts are negative. However, also

in the stable scenario, during the transient before equilibrium the state is

governed by the polynomial terms. These latter may generate short time

amplifications of the perturbations, with the consequent risk of moving

away from the basin of attraction of the equilibrium under exam [137].

In the next chapters we will deal with different kinds of dynamical sys-

tems on networks, not only reaction-diffusion, and we will develop tech-

niques to affect and modify the system stability in a desired way. In all

cases the eigenvectors decomposition and the subsequent dispersion rela-

tion will represent the main characters of our analysis, mostly based on

the Laplacian spectral properties.



Chapter 2

Pattern invariant networks

Patterns are ubiquitous in nature and arise in different contexts, ranging

from chemistry to physics, passing through biology and life sciences [192].

The mathematics that underlies pattern formation focuses on the dynami-

cal interplay between reaction and diffusion processes. In particular, when

the reaction-diffusion system is hosted on a graph, the Turing pattern

counterpart is represented by a non-homogeneous filling of the different

nodes of the network. The activation motif can be static or evolving in

time. In the following we will use the word “pattern” referring to the

(regular or irregular) activation scheme of the different nodes on a finite

window of time.

This chapter is devoted to explore the subtle interplay between network

structure and ensuing dynamics. The focus is put on reaction-diffusion sys-

tems with identical single node dynamics, as introduced in the previous

chapter, where the coupling between the units always admits a homo-

geneous state where all the nodes are synchronized. If such equilibrium

proves unstable, any arbitrary perturbation grows through the unstable di-

rections giving rise to irregular spatio-temporal patterns [16,155,168,192].

While in the homogeneous state no information is flowing through the

network, the result of instability may turn out to be of crucial interest

from the point of view of network characterization. This irregular be-

haviour indeed represents the functional response to a given input which

can be traced back to the structural characteristics of the underlying net-

work [32]. Whereas, in general, a random change on the network topology

19
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would lead to a modification of its dynamical response, it is also presum-

able that a specific outcome is not unique from a particular network, so

that similar patterns might arise from different isodynamic topologies. The

identification of different compatible structures that give rise to the same

dynamical behavior represents an important leap forward in the study of

complex networks dynamics. For instance, it paves new roads to devise

network reconstruction protocols, in cases where more than one network

can correspond to the same dynamical output. Upon analyzing the com-

mon topological properties that contain the dynamical information of the

system, one might overlook the inaccessible details of the topology.

Here, we propose two different methods to generate, given a specific

network, a second network isodynamic to the first one, so that they share

the same dynamical response. For this purpose, we exploit the idea that

just part of the degrees of freedom stored in the topology proves significant

for the emergence of a specific dynamical behavior [9, 79, 85]. The first

method is exact, since it directly acts on the subspace generated by the

Laplacian eigenvectors characterizing the stability of the equilibrium state.

On the other hand, the second technique relies on a Monte-Carlo algorithm

that allows for a neater control in terms of network topology. In brief, the

goal of this analysis is to prove that it is possible to provide two (or more)

structurally different complex networks so that furnishing the same input

can lead to the same output.

2.1 Dispersion relation and pattern forma-

tion

We begin by analyzing the mechanism which leads to pattern formation

and how the switching on of irregularities is related to the network topol-

ogy.

Let us consider a generic system composed of N identical entities linked

through a complex network. At time t the activity of node j is described

by an m-dimensional variable xj(t) ∈ Rm. Starting from a specific initial

state xj(0), the dynamics of xj evolves according to

ẋj = F(xj) +K

N∑
k=1

AjkG(xk − xj) j = 1, . . . , N (2.1)
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where A denotes the adjacency matrix of the network, and F : Rm → Rm

and G : Rm → Rm are generic continuous functions. The first term on

the right hand side of the equation describes the self-dynamics of each

individual node j, and is referred to as reaction term. The second term

instead, defines the interaction of node j with the other nodes of the net-

work: the existence of a coupling is set by the adjacency matrix A, while

the interaction shape is established by function G. Our analysis requires

two assumptions: (i) there exists an equilibrium xj = x∗ ∀j for the un-

coupled problem ẋj = F(xj), and (ii) function G annihilates in zero, i.e.

G(0) = 0. The uncoupled equilibrium x∗ can be either a stationary fixed

point or a limit cycle. Whatever is the case, the second condition ensures

that x∗ becomes a homogeneous solution of the system (2.1). A wide

class of models corresponding to this setup are reaction-diffusion systems,

where G is a linear function. This constraints can be also generalized in

order to include networks of homogeneous Kuramoto-Daido systems with

arbitrary coupling functions [49–51].

At the homogeneous equilibrium x∗ no information is flowing through

the network. However, if such state turns out to be unstable, a generic

small perturbation δx of x∗ can give rise to an irregular spatio-temporal

pattern. Linearization of (2.1) around x∗ provides the time evolution of

the perturbation δxj ∈ RNm as a system ofNm linear ordinary differential

equations,

˙δx = J(x∗)δx, (2.2)

where J ∈ RNm×Nm is the Jacobian matrix of the system. Therefore, the

stability analysis of x∗ amounts to studying the high-dimensional operator

J(x∗). Nevertheless, as explained in chapter 1, it is possible to link the

diagonalization of the Jacobian to that of a simpler operator. In the

linearized regime, the flow of the quantity δxj to another node i of the

underlying network is described by LDij = Aij − k
(in)
i δij , where k

(in)
i is

the in-degree of node i and δij the Kronecker delta. The resulting N ×N
matrix LD is known as Laplacian of the network.

By expressing δxj in the basis of the Laplacian eigenvectors {φ(α)}Nα=1,

and making use of the corresponding eigenvalues {Λ(α)}Nα=1 it is possible to

decouple the Nm equations from system (2.2), thus reducing the problem

to N uncoupled m-dimensional systems indexed by α (see chapter 1).

Each of the reduced systems is described by the reduced Jacobian Jα ≡
∂wF(x∗)+∂wG(0)KΛ(α). If Jα is time independent, as when x∗ is a fixed
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point, the stability analysis is simply assessed by its m eigenvalues λ(α) =

(λ
(α)
k ). Therefore, the stability of x∗ in the full Nm dimensional problem

is ultimately controlled by the dispersion relation λ(α) ≡ maxk(λ
(α)
k ). If

instead the Jacobian has a periodic dependence on time, one needs to

obtain the m Floquet exponents µ(α) = (µ
(α)
k ) of the system [40, 82, 130],

which represent the analogue of λ(α) for a time-dependent Jacobian (see

1). In both instances, the dispersion relation assesses the stability of x∗

and its dependence on the Laplacian eigenvalues, as explained in chapter 1.

If the dispersion relation of a subportion Nc of the total N eigenvalues

Λ(α) is positive, then any perturbation would grow through the unstable

modes. The resulting irregular spatio-temporal pattern thus represents

the unpredictable response of the system to a specific input signal. It is

however reasonable to suppose that most of the relevant information is

stored in the unstable manifold of the homogeneous solution x∗, as it will

be proven later on.

2.2 Topology modification

In this section we propose two methods to modify the discrete support of

the system while preserving the relevant directions for the emergence of

the pattern.

2.2.1 Eigenmode randomization

The first method for network modification consists of preserving a sub-

portion n of the N total eigenmodes of the original network Laplacian

whereas all the others are modified. Let us suppose, without loss of gen-

erality, that the subset of modes to be left invariant are the first n. We

define the diagonal matrix Λ̃, such that

Λ̃(α) =

{
Λ(α) if α ≤ n
Λ(α) + δΛ(α) if α > n.

The corresponding eigenvectors are modified by performing a change of

basis

Φ̃ = Φ

(
In 0

0 RN−n

)
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where Φ is a matrix whose columns are the eigenvectors of LD, In is the

identity matrix of dimension n and RN−n ∈ SO(N − n) is a random ro-

tation matrix. In order to practically obtain such rotation we perform

QR decomposition of a random matrix. Taking care of preserving the

uniform mode, which corresponds to an identical perturbation acting in-

dependently on each node, the transformation

L̃D := Φ̃Λ̃Φ̃−1

defines a new Laplacian matrix, indeed:

(i): The elements of L̃D are real. In the symmetric case, the eigenval-

ues and their corresponding corrections are real, as well as the eigenvectors

and the rotation matrix R. Hence, the elements of Λ̃, Φ̃, Φ̃−1 are real

and, consequently, L̃Dij ∈ R ∀i, j. The directed case is more complicated

to treat and is discussed in Appendix A.

(ii): Each column of L̃D sums up to zero. Observe that

Λ(α)φ
(α)
i =

∑
j

LDijφ
(α)
j =

∑
j

(Aij − δijkj)φ(α)
j =

=
∑
j

Aijφ
(α)
j − kiφ(α)

i =

=
∑
j

Aijφ
(α)
j −

∑
l

Aliφ
(α)
i

(2.3)

Summing over i one obtains:

Λ(α)
∑
i

φ
(α)
i =

∑
i,j

Aijφ
(α)
j −

∑
l,i

Aliφ
(α)
i = 0 ∀α, (2.4)

thus the sum of elements of each Laplacian’s eigenvector corresponding

to an eigenvalue different from zero is identically equal to zero. This

is also true for the modified eigenvectors, since Λ(α)
∑
i Φiα = 0 implies

Λ̃(α)
∑
i Φ̃iα = Λ̃(α)

∑
lRlα

∑
i Φil = 0, assuming that Λ(α) 6= 0 implies

Λ̃(α) 6= 0. This observation can be used to conclude the proof considering

that the (i, l) entry of the controlled Laplacian can be written as∑
i

L̃Dil =
∑
i,j

Φ̃ijΛ̃jj(Φ̃
−1)jl =

=
∑
j

(Φ̃−1)jlΛ̃jj
∑
i

Φ̃ij
(2.5)
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and that the zero eigenvalue is associated to a null correction.

(iii): If LD is symmetric, then also L̃D is symmetric. It is enough to

prove that the corrections L̃D are bound to be symmetric. Indeed, when

LD is symmetric, matrix Φ is orthogonal (Φ−1 = ΦT ). Hence:

L̃Dil =
∑
j

Φ̃ijΛ̃jj(Φ̃
−1)jl =

=
∑
j

Φ̃ijΛ̃jjΦ̃lj =

=
∑
j

Φ̃ljΛ̃jj(Φ̃
−1)ji = L̃Dli

(2.6)

which concludes the proof.

2.3 Local rewiring

The previous method does not provide any control whatsoever on the topo-

logical modifications introduced in the new Laplacian. For this reason, we

propose an alternative route that acts at the level of single nodes. For

many network structures, the Laplacian eigenvectors are well localized on

the network, i.e., their coordinates in the original vector space mostly in-

volve a small subset of nodes, different for each eigenvector [89]. Therefore,

modifying some eigenvectors means acting mainly on the connections of

a specific subnetwork, and vice versa. With this method we aim to iden-

tify and modify the links among nodes which are poorly involved on the

n-dimensional manifold related to pattern formation.

We rely on a Monte-Carlo algorithm that proceeds as follows. Given

the original network, we choose a random non-diagonal entry of the adja-

cency matrix, Aij . If the entry indicates the existence of a link between

node i and node j, such link is removed, otherwise it is created. We then

compare the n eigenvalues and eigenvectors of the modified network with

those of the original one, and only if they prove similar according to a cho-

sen threshold τ the change is accepted (see Appendix for further details).

The process is repeated selecting new random entries over the modified

adjacency matrix until a desired number of links have been changed or the

method fails to detect new entries that lead to small error.
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2.4 Results and discussion

2.4.1 The Ginzburg-Landau model

In order to test the different methods we use the CGLE, introduced in the

previous chapter, as a reference model for the dynamics of each node. The

system is hence composed by a set of oscillators, described in terms of their

complex amplitude, occupying the nodes of an undirected network with a

diffusive coupling (for a case with a directed network see Appendix). The

equation governing the dynamics of each node j is

ẋj = xj − (1 + ic2)|xj |2xj + (1 + ic1)K

N∑
k=1

LDjkxk (2.7)

with c1, c2,K ∈ R. We focus our analysis on the limit-cycle globally

synchronous state, xj(t) = x∗(t) := e−ic2t.

Even though x∗ is time-dependent, the Jacobian Jα is constant in

time, and following the procedure indicated in the Appendix, we obtain

the dispersion relation characterizing the linear stability analysis of the

limit cycle solution,

λ(−KΛ(α)) = KΛ(α) − 1 +
√
−c21K2(Λ(α))2 + 2c1c2KΛ(α) + 1. (2.8)

Depending on the system parameters, function λ might have a positive

part, corresponding to the smaller Laplacian eigenvalues in absolute value.

Therefore, a particular network with N nodes might have Nc < N Lapla-

cian eigenvalues associated to unstable modes. From now on, we assume

that the Laplacian eigenvalues are sorted in descending order, Λ(0) = 0 >

Λ(1) > · · · > Λ(N), so that the Nc unstable modes correspond to the

Laplacian eigenvalues with index ranging from 1 to Nc.

2.4.2 Eigenmode randomization

Erdös-Rènyi networks

We first test the eigenmode randomization method using as original topol-

ogy an Erdös-Rènyi (ER) network with N = 100 nodes and average node

degree 〈k〉 = 3.5. For system parameters K = 1, c1 = 1, and c2 = −3,

the dispersion relation associated to this network has Nc = 44 modes cor-

responding to unstable directions (see red dots in Fig. 2.1). We integrate
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Figure 2.1: Results corresponding to an Erdös-Rènyi undirected network with

N = 100 nodes and average degree 〈k〉 = 3.5. (a-f) Outcome of the implemen-

tation of the eigenmode randomization preserving 10 (a-c) and 40 (d-f) modes.

(a,d): Time evolution of the modulus for each node of the modified network.

(b,e): Section of the dispersion relation λ showing the unstable eigenvalues for

the original (red dots) and modified network (blue circles). A full plot of λ

for the original network is depicted in the Appendix. (c,f): Relation between

the time-averaged modulus of each node on the modified network and that of

the original network. (g): Time evolution of the modulus of each node of the

original network. (h): Squared correlation coefficient between the time-average

modulus of each node on the modified network and that of the original network

for different number of preserved modes. Purple circles correspond to networks

where the first n Laplacian eigenvalues are preserved. Grey squares and grey

triangles are the outcome of two different realizations where the n preserved

modes of the modified networks are selected at random.
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the system using as initial condition a randomly generated small perturba-

tion of the homogeneous limit-cycle solution. After a short transient, the

system reaches a dynamical regime characterized by an irregular spatio-

temporal pattern depicted in figure 2.1(g). Notice that throughout the

chapter we focus only on each oscillator modulus, since the frequency of

rotation does not seem to contain relevant spatial structure.

We aim to generate a new topology that reproduces such dynamical

behavior by leaving invariant a subset of the original network modes. Tak-

ing into account that the Laplacian eigenvalues are sorted in descending

order, we preserve the first n modes and modify the rest using the eigen-

mode randomization method. As an illustrative example, in Fig. 2.1(a)

we show the pattern resulting from a network where only the first n = 10

modes of the original topology are preserved and all the others have been

randomized. Manifestly, such outcome has little similarity with that of

the original network (cf. fig. 2.1(g)). In Fig. 2.1(b) we plot a zoom on the

unstable part of the dispersion relation for the modified network (blue cir-

cles), and that of the original topology (red dots). Overall is plausible to

explain the disagreement between the dynamical behavior of the two net-

works from the large difference between the corresponding tangent space

of the synchronized solution. Repeating the procedure with n = 40 pre-

served modes instead, leads to the pattern from Fig. 2.1(d). In this case,

the behavior of the modified topology resembles much better that of the

original network, and observation which is to be traced to the similarity

between the dispersion relations of the respective unstable manifolds (see

Fig. 2.1(e)).

In order to make the comparison between different patterns more trans-

parent, we compute the time-average modulus of each node, 〈|xj |〉 after

discarding a transient of 1000 time units. In Figs. 2.1(c) and (f) we report

the resulting mean node activity of the modified networks versus that of

the original one for n = 10 and n = 40 respectively. An outcome from two

identical patterns would lie exactly on the diagonal, while two completely

independent processes would provide a random collection of points. One

can then quantify the similarity between the modified and original pat-

terns in terms of squared Pearson correlation coefficient R2, which is 0.38

for n = 10 and 0.97 for n = 40. In Fig. 2.1(h) we show the outcome of

repeating this analysis systematically for increasing number of preserved

modes n. When the modes to be preserved are selected to be the first n,
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Figure 2.2: (a) Original ER topology. (b) Network resulting from preserving

all the unstable modes. The color of the nodes correspond to the time average

modulus of xj , each link thickness is associated to its weight and blue links

indicate negative contributions. (c) Node degree distribution of the original

network. (d) Node strength of the modified network.

the correlation between the patterns of the modified and original networks

increases quickly with n, reaching a very good agreement when approxi-

mately all the 44 unstable modes are preserved (see red circles). On the

other hand, if the n invariant modes are randomly selected among all the

N , even when a large number of directions are maintained, there is no

guarantee that the modified network will respond similarly to the original

one (see gray triangles and squares).

The eigenmode randomization technique does not provide, a priori any

information about the structure of the resulting network. In Fig. 2.2(a)

and (b) we show the topologies of the original network and a modified

version where all the 44 unstable modes have been preserved. The first

obvious difference one can see is the existence of weighted links, including

negative ones (see blue edges), which are absent in the original network.

The adjacency matrix loses its sparsity and the network becomes highly

connected, although most of the new links are very weak. In order to

compare the two networks we focus on the strength sj of each node, defined

as sj =
∑N
m=1Ajm, which extends the concept of node degree to weighted

topologies. In Fig. 2.2(c) and (d) we plot the degree distribution of the

original network, and the strength distribution of the modified topology,

respectively. Although the distribution of the new network looks different

from the original one, it does not present any particular structure, as
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expected for a random topology. In fact, the average strength of the new

network coincides with the average degree of the initial support.

Scale-Free networks

In order to further investigate the relation between the Laplacian eigen-

modes and network topology, we next move to a case where the network

has a specific structure. For this purpose we consider Scale-Free net-

works (SF), characterized by a typical power law degree distribution. In

Fig. 2.3(a) we show an example of such degree distribution for a network

composed of 150 nodes. Fixing the parameters of the CGLE as K = 1,

c1 = 1.2, and c2 = −10, the dispersion relation of this network shows

Nc = 76 unstable modes. We apply the eigenmode randomization tech-

nique to generate a new support taking care to preserve all the unstable

directions, but none of the stable ones (n = Nc). The patterns result-

ing from inserting the same perturbation to the synchronized solution on

both networks are highly alike, as can be seen from the correlation fig-

ure 2.3(d). Differently from the ER case, here the modulus of each node

gets stationary after some transient, so such time-average activity is free

from statistical fluctuations.

The topology of the new network is, again, highly connected and

involves negative links. Morevoer, the node strength distribution (see

Fig. 2.3(b)) does not preserve the scale-free structure of the original topol-

ogy. To identify the nature of this strong changes, in Fig. 2.3(c) we plot

a one to one comparison between the degree of each node of the origi-

nal support and the corresponding strength on the new topology. This

analysis reveals that nodes with smaller degree on the original setup have

a comparable strength after the modification, whereas the hubs become

much weaker.

The localization properties of the Laplacian eigenvectors allow us to

understand this situation. Inspired by the analysis performed by Hata and

Nakao in [89], we depict in Fig. 2.3(f) the absolute values of the vector

components |φ(α)
i |, where nodes are sorted according to their degree in

descending order (k1 ≥ k2 ≥ ... ≥ kN ), whereas the eigenmode index α

follows the usual descending order of the eigenvalues. The almost diago-

nal behavior indicates that the eigenvectors associated to the eigenvalues

with smaller absolute value mostly involve the less connected nodes of the

network.
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Figure 2.3: Outcome of the eigenmode randomization technique using as original

network a scale-free topology with N = 150 nodes. (a) Degree distribution of

the original network (blue boxes). The continuous red curve corresponds to a

numerical fit of the data to an exponential shape P (k) = ck−β , with c = 0.23

and β = 0.85. (b) Strength distribution on a modified version of the network

where the 76 unstables modes have been preserved. (c) Node strength sj of

the modified network with respect to the node degree of the same node kj
in the original network. The black dashed line shows the case sj = kj for

eye guide. (d) Correlation between the dynamical patterns of the original and

modified networks, with resulting squared correlation coefficient R2 = 0.99. (e)

Eigenvectors of the original Scale-Free network Laplacian. The eigenvalues are

sorted in descending order according to the corresponding Laplacian eigenvalues,

and the nodes have been sorted in descending order with respect to their degree.

The color represents the absolute value of each eigenvector component. (f)

Squared correlation coefficient as the number of preserved modes n increases.

Red circles, blue squares and black crosses indicate the results corresponding to

three different initial conditions. The vertical dashed line indicates the threshold

between unstable and stable modes.

This implies that all the networks generated with the eigenmode ran-

domization procedure will mostly differ from the original one for what

concerns the nodes characterized by a large degree kj . For this reason the
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characteristic shape of the degree distribution is not preserved in the sec-

ond network. Nevertheless, in dynamical systems with a different shape

of the dispersion relation it might be possible to maintain the tail of the

distribution if the stable modes are to be found among the first Laplacian

eigenmodes (see a specific example in the Appendix).

Finally, we repeat the procedure of systematically increasing the num-

ber of invariant modes n from 1 to 150 and tracking the resulting cor-

relation coefficient, Fig. 2.3(f). For each new network we analyze the

dynamical patterns resulting from inserting three different randomly gen-

erated perturbations. As for the ER case, the correlation between the

dynamics of the original and modified topologies increases quickly with n,

being nearly optimal when all the unstable modes are preserved (see verti-

cal dashed line). Nevertheless, the choice of the initial condition is clearly

relevant: whereas in one case preserving around 40 modes already provides

a good agreement (see black crosses), in other situations one might need

to preserve also a considerable number of stable directions to reproduce

the original pattern (see red circles).

2.4.3 Local rewiring

The second method we present offers the advantage of a more flexible

control on the resulting network topology so that, for instance, one can

keep the network binary. On the other hand, one needs to allow for some

variability also on the unstable manifold due to the non perfect localization

of the Laplacian eigenmodes on a specific subnetwork.

We first apply the local rewiring technique on a ER network with

N = 400 nodes and average degree 〈k〉 = 20. At each step the tolerance

of difference between the unstable manifolds of the original and modified

networks is set to τ = 10−1. For system parameters K = 0.15, c1 = 1,

and c2 = −3, the system displays 64 unstable modes. The algorithm

stops after 100 positions on the adjacency matrix have been changed. For

comparison purposes, we also created three different networks where 100

entries on the adjacency matrix have been changed totally at random.

Blue circles in Fig. 2.4(a) show the correlation between the patterns of

the original and the resulting network, whereas the gray symbols corre-

spond to that of the random rewired graphs. The dynamical behavior

of the network obtained using the local rewiring method provides a bet-

ter agreement with the original pattern. We obtain similar results when
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using a SF network generated with the Barabási-Albert algorithm (see

Fig. 2.4(b)). Although these results change upon inserting different initial

perturbations, the rewiring technique outperforms the randomly modified

networks in most of the cases (see Appendix for additional results).

In terms of topology changes, in Figs. 2.4(c) and (d) we plot the total

number of links that have been modified for each node of the network.

It is clear that most of the changes correspond to nodes with larger de-

gree which, as shown in the previous section, mostly involve the Laplacian

eigenvectors associated to stable directions in the case of the CGLE.

In conclusion, in the present chapter we have devised two specific

strategies of network generation so as to mimic the pattern obtained by a

former sample network when both are subject to the same dynamical sys-

tem. The first method is analytical, and provides isodynamic networks at

the cost of changing important topological features of the original graph.

The second technique instead makes use of a Monte-Carlo algorithm, al-

lowing for a larger control in terms of network topology, but providing less

accurate results. Both methods rely on a preliminary identification of a

manifold generated by the Laplacian eigenvectors associated to homoge-

neous solution instability, which has to be preserved during the modifica-

tions. The localization properties of the Laplacian eigenvectors in some

cases make it possible to identify a subnetwork or a set of nodes which are

(recognized to be) practically irrelevant for pattern formation. The conse-

quence is that a specific activation pattern can be associated not only to

a single network but to a class of networks having in common the relevant

substructures and differentiating for the rest. Hence, the above analysis

also opens the perspective to multiple possibilities in network reconstruc-

tion.

The proposed network generation method, based on the discovery of

pattern-invariant networks, sheds light on the strong dependence between

network topology and dynamical patterns. This argument will be further

investigated in the next chapter where we will focus on how the network

structure can be adjusted in order to induce the spontaneous patterns to

dampen.



2.4 Results and discussion 33

0.4

0.6

0.8

1

1.2

0.4 0.6 0.8 1 1.2

a) c)

b) d)

Erdös-Rènyi

Scale-free

0

10

20

0 50 100 150 200 250 300 350 400

a) c)

b) d)

Erdös-Rènyi

Scale-free

0.6

0.8

1

1.2

0.6 0.8 1 1.2

a) c)

b) d)

Erdös-Rènyi

Scale-free

0

10

20

30

0 50 100 150 200 250 300 350 400

a) c)

b) d)

Erdös-Rènyi

Scale-free

M
od

ifi
ed

ne
tw

or
k

N
um

be
r
of

ch
an

ge
d
lin

ks

Node index j

M
od

ifi
ed

ne
tw

or
k

Original network

N
um

be
r
ch
an

ge
d
lin

ks

Node index j

Figure 2.4: Results of the local rewiring method applied to a ER with average

degree 〈k〉=20 and 64 unstable modes (a,c), and to a SF network with 63 unstable

modes (b,d). Both topologies consist of N = 400 nodes. At each step the

tolerance error of the algorithm is τ = 0.1. In total, the new networks present 100

modified links with respect to the original topologies. (a,b) Correlation between

patterns of the original and modified networks. Colored circles correspond to

the results obtained using the local rewiring algorithm. Gray pluses, crosses,

and stars correspond to three different networks generated by random rewiring

as many links as the network outcoming from the local rewiring procedure.

The squared coefficient correlations for the modified ER network is 0.98 (blue

circles) whereas the randomly rewired networks provide 0.67, 0.62, and 0.94. The

modified SF network has R2 =0.86 (red circles), whereas the random networks

provide 0.49, 0.50, and 0.67. (c,d) Number of links changed for each node of the

network. The nodes are sorted in descending degree order.
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Chapter 3

Spectral control for

reaction-diffusion systems on

networks

In the previous chapter we analysed the spontaneous emergence of patterns

in reaction-diffusion systems and how similar patterns can be observed

with different network topologies.

In many cases of interest it is however important to oppose the natural

tendency to the formation of patterns, by preserving (or recovering) the

synchronized state [135, 167]. Synchronization plays indeed a pivotal role

in many branches of science: the efficient coordination of a multitude of

events is often decisive to have a system operated as a unison orchestra. In

an alternating current electric power grid, one needs to match the speed

and frequency of any given generator to the other sources of the shared

network [56, 57, 102]. In neuroscience, patterns of synchronous firings are

promoted by dedicated neuronal feedbacks. Circadian rhythms are an-

other example that certifies the ubiquitous tendency towards entrainable

oscillations as displayed by a vast plethora of biological processes [69,75].

In computer science, synchronization is customarily referred to as consen-

sus [152], a form of final agreement, stationary or time dependent, which

is reached by a crowd of interacting agents.

Given these premises it is in general important to devise suitable con-

trol strategies to stabilize, and possibly preserve, the synchronous regime.

The control is classically applied to the reactive component of the dy-

35
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namics, and ultimately shapes the local interaction between constitutive

elements [90]. Global, mean field term can be also accommodated for so

as to induce the sought behavior. When the dynamics flow on a network,

topology matters and does play a prominent role in eliciting the instabil-

ity [16, 46]. This observation motivates the search of alternative control

protocols, which leave the reaction part unchanged, while acting on the

underlying web of inter-nodes connections [15,178].

We here deal with systems like 1.11, however to illustrate the pro-

posed method we shall again operate in the framework of the Complex

Ginzburg-Landau Equation (CGLE). The CGLE admits a uniform fully

synchronized solution, the spatially extended replica of the periodic orbit

displayed by the system in its a-spatial version, provided the Laplacian is

balanced (equal incoming and outgoing connectivity) [141]. Hereafter, we

shall assume that the nodes of the network where oscillators lie are initially

paired (and the reaction parameters set) so as to make the system unsta-

ble to externally injected, non homogeneous, perturbations. The network

of connections is then globally reshaped (keeping the reaction parameters

unchanged) to regain the stability of the synchronized, time dependent,

solution. We will then move forward to considering a system of coupled

(real) Ginzburg-Landau equations [121], which admits a stationary sta-

ble fixed point. Turing-like instabilities will be controlled, hence formally

prevented, with a supervised intervention targeted to the net of interlaced

couplings which is again based on the identification of pattern-relevant

(and irrelevant) Laplacian eigenmodes.

This chapter is organized as follows. In the next section we will intro-

duce the CGLE and carry out a linear stability analysis to delineate the

conditions that make the spatially extended homogenous limit cycle solu-

tion stable. We will in particular elaborate on the remarkable differences

that arise when the system involves a finite and discrete collection of inter-

linked oscillators, as opposed to the reference case where the population of

elementary constituents is made infinite and continuous. In Section 3.2 we

will provide the mathematical basis for the proposed control method. The

approach will be successfully tested by operating with the CGLE and as-

suming a symmetric network. In Section 3.3, we will consider a directed,

although balanced, network of couplings and extend to this setting the

analysis.
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3.1 Complex Ginzburg-Landau equation: lin-

ear stability analysis

Consider an ensemble made of N nonlinear oscillators and label with xi
their associated complex amplitude, where i = 1, ..., N . Each individual

oscillator obeys to a Stuart Landau model, which combines linear and non-

linear (cubic) contributions. In addition, we assume the oscillators to be

mutually coupled via a diffusive-like interaction which is mathematically

exemplified via the discrete Laplacian operator. In this chapter we will deal

with symmetric or balanced and directed networks, hence kouti = kini ≡ ki.
The spatially extended system can therefore be cast in the form of CGLE:

d

dt
xj = xj − (1 + ic2)|xj |2xj + (1 + ic1)K

∑
k

LDjkxk j = 1, ..., N (3.1)

where c1, c2,K ∈ R and xj ∈ C. We shall begin by considering a symmetric

adjacency matrix and postpone to a later stage the case of a directed,

though balanced, network of couplings.

Hereafter, we will study the equilibria of the system and their stability.

It is however important to make a brief digression on the continuum limit

version of the CGLE, which will be useful to separate local and global

contributions so as to understand how the topology is at stake to stabilize

or destabilize the considered equilibria.

Let us start by considering a regular lattice, embedded on a Euclidean

space of arbitrary dimension. By performing the continuum limit, i.e as-

suming the linear distance between neighbor nodes to asymptotically van-

ish, one can formally replace the discrete variable xj(t) (j = 1, 2, · · · , N)

with its continuous counterpart x(r, t). Here, x(r, t) ∈ C and r identi-

fies the space location. Under these conditions, the discrete operator LD

transforms into ∇2, the standard Laplacian on a continuous support. For

this reason, and with a slight abuse of language, we shall often employ

the adjective spatial to tipify the nature of the coupling, even when the

network of oscillators is not necessarily bound to a physical space.

As a preliminary remark we note that xLC(t) = e−ic2t is a homoge-

nous solution of the CGLE, both in its discrete or continuous, spatially

extended, versions. This latter can be referred to as the limit cycle (LC)

solution, since it results from a uniform, fully synchronized, replica of the

periodic orbit displayed by the system in its a-spatial (K = 0) version.
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Figure 3.1: Continuous (solid line) and discrete (red dots) dispersion relation.

The dots correspond to a CGLE with c1 = −1.8, c2 = 1.6, K = 1 for a network

composed of 100 nodes, generated from the Watts-Strogatz method with rewiring

probability 0.8.

In the remaining part of this chapter, we shall determine the stability of

the LC solution. We will deal at first with the continuous version of the

model and re-derive for completeness the conditions for the onset of the

so called Benjamin-Feir instability [25, 184]. The peculiarities that stem

from assuming a discrete and heterogeneous web of symmetric couplings

will be also reviewed.

To assess the stability of the LC solution we introduce a non homoge-

neous perturbation, both in phase and amplitude:

x(r, t) = xLC(t)[1 + ρ(r, t)]eiθ(r,t). (3.2)

Linearizing around the LC (ρ(r, t) = 0, θ(r, t) = 0) one readily obtains:

d

dt

[
ρ

θ

]
=

[ −2 0

−2c2 0

] [
ρ

θ

]
+K

[
1 −c1
c1 1

]
∇2

[
ρ

θ

]
. (3.3)

To solve the above linear problem we perform a space-time Fourier

transform:

ρ(r, t) =
∫ ∫

dωdkeiωteik·rρk
θ(r, t) =

∫ ∫
dωdkeiωteik·rθk.

(3.4)
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A straightforward calculation returns the following condition that should

be matched as a necessary consistent requirement for the linear problem

to admit a non-trivial solution:

det

λ+ 2 +Kk2 −Kc1k2

2c2 +Kc1k
2 λ+Kk2

 = 0 (3.5)

with λ = iω and k = |k|. The quantity λ hence assesses the linear growth

rate associated to the k-th mode. Without losing generality we will here-

after set the coupling constant to unit (K = 1) and proceed with the

calculation to determine the root of the characteristic polynomial with

largest real part:

λ(k2) = −k2 − 1 +
√
−c21k4 − 2c1c2k2 + 1. (3.6)

The perturbation that shakes the homogenous and time dependent

solution xLC(t) gets exponentially magnified in the linear regime of the

evolution provided that the real part of λ (the dispersion relation λRe) is

positive. Notice that λ(0) = λRe(0) = 0, as expected, based on an obvi-

ous argument of internal coherence. Expanding (3.6) for small k returns

λRe ' −(1 + c1c2)k2. The stability of the synchronized LC solution is

therefore lost when 1 + c1c2 < 0, the standard condition for the onset of

the Benjamin-Feir instability.

We now turn to considering the case of a heterogenous, although sym-

metric, network of connections among oscillators. To investigate the con-

ditions to be met for a symmetry breaking instability of the homoge-

neous LC solution, we proceed in analogy with the above and set xj(t) =

xLC(t)[1+ρj(t)]e
iθj(t), with a clear meaning of the symbols. Plugging this

latter expression in the CGLE (3.1) and expanding to the first order in

the perturbation amount, one obtains the obvious generalization of system

(3.3):

d

dt

[
ρj
θj

]
=

[ −2 0

−2c2 0

] [
ρj
θj

]
+

[
1 −c1
c1 1

]∑
k

LDjk

[
ρk
θk

]
. (3.7)

where we recall that K = 1. For regular lattices, the Fourier transform

is usually invoked to solve the system of equations homologous to (3.7).

This amounts to expanding the spatial perturbations on a set of planar
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waves, the eigenfunctions of the continuous Laplacian operator. When

the system is instead defined on a network, an analogous procedure can

be employed. To this end, we define the eigenvalues and eigenvectors of

the discrete Laplacian operator:∑
j

LDijφ
(α)
j = Λ(α)φ

(α)
i α = 1, ..., N (3.8)

When the network is undirected, the Laplacian operator is symmetric.

Therefore, the eigenvalues Λ(α) are real and the eigenvectors φ(α) form

an orthonormal basis. This condition needs to be relaxed when dealing

with the more general setting of a directed graph, as we shall discuss in

the second part of the paper1. The symmetric Laplacian matrix LD has

a single zero eigenvalue Λ(α=1) corresponding to the uniform eigenvector

and all other eigenvalues are negative. The indices α are sorted so as to

satisfy 0 = Λ(1) > Λ(2) ≥ · · · ≥ Λ(N).

The inhomogeneous perturbations ρj and θj can be expanded as:

[
ρj
θj

]
=

N∑
α=1

[
ρ(α)

θ(α)

]
eλtφ

(α)
j . (3.9)

By inserting (3.9) in (3.7) and making use of relation (3.8) one even-

tually gets a condition formally equivalent to expression (3.5). As an im-

portant difference, the eigenvalues of the continuous Laplacian, −k2, are

replaced by the discrete (real and negative) quantities Λ(α), the eigenval-

ues of the discrete Laplacian. Insisting on the analogy, it is of immediate

evidence that the instability rises for a CGLE defined on a symmetric net-

work when 1 + c1c2 < 0, a dynamical condition identical to that obtained

when operating under the continuous, by definition regular, viewpoint.

The quantity Λ(α) constitutes the analogue of the wavelength for a spatial

pattern in a system defined on a continuous regular lattice. It is this lat-

ter quantity which determines the spatial characteristic of the emerging

patterns, when the system is defined on a heterogeneous complex support.

In figure 3.1 the dispersion relation λRe is plotted versus −Λ
(α)
Re , for

a specific choice of c1 and c2, so that 1 + c1c2 < 0. The solid line refers

to the continuum setting (−Λ
(α)
Re → k2,), while circles are obtained when

1A diagonalizable and connected Laplacian matrix is instead a minimal requirement

to be satisfied by our analytical treatment both in the symmetric and in the directed

case.
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Figure 3.2: Evolution of xRe (upper panel) and |x|2 (lower panel) versus time,

assuming a uniform LC initial condition. At time τ1 = 15, a non homogeneous

perturbation is inserted and the synchronized state is consequently disrupted.

Here, c1 = −1.8, c2 = 1.6. The nonlinear oscillators are mutually linked via

the Watts-Strogatz network, used in depicting the discrete dispersion relation of

figure 3.1.
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operating with the CGLE, hosted on a Watts-Strogatz network [200]. As

anticipated, the discrete collection of points which defines the dispersion

relation when a symmetric, finite and heterogenous network of coupling is

accommodated for, follows the same profile which applies to the limiting

continuum setting.

Let us observe that the continuous curve representing the continuum

limit only depends on the reaction function f . The byproduct of the

Laplacian (and therefore of the network topology) relies on how the dots

of the discrete dispersion relation distribute along the curve.

In figure 3.2 the time evolution of the system is displayed for a choice

of the parameters which corresponds to the unstable dispersion relation of

figure 3.1. After a given time the synchronized LC solution is perturbed

by insertion of an external source of non homogenous disturbance. This

latter grows, as predicted by the linear stability analysis, and yields the

irregular patterns displayed for both xRe and |x|2.

Back to Fig. 3.1, it is however important to realize that the instabil-

ity actually takes place only when at least one eigenvalue −Λ
(α)
Re exists in

the range where λRe is positive. If the ensemble of discrete modes, which

ultimately reflects the topology of the imposed couplings, populates the

portion of the dispersion relation with λRe < 0, no instability can develop,

even if 1+ c1c2 < 0. Stated differently, the spectral gap, i.e. the difference

between the moduli of the two largest eigenvalues of the Laplacian oper-

ator, |Λ(2)| − |Λ(1)| ≡ |Λ(2)|, should be larger than −2(c1c2 + 1)/(1 + c21),

the non trivial root of (3.6), for the instability to take place.

This observation has been exploited by Nakao in [141] to propose a

novel control strategy aimed at suppressing the Benjamin-Feir instability

and thus preserving the initial synchronized regime for a CGLE defined

on a symmetric network support. Imagine to start with an unstable con-

dition, which in turn implies to operate with a suitable choice for both the

reaction parameters and the network specificity. The key idea of [141] is to

randomly rewire the network so as to make the second eigenvalue progres-

sively more negative. Random moves are accepted or rejected following

a Metropolis scheme. The numerical procedure converges to a (globally)

modified network which has no eigenvalue in the range where λRe > 0.

The control is topological since it only affects the couplings that link the

oscillators, without acting on the dynamical parameters c1 and c2. In prac-

tice, the discrete network-like system can be made stable for a choice of
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Figure 3.3: Dispersion relation: red dots correspond to the original system of

Fig. 3.1 while blue circles show the dispersion relation obtained for the controlled

adjacency matrix.

the parameter that would drive a Benjamin-Feir instability in the contin-

uum limit. Building on these intriguing observations, we will here devise

an analytical approach that enables to implement a similar control pro-

tocol, without resorting to an iterative, numerically supervised, rewiring.

Importantly, the method that we shall introduce here can be successfully

extended to the general case where a directed network of connections is

assumed to hold. The next section is devoted to discussing the proposed

method.

3.2 Global topological control

We here aim at developing an appropriate control strategy which acts on

the global network of connections, leaving unchanged the dynamical pa-

rameters of the model. The method that we shall hereafter discuss takes

inspiration from the seminal work of Nakao [141]. There it was shown

that a numerically supervised rewiring of the inter-oscillators couplings

can stabilize the CGLE, thus preserving the consensus state. Building

on similar grounds, we will provide hereafter an analytical procedure to

achieve the sought stabilization. The proposed method allows to imme-
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diately generate the controlled matrix of contacts, without involving any

iterative scheme, thus being free from concerns on the numerical conver-

gence. Starting from a condition of instability, as displayed in Fig. 3.1, we

wish to modify the spectrum of the Laplacian operator so as to force the

finite and discrete collection of modes to populate the negative branch of

the dispersion relation λRe.

As emphasized in the previous section, when the network is undirected

the discrete dispersion relation superposes to the continuum one (see the

solid line in Fig. 3.1). The instability localizes on a finite set of modes,

those falling on the positive bump of the curve λRe(k
2). Is it possible

to alter the network topology so as to make the (negatively defined and

real) eigenvalues larger in absolute value than −2(c1c2 + 1)/(1 + c21), the

point where the parabola λRe(k
2) crosses the horizontal axis, so turning

negative? In a figurative sense, we want to slide the discrete points of

Fig. 3.1 onto the curve, as beads on a cord, causing them to reach its

negative branch. To answer this question we rely on the network genera-

tion method exposed in the previous chapter readjusted for this problem

where, for simplicity, the Laplacian eigenvectors are preserved unchanged.

Let us start by defining the N × N matrix Φ whose columns are

the eigenvectors φ(1), · · · ,φ(N) of the Laplacian operator LD. Hence

Λ = Φ−1LDΦ, where Λ is the diagonal matrix formed by the eigen-

values Λ(1), ...,Λ(N). We then calculate the minimal corrections δΛ(α)

(α = 1, · · · , N) that need to be imposed to shift the eigenvalues Λ(α)

on the stable side of the dispersion relation. The computed corrections

are then organized in a diagonal matrix δΛ, so that δΛαα = δΛ(α), for

α = 1, · · · , N . As a matter of fact, and to keep the formulation gen-

eral, δΛ(α) ∈ C. For the case of a symmetric network that we are bound

to explore within this section, the quantities δΛ(α) are however real and

negative. When the original Λ(α) falls in the region of stability, the corre-

sponding correction δΛ(α) is set to zero.

The next step of the procedure is to perform the following transforma-

tion

δLD = ΦδΛΦ−1 (3.10)

and define the controlled matrix L̃D = LD + δLD. By construction the

eigenvalues of L̃D (with the only exception of the zero eigenvalue, α = 1)

are smaller than 2(c1c2 + 1)/(1 + c21).

As it is proven in the previous chapter the matrix L̃D can be inter-
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Figure 3.4: Main panel: distribution of the elements of the adjacency matrix

before (large dark bins) and after (light small bins) the control. Initially the

distribution displays two peaks localized in 0 and 1, reflecting the choice of a

binary matrix of contacts. The controlled adjacency matrix is still bimodal, but

the peaks are now smoothed out. Importantly, negative connections, pointing to

inhibitory loops, should be accommodated for in the rewired weighed network.

Inset: the elements of the controlled adjacency matrix (Ã)ij are plotted vs. the

original adjacency matrix Aij and a clear correlation is displayed. The control

manifests as a rather local modification of the weights, strong (resp. weak)

couplings being preserved under the imposed rewiring.
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preted as a Laplacian operator, namely (i) the entries of the matrix are real

and (ii) every row of the matrix sums up to zero,
∑
i(L̃

D)ij = 0 ∀j). As an

important complement, in the Appendix it is also shown that symmetry

and balancedness are perpetuated from LD to L̃D.

Hence, the obvious conclusion is that we have generated a modified

adjacency matrix Ã, hidden inside L̃D, which should engender a negative

dispersion relation (when employed in the CGLE, at fixed c1 and c2), thus

preserving the stability of the synchronized configuration.

In the remaining part of this section we will test the proposed con-

trol scheme assuming a symmetric matrix of inter-nodes couplings. In the

next Section we will turn to discussing the more general case of a directed,

although balanced, adjacency matrix. To demonstrate the adequacy of

the technique, we will assume the setting depicted in Fig. 3.1: the pa-

rameters (c1, c2) and the underlying network of contact are chosen so as

to make the system unstable to external non homogeneous perturbations.

By rewiring the network following the strategy outlined above we obtain

the dispersion relation represented by blue circles in Fig. 3.3. The cir-

cles stand for the discrete dispersion relation and populate the negative

portion of the continuous curve: the instability has been hence removed,

by solely acting on the topology of the graph. This latter was initially

assumed of the binary type: the entries of the adjacency matrix are there-

fore a collection of zeros and ones. The elements of the controlled matrix

are still characterized by a bimodal distribution, as displayed in Fig. 3.4.

Each element of the controlled adjacency matrix (Ã)ij takes a value close

to the initial entry Aij . In practice, the control returns a local adjustment

of the weights, strong (resp. weak) couplings being preserved under the

imposed rewiring. Interestingly, negative coupling constants appear as a

result of the continuous smoothing of the peak initially localized in zero.

Inhibitory interactions should be hence at play for an effective stabiliza-

tion of the dynamics. In general the new network appears to be much

more connected, as it is also shown by its spectral gap, larger in absolute

value than the one corresponding to the original network.

To provide a numerical validation of our conclusion, we evolved for a

transient the CGLE assuming the original, unstable and binary, adjacency

matrix. When the imposed perturbation has grown to become significant,

we instantaneously switched to the controlled Laplacian. As shown in

Fig. 3.5, the perturbation fades progressively away and the synchronous
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Figure 3.5: |x|2 vs. time. The system assumes initially a binary matrix of

connections and it is unstable to external non homogenous perturbation. At

time τ1 = 10 the LC is perturbed, and the injected disturbances grow, yielding

the expected loss of synchronization. At time τ2 = 60 the adjacency matrix is

instantaneously controlled, according to the exposed scheme. The perturbation

is then re-absorbed and the consensus state recovered.

dynamics is eventually restored. The proposed control scheme was orig-

inally devised to contrast the onset of instability and, as such, targeted

to the linear regime of the evolution. As shown in Fig. 3.5, the method

proves however effective in stabilizing the system also at relatively large

time, when nonlinearities are at play.

3.3 Controlling the instability on balanced

directed networks

Let us now turn to considering the case of a CGLE defined on a di-

rected, heterogeneous although balanced (for each node the sum of incom-

ing weights coincides with the sum of outgoing weights) network. Before

discussing the application of the control technique introduced in the pre-

vious section, we will review the conditions that determine the emergence

of instability.

When reaction-diffusion systems are placed on directed, hence asym-
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metric graphs, patterns can develop, even if they are formally impeded on

a symmetric, continuum or discrete, spatial support. Directionality mat-

ters and proves indeed fundamental in shaping the emerging patterns. The

conditions for the asymmetry driven instability, reminiscent of a Turing

like mechanism, for a multi-species reaction diffusion model evolving on a

directed graph have been discussed in [16]. In this latter case, the pertur-

bation acts on a homogeneous fixed point, a time independent equilibrium

for the reaction dynamics. In [54] the analysis has been extended to the

setting where the unperturbed homogeneous solution is a LC and thus

depends explicitly on time. In the following, for the sake of consistency,

we will go through the analysis of [54] to eventually obtain the conditions

that instigate the topological instability of a time-dependent solution of

the LC type.

By perturbing xLC(t) as discussed in the first Section, one eventually

ends up with the self-consistent condition:

det

[−2 + Λ(α) − λ −c1Λ(α)

−2c2 + c1Λ(α) Λ(α) − λ

]
= 0 (3.11)

which is equivalent to det (Jα − λI2) = 0 with:

Jα =

( −2 + Λ(α) −c1Λ(α)

−2c2 + c1Λ(α) Λ(α)

)
.

Recall that for an asymmetric network, the Laplacian eigenvalues Λ(α)

are complex. Furthermore, Λ
(α)
Re < 0, since the spectrum of the Lapla-

cian matrix falls in the left half of the complex plane, according to the

Gerschgorin theorem [23]. Simple calculations yield:

(trJα)Re = −2 + 2Λ
(α)
Re

(trJα)Im = 2Λ
(α)
Im

(detJα)Re = −2Λ
(α)
Re + (Λ

(α)
Re )2 − (Λ

(α)
Im)2

− 2c1c2Λ
(α)
Re + c21

[
(Λ

(α)
Re )2 − (Λ

(α)
Im)2

]
(detJα)Im = −2Λ

(α)
Im + 2(1 + c21)Λ

(α)
Re Λ

(α)
Im

− 2c1c2Λ
(α)
ImΛ

(α)
Im

(3.12)

with a clear meaning of the chosen notation.
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From (3.11), one gets:

λ =
1

2
[(trJα)Re + γ] +

1

2
[(trJα)Im + δ] i (3.13)

where:

γ =

√
a+
√
a2 + b2

2
(3.14)

δ = sgn(b)

√
−a+

√
a2 + b2

2
(3.15)

and:

a = [(trJα)Re]
2 − [(trJα)Im]2 − 4(detJα)Re

b = 2(trJα)Re(trJα)Im − 4(detJα)Im.
(3.16)

As discussed in [16,54], diffusion driven instabilities arise also when tr(Jα)Re <

0, as opposed to what happens when the system evolves on a symmetric

spatial support. In fact, λRe > 0 if:

|(trJα)Re| 6

√
a+
√
a2 + b2

2
(3.17)

a condition that can be met for tr(Jα)Re < 0, if the network of inter-

actions is made directed and, consequently, an imaginary component of

the Laplacian spectrum is accommodated for. A straightforward, though

lengthy, calculation allows one to derive the following compact condition

for the topology instability to occur:

S2(Λ
(α)
Re ) ≤ S1(Λ

(α)
Re )

[
Λ

(α)
Im

]2
(3.18)

where

S2(ΛαRe) = C2,4(Λ
(α)
Re )4 − C2,3(Λ

(α)
Re )3 + C2,2(Λ

(α)
Re )2

− C2,1Λ
(α)
Re

S1(ΛαRe) = C1,2(ΛαRe)
2 − C1,1Λ

(α)
Re + C1,0

(3.19)
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with

C2,4 = 1 + c21

C2,3 = 4 + 2c1c2 + 2c21

C2,2 = 5 + 4c1c2 + c21

C2,1 = 2 + 2c1c2

C1,2 = c41 + c21

C1,1 = 2c31c2 + 2c21

C1,0 = c21(1 + c22) .

(3.20)

Notice that (3.18) reduces to S2(Λ
(α)
Re ) ≤ 0 when dropping the imag-

inary components of Λ(α) or, equivalently, when assuming a symmetric

network of couplings. Expanding the solution for small Λ
(α)
Re , assumed as

a continuum variable, one readily gets 1 + c1c2 < 0, i.e. the standard

condition for the Benjamin-Feir instability on a symmetric support.

To gain insight into the above analysis, we generate a directed and

balanced network, via a suitable modification of the Newman-Watts (NW)

algorithm [147]. We begin from a substrate L-regular ring made ofN nodes

and add, on average, NLp long-range directed links. Here, p ∈ [0, 1] is a

probability that quantifies the amount of introduced long-range links. To

keep the network balanced, the insertion of a long-range link stemming

from node i is followed by a fixed number (3 is our arbitrary choice) of

additional links to form a loop that closes on i [16].

In Fig. 3.6(a) the dispersion relation λRe is plotted as a function of

−Λ
(α)
Re . The black solid line refers to the limiting case of a symmetric

(and continuum) support: the reaction parameters (c1, c2) are chosen so

as to prevent the instability to develop since λRe < 0. The online circles

refer instead to the directed case: the points abandon the solid curve and

lift above zero, signaling a topology driven instability of the uniform LC

solution.

In Fig. 3.6(b) the same situation is illustrated in the reference plane

(Λ
(α)
Re ,Λ

(α)
Im). Once the reaction parameters c1 and c2 have been assigned,

one can calculate the coefficients C1,q(q = 0, 1, 2) and C2,q(q = 0, ..., 4)

via (3.20). The inequality (3.18) allows us to draw the domain of insta-

bility, depicted as a shaded region in Fig. 3.6(b). Each eigenvalue (blue

circles) of the discrete Laplacian corresponds to a localized point in the

plane (Λ
(α)
Re ,Λ

(α)
Im). The instability develops when at least one non-null
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Figure 3.6: (a): The dispersion relation λRe as a function of −Λ
(α)
Re . The solid

line stands for the continuum dispersion relation. The red points are obtained

for the CGLE defined on a NW directed balanced network with p = 0.27. The

blue circles represent the dispersion relation obtained for the controlled matrix.

Here, c1 = 3 and c2 = 2.4224. (b): Eigenvalues positioned in the complex plane.

The shaded area represents the instability region obtained from (3.18). The

eigenvalues in this region correspond to the unstable modes, characterized by

λRe > 0, in panel (a). (c): Analogous of Fig. 3.4. Also for the directed case, a

clear correlation between the two is observed. The control induces a rather local

modification of the couplings, strong (resp. weak) couplings being preserved

under the imposed rewiring. (d): |x| vs. time. The system corresponding

to the above matrix of connections is unstable to external non homogenous

perturbation. At time τ1 = 5 the LC is perturbed, and the injected disturbances

develop, yielding a loss of synchronization, as predicted by the linear stability

analysis. At time τ2 = 7 the adjacency matrix is instantaneously controlled, as

follows the devised scheme. The perturbation is consequently re-absorbed and

the synchronized configuration recovered.
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eigenvalue enters the shaded region. For an undirected graph, the points

are distributed on the (horizontal) axis, thus outside the region deputed

to the instability. When the graph turns asymmetric the imaginary com-

ponent of Λ(α) promotes an instability, which bears a direct imprint of the

network topology. As usual, the instability will eventually unfold complex

pattern, in the nonlinear regime of the evolution.

Starting from this setting, and to restore the synchronization, one can

rewire the network connections according to the control procedure outlined

in the preceding Section 2. In this case, one needs to operate in the complex

plane (Λ
(α)
Re ,Λ

(α)
Im), and act simultaneously on the imaginary component

of Λ(α), to force the eigenvalues outside the region of instability 3 . In

other words the elements of the diagonal matrix Λ̃ which encodes for the

imposed shifts are, in general, complex. For the case at hand, the spectrum

of the controlled Laplacian operator is displayed in Figs. 3.6(a) and 3.6(b)

with red stars. The dispersion relation λRe is now consistently negative,

reflecting the fact that stabilization has been enforced into the model.

Similarly, stars populate the domain of stability in Fig. 3.6(b) without

invading the shaded portion of the plane.

As for the preceding case, the initial adjacency matrix is assumed bi-

nary. The elements of the controlled matrix still display a bimodal distri-

bution (see Fig. 3.6(c)): inhibitory coupling are at play as for the case of

a symmetric support.

To conclude this section we provide a numerical validation of the im-

plemented method. In Fig. 3.6(d) we initially evolve the perturbation

assuming the unstable and directed adjacency matrix. Then, when the

perturbation has evolved in a nonlinear quasi-wave, the Laplacian is in-

stantaneously mutated into its controlled counterpart. The perturbation

damps and the system regains the initial homogenous consensus state. We

again remark that the control is also effective when acted far from the lin-

ear regime of the evolution, when nonlinearities are presumably playing a

2Remember that the mathematical proofs provided in the previous section hold in

general, assuming a directed (balanced and diagonalizable) Laplacian
3The control can be implemented in different ways. The eigenvalues can be moved

for instance horizontally, by acting on their real component, vertically by modifying

their imaginary part, or diagonally, by resorting to a linear combination of the two

aforementioned strategies. Real eigenvalues lay on the horizontal axis: when falling in

the region of instability, they are transferred into the stable domain by sliding them

horizontally, namely by imposing a real correction, the imaginary part proving, in this

respect, useless.
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role.

As a final mandatory remark, we emphasize that the developed con-

trol strategy holds in general, beyond the application to the CGLE here

considered for purely pedagogical reasons. Indeed, a formally identical

scheme can be applied to stabilizing homogenous time-independent fixed

points, so preventing the classical Turing-like route to patterns to even-

tually take place. This extension is discussed for completeness in [39]by

employing an ad hoc multispecies framework which takes inspiration from

the Ginzburg-Landau reference model.

The paradigmatic approach to pattern formation deals with a set of

reaction-diffusion equations: an initial homogenous equilibrium, constant

or time-dependent, can turn unstable via a symmetry breaking instability,

instigated by the external injection of a non homogenous disturbance. A

non trivial interplay between reaction and diffusion terms, first imagined

by Alan Turing in his seminal paper on morphogenesis, is ultimately re-

sponsible for the growth of the imposed perturbation. This event takes

place for specific choices of the parameter setting and preludes the out-

break of the fully developed patterns. When the reaction-diffusion system

is hosted on a network support, the inherent discreteness and the enforced

degree of imposed asymmetry matter in determining the conditions that

make the route to patterns possible. The vital role which is played by the

topology of the underlying networks of contacts can be efficiently exploited

to control the instability and so contrast the drive to pattern formation.

In this chapter we have elaborated along these lines by devising a suitable

control strategy that enforces stabilization, via a supervised redefinition

of the inter-node couplings. The idea is to modify the spectrum of the

Laplacian by altering the matrix of connections so as to confine the ac-

tive modes outside the region of instability. The method builds on the

work of Nakao [141] who numerically showed that an effective stabiliza-

tion can be achieved by link-rewiring. As in [141], the Complex Ginzburg-

Landau equation has been here assumed as a reference model, to provide

a probing test for the newly proposed approach. In this case the control

stabilizes the synchronous limit cycle uniform solution. A multispecies sys-

tem that couples together two real Ginzburg-Landau equations has been

also considered, to assess the performance of the method in presence of a

homogeneous stationary stable fixed point. When the adjacency matrix
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is symmetric, the discrete points that constitute the unstable portion of

the dispersion relation are moved along the continuum parabola which

embodies the characteristic of stability in the idealized continuum limit.

Conversely, when the connections are asymmetric, though balanced, dif-

ferent strategies can be implemented to achieve the sought stabilization.

One can in general act on the imaginary and real components of the spec-

trum of the Laplacian operator, integrating such independent moves as

desired. Numerical checks confirmed the effectiveness of the proposed

scheme. The specific choice for the inter-nodes diffusing couplings defined

by the Laplacian operator however requires the existence of a homogenous,

fixed or time-dependent solution for the system to be controlled.

The above analysis configures as an innovative method for controlling

reaction-diffusion systems which allows to reach consensus by solely act-

ing on the network topology. The idea is again based on a supervised

modification of the Laplacian spectrum and consequently of the discrete

dispersion relation which determines the stability of the synchronized equi-

librium. Let us observe that the synchronized oscillating solution can prove

unstable in the continuum limit but stable in the discrete space due to the

network topology. By contrast it has formerly been proven [16] that the

network structure (if directed) can be responsible for desynchronization

when in the continuum space the limit cycle results stable.

The mathematical technique which has been developed and adopted

in the last two chapters paves the way to a series of possible applications

since it allows to develop several procedures aiming to network modifi-

cation based on spectral properties. One example is given in the next

chapter where, moving from the context of reaction-diffusion systems, we

relax the linear diffusive constraint in the model to admit a more generic

coupling. This will represent an increase in the system explorability by

broadening the spectrum of possible equilibrium solutions, also including

inhomogenous states. The generalized stabilization method will then be-

come suitable for studying different systems, from natural, to man-made

applications. In the next chapter we will envisage and investigate the

important topic of ecosystem stability.



Chapter 4

Spectral control for ecological

systems

The stability of ecosystems, or their resilience, is essential in many re-

spects. In the past decades many efforts have been made to understand

the principles that rule the stability of a complex ecosystem. These con-

cepts have been originally addressed by Robert May [133] in a seminal

paper that paved the way to a completely new field of investigation, still

very productive and fertile. These studies resulted in multiple attempts

of providing methods to make an ecological community structurally sta-

ble [70, 80, 101, 185–188, 196]. May [133] analysed a system described by

N variables (N interacting species) obeying a set of differential equations.

The stability analysis is performed by linearising the equations in the

neighbourhood of an equilibrium point, whose stability depends on the

spectrum of the interaction matrix. May’s analysis focuses on this latter,

eventually bearing to the challenging statement that, in short, the more

complex the more unstable is the system. Recent work by Allesina et

al. [6] provides an implementation of May’s ecosystem accounting for well

defined (non random) interactions. These are competitive, mutualistic and

predator-prey and, according to Allesina et al., they play different roles in

the stability of the ecosystem. Remarkably, the presence of predator-prey

relations has a stabilizing effect. In Coyte et al. [47] stability of a micro-

bioma ecosystem is obtained by allowing for sufficiently weak couplings.

Most of the mathematical models used to study ecosystems employ a

55
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set of equations which can be thought as a generalization of the model

introduced in Chapters 2 and 3. In particular, we here exploit the con-

cept of network, not representing a physical allocation and displacement,

but instead to describe the set of interactions within the ecosystem. The

edges will then quantify the intensity of the (positive or negative) rela-

tions between different species, each one represented by a different node.

In parallel, the reaction term of the equations will mimic the intrinsic time

evolution of each single population, independently on the others.

Starting from these premises, in this chapter we provide an alternative ap-

proach to ecological stability by developing a self-consistent mathematical

strategy which implements and generalises the spectral control algorithm

introduced in chapter 2 and 3. The method builds on the previously

developed technique (also illustrated in [39]) and extends its domain of

applicability, beyond diffusion mediated (linear) processes to the inter-

esting setting where pairwise, hence non-linear, non-local interactions are

considered.

In doing so, we will contribute to identifying the key topological fea-

tures that should be possessed by a stable (resilient) ecological network.

To anticipate our findings we will show that predator-prey interactions

exert a beneficial role in terms of stability in qualitative agreement with

the results reported in [6]. Further weak interactions tend to favour the

overall stabilization, as observed in [47].

The chapter is organized as follows. In Section 4.1 we will introduce the

model and define the reference mathematical setting. In Section 4.2 the

control scheme is discussed in detail and we will also show how the spectral

modifications trace back to actual changes in the matrix of interactions.

In Section 4.3 the method is applied to a simple bidimensional predator-

prey model, while the extension to arbitrarily large systems is discussed

in Section 4.4 before summing up and drawing our conclusions. Relevant

technical material is provided in the Appendices.

4.1 The model

We shall hereafter consider the coupled evolution of N species and denote

by xi, i = 1, ..., N , their associated concentrations. Each of the N nodes of

the network therefore here represents a different species. We will operate

under the deterministic viewpoint and deliberately omit any source of
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stochastic disturbance, be it endogenous (demographic noise) or exogenous

(external perturbation). The evolution of the ecosystem is hence described

by the following set of first-order differential equations:

ẋi = xi(ri − sixi) + xi
∑
j 6=i

Aijxj i, j = 1, ..., N. (4.1)

The self-reaction term is assumed logistic, for pedagogical reasons. We

will subsequently relax this working hypothesis and generalize the analysis

so as to account for an extended family of nonlinear reaction terms. In

the above equations, ri stands for the intrinsic growth rate of species i,

while si is inversely proportional to the assigned carrying capacity. Matrix

A, in general asymmetric, defines the relations among species, delineating

the interaction network. More specifically, the scalar entry Aij encodes

the effect exerted by species j on species i. The magnitude of Aij weights

the strength of the interactions. The sign of Aij , respectively Aji, defines

the specific nature of the interaction between species i and j. Adopting a

wording which is inspired to ecological applications: exploitation (+,−),

competition (−,−), cooperation (+,+), commensalism (+, 0), amensalism

(−, 0) or null interaction (0, 0). The coupling among species is shaped by

a quadratic term, which scales like the product of relative concentrations.

This implies assuming the interaction to be mediated by pair exchanges,

as it is customarily the case in ecology. On a more fundamental level,

the coupling term here introduced will enable us to generalize the analysis

reported in [39] beyond standard diffusion.

Let us denote by x∗ the fixed point of the dynamics and assume for the

sake of simplicity that all entries x∗i are different from zero. In formulae

we have:

ri − six∗i +
∑
j 6=i

Aijx
∗
j = 0 i = 1, ..., N (4.2)

which essentially defines the sole non trivial equilibrium eventually at-

tained by our system. As mentioned before, we are concerned with the

resilience of the system, namely its inherent capability to recover from

perturbations. Stated it differently, we shall elaborate on the conditions

which make the fixed point stable, according to a linear stability analysis.

To this end, it is convenient to introduce the rescaled variable yi ≡ xi/x∗i .
In the new variables the fixed point is homogeneous and reads y∗i = 1, ∀i.
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The dynamics of system (4.1) can be cast in the form:

ẏi = yi(ri − s̃iyi +
∑
j 6=i

Bijyj) (4.3)

where s̃i = six
∗
i , Bij = Aijx

∗
j and the equation (4.2) assumes the form

ri − s̃i +
∑
j 6=iBij = 0.

To assess the stability of the fixed point, we set yi = 1 + vi and Taylor

expand at the first order in the perturbation amount. This yields the

following linear system for the evolution of the imposed perturbation:

v̇i = −s̃ivi +
∑
j 6=i

Bijvj ≡
∑
j

Cijvj . (4.4)

The stability of the fixed point is ultimately controlled by the eigenval-

ues of the matrix C obtained by adding the elements −s̃i on the diagonal

of matrix B. The system is unstable when at least one eigenvalue of C has

a positive real part. In the following, we will discuss a control procedure

to stabilise a fixed point, that is initially engineered to be unstable. The

method builds on the technique discussed in [39] and aims at reshaping

the coupling among interacting species. As a side observation, which will

become crucial in the forthcoming analysis, we notice that the fixed point

condition (y∗i = 1 ∀i) translates into a constraint for C: summing the

elements of C relative to row i one should recover −ri, i.e.
∑
j Cij = −ri.

4.2 Topological control scheme

The proposed control strategy aims at modifying an initially unstable sys-

tem of the type described above to yield an equivalent analogue which

preserves the form (4.1) while admitting a stable non trivial equilibrium.

As it shall be argued hereafter, we can either enforce the stability of the

original, assumed unstable, fixed point, or, alternatively, steer the system

towards a different equilibrium. In the former case we shall also alter

the original carrying capacity (a parameter which indirectly encodes for

the interaction with the surrounding environment), while in the latter

the envisaged protocol will solely impact the network of interspecies cou-

plings, leaving unchanged individual reaction parameters. In both cases,

the intrinsic growth rates ri, are kept unvaried. Stable ecological networks

display remarkable topological characteristics, as discussed in a series of
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papers devoted to this topic [6,47]. Operating along this line, we will iso-

late and discuss a selected gallery of features that appear to be recurrently

shared by the ecological networks stabilized as outlined in the following.

Since, by definition, the structure of (4.1) is invariant under the fore-

seen procedure, inspecting the linear stability of the ensuing equilibrium

implies dealing with a system of the type v̇i =
∑
j C
′
ijvj , where C ′ is

obtained from C, defined as in equation (4.4), via the devised control al-

gorithm. Requiring the sought stability is, in turn, equivalent to constrain

the spectrum of C ′ in the left portion of the complex plane, namely to set

the real part of the associated eigenvalues to negative values. Our goal,

pursued hereafter, is to elaborate on a rigorous mathematical procedure,

which is both anchored to first principles and potentially minimally inva-

sive, to derive C ′ from C. Importantly, the obtained matrix C ′ should

match the condition
∑
j C
′
ij = −ri, for the homogeneous fixed point to

exist in terms of the rescaled variables yi (recall that, by hypothesis, ri is

frozen to its original value). The effect of the control will be then gauged

by tracing the modifications back to the underlying nonlinear framework,

i.e. by evaluating the impact produced on the relevant dynamical param-

eters.

As a first step in the analysis, we write the linear equation (4.4) in the

equivalent form:

v̇i = −rivi +
∑
j

Dijvj . (4.5)

where the definition of D follows trivially. Recalling that
∑
j Cij = −ri

by virtue of the aforementioned fixed point condition, it is immediate to

conclude that D is a zero-row-sum matrix, namely
∑
j Dij = 0. The next

step is to diagonalize matrix D. Formally, we set Φ−1DΦ = Λ, where

Φ is the matrix whose columns are the eigenvectors of D and Λ the di-

agonal matrix formed by the corresponding eigenvalues. Diagonalizability

of matrix D is hence a necessary requirement for the method to hold.

The idea is now to calculate the (minimal) shifts δΛ(α), α = 1, ..., N , to

be applied to the eigenvalues of Λ(α) of matrix D, for the homogeneous

fixed point y∗i = 1 ∀i to prove linearly stable. Recall that the stability

of this latter fixed point is eventually dictated by the spectrum of C (or,

more precisely, by its controlled version C′), from which the zero-row-sum

counterpart D originates. The needed corrections δΛ(α) are organized in a
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Figure 4.1: The eigenvalues of C, (blue) plus symbols, signals an initial instabil-

ity. This is also seen at the level of the spectrum of D, (yellow) triangles, which

partially extends beyond the critical vertical (dashed) line, located at rmin. Cir-

cles (purple) and crosses (red) refer respectively to the eigenvalues of D′ and

C′, pointing to the recovered stability.

N ×N diagonal matrix δΛ (with δΛkk = δΛ(k)) to be added to matrix Λ.

The key point is how to choose the entries of δΛ for the control to return

an effective, moderately intrusive (in terms of the modifications made to

the spectrum), stabilization.

To answer this question, we proceed as if the original eigenvalues Λ

were perturbed by the finite amount δΛ and recover a matrix D′, which

displays the modified spectrum, via the inverse transformation D′ ≡
Φ(Λ+δΛ)Φ−1. By construction D′ commutes with D, as the two matri-

ces share the same set of eigenvectors. Notably, the corrections δΛ can be

chosen such that matrix D′ is also zero-row-sum, as D is. This is rigor-

ously proven in Appendix B.3, building on the derivation reported in [39].

Moreover, D′ is real: this property is also inherited from D, as shown

again in Appendix B.3. We are thus brought back to the linear problem:

v̇i = −rivi +
∑
j

D′ijvj (4.6)
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or, equivalently to v̇i =
∑
j C
′
ijvj , where:

C ′ij =

{
D′ij if i 6= j

D′ii − ri if i = j.
(4.7)

By construction
∑
j C
′
ij = −ri, since

∑
j D
′
ij =

∑
j Dij = 0. This is a

crucial observation which makes it possible to interpret C ′ as the Jacobian

matrix associated to a rescaled nonlinear problem of the type (4.3) where

parameters r remain unchanged. The zero-row-sum-property of matrix

D′ is not a necessary condition to obtain stability but represents a useful

requirement to help interpreting the results in terms of the original vari-

ables.

We now return to discussing the selection of the elements of the shift ma-

trix δΛ. These latter are to be chosen so as to constrain the spectrum of

C ′ to the left hand side of the imaginary plane, thus ensuing the desired

stability. From (4.7), it is clear that the eigenvalues of D′ are positioned,

in the complex plane, on the right of those stemming from matrix C ′.

The relative separation between the two respective spectra can be some-

how quantified through r. To make this observation rigorous, we recall

the celebrated Gershgorin theorem [23]: the eigenvalues of a given matrix

are included in disks defined by the elements of the matrix itself. More

specifically, the i-th Gershgorin disk of matrix D′ corresponds to the rel-

ative disk of matrix C ′, translated to the right by the scalar quantity ri.

Unfortunately, it is not trivial to relate the index i (running on the nodes)

to the eigenvalues (sorted with the index α). To enforce stability, and

assuming the worst case scenario, we shall assign the (real) shifts δΛ(α)

so that all eigenvalues of D′ have their real part smaller than rmin, the

minimum of all the entries of vector r. In practical terms, the imposed

corrections δΛ(α) are chosen as:

δΛ(α) =

{
R− Λ

(α)
Re if Λ

(α)
Re > rmin

0 otherwise
(4.8)

where the scalar quantity R has been introduced such that R < rmin. To

help visualizing the whole procedure we report an illustrative example in

Fig. 4.1, without insisting on the specific selection of the involved param-

eters. The eigenvalues of the original matrix C are displayed in the com-

plex plane with (blue) plus symbols: the homogeneous fixed point of the

rescaled equations (4.3) is therefore unstable, as the spectrum protrudes
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in the right half-plane. The eigenvalues of D are shown with (yellow) tri-

angles and extends on the right of the vertical dashed line, which is traced

at rmin. The (purple) circles stands for the eigenvalues of the controlled

matrix D′: as anticipated, they are confined on the left of the vertical

dashed line, the closer to the line the less invasive the control imposed on

the population of unstable modes. Finally, and as predicted, the spectrum

of the controlled Jacobian C ′ is contained in the negative half-plane, thus

implying asymptotic stability.

As it should be clear from the above, the control protocol assumes

dealing with constant ri parameters. Given this constraint, two viable

strategies are envisaged to re-parametrize the original system, in light of

the outcome of the control scheme. We have in fact

D′ij =

{
ri − s′ix∗i ′ if i = j

B′ij = A′ijx
∗
j
′ if i 6= j

(4.9)

which allows in principle to define the new coupling strengths, as encoded

inA′, the novel fixed point x∗′ and the modified inverse carrying capacities

s′. A first strategy to finalize the transformation suggests leaving the pa-

rameters s unchanged, namely s′ = s. In practical terms, we assume that

the reaction parameters, which characterize the dynamics of each species

when evolved on an isolated patch, remain unchanged. The ecosystem

can achieve stabilization, by just reshaping the underlying networks of

interlaced dependencies. From equation (4.9), we have therefore:

x∗i
′ =

ri−D′ii
si

A′ij =
D′ij
x∗j
′ =

D′ijsj
rj−D′jj

.
(4.10)

Setting paired interactions as specified by matrix A′ guarantees the

stability of the associated, and consistently modified, fixed point x∗′. The

quantities x∗i
′ should be positive defined (at least when ecological applica-

tions are concerned), which in turn translates into the additional require-

ment

ri −D′ii > 0 ∀i. (4.11)

The second strategy consists of modifying the parameters s, together

with the matrix A, leaving unchanged the fixed point x∗. The carrying

capacity s is prone to environmental influences, and, as such, it can be

imagined to be tunable with some degree of realism. This is opposed
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to the growth parameter r, constrained, among other factors, by species

genetics, and thus assumed constant throughout the procedure. From

equation (4.9):

s′i =
ri−D′ii
x∗i

A′ij =
D′ij
x∗j
.

(4.12)

The additional condition s′i > 0 should be imposed, which again amounts

to requiring equation (4.11) to hold. In other words, condition (4.11) is

a general constraint that the control scheme is bound to verify, for the

specific ecologically inspired application, here discussed. We shall refer

to condition (4.11) as to the applicability constraint and elaborate on its

implications hereafter. The idea is to find a suitable value for R in or-

der to match the condition (4.11), and, hence, to make the control scheme

applicable. To begin, let us assume that we are allowed to modify all eigen-

values of the considered spectrum, and not just the limited sub-set that

triggers the system unstable. Then, it is enough to impose δΛ(i) ≤ s̃min
∀i, which is in principle always possible, in order to automatically verify

(4.11). The system is therefore always controllable when all eigenvalues

are to be modified.

Consider now the more interesting case where a subsetM of elements

of the whole spectrum is the target of the control. One has to face the

following restrictions:

• if an index i exists such that
∑
j∈M ΦijΦ

−1
ji < 0 and

s̃i +
∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji − rmin

∑
j∈M ΦijΦ

−1
ji < 0, then constraint

(4.11) is never matched and the system is not controllable with the

above discussed technique.

• if an index i exists such that
∑
j∈M ΦijΦ

−1
ji > 0 and

s̃i +
∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji − rmin

∑
j∈M ΦijΦ

−1
ji < 0 (suppose node

indices are sorted so that such an index i is in the subset of nodes

1, ..., ñ with ñ < N), than the applicability condition (4.11) is verified

only if the following statement holds true:

max
i∈[1,ñ]

(Pi) ≤ min
i∈[n+1,N ]

(Pi) (4.13)

where Pi ≡ rmin −
s̃i+

∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji∑

j∈M ΦijΦ
−1
ji

and [n + 1, N ] numbers the

set of indices i for which
∑
j∈M ΦijΦ

−1
ji < 0.
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Figure 4.2: Eigenvalues in the complex plane for a particular choice of matrix C

(blue plus symbols): the system is unstable as the symbols invade the region with

positive λRe. The (blue) circles represent the associated Gershgorin disks. Red

symbols stand for the eigenvalues of matrix C′, which fall in the negative part

of the complex plane, while their corresponding circles protrude in the positive

half-plane. Green symbols refer to the alternative control scheme (4.14): now

the Gershgorin circles are contained in the negative half-plane. The spectrum

obtained by following this latter route to stability is well inside the region of

stability, at variance with that generated by the former approach, which sits at

the border of stability. In this respect, the method that we have depicted, and

which necessitates reshaping the underlying network of contacts, can be thought

as minimally invasive.

The above conditions (derived in Appendix B.4) are to be carefully

checked before attempting to control the system under exam via the pro-

cedure that we have here illustrated and which is ultimately aimed at

recalibrating the weights of the underlying couplings.

Before concluding this Section, we briefly mention an alternative con-

trol strategy which builds on the already mentioned Gershgorin theorem.

In the above analysis we have reshaped the networks of contacts and al-

tered either the fixed point x∗ or the carrying capacities si, while pre-

serving the values of the growth factors ri. The alternative route to sta-

bilization that we shall hereafter discuss follows a dual path: the only
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parameters to be tuned are the growth rates ri. Recalling that C ′ is real

(from definition of (4.7), D′ being real), it is clear that each eigenvalue has

its real part smaller than C ′ii +
∑
j 6=i |C ′ij |, which is the rigthmost point in

the complex plane of the i-th Gershgorin disk for matrix C ′. To enforce

stability, we could then require that all the Gershgorin circles are included

in the left half-plane:

C ′ii+
∑
j 6=i

|C ′ij | ≤ 0⇒ D′ii−ri+
∑
j 6=i

|D′ij| ≤ 0⇒ D′ii+
∑
j 6=i

|D′ij| ≤ ri (4.14)

which implies that the Gershgorin disks computed for matrixD′ should be

contained in the semi-plane constrained, from the right, by the vertical line

located at ri for any selected i, or, better, at the left of rmin, for all i. The

shift of the Gershgorin disks can be performed by modifying the diagonal

of matrix C, which is equivalent to changing the vector of parameters r.

This alternative control strategy proves however more invasive in terms of

the perturbation that is produced on the original spectrum. This is clearly

verified in Fig. 4.2, where the original (unstable by construction) spectrum

is compared to those obtained applying the two control strategies outlined

above.

In the next Section we will begin by applying the developed method

to a simple example, where just two species are made to evolve. This ap-

plication bears pedagogical interest and it will pave the way to inspecting

the general setting, on which we shall report in the subsequent Section.

4.3 Stabilizing a predator-prey dynamics

With the goal of gaining further insight on the control scheme developed

above, we will here consider a simple setting where just two species are

made to mutually interact. Hence, we will consider hereafter N = 2

and label with x1 and x2 the mean field concentrations of the interacting

species. Equations (4.1) reduce therefore to:

{
ẋ1 = x1(r1 − s1x1 +A12x2)

ẋ2 = x2(r2 − s2x2 +A21x1)
(4.15)

so as to describe a system composed by one predator and one prey. To

proceed in the analysis we define ui ≡ (si/ri)xi, τ ≡ r1t, and eventually
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Figure 4.3: Panel (a): Existence and stability of the (non trivial) fixed point

(u∗1, u
∗
2), as a function of the parameters a and b. In particular, the fixed point

does not exist in the empty (no shading) areas (negative for a > 1&b < 1 and

a < 1&b > 1, infinite for a < 0&b < 0&b < 1/a); it is unstable in the rectangular

(orange) shaded region, entirely contained in the first quadrant; it is stable in

the other (cyan) colored region, which extends in all quadrants. The blue stars

refer to the initial choice of the parameters: the system is hence unstable. After

the control procedure is applied, one obtains the red stars, which are distributed

inside the region associated to linear stability. These latter symbols cluster in a

limited portion of the plane, close to the threshold of instability. In this respect,

the control method is minimal also in terms of the modification induced at the

level of the dynamical parameters (and not only in relation to its effects in the

complex plane where the spectrum of the Jacobian is depicted). Panel (b):

original and modified spectrum are displayed for one representative case study

among those depicted in panel (a).
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get the following governing equation in the rescaled variables u1 and u2:
du1

dτ = u1(1− u1 + au2) ≡ f1(u1, u2)

du2

dτ = ρu2(1− u2 + bu1) ≡ f2(u1, u2)

(4.16)

where ρ = r2/r1, a ≡ −A12
r2
r1s2

and b ≡ −A21
r1
r2s1

. It is straightforward to

prove that this system admits four equilibria: (u1, u2) = (0, 0), (u1, u2) =

(0, 1), (u1, u2) = (1, 0) and (u1, u2) = ( 1−a
1−ab ,

1−b
1−ab ) ≡ (u∗1, u

∗
2). We shall

hereafter refer to the latter equilibrium, the only one to guarantee non

trivial asymptotic concentrations for both species. Notice that this is

admissible only if u∗1 and u∗2 are positive and finite, which, in turn, implies

that the parameter space (a, b) is restricted to the colored region of Fig. 4.3,

i.e.

• a > 1, b > 1

• a < 1, b < 1, b < 1/a

The stability of the selected fixed point is determined by the Jacobian

matrix

J(u∗1 ,u
∗
2) =

1

1− ab

(
a− 1 a(a− 1)

ρb(b− 1) ρ(b− 1)

)
(4.17)

whose eigenvalues are

λ± =
1

2(1− ab)

[
(b−1)(1+ρ)±

√
(a− 1)2(1 + ρ)2 − 4ρ(1− ab)(a− 1)(b− 1)

]
.

(4.18)

The sign of λ± implies that the fixed point (u∗1, u
∗
2) is unstable for a > 1

and b > 1 and stable in the complementary domain, as depicted in Fig. 4.3.

Working in this simplified setting, it is therefore straightforward to im-

plement, and graphically illustrate, the stabilization protocol, as addressed

in the preceding Section. Starting from an unstable system corresponds to

setting the parameters a and b in the (orange) shaded sub-portion of the

first quadrant of Fig. 4.3. When implementing the control, panel (b) of

Fig. 4.3, the rescaled parameters (a, b) are consequently moved to the other

(cyan) shaded domain displayed in Fig. 4.3 (a), i.e. the region deputed to

stability. Different symbols, as depicted in Fig. 4.3 (a), refer to distinct

choices of the initial model parameters. In all cases, the stabilization is suc-

cessfully produced and, more importantly, the modified parameters (a, b)
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Figure 4.4: Eigenvalues in the complex plane, before, along and after the control

procedure. The symbols are assigned as described in the caption of Fig. 4.1. The

elements Aij are assigned following the scheme discussed in the Appendix. Here,

N = 100.

tend to cluster in a limited portion of the stability domain, close to the

boundary of instability. This observation suggests again that the devised

control acts by producing a somehow minimal perturbation to the original

model. Following the alternative control recipe based on the Gershgorin

theorem produces much more invasive changes (here not shown).

The controlled matrix of interaction, as well as the novel set of dy-

namical parameters, can be readily obtained from the modified quantities

a′ and b′, following one of the interpretative scenarios discussed with ref-

erence to the N -dimensional case. Both strategies require altering the

matrix of couplings A to eventually obtain its modified counterpart here

denoted with A′. More specifically:

• Changing the fixed point x∗, the parameters r and s stay unchanged.

Hence:
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A′12 = −a′ r1s2

r2
(4.19)

A′21 = −b′ r2s1

r1
(4.20)

(4.21)

The new fixed point (x∗1)′ , (x∗2)′ is obtained by solving the self-

consistent equations:

r1 − s1(x∗1)′ +A′12(x∗2)′ = 0 (4.22)

r2 − s2(x∗2)′ +A′21(x∗1)′ = 0. (4.23)

(4.24)

• Modifying the parameters s. The fixed point and r are not varied.

One gets:

{
a′ = −A′12

r2
r1s′2

b′ = −A′21
r1
r2s′1

(4.25)

which, together with the fixed point condition:{
r1 − s′1x∗1 +A′12x

∗
2 = 0

r2 − s′2x∗2 +A′21x
∗
1 = 0.

(4.26)

allows one to obtain the entries of the matrix A′ and the controlled

parameters s.

In the first case we have to make sure that the new fixed point is

admissible, which amounts to meeting the conditions (x∗1)′ > 0 and (x∗2)′ >

0. In the second case, one has to impose s′1 > 0 and s′2 > 0. It is

straightforward to prove that these constraints are always satisfied when

a′ and b′ fall, as they do by definition, in the stability region (1− a′ > 0,

1−b′ > 0 and 1−a′b′ > 0). In the next Section we move on to considering

the general setting by working with an arbitrarily large ecological system

consisting of N interacting populations.
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Figure 4.5: Abundances of different types of couplings between species. (Red)

plus symbols refer to the uncontrolled matrix of interaction (analytically com-

puted in Appendix B.1). Panel (a): the (blue) bars report on the relative abun-

dances of different classes, as obtained after the control has been applied. Results

refer to just one realization of the process. Quantitatively similar conclusions

are obtained for different realizations and/or averaging over a large ensemble of

them. Panel (b): the frequency of appearance of different classes is plotted after

a cut-off has been applied (see main text). Here the cut off is set to 0.005.

4.4 Generalization: a larger ecosystem

Let us now consider the general setting where an arbitrarily large num-

ber of species is made to interact. The initial coupling strengths which

exemplify the interaction among distinct populations, as encoded in the

elements of matrixA, are initially assigned in such a way that a non trivial

fixed point exists and is linearly unstable. This is achieved by generat-

ing the random entries Aij , according to a specific distribution that we

discussed in the Appendix and exploiting again the Gershgorin theorem.

In the following, we will set N = 100 and illustrate the results which are

obtained when allowing for the fixed point to be modified by the con-

trol procedure. The alternative control strategy, which leaves the original

fixed point unchanged, is also analyzed and the results reported in the

Appendix. As an interesting outcome, we will show that predator-prey

interactions exert a stabilizing effect, as already pointed out in [6].

In Fig. 4.4, the original and modified spectrum are displayed in the

complex plane, for one representative realization of matrix A. The sym-
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bols are chosen following the same convention adopted in Fig. 4.1. The

stabilization produced by the control is clearly demonstrated.

To help visualizing how the control shapes the examined ecosystem,

we extract from the matrix A′ the number of pairs that belong to the

different classes, categorized in five six large classes, here recalled for the

sake of completeness: exploitation (+,−), competition (−,−), cooperation

(+,+), commensalism (+, 0), amensalism (−, 0) or null interaction (0, 0).

The frequency of appearance of different classes is investigated in Fig. 4.5.

The red plus symbols point to the uncontrolled setting, and reflect the

specific rule chosen for generating matrix A and its associated, unstable

fixed point (see Appendix B.1). For the controlled matrix, only three bins

are populated, see Fig. 4.5 (a): interaction modalities that envisage a one

directional coupling, or stated differently, a zero entry in matrix A, are

absent in the controlled scenario. The topological control activates in fact

all pairwise connections, albeit often by a tiny amount. It is then interest-

ing to silence, a posteriori, in the controlled adjacency matrix A′, the links

that are associated to a weight (in absolute value) smaller than a given

cutoff. For a sufficiently small cutoff the stability of the controlled system

is preserved: the number of newly added links can hence be considerably

reduced, by eradicating from the collection those that bear no relevance

in light of the modest exerted coupling. The effect of the cut off is visible

in Fig. 4.5 (b): the final distribution of pairs resembles very closely the

one generated at the beginning. Remarkably, the number of predator-prey

interactions grows at the detriment of the last column of the histogram,

implying that the new interactions that are to be established for stability

to hold belong to this class, in qualitative agreement with the analysis by

Allesina et al. [6].

A different view on the effect of the control method can be gained by

looking at Fig. 4.6(a). Here, the distribution of the weights associated

to predator-prey interactions is plotted before (blue bars and continuum

profile) and after (orange histogram) application of the control. While

considering the control procedure which allows the fixed point to change,

it is clear that reducing the strength of the couplings proves beneficial for

the system stabilization, in agreement with [47]. The same observation

holds for the other classes of interactions (data not shown). As a final

check, we show in Fig. 4.6(b) the new fixed points as obtained with the

stabilized matrix A′, compared to the trivial fixed point obtained when



72 Spectral control for ecological systems

(a)

0 20 40 60 80 100

node index

0

5

10

15

x
*

Figure 4.6: (a): The distribution of the predator-prey interactions is displayed:

blue bars refers to one realization of the initial system (averaging over many

realizations yields the analytic profile represented by the blue line and obtained

after equations (B.2)). Red bars photograph the distribution of couplings ob-

tained once the control has been applied. (b): The equilibrium solution of the

controlled system (red diamonds) is different from the trivial (uncoupled) fixed

point (black plus symbols) obtained by setting x∗i
′ = ri/si. The index reported

in the horizontal axis identifies the species.

the matrix of couplings is switched off, i.e. assuming that each species is

bound to evolve on a isolated niche. The method devised here yields a

genuinely complex stable equilibrium, which appears to be shaped by the

couplings established among interacting units, despite the global tendency

to reduce their associated strengths, as revealed in Fig. 4.6(a).

Summing up, as a generalization of the model analyzed in the previous

chapters we have here considered a system composed of different fami-

lies, each one represented by its concentration variable and associated to

a node of an interaction network. Such variable evolves in time according

to a reaction term and is enhanced or reduced by the interaction with the

other species. Working in this context, we here contributed with a novel

approach, mathematically grounded on first principles, to help identifying

the topological features that should be possessed by a generic ecological

network so as to ensure stability, hence resilience to external perturbations.

To this end we have considered a system made up of N interacting species



4.4 Generalization: a larger ecosystem 73

and assumed the reaction dynamics to be logistic. We then generated a

network of interactions, encoded in a weighted adjacency matrix, which is

prone to instability. By rewiring the assigned links, and their associated

weights, we have shown that it is possible to drive the system stable, via

two alternative strategies which preserve, or not, the initial fixed point.

The technique here developed implies minimal modifications to the spec-

trum of the Jacobian matrix which is responsible of the stability of the

underlying equilibrium and traces these changes back to species-species

interactions by means of the network modifications analysis.
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Chapter 5

Control by adding one node to

the network

The generalised stabilisation process described in the previous chapter con-

stitutes an important tool for assessing the ecosystem stability. It presents

however an important weakness: it is global. In other words, almost all the

interactions between units must be modified in order to convert an unsta-

ble into a stable system. This, when dealing with real ecological systems,

results clearly impracticable. The above described technique consequently

represents a significant theoretical tool when the aim is to discover the gen-

eral characteristics to be satisfied by a stable ecosystem, but fails from the

point of view of practical realizations. In this chapter a different technique

is presented that has the advantage of being local. Indeed, one species is

added to the pool of interacting families and used as a dynamical con-

troller to induce novel stable equilibria. The method is again based on

the spectral properties of a stability matrix and, in addition, use is made

of the root locus method to shape the needed control, in terms of intrin-

sic reactivity and adopted protocol of injection. The proposed method is

tested on both synthetic and real data, thus enabling to demonstrate its

robustness and versatility.

To set the reference frame we will hereafter consider a system consisting

of N species (nodes) whose activities x = (x1, x2, · · · , xN )T obey the

75
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coupled nonlinear differential equations [47,70,81]:

ẋi = fi(xi) +
∑
j

Aijgi(xi, xj) i = 1, . . . , N. (5.1)

The first term on the right-hand side specifies the self-dynamics of

species i while the second term stems from the interactions of species

i with the other species. The nonlinear functions fi(xi) and gi(xi, xj)

encode the dynamical laws that govern the system’s components, while the

weighted connectivity matrix A captures the interactions between nodes.

The elements Aij can be positive or negative, depending on the specific

nature of the interaction, i.e. cooperative or competitive. Notice that

system (5.1) is assumed in [70] as a reference model to analyze resilience

patterns in complex networks. Differently from [70], Aij can here take

positive and negative values (see also [191]).

The interaction shape is often epitomized by a quadratic response func-

tion gi(xi, xj) [81], as it is considered in the previous chapter and the re-

action drive fi(xi) to which each species is subjected represents a logistic

growth with a prescribed carrying capacity [70].

Animals displaying competitive predator-prey interactions or, alterna-

tively, subjected to a symbiotic dependence, such as in plant-pollinator

relationships, are among the systems that fall within the aforementioned

scenario [187]. Furthermore, the complex community of micro-organisms

that live in the digestive tracts of humans and other animals, including

insects, can be rooted on similar descriptive grounds [47].

Moreover, the systems which can be described by this generalized ver-

sion of temporal equations are not limited to natural ecosystems, but

include several other applications.

For genetic regulatory networks, the dynamical variables xi represent

the level of activity of a gene or the concentration of the associated pro-

teins [22]. Species specific reaction terms fi(xi) account for, e.g., degra-

dation or dimerization. The pattern of activation could be effectively

modeled by sigmoidal Hill-like functions [140], as follows the classical

Michaelis-Menten scheme [100], which incorporates the known map of gene

interactions. On a more general perspective, understanding the emerging

dynamics in social communities [38], grasping the essence of the learning

organization in the brain [150], and implementing efficient protocols for

robot navigation in networked swarms [170] are among the very many ap-
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plications that can be traced back to one of the variants of equations (5.1),

with a suitable choice of the nonlinear functions fi(xi) and gi(xi, xj).

5.1 Adding a species to enforce stable equi-

libria in a multidimensional system

Starting from the above illustrated setting, we will here discuss a suit-

able control scheme to drive system (5.1) towards a desired equilibrium

x∗ = (x∗1, x
∗
2, · · · , x∗N )T , which is linearly stable to externally imposed per-

turbations. To reach this goal we shall introduce one additional species,

the (N + 1)-th component of the collection, suitably designed to yield the

sought effect. To set the notation, we indicate by u the component (e.g.,

concentration, activation level) assigned to the controller and write:{
ẋi = fi(xi) +

∑
j Aijgi(xi, xj) + αihi(xi, u)

u̇ = −(u− u∗)− ρ∑j βj(xj − x∗j ).
(5.2)

The controller u can exert a direct influence on every component xi,

as specified by newly added terms αihi(xi, u) that modify the original sys-

tem (5.1). α = (α1, α2, ..., αN )T is a vector of N constant parameters, to

be self-consistently adjusted following the scheme depicted below. hi(xi, u)

is a generic, in principle nonlinear, function of the components xi and u

that reflects the modality of interaction between the controller and the ex-

isting species. The equation for the dynamical evolution of the controller

u displays two distinct contributions. The first represents a self-reaction

term, assumed to be linear just for ease of presentation. The nonlinear

self-dynamics of the controller u can be readily considered, with no further

technical complication. The rate of change of u is assumed to be contextu-

ally driven by a global forcing that senses the relative distance of xi from

its deputed equilibrium x∗i . The parameters β = (β1, β2, ..., βN )T and

ρ will prove central in enforcing the stabilization of the prescribed fixed

point. A few comments are mandatory to fully appreciate the generality

of the proposed framework, beyond the specific choices made for purely

demonstrative purposes. Let us begin by remarking that the controller u

can represent an artificially engineered component or, equivalently, belong

to an extended pool of interacting populations. In the scheme here imag-

ined, it is assumed that the values of u and xi ∀i, are accessible to direct
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measurement at any time and that this information can be processed to set

the controller dynamics. This is largely reasonable for experiments that

run under protected conditions like, e.g., the study of microbial dynamics

in laboratory reactors, but certainly less realistic for applications that aim

at in vivo multidimensional systems, think for instance to genetic regula-

tory circuits. The dynamical equation for u can, however, be amended to

a large extent and with a great deal of flexibility, depending on the target

application and the structural specificity of the employed controller, while

still allowing for an analogous methodological treatment1. The dynam-

ics of the original, unsolicited, components and the functional form that

specifies the controller feedback bear unequivocal universality traits [70].

The global fixed point (x∗, u∗) of the controlled system (5.2) should

match the following constraints

fi(x
∗
i ) +

∑
j

Aijgi(x
∗
i , x
∗
j ) + αihi(x

∗
i , u
∗) = 0 i = 1, .., N (5.3)

which, provided the x∗i and u∗ are assigned, ultimately set the values of the

parameters αi. Conversely, as we shall illustrate in the following, one could

assume the parameters αi as a priori known and infer via equations (5.3)

the fixed point(s) to be eventually stabilized. The next step in the analysis

aims at ensuring the stability of the selected fixed point. This will be

achieved by acting on the residual free parameters β and ρ. As routinely

done, we perturb the equilibrium solution as xi = x∗i + vi, u = u∗ + w

and Taylor expand equations (5.2) assuming the imposed disturbances

η = (v, w) small in magnitude. At the linear order of approximation one

obtains:

η̇ =

(
G q

−ρβT −1

)
η ≡ Jη (5.4)

where q is aN -dimensional column vector of components qi = αi
∂hi
∂u (x∗i , u

∗).

The N ×N matrix G is defined as:

1As a matter of fact, we can equivalently assume a generalized equation for the con-

troller of the type u̇ = fu(u)−ρgu(x, u,β)+b where fu(u∗) = 0 and b = ρgu(x∗, u∗,β).
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Gii =
∂fi
∂xi

(x∗i ) +
∑
k

Aik
∂gi
∂xi

(x∗i , x
∗
k) + αi

∂h

∂xi
(x∗i , u

∗)

Gij = Aij
∂gi
∂xj

(x∗i , x
∗
j ).

The fixed point (x∗, u∗) is linearly stable if all eigenvalues of the Ja-

cobian matrix J have negative real parts. The associated characteristic

polynomial P (λ) = det(J −λI) can be cast in the equivalent, affine in the

ρ-parameter, form:

P (λ) = −(1 + λ) det(G− λI) + ρ

N∑
i,j=1

βj [adj(G− λI)]jiqi

≡ D(λ) + ρN (λ)

that is reminescent of the celebrated root locus method [61]. Here,

[adj(Z)]ji = (−1)i+j det[(Z)(i,j)] denotes the adjugate of matrixZ, (Z)(i,j)

being the minor of Z obtained by removing the i-th row and the j-th col-

umn. The polynomials D(λ) = (−1)N+1
∏N+1
k=1 (λ − pk), and N (λ) =

(−1)N+1
∏N−1
k=1 (λ− zk) have respectively degrees N + 1 and N − 1, with-

out loss of generality β can be chosen so that N (λ) assumes this form.

With a slight abuse of language we will refer to as poles the roots pk of the

polynomial D(λ) and zeros the roots zk of N (λ). Notice that for ρ = 0

the eigenvalues of the Jacobian J correspond to the N +1 poles pk. These

latter quantities are uniquely determined, once the fixed point (x∗, u∗) has

been assigned. In particular it cannot a priori be ensured that the real

parts of all pk are negative, as stability would require. In other words,

when ρ = 0, we can enforce the desired fixed point into the system but

cannot guarantee its stability. On the other hand, for ρ → ±∞, N − 1

eigenvalues of J tend to the zeros zk, which depend self-consistently on

the free parameters β. As we shall show hereafter, it is in principle pos-

sible to assign the βi to force the real parts of all zk to be negative. The

two remaining eigenvalues of matrix J , in the limit of large |ρ|, diverge to

infinity in the complex plane. More precisely, they travel along opposite

directions following a vertical (resp. horizontal) asymptote, if ρ is bound

to the positive (resp. negative) semiaxis. To confer stability in the lim-

iting case ρ → ∞ where N − 1 eigenvalues of J coincide with the roots
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of N (λ), it is therefore sufficient to (i) operate a supervised choice of β

and (ii) impose the condition that yields a vertical asymptote (ρ→ +∞),

while, at the same time, requiring that this latter intersects the negative

side of the real axis. In this respect, it is important to remark that the

intersection occurs in the point of abscissa λ0 = 1
2

(∑N+1
k=1 pk −

∑N−1
k=1 zk

)
.

Hence, the idea is to interpolate between the two limiting cases ρ = 0

and ρ → ∞ by determining the minimal value ρc of ρ beyond which the

desired fixed point becomes stable. The existence of the threshold ρc that

makes the imposed fixed point attractive for any ρ > ρc is obvious, being

stability already assured in the limiting setting2 ρ→ +∞. For the sake of

clarity we reiterate that this amounts to selecting Re(zk) < 0 for all k and

further imposing λ0 < 0, by properly assigning the free parameters β.

In order to study the assignability of the zeros zk by means of β, let

us recall that for a generic square matrix Z, we have that adj(Z − λI) =

−∑N−1
m=0

∑N−m−1
l=0 cl+m+2Z

mλl where ck stands for the coefficients of the

characteristic polynomial of Z, namely det(Z − tI) =
∑N
l=0 cl+1t

l. The

polynomial N (λ) can be consequently written as:

N (λ) = −
N−1∑
m=0

N−m−1∑
l=0

cl+m+2[βTGmq]λl ≡
N−1∑
n=0

dn+1λ
n (5.5)

It is hence straightforward to establish a direct relation between the pa-

rameters β and the vector of coefficients d:

dn = −
N−n∑
k=0

ck+n+1[βTGkq] (5.6)

that can also be equivalently stated as:

d = Hβ (5.7)

where H is the matrix defined by:

Hnm = −
N−n∑
k=0

ck+n+1(Gkq)m. (5.8)

2In principle, more than one value of ρc can exist for which the eigenvalues cross

the imaginary axis, making stable an unstable fixed point. The intersections are found

imposing λ = iω in equation D(λ)+ρcN (λ) = 0, which yields a system of two equations,

for respectively the real and imaginary parts. This system can then be solved for the

two unknowns ρc and ω.
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The suited vector β is thus obtained3 from (5.7), provided matrix H is

invertible. This latter requirement defines the condition of controllability

for the scheme that we have implemented (see Appendix C for a discussion

that aims at positioning this observation in the context of standard control

theory [103]). Summing up, the devised strategy consists of the following

steps. First, the fixed point is selected and the parameters α frozen to

their respective values as specified by (5.3). Then the complex roots zk
are chosen so that Re(zk) < 0 for all k while, at the same time, matching

the condition that makes the vertical asymptote cross the horizontal axis

with a negative intercept. As we will clarify when discussing the applica-

tions, the zk can be chosen to coincide with the poles pk, except for point

modifications whenever Re(pk) ≥ 0. Notice however that zk should be real

or come in conjugate pairs, as the coefficients dk are, by definition, real.

Once the roots zk have been fixed, one can readily compute the associated

polynomial coefficients dk, and hence proceed with the determination of

β via (5.7), provided that the controllability condition holds. Finally, by

selecting ρ > ρc > 0 we obtain a linearly stable fixed point (x∗, u∗) for the

controlled dynamics (5.2).

5.2 Testing the control method: from syn-

thetic gene network to real microbiota

dataset

As a first application of the above technique, we will study the dynamics

of an artificial gene network [2, 59, 88, 98]. In our example, the network

of connections is a regular tree with branching ratio r = 4. It is further

assumed that the genetic activation between nodes i and j is described

in terms of a Hill function, with cooperation coefficient equal to 2. In

formulae, Aij = 1 and gi(xi, xj) ≡ g(xj) = x2
j/(1 + x2

j ). Negative reg-

ulation loops are also accommodated for. These latter could, in princi-

ple, be modeled by assuming paired interactions of the type 1 − g(xj),

while still setting to one the relative entry of the connection matrix. As

3For obvious consistency reasons β must have real entries. This follows naturally if

one chooses the zeros zk to be real or complex conjugate in pairs, which implies that

the coefficients dn of the polynomial N (λ) (see (5.5)) are real. All other quantities

involved are real by definition.
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Figure 5.1: Panel (a): the control is modulated so as to enhance the activity of

the peripheral nodes of the tree, as compared to the inner ones. Panel (b): the

control makes now the bulk nodes more active as compared to the peripheral

ones. Panel (c): the root locus diagram relative to the situation displayed in

panel (b) is plotted. Blue circles stand for the position of the complex eigenvalues

when ρ = 0, while green crosses identify the eigenvalues obtained for ρ → ∞.

The vertical red line represents the asymptote that attracts two of the modified

eigenvalues, when ρ→∞. The red dots show the computed spectrum, calculated

when increasing ρ. In this case the matrix A contains an identical number of ±1

entries. These are randomly assigned and kept unchanged for all tests performed.

The figure on the right is a zoom of the plot displayed on the left.
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described in the Appendix C, we can equivalently set Aij = −1, while

assuming interactions to be modulated by g(xj) as indicated above. At

the same time, the reaction part should be modified with an additional

term, ηi, counting the number of negative loops that affects node i. More

specifically, f(xi) = −γixi + ηi, where the first term mimics constitutive

degradation. In our tests, matrix A contains an identical number of ran-

domly assigned ±1. The parameters γi are random variables uniformly

distributed over the interval [0, 1]. Working in this setting our aim is to

control the equilibrum state of the system and thus shape the pattern of

asymptotic activity. For this initial application we choose to operate with

a simple linear control and set hi(xi, u) ≡ h(u) = u, for all i. In this case,

u could e.g. represent the density of a suitable retroviral vector used to in-

fect specific cell lines [176]. To provide an immediate graphical illustration

of the power of the method, we set to stabilize two distinct fixed points. In

the first example, see Fig. 5.1(a), the control is designated so as to enhance

the degree of activity of the peripheral nodes of the tree. These latter are

characterized by a similar value of the activity, apart for slight randomly

superposed fluctuations. Similarly, the nodes that define the bulk of the

tree display a shared degree (except for tiny stochastic modulation) of

residual activity. In Fig. 5.1(b), the dual pattern is instead obtained and

stabilized: the peripheral nodes are now being silenced and the activity

concerns the nodes that fall in the center of the tree. In Fig. 5.1(c) the

root locus diagram relative to the situation reported in Fig. 5.1(b) is dis-

played. By properly tuning ρ above a critical threshold ρc, we can enforce

the stability of the obtained fixed point. Two eigenvalues diverge to ±∞
following a vertical asymptote in the complex plane. For each chosen fixed

point that is being stabilized the zeros zk can be selected so as to make

the asymptote intercept the horizontal axis in the left-half of the plane.

As a second application of the proposed control strategy, we set to

study the dynamics of the gut microbiota [47]. The intestinal microbiota

is a microbial ecosystem of paramount importance to human health [174].

Efforts are currently aimed at understanding the microbiota ability to re-

sist to enteric pathogens and assess the response to antibiotics cure of

intestinal infections. Recent advances in DNA sequencing and metage-

nomics make it possible to quantitatively characterize the networks of

interactions that rule the dynamics of the microbiota ecosystem. This was
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for instance achieved in [180] by analyzing available data on mice [35] with

an innovative approach which combines the classical Lotka-Volterra model

and regression techniques. In the following we shall apply the method here

developed to control the dynamics of the whole microbioma [180] or a lim-

ited sub-portion of it.

In this specific application, the self-dynamics is assumed to be logistic,

namely fi(xi) = xi(ri − sixi), while g(xi, xj) = xixj . Finally, hi(xi, u) =

uxi. In [180] the model has been applied to a relatively small (mice gut)

microbiota system made up of 11 distinct populations. More precisely,

the ten most abundant species have been identified: all together they

account for the vast majority (∼ 90%) of the total populations found

in the mice gut. The remaining populations are grouped into a unique

(non-homogeneous) category referred to as “Other”. The authors of [180]

provided a quantitative characterization of the coefficients that enter the

definition of the relevant quantities r, s and A. These latter are reported

in table 5.1 together with the names of the involved species:

Table 5.1: Populations identification: P1. Barnesiella; P2. undefined genus of

Lachnospiraceae; P3. unclassified Lachnospiraceae; P4. Other; P5. Blautia; P6.

undefined genus of unclassified Mollicutes; P7. Akkermansia; P8. Coprobacillus;

P9. Clostridium difficile; P10. Enterococcus; P11. undefined genus of Enter-

obacteriaceae.

Species r s A

P1 0.37 0.20 0 0.10 0.17 -0.16 -0.14 0.02 -0.51 -0.39 0.35 0.01 -0.27

P2 0.31 0.10 0.06 0 -0.04 -0.15 -0.19 0.03 -0.46 -0.41 0.30 0.02 -0.20

P3 0.36 0.10 0.14 -0.19 0 -0.14 -0.16 0.01 -0.50 -0.77 0.29 -0.01 -0.21

P4 0.54 0.83 0.22 0.14 4.6 ×10−4 0 -0.22 0.22 -0.20 -1.01 0.67 -0.04 -0.40

P5 0.71 0.71 -0.18 -0.05 -5.0×10−5 -0.054 0 0.02 -0.51 0.55 0.16 0.22 0.11

P6 0.47 0.42 -0.11 -0.037 -0.043 0.041 0.26 0 -0.18 -0.43 0.16 -0.061 -0.26

P7 0.23 1.2 -0.13 -0.19 -0.12 0.38 0.40 -0.16 0 1.39 -0.38 0.19 -0.096

P8 0.83 4.3 -0.071 6.0×10−4 0.080 -0.45 -0.50 0.17 -0.56 0 0.44 -0.22 -0.21

P9 0.39 0.056 -0.037 -0.033 -0.050 -0.090 -0.10 0.032 -0.18 -0.30 0 0.014 -0.0077

P10 0.29 0.19 -0.042 -0.013 0.024 -0.12 -0.33 0.021 0.055 -2.1 0.11 0 0.024

P11 0.32 0.38 -0.37 0.28 0.25 -0.17 0.084 0.034 -0.23 -0.39 0.31 -0.039 0

The concentration of the species are measured in 1011 rRNAcopies/cm3,

the coefficients r have the dimension of the inverse of time (measured in

days), and s is expressed as the inverse of the product of a time for a

concentration.

Notice that the set of considered species includes the spore-forming pathogen

Clostridium difficile. To lower its concentration (and so diminish the prob-

ability of infection) is one of the goals of the implemented control. The
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results of the analysis are organized under different headings that reflect

the three distinct control strategies explored. The physical dimension of

the inserted controller u is again 1011 rRNAcopies/cm3. The parameters

β have dimension of the inverse of a time, while ρ is a-dimensional.

5.2.1 Stabilizing an unstable fixed point by means of

an external controller (Case A).

For illustrative purposes, we will restrict the analysis to all sub-systems

that combine 5 out of the 11 species analyzed in [180] (more precisely

Barnesiella, Blautia, und. Mollicutes, Coprobacillus and und. Enterobac-

teriaceae). All the fixed points for the 5 species systems are calculated and

only those displaying positive concentrations are then retained for subse-

quent analysis. The stability of each selected fixed point is established

upon evaluation of the spectrum of the Jacobian of the reduced dynam-

ics. In Fig. 5.2(a) the histogram of (λRe)max, the largest real parts of the

recorded eigenvalues, is plotted: several fixed points exist that correspond

to unstable equilibria. Let us consider one of them, denoted by x̄ (see ta-

ble (5.9)). The maximum eigenvalue of the Jacobian matrix evaluated at

x̄ is (λRe)max = 0.0148 > 0, thus implying instability. Starting from this

setting, we will introduce a suitably shaped controller, following the above

discussed guidelines, in order to stabilize a slightly perturbed version of

the originally unstable fixed point, see pie charts in Fig. 5.2(a). Following

the exposed procedure one can readily calculate the parameters α and

β which eventually stabilize the fixed point x∗. The values obtained are

reported in table (5.9). The spectrum of the Jacobian matrix obtained

for ρ = 0 (blue circles in Fig. 5.2) protrudes into the right half-plane.

More specifically, one eigenvalue exhibits a positive real part, so flagging

the instability that one aims to control. At variance, the green crosses in

Fig. 5.2(b) stand for the roots zk of N (λ) and fall in the left side of the

complex plane. The vertical (red, in Fig. 5.2(b)) line identifies the location

of the two residual eigenvalues of the Jacobian matrix, when ρ→∞. By

tuning the parameter ρ, one can continuously bridge the two above limit-

ing settings, as graphically illustrated in Fig. 5.2(b). When ρ > ρc ' 0.01,

the eigenvalues populate the left half-hand plane and stability is, there-

fore, gained. Direct simulations of the controlled system, as displayed in
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Fig. 5.2, confirms that stability has been indeed achieved.

Populations x̄ x∗ α β ×104

Barnesiella 0.9736 0.9917 0.0186 0.1860

Blautia 0.8840 0.9093 0.0089 -0.0638

und. uncl. Mollicutes 1.2361 1.2396 0.0089 -0.0032

Coprobacillus 0.1169 0.1363 0.1005 0.0495

und. Enterobacteriaceae 0.0756 0.0894 0.0175 -2.2067

(5.9)

5.2.2 Acting with one species of the pool to damp the

concentration of the pathogens (Case B).

Select now a stable fixed point x∗ (table 5.10), mixture of five distinct

species (Barnesiella, und. Lachnospiraceae, Other, Blautia and C. diffi-

cile). The last one is a species of Gram-positive spore-forming bacteria

that may opportunistically dominate the gut flora, as an adverse effect of

antibiotic therapy. As controller we shall here employ one of the other 6

species that compose the microbioma [67,181]. Vector α therefore follows

in this case from the interaction matrix in table 5.1. The aim is to drive

the system towards another equilibrium, stable to linear perturbations,

which displays a decreased pathogen concentration.

Denote by Ā the reduced 5×5 matrix that specifies all paired interactions

between the pool of populations involved in the initial fixed point. The

equilibrium solution that can be attained by the controlled system cannot

be in this case a priori chosen but it is determined as x∗ = −Ā−1
(r+α).

Since it clearly depends on the species used as controller, our freedom lies

in the choice of this last one. Retaining only the meaningful cases (fixed

points with all positive entries) in the example depicted in Fig. 5.3(c), we

obtain three possible solutions: x∗L where the added species is uncl. Lach-

nospiraceae, x∗M adding as external control the und. uncl. Mollicutes and

x∗E adding und. Enterobacteriaceae (see table 5.10). From inspection of

the obtained solutions, one can appreciate the impact of the different em-

ployed controllers: in the latter case the concentration of C. difficile stays

almost constant, in the second example it increases, while in the first case

it is reduced. The pie charts in Fig. 5.3(c) represent, respectively, the

initial fixed point and the final stationary equilibrium, as shaped by the
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Figure 5.2: Case A. Panel (a): a reduced 5 species subsystem of the microbiota is

considered (case A) and all possible fixed points computed. Only those display-

ing non-negative concentrations are retained and their stability assessed. In the

main figure, the histogram of (λRe)max, the largest real parts of the eigenvalues

obtained after the linear stability analysis, is depicted. The two pie charts refer

to the initially unstable fixed point (upper chart) and the stabilized equilibrium

(lower chart). Panel (b): the root locusf diagram relative to the case discussed

in panel (a), is shown. Blue circles identify the position of the complex eigen-

values when ρ = 0, while green crosses stand for the eigenvalues obtained in the

limit ρ → ∞. The vertical red line is the asymptote that eventually attracts

the two residual eigenvalues. The red dots show the computed spectrum, when

progressively increasing ρ. Panel (c): numerical integration of the controlled

system (see equations (5.2)). The equilibrium state stabilized upon injection of

the controller (stars) is a slight modified version of the initially unstable fixed

point, see table 5.9. The system is initialized out of equilibrium and, after a

transient, converges to x∗.
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Figure 5.3: Case B. The goal is here to reduce the concentration of the pathogen

species, C. difficile, by employing as controller one of the species that compose

the microbioma. The concentration of C. difficile is monitored over time for

three different control strategies, turning on the control at the same time (t = 20

days). The insertion of the species of uncl. Lachnospiraceae implies a substantial

reduction (50 %) of the pathogen concentration, as also displayed by the enclosed

pie charts (for interpreting the color-code refer to Fig. 5.2). Right panel: root

locus diagram relative to the Case B where, starting from the pool of 5 pop-

ulations the control is performed adding the species of uncl. Lachnospiraceae.

Blue circles correspond to the position in the complex plane of the roots of D(λ)

(eigenvalues of J when ρ = 0) while green crosses indicate the eigenvalues of the

Jacobian in the limit ρ → ∞. Paths followed by the eigenvalues when progres-

sively increasing ρ are shown by the red lines, while the red dots represent the

solutions for discrete values of ρ, scanning the interval from 0 to 0.1.

control in the most beneficial case, i.e., when the concentration of C. dif-

ficile is seen to shrink. The root locus plot obtained for this specific case

is reported in Fig. 5.3.

Populations x∗ x∗L x∗M x∗E
Barnesiella 2.0745 2.5166 2.0480 2.2542

und. Lachnospiraceae 2.3607 1.9876 2.2674 2.7007

Other 1.9608 1.6929 1.9252 2.0842

Blautia 0.2724 0.1422 0.6171 0.1345

C. difficile 0.5402 0.2435 0.6194 0.5259

(5.10)
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Figure 5.4: Case C. We now modify a stable fixed point, by driving to extinction

one of the existing populations, the pathogen C. difficile (here species 6), with

an indirect control strategy. The obtained concentrations are reported in the

left-hand plot of right panel (pluses) and compared with the initial unperturbed

solution (diamonds). As anticipated, x∗6 ' 0. The components of α are plotted

in the right-hand plot. Notice in particular that α6 = 0. Left panel: root locus

diagram relative to this case.

5.2.3 Driving to extinction one species, the other be-

ing the target of the control (Case C).

As an additional example, we wish to modify a stable fixed point of the

dynamics, by silencing one of the existing populations with an indirect con-

trol. In other words we shall introduce and stabilize a novel fixed point,

that displays a negligible residual concentration of the undesired species,

by acting on the other species of the collection. This is for instance relevant

when aiming at, e.g., eradicating a harmful infection that proves resistant

to direct therapy. With this in mind, we consider a reduced ecosystem

consisting of 6 species, selected among the 11 that define the microbiota.

A stable fixed point exists (black diamonds in Fig. 5.4, right panel) which

displays a significant concentration of C. difficile, the pathogen species.

Assign to this latter species the index 6. We now insert a controller which

cannot directly interfere with C. difficile. This amounts, in turn, to set-

ting to zero the corresponding component of vector α (α6 = 0). We then

require the concentration of C. difficile to be small, i.e., x∗6 = ε << 1.

This latter condition translates into a constraint that should be matched

by the other 5 species, namely
∑
j 6=6 Ā6jx

∗
j = (s6 − Ā66)ε − r6. Given

x∗k, the components αk, with k 6= 6, are chosen so as to match the con-

straint αk = (−rk + skx
∗
k −

∑
j 6=6 Ākjx

∗
j − Āk6ε)/u

∗. A possible solution

of the problem is reported in Fig. 5.4 (right panel): in the left graph (plus
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symbols) the components of the fixed point stabilized by the control are

shown. As anticipated, the concentration of C. difficile is small. The right-

hand plot of the same figure shows the components of the vector α that

specify the characteristics of the introduced controller. Notice that α6 = 0

so that the controller is not directly influencing the rate of production of

C. difficile. The root locus diagram is reported in Fig. 5.4.

5.2.4 Controlling the Microbiota network: exploiting

a transient control to drive the system towards

an existing stable fixed point (Case D)

The control scheme here developed could be in principle exploited to drive

the system towards a stable fixed point of the unperturbed dynamics,

starting from out-of-equilibrium initial conditions. To achieve this goal

u∗ needs to be set to zero, thus requiring that the controller is turned off

at equilibrium. Here, x∗j is an equilibrium solution of the uncontrolled

dynamics, which proves linearly stable to external perturbations. In this

case, α and β are not subjected to specific constraints, as the existence and

stability of the desired equilibrium are a priori granted. Such parameters

could hence be chosen so as to reflect the specificity of the target system.

The parameter γ can be tuned as desired so as to help the convergence

towards x∗j without falling in the basin of attraction of other existing fixed

points. As a proof of principle of the method, we choose a stable fixed

point of the global microbiota ecosystem, i.e. including the complete pool

of 11 populations. This is characterized by x∗1 = 9.299, x∗3 = 12.3085, x∗4 =

3.1627 and x∗j = 0 for j 6= 1, 3, 4. The largest real part of the eigenvalues of

the associated 11×11 Jacobian matrix turns out to be (λRe) = −0.1306 <

0, thus implying stability of the aforementioned equilibrium. Imagine

to initialize the system out of equilibrium with all species, including the

pathogen C. difficile, being assigned a random concentration xj(0) 6= 0.

The system is let evolve for a while and then, at time t∗, the control is

injected. Here, α and β are assigned as random, uniformly distributed over

[0,1], parameters. As clearly displayed in Fig. 5.5, the system is steadily

moved towards the equilibrium x∗j (stars), while the control converges to

zero after an abrupt jump. In other words, after a transient whose duration

depends on the chosen parameters, the system achieves its asymptotic
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Figure 5.5: Driving the system towards a stable fixed point of the unperturbed

dynamics. The system is initiated out-of-equilibrium: the concentration of all

species, including the pathogen C. difficile, is set to values different from zero.

At t∗ = 5 days the control u is injected. After a transient the system converges

to its stable equilibrium characterized by x∗1 = 9.299, x∗3 = 12.3085, x∗4 = 3.1627

and x∗j = 0 for j 6= 1, 3, 4, while the control u is turned to zero. Here γ = 10

and u(0) = 15.



92 Control by adding one node to the network

(pathogen free) equilibrium and the control can be safely disconnected.

5.3 Generalized control

In the above implementation, the system is described by generic equations

(5.1), however the controller u does not benefit of the same generality, see

(5.2). The equation that governs its time evolution and interactions indeed

assumes a specific form ensuring the success of the stabilization process.

Moreover, we assume that the state of the system is always accessible to

direct measurement so that the controller evolution is adjustable according

to the distances x − x∗ and u − u∗ appearing in (5.2). Relaxing this

working hypothesis is the main goal of this section, where the controller

evolution will be governed by a different equation. We will in particular

assume that the controller dynamics is ruled by an equation similar to that

characterising the other N species. The controller will therefore configure

as an effective (N + 1)-th species of the pool and the only quantity to be

externally controlled will consist of its equilibrium concentration u∗.

In their most generic form eqs. (5.2) become:

{
ẋi = fi(xi) +

∑
j Aijgi(xi, xj) + αihi(xi, u) i = 1, ..., N

u̇ = l(u)− ρ∑j βjmj(xj , u)
(5.11)

with f(·), g(·, ·), h(·, ·), l(·) andm(·, ·) generic non-linear functions. We will

however restrict our analysis to the simple case where the self-dynamics

of each species, controller included, is logistic and the interaction func-

tions are quadratic (product of the densities of the interacting species), as

follows:

{
ẋi = xi(ri − sixi) +

∑
j Aijxixj + αixiu i = 1, ..., N

u̇ = u(rN+1 − sN+1u)− ρ∑j βjxju.
(5.12)

The fixed points (x∗, u∗) of this system are given by imposing ẋi = 0 and

u̇ = 0. The only solution where each component is different from zero,
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namely where none of the species becomes extinct 4, is given by:{
ri − six∗i +

∑
j Aijx

∗
j + αiu

∗ = 0 i = 1, ..., N

rN+1 − sN+1u
∗ − ρ∑j βjx

∗
j = 0.

(5.13)

The stability of such equilibrium is assessed by the eigenvalues of the

Jacobian matrix J̃ in the proximity of the fixed point. In order to compute

J̃ we move from the equilibrium with a small perturbation (v, w), thus

obtaining (
v̇

ẇ

)
= J̃

(
v

w

)
=

(
G̃ q

−ρβTu∗ −sN+1u
∗

)(
v

w

)
(5.14)

where, coherently with the above sections, q is a N -dimensional column

vector of components qi = αix
∗
i , while the matrix G̃ is defined by

G̃ii = −six∗i
G̃ij = Aijx

∗
i .

The eigenvalues of J̃ are the roots of the characteristic polynomial P(λ) =

det(J̃ − λ1N+1), which is explicitly given by:

P(λ) = (−rN+1 − λ) det(G̃− λ1) + ρ
{∑
ij

αiβjx
∗
i u
∗[adj(G̃− λ1)]ji+

+
∑
k

βkx
∗
k det(G̃− λ1)

}
≡ D̃(λ) + ρÑ (λ).

(5.15)

In the last equation we have defined the polynomials D̃(λ) and Ñ (λ),

respectively of degree N + 1 and N . If we want the system to stabilise

in an a priori chosen fixed point x∗, we will need (5.13) to be satisfied

for such equilibrium state and the roots of P (λ) to have negative real

parts. Following the above guidelines, we aim to stabilise the system by

controlling the polynomial Ñ (λ), in particular by exploiting its dependence

4 While imposing ẋi = 0 we obtain xi(ri−six∗i +
∑
j Aijx

∗
j+αiu

∗) = 0 which admits

multiple solutions. However, if we impose xi 6= 0 ∀i (thus excluding the possibility of

extinctions), we can divide by xi. This leaves us with a linear equation corresponding

to a unique solution given by (5.13).
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on the free parameters β. Whereas the polynomial D̃(λ), analogously to

D(λ) in the previous sections, is fixed by the system constants and by

the chosen fixed point of the dynamics. The idea, again, is to choose the

vector β such that the roots of Ñ (λ) have negative real part. This will

ensure that for a large enough value of ρ, the roots of P are negative, even

in case the roots of D̃(λ) happen to fall in the half-plane corresponding

to positive real part. The other free parameters are represented by the

entries of vector α, which can be determined by (5.13), together with the

concentration of the controller u∗, once the vector β has been assigned.

More in detail, u∗ is obtained by the last equation of (5.13) and substituted

in the other N equations to obtain the N components of α.

At this point all that remains to do is to devise optimal strategies to

find good values for the components of the free parameter vector β.

5.3.1 Strategy 1: single β approach

The first approach is very simple and also allows us to control the system

with a partially local interaction.

Let us observe that by exploiting the fixed point equation (5.13) for u∗

the polynomial Ñ (λ) becomes

Ñ (λ) =

=
∑
k

βk
{∑

i

[
x∗i [adj(G̃− λ1)]ki − ri + six

∗
i −

∑
j

Aijx
∗
j

]
+ x∗k det(G̃− λ1)

}
≡
∑
k

βkÑk(λ)

(5.16)

thus defining a set of N polynomials Ñk(λ) which are independent on

the free parameters β and consequently a priori established. Now, let

us suppose that all the roots of one of these polynomials, e.g. the one

corresponding to the index k = k̄, are completely negative. Then there

exists a simple and convenient choice for the free parameters: βk̄ 6= 0 and

βk = 0 for all k 6= k̄. This solution therefore implies that the controller

species is only affected by one of the species of the original set. Finding

the possible solutions where the controller only interacts with some of the

pre-existing species is one of the goals of this analysis. A local control is

indeed easier to realize than a global one, especially when the system of
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interest consists of a large number of interacting families. In order to make

local also the action of the controller on the other families (not only the

back-action of them on the controller) we should also reduce the number

of non-zero components in vector α. A strategy to accomplish this goal

will be explained at the end of this chapter.

5.3.2 Strategy 2: optimization

The second procedure that we expose allows us to find an optimal solution

for β in the event that the previous approach is not applicable. This will

eventually result in a stabilizability test more than in a real stabilization

strategy. Proceeding in analogy with (5.5), we can write the polynomial

Ñ (λ) as:

Ñ (λ) =

N+1∑
n=1

d̃nλ
n−1 =

N+1∑
n=1

( N∑
l=1

H̃nlβl

)
λn−1 (5.17)

where H̃ is a matrix with components

H̃nl = −
N−n∑
k=0

c̃n+k+1

N∑
i=1

G̃kliq̃i + c̃nx
∗
l (5.18)

where the first term is analogous to equation (C.3) in Appendix, being c̃

the coefficients of the characteristic polynomial for G̃. In this generalised

case it is however not possible to proceed following the previous approach,

i.e imposing the coefficient d̃ in order to have negative roots and then

obtaining β by the inversion of H̃, because this last one, differently from

the matrix H, is not a square matrix and has dimension (N + 1)×N . In

other words, the system d̃n =
∑N
l=1 H̃nlβl with n = 1, ..., N+1 is composed

by N + 1 equations with only N free parameters given by the elements of

β. We can therefore decompose such system in the N -dimensional system

d̃
S

= H̃Sβ

d̃N+1 =

N∑
l=1

H̃N+1,lβl
(5.19)

where H̃S and d̃
S

take the first N rows of respectively H̃ and d̃ and those

are subjected to the linear constraint defined by the last row. Here, we
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exploit a method exposed by Blondel et al. in the article [26] to find the

explicit solutions for root optimization of a polynomial family with one

affine constraint. Let us first assume that Ñ (λ) is monic (d̃N+1 = 1)

without loss of generality, the coefficient multiplying λN can be indeed

reabsorbed in the definition of parameter ρ. Consider the affine family of

monic polynomials

P ≡
{ N∑
n=1

d̃nλ
n−1 + λN

∣∣ N∑
l=1

H̃N+1,lβl − 1 = 0, d̃n ∈ R
}

(5.20)

where the constraint can be reshaped in the form B0 +
∑N
j=1Bj d̃

S
j = 0,

with B0 = −1 and Bj =
∑N
l=1 H̃N+1,l(H̃

S)−1
lj .

The stabilisation problem can be formulated as the problem of finding the

scalars d̃1, ..., d̃N for the polynomial family P such that the roots are as

negative as possible. In detail, let us denote withm(p) = max{Re(λ)|p(λ) =

0, λ ∈ C} the root abscissa of a polynomial p of the family P . The opti-

mization problem

m̄ ≡ inf
p∈P

m(p)

is solved by m̄ = min{z ∈ R|h(i)(−z) = 0 for some i ∈ (0, ..., k−1)}, where

k = max{j : Bj 6= 0} and h(i) is the i-th derivative of the polynomial

h(z) ≡ BNz
N + BN−1

(
N
N−1

)
zN−1 + ... + B1

(
N
1

)
z + B0. In short, with

this method we obtain the minimum value m̄ attainable by the root with

maximum real part. The procedure is consequently successful if and only if

m̄ is negative and in this case we can obtain the coefficients d̃1, ..., d̃N+1 of

the corresponding polynomial p. This method therefore provides a possible

solution for defining polynomial Ñ . However this tipically corresponds to

the case where all the roots coincide and take the real value given by m̄. For

our goal, stability, it is sufficient that the eigenvalues are negative, however

a linearized system characterised by a Jacobian matrix with multiplicity

different from one, implies an early amplification of the signal given by

the non-exponential terms in (1.13) during the transient (before reaching

equilibrium). In a multistable phase space such behaviour can sometimes

bring the system out of the basin of attraction heading towards other

equilibria, so mimicking instability. In order to avoid this inconvenience,

we will use the optimization approach just to assess the possibility of

stabilizing the system given by the sign of m̄, but we will devolve to

different strategies the task of finding the coefficients d̃n, as explained in
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the next sections.

5.3.3 Strategy 3: least squares

Another possible strategy to deal with the problem of N + 1 equations

with N variables is a least squares approximation. The approach consists

of imposing the negative sign to the roots of N by forcing in advance their

positions in the complex plane. This implies to fix the polynomial N and

consequently the coefficients d̃n. The procedure to obtain β is therefore

based on the pseudoinverse of H̃.

The pseudoinverse, or Moore-Penrose inverse, A+ of a matrix A is a gener-

alization of the inverse matrix, which can be computed also for non-square

matrices. It satisfies the criteria:

• AA+A = A

• A+AA+ = A+

• (AA+)∗ = AA+

• (A+A)∗ = A+A.

In our case, we have to deal with the system H̃β = d̃ from which we

should obtain β. Since the system is characterized by N + 1 equations

and N unknown, in general no solution exist. However, the least squares

approach allows us to find a solution for β which minimizes the Euclidean

norm ||H̃β − d̃||2. We can prove that ||H̃β − d̃||2 ≥ ||H̃z − d̃||2 where

z = H̃+d̃. The equality holds for β = βm ≡ H̃+d̃ + (1 − H̃+H̃)w for

any vector w. The family of vectors βm therefore minimizes the above

Euclidean norm and it is the closest we can go to the exact solution. This

implies that if we follow this approach and compute the polynomial N (λ)

by using βm thus obtained, its roots will not exactly correspond to the set

of negative roots previously chosen, but they will be close to them. Since

we focus on the sign of these roots but not on the exact values of them,

this proves sufficient for our goal, provided that that they did not cross

the imaginary axis becoming positive.

Table 5.23 and Fig. 5.6 (left graph) depict a realization of this method

on a subsystem composed by 6 species of the microbiota dataset of the

paper [180]. The desired fixed point is stabilized by means of an external

controller defined by the parameters reported in the table.
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5.3.4 Strategy 4: LASSO regularization

The parameters α and β define the intensity of, respectively, the action of

the controller on the other species of the pool and the back-action of those

on the added node. Ideally, one would like to control the dynamics of the

system by coupling the external control only to a few dynamical variables.

We have already seen, in section 5.3.1, that it is possible to find a stable

system where the free parameter vector β is characterised by a unique

component different from zero. This implies that only one species is af-

fecting the concentration u. It is possible to also reduce the action exerted

by the controller on the pre-existing families, so as to directly control just

one or a few species. This can be done by using the LASSO regularization

that we introduce here after. Such procedure will however require to relax

the constraint on the choice of the fixed point x∗. The system will then

stabilize to an equilibrium where the species concentrations will be slightly

different from the originally desired one.

The LASSO (Least Absolute Shrinkage and Selection Operator) regu-

larization is a process which allows to solve ill-posed problems and was

invented to improve the prediction accuracy and interpretability of re-

gression models [189]. In detail, once the fixed point x∗ that we aim to

stabilize has been chosen there is only one possible choice for the product

α̂ ≡ αu∗, given by the equations (5.13) for the existence of the fixed point.

The relation between x∗ and α̂ is set by

x∗ = −M−1(α̂+ r), (5.21)

where we defined matrix M as Mij = Aij − siδij . However, by allowing

some flexibility on x∗, the set of options on the free parameters is extended

and so the optimal value for α̂, that we call α̂L, can be obtained from

α̂L = argminα̂{||x∗ +M−1(α̂+ r)||22 + λα||α̂||1} (5.22)

where || · ||2 is the square norm defined by ||y||2 =
(∑

i |yi|2
)1/2

and || · ||1
denotes the 1-norm. We are thus looking for a vector α̂L with minimal

norm which minimizes the quantity inside the square norm. The regu-

larization parameter λα has the role of weighting the importance of the

constraint.

This operation returns multiple minimizing solutions for α̂, all of them

corresponding to a different fixed point. In choosing one of these solutions
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the goal is twofold: minimizing the number of non-zero components αi
and at the same time minimizing the proximity of the corresponding fixed

point to the originally chosen one. Indeed, with this method the exact

agreement between α̂ and x∗ is lost, but we obtain a new vector of con-

centrations x∗′ to be stabilized with the new, LASSO-originated, choice

of the free parameters. This latter is given by x∗′ = −M−1(α̂L + r).

Two examples are reported in the second and third column of table (5.23)

and in Fig. 5.6 (b), (c), respectively corresponding to λα = 0.2 and

λα = 0.7, where x∗′ denote the fixed point that we are able to stabi-

lize. In the first case (second column) we gave more importance to the

choice of the fixed point, the stabilized equilibrium is indeed close to the

original fixed point, but the added node needs to have various interactions

with the other nodes. Whereas in the second case (third column) we pre-

ferred to reduce the elements αi and the added node indeed presents only

three interactions, however, as a consequence, the stabilized fixed point is

quite different from the originally desired one (first column).

The redefinition of the fixed point precedes the selection of the remaining

free parameters β and ρ, which can be obtained by making use of one the

methods reported in the previous sections. The controller concentration

and α are subsequently obtained from u∗ = (rN+1 − ρ
∑
j βjx

∗
j )/sN+1∗

and α = α̂/u∗. Moreover, if we choose to obtain β following the procedure

of section 5.3.1 we end up with a really local controller, being it directly

affected by only one of the original species and directly affecting only a

few of them.
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least squares LASSO (λα = 0.2) + single β LASSO (λα = 0.7) + single β

0.22 0.24 1.15

0.94 0.94 0.53

x∗′ 0.48 0.11 0.09

0.54 0.40 1.12

0.22 0.005 0.98

0.096 0.47 2.17

u∗ 0.47 3.27 2.67

-0.19 -0.037 -10−4

0.82 0.075 0

α 3.24 0 0

-0.27 -0.073 -0.079

1.73 0 0

-0.34 -0.040 0

1.66 1 1
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Figure 5.6: Graphic representation of a 6 species interaction network where

an additional node is inserted. The control is performed by following the least

squares method for the graph on the left and the LASSO regularization approach

for the other two, where we used λα = 0.2 for the central one and λα = 0.7 for

the graph on the right. The edges have been colored according to the intensity

of the interactions (which can be positive or negative) and the nodes size is

proportional to the stable fixed point concentration of each species.
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Summing up, we have here proposed and tested a method to control

the dynamics of multispecies systems on a complex graph. The original

system is made up of N interacting populations obeying a set of general

equations, which bear attributes of universality. One additional species,

here referred to as the controller, is inserted and made interact with the

existing constellation of species. By tuning the strength of the couplings

(or equivalently the composition of the inserted controller), we can drive

the system towards a desired equilibrium. The stability of the achieved

solution is enforced by adjusting the parameters that ultimately govern

the rate of change of the controller. Methodologically, we make use of

the root locus method which can be naturally invoked once the control

problem is suitably formulated. The tests that we have performed, both

synthetic and drawn from real life applications, demonstrate the versatility

and robustness of the proposed scheme. This latter therefore configures as

a viable and innovative tool to tackle a large plethora of inter-disciplinary

systems, from life science to man-made applications, that should be stably

driven towards a desired configuration.
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Chapter 6

Random walk and competition

between traps

In this chapter we will devise a further peculiar method to control the way

a set of microscopical agents asymptotically distribute on the different

nodes when they travel a complex network. In many applied situations

we are not concerned about the entire set of nodes and our interest only

focuses on the eventual filling of certain specific vertices of the network

with respect to each other. This is important for instance when we wish

to compare two or more nodes of a graph from the point of view of their

“reachability” in a random walk process. One possibility is to assign to

such vertices the role of target nodes in a searching game among agents

in the network. This will result in a curious way of controlling a mobility

process on complex graphs where we still act on the topology but, instead

of modifying edges and nodes, we change the nature of some nodes and

the role they play within the network.

The game is not far from reality. Indeed, in real world applications,

individual constituents, be they molecules, animals or bits of informa-

tion, stochastically diffusing on the embedding graph should often head

to specific targets, located on selected nodes. A web surfer crawling

on a chain of hyper-linked pages to reach a given topic of interest [55],

a molecule hunting for the deputed reaction site in topologically tortu-

ous nano-reactors [129, 201] or porous media [24], exciton and electron

hole recombination or trapping relevant to photonics and solar-energy sci-

ence [112]; these are all examples that witness the widespread significance

103
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of devising optimized searching schemes for a stochastic walker on complex

geometries assimilated to networks [110,113,118,123,124,127,153,154].

Moreover, in many cases of interest, the asymmetry in traveling the edges

is a fundamental characteristic of the underlying network, which makes

more complicated and intriguing the agent mobility. In our model we will

then consider random walkers hopping from node to node by following

specific imposed directions [64,131].

Even more importantly, multiple target sites might coexist and mutually

interfere with each other, by screening the flux of incoming particles. This

will allow to compare different nodes at the level of strategic nature of their

position. In particular, it will be possible to elaborate on viable strategies

that could yield the most advantageous positioning of a set of target loci

(in terms of their associated capturing ability), given a preexisting popu-

lation of homologous destination sites.

To address this topic, we shall consider the stochastic dynamics of a

walker bound to explore a directed graph, modified with the inclusion

of absorbing traps. As we shall argue, the intransitivity of the examined

process is a key ingredient to the forthcoming analysis. For pedagogical

reasons, we will specialize on a simplified setting where just two traps are

considered, although the analysis will extend straightforwardly to graph

endowed with an arbitrary number of absorbing sinks.

Let us assume a first trap a priori set on a specific node of the host-

ing network and suppose we position a second trap on another random

node. All the agents in the network will conclude their path in one of the

two absorbing sinks. However these last ones will correspond to different

basins of attraction, thus finally gathering different numbers of agents. So,

in general, different choices of the second node will correspond to differ-

ent eventual filling of the first absorbing trap. We then get to the main

questions that we shall answer in this chapter:

is it possible to strategically position the second trap so as to obscure as

much as possible the first, and so limiting its capacity to absorb diffusing

agents? At the same time, can one minimize the risk that the newly

added trap gets in turn weakened by the successive insertion of further

absorbing sinks? Inquiring on the aforementioned items implies addressing

an optimization problem, that we shall solve analytically. As we shall

argue, the sought optimum depends on the topological characteristics of
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the scrutinized network, the relevant mathematical quantities depending

on the eigenfunctions of the associated discrete Laplacian. The theory will

be discussed with reference to a specific family of graphs, which displays

the small world effect [200]. While the optimization problem is trivial

and largely uninteresting on directed regular lattices of connectivity, it is

definitely relevant for system hosted on a disordered graph, with long range

jumps assigned with a prescribed probability of relocation. Surprisingly, a

relatively modest density of long range jumps suffices to yield a meaningful

solution to the optimal problem.

To clarify the potential interest of our conclusions, imagine two com-

petitors that are willing to advertise their own products by flagging them

on a node of a complex asymmetric network, e.g. a page on the web.

The first makes his/her choice and promotes the activity on a specific

site, which therefore configures as an absorbing trap for agents (clients)

unawarely surfing around. Following our recipe, the second investor can

place the second trap on a designated node which (i) limits the number

of visitors that can reach the site flagged by the opponent and (ii) secure

a strategic positioning to reduce the risk of being shaded by other com-

petitors that might join the venture. On a different level, strategies for

optimal integration of multiple reactive sites might have been at play, from

biology to chemistry, to shape the world the way we know it.

As already mentioned, the optimization scheme to which we alluded

above exploits a fundamental property which ultimately stems from having

assumed an asymmetric, hence directed, spatial support. In the context

of game theory this property is termed intransitivity [72]. Non-transitive

games produce at least one loop of preferences: if strategy A is to be

preferred over strategy B, and strategy B outperforms strategy C, then

strategy A is not necessarily preferred over strategy C. This is for instance

the case for the classical rock, paper, scissor game, which is deliberately

constructed to yield a three steps loop. A more subtle implementation of

non transitive game is provided by the so called Penney’s game [165], a

head and tail sequence generating game. The first player bets on a binary

sequence of assigned length, and discloses it to the second player, who

selects in turn another sequence of identical length. A string is produced

by successive tossing of a fair coin, and the player whose sequence ap-

pears first, as consecutive readings of the toss outcomes, wins. Provided

sequences of at least length three are used, and because of the emerging
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intransitivity, the second player statistically wins over the starting player:

for any given sequence of length three (or longer), another sequence can

be always found that has higher probability of occurring first. Mathemat-

ically, the Penney game can be reformulated as a problem of random walk

on a directed network, whose nodes are the different sequences of fixed

length which can be assembled with a binary alphabet. Remarkably, the

non-transitivity relates to the asymmetry of the underlying graph, but the

two concepts are to some extent different, as we shall argue in the following.

As a matter of fact, the analytical treatment proposed here will materi-

alize into a macroscopic indicator to quantify the global intransitivity of

the examined asymmetric graph, enabling one to establish a priori if one

contender can outperform the other or, equivalently, if optimal strategies

can be played.

6.1 Competition between traps on asymmet-

ric regular lattices

Assume a walker to hop randomly on a one-dimensional directed regular

lattice made of N nodes and subject to periodic boundary conditions.

Each node is solely connected to its adjacent nearest neighbors. Denote by

a (resp. b) the probability of jumping towards the right (resp. left). Here,

a and b are positive real numbers chosen to match the condition a+ b ≤ 1.

The stochastic N ×N matrix Π which controls the diffusive process (Πji

being the probability of moving from i to j) is therefore circulant, with

entries specified by Πi−1,i = b, Πi,i = 1 − a − b, Πi+1,i = a in such a

way that
∑
j Πji = 1, ∀i. Notice that in this preliminary example the

edges among connected nodes are symmetric. The asymmetry that makes

the graph directed comes from the probability which controls microscopic

jumps. In the following Section we shall turn to consider graphs that are

topologically asymmetric, namely graphs that present an heterogeneous

distribution of links. In all cases, for the sake of simplicity, we shall refer

to direct or, equivalently, asymmetric networks.

In the continuum limit, assuming that nodes are densely distributed on

the circle, the probability p(x, t) of seeing the walker in a specific spatial

location (identified by the continuum variable x) at time t is governed by:

∂tp(x, t) = −v∂xp(x, t) +D∂2
xp(x, t) (6.1)
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Figure 6.1: A schematic illustration of the diffusion process on an asymmetric

lattice, subject to periodic boundary conditions is provided. The two competing

traps are located on nodes i and j, respectively. The problem can be equivalently

reformulated, by studying the flux of particles inside two adjacent intervals,

composed by n and N −n nodes and constrained to match absorbing boundary

conditions at the edges.

where v = b − a and D = (a + b)/2 respectively denotes the drift ve-

locity and the diffusion constant. In performing the continuum limit we

are implicitly setting both space and time elementary intervals to unit.

Working in this context, and given any fixed pair of nodes, i and j, we

aim at evaluating their relative scores in terms of visits of independent

and mutually transparent random walkers. More specifically, we imagine

i and j to act as fully absorbing traps. Starting from a uniform distribu-

tion (nodes are equally populated at time t = 0), we wish to estimate the

number of paths that take a walker to i (without hitting j) and viceversa.

This analysis translates into a scalar indicator Vij , positive and smaller

than one, if properly normalized, that weights the probability of i to win

over j. Conversely, Vji will measure the probability of j to prevail over i.

Clearly, Vij + Vji = 1, as it follows from the obvious conservation of the

total probability. In the end, a N × N matrix V can be obtained that

quantifies the probability of every node to win against any other selected

competitor site. The diagonal elements of V are arbitrarily set to zero.

To explicitly determine the matrix V , we first position two fully ab-

sorbing traps in respectively nodes i and j. Then, we divide the circle

(regular lattice under periodic boundary conditions) into two distinct do-

mains, as schematically depicted in Fig. 6.1. One domain is constituted
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by the n nodes encountered when circulating from i to j, clockwise. The

ensemble made by the complementary N−n nodes (from j to i, clockwise)

defines the second set. To quantify the asymptotic density of walkers that

fall on each trap, we need to solve the Fokker-Planck equation (6.1), in-

side both domains and subject to absorbing boundary conditions at their

respective edges. More specifically, we will consider the general solution of

the Fokker-Planck equation defined on a one dimensional segment [0, L],

with p(0, t) = p(L, t) = 0. Further, we shall begin by assuming as initial

condition a Dirac delta centered in x0 = αL, with 0 < α < L. Follow-

ing [63] (see Materials and Methods), the sought solution reads:

p(x, t) =
Γ

2L
e
v

2D (x−αL)− v2

4D t (6.2)

where

Γ ≡
[
θ3

(
π

2
(α− x

L
), z(t)

)
− θ3

(
π

2
(α+

x

L
), z(t)

)]
(6.3)

and:

θ3(r, q) ≡ 1 + 2

∞∑
k=1

cos(2rk)qk
2

z(t) ≡ e−π
2Dt
L2 . (6.4)

Here θ3(·, ·) stands for the Jacobi theta function. We are now in a position

to evaluate the probability current J(x, t) = −D∂xp(x, t)+vp(x, t), flowing

to the boundaries, namely J(L, t) e J(0, t). As outlined in Materials and

Methods, one eventually gets:

J→(t) ≡ J(L, t) =
Dπ

2L2
e
v

2DL(1−α)− v2

4D tθ′3

(
π

2
(α+ 1), z(t)

)
(6.5)

J←(t) ≡ −J(0, t) = −Dπ
2L2

e−
v

2DαL−
v2

4D tθ′3

(
π

2
α, z(t)

)
(6.6)

where θ′3(r̃, q) = ∂rθ3(r, q)|r=r̃, and where we have introduced the positive

quantity J→(t) (resp. J←(t)) to denote the current flowing from the right

(resp. left) boundary. The probability that particles get absorbed to either

right ( J→) or left ( J←) boundary is obtained by respectively integrating

J→(t) and J←(t) to yield:

J→(L) =

∫ ∞
0

J→(t)dt =
1− e−αvLD
1− e− vLD

(6.7)
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J←(L) =

∫ ∞
0

J←(t)dt =
e−

αvL
D − e− vLD

1− e− vLD
(6.8)

To estimate the relative performance of the two traps i and j, we have

to generalize the analysis to the case of an initial uniform distribution of

the walkers on the lattice. For this reason, we shall integrate the above

expressions over the allowed interval in α to yield:

V→ =

∫ 1

0

J→dα =
1

1− e− vLD
− D

vL
(6.9)

V← = 1− V→ = 1− 1

1− e− vLD
+
D

vL
. (6.10)

These preliminary relations will be used to assess the relative perfor-

mance of the two traps i and j. We recall that the circular lattice that

defines the spatial background of the model has been split into two dis-

tinct domains: the first formed by the n nodes, visited when going from

i to j, clockwise. The second domain is constituted by the remaining

N − n nodes, encountered when circulating the ring clockwise from j to

i. With reference to the former, V→ stands for the flux of particles that

eventually hits j, while V← refers to the particles that are eventually at-

tracted towards i. For the other domain, the situation is clearly specular.

Hence, the probability Vij that an agent is eventually attracted to node

i instead of node j (i.e. without passing from node j) is the sum of two

terms: V← calculated for L = n and V→ for L = N − n. The first term

should be weighted by a factor n/N to reflect the average over the initial

uniform distribution, while the second needs to be multiplied by a factor

(N − n)/N . In formulae:

Vij =
n

N
V←(n) +

N − n
N
V→(N − n) =

=
n

N
− n

N

1

1− e− v
Dn

+
N − n
N

1

1− e− v
D (N−n)

.
(6.11)

With analogous considerations one gets:

Vji =
n

N
V→(n) +

N − n
N

V←(N − n) =

=
N − n
N

+
n

N

1

1− e− v
Dn
− N − n

N

1

1− e− v
D (N−n)

.
(6.12)
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For v/D ' 0 diffusion prevails over drift: on average, half of the parti-

cles are expected to fall on trap i and the remaining ones to get absorbed

by trap j. This is in turn the limit of a symmetric adjacency matrix for

the investigated stochastic dynamics, that yields Vij = Vji = 1/2. At

variance, for large values of the ratio v/D, the exponential functions in

equations (6.11) and (6.12) can be neglected and one eventually obtains

Vij ' 1− n/N , and, obviously, Vji ' n/N .

The intransitivity ultimately stems from the underlying network asym-

metry, here implemented through unbalanced jumping rates. Although

related, the concepts of asymmetry and intransitivity are however subtly

different. When the adjacency matrix is asymmetric, it is not a priori

guaranteed that, for any selected node i, at least another node j exists

that wins over i. Stated differently, for a generic random walker hopping

on a directed graph, the entries of a given column(s) of matrix V can be in

principle smaller than 1/2. In the following, we are interested in identify-

ing a specific subclass of asymmetric networks, that we shall term globally

intransitive. For these networks, any trap i can be always (statistically)

outperformed, in terms of its ability to absorb, by at least another trap,

positioned on a given node j. To formally classify the asymmetric network

according to this scheme, we introduce an index of global intransitivity, η,

calculated via the following procedure. We select the maximum from each

column of V , and then identify the global minimum among collected val-

ues. This latter quantity is then shifted by −1/2, to yield the index η,

which is therefore bound to the interval [−1/2, 1/2]. If η is positive the

system is globally intransitive, according to the definition evoked above.

Classical measures of networks intransitivity rely on triad census. The

transitivity coefficient of a network, often termed clustering coefficient, is

the ratio of the number of loops of length three and the number of paths

of length two [28]. In other words, the clustering coefficient quantifies

the frequency of loops of length three in the network. The parameter η

returns instead a more general estimate of the intransitivity degree, as it

does require assuming a priori a specific size of underlying loops.

For the case under scrutiny of a regular asymmetric lattice, η → 0,

when the drift is virtually silenced (v/D → 0) and the process approaches

the symmetric limit. Conversely, for v/D 6= 0, η > 0 and it approaches

the limiting value η → 1/2 for v/D → ∞. The process of asymmetric

particles’ hopping on a regular lattice with short ranged connections is
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therefore globally intransitive for any v/D 6= 0.

Since the process is always globally intransitive, a secondly added trap

can always be found that wins over the first, by attracting more walkers.

Is it however possible to position the second competing trap (j) on a node

that reduces as much as possible the risk of being obscured by yet another

trap, the third of the sequence, while still performing better than the

first, (i)? To answer this question, we take advantage of the composite

information stocked inside matrix V . We introduce in fact an additional

indicator, called σij and defined as follows:

σij =

∑
k 6=i Vjk

N − 2
(6.13)

The larger the value of σij the less the average screening on trap j (selected

after trap i), as exerted by an hypothetical third trap, installed in one of

the remaining N − 2 nodes of the network. Notice that, by definition, σij
stays in the interval [0, 1].

Building on the above we are now in a position to define a supervised

strategy for optimizing the selection of trap j, given the pre-defined loca-

tion of trap i and for a random walk process, taking place on a globally

intransitive graph. For fixed i, the key idea is to select j in such a way that

it both maximizes Vij , the factor that quantifies direct competition versus

i, and σij , a measure of competition against the residual bulk. In Fig. 6.2

Vij is plotted versus σij for regular one-dimensional asymmetric lattices,

characterized by increasing values of v/D amount. Different symbols refer

to different choices of v/D. In carrying out the analysis we considered

all possible combination of i and j. As it can be clearly appreciated by

visual inspection, the data align on an almost vertical line, the value of

σij being, for practical purposes, constant. The larger the value of v/D,

the wider is the vertical band. Optimizing the selection of node j, given i,

proves therefore a trivial exercise, when the system is made to diffuse on a

regular directed lattice: the best choice is to select the node j which max-

imizes the Vij score, irrespectively of the corresponding σij . The newly

introduced trap will be manifestly fragile, as concerns the successive intru-

sion of additional traps. As we shall see in the following section, complex

asymmetric networks, that accommodate for directed long-range jumps to

distant sites, yield however a definitely richer scenario and, consequently,

more intriguing optimization protocols.

Before concluding this Section, we remark that, in the limit v/D →∞,
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Figure 6.2: (Vij vs. σij as obtained for regular asymmetric lattices of the type

schematized in Fig. 6.1. Violet squares refer to v/D = 0.01, red diamonds to

v/D = 0.02 and blue circles to v/D = 2. As v/D gets larger the distribution

of points stretches vertically. To favor visualization we have chosen to plot a

subset of the full data point list, for each choice of v/D. Notice the horizontal

scale: the points align almost vertically.

the matrix element Vij ' 1 − n/N . Hence, σij as defined in (6.13) can

be calculated analytically to return σij = (N − 3)/(N − 2)/2 + n/(N −
2)/N , where n refers to the number of sites entrapped in between nodes i

and j, see Fig. 6.1. This latter estimate accurately explains the peculiar

distributions as seen in Fig. 6.2.

6.2 Traps on a directed disordered network

and the optimization problem

We here aim at extending the above analysis to the case of a walker that

is randomly moving on a generic directed network. The entries of the

adjacency matrix are one, if two nodes are mutually connected, or zero

otherwise. Hence, at variance with the case considered above, the asym-

metry of the support is topological, namely related to the distribution of

assigned edges, while the probability of individual jumps is constant and

set to one, without loss of generality. In the following, we shall denote

with Π the stochastic matrix obtained by dividing the columns of the

adjacency matrix by the associated nodes connectivity, Πij = Aij/kj .
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As discussed above, we are interested in resolving the degree of mutual

interference between two distinct traps, respectively located in i and j.

Walkers can reach the absorbing traps, but cannot escape from them. To

accommodate for this effect we replace the i-th and j-th columns of matrix

Π with zeros, except for the diagonal elements which are instead set to

one. The obtained matrix is hereafter referred to as to Π[i,j]. The master

equation that governs the evolution of pk, the probability of detecting a

particle on node k, reads:

ṗk(t) =
∑
l

Π
[i,j]
kl pl(t)−

∑
l

Π
[i,j]
lk pk(t) =

∑
l

L
[i,j]
kl pl(t) (6.14)

where L
[i,j]
kl = Π

[i,j]
kl − δkl is the random walk Laplacian operator modified

for the presence of absorbing traps. Again we implicitly assume discrete

time updates with ∆t = 1. The last equality in (6.14) follows immedi-

ately from the normalization condition
∑
l Π

[i,j]
lk = 1. To solve the linear

problem (6.14) we need to develop the time dependent probability on a

proper basis, which diagonalizes the Laplacian operator. The associated

eigenvalue problem takes the form
∑
l L

[i,j]
kl ψ

(α)
l = λ(α)ψ

(α)
k where λ(α) and

ψ(α) define, respectively, the eigenvalue and its associated, N -dimensional,

eigenvector. It can be proven that two eigenvalues of the discrete Lapla-

cian operator exist which are identically equal to zero and that reflect

the imposed absorbing traps. Importantly, and because of the asymme-

try of the network, all remaining eigenvalues are complex, and bear a

negative real part. The eigenvectors that correspond to null eigenvalues

have a rather simple structure: all their components are zero, except for

the entry identified by the trap index. This latter component is equal

to one. The eigenvectors associated to the Laplacian operators are lin-

early independent, but they do not constitute an orthonormal basis, as

it instead happens when the underlying graph structure is supposed to

be symmetric. To solve the linear equation (6.14) we shall preliminarily

define an appropriate orthonormal basis {u(β)}, expressed in terms of the

original eigenvectors ψ(α) of the Laplacian operator. As we shall see, the

request of dealing with an orthogonal basis is fundamental to carry out

the forthcoming derivation. Mathematically, one can always find a lin-

ear transformation such that u
(β)
k =

∑
α Cαβψ

(α)
k , where C is the N ×N

matrix that specifies the change of basis. This can can be calculated via

a straightforward implementation of the Gram-Schmidt orthogonalization
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algorithm. We can, therefore, set:

pk(t) =
∑
β

p̂β(t)u
(β)
k (6.15)

where p̂β represents the coefficients of the expansion on the introduced

orthonormal basis. Inserting the above ansatz into equation (6.14) and

carrying out the calculation, that we discuss in some detail in the Mate-

rials and Methods Section, one eventually obtains the following explicit

solution:

pk(t) =
∑
l

pl(0)
∑
β

(u
(β)
l )∗

∑
α

Cαβψ
(α)
k eλ

(α)t. (6.16)

The asymptotic solution p∞k that is relevant for our purposes can be readily

obtained, by performing the limit for t→∞ in (6.16), and so yielding:

p∞k =
∑
l

pl(0)
∑
β

(u
(β)
l )∗

[
Ciβψ

(i)
k + Cjβψ

(j)
k

]
(6.17)

where use has been made of the fact that two eigenvalues (those associated

to the traps) are zero and all the other have negative real parts (their

contributions, stored in the exponential, fade away in the large time limit).

In the above equation (·)∗ stands for the complex conjugate. Recall now

that ψ
(i)
k = δik e ψ

(j)
k = δjk, which allow to further simplify equation

(6.17) as:

p∞k =
∑
l

pl(0)
∑
β

(u
(β)
l )∗

[
Ciβδki + Cjβδkj

]
(6.18)

Eventually the walker has to land either on site i or j, where the absorb-

ing sinks are located. The relative ability of i and j to trap stochastically

walking entities is quantified through the following elements of matrix V :

Vij =
∑
l

pl(0)
∑
β

(u
(β)
l )∗Ciβ (6.19)

and

Vji =
∑
k

pl(0)
∑
β

(u
(β)
k )∗Cjβ (6.20)

with pl(0) = 1/N , in the relevant case where the initial condition is as-

sumed to be uniform. Having determined the elements of the matrix V ,
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we are in the position to estimate both the global intransitivity index η

and the parameter σij as defined in the preceding Section. As we will

demonstrate in the following, the optimization problem discussed above

admits a non trivial solution, when the hosting graph is heterogeneous,

and as opposed to the simplified setting where the random walk occurs on

a regular asymmetric lattice. Incidentally, we note that the above relations

provide closed analytical solutions to the family of Penney’s games.

To prove our claim we consider a family of directed graphs generated

via a straightforward procedure which is adapted from the Watts-Strogatz

recipe. Assign the desired number of nodes N and be K their assigned

constant degree (connectivity). We then construct a K-regular ring lat-

tice, by connecting each node to its K nearest neighbors, on one side only.

Then, for every node i, we select all its associated edges and rewire them

with a given probability q ∈ [0, 1]. Rewiring implies replacing the target

node, with one of the other nodes, selected with a uniform probability

from the ensemble of possible destination sites. The rewiring is directed

and the outgoing connectivity is preserved. In Fig. 6.3 we report η as a

function of the connectivity K, for (i) the K-ring lattice, and the corre-

sponding disordered graph obtained by imposing a different probability

of rewiring, respectively (ii) q = 0.02 and (iii) q = 0.2. In all cases the

index η is positive, hence implying that the system is globally intransitive,

a prerequisite condition for the optimization protocol to be applicable.

Moreover η decreases as K is increased and, more importantly, as q gets

larger. The more disordered the graph, the less intransitive the network

appears at the global scale, a reasonable result as rewiring amounts to

breaking the perfect asymmetry of the initial lattice and so enforcing a

macroscopic symmetrization in the topology of the hosting support.

We now turn to consider the optimization process, following the ap-

proach illustrated in the preceding Section. We recall that the idea is to

select the location of the second trap j, after having fixed the first one i,

so as to maximize, at the same time, Vij , the measure of direct competi-

tion versus i, and σij , the quantity that controls the degree of competition

against the remaining N − 2 nodes. The results of analysis are reported

in Fig. 6.4, for two different choices of the parameter q (top and lower

panels, respectively). For a given network realization, we select a generic

node i, which identifies the location of the first trap. The N − 1 symbols

scattered in the plane (σij , Vij) (panels in the left) gauge the performance
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Figure 6.3: The index of global intransitivity η is plotted as a function of the

(outgoing) connectivity K for the case of regular K-ring lattices (circles) and

disordered graphs, with q = 0.01 (squares) and q = 0.1 (triangles), respectively.

In all cases N = 100. The data obtained for the disordered graphs have been

averaged over 100 independent realizations. The errors are the recorded standard

deviations. The insets provide a pictorial illustration of a K-regular lattice (left)

and a disordered network (right)

of the other nodes, imagined as the competitor trap j.

Performing the same analysis for the limiting case q = 0, returns a

distribution that is substantially uninteresting in the perspective of devis-

ing a viable optimization strategy, consistently with the analysis carried

out in the preceding Section (data not shown). For q 6= 0, instead, the

distribution of points gets distorted and progressively elongates along the

bisectrix, as clearly testified by visual inspection of Fig. 6.4. Remarkably,

the more the global intransitivity index η gets reduced, the more the den-

sity points tend to populate the top-right portion of the parameter plane,

which incidentally identifies the region of interest for the optimization

method here addressed. To cast it differently, when the graph becomes

disordered, while still being asymmetric, it is definitely possible to operate

a supervised selection of an absorbing sink j, for any given choice of i, that

outperforms the latter in terms of ability to attract and, still, minimizes
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the risk of being in turn buried by successively added traps. The rightmost

panels of Fig. 6.4 display the density plot obtained upon averaging over

20 independent realizations of the networks, generated with an assigned

rewiring probability q. The trend agrees with the general conclusion il-

lustrated above for a specific choice of i. It is remarkable that a modest

amount of long-range edges suffice to yield a significant optimization sce-

nario.

Before ending this Section, we wish to assess the effectiveness of the

proposed method. With reference to the choice q = 0.02, we place the

second trap in the optimal position, as identified in the top left panel of

Fig. 6.4. We evolved numerically the stochastic dynamics of the system,

starting from a uniform initial distribution, and found that trap j captures

almost 75% of the agents, the remaining ones heading to i. But what is

going to happen when a third trap is introduced into the competition?

Averaging over the N − 2 possible locations of the third trap, we see that

the second trap still has the lion’s share with about 50 % visits out of

the total. Conversely, when the second trap j is assigned to the sub-

optimal position, as highlighted in Fig. 6.4, it is solely invested by 15 % of

the total flux, the remaining amount being directed towards the other two

competing sinks. These results are schematically summarized in the insets

of the top-left panel of Fig. 6.4. For the case q = 0.2, a similar scenario

holds: the optimal trap j scores 85 %, while trap i displays only 15 %.

Inserting the third trap proves mainly at the detriment of the first sink,

the second winning the competition with a final 60 % score. If trap j is

assigned to its sub-optimal configuration, as depicted in Fig. 6.4 (lower-

left panel), the final score is, as expected, very modest, of 15 %. The

histograms inserted in the left-lower panel of Fig. 6.4 summarizes these

results. Finally, we varied j, among those nodes that display similar Vij
entries, for i fixed. Reducing σij is indeed beneficial, as anticipated by our

interpretative scheme.

In this chapter we have specifically considered the stochastic dynamics

of a walker moving on a directed graph, endowed with two absorbing sinks.

Given the network, we imagined the location of the first trap to be assigned

a priori. The position of the second trap is designated so as to obscure as

much as possible the first, upon estimation of a quantitative indicator that

characterizes the degree of pair-interference. At the same time, an opti-

mal location of the second absorbing sink can be determined that allows



118 Random walk and competition between traps

to minimize the average screening due to a newly added (third) trap. Ana-

lytical formulae are derived which implicitly depend on the topology of the

scrutinized network and that enable us to tackle the above optimization

process. For walkers exploring a regular lattice, and subject to a constant

drift, the optimization protocol is largely ineffective: for any given trap i,

a competitor sink j can always be found that absorbs a substantial amount

of incoming flux of walkers, at the detriment of i. The average screening

coming from an hypothetic third trap is however relevant and substantially

independent on the specific location of the assigned trap j. As opposed to

this conclusion, the proposed optimization strategy is definitely significant

when the random walker is made to explore a disordered directed graph,

with long range relocation edges. A modest degree of disorder suffices to

yield an effective optimization scheme, as we demonstrated for a specific

family of asymmetric complex networks of the Watts-Strogatz type. Ex-

plicit formulae are derived which materialize in a new class of indicators

for the topological characteristic of complex random graphs. Interestingly,

and as a side result, we also propose a global measure for the grade of in-

transitivity of a network, which does not require to identify closed loops of

a given size, as customarily done. The analysis here carried out could be

relevant for a large plethora of applications, where multiple reactive sites

are concurrently at play. Smart positioning of fully or partially absorbing

traps might also translate in innovative non-invasive strategies to control,

and consequently shape, the response of a dynamical system bound to

evolve on a complex network-like spatial support.
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Figure 6.4: Top left panel: (Vij vs. σij) for a specific choice of i, and running

j on the remaining N − 1 nodes. Here, q = 0.02. Two different choices of j are

evidenced which correspond to optimal (top-right) and un-optimal (lower-left)

selections, according to the criteria illustrated in the main body of the paper.

The histograms report on the performance of the traps i = 1 and j = 2, when

these are the sole sinks present (red thin bars) and when they are competing

with trap number 3 (blues tick bars). The data are calculated by averaging over

the N − 2 possible locations for the third trap. The lower histogram depicts

the optimal scenario (rightmost red cross). The upper histogram corresponds

to the sub-optimal condition (leftmost red cross). Top right panel: density plot

for (Vij vs. σij), as obtained for a K-ring with q = 0.02, upon averaging over

20 independent realizations and allowing all possible selection for the first trap

i. Lower panels: same as for the top panels, with q = 0.2. Here, N=100. As it

can be clearly appreciated, the distribution of points gets progressively stretched

along the diagonal, making the proposed optimization protocol gradually more

effective for increasing value of the long-ranged distortion q. Notice that a

modest probability of relocation q suffices to yield an interesting optimization,

an intriguing observation which can be ascribed to the peculiarities of small

world networks.
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Chapter 7

Reactive random walk

In the previous chapters we have studied reaction-diffusion systems and

random walk models, especially focusing on the possible equilibria that the

system can reach, and we analyzed their stability. We have then devised

peculiar methods to control such systems in order to modify the above

equilibria by acting on the topology of the underlying network.

In this last chapter before conclusions, we wonder about what might hap-

pen when mixing the ingredients of the previously analyzed models. We

will obtain a novel process for which the equilibrium states are anything

but trivial and by analyzing these we will be able to follow the inverse

process: starting from the naturally obtained equilibrium we will try to

get some hints on the structure of the underlying network.

When dealing with a dynamical system defined on a complex network,

the coupling describes the nature of mobility, i.e. how the microscopical

agents are displaced in time among the different nodes, be they physical

space regions or interacting entities. The kind of coupling consequently

plays a pivotal role in defining the stationary solutions for node filling.

If the process solely involves mobility among nodes, be it described by

random walk or diffusion, without a local reaction term, the asymptotically

stable equilibrium is completely described by the Laplacian eigenvector

corresponding to the maximum eigenvalue, Λ(0) = 0. This last eigenvector

is uniform (i. e. characterized by identical entries for each node) for the

diffusion Laplacian LD and proportional to the nodes degree k for LRW .

We have already seen that for reaction-diffusion systems the uniform state
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is still a solution of the dynamical equations, even if there is no guarantee

that it is stable, indeed the dynamical interplay between diffusion and

reaction modifies the equilibrium conditions with respect to the case of

pure diffusion. The question that we wish to answer in this last chapter

is: what happens if we insert a local reaction term in a random walk

system? We will immediately discover that in general the degree vector k

is no longer a solution for the system. The fixed point should therefore be

found by also taking into account the reaction function and in the following

we will devise a strategy to analytically compute it.

Moreover, let us observe that the degree vector corresponds to a measure

of centrality for networks which allows us to rank the nodes in order of

importance. However when the system is endowed with a reaction the

concept of “importance” is no longer merely related to the connectivity

because also the local part carries some weight. For this reason the new

reactive fixed point can also be thought as a novel measure of centrality. In

studying this innovative dynamical model we will also discover its potential

for uncovering the underlying network topology, so bringing to light the

hidden nodes symmetries and the degree correlations between adjacent

nodes.

7.1 Model

Our model describes the dynamics of reactive random walkers, i.e. random

walkers moving over the links of a complex network and interacting at

its nodes. Let us consider an undirected and unweighted network with N

nodes and K edges, described by a symmetric adjacency matrix A = {aij},
where aij = 1 if nodes i and j are linked, and aij = 0 otherwise. We denote

as xi(t) the occupation density, at time t, of node i, with i = 1, 2, . . . , N ,

so that the state of the entire network at time t is completely described

by the vector x(t) = (x1(t), x2(t), . . . , xN (t)). The occupation density x

shall be normalised as
∑
i xi(t) = 1 ∀t, so that it can be considered as

an occupation probability. The law governing the time evolution of x(t)

takes into account the network topology, i.e. the adjacency matrix A, and

also the specific characteristics of each individual node through a set of

local reaction functions. This is formally expressed by the following N
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Figure 7.1: (a): Examples of possible reaction functions to be used in (7.1):

f(x) = x− x2 in blue, f(x) = x− x10 in red and f(x) = sin(3x) in yellow. (b)

A graph of N = 9 nodes, and (c) the fixed point x∗ obtained when a reactive

random walk model with f(x) = x − x2 and different values of the mobility

parameter µ is implemented on such a graph. The inset represents a zoom

showing the inversion of x∗5 and x∗6 obtained by changing µ.
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equations:

ẋi = (1− µ)f(xi) + µ

N∑
j=1

lRW
ij xj i = 1, ..., N (7.1)

where µ is a tuning parameter, thereon referred to as the mobility param-

eter, which takes values in [0, 1] and enables us to modulate the weight of

two contributions. The first term on the right-hand side of (7.1) accounts

for the local reaction at each node i, and is ruled by a function f(xi) of

the occupation probability xi. For simplicity we assume that the reaction

function f is the same for all nodes. The second term takes into account

the topology of the network and describes the mobility on it by means of

the random walk Laplacian LRW = {lRW
ij }. This Laplacian is defined as:

lRW
ij = πij − δij (7.2)

where Π = {πij} is the transition matrix of a random walk. Entry πji of

matrix Π represents the probability of the random walker to move from

node i to node j (see Appendix A). Notice that
∑
j πji = 1 ∀i. In the

simplest possible case we can assume that the random walk is unbiased.

This means that the probability of leaving node i is equally distributed

among all its adjacent nodes j, so that we can set πji = aij/ki for each j.

Here, we consider instead a more general transition matrix in the form:

πji =
aijk

α
j∑

l ailk
α
l

(7.3)

which describes degree-biased random walks, i.e. random walkers whose

motion also depends on the degree of the node j, and such a dependence

can be tuned by changing the value of the exponent α [77]. Namely, for

α > 0, the walker at node i will preferentially move to neighbours with

high degree while, for α < 0, it will instead prefer low degree neighbours.

Finally, for α = 0, we recover the transition matrix πji = aij/ki of the

standard unbiased random walk.

Summing up, the main ingredients and tuning parameters of the re-

active random walkers model in (7.1) are: the network topology, encoded

in the adjacency matrix A of the underlying mobility graph; the bias pa-

rameter α ∈ R, which allows to explore the graph in different ways; the

local reaction functions ruling the interactions at nodes; and the mobility
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parameter µ ∈ [0, 1] to weight the relative strength of reaction and reloca-

tion. Notice that the model of reactive random walkers we have introduced

recalls metapopulation models [122, 148, 157], for which the occupation

probability of each node of the network wherein the population is allo-

cated is governed by a random walk process, as well as by a local term

accounting for birth and death on each environment. (7.1) are also similar

to those describing reaction-diffusion processes, but where xi(t) represents

the density at node i at time t, and the Laplacian matrix LRW of (7.2)

is replaced by the matrix LDiff = {lDiff
ij } that stems from a purely diffu-

sive process. For similarities and differences between the two definitions

of Laplacian see Appendix A.

Limiting case µ = 0. Let us begin the analysis of the reactive

random walk model by considering its two limits, namely µ = 0 and µ = 1.

In the first limit, the mobility is completely suppressed and the dynamics

of each node is independent of the others. Since we have assumed that

the function f is the same for each node, Eqs. (7.1) reduce to solve the

1-dimensional system ẋ = f(x). In principle the reaction function f can

be freely chosen among all the functions f : R → R. However interesting

cases are found when the variable x(t) is bound to converge towards a

stationary point, x∗, defined by f(x∗) = 0. The function f should then

be chosen among the continuous functions and such that 0 is included in

its image. Moreover, in order to have equilibrium stability, it is necessary

that f is monotonically decreasing in, at least, one of the points where

it vanishes, in order to ensure that there exists (at least) one stable fixed

point x∗. Some possible examples of reaction functions are reported in

Fig. 7.1(a).

Limiting case µ = 1. In the opposite limit, when the mobility

parameter takes its maximum value µ = 1, equations (7.1) describe a pure

random walk process. The stationary distribution x∗ = {x∗1, x∗2, . . . , x∗N}
of the dynamics in this limit is obtained by LRWx∗ = 0, which is equivalent

to Πx∗ = x∗. The Perron-Frobenius [68,166] theorem ensures that, if the

graph is connected and contains at least one odd cycle, the fixed point x∗

always exists and is unique. In the case of degree-biased random walks we

get [77]:

x∗i =
cik

α
i∑

l clk
α
l

with ci =
∑
j

aijk
α
j . (7.4)

Such an expression, for α = 0, reduces to x∗i = ki/2K, meaning that the
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Figure 7.2: Stationary occupation probability of the nodes of graph in (a) is

shown for a reactive random walk as a function of the mobility parameter µ and

of the bias exponent α: node 1 (b), node 2 (c), nodes 3 and 4 (d). The latter two

nodes yield identical patterns (consequently displayed in just one figure), being

symmetric nodes. The same reaction function as in Fig. 7.1 has been chosen.

walker, after a long enough period of time, is found on a node i with a

probability linearly proportional to the node degree ki. In this case the

asymptotic distribution is completely characterized by the degree k of the

graph, with better-connected nodes having a larger probability of being

visited by the walker.

The general expression for the asymptotic distribution at a node i, when

α 6= 0, depends instead not only on the degree ki of node i, but also on the

degrees of the first neighbours of node i, through the coefficient ci, and

such dependence can be tuned by changing the value of the exponent α.

For instance, optimal values of the bias, which depend both on the degree

distribution and on the degree-degree correlations of a network, can be

found to obtain maximal-entropy random walks [36,77,177] or to induce
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the emergence of synchronization [76].

The general case.

The most interesting dynamics of our model emerges at intermediate

values of the mobility parameter µ, when interactions at nodes and random

movements between nodes are entangled. In this case, the walkers move

on the network jumping from node to node, so that the node occupation

probability depends on the network connectivity because of the Laplacian

contribution but, at the same time, it evolves at each node according to

the reaction function. Reaction functions in turn depend on the occu-

pation probability, so that we have different contributions for differently

populated node. This leads to a stationary probability x∗ reflecting the

topology of the graph in a way that is non trivial and worth analysing.

The stationary probability of the model can be obtained, for any value of

µ in [0, 1], by setting ẋi = 0 in (7.1) and solving numerically the following

implicit equations:

x∗i =
∑
j

aij
kj
x∗j +

(1− µ)

µ
f(x∗i ). (7.5)

Notice however that, when µ 6= 1, the state xi(t) of node i in (7.1) is not

constrained between 0 and 1. This is an effect caused by the reaction term,

which behaves as a source term at each node. If we want to interpret the

state of the network as an occupation probability, we need then to further

impose the normalization, for instance we can consider the vector x/
∑
i xi

instead of the vector x.

In the following, we will consider a series of examples so as to get a

first insight on the properties of the stationary distribution x∗ for different

network structures and for different values of the two main tuning parame-

ters of the model, namely the mobility parameter µ and the bias exponent

α.

In Fig. 7.1, as local interaction, we consider the logistic function f(x) =

x − x2 shown in panel (a), and we implement the model on the graph

of N = 9 nodes displayed in panel (b). Panel (c) reports the obtained

values of the components of the normalized fixed point 1∑
i x
∗
i
(x∗1, x

∗
2, ..., x

∗
9)

as functions of the mobility parameter µ, when α is fixed to zero. The

numerical results are in agreement with the expected behaviours in the

two limiting cases µ = 0 and µ = 1. In particular, we get x∗ = k/2K

for µ = 1, and x∗ = 1/N for µ = 0, where 1 denotes an N -dimensional
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Figure 7.3: Reactive random walks on a scale-free network with pk ' k−γ and

γ = 2.2, N = 100 and mean degree 〈k〉 = 3.6, and on a toy graph with only

11 nodes. The four columns represent four different values of the mobility pa-

rameter: µ = 0.1, µ = 0.5, µ = 0.9 and µ = 1, where the size of the nodes is

proportional to the different components of x∗. The reaction function selected

are f(x) = x− x2 for the first network, and f(x) = sin(3x) for the second one.

In the second graph, the same colour has been used for nodes with the same

symmetry, while colour gray has been used for all other (non-symmetric) nodes.

The histograms report the stationary occupation at each node, while the node

degree is indicated on the x axis.
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vector with all entries being identically equal to 1. This means that all

the curves in the figure start from the same point x∗ at µ = 0, while

for µ = 1 we observe four different points x∗. The graph considered has

in fact nodes with four different degrees, namely k = 1, 2, 3 and 4, and

curves corresponding to nodes with same number of links will converge to

the same point x∗ for µ = 1. However, at intermediate values of µ, even

nodes with the same degree can exhibit different values of x∗ (with the

exception of some of them, see Section 7.4 for a discussion on symmetric

nodes) going from their degree class at µ = 1 towards 1/N at µ = 0.

In particular, the various curves of x∗ as a function of µ can cluster in

a different way when heading towards the limit µ = 0. Let us focus for

instance on the behaviour of the node 6 of the graph. Such a node belongs

to the degree-2 class but, following the curve of its stationary state when

it goes from µ = 1 to µ = 0, we notice that it separates from the curves of

the other nodes of its class, approaching the curve of node 5, x∗5, although

the latter node is characterized by a larger degree (k5 = 3). Moreover,

node 6 even overcomes node 5 for small values of µ before both curve

collapse towards the homogeneous solution. The crossing between the two

curves is highlighted in the inset of Fig. 7.1(c).

In the most general case, in our model it is possible to tune both

the local dynamics, by choosing different reaction functions f(x), and the

bias in the random walk, by considering values of the exponent α 6= 0.

An illustrative example is reported in Fig. 7.2 in the case of a smaller

graph with only four nodes. The three coloured panels show the three

different values of the fixed point at the nodes of the network as functions

of the mobility parameter µ and the bias exponent α. Notice that node

3 and 4 have the same symmetry in the graph, so they reach the same

fixed point (see Section 7.4 for a discussion of symmetries). In detail,

while for µ and α equal to zero the four nodes exhibit the same value of

the occupation probability, x∗i = 0.25 ∀i, when we increase the mobility

parameter we observe a non-trivial behaviour of these values, which in

general decrease for low-degree nodes and increase for high-degree nodes.

The effect of introducing a degree-bias in the random walk by turning on

and tuning the bias parameter is instead that the occupation probability

of the most connected nodes (see nodes 2, 3 and 4) is enhanced for positive

and decreased for negative values of α. The opposite happens for the less

connected nodes (node 1).



130 Reactive random walk

Our third and last numerical example is reported in Fig. 7.3. In this

case, we have considered two different topologies, namely a scale-free net-

work with N = 100 nodes (first row panels) and a smaller network with

N = 11 nodes (second row panels). Again, the stationary occupation

probability at the nodes of the graphs is shown for various values of µ.

For both networks, the size of the nodes in the graphs is proportional to

x∗, while the four different columns represent respectively the four values

of the mobility parameter, µ = 0.1, 0.5, 0.9, 1. While all the nodes have

almost equal size for small values of µ, they clearly tend to differenti-

ate when µ increases. Notice that for µ = 1 the node size only reflects

their degree, so that the nodes with the largest sizes are the hubs of the

scale-free network in the first row. For intermediate values of the mobility

parameter (see for instance µ = 0.9), instead the nodes with the largest

occupation probability are those connecting isolated vertices to the rest

of the network, irrespective of their own degree. This is evident for the

second graph in the second and third rows. For this graph, symmetric

nodes are also highlighted in figure (see Section 7.4 for a formal definition

of symmetric nodes) by adopting the same colours for pairs of nodes with

the same symmetry, and reporting in gray nodes not having a symmetric

counterpart.
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7.2 Analytical derivation of the stationary

state

The fixed point x∗ of the reactive random walk model in Eqs. (7.1) is in

general not easy to obtain analytically because of the interplay between

random walk dynamics and local interactions. Approximate techniques

can however be employed in the low-mobility limit µ ' 0, when the local

dynamics is only slightly modified by coupling between network nodes

due to the movement. In this limit, it is possible to derive a perturbative

estimate for x∗: x∗ = s∗1 +
∑∞
n=1 µ

nδx(n), where δx(n) stands for the

n-th correction to the uncoupled case. The first two corrections take the

explicit form:

δx
(1)
i = − s∗

f ′(s∗)

∑
j

lRW
ij (7.6)

and

δx
(2)
i =− (s∗)2

2

f ′′(s∗)

f ′(s∗)3

(∑
j

lRW
ij

)2

− s∗

f ′(s∗)

∑
j

lRW
ij +

+
s∗

f ′(s∗)2

∑
j

lRW
ij

∑
k

lRW
jk =

=δx
(1)
i −

f ′′(s∗)

2f ′(s∗)
(δx

(1)
i )2 − 1

f ′(s∗)

∑
j

lRW
ij δx

(1)
j

(7.7)

where s∗ is the solution for µ = 0, f(s∗) = 0. In Fig. 7.4 we show that

the analytical predictions are in agreement with the numerical solution. In

particular, we consider reactive random walkers with a mobility parameter

µ = 0.1 and a logistic function as local interaction term, and we implement

the model on the graph of collaborations among jazz musicians [74].

If f is a C∞ function, the perturbative terms can be computed for each

order n. In this case the hypothesis of small µ can be relaxed and the ana-

lytical solution for the fixed point can be, in principle, exactly determined.

In such a case, the generic n-th correction can be cast in the form:
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δx
(n)
i =− 1

f ′(s∗)

{
n∑
r=2

f (r)

r!

[
n−r+1∑
m1=1

n−r−m1+2∑
m2=1

n−r−m1−m2+3∑
m3=1

...

...

n−
∑r−2
j=1 mj−1∑

mr−1=1

δx
(m1)
i δx

(m2)
i ...δx

(mr−1)
i δx

(n−
∑r−1
k=1mk)

i

]
−

−
n−1∑
r=2

f (r)

r!

[
n−r∑
m1=1

n−r−m1+1∑
m2=1

n−r−m1−m2+2∑
m3=1

...

n−
∑r−2
j=1 mj−2∑

mr−1=1

δx
(m1)
i

δx
(m2)
i ...δx

(mr−1)
i δx

(n−1−
∑r−1
k=1mk)

i

]
− f ′(s∗)δx(n−1)

i +

+
∑
j

lRW
ij δx

(n−1)
j

}
(7.8)

where f (r) is the r-th derivative computed in s∗.

As expected, at different perturbative orders the local dynamics involves

successive derivatives of f at s∗. In particular, the first correction δx(1) is

only sensitive to the the first derivative, while in δx(2) the second deriva-

tive appears. In general, the n-th correction is characterized by all the

derivatives of f until the n-th one. More interestingly it is worth noticing

that δx
(1)
i contains a term that, when the random walk is unbiased, is

proportional to
∑
j aij/kj , which essentially is a sum over all neighbours

of node i of their inverse degree. This implies that the first correction

to the generic i-th component of the uniform fixed point depends on the

inverse degree of all the nodes of the graph that are adjacent to i. In the

second order correction, we instead find the term
∑
jl aij/kjajl/kl. The

fixed point computed at the second order in µ thus not only depends on

the inverse degree of the nearest neighbours of node i, but also on the

inverse degree of its second-nearest neighbours. By iterating forward this

reasoning, the n-th correction will depend on the n-th nearest neighbours

degrees: the term
∑
j l

RW
ij δx

(n−1)
j in eq. (7.8) takes implicitely into ac-

count all the nodes of the network that can be reached, in at most n time

steps, when starting from node i. Obviously, when n goes to infinity all

the nodes of the network contribute with their inverse degree.
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Figure 7.4: Comparison between analytical predictions (first order in red and

second order in yellow) and numerical results (blue dots). The stationary occu-

pation probability of different nodes (sorted by their degree) is shown for reactive

random walkers with logistic growth f(x) = x−x2 on the graph of collaborations

among jazz musicians [74]. The mobility parameter µ has been set to 0.1.

It is also worth observing that the perturbative calculation can be

readily extended to the general case of biased random walks. To this end

one should consider the more general Laplacian form in the last term of

each correction:
∑
j l

RW
ij δx

(n−1)
j . In this case, the first correction δx

(1)
i is

not solely influenced by first neighbours of node i, but also depends on the

second neighbours, being proportional to kαi
∑
j

aij∑
l aljk

α
l

. Analogously, for

the second correction term, the biased random walks introduces a depen-

dency on the neighbours of all nodes at distance two from each vertex,

and so on. In general, considering a degree bias always has the effect of

moving the set of involved nodes to further proximity level in the network,

as already observed in [77] in the case of non-reactive random walks.

In the next three sections we will explore how the occupation proba-

bility of reactive random walkers can turn useful to define novel measures

of functional centrality for the nodes of a network, to detect network sym-

metries, or to distinguish assortative from disassortative networks.



134 Reactive random walk

1 2 2 2 2 2 3 4 4

nodes (sorted by degree)

0

0.05

0.1

0.15

0.2

0.25

c
e
n
tr

a
lit

y
 m

e
a
s
u
re

s

7
4

6

2 8 9

5

1 3

(a)

nodes (sorted by degree)
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

c
e
n
tr

a
lit

y
 m

e
a
s
u
re

s

(b)

Figure 7.5: Measures of centrality based on Eq. (7.5) and on different choices of

f and α are compared to PRC (red curves) in the case of two networks, the graph

of N = 9 nodes in Fig. 7.1(b) and the graph of N = 198 nodes representing the

jazz musician network [74].

7.3 Measures of functional ranking

Centrality measures allow to rank the nodes according to their location

in the network [117]. Originally employed in social network analysis to

infer the influent actors in a social system, but soon adopted in many

other fields, different centrality measures have been constructed to cap-

ture different aspects which make a node important, from the number and

strength of its connections to its reachability. Commonly used centrality

measures are the eigenvector centrality [68, 166], the α-centrality [29, 30],

the betweenness centrality [65], the closeness centrality [66] and, of course

the simplest one, the degree centrality. This latter corresponds to the

fixed point of our model in the limit µ = 1. In this case, the stationary

occupation probability x∗i is indeeed proportional to the degree of node

i. However, in our model of reactive random walkers, when µ 6= 1, the

stationary state of the model will also depend on the choice of the local dy-

namics, resulting in a plethora of distinct configurations fostering different

roles within the network. In other words, for a fixed value of the mobility

parameter we can interpret our dynamical system as a reaction-dependent

centrality measure. Moreover, we note that the form of Eq. (7.5) on which
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this centrality measure is based, is reminiscent of other existing defini-

tions of centralities such as a generalization of the Bonacich centrality [29]

known as the α-centrality [30], and the PageRank centrality (PRC) [33].

For instance, the PageRank centrality xPR
i of a graph node i is defined as

[34,73,116]:

xPR
i = d

∑
j

aij
kj
xPR
j +

1− d
N

(7.9)

where d ∈ (0, 1) is a parameter usually set equal to 0.85. PRC was orig-

inally proposed as a method to rank the pages of the World Wide Web.

Indeed, it mimics the process of a typical user navigating through the

World Wide Web as a special random walk with “teleportation” on the

corresponding graph. Such a random walker with a probability d performs

local moves on the graph (most of the times a user surfing on the Web

randomly clicks one of the links in the page that is currently being visited),

while with a probability 1−d starts again the process at a node randomly

chosen out of the N nodes of the graph (the surfer starts again from a new

Web site). The latter action, the so-called “teleportation”, is represented

by the term (1 − d)/N in Eq. (7.9). Notice that the value of d = 0.85

is estimated from the average frequency at which surfers recur to their

browser’s bookmark feature. The introduction of the teleportation term

assigns a uniform non-zero weight to each vertex, and it is particularly

useful to avoid pathological cases of nodes with null centrality, in the case

the graph is not connected (or strongly connected if a directed graph). In

some cases, however, the teleportation contribution is not uniform, but

can be designed to gauge an intrinsinc importance of each node. This

implies enforcing a dependence on the generic node index i in the second

term in the right hand side of Eq. (7.9). The advantage of using Eq.

(7.5) instead of Eq. (7.9) as a measure of centrality then consists in the

possibility of freely choosing the reaction term. The adoption of function

f(xi) in Eq. (7.5), assigning a different contribution to each node i that

depends on xi, finds a plausible justification in the fact that the impor-

tance of a node may also depend on other factors, not necessarily directly

linked to the topology of the graph, such as the status or functionality of

the node. In a social network, for instance, this factor could be related

to the age, social status or income of an individual. Moreover, f can be

chosen so as to take into account the time evolution of some features of the

nodes of the network. Let us consider again the problem of ranking Web
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pages. PageRank centrality in Eq. (7.9) can be modified by replacing the

constant teleportation term with a variable contribution, due for instance

to the number of visualizations of each page, which could be suitably de-

scribed by a non-constant term proportional to xi(t), or more generally

by a function f(xi) as in Eq. (7.5).

As a practical example let us come back to examining the graph in

Fig. 7.1(b) and focus again on node 6. According to stardard centrality

measures such a node would not result as a very central one, being in a

peripheral part of the graph and having just two neighbours. However,

one the neighbours is node 7, which is a graph leaf and this makes node

6 its only bridge towards the rest of the graph. This consideration high-

lights the importance of nodes bridging other nodes of the network and,

depending on which characteristics we want to focus on, could be an ex-

tremely useful feature to take into account when devising a measure of

node centrality. Increasing the importance of this class of nodes can be

for instance obtained by an appropriate choice of function f(x) in Eq.

(7.5). This is clearly shown in Fig. 7.5(a), where the rankings of the graph

nodes obtained for different reference reaction functions and also for differ-

ent choices of the mobility and bias parameters are compared. The nodes

are sorted according to their degree, which is explicitly indicated on the

x-axis, while the other reported numbers correspond to node labels as in

Fig. 7.1(b). Node 6, which bridges node 7 to the rest of the graph, appears

to be more sensitive than the others to the changes, with a large variety of

ranking positions, especially if compared to the other nodes with the same

degree. The green and magenta symbols respectively refer to a positive

(α = 1) and a negative (α = −1) bias with f(x) = x − x2 and µ = 0.85.

We observe that it is also possible to reproduce the same trend of the PRC

(red symbols) by again using the logistic function with the same value of

the mobility parameter, but setting the bias to zero (black symbols). A

different reaction is used for the blue curve: f(x) = x− x10 with µ = 0.7

and α = 0.

The same types of functional ranking as in Fig. 7.5(a) have also been

adopted in Fig. 7.5(b) for the nodes of the network of collaborations among

jazz musicians, and the results are reported with the same color code. A

similar general trend appears, with low degree nodes enhanced by a neg-

ative degree bias and vice versa hubs enhanced by a positive bias. In

addition to this, we observe some fluctuations with peaks appearing in the
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different ranking measures, most of them corresponding to nodes bridging

one or more otherwise isolated nodes of the network.

In conclusion, the proposed measure of functional ranking can mimic

other centrality measures, like PRC, in the limit of large µ, where diffusion

is important and it is only slightly modified by the local interactions. In

general, for every value of µ between 0 and 1, our model of reactive random

walkers can be thought as a new way to measure centrality which accounts

for the differences between nodes at a deeper level, with the focus on

different time-varying characteristics of the nodes themselves.

7.4 Detecting network symmetries

Symmetries are ubiquitous in nature, and one of the main reasons by

which humans have been long attempted to describe and model the world

through the tools and the language of mathematics. In complex networks,

despite the fact that symmetric nodes may appear as special cases, they

are surprisingly numerous in real and artificial network structures [175].

In mathematical terms, network symmetries form a group, each ele-

ment of which can be described by a permutation matrix that re-orders

the nodes in a way that leaves the graph unchanged. More precisely, a

graph G with N nodes described by the adjacency matrix A has a symme-

try if there exists a permutation matrix P , i.e. a N ×N matrix with each

row and each column having exactly one entry equal to 1 and all others

0, such that P commutes with A: PA = AP . This is equivalent to say

that PAP−1 = A, namely that PAP−1 performs a relabeling of the nodes

of the original graph which preserves the adjacency matrix A. Therefore,

two nodes of the graph are said symmetric if their swapping preserves the

adjacency relation. This implies that two symmetric nodes are necessar-

ily characterized by the same degree, but also that their neighbours must

have the same degree, so as the neighbours of their neighbours, and so on.

While network symmetries may be easy to spot in small graphs like

those considered in Fig. 7.1 and in Fig. 7.3, this is typically not the case

for large graphs. Different techniques to reveal symmetries in networks

have been developed, both numerical and analytical [150, 164, 175, 206].

As we will show below, reactive random walkers provide another method

to detect symmetric nodes by looking at the value of the stationary occu-

pation probability at different nodes. In fact, while in the case µ = 1 of a
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pure random walk process the fixed point x∗ is solely determined by the

node degrees, when µ 6= 1 the dynamics is governed by the network as a

whole and the value of the stationary occupation probability at a node will

depend of its degree, but also on the properties of the second, third and

so on neighbours. Hence, it is plausible to conclude that only perfectly

symmetric nodes can assume the same asymptotic occupation probability,

and to propose to detect symmetric nodes of a graph by looking at those

having the same value of x∗ for a reactive random walker model with µ 6= 1

on the graph.

An analytical argument in support of this can be obtained from the

perturbative derivation of the stationary state presented in Section 7.2.

In the limit µ ' 0, the expression for the first correction δx
(1)
i to the

uniform stationary state given in Eq. (7.6) contains a term proportional

to
∑
j aij/kj , which indicates the dependence of the stationary state on

the degree of the neighbours of i. Analogously, the degree of the second

nearest neighbours can be found in the second correction δx
(2)
i , while

the degree of the n-th nearest neighbours appears in the n-th correction.

The value of x∗i of a node i will consequently depend on the degrees of

all the nodes in the graph. Since two symmetric nodes share the same

connectivity at each level of neighbourhood, we can then find symmetric

nodes as those with exactly the same value of x∗.

Let us come back to the graphs considered in Figs. 7.1 and 7.3. In

the first example the three nodes labeled as 2, 8 and 9 are symmetric, as

can be seen directly from figure 7.1 (b), given that they share the same

set of neighbours. The existence of such a symmetry is also revealed by

looking at the behaviour of the occupation probability of different nodes

when varying µ: Fig. 7.1(b) shows that the curves corresponding to these

three nodes are indistinguishable. Another remarkable example is reported

in Fig. 7.3, where the graph reported in the second row panels is taken

as reference model to observe the variation in the occupation probability

state for different values of µ. Here, nodes with the same symmetries are

shown with the same colour, while the remaining nodes are in grey, and

correspond to exactly the same value of x, as reported in the third row

panels of the same figure.

A more general argument that extends the results above from µ ' 0

to the general case µ 6= 1 can be obtained by proving that Eqs. (7.1) are

equivariant under a permutation of symmetric nodes [164]. Such equations
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can be rewritten in vectorial notation as:

ẋ = AK−1x− x+ F(x) (7.10)

where K = {kij} is a diagonal matrix whose entries are defined as kij =

kiδij , and the functional F : RN → RN is defined such that the generic

i-th element of the image vector [F(x)]i is equal to f(xi). Our goal is

now to prove that Eq. (7.10) also holds for the permuted vector Px.

Left-multiplying the equation by matrix P we get:

P ẋ = PAK−1x− Px+ PF(x) =

= AK−1Px− Px+ PF(x) (7.11)

where in the last equality we have used the fact that P commutes with

A and, since symmetric nodes have the same degree, it also commutes

with K and consequently with its inverse. Now we observe that the role

of matrix P is to permute symmetric nodes leaving the others unchanged.

The effect of P on a generic vector v ∈ RN is [Pv]i = vĩ where ĩ denotes

the node of the network which is the symmetric twin of i, if it exists,

otherwise ĩ = i. Consequently, when we apply P to F(x) we obtain a

vector whose i-th component is:

[PF(x)]i = [F(x)]̃i = f(xĩ) = f([Px]i) = [F(Px)]i (7.12)

Making use of this result, Eq. (7.11) becomes the equivalent of Eq. (7.10)

evaluated for Px instead of x, which is what we wanted to prove.

7.5 Measuring degree correlations

A distinguishing feature of many real-world networks is the presence of

non-trivial patterns of degree-degree correlations [145, 146, 159]. In the

case of positive degree-degree correlation the network is said to be as-

sortative: this is often the case for social networks, where hubs have a

pronounced tendency to be linked to each other. Conversely, a network

is said disassortative if the correlations are negative and connections be-

tween hubs and poorly connected nodes are favored. Well-known examples

of disassortative networks are the Internet, and biological networks such

as protein-protein interaction networks, where high degree nodes tend to

avoid each other.



140 Reactive random walk

One possible way to reveal the presence of degree-degree correlations in

a network is to compute the average degree of neighbours of nodes of degree

k, and to look at how this quantity depends on the value of k. The average

degree knn,i of the neighbours of node i is defined as knn,i = 1
ki

∑
j aijkj .

To obtain the average degree of neighbours of nodes of degree k, we need

to average the quantity knn,i over all nodes i of degree k. Let us denote

as pk′|k the conditional probability1 that a link from a node of degree k is

connected to a node of degree k′. Now, by expressing the sum over nodes

as a sum over degree classes, the average degree of the nearest neighbours

of nodes with a given degree k can be written as:

〈knn〉k =
∑
k′

k′pk′|k.

The function 〈knn〉k is a good indicator of the presence of degree corre-

lations in a network. In fact, the quantity 〈knn〉k increases with k when

the network has positive degree correlations, it is decreasing when the net-

work has negative correlations, while it is constant and equal to 〈k2〉/〈k〉
for uncorrelated networks.

We will now show that the dynamics of the reactive random walker model

of (7.1) is sensitive to the presence of correlations in the underlying net-

work, and it is therefore possible to detect and measure the assortative or

disassortative nature of a network from the asymptotic node occupation

probability. To this end we need to return to the perturbative approach

to obtain the equilibrium occupation probability discussed in Section 7.2.

As already remarked, a full hierarchy of terms are found to appear as a

byproduct of the calculation, which respectively relate to paths connecting

nodes that are 1, 2, 3, . . . steps away from any selected node. Let us fo-

cus on the first correction to the uniform state, namely the term δx
(1)
i , as

specified in (7.6). Up to the multiplicative node-invariant factor s∗/f ′(s∗),

δx
(1)
i is equal to

∑
j l

RW
ij =

∑
j aij/kj − 1. Therefore, at the first order,

the difference between the equilibrium distribution and the uniform state

1To construct the conditional probabilities pk′|k it is convenient to define a matrix E

such that the entry ekk′ is equal to the number of edges between nodes of degree k and

nodes of degree k′, for k 6= k′, while ekk′ is twice the number of links connecting two

nodes having both degree k. The conditional probability pk′|k can be then expressed as

pk′|k = ekk′/
∑
k′ ekk′ [117]. By definition such a probability satisfies the normalization

condition
∑
k′ pk′|k = 1 ∀k.
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is governed by the quantity:

w
(1)
i ≡

N∑
j=1

aij
kj

= ki〈
1

knn
〉, (7.13)

representing, for a generic node i, the sum of the inverse degrees of all

its neighbours. The quantity w
(1)
i is always non-negative, and gets larger

when many nodes are adjacent to node i (large degree ki, corresponding to

many terms in the sum) and all such nodes display smaller degrees. In the

particular case in which all the nodes connected to i have exactly degree

equal to ki, we get w
(1)
i = 1. When instead, the degree ki of node i is

smaller than the inverse of the mean inverse degree of the nodes adjacent

to i , then we have 0 < w
(1)
i < 1. In the extreme case of low degree nodes

connected to hubs w
(1)
i tends to zero2.

Looking at the whole network, the vector w can be turned into an

effective indicator for the presence of degree-degree correlations that relies

on the harmonic mean of the degrees instead that on the standard mean.

For instance, we can consider the average value of w
(1)
i for all nodes i

of degree ki = k. Such a quantity can be written in terms of the adjacency

matrix of the graph as:

〈w(1)〉k =
1

Nk

N∑
i=1

N∑
j=1

aij
kj
δki,k (7.14)

where Nk =
∑N
i=1 δki,k is the number of nodes of degree k. We can rewrite

the previous equation by making use of the conditional probability pk′|k,

so that the sum over all neighbours j of i becomes a sum over the degrees

k′ of the nodes adjacent to those of degree k. We finally obtain:

〈w(1)〉k = k
∑
k′

1

k′
pk′|k = k〈 1

k′
〉k, (7.15)

where the quantity 〈1/k′〉k denotes the average of the inverse degree of the

first neighbours of nodes of degree k. In absence of degree correlations the

2Using the definition given in section 7.3, the quantity w(1) weights the role of i in

bridging the gap between neighbours. In other words, it gauges how much node i is

important in linking isolated nodes to the main bulk, so keeping the graph connected.

We already mentioned the role of node 6 in the graph of Fig. 7.1(b) and how its

intrinsic relevance stems from the stationary solution x∗ (see Fig. 7.5(a)). The formal

explanation of this phenomenon is indeed due to the presence of the quantity w in the

first term of the perturbative expansion of x∗.
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conditional probability takes the form: pnc
k′|k = k′pk′/〈k〉 [117,145], where

pk is the degree distribution of the network, 〈k〉 is the average degree,

and “nc” stands for no correlations. Hence, in uncorrelated networks the

quantity in (7.15) reduces to:

〈w(1)
nc 〉k =

(
k
∑
k′

1

k′
pnc
k′|k
)

=
k

〈k〉 (7.16)

and is a linearly increasing function of k with slope equal to 1/〈k〉. Such a

function represents the reference case to compare to when evaluating the

quantity 〈w(1)〉k for a given network.

In Fig. 7.6(a) we plot 〈w(1)〉k as a function of k for three synthetic

networks, respectively with positive, negative and no degree correlations.

The uncorrelated network is an Erdős-Rényi random graph with N = 1000

nodes and K = 10000 edges, while the other two have been generated from

the uncorrelated one by using an algorithm that swaps edges according to

the degree of the corresponding nodes [31, 203], to produce respectively

a disassortative graph with correlation coefficient r = −0.94 and an as-

sortative graph with r = 0.93 and [145]. The algorithm preserves not

only the average degree 〈k〉, but also the entire degree distribution, which

is shown in lower-right inset. Consequently, the results for the three net-

works, shown respectively as purple, yellow and red pluses, can be directly

compared to the same analytical prediction 〈w(1)
nc 〉k (straight line), which

is clearly well in agreement with the randomized network. In the disas-

sortative graph we observe that the quantity 〈w(1)〉k is larger than 〈wnc〉k
for degree values k > 〈k〉. This is because the first neighbours of the hubs

are typically poorly connected, i.e. 〈1/k′〉k > 1/〈k〉 when k > 〈k〉. Con-

versely, 〈w(1)〉k is smaller than 〈w(1)
nc 〉k for poorly connected nodes, i.e. for

k < 〈k〉. In the assortative graph, as expected, 〈w〉k ' 1 for most of the

degree classes. Deviations from perfect assortativity only occur at the two

extremes of the degree distribution, i.e. for limit values of the degree: a

sample node with low (high) degree is in fact linked to nodes whose degree

is in average larger (lower) than its own.

In Fig. 7.6(b) and (c) we show the results obtained for two real-world

networks with known mixing patterns, namely the collaboration networks

of astrophysicists [144] and the Internet at the autonomous systems (AS)

level [159]. The first network has N = 17903, an average degree 〈k〉 equal

to 22.2 and is assortative with correlation coefficient r = 0.23, while the

second one has N = 11174, 〈k〉 = 4.3 and is disassortative with r = −0.19.
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A logarithmic scale has been adopted in the two plots, as both networks

exhibit long-tailed degree distributions. The plots show larger fluctuations

that those observed for the artificially generated graphs. The general be-

haviour is however preserved and allows to identify the two different types

of degree-degree correlations. In particular, the inversion of the trend,

which occurs around the mean degree, is clearly preserved. For the assor-

tative network of collaborations in astrophysics 〈w(1)〉 is larger than the

value expected for the uncorrelated case when k < 〈k〉, while it is smaller

that this for almost all the larger values of k. The opposite behaviour is

displayed by the Internet network, which is instead disassortative. A pos-

sible way to detect the sign and, at the same time, to quantify the entity

of the correlations in a network from the study of the quantity 〈w(1)〉k
is to extract the slope of the curve 〈w(1)〉k as a function of k at point

k = 〈k〉, and compare it to the slope of 〈w(1)
nc 〉k vs k for the corresponding

randomized case. For instance, we can evaluate the difference S between

the two slopes multiplied by 〈k〉:

S = 〈k〉 d
dk

(
〈w(1)

nc 〉k − 〈w(1)〉k
)∣∣∣
k=〈k〉

=

= 1− 〈k〉 d
dk

(
k
∑
k′

1

k′
pk′|k

)∣∣∣∣∣
k=〈k〉

(7.17)

that we name slope variation. The multiplying mean degree has the role

of rescaling S, which becomes a quantity of order 1 (instead of 1/〈k〉) and

consequently a comparable measure for networks with different connec-

tivity. Such a quantity has been computed for the networks analysed in

Fig. 7.6. Results are reported in Table 7.1 and compared to the standard

quantities usually adopted, namely the Pearson correlation coefficient r

and the exponent ν governing the behaviour, 〈knn〉k ∼ kν , of the average

degree of first neighbours of nodes of degree k as a function of k. We notice

that positive values of the slope variation S are associated to assortative

networks, while negative slope differences indicate disassortative ones, in

agreement with the standard indicators of degree-degree correlations.

Table 7.1 also reports the values of S obtained in a sample of other

artificial and real-world networks, and shows that the proposed indicator

agrees not only for the sign but also for the order of magnitude with

the standard measures, when evaluated for networks with strong degree-

degree correlations, namely the network of collaboration in Astrophysics,
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Internet AS and Caida, as well as for artificial networks. The exceptional

cases where the value of S results considerably different from r and ν are

those where the degree correlation does not prove to be clearly defined,

corresponding to a significant error ∆ν obtained from the fit of knn(k).

In summary the value of S provides indication on the presence of

degree-degree correlations that are in all similar to r or ν. However, as

the n-th term of the expression of x∗ in Eq. (7.8) takes into account the

degree correlations of a node to those which are n steps away, our indicator

can be easily generalized and employed to detect higher order degree cor-

relations. Let us consider for instance the second term δx
(2)
i of the Taylor

expansion in Eq.(7.7). A second order analogue of w
(1)
i can be defined as

w
(2)
i ≡

∑
jl
aij
kj

ajl
kl

to measure the inverse degree of the second neighbours

of node i. Such a quantity represents a measure of the connectivity of

node i compared to that of nodes which are two steps away from it. The

degree kj present at the denominator mitigates the impact of the number

of nodes adjacent to i, so that the comparison only takes into account ki
and the degree of the second neighbours. Indeed, we have w

(2)
i = 1 when

all the second neighbours l of i have degree kl = ki. As for the case of

w
(1)
i , we can consider the average value of w

(2)
i over all nodes i of degree

ki = k. Writing this as a summation over degree classes, we have:

〈w(2)〉k =
1

Nk

N∑
i=1

w
(2)
i δki,k = k

∑
k′,k′′

1

k′′
pk′|kpk′′|k′ (7.18)

where k′′ represents the degree of second neighbours. It is important to

notice that the above introduced quantity does not measure genuine sec-

ond order degree correlations in a network but rather how the effect of

first order degree correlations reflects on nodes which are at distance of

two steps. The generalization to higher orders follows naturally. Assess-

ing the effectiveness of this latter quantity as compared to other possible

generalization of standard degree correlation measures to higher order [5]

is left as a challenge for future investigations.
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Networks N 〈k〉 r ν ±∆ν S
Synthetic uncorrelated 1000 20 -0.003 -0.02 ± 0.01 -0.01

Synthetic assortative 1000 20 0.93 0.83 ± 0.08 1.02

1000 20 0.71 0.61 ± 0.06 0.83

1000 20 0.50 0.34 ± 0.05 0.59

1000 20 0.30 0.19 ± 0.03 0.36

Synthetic disassortative 1000 20 -0.94 -0.89 ± 0.07 -0.86

1000 20 -0.71 -0.66 ± 0.05 -0.74

1000 20 -0.50 -0.35 ± 0.04 -0.52

1000 20 -0.30 -0.23 ± 0.02 -0.32

Astrophysics collaboration [144] 17903 22.01 0.23 0.22 ± 0.02 0.41

Facebook [120] 4039 43.69 0.11 0.054± 0.051 0.40

Jazz collaboration [74] 198 27.70 0.03 0.11± 0.04 0.46

Email URV [84] 1134 9.61 0.078 0.05 ± 0.03 0.03

C. elegans frontal [104] 453 8.97 0.035 0.062 ± 0.050 0.28

Internet AS [159] 11174 4.19 -0.19 -0.52 ± 0.04 -0.33

Caida [119] 26475 4.03 -0.19 -0.52 ± 0.03 -0.38

US politics books [114] 105 8.42 -0.019 -0.13 ± 0.07 -0.045

US power grid [200] 4941 2.67 0.003 -0.035 ± 0.10 -0.18

Table 7.1: Pearson correlation coefficient r, exponent ν and slope variation S
for different synthetic and real-world networks with N nodes and average degree

〈k〉. The highlighted rows correspond to the three artificial networks analysed

in Fig. 7.6(a).
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Figure 7.6: The quantity 〈w(1)〉k is reported as a function of k for (a) three

synthetic graphs with the same number of nodes and links, and respectively

disassortative (r = −0.94, red pluses), assortative (r = 0.93, yellow pluses)

and uncorrelated (r ∼ 0, purple pluses). The vertical dashed line identifies the

mean degree 〈k〉. The mean degree 〈knn〉k of the nearest neighbours of nodes

of degree k is displayed in the upper-left inset, while the degree distribution pk
is shown in the lower-right inset. Same quantities as in panel (a) for two real

networks: (b) the network of collaborations in astrophysics and (c) Internet AS.

Double-logarithmic scales have been used.
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Complex webs of interactions between individual constituents are every-

where, from the Internet to epidemic spreading, via the molecular pro-

cesses occurring inside a cell. Complex networks prove indeed highly

versatile in describing numerous processes and they represent a powerful

tool to quantitatively address the study of a wide gallery of complicated

phenomena. Nevertheless, network science is a relatively new discipline,

having reached its maximum development in the last twenty years. The

interplay between couplings and the microscopic dynamics taking place on

the various nodes, and how this gives rise to macroscopic complex behav-

iors, represents a fascinating and relatively new field of investigation.

In this thesis different scenarios have been explored, from agents mo-

bility to ecological and reaction-diffusion systems, each chapter reporting

on a different model. Methods have been proposed to unveil the struc-

ture of the network representing the underlying support of the considered

dynamical system, since the topological details are not easy to identify

in large graphs, even if they configure as fundamental ingredients for the

observed behavior. In other chapters we have, instead, successfully made

global or local adjustments to the structure of inter-nodes couplings with

the ambitious and challenging goal of affecting the dynamical equilibria

eventually reached by the system, in order to obtain a priori chosen asymp-

totic states. Modeling the form of the considered systems, i.e. the physical

support represented by network structures, yields strategies to shape the

ensuing dynamics, thus resulting in novel control methods.

Let us summarize the obtained results and outline possible future de-

velopments.

In Chapters 2 and 3 we analyzed the process of pattern formation in

147
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reaction-diffusion systems. We have in particular shown how the spectral

properties of the Laplacian operator affect the dynamical response of the

network. Hence, by properly playing with eigenvalues and eigenvectors

we succeeded in obtaining two important results. The first one involves

network generation. It is indeed possible, in some cases, to identify a

subnetwork or a set of nodes that can be acknowledged as practically ir-

relevant for pattern formation. It is then clear that distinct networks with

differences solely localized on these particular substructures can, under

apt conditions, generate the same irregular patterns. As a remarkable

example of this situation, we have shown that scale-free networks, often

taken as reference model to describe many real systems, can be, for what

concerns reaction-diffusion systems, replaced by graphs characterized by

highly different structures. This result provides a novel scheme for net-

work generation, with a purely functional perspective: instead of building

the specific network structure brick by brick, paying attention to local

characteristics of nodes, the complex graph is globally established and

constrained to yield an a priori chosen dynamical output. The most imme-

diate application and possible future development of this method concerns

neuronal systems; one of the main open questions in neuroscience today

indeed involves structural neuronal network reconstruction starting from

the observable response to specific stimuli.

The second important result obtained from the spectral analysis of

reaction-diffusion systems deals instead with the possibility of dampening

the irregular behavior of the reaction-diffusive system, thus allowing it

to reach a synchronized stable equilibrium, even in regions of parameters

where normally the synchronized solution would result unstable. This

goal is achieved by modifying the Laplacian spectrum so as to drive the

complete set of eigenmodes in the manifold identified as irrelevant for

pattern formation. This work opens up a new perspective in developing

methods to reach consensus. This latter is a useful concept in multi-

agents systems when the ultimate goal is to enforce an agreement among

microscopical entities on certain quantities of interest [125], like in smart

power grids, swarming control, and group decision making.

A similar control technique targeted at stabilizing a predetermined

equilibrium has been applied to ecosystems in Chapter 4, where the num-

ber of nodes reflects the biodiversity of the scrutinized sample [47,81,133]

and each population is customarily identified in terms of its continuous
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density. This latter evolves in time, as dictated by specific self-reaction

stimuli, that generally bear nonlinear contributions. We choose for the

sake of simplicity to operate under the deterministic approximation, by

deliberately neglecting the role played by finite size fluctuations and dis-

regarding spatial variability. In a complex and dynamical environment,

species experience a large plethora of mutual interactions, notably pair-

wise exchanges. Cooperative and competitive interferences are simulta-

neously at play, and shape the ultimate fate of the system as a whole.

The analysis carried out within this operating framework is principally

useful in order to identify the mathematical constraints that have to be

theoretically satisfied by a stable ecosystem. The model suggests that

predator-prey interactions exert a stabilizing effects, in qualitative agree-

ment with the conclusion reached in [6]. Furthermore, it has been found

that a preponderance of weak interactions is beneficial to stability, as sug-

gested by [47].

The above strategy is however of difficult application, qualifying as a

control method that globally involves all the species at play. This is partic-

ularly true when dealing with natural ecosystems. For this reason, another

chapter of the thesis is devoted to the fascinating subject of ecosystems

stability, which many scientists have addressed, from Robert May [133]

on. In Chapter 5 a different control method is devised, that consists in

a local change of the interaction network. This ultimately implies adding

one species (which configures as a further node of the network) to the

pool of interacting families. The additional agent allows for customizing

the eventual equilibrium attained by the system, by means of a properly

engineered interaction either with the complete set or just with some of

the preexisting species. As a future development it would be interesting

to explore how to apply this technique to different systems, such as power

grids, where it is important to identify strategic nodes of the network to

act on, with a local control (and therefore at low cost) in such a way to

stabilize a desired equilibrium.

Searching for strategic nodes within a large sample is crucial for many

applications as e.g. mobility systems, on a physical space like a urban con-

text, or on a virtual domain like the World Wide Web. In Chapter 6, for

instance, we analyzed the case where a set of agents randomly explore a

graph, chasing for specific target sites. These latter configure as absorbing

traps which capture the walkers. This setting becomes interesting when
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multiple sinks are simultaneously present on a given directed network and,

by interfering with each other, they can mutually screen the flux of incom-

ing agents. We have proposed an optimization strategy that results in the

most advantageous positioning of an ensemble made of competing traps,

so as to minimize their reciprocal hindrance and favor cooperation. It has

also been considered that it is sometimes strategically advantageous to

maximize the mutual competition between traps, so that the lastly added

sink prevails over previously existing ones. The obtained results can con-

tribute to explain a large plethora of natural phenomena, as shaped by

the evolutionary pressure and devise novel efficient man-made solutions

to specific technological problems. In the context of urban mobility, for

instance, often roads can be trodden in one direction only, and this implies

dealing with asymmetric edges between nodes. Agents can be assumed to

stochastically diffuse across the embedding graph, even if they are individ-

ually heading towards specific targets nodes. For instance, parking spots,

as well as shops selling a desired item, can act as veritable absorbing traps.

When reaching the sought area, agents abandon the system and no longer

belong to the population of hopping walkers.

On a more refined level of abstraction, traps could be made partially ab-

sorbing, by enhancing at will their relative degree of attractiveness. Play-

ing with this additional variable amounts to studying a more complex

mathematical problem. Interestingly, the hierarchy of traps as dictated

by mere topological considerations can be completely subverted, an obser-

vation which opens up interesting perspectives for cheap decision making

strategies built on existing infrastructures. Moreover, the analysis could

also be extended to the relevant setting where finite volume effects limiting

the capacity of each site, as e.g. competition for space in crowded traffic

condition, can be accounted for.

Finally, the versatility of random walk processes has also been assessed

in Chapter 7, where we have introduced a class of random walkers subject

to node dependent reaction terms. Our model of reactive random walk is

formulated in such a way that the relative contribution of the interaction

term at the nodes and of the relocation term can be tuned at will, and

this improves the sensitivity of the walkers to the structure of the net-

work. In particular, the occupation probability of a given node is shaped

by the non trivial interplay between the connectivity patterns and the lo-

cal interaction functions. This was shown by determining analytically the
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asymptotic occupation probability via a perturbative approach that takes

a purely reactive dynamics as reference point. Exploiting the dependence

of the occupation probabilities on the two tuning parameters of the model,

namely the mobility parameter µ and the bias parameter α, and on the

shape of the local reaction functions, we have shown that reactive random

walkers can turn useful in many different ways. We have first discussed

how, by properly adjusting the reaction contribution, one can emphasize

nodes which bridge otherwise disconnected parts of the network, so that

reactive random walkers can readily lead to generalized definitions of node

centrality measures. Furthermore, with the help of general arguments and

of a series of worked examples we have shown that, by making the ran-

dom walkers reactive and inspecting their associated density distribution,

one can easily detect the symmetries of a network. Finally, the specific

form of the perturbative solution has inspired the introduction of a novel

indicator for the presence, sign and entity of degree-degree correlations,

which, differently from other standard measures, is based on harmonic av-

erages. We have illustrated how reactive random walkers can distinguish

assortative from disassortative networks. The approach can be in principle

generalized so as to include next-to-leading correlations, and this defines

an intriguing avenue for the investigation of higher-correlation in complex

networks, which is left for future work.

As a final comment we emphasize that most of the procedures here

outlined ultimately require determining the eigenvectors of a Laplacian

matrix, with an associated algorithmic cost that scales as N3. For large

networks, this is a computationally demanding task and other subopti-

mal procedures might be devised, which would return approximate solu-

tions to the examined problem. Relevant dynamical information stored

in the stationary distribution can be for instance mathematically accessed

by computing a limited set of eigenvectors, so resulting in principle in

a significant reduction of computationally complexity. Alternatively, one

could build simplified representations of the original network which ex-

ploit, where possible, its modular, community-like, structure. In doing so

one could eventually define a large-scale backbone of the network for the

optimization protocol to be implemented. The degree of imposed coarse

graining, could reflect the available computational resources. Future in-

vestigations will be targeted to shed light onto these possibilities.
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Appendix A

Spectral stabilization:

supplementary details

A.1 Eigenmode randomization for directed

networks

The procedure outlined in chapter 2 requires a special attention when ap-

plied to a system where the spatial support is a directed network. The

main difference lies in the asymmetry of the Laplacian matrix, so that the

eigenvalues and eigenvectors are, in general, complex. In this case, the

unstable eigenmodes can be identified by observing how the eigenvalues

are placed in the complex plane. An instability region, corresponding to

the positive part of the dispersion relation, can be delineated following

the procedure explained in the main text, as represented in Fig. A.1. The

eigenvalues appearing in this region correspond to eigenmodes that com-

pose the unstable manifold, which should be preserved to obtain similar

patterns in a secondly generated network. All the other eigenvalues and

eigenvectors can be modified so as to obtain a new Laplacian matrix. Let

us recall that the eigenvalues Λ(α), due to the fact that the original Lapla-

cian matrix is real, either are real or are complex and come in conjugate

pairs. The same happens for the components of the eigenvectors φ(α).

These characteristics have to be preserved during the randomization in

order to obtain a meaningful spectrum for the new Laplacian.
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Figure A.1: (a): Original (red dots) and modified (blue circles) eigenvalues in

the complex plane, the coloured area corresponds to the instability region. (b):

patterns correlation, corresponding to R2 = 0.95.

Let us first consider the case where the eigenvectors are not modified

during the randomization procedure, i.e. the rotation matrix R = 1.

Following the guidelines provided in [39], we prove hereunder that the

Laplacian entries are kept real also when dealing with a directed network.

Let us bring into evidence the real and imaginary parts of every element

of (2.2.1). It is immediate to see that the imaginary part of LD
′
il reads:

(LD
′
Im)il =

=
∑
j

(D′Im)jj [(ΦRe)ij(Φ
−1
Re)jl − (ΦIm)ij(Φ

−1
Im)jl]+

+
∑
j

(D′Re)jj [(ΦRe)ij(Φ
−1
Im)jl + (ΦIm)ij(Φ

−1
Re)jl].

(A.1)

To match condition (LD
′
Im)il = 0, both terms on the right hand side

of (B.11) should be zero. To prove this fact, let us begin by recalling

that the eigenvalues of a real asymmetric matrix either are real or are

complex and come in conjugate pairs. Consider first the latter case and

label with α and β the generic pair of conjugate eigenvalues. By definition

LDφ(α) = Λ(α)φ(α). Taking the complex conjugate yields LD(φ(α))∗ =

(Λ(α))∗(φ(α))∗ where (·)∗ stands for the complex conjugate and where use

has been made of the condition LD = LD∗. Recalling that (Λ(α))∗ = Λ(β)

we can immediately conclude that (φ(α))∗ is an eigenvector of LD relative
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to the eigenvalue Λ(β) and thus φ(β) = (φ(α))∗. Hence

(ΦRe)iα = (ΦRe)iβ
(ΦIm)iα = −(ΦIm)iβ

(A.2)

for every i and (α, β). Consider now the equation

(φ−1)(α)LD = Λ(α)(φ−1)(α) (A.3)

with (φ−1)(α) α-th row of Φ−1. Proceeding in analogy with the above,

one gets:
(Φ−1

Re)αl = (Φ−1
Re)βl

(Φ−1
Im)αl = −(Φ−1

Im)βl.
(A.4)

Let us go back to (B.11). Performing the summation on j = α and j = β,

using (B.12) and (B.14) and the fact that the corrections D′αα and D′ββ are

complex conjugated as the original eigenvalues Λ(α) and Λ(β) are, we finally

conclude that the terms of the sums in (B.11) cancel in pairs. Consider

now the case of a real eigenvalue Λ(k). Hence, by definition, (D′Im)kk = 0,

since, in this case, the stabilization can be solely achieved by acting on the

real part of the eigenvalue (see next Section). To prove that (LDIm)il = 0

we need therefore to focus on the second term of (B.11), with j = k.

Without loss of generality (up to a constant scaling factor) φ
(k)
Im = 0: the

eigenvector associated to Λ(k) is hence real. The ik entries of matrix Φ

are indeed the elements of φ(k) and, for this reason, (ΦIm)ik = 0 ∀i. To

conclude the reasoning and eventually prove that (LDIm
′
)il = 0, one needs

to show that (ΦRe)ik(Φ−1
Im)kl = 0. This is in fact the case: (φ−1)(k) is the

left eigenvector of matrix LD, relative to the real eigenvalue Λ(k). Rea-

soning as above, one can take (φ−1)(k) to be real and thus (Φ−1
Im)kl = 0.

Then, summing up, (LDIm
′
)il = 0 ∀i, l.

Let us consider now the case where the eigenvectors are modified by

using a rotation matrix. The new eigenvectors φ̃
α

will not, in general,

preserve the complex conjugate couples, which happen to be randomly

rotated in the (N − n)-dimensional space. This ultimately implies that

the imaginary parts do not mutually cancel out and that the entries of a

Laplacian obtained from

∆̃ = Φ̃Λ̃Φ̃−1

would be complex. Let us however observe that cutting away the imagi-

nary part of ∆̃, we obtain a third version of the Laplacian, ∆̂ = Re(∆̃),
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whose eigenmodes can still serve to our aim. In fact, the new eigenvectors

and eigenvalues either are real or complex conjugate and in particular, the

n eigenmodes of the original Laplacian to be left invariant are still pre-

served. This can be proven by observing that the Laplacian ∆̃, even if it

is complex, is built so as to correctly maintain the unstable manifold, and

its imaginary part (which is eliminated in defining ∆̂) only involves the

stable eigenmodes. Therefore, cutting out the imaginary part of ∆̂ trans-

lates into a second randomization of the stable eigenmodes, that does not

affect the unstable manifold where the pattern information is eventually

stored. In order to prove this statement we should consider the imaginary

part of a generic (i, l) Laplacian entry:

(∆̃Im)il =

N∑
α=1

Λ̃αIm[(Φ̃Re)iα(Φ̃−1
Re )αl − (Φ̃Im)iα(Φ̃−1

Im )αl]+

+ Λ̃αRe[(Φ̃Re)iα(Φ̃−1
Im )αl + (Φ̃Im)iα(Φ̃−1

Re )αl]

(A.5)

where Φ̃Re and Φ̃Im are the real and the imaginary part of the eigenvectors.

The sum over α can be separated into two sums: one over α = 1, ..., n,

the other over α′ = n + 1, ..., N , the first containing all the unmodified

eigenmodes, the second the randomized ones. We shall prove that the first

sum is equal to zero. Let us begin by observing that for index α up to n,

the eigenvalues Λ̃ and eigenvectors φ̃ appearing in the sum can be replaced

by the original Λ and φ. Considering a conjugate couple labeled with β

and γ, we have Λ(γ) = (Λ(β))∗, with

(φRe)iγ = (φRe)iβ
(φIm)iγ = −(φIm)iβ

(A.6)

and
(φ−1

Re )γl = (φ−1
Re )βl

(φ−1
Im )γl = −(φ−1

Im )βl.
(A.7)

This implies the cancellation in pairs of the terms corresponding to com-

plex conjugate couples. For what concerns the remaining terms, corre-

sponding to real eigenvalues and eigenvectors, it is clear that all the terms

in (B.11) are automatically zero (remember that φ−1
jl = φlj). This proves

the claim.

The proofs (ii) and (iii) of chapter 2, respectively corresponding to the

zero-stochasticity and symmetry preservation of the Laplacian are trivially
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extended to the directed case without further remarks. We here report

however an important complement concerning the balanced networks. A

balanced network is defined by equal incoming and outgoing connectivity,

kouti = kini ≡ ki, characteristic which is preserved during the randomiza-

tion process, as it is hereunder proven:

If LD is balanced, then also LDc is. The balanced Laplacian is char-

acterized by zero-row-sum 1. It is then sufficient to prove
∑
l L

D ′
il = 0.

First of all, recall that the columns of matrix Φ are the right eigenvectors

of LD, while the rows of Φ−1 are the left eigenvectors, namely:

LDΦ = ΦD

Φ−1LD = DΦ−1 (A.8)

By definition of Laplacian, the uniform vector 1 is the left eigenvector of

LD corresponding to Λ(1) = 0:

1TLD = 0 ⇒
∑
i

LDij = 0. (A.9)

If LD is balanced then also the right eigenvector corresponding to Λ(1) = 0

is equal to 1, hence:

LD1 = 0 ⇒
∑
j

LDij = 0. (A.10)

By controlling the network of connections we modify the eigenvalues of the

Laplacian operator, while preserving the uniform right and left eigenvector

corresponding to 0, thus:

LD
c1 = 0 ⇒ ∑

j(L
D ′)ij = 0

1TLD′ = 0 ⇒ ∑
i(L

D ′)ij = 0
(A.11)

which proves the claim.

In Fig. A.1(a) the eigenvalues of an original random network with N =

100 and 〈k〉 = 10.2 are displayed in the complex plane together with

those of the modified spectrum. The instability region has been drawn

by again using the CGL equation as self-dynamics. Fig. A.1(b) shows

the correlation between time-average modulus patterns obtained from the

original and the network generated from the Laplacian ∆̂.

1The network is balanced if and only if
∑
j L

D
ij = 0. Indeed we have:

∑
j L

D
ij =∑

j Aij − kouti = kini − kouti . So
∑
j L

D
ij = 0 if and only if kini = kouti .
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A.2 Local rewiring: acceptance threshold

The local rewiring method for isodynamic network generation is based on

an iterative scheme. Each move consists of removing or adding a link

between two random nodes and is accepted only if the unstable manifold

is preserved in the new network. The degree of similarity between new

and old eigenmodes is established by means of the error function:

E = NEl + Eq;

where

El =
1

n

n∑
α=1

|Λ̃(α) − Λ(α)|2

and

Eq =
1

n

n∑
α=1

|〈φ̃(α)
,φ(α)〉 − 1|2.

The factor N is used to ensure that both terms in the expression of E are

of the same order. The change is accepted only if the error function E is

smaller than a chosen threshold parameter τ .



Appendix B

Mathematical details on

ecosystem stability

B.1 Couplings in the original system

We shall here briefly discuss the algorithm that we have employed to gen-

erate the initial matrix of interactions A. For each pair i, j (with i and j

running from 1 to N) we draw a random number p from a uniform dis-

tribution in the interval [0, 1]. If p > p0 a link that goes from j to i is

established. Here 0 < p0 < 1 is a free parameter. The strength of the link,

namely the element Aij of matrix A, is assigned as follows: we extract a

random number from a uniform distribution defined in the compact inter-

val [−c0, 1−c0], with c0 > 0, and multiply the selected number by a scalar

amplitude factor a. It is immediate to prove, that increasing c0 makes the

system progressively more unstable. This follows a direct application of

the Gershgorin theorem, mentioned in chapter 4. The relative abundance

of the pairs can be on average computed and shown to be related to the

choices of p0 and c0. The percentage of null entries (no links) of A will

be 1− p0, the percentage of negative entries p0c0, while the percentage of

positive entries is p0(1− c0). Building on this observation, we obtain the

following estimate for f(·,·), the frequencies of occurrence of the different
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Figure B.1: The amount of pairs of the different kinds are shown. Red crosses are

analytically computed after equations (B.2). Blue bars are numerically obtained

following one individual realization of the scheme discussed above for generating

A. Here, N = 100, a = 0.38, p0 = 0.5, c0 = 0.9. The agreement between the

analytic calculation and the numerical implementation is already satisfying (for

just one realization) for N = 100. This observation justifies assuming the ana-

lytic abundances as a reference stand for the controlled matrices of interactions

(of the same dimension N = 100) to be compared with.

classes:

f(0,0) = (1− p0)2 (B.1)

f(0,−) = 2p0(1− p0)c0

f(0,+) = 2p0(1− p0)(1− c0)

f(+,−) = 2p2
0c0(1− c0)

f(+,+) = p2
0(1− c0)2

f(−,−) = p2
0c

2
0.

Each quantity is to be multiplied for a factor (N2 − N)/2 to obtain the

abundances of elements, which are numerically tested in Figure B.1. The

red crosses depicted in the Figures enclosed in chapter 4 refer to (B.2).
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B.2 Extending the analysis to account for a

generalized nonlinear reaction term

The control scheme developed in this paper can also be applied to a more

general reaction model. Assume that the logistic dynamics is replaced by

a generic nonlinear function f(xi, ri):

ẋi = f(xi, ri) + xi
∑
j 6=i

Aijxj (B.2)

where ri identifies an arbitrary set of constant parameters.

The associated fixed point is obtained by solving:

f(xi, ri) + xi
∑
j 6=i

Aijxj = 0. (B.3)

By performing the change of variables yi ≡ xi/x
∗
i and Bij = Aijx

∗
j we

obtain:

ẏi =
1

x∗i
f(yix

∗
i , ri) + yi

∑
j 6=i

Bijyj (B.4)

In the new variables, the fixed point equation takes the form:

1

x∗i
f(x∗i , ri) +

∑
j 6=i

Bij = 0 (B.5)

where use has been made of the condition y∗i = 1.

The local stability analysis requires introducing a modest perturbation vi
around the fixed point y∗i = 1, which amounts to writing yi = 1 + vi. The

inhomogeneous perturbation vi will evolve according to:

v̇i = vi

[
1

x∗i

∂f

∂yi
(yix

∗
i , ri)

∣∣∣∣
yi=1

+
∑
j 6=i

Bij

]
+
∑
j 6=i

Bijvj ≡
∑
j

Cijvj . (B.6)

where the matrix C is defined as

Cij ≡


Bij if i 6= j∑
k 6=iBik + 1

x∗i

∂f
∂yi

(yix
∗
i , ri)

∣∣∣∣
yi=1

if i = j,
(B.7)

and the stability of the fixed point is ultimately controlled by the sign

of the real part of the eigenvalues of C. In analogy with the procedure
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described in chapter 4, we then define D as

Dij ≡
{

Bij if i 6= j
1
x∗i
f(x∗i , ri) if i = j,

(B.8)

which is a zero-row-sum matrix, because of the fixed point condition,∑
j Dij =

∑
j 6=iBij + 1

x∗i
f(x∗i , ri) = 0.

We can then modify the matrix D, which hence transforms into D′, so as

to enforce the desired stability, following the recipe outlined in chapter 4

. The implemented changes can be interpreted as follows:

• for the off-diagonal entries (i 6= j) we impose D′ij = B′ij = A′ijx
∗
j
′

which enables to calculate the elements of the controlled interaction

matrix. As usual, we can decide to freeze the fixed point to its

original value or modify it consistently, while assuming constant the

parameters of the model.

• for the diagonal entries (i = j) we impose D′ii = 1
x∗i
′ f(x∗i

′, r′i) where

r′i is the new vector of parameters of the stabilized system. This

latter can be readily obtained by inverting the above equation (f

needs therefore to be invertible, with respect to r). Notice that, in

general, only a subset of the elements of ri, need to be adjusted. As

remarked above, it is alternatively possible to leave the parameters

ri unchanged, and modify x∗

B.3 The controlled matrixD′ is real and zero-

row-sum as D is

Recall the definition of D′:

D′ = D + Φ(δΛ)Φ−1 ≡D + δD (B.9)

where Φ is the matrix whose columns are the eigenvectors (φ(1), ...,φ(N))

of D. Observe that since D is real and zero-row-sum, it is sufficient for

our purposes to prove that δD exhibits the same properties.

The elements of D′ are real. Consider the generic entries of δD:

(δD)il =
∑
j

ΦijδΛ
(j)(Φ−1)jl. (B.10)
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Isolate the real and imaginary parts of every element in (B.10). It is

immediate to see that, being δΛ(j) real ∀j, the imaginary part of (δD)il
reads:

(δDIm)il =
∑
j

δΛ
(j)
Re[(ΦRe)ij(Φ

−1
Im)jl + (ΦIm)ij(Φ

−1
Re)jl]. (B.11)

To match condition (δDIm)il = 0, the term on the right hand side of

(B.11) should be zero. To prove this, let us first recall that the eigenvalues

of a real matrix are either real or complex and come in conjugate pairs.

Consider a complex eigenvalue Λ(α), by definition Dφ(α) = Λ(α)φ(α).

Taking the complex conjugate yieldsD(φ(α))∗ = (Λ(α))∗(φ(α))∗ where (·)∗
stands for the complex conjugate and where we have used the condition

D = D∗. Let the indexes α and β to be defined by the relation (Λ(α))∗ =

Λ(β). We can immediately conclude that φ(β) = (φ(α))∗. Hence

(ΦRe)iα = (ΦRe)iβ
(ΦIm)iα = −(ΦIm)iβ

(B.12)

for each node index i and every pair (α, β) of complex conjugate eigenval-

ues. Consider now the equation

(φ−1)(α)D = Λ(α)(φ−1)(α) (B.13)

with (φ−1)(α) left eigenvector of D, corresponding to the α-th row of Φ−1.

Proceeding in analogy with the above, one eventually gets:

(Φ−1
Re)αl = (Φ−1

Re)βl
(Φ−1

Im)αl = −(Φ−1
Im)βl.

(B.14)

Return now to (B.11). By performing the summation on j = α and j = β,

using (B.12) and (B.14) and the fact that the corrections δΛ(α) and δΛ(β)

are complex conjugated like the original eigenvalues Λ(α) and Λ(β), we fi-

nally conclude that the terms of the sums in (B.11) cancel in pairs relative

to complex conjugate eigenvalues.

The remaining terms in the summation correspond to real eigenvalues.

Without loss of generality, we can always consider the relative left and

right eigenvectors to be real, up to a constant scaling factor. In detail, if

Λ(γ) ∈ R, (ΦIm)iγ and (Φ−1
Im)γl can always be set equal to zero ∀i, l. This

implies that all the remaining terms in equation (B.11) disappear, one by
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one. Then, summing up, (δDIm)il = 0 ∀i, l.

D′ is a zero-row-sum matrix. Matrix D zero-row-sum. Hence,

the vector 1 (with all entries equal to one) is the right eigenvector of D

corresponding to Λ(1) = 0:∑
j

Dij = 0 ⇐⇒ D1 = 0. (B.15)

Recall that the proposed approach implies a modification of the eigenvalues

of matrixD, while keeping the eigenvectors unchanged. As a consequence,

vector 1 is still solution of the eigenvalue problem. Moreover, the zero

eigenvalue is not responsible for the instability and is therefore preserved

upon application of the control scheme. Hence:

D′1 = 0 ⇐⇒
∑
j

(D′)ij = 0 (B.16)

which proves the claim.

B.4 On the conditions of controllability

As explained in chapter 4, the proposed control method is based on shifting

the eigenvalues of a zero-row-sum matrix in the complex plane by applying

to their values a real and negative correction (which is identically equal to

zero, for the subset of eigenvalues which should be preserved). The goal

of this Appendix is to single out the conditions which allow for the control

procedure to be effectively implemented.

Denote byM the set of indices corresponding to the eigenvalues which

are responsible for the instability and which should be modified by the

controller. Denote by δΛi, i ∈M, the (real) shift imposed to the selected

ensemble of eigenvalues for stabilization. In the sequel, we will assume

that the translation takes the interested eigenvalues to a constant value,

R, smaller than rmin (other strategies can clearly be adopted, consequently

altering the analysis reported below):

(ΛRe)i + δΛi = R < rmin (B.17)
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In choosing the constant R we must ensure that the applicability constraint

(4.11) is satisfied:

s̃i −
∑
j

ΦijδΛjΦ
−1
ji ≥ 0 ∀i (B.18)

Imposing condition (B.17), one gets:

s̃i −R
∑
j∈M

ΦijΦ
−1
ji +

∑
j∈M

Φij(ΛRe)jΦ
−1
ji ≡ ki −R

∑
j∈M

ΦijΦ
−1
ji ≥ 0 ∀i.

(B.19)

where we defined ki = s̃i +
∑
j∈M Φij(ΛRe)jΦ

−1
ji .

If ki−rmin
∑
j∈M ΦijΦ

−1
ji is positive, for each index i ∈ [1, N ], then it is

sufficient to set R = rmin for achieving stabilization. The complementary

situation, in which the above quantity turns out to be negative for some

i, is more intricate, as we shall clarify hereafter.

First, it is convenient to sort the node indices in such a way that for

indices i ∈ [1, n], with n < N , the quantity
∑
j∈M ΦijΦ

−1
ji is positive,

while it takes negative values for the remaining indices of the collection,

i ∈ [n + 1, N ]. Recalling that R is bound to be smaller than rmin, the

following inequalities hold:

ki −R
∑
j∈M

ΦijΦ
−1
ji ≤ ki − rmin

∑
j∈M

ΦijΦ
−1
ji ∀i ∈ [n+ 1, N ] (B.20)

ki −R
∑
j∈M

ΦijΦ
−1
ji ≥ ki − rmin

∑
j∈M

ΦijΦ
−1
ji ∀i ∈ [1, n] (B.21)

where R is chosen so as to make the term on the left hand side positive.

The inequality (B.20) is obviously violated if the expression on the right

hand side is negative for at least one i in the interval [n + 1, N ]. In

this case, the system cannot be controlled, using the recipe here discussed

(which amounts, among the other specificities, to select a constant R). For

what concerns the other inequality (B.21), the righthand term is instead

allowed to be negative. Suppose that this happens for indices i ∈ [1, ñ]

with ñ ≤ n (the indices are imagined to be properly sorted). Then, the

constant R must be smaller than rmin, let us say R = rmin−ε, with ε > 0.

Substituting it into (B.19) we obtain a lower bound for ε:

ε ≥ max
i∈[1,ñ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
. (B.22)
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(a) (b)

Figure B.2: Abundances of different types of couplings between species, as ex-

plained in caption of Figure 4.5. Here the blue bars refer to the system controlled

upon application of the strategy which leaves the fixed point to its original value,

while the parameters s are modified. The Figure in panel (b) reports the cou-

pling abundances after a cut-off of 0.05 has been applied.

Recall again that R is (our choice) constant. Assuming R = rmin − ε,
one could eventually loose the controllability condition for indices i ∈ [n+

1, N ]. The following additional condition needs therefore to be considered:

ki − rmin
∑
j∈M

ΦijΦ
−1
ji + εmin

∑
j∈M

ΦijΦ
−1
ji ≥ 0 (B.23)

thus resulting in an upper bound for ε:

ε ≤ min
i∈[n+1,N ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
. (B.24)

Another necessary condition for controllability is then found by imposing

that the upper bound for ε is larger than the lower bound (both positive):

0 < max
i∈[1,ñ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
≤ min
i∈[n+1,N ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
(B.25)

which coincides with the equations reported in chapter 4.
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(a)

Figure B.3: Distribution of predator-prey interactions: the blue bars and the

blue line refer to one realization of the initial system, as explained in the caption

of Figure 4.6(a). Yellow bars represent the different couplings in matrix A′ as

obtained from controlling the system leaving the fixed point unchanged. In this

case, strong predator-prey links are generated and the distribution of positive

vs. negative weights symmetrized

B.5 Controlling without modifying the fixed

point

The Figures appearing in this Appendix illustrate the results obtained for

the control strategy where the fixed point is kept unchanged while the

inverse carrying capacity vector s is modified together with the weights

of the interaction matrix. Figures B.3 and B.2 represent the analogue of

Figures, respectively 4.5 and 4.6(a), already discussed in chapter 4, which

are obtained with the alternative control strategy.
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Appendix C

Control adding one node:

inside the model and the

controllability

C.1 Genetic network model

We shall here justify the model of genetic regulatory network analyzed in

chapter 5. Consider first a small regulatory network consisting of one gene

(whose activity is labelled x) and one protein (associated to the continuous

concentration y). A positive regulation loop can be modeled as:

ẋ = k1g(y)− γ1x

ẏ = k2x− γ2y

where:

g(y) =
yn

K + yn
. (C.1)

In the following, we will make the choice n = 2 and K = 1. Similarly,

a negative regulation loop can be modeled as:

ẋ = k1(1− g(y))− γ1x

ẏ = k2x− γ2y

169
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As it should be, the concentration of proteins grows with the level of

gene activity. As a first step approximation, and to avoid dealing with two

distinct families of mutually interlinked constituents (genes and proteins),

we can replace y with x in the argument of g(·), via adiabatic elimination

(apart from redefinition of the involved constants). Building on the above

we model the extended regulatory network as:

ẋi = ki
∑
j

Aijg(xj)− γixi + kiηi (C.2)

where xi stands for the activity of gene i. For positive feedbacks between

species i and j, Aij = 1, while, for negative loops Aij = −1. The parameter

ηi stands for the number of negative loops (number of negative entries of

the i-th row of A) that are associated to node i. Finally, to keep the

structure as simple as possible we set ki = 1 for all i. The matrix A

employed in the example reported in chapter 5 has a simple structure and

it has been chosen for purely illustrative purposes: it represents a regular

tree network with branching ratio r = 4.

C.2 On the controllability condition

Observe that the control procedure here discussed requires computing the

vector β. Determining this latter implies inverting a matrix, an operation

that imposes a mathematical constraint that we shall hereafter analyze

more in depth. The matrix to be inverted, as defined in chapter 5, reads:

Hnm = −
N−n∑
k=0

ck+n+1(Gkq)m (C.3)
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where c stands for the coefficients1 of the characteristic polynomial of

G, namely det(G − λI) =
∑N
l=0 cl+1λ

l. The invertibility is ensured if

det(H) 6= 0, in formulae:

det(H) =
N∑
i1=1

· · ·
N∑

iN=1

εi1,...iNH1i1H2i2 . . . HN−1iN−1
HNiN =

=

N∑
i1=1

· · ·
N∑

iN=1

εi1,...iN

[
−
N−1∑
k1=0

ck1+2(Gk1q)i1

][
−
N−2∑
k2=0

ck2+3(Gk2q)i2

]

. . .

[
−

1∑
kN−1=0

ckN−1+N (GkN−1q)iN−1

]
[−cN+1qiN ] 6= 0

(C.5)

where εi1,...iN is the Levi-Civita tensor. This complicated expression can

be heavily simplified. The Levi-Civita symbol is in fact totally antisym-

metric in the permutation of its indices. As a consequence, all the terms

multiplied by εi1,...iN which are symmetric in the permutations, cancel

out. It follows that the terms containing the product of two or more fac-

tors (Gkq) with the same power k are identically equal to zero. The only

terms which survive are those obtained by just retaining the largest possi-

ble value of k in each summation (k1 = N − 1, k2 = N − 2,..., kN−1 = 1).

1

c1 = det(G)

ck =
(−1)k−1

(k − 1)!

N∑
j1...jk−1=1
j1 6=... 6=jk−1

detG(j1j1)(j2j2)...(jk−1jk−1)
for k = 2, . . . , N − 1

cN = (−1)N−1Tr(G)

cN+1 = (−1)N

(C.4)

where with G(j1j1)(j2j2)...(jk−1jk−1)
we identify the minor obtained from matrix G by

removing the j1-th, j2-th,...,jk−1-th rows and columns.
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In formulae:

det(H) = (−1)N
N∑
i1=1

· · ·
N∑

iN=1

εi1,...iN cN+1(GN−1q)i1cN+1(GN−2q)i2 . . .

. . . c1+N (Gq)iN−1
cN+1qiN =

= (−1)N (−1)N
2

N∑
i1=1

· · ·
N∑

iN=1

εi1,...iN (GN−1q)i1(GN−2q)i2 . . .

. . . (Gq)iN−1
qiN .

(C.6)

where use has been made of the fact that cN+1 = (−1)N (see equa-

tion (C.4) in the footnote 1).

Drawing on this preliminary observations it is possible to re-interpret

the above controllability constraint, making contact with standard control

theory. The controllability condition amounts to require that the matrix

C ≡ [q,Gq, ...,GN−1q] =


q1 (Gq)1 (G2q)1 . . . (GN−1q)1

q2 (Gq)2 (G2q)2 . . . (GN−1q)2

...

qN (Gq)N (G2q)N . . . (GN−1q)N


(C.7)

has maximum rank. Here, with the notation (Glq)k we identify the k-

th entry of the vector obtained from the product of the matrix G to the

power of l with vector q. In system theory the matrix C is called the

controllability matrix of the pair (G, q). Since C is a square matrix, the

maximum rank condition is equivalent to require det(C) 6= 0, in formulae:
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det(C) =

N∑
σ1=1

· · ·
N∑

σN=1

εσ1,...,σNCσ11Cσ22 . . . CσN−1N−1CσNN =

=

N∑
σ1=1

· · ·
N∑

σN=1

εσ1,...,σN (G0q)σ1
(G1q)σ2

. . .

. . . (GN−2q)σN−1
(GN−1q)σN =

= (−1)N
N∑

σ1=1

· · ·
N∑

σN=1

εσ1,...,σN (GN−1q)σ1
(GN−2q)σ2

. . .

. . . (Gq)σN−1
(q)σN 6= 0

(C.8)

where use has been made of the definition of C (C.7), namely Cij =

(Gj−1q)i.

Expressions (C.6) and (C.8) are identical (except for the sign) and conse-

quently the two conditions, det(H) 6= 0 e det(C) 6= 0, prove equivalent.

Stated differently, the condition of invertibility of matrix H, obtained as

a self-consistent constraint for the introduced control scheme, coincides

with the standard controllability condition, as known in control theory.

As a final remark we recall (see chapter 5) that our goal is not to arbi-

trarily assign the polynomial N (λ) but rather to locate its roots zk within

the open left-hand plane. In this respect, the necessary and sufficient

system-theoretic condition is the so-called stabilizability of the pair (G, q),

which results from the Popov-Belevitch-Hautus rank condition reported

in [103,205].
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Appendix D

Traps competition:

supplementary details

D.1 Explicit solution of the 1D Fokker-Planck

with two absorbing boundaries

The solution of the Fokker-Planck equation employed in chapter 5 follows

the derivation by [63], that we shortly review in the following. Introduce

the operator F = D∂2
x − v∂x which is defined on DF = {φ(x) | φ(0) =

φ(L) = 0}∩D2 where D2 identifies the set of twice differentiable functions.

If φλ ∈ DF is an eigenfunction of F associated to the eigenvalue λ, then

eλtφλ is a particular solution of the Fokker-Planck equation (6.1). The

operator F can be made Hermitian by defining the scalar product as:

〈φ1|φ2〉 ≡
∫ L

0

e−
v
D xφ∗1(x)φ2(x)dx, (D.1)

We can therefore find a orthonormal basis formed by the eigenfunctions

of F which read:

φk(x) =

√
2

L
e
v

2D x sin
(kπ
L
x
)

(D.2)

The associated eigenvalues are λk = − v2

4D −D(kπL )2.

Hence, by denoting with φ0(x) the initial probability distribution, one can
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cast the solution of the Fokker-Planck equation (6.1) in the explicit form:

p(x, t) =

∞∑
k=1

〈φk|φ0〉φk(x)eλkt. (D.3)

Assuming the initial distribution to be a delta function centered in

x0 = αL (0 < α < 1) yields

〈φk|φ0〉 = 〈φk|δ(x− αL)〉 =

=

√
2

L

∫ L

0

e−
v
D xδ(x− αL)e

v
2D x sin

(
kπ

L
x

)
=

=

√
2

L
e−

v
2D x sin

(
kπ

L
x

) (D.4)

from which equation (6.2) immediately follows.

D.2 The case of a generic network: details

of the calculation.

By inserting ansatz (6.15) in equation (6.14), one gets:∑
β

˙̂pβ(t)u
(β)
k =

∑
l

L
[i,j]
kl

∑
β

p̂β(t)u
(β)
l . (D.5)

To proceed, we make explicit the dependence on the eigenvectors:∑
β

˙̂pβ(t)
∑
α

Cαβψ
(α)
k =

∑
l

L
[i,j]
kl

∑
β

p̂β(t)
∑
α

Cαβψ
(α)
l =

=
∑
β

ρ̂β(t)
∑
α

Cαβλ
(α)ψ

(α)
k

(D.6)

Since ψ(α) are linearly independent, one gets:∑
β

˙̂pβ(t)Cαβ =
∑
β

p̂β(t)Cαβλ
(α). (D.7)

which yields: ∑
β

p̂β(t)Cαβ =
∑
β

p̂β(0)Cαβe
λ(α)t. (D.8)
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Making use of the above relations, we obtain:

pk(t) =
∑
β

p̂β(t)
∑
α

Cαβψ
(α)
k =

=
∑
α

ψ
(α)
k

∑
β

p̂β(0)Cαβe
λ(α)t.

(D.9)

The only quantity that we have to determine is p̂β(0), that we wish to

express as a function of the initial condition pk(0). To this end, we make

use of the inverse of (6.15):

p̂β(t) =
∑
l

pl(t)(u
(β)
l )∗, (D.10)

that, introduced into equation (D.9), results in the general solution re-

ported in chapter 5. Finally, let us verify that equation (D.10) is indeed

the inverse of (6.15). In formulae:

pk(t) =
∑
β

p̂β(t)u
(β)
k =

∑
β

∑
l

pl(t)(u
(β)
l )∗u

(β)
k

=
∑
l

pl(t)δkl = pk(t)

where use has been made of the condition
∑
β(u

(β)
l )∗u

(β)
k = δkl. It is hence

clear the importance of dealing with an orthonormal basis in order to carry

out the calculation.
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Appendix E

Publications

This research activity has led to several publications in international jour-

nals. These are summarized below.1

International Journals

1. G. Cencetti, F. Bagnoli, F. Di Patti, D. Fanelli. “The second will be first:

competition on directed networks”, Scientific Reports, 6, 27116, 2015.

2. G. Cencetti,F. Bagnoli, G. Battistelli, L. Chisci, F. Di Patti, D. Fanelli.

“Topological stabilization for synchronized dynamics on networks”, Eur.

Phys. J. B, 90, 9, 2017.

3. G. Cencetti, F. Bagnoli, G. Battistelli, L. Chisci, D. Fanelli. “Control

of multidimensional systems on complex network”, Plos One, 12, 9, 2017.

4. G. Cencetti, F. Bagnoli, G. Battistelli, L. Chisci, D. Fanelli. “Spectral

control for ecological stability”, Eur. Phys. J. B, 91, 264, 2018.

Submitted

1. G. Cencetti, P. Clusella, D. Fanelli. “Pattern invariance for reaction-

diffusion systems on complex networks”, Scientifc Reports, 2018. (Ac-

cepted after major revision)

2. G. Cencetti, F. Battiston, D. Fanelli, V. Latora. “Reactive random

walkers on complex networks”, Phys. Rev. E, 2018. (Accepted after minor

revision)

1The author’s bibliometric indices are the following: H -index = 2, total number of

citations = 23 (source: Google Scholar on Month 10, 2018).
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[96] I. Iacopini, S. Milojević, and V. Latora, “Network dynamics of innovation

processes,” Physical Review Letters, vol. 120, no. 4, p. 048301, 2018.

[97] F. Iannelli, A. Koher, D. Brockmann, P. Hövel, and I. M. Sokolov, “Ef-

fective distances for epidemics spreading on complex networks,” Physical

Review E, vol. 95, no. 1, p. 012313, 2017.

[98] F. J. Isaacs, J. Hasty, C. R. Cantor, and J. J. Collins, “Prediction and

measurement of an autoregulatory genetic module,” Proceedings of the

National Academy of Sciences, vol. 100, no. 13, pp. 7714–7719, 2003.

[99] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The

large-scale organization of metabolic networks,” Nature, vol. 407, no. 6804,

p. 651, 2000.

[100] K. A. Johnson and R. S. Goody, “The original michaelis constant: trans-

lation of the 1913 michaelis–menten paper,” Biochemistry, vol. 50, no. 39,

pp. 8264–8269, 2011.
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