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1.1 Preface and objectives 

 

Nanomedicine is a recently developed field of nanotechnology which uses nanosized 

tools and molecular knowledge of human body to diagnose, treat, and prevent diseases 

and traumatic injuries. Five main disciplines of nanomedicine have been defined by the 

European Science Foundation: analytical tools, nanoimaging, nanomaterials and 

nanodevices, clinical and toxicological issues, and drug delivery systems.1 The main 

subject of this PhD thesis belongs to the last discipline of nanomedicine. In this work, 

the design, synthesis characterization and biological study of a Multimodal Drug 

Delivery System (DDS) will be described. As it will be shown in the introduction chapter, 

even if limited to carbon nanotubes, nanomedical devices are able to increase the 

efficacy of drugs, improving their bioavailability, pharmacokinetics and delivery. 

Furthermore, the use of devices with active targeting moieties avoids the insurgence 

of side effects when using drugs with a general cytotoxicity. A properly designed 

nanocarrier can circulate in the blood stream for a longer period, compared to small 

molecules, and deliver the active compound directly in the site of interest. A fine tuning 

of the functionalization chemistry can provide the required stability during the 

biodistribution process, while a rapid release can take place once the system reaches 

the target. 

The project of this PhD thesis mainly concerns the design and synthesis of a DDS, based 

on short oxidized multiwalled carbon nanotubes, as a device suitable for cancer 

treatment. A multimodal approach was chosen, targeting both metabolism and 

proliferation of tumor cells with two different drugs, in such a way to address cells of 

different sub-populations of the tumor: proliferative and staminal cancer cells (stem 

cells). 

The synthetic approach, exploiting the chemical flexibility of carbon nanotubes, was 

planned in a way to decorate the delivery system with the highest quantities of two 
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different drugs, and a targeting component, a small molecule reported to increase 

tumor uptake. Then, with minor changes to the synthetic protocol, the system was 

modified to study the pharmacokinetic in tumor bearing mice models (Figure 1). 

 

 

Figure 1. Structure of the designed DDS for the biologycal studies. 

 

The biological properties of these systems were studied thanks to the collaborations 

with the Department of Clinical and Experimental Biomedical Sciences, which carried 

out in vitro studies, and with the University of Texas MD Anderson Cancer Centre which 

hosted me for the radio-labeling of the DDS and their in vivo studies. 

The main goals of this project are listed below: 

- Development of a synthetic strategy for the decoration of ox-MWCNTs exploiting both 

covalent and supramolecular approaches. 

- Development of a protocol for the characterization of the synthesized adducts. 

- Investigation of the biological properties of the prepared materials in vitro. 

- Development of a protocol for the radiolabeling of CNTs using radiometals. 
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- Evaluation of the pharmacokinetics, the efficacy, and the target engagement of the 

DDS in vivo. 

To complete this main project, it was necessary to test the feasibility of different 

synthetic approaches, to prepare different classes of intermediates, to synthesize 

different fluorescent probes and to optimize new functionalization procedures. For this 

reason, three minor satellite projects were also developed (described briefly at the end 

of the main project): 1) preparation of new BODIPY fluorescent probes and their 

assembly into flexible and rigid dyads, and study of their physicochemical properties; 

2) decoration of carbon nanotubes using nitroacetamide derivatives of sugars; 3) 

functionalization of CNT with phosphorus-containing moieties for the preparation of 

heterogeneous organic catalysts. 

The first project, developed in collaboration with Prof. Paolo Foggi (UniPg and LENS), 

concerned the synthesis of different BODIPY fluorescent probes that were linked to 

flexible or rigid scaffolds. The energy transfer processes between the two fluorescent 

probes are modulated by the nature of the scaffold as was demonstrated by time-

resolved spectroscopic techniques. (Figure 2, A) 

The second project, developed in collaboration with Prof. Cristina Nativi, concerned the 

preparation of CNT derivatives characterized by the presence of sugar moieties that 

could act as mimetic of a tumor associated carbohydrate antigens (TACAS). The critical 

decoration of CNT was performed using the Machetti-De Sarlo reaction, involving the 

copper catalyzed nitroacetamide cycloaddition reaction to CNT. This was an excellent 

tool for tuning the reaction conditions that were also used for the decoration of the 

DDS with a radioactive label in the main project (Figure 2, B) 

The third project was developed in collaboration with prof. Michal Pietrusiewicz 

(University of Lublin, Poland) and concerned the decoration of CNT using different 

phosphinoxide derivatives characterized by the presence of an amino or azido group. 

The derivatives were used in different organocatalyzed reactions (Figure 2, C). 
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Figure 2. Structure of the products synthesized for side projects. 

  

A 

B 
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1.2 Introduction 

 

1.2.1 Carbon nanotubes (CNTs) 

Carbon Nanotubes (CNTs) since their discovery, in 1991 by Ijima,2 have attracted the 

interest of the scientific community thanks to their chemical and physical properties.3,4 

CNTs are one of the allotropic forms of carbon, like graphite, diamond and other form 

of nanostructured carbon as fullerenes and nanoonions (Figure 3). CNTs are composed 

by only sp2 hybridized carbons forming a network of fused benzene ring in a rolled 

“chicken wire” shape. Depending on the number of graphene layers that form their 

walls, they can be called single-walled (SWCNT), double-walled (DWCNT) and multi-

walled carbon nanotubes (MWCNT). All of them have a high aspect ratio (generally 

higher than 1000) and their structure makes them suitable for a wide variety of 

applications ranging from electronics to biomedical.3,5 

 

      

Figure 3.  Different allotropic forms of carbon: top on the left MWCNTs, top on the right SWCNTs, 
bottom on the left fullerene C60 and on the right carbon nanoonion. 
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The main unique properties of this class of nanoparticles are listed below. 

I. The high surface area and the hollow structure make CNT suitable for drug 

loading, but also as nano-adsorbents for the scavenging of metallic ions and 

organic compounds from aqueous solutions. 

II. The ease functionalization of CNT allows their modification and tailoring for 

several different applications.6–9 

III. The excellent conductive profile offers a unique platform for the development 

of sensors and biosensors10 as well as a large number of applications in 

electronic devices. 

IV. Their mechanical strength has promoted them as reinforcement additives in 

polymeric matrix, or in biology as surface for cell adhesion, proliferation and 

differentiation.11,12 

The high appeal of these materials had boosted the efforts of the industries to develop 

mass production techniques. Up to date, the most promising and investigated 

procedure is the chemical vapor deposition (CVD): this technique involves the pyrolysis 

of hydrocarbons, or other carbon feedstock, carried out in a stream of inert gas into a 

chamber with a metal catalyst (Ni, Fe and Co). The basic structure of CNT (e.g., 

diameter, length, and alignment) can be controlled effectively by controlling the several 

different parameters that influence this transformation: temperature, gas pressure, 

presence of inert gases. MWCNTs with diameters of 40–60 nm were prepared by the 

catalytic decomposition of methane at 680 °C for 120 min, using nickel oxide–silica 

binary aerogels as catalyst. The diameter of synthesized CNTs was found to be 

dependent on the temperature; as the temperature increased, the diameter also 

increased. The synthesis of SWCNTs was generally optimized under high temperature 

conditions around 900 °C, while that of MWNTs was optimized under low temperature 

conditions at around 650 °C. 13 
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Care should be taken for the removal of metal catalyst impurities for any method 

employed to synthesize CNTs, because metals may affect the electro-catalytic 

properties of the CNTs.  

Pristine materials present a high hydrophobicity and a poor dispersibility in water and 

other common organic solvent,5 and these characteristics limit their application. 

Therefore, functionalization plays an important role in providing materials suitable for 

widespread applications, and also helps in removing any residue of metallic catalyst. 

 

1.2.2 Functionalization of carbon nanotubes: covalent and supramolecular approach 

The importance of functionalization initially arises from the need to improve CNT 

solubility in water and common organic solvents. From the discovery of this class of 

carbon nanostructured materials (CNM) a huge effort has been taken by chemists to 

provide different tools for surface modification. The decoration of CNT is based on two 

different approaches: a) the covalent approach in which new C-C bonds are formed 

between the sidewall and other molecules; b) the non-covalent approach, based on the 

formation of supramolecular complexes exploiting weak interactions. The covalent 

approach is based on the reactivity of sp2 carbons. Such reactivity is quite impressive if 

we consider the stability of the benzene ring itself. Even if CNT seems to be composed 

by fused benzene rings, there are several factors which contribute to increase their 

reactivity: 1) the closed curved surface cause the misalignment of pz orbitals, reducing 

the stabilization of the delocalized π system; 2) the curved surface causes a 

pyramidalization of the sp2 carbon atoms and induces an internal strain which partially 

destabilizes the system. The influence of these contributes depends on the diameter of 

the tubes. As a result, thin nanotubes are more reactive than large tubes. Analogously 

to olefins, CNT undergo addition and cycloaddition reactions, and both these classes of 

reactions have been exploited to introduce new functionalities on the materials.3,14 

Other possibilities for the functionalization are offered from the oxidation of CNT. By 
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treating the material with a mixture of sulfuric and nitric acid (4:1 or 3:1), under heating 

or sonication, a deep modification of the material is obtained. The treatment not only 

introduces oxygenated functionalities, like hydroxy and carboxy groups, but also causes 

the opening, the curtail of the tubes, moreover removing all the residues of metal 

catalysts and amorphous carbon. The obtained material is highly dispersible in water 

and polar solvents, the length and the diameter are shorter than the pristine 

nanotubes. The introduction of carboxylic groups opens the access for further 

functionalization exploiting classical chemistry techniques.14 However, a covalent 

modification of the CNT, altering the -system, alters the electronic properties of the 

material and must be taken in consideration in the case the foreseen application 

depends onto these characteristics. 

On the other hand, the supramolecular decoration does not compromise the electronic 

properties of the material. This approach uses the hydrophobic or π-π stacking 

interaction with the sidewall of the tubes. Pyrene derivatives carrying charged groups 

(usually ammonium, but also sulfate) have been used to disperse pristine CNT in water. 

Pyrene derivatives were also used to disperse CNT in organic solvents using proper 

substituents.14 The most interesting application of a non-covalent interaction was 

developed by the Tromp group.15 They reported the diameter-selective separation of 

CNTs using a pentacene Diels-Alder alkylated adduct able to suspend CNTs in solvents 

in which they would otherwise be insoluble. Examples of decoration of CNTs, using 

hydrophobic interactions with molecules that act as surfactant to disperse pristine CNT 

in water, are also abundant in the literature.14 

 

1.2.3 Characterization of CNT-based materials 

Characterization of any new substance is fundamental to understand the 

experimentally observed properties. In organic chemistry all new synthesized 

substances must be supported by a robust characterization before being accepted by 
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the scientific community. The role of characterization is to prove the effective structure 

and composition of the new substances and different techniques are useful to obtain 

this goal: proton and carbon (eventually also heteroatom) NMR spectroscopy, mass 

spectrometry, FT-IR spectroscopy, elemental analysis. Cross-checking these data allows 

to claim a supposed structure for an organic compound. Unfortunately, most of these 

techniques cannot be applied to CNTs - nor to other nanomaterials – with the exception 

of FT-IR and elemental analysis. Only techniques which work on solid state can be 

successfully used, mainly because of the difficulty to obtain a homogenous solution. 

Looking at new materials, the characteristics which are required to be determined are 

morphology, chemical composition and structure. Morphology can be determined 

using microscopy, atomic force microscopy (AFM), transmission electron (TEM) and 

scanning electron microscopy (SEM), commonly used to measure dimensions and to 

assess the macroscopic structure (like aggregates) of the material. The structural 

characterization is more complicated, because, as mentioned before, none of the 

classical techniques used for structural analysis can be used. In particular, it is hard to 

discern between adsorbed and covalently bound molecules, and for this reason it is 

important, after any reaction on CNTs, to remove carefully all the unreacted reagents 

by thorough and repeated washing of the materials, followed by drying them under 

vacuum and at high temperature. The structural determination is a stepwise process, 

changes are evidenced by comparing the results of an analysis before and after the 

functionalization reaction. The parameter which are considered are: variation in the 

thermogravimetric profile (TGA), variation in the functional groups (FT-IR), variation in 

the elemental composition (elemental analysis CHN, or Ion coupled plasma atom 

emission spectroscopy), variation in UV-Vis absorption or fluorescence emission. 

Information on the chemical state of atoms on the material surface can be obtained by 

XPS analysis. In case of covalent functionalization of SWCNTs, Raman spectroscopy can 

provide an estimation of the number of new defects, by measuring the ration between 

the G and D bands.16,17  This technique can discern the electronic structure of atoms 
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giving different signals, and allowing to disclose modifications on the atomic scale. As 

for organic molecule, it is necessary to cross-check different analyses to confirm the 

effective functionalization of the material. 

 

1.2.4 Toxicity and asbestos fiber paradigm 

The growth of interest of scientists for these fascinating materials goes aside with the 

growth for concerns about their toxicity due to their similarity with the asbestos fibers. 

Many studies have been published evaluating the in vitro and in vivo toxicity of CNTs. 

However, only the in vivo studies can provide information about the biological 

interaction with living organisms. This evaluation is furthermore complicated by the 

heterogeneity of the samples, which resulted in conflicting evidence for carcinogenicity 

of CNT in rodents.18 At the moment only one commercially available type of CNTs, 

namely “MWCNT-7”, were classified as possible carcinogenic to humans by the 

International Agency for Research on Cancer (IARC).19 This classification was based on 

rodent carcinogenicity studies using MWCNT-7 samples, which are long (5.7 ±0.49 µm), 

large-diameter (40-90 nm), rigid multiwall tubes delivered by intraperitoneal or 

intrascrotal injection.20,21 Other studies, carried out on rats tested with different 

samples of MWCNT (average diameter and length 11 nm and 0.7 µm respectively) with 

different levels of structural defect, showed opposite results, with no evidence of 

induced mesotheliomas over two year.22 After the IARC evaluation, Rittinghausen et al. 

published a more extensive rat peritoneal assay using different type of CNTs with 

similar results: long, rigid multiwall carbon nanotubes were more potent than thinner, 

flexible or curved carbon nanotubes in inducing mesothelioma.23 The hypothesis on the 

mechanism of carcinogenicity are multiple, but according to the fiber pathogenicity 

paradigm, long, rigid nanoparticles are likely to induce frustrated phagocytosis, 

impaired clearance from lungs and pleura which leads to a persistent inflammation and 

subsequently carcinogenicity.24  The effect of functionalization on the biocompatibility 
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of CNT was also investigated for both SWCNT and MWCNT. Kagan et al. demonstrated 

that short oxidized SWCNT can be degraded by human myeloperoxidase (hMPO). The 

results were supported by blocking experiments using inhibitors of the enzyme.25 

Similar results were also reported by Bianco and coworkers: using OxMWCNT and 

functionalized OxMWCNT, it was observed a reduction of length in the order of 10 to 

27% depending on the decoration of the functionalized materials.26 The degradation 

was also observed on macroscale by Mata et al. They reported the biocompatibility and 

biodegradation of functionalized MWCNT-membrane in vitro and in vivo.27 Similar 

results were reported by Bianco and coworkers which observed degradation of f-

MWCNTs internalized in microglial cells (Figure 4).28  

 

 

Figure 4. Direct visualization of in vitro degradation of f-MWCNTs internalized in microglial cells, 
reported by Bianco et al. on Nanoscale.28 
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Based on all these studies we can conclude that the toxicity of the CNT is strongly 

related to their nature and morphological properties. Indeed, it is possible to obtain a 

biocompatible material by chemical modification of the pristine material by removing 

any residue of catalyst and increasing its hydrophilicity with an oxidative treatment. 

Furthermore, the selection of proper dimensions (reduced length and diameter) helps 

in increasing the biocompatibility. 

 

1.2.5 Cellular internalization of CNTs 

Concerns of toxicity not only arise from the structural similarity with asbestos fibers, 

but also from the early discovery by Prato et al. that CNTs are able to translocate across 

cell membranes.29 Different mechanisms for the interaction with cells’ membrane have 

been proposed (Figure 5). A possible mechanism is pinocytosis and includes: 

micropinocytosis (particle > 1 µm), clathrin-mediated endocytosis (120 nm), caveolin-

mediated endocytosis (60 nm) and receptor independent endocytosis (90 nm).30 This 

pathway seems to be independent from any functionalization, since both covalently 

modified or non-covalently coated SWCNT are internalized via endocytosis.31,32 

Macrophages, and other immune cells like monocytes and neutrophils, are able to 

internalize significant quantities of CNT via active phagocytosis without any sign of 

toxycity.33 Moreover specifically functionalized CNT are able to directly penetrate the 

plasma membrane as well as the nuclear membrane.30 Probably, because of the 

heterogeneity of CNT samples, all these mechanisms commonly occur simultaneously 

and the nature of the main uptake process depends on the characteristics of the CNT 

used. 
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Figure 5. CNTs internalization pathways into cells (Tan, A.; Yildirimer, L.; Rajadas, J.; De La Peña, H.; 
Pastorin, G.; Seifalian, A. Nanomedicine 2011, 6 (6), 1101–1114). 

 

1.2.6 Carbon nanotubes as nanocarriers 

The ability of CNT to translocate cell membrane together with the versatility of 

functionalization chemistry paved the way to the design and synthesis of numerous 

devices in the field of nanomedicine, especially in the field of drug delivery. DDS are 

usually composed by, at least, three different modules with specific functions: the 

carrier (the CNT), i.e. the platform on which to build up all the system that guarantees 

a longer circulation time; the drug, which is the biologically active molecule; and a 

selector, a molecule recognized by receptors which are overexpressed on the 

membrane of the target cells. These characteristics are useful to improve the delivery 

and the efficacy of already known drugs whose application is partially limited by a poor 

pharmacokinetic profile. Therefore, this class of nanodevices have met the interest of 

chemists and biologists working in the field of cancer research, and as a result, a lot of 
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DDS bearing different active compounds were synthesized.34–36 However, reaching the 

tumor compartment is only the first step towards a good nanocarrier. While designing 

the molecular structure of these devices it is important to bear in mind that, once the 

carrier has reached its target cells, the drug may require to be released in form of free 

molecule to carry out its biological activity. So it is necessary to consider how the drug 

payload could be released: this can occur in response to certain stimuli or after an 

elapsed time. Internal stimuli can be found in changes in temperature or pH, enzyme 

activity, and redox potential. For example, CNTs non-covalently loaded with 

doxorubicin (DOX) give a complex which is stable at physiological pH (pH 7.4 with 

phosphate buffer), but the DOX is rapidly released in mild acidic condition (pH 5.4).37  

Alternatively, artificial stimuli can be provided from external sources, like change in 

magnetic or electric field or light irradiation.13 The vast majority of these drug-loaded 

DDS have been investigated in oncology where their efficacy is even increased by the 

fact that in the tumor mass, the endothelial tissue is more permeable than in normal 

tissues. This condition allows increased permeability of the drug carrier into the tumor. 

This, together with the prolonged blood circulation time provided by the CNT, leads to 

enhanced permeability and retention (EPR).  

Despite the encouraging in vitro and in vivo results obtained by the first generation of 

DDS, the research requires an upgrade to keep up with continuous follow-up in the 

cancer biology. Given the heterogeneity of a tumor mass, cancer researchers and 

clinicians agree that combination therapy is one of the possible ways to win the fight 

against cancer. Combination therapy faces several challenges, one of which being that 

different drugs have different PK pharmacokinetics profiles that not always translate 

into a synergistic effect. A DDS tries to address this issue. Therefore, producing DDS 

able to accommodate more than one active compound at same time is highly desirable. 

In this way, it is possible to translate into nanomedicine a well-known clinical practice: 

combination therapies (or multimodal treatments), based on the simultaneous use of 

different therapeutic agents or even therapeutic approaches. Such combinations can 
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comprise drugs with different molecular targets as well as with the same kind of action. 

Their synergy could avoid drug resistance and the incidence of relapses. For this reason, 

many nanotechnological devices have been modified to host such combinations of 

drugs.38 The use of a DDS for the delivery of combinations of drugs has the potential 

advantage, with respect to the classical administration methods, to allow a better 

control onto the site and time of action, overcoming issues related to the different 

drugs’ pharmacokinetics profile.38 Examples of multimodal approach are:  1) co-delivery 

of chemotherapeutics, 2) combined gene and chemo-therapy, 3) co-delivery of 

immunotherapy, 4) co-delivery of genes, 5) combined chemo- and photothermal 

therapy. 

 

1.2.7 The fate of CNT-based materials in vivo: an introduction to Biodistribution and 

Metabolism 

The growth of interest for this class of nanocarriers goes aside with the concern about 

their safety. As mentioned before, some pristine nanotubes have shown to be able to 

induce mesothelioma after inhalation and in some case even after injection. So, it is 

obvious that their fate after administration must be considered, in particular their 

biodistribution and pharmacokinetic after injection (which is the most common type of 

administration). People working in this field must pay attention on how their devices 

distribute once they are injected and if the in vitro properties are transferred in vivo, or 

if the system is subjected to any modification.  

Pharmacokinetic describes how a compound interacts with tissues after 

administration; pharmacokinetic studies provide information on bioaccumulation in 

the organs and blood circulation lifetime. Once a foreign object reaches the blood 

stream, different mechanisms are activated for its elimination. Depending on the 

nature of the object, different excretion pathways are possible: small charged 

molecules are reported to be rapidly excreted in the urine through renal filtration, 
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while large hydrophobic molecules are blocked by the liver and slowly excreted via 

hepatobiliary pathway. In the case of CNTs, the argument is complicated by the 

heterogeneity of the sample and, even if only pristine materials are considered, the 

pool is still wide. CNTs, which are simply dispersed with surfactant, are easily cleared 

from blood circulation and accumulate in reticuloendothelial system (RES) organs. 

Tween 80 and Pluronic F108 dispersed 13C-labeled SWCNTs injected in mice showed to 

accumulate mainly in lung, liver and spleen and only small changes in quantities were 

found after 28 days.39 Pluronic F108 dispersed 13C-SWCNT, centrifuged to remove 

aggregates, are retained into the liver while lung uptake is nearly undetectable using 

NIR fluorescence.40 PEG decoration has demonstrated to be a good strategy to increase 

blood circulation time by shielding from opsonin recognition,41 however does not 

prevent the accumulation in the RES organs.42,43 Changes in the biodistribution profile 

were obtained using amino functionalized CNT by cycloaddition; in these materials 

functional groups were directly attached to CNT sidewall.44 Amino-CNTs were, firstly, 

reported to be cleared very quickly via urinary excretion, and only small amounts were 

trapped in kidney, bladder, skin and muscles. However, such results were hardly 

reproduced, even in the same authors’ hands.36,44–46 The renal filtration was studied by 

McDevitt and coworkers. They proposed a mechanism by which CNTs would be 

filtrated by the kidneys. According to these authors the blood flow is sufficiently strong 

to steer the CNT into the pores, which provides a physical explanation for their rapid 

clearance into urine.34,47 It is undoubtable that the pharmacokinetics of CNTs is very 

important for biomedical applications. There are many parameters regulating the 

pharmacokinetics of CNT, such as size, charge and surface chemistry. In the case of 

CNTs, when the length is smaller than 2 μm, they can escape the pulmonary capillary 

vessels and their pharmacokinetics is mainly determined by the surface chemistry.48 

Similarly to pharmacokinetics, the metabolism is strongly connected to the nature of 

the CNT derivatives: dispersed or functionalized. Metabolism can lead to the formation 

of toxic products, hampering their application as biomedical devices. Unfortunately, 
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the metabolism of carbon nanomaterials is very difficult to study, because limited 

analytical techniques able to discern between original material and metabolites are 

available. The detachment of decorating molecules from both covalently and non-

covalently decorated CNT is highly reasonable, and reported results support this 

hypothesis. In case of non-covalent functionalization, the metabolism is related to the 

desorption of loaded molecules and the replacement with some plasma proteins, 

although high protein concentrations are required in case of stable surfactant 

absorption.48 In the case of covalently modified CNTs, their metabolism is strictly 

related to their pharmacokinetic and different stability was reported for PEG-SWCNT in 

liver and spleen. Liver enzymes were able to slowly defunctionalize the material; on the 

contrary in the spleen, which is the biggest immunological organ, the material was 

stable for over 8 weeks.48  

Metabolism is not limited to the CNT functionalization. Recently the fate of the carbon 

skeleton has been also investigated. As mentioned before, both oxidized SW- and 

MWCNT can be degraded by peroxidase: catechol conjugated MWCNT proved to be 

good substrates for myeloperoxidase (MPO) and other leukocyte peroxidase.26 Other 

enzymes were reported to biodegrade CNT: horseradish peroxidase (HRP) and 

lactoperoxidase (LPO). However all these data were provided by in vitro experiment 

and have to be confirmed also in vivo.49  

To summarize, pharmacokinetics and metabolism are influenced by functionalization 

and the liver is the prominent organ for their blood clearance. Amine functionalized 

CNT seems to be the only exception undergoing renal excretion. Metabolism mainly 

affects the surface functionalization and it is dependent on the type of decoration and 

on the organ of accumulation. Not surprisingly, covalent functionalization provides 

higher stability compared to supramolecular loading, the latter undergoing desorption 

and replacement mediated by plasma protein.   
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1.2.8 Design of the DDS 

When planning the synthesis of a DDS, the first step is the choice of the desired 

biological activity. As mentioned in the preface, the first goal of this thesis work was 

the preparation of a nanocarrier able to target both proliferative and stem cancer cells. 

Hence, two different drugs were selected to achieve this goal. On one hand, targeting 

the proliferative cells in the tumor mass is quite easy and all the classical chemotherapy 

drugs are designed for this. Among them, Doxorubicin (DOX) has been elected as gold 

standard to test the efficacy of our CNT based DDS, because, despite its side effects, it 

is currently used for treatment of several different types of cancer. DOX belongs to the 

anthracycline family, its structure is reported in Figure 6 . Despite the aminosugar 

moiety, the molecule is highly hydrophobic (logP 0.567).50 The cytotoxic activity is 

strictly related to its molecular structure, and in its activity two different pathways are 

involved: I) the planar structure of the anthracycline intercalates the DNA strain causing 

the disruption of topoisomerase-II-mediated DNA repair; II) DOX can be oxidized to 

semiquinone, such unstable metabolite is then converted back to DOX in a process that 

releases reactive oxygen species (ROS). ROS are known to lead to oxidative stress which 

triggers the apoptosis pathways of cell death.51 

Whereas the hydrophobicity-related poor pharmacokinetic can be solved by its 

formulation as liposome encapsulated drug,52 its off-target toxicity and the multi drug 

resistance, that is often observed, are still unsolved problems. The use of CNTs as 

nanocarriers with proper selectors can help in dealing with both these problems. DOX 

can be loaded simply by supramolecular interaction with high yields,53–55 and its release 

is triggered by acidic pH. These properties allow a good stability during blood circulation 

and a fast detachment of the drug during the internalization in the lysosome (internal 

pH ≈ 5.4).53,55  
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Figure 6. Molecular structures of Doxorubicin (DOX) and metformin (MET) 

 

As the second synergetic drug, we opted for metformin (MET), an already approved 

drug in type B diabetes’ therapy which recently was reported to have antimetabolic 

properties.56–58 The mechanism of action of MET as antimetabolic drug is still debated.  

However, there is a good agreement in the literature on the fact that it is able to inhibit 

the oxidative phosphorylation (OxPhos) process.56,59 The biological effect on cancer 

cells is actuated at mitochondrial level where it seems to inhibit the complex 1 of the 

electron transfer chain. This action is responsible of the shut-down of the production 

of energy via OxPhos. Interestingly, a sort of synergetic effect was observed when 

employed in combination with DOX: different authors confirmed the ability of the 

combined therapy to reduce the tumor mass and to prevent the cancer relapse up to 

60 days with different tumor model (MCF-7, MCF-10A, ER-Src, BT-474 and MDA-MB-

231 ).58,60,61 However, the direct applicability of these therapies is limited by the amount 

of MET necessary to achieve steady antitumor effect. The millimolar amount of MET 

required for the inhibition of OxPhos can cause a degree of energy stress (resulting in 

AMPK activation) in normal cells, and these extremely high doses are not well tolerated 

in vivo.57 Despite combination therapy of MET and different chemotherapy drugs have 

been largely studied, there are only few of MET loaded on CNTs as anticancer DDS. Yoo 

et al. reported the synthesis and the biological properties of a MET-loaded multimodal 

DDS based on pegylated OxMWCNTs.62 Yoo in its seminal work documented the 
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synergistic effect between MET and light irradiation in killing HepG2 cells and started 

to address the problem of aggressive doses necessary to observe any cytotoxic effect. 

Drugs’ efficacy can be maximized if the DDS is designed to preferentially accumulate on 

the tumor mass. To achieve this, a selector is often incorporated into the DDS design. 

In our DDS, we decided to use biotin as selector to increase the DDS uptake in tumor 

cells overexpressing biotin receptors.53,63,64  

The second part of the design was focused on the planning of a proper synthetic 

strategy. The introduction of three different modules on CNT required the choice of 

orthogonal approaches that could maximize the loading of each component. While the 

decoration with DOX is straightforward, profiting of the π-π interactions with CNT 

sidewalls, the small dimensions and the polar nature of MET hampered a similar 

approach and forced us to use the carboxylic groups, present on the oxidized walls of 

the CNT, to form covalent bonds with MET. Analogously, biotin was covalently linked 

to the CNT sidewalls with an orthogonal approach developed in our research group.65,66  

 

Figure 7. Schematic representation of the multimodal Drug Delivery System 
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1.3 Discussion 

 

1.3.1 Decoration of the nanostructured platform 

The synthetic work started with the preparation of the carrier: pristine MWCNT needed 

to be treated to increase the water dispersibility of the material and to remove all 

impurities, like residues of the metallic catalysts and amorphous carbon. Such feature 

can be obtained through an oxidation process where CNTs are chopped at defect sites 

and oxygenated functionalities are created on their sidewall and edges. This process 

requires harsh conditions: concentrated oxidant acids, high energy sonication for 

prolonged time or heating at high temperatures.67 To guarantee the highest purity and 

water dispersibility, MWCNT (diameter 6-9 nm and 5 µm length) were treated with a 

refluxing 3:1 mixture of concentrated sulfuric acid and nitric acid for 30 minutes. 

Accordingly to a previous procedure, oxidized material was recovered after quenching 

with demineralized water, two centrifugation cycles (replacing the supernatant with 

fresh water) and filtration followed by washing with water until the filtrated solvent 

was neutral.65 The OxMWCNTs obtained have an average length ranging from 50 to 

1000 nm and are dispersible in water. Considering that, as mentioned above, shorter 

OxCNTs are more biocompatible than longer ones, and are believed to be more easily 

internalized by tumor cells, we harvested the shortest fraction using a series of 

centrifugation cycles (Figure 8), (see experimental part for details).68 
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Figure 8. Schematic representation of the separation process. 

 

The procedure allows to collect a fraction with highly oxidized short multi-walled CNTs 

(from now on called CNTs). The length measured by TEM (Figure 9) ranges from 50 to 

200 nm with a mean value of 130. 

 

 

Figure 9.TEM images of CNTs bulk material on the left, collected short fraction on the right. 

 

The synthetic strategy for the decoration of CNT was planned considering the stability 

of each derivative and the required reaction conditions for each subsequent step. Due 

to the harsh conditions required for the activation of the carboxylic groups on CNTs, 

the first component to be loaded was MET. There are many different ways to activate 
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carboxylic groups: N-hydroxysuccinimide or other modern coupling reagents can be 

used. However, they lack reproducibility when used on CNTs. From our experience, 

simple chemistry generally performs better with CNTs, and in this case the best and 

reproducible results have been achieved using oxalyl chloride to convert the carboxylic 

groups into the corresponding acyl chlorides (CNTs-COCl). The resulting material was 

directly used in the coupling with MET after removal of the oxalyl chloride excess under 

vacuum. It is important to keep the CNT-COCl always under inert atmosphere to assure 

good loading of MET; the reaction (Figure 10), repeated three times, showed high 

reproducibility, with a loading of 1.99 ± 0.01 mmol of MET/g of material 3, based on 

elemental analysis. Comparable results were reported by Yoo et al. that covalently 

decorated CNTs with a similar approach.62 

 

 

Figure 10. Covalent decoration of CNT with MET to afford 3 (MET-CNT). 

 

Material 3 was the starting point for the addition, to the carrier, of the targeting 

module.  A “click approach” developed in our group, demonstrated versatile, requiring 

relatively mild conditions and affording reproducible yields.53 This approach required  

pre-decoration of CNTs’ sidewall with aryl azide groups followed by the real click step 

(a CuAAC reaction between azides and alkynes).  

A simple and highly reliable protocol to insert azide groups on CNT is the Tour 

reaction.69,70 The reaction is a radical addition between aromatic diazonium ion and the 
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sp2 carbon on the CNTs. The mechanism was elucidated by Schmidt et al. and confirms 

the radical nature of the process (Figure 11). The initiation step follows two possible 

pathways: the diazonium anhydride, formed by in situ Gomberg-Bachmann reaction, 

can decompose in homolytic cleavage into aryl radical in case of neutral pH (Figure 11, 

a); alternatively, the diazonium ion can be reduced to aryl radical by a single electron 

transfer from the CNTs (Figure 11,b). Then, in the propagation step, the aryl radical can 

react with CNTs to form the aryl-CNT. ( Figure 11, c), the new radical can regenerate 

aryl radical through a single electron transfer to diazonium ions (Figure 11, d). The chain 

is terminated when two radicals coupled each other (Figure 11, e).71 The reaction gives 

access to the in situ formation of diazonium ion starting from a para-substituted aniline 

via Sandmeyer reactions.69,71–73 Moreover different substituted anilines can be 

synthesized with standard methods, enabling production of a library of functionalities. 
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Figure 11. Mechanism of Tour reaction. 

 

We performed the Tour reaction starting from p-azido aniline, as showed in Figure 12, 

the Sandmeyerreaction was performed in situ using isoamyl nitrite solving all the 

problems of handling the resulting highly instable diazonium compound. The radical 

addition can also occur on the benzene ring of the aniline, leading to polymerization 

products.74 To remove all the undesired products, material 5 have been washed 

thoroughly with DMF and methanol and dried accurately under vacuum. The 

functionalization was confirmed by FT-IR analysis showing a new peak at ~2100 cm-1 
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diagnostic for the azide group. Elemental analysis confirmed the presence of nitrogen 

and allowed quantification of the substitution degree (1.7 mmol/g). Material 5 was the 

substrate for the Copper Catalyzed Azide Alkyne Cycloaddition, a metal catalyzed 

version of the Huisgen reaction. Thanks to the high reliability and mild conditions 

required, and easily accessible reagents - azides and alkynes -, this reaction arose at 

symbol of the “Click chemistry” approach. In our group this reaction demonstrated to 

be a useful tool for the decoration of nanotubes with different moieties with good 

yields.37,66,75 The reaction between MET-CNTs 5 and the propargylamide 6 proceeded 

smoothly at 60 °C using the organic solvent soluble complex of CuI•P(OEt)3. The binding 

ability of metformin for copper was considered, and to assure a minimum quantity of 

Copper available for the catalysis a slight excess of catalyst, respect to the amount of 

Met on the CNTs, has been employed. The copper salt was accurately removed washing 

with a solution of 5% ammonium hydroxide in methanol (for all details see 

experimental section). The loading was evaluated using ICP-AES, the biotin content was 

found to be 0.28 mmol/g of material 7. 
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Figure 12. "Click-approach" for the decoration of MET-CNTs to afford MET-B-CNTs 

 

The DDS was then completed with the cytotoxic drug, DOX, exploiting the 

supramolecular chemistry of CNTs. The supramolecular adhesion is due to the 

formation of π-π stacking interaction between the anthracycline moiety of DOX and the 

π-system on the CNTs. The decoration, described in literature,53 is carried out in very 

mild conditions: CNTs 7 are dispersed in phosphate buffer at pH 7.4 to leave the amine 

group on the glycosylic moiety unprotonated. (Figure 13). To preserve the integrity of 

the drug, exposure to sunlight must be minimized and for this reason all vessels were 

wrapped in aluminum foil during the whole process. The decorated material was 

recovered by filtration over a polycarbonate membrane and dried under vacuum; the 

unbound DOX was washed away with fresh phosphate buffer solution. The filtrates 

were collected and diluted to 100 mL in a volumetric flask, the UV-Vis absorbance of 

such solution was measured to quantify the leftover of DOX, and, by difference, the 

amount of loaded DOX (see experimental section for details).  
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Figure 13. Decoration of MET-B-CNTs to afford the DDS 1. 

  

Complete characterization of DDS 1 is reported in in Errore. L'origine riferimento non 

è stata trovata., pg 78. DOX loading provided by the supramolecular functionalization 

is 41% wt. Content of biotin, metformin and doxorubicin are respectively 0.17, 1.2 and 

0.75 mmol/g of material on MET-B-CNTs. 
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1.3.2 Choosing the tumor models: in vitro evaluation of biological properties. 

A series of in vitro assays were designed in order to assess the biological behavior of 

our DDS. We aimed to define the maximum in vitro tolerated dose, IC50, toxicity of each 

fragment, and efficacy toward certain tumor cells. Two cell lines were selected for this 

study: I) human breast cancer MCF-7 cells, and 2) 4T1 murine cell line as aggressive 

model of triple-negative breast cancer. Both cell lines are reported to respond to DOX, 

to be OxPhos dependent and to overexpress biotin receptors.63,76–78 The evaluation in 

vitro of such models prepares the field for the succeeding in vivo experiments, which 

will be further discussed. 

A series of in vitro tests were performed to assess the effective biological activity of 

MET-CNTs, i.e. to assess the effect of the nanocarrier in comparison with each 

component and adduct 1. Figure 14shows, as expected,  that cells were sensitive to 

free MET at high concentration (ID50 for all cell lines around 450 µg/mL corresponding 

to 3.7 mM concentration). 
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Figure 14. MTT viability assays of MCF-7 and 4T1 cells incubated with different concentrations of MET. 
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The toxicity of each component of DDS 1 and of DDS 1 itself was, then, evaluated.  

Ox-CNTs (Figure 15, blue line) were found to be non-toxic for MCF-7 even at 

concentration of 40 µg/mL, while 4T1 cells showed a modest inhibition of growth at 

highest concentration. Different toxicity was found for MET-CNTs (Figure 15, green 

line) on the two cells line: MCF-7 cells were found to be more sensitive with and 

apparent IC50 of 20 µg/mL of CNTs, corresponding to 5.1 µg/mL of MET (0.04 mM, 

almost 100 times more effective with respect to the free MET), but with a cytostasis 

pattern of drug action. On the contrary, 4T1 cells showed no apparent increase of 

toxicity with respect to MET-CNTs. Opposite results were obtained for MET-B-CNTs 

(Figure 15, red line): not any increased toxicity was reached on MCF-7 cells, whereas 

an increase of toxicity around 30% was obtained on 4T1 cells. This result suggests that 

the internalization in 4T1 cells might be biotin-mediated. However, at least a blocking 

experiment is needed to confirm this hypothesis. Finally, with complete DDS 1, the 

effect on viability of MCF-7 and 4T1 was remarkable. With MCF7 cells, the IC50 was 0.7 

µg/mL (Figure 15, pink line) which is aligned with the IC50 = 0.66 previously reported for 

a DDS not conjugated with MET (corresponding to 0.25 µg/mL of DOX). In 4T1 cells the 

IC50 was higher (IC50 = 4 µg/mL of 1) corresponding to 1.6 µg/mL of DOX and 0.62 µg/mL 

of MET. In summary, the results reported in Figure 15 demonstrated that: 

I. CNTs are well tolerated by these two cancer cells;  

II. MCF7 and 4T1 cells show a different sensitivity against MET-CNTs, 4T1 cells 

being almost insensitive to MET-CNTs; 

III. biotin increases cytotoxicity of MET-CNTs toward murine 4T1 cells, but does 

not toward human MCF7 cancer cells, suggesting that uptake of MET-CNTs in 

4T1 cells might be favored by the presence of biotin linked onto CNTs surface;  

IV. both 4T1 and MCF7 cell lines show a similar sensitivity toward the complete 

DDS 1.  

Based on these results, we chose to perform in vivo pilot studies of biodistribution and 

efficacy on 4T1 tumor bearing mice. 4T1 is a murine tumor, which allows the use of 
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immunocompetent mice, therefore enabling to highlight the role of an intact immune 

system of the biodistribution and metabolic profile of our DDS. In modern oncology, 

with immunotherapy grown as the fourth pillar in the fight of cancer, the role of the 

immune system can no longer be ignored when investigating a new drug or a new drug 

delivery system. 4T1 is also a syngeneic and aggressive model for triple negative breast 

cancer, a type of cancer that lacks viable clinical options, once patients stop responding 

to first line chemotherapy.  
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Figure 15.MTT vitality assays of MCF-7 (top) and 4T1 tumor cell lines incubated with different 
concentrations of 2 (blue), 3 (green), 7 (red), 1 (pink) and B-DOX-CNTs 14 (black). 
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1.4 Conclusions of Chapter 1 

 

In the first part of the present work, the chemistry of MWCNTs was exploited to 

synthesize a multimodal DDS bearing a cytotoxic and an antimetabolic drug. The 

oxidation process, together with the selection of tubes by length, provides a material 

highly dispersible in water or polar solvents like DMF and THF. The insertion of 

carboxylic groups opens the route to functionalization using coupling reactions; this 

was used to load the antimetabolic drug, Met, with high yield and reproducibility. Then, 

using orthogonal synthetic approaches, which involved formation of both covalent and 

supramolecular bonds, a selector, biotin, and the cytotoxic drug, DOX, were loaded to 

complete the drug delivery system. A stepwise characterization protocol (that involved 

TEM, elemental analysis, ICP-AES, TGA-MS, infrared and UV-vis spectroscopies) allowed 

the precise quantification of each component. In vitro assays were carried out using 

carefully chosen tumor models to evaluate the toxicity of each component and of the 

complete DDS. The Ox-CNTs 2 were confirmed to be well tolerated, moderate toxicity 

was found for Met-CNTs 3 and a biotin receptor mediated internalization was 

evidenced for 4T1 tumor cell line. By comparison with the free DOX, DDS 1 showed a 

higher efficacy with a lower IC50. These results encouraged to move on and consider 

the possibility to extend the study to in vivo models. Thanks to the collaboration with 

the Cancer Systems Imaging Department of MD Anderson Cancer Center of Houston, 

the biodistribution and the efficacy of DDS 1 in 4T1 tumor bearing mice were studied, 

and the results will be presented in the next chapter. 
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2.1 Preface 

 

The second part of this work was focused on the study of the pharmacokinetics and 

efficacy in vivo. Thanks to the collaboration with Prof. David Piwnca-Worms, Chair of 

the Department Cancer System Imaging at the University of Texas MD Anderson Cancer 

Center, I had the opportunity to spend 7 months in Houston as visiting PhD student 

under the supervision of Federica Pisaneschi PhD. In MD Anderson Cancer Center I 

performed the labeling of our DDS using different radiometals learning how to handle 

the radioactive material. Moreover, my american Tutors, due to their knowledge of 

tumor biology, pointed out some critical aspects of the work, such as the evaluation of 

the target engagement on OxPhos, suggesting elegant experiments to elucidate the 

question. 

 

2.2 Introduction 

 

2.2.1 In vivo studies 

Several different biological properties can be determined through in vitro essays: 

cytotoxicity, cellular uptake, internalization mechanism, and biological pathway 

exploited for the activity. However, such tests do not take into account the complexity 

of living organism: biological parameters such as pharmacokinetic and metabolism can 

change completely the performance observed in the in vitro tests. 

The evaluation of the properties of DDS 1 was completed with a series of in vivo tests: 

- Study of the biodistribution via PET/CT with radiolabeled DDS. 

- Study of target engagement using [18F]FAZA PET/CT imaging of hypoxia.  

- Small pilot study of efficacy. 

All the studies were carried out on immunocompetent 4T1 tumor bearing mice. The 
possibility to use xenograft model was excluded considering that recent studies have 
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demonstrated the importance of the immune system in the transport and delivery of 
CNTs.79,80 
 
2.2.2 Pharmacokinetic 

Different techniques are available for the study of biodistribution of CNTs-based 

nanocarriers, and they can be divided in two groups: direct and indirect detection. 

Direct detection involves techniques for the direct visualization of the CNTs, it is time 

consuming and gives only a semi-quantitative estimation of the set down dose. It is 

complicated by the difficulty to visualize CNTs in the tissues unless they occur in 

agglomerates. Light and electron microscopy are popular methods for the observation 

of CNTs in tissues, generally are used to support other indirect techniques and to verify 

the macroscopic interaction of the material with the tissue.81 Raman spectroscopy is 

also used to measure the typical inelastic laser light scattering and it is able to detect 

both individual and agglomerated nanotubes. However, even though the specificity is 

high, the sensitivity is not always sufficient. A detection limit of 0.04 µg/ml blood (0.2% 

of the dose/g) and 0.2 µg/ml (1% of the dose/g) in homogenized and solubilized tissues 

has been reported.82–84 Another useful technique is the detection of near infrared 

fluorescence; CNTs, after laser excitation, can emit at 700-900 nm or around 1100-1400 

nm. These wavelengths fall in the “biological transparency windows” due to low optical 

scattering, low autofluorescence and low absorption from hemoglobin and water in 

tissues.40,85 

Indirect detection exploits some intrinsic characteristics of CNTs like NIR absorption or 

fluorescence, alternatively CNTs surface can be modified to add some tag which can be 

visualized in the tissues. The use of tags increases the sensitivity (especially with the 

radiolabeling), but, at the same time, adds an important parameter to be considered, 

the stability of the labeling. This must be determined in harsh and biological-like 

conditions. 
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Radiolabeling of CNTs is one of the best strategies to follow the biodistribution after 

administration. Many different radiotracers exist and are used as probes for the 

detection of CNTs. The best strategy is to include 13C or 14C in the carbon skeleton. The 

inclusion in the atomic structure prevents any possible problem of stability, the 

pharmacokinetic is detected as *C/12C isotope ratio mass spectroscopy. The use of 14C 

is able to bring the detection limit in the range of pg of material/g of tissue.86 Also 125I-

modified CNTs have been used, however the size and the nature of iodine made the I-

C bond more labile than the C-C bond, increasing the risk of the detachment of the 

radioactive tag.87,88Ultimately , it is possible to modify the CNTs surface by covalently 

binding a bifunctional chelator for labeling with radiometals. This approach has the 

advantage to be applied at a late stage of a synthetic procedure for the modification of 

CNTs, but, at the same time, introduces concerns about the stability of the complex 

itself. Such structures usually possess a remarkable stability ex situ, but they may be 

susceptible to modification by the complex in vivo milieu.82 Nevertheless this approach 

was used several times to study the biodistribution of chemically modified CNTs. 

Ligands like diethylene-triamine-penta-acetic-acid dianhydride (DTPA) or 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) have been used to bind, via a 

co-ordination bond, In-111, 34,44,89,90 Cu-64,91 and Y-86 47,92. In case of labeling with 

positron (β+) emitters, the biodistribution can be followed using positron emission 

tomography/computed tomography (PET/CT). 

 

2.2.3 Positron emission tomography (PET) 

PET is a noninvasive imaging technique that provides physiological information upon 

administration of radioactive compounds (radiotracers), detection of gamma radiation, 

and reconstruction of the distribution of the radiotracer. It is based on detecting two 

time-coincident high-energy photons from the emission of a positron-emitting 

radioisotope.93 As the radionuclide decays, it ejects a positron from its nucleus, which 
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travels a short distance before being annihilated with an electron to release two 511 

keV γ rays 180° apart that are detected by the PET scanner (Figure 16). 

 

 

Figure 16. Schematic representation of processes occurring during PET imaging. 

 

After sufficient acquisition time, the data are reconstructed using computer-based 

algorithms to yield images of the radiotracer’s location within the organism.94 

Combining PET imaging with the anatomical imaging delivered by X-ray computed 

tomography (CT) or magnetic resonance imaging (MRI) provides the synergistic 

combination of information about the biochemical fate of the radiotracer (from PET) 

with morphological information (from CT or MRI). The technique has a high sensitivity, 

it is not invasive as the labeled compound is virtually massless, also allows to follow the 

initial pharmacokinetic by dynamic scanning as well as the biodistribution at different 

time-point. An increase of interest toward this technique has been registered after the 

introduction of radiometals. Traditional PET was confined using radioisotopes such 18F, 
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15O, 13N and 11C whose short half-lives were perfect to study the kinetic of small 

molecules with rapid clearance. However, they were inefficient in the study of slow 

clearance targeting agent such as protein, antibodies and nanoparticles. Radiometals, 

such as Zr-89, Y-86, and Cu-64, display longer half-lives, matching the longer blood 

circulation times of macromolecules.94 

 

2.2.4 Target engagement and 18F-FAZA imaging of hypoxia. 

In medicinal chemistry, target engagement is the study of the interaction of a drug with 

its target. This can be measured directly, or via biomarkers that enable a direct 

correlation between target engagement and a certain biological phenomenon. Ideally 

an assay of target engagement would not only verify the extent of the desired drug-

target interaction, but also help to determine the drug dose that produces efficacy at 

fractional target occupancy while limiting side effects that might be caused by complete 

occupancy. Moreover it should provide information about the off target interactions 

correlating the toxicity with the in vivo selectivity.95  

In our study, we tried to assess target engagement of Metformin by reading the hypoxic 

state of the tumor cells via PET/CT with [18F]-fluoroazomicyn arabinoside  (18F-FAZA) 

(Figure 17), a known reporter of hypoxia. The method was validated by Gammon et al. 

and others with different Complex-1 inhibitors.96,97  

 

 

Figure 17. Structure of 18F-FAZA 

 

OxPhos dependent cells tend to be hypoxic because of the over activation of the 

electron transport chain that eventually overrun the cell’s oxygen supply.98–100 These 
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cells are likely to trap hypoxia reporters such as FAZA. FAZA trapping mechanism in 

hypoxic cells is well established. After injection, FAZA equally distributes in normal 

tissues and tumor (until the compound maintains the oxidized form (Figure 17) it is able 

to pass through cells membrane accordingly to a dynamic equilibria). If the tumor is in 

a hypoxic state, the subcellular micro-environment is reductive. Intracellular reductase 

converts the nitroimidazole moiety to hydroxylamine and more reduced nitrogen 

species, which are eventually trapped by conjugation with intracellular thiols, 

particularly glutathione GSH.  

 

 

Figure 18. [18F]FAZA reduction mechanism. 

 

These conjugates lose the ability to pass the cellular membrane and the tracer 

accumulates in the tumor. As a result, the tumor/muscle ratio is greater than 1.  

In the presence of an OxPhos inhibitor such as metformin, the electron transport chain 

is virtually shut down and this translates into re-oxygenation of the tumor mass and, as 
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a result, loss of FAZA trapping. FAZA can therefore be used as a pharmacodynamic 

marker for target engagement of OxPhos Inhibitors. 

The experiment is generally designed as follow: 

1) On day 0, a first PET/CT scan is registered to quantify the hypoxic state in the tumor 

measured as the tumor/muscle ratio at baseline. 

2) Mice are treated with the OxPhos inhibitor after the PET/CT session. 

3) On day 1, another [18F]FAZA PET/CT scan is registered.  

If the inhibitor goes on target, the hypoxia state is reverted and a more oxidative micro-

environment is restored, as a result, the retention of [18F]FAZA decreases and the tumor 

to muscle ratio measured should be closer to 1.  

  

2.3 Discussion 

 

2.3.1 Synthesis of modified DDS for the pharmacokinetic studies 

The biodistribution of DDS 1 was studied using PET/CT and, accordingly with the 

expected long blood circulation time and with the need to follow the excretion pathway 

of the system, radiometals were chosen for the labeling. Two different radiometals 

have been selected for the pharmacokinetic studies: Ga-68 for the short term 

biodistribution and for the initial kinetic, Cu-64 for long term biodistribution. Of course, 

the use of radiometals required the introduction on the DDS 1 of proper ligands. NOTA 

and DOTA were selected to bind respectively gallium and copper (logkLM for the two 

complexes are 31 and 22.7, respectively).94 The two ligands were anchored to the 

system modifying the original synthetic procedure. To achieve this goal, compound 7 

was reacted with nitroacetamide 9, via “Machetti-De Sarlo” reaction,101,102 yielding 

adduct 10 with a high loading of protected-amine groups (1.4 mmol/g based on 

TGA-MS analysis) (Figure 19). Then Boc-protecting groups were cleaved under 
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acidic conditions, and the free amine groups in material 11 were titrated via a 

semiquantitative Kaiser test (0.129 mmol/g) (see experimental  section).44,103 

 

 

Figure 19. Amino decoration of CNTs via “Machetti-De Sarlo” reaction of nitroacetamide 9. 

 

Finally, DOTA or NOTA, were bound to CNTs through coupling with the primary 

amino group. DOTA tri-tert-butyl ester was first activated with N-

hydroxysuccinimide and coupled to compound 11 with a loading of 0.1 mmol/g 

(TGA-MS), then tert-butyl group were cleaved with TFA to restore the chelating 

ability of the ligand.  NOTA-NCS (Macrocyclics™) was directly coupled to 

compound 11 with a loading of 0.01 mmol/g (Kaiser test103). As for DDS 1, the 

last step was the loading and quantification of DOX, following the procedure 

described above, to obtain DOTA-DDS 12 and NOTA-DDS 13, respectively (Figure 

20). 
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Figure 20. DOTA-CNT (12) construct on the left and NOTA-CNT construct (13) on the right. 

 

2.3.2 Radiolabeling of CNTs-adduct 

Radiolabeling using radiometals is a common technique to study the biodistribution of 

big molecules like proteins and antibodies, nevertheless, as discussed above, only few 

examples are reported with nanotubes.104–106 Therefore a new protocol for the labeling 

of CNTs-adducts was developed starting from classical condition used in the labeling of 

protein and peptides.  

 

2.3.3 Labeling of DOTA-DDS 12 with Cu-64 

The labeling of the DOTA-CNT with Cu-64 was performed at pH 5.6 in sodium acetate buffer 0.1 M and 
37°C for 30 or 60 minutes, with a labeling efficiency higher than 95% (based on Instant Thin Layer 
Chromatography “ITLC”, Figure 21). The reaction afforded a material ([64Cu]12) with a high specific 
activity (814 GBq/g) and a radiochemical yield (RCY) non-decay corrected of 80%. The stability of the 
complex in PBS was evaluated at 37 °C and the probe was stable up to 48 h. ( 

Table 1). 
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Chelated metal after: 4 h 24 h 48 h 

64Cu-DOTA-CNTs 99% 100% 100% 

 

Table 1. [64]Cu12 complex shelf stability in PBS solution at 37°C. 

 

Since the amount of complexed DOX can be influenced under the labeling reaction 

conditions, the decrease of complexed DOX was assessed by placing DDS-12 in the 

same reaction condition used for the labeling. Aliquots of volume were then collected 

after 10, 20, 30 and 60 minutes, diluted and the absorbance at 480–490 nm was 

measured. De-complexation of DOX was about 18% after 1 h of incubation which is 

believed to have a negligible effect on efficacy, considering the high loading of the drug 

on the nanotube surface. (see experimental section). 

 

Figure 21. Quality control performed with radioactive ITLC on the labeling reaction of material 12 with 
[64]Cu. 

 

2.3.4 Labeling of DOTA-DDS 12 with Ga-68 
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Since DOTA is also reported to be able to chelate Ga-68, a series of experiments was 

carried out to evaluate the feasibility with our DOTA-CNTs 12. Classical conditions for 

the formation of the complex DOTA with Ga-68 are reported in Table 2. 

 

Ga solution Quantity MBq pH T °C t min 

Ga in 0.1 M HCl 27-28 4 (1M HEPES) 95 10 

Table 2. Commonly used condition for the labeling with Ga-68 and DOTA.107 

 

Taking into account that we have DOX on the system the possibility to use such high 

temperature was excluded a priori and the limit set at 37°C (tolerated temperature by 

the system). Other parameters were varied to find the better condition for the labeling 

and the results were listed below. Firstly, conditions close to what reported in the 

literature were tried (Table 3  entry from 1 to 2a). However, under these conditions 

only traces of chelated metal were found after 20 minutes of reaction. Such 

unsatisfying results, together with the increased lability of DOX under these conditions, 

led us to rapidly abandon this procedure in favor of less acidic pH. The switch to a less 

acidic buffer (sodium acetate at pH 5.6) immediately increased the amount of 

complexed radiometal (Table 3, entry 3 to 5). At the same time the time-dependent 

nature of the process was evidenced with a net increase of the yield after prolonged 

reaction time (Table 3, entry 3b). On the other hand, the scale-up of the reaction 

resulted in a decreased yield (Table 3, entry 6). As expected, a positive effect on 

reaction yield was obtained increasing the amount of DOTA-CNTs 12, which led to the 

50 – 70 % of complexed metal (Table 3, entry 8 to 18). Despite the good results obtained 

under these conditions the amount of free radiometal is still too high to perform any 

pharmacokinetic study. Different protocols are described in the literature to purify the 

crude labeled material, McDevitt and coworkers reported the possibility to use size 

exclusion chromatography.108 However this technique, which was found to be suitable 
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on ultra-short SWCNTs, did not give good results on our materials, probably due to the 

difference in dimension with the reported tubes. 

 

Table 3. Labeling condition investigated for the labeling of DOTA-CNTs 12 with Ga-68. Ga-68 was 
provided as [68]GaCl3 in HCl solution 0.1 M.*Chelated metal in the crude mixture after quench with ETDA 
0.1 M; ** Chelated metal after purification via centrifugation cycles. 

 

Alternatively, as suggested by Prato and coworkers,109 a good compromise between 

improvement of purity and loss of material can be reached using centrifugation cycles. 

After several attempts the following protocol was defined: 

• Quench with 0.01 M EDTA in PBS 2.4 folds the reaction volume. 

Entry Ga 
MBq 

CNTs  
µg/µL 

Total 
Vol. 
µL 

Time 
min 

Buffer 
NaOAc 

Chelated 
Ga %* 

Chelated 
Ga % post 
sep.** 

Yield 
not 
D.C. 

1 24 0.02 250 10 pH 4 0 - - 

1a 24 0.02 250 20 pH 4 11 - - 

2 10 0.15 250 10 pH 4 0 - - 

2a 10 0.15 250 20 pH 4 11 - - 

3 5.5 0.15 250 10 pH 5.6 61 - - 

3a 5.5 0.15 250 20 pH 5.6 61 - - 

3b 5.5 0.15 250 30 pH 5.6 70 -  

4 24 0.15 250 10 pH 5.6 51 - - 

4a 24 0.15 250 20 pH 5.6 56 - - 

5 18 0.2 250 10 pH 5.6 50 - - 

6 5 0.2 2500 10 pH 5.6 27 - - 

7 24 0.25 150 10 pH 5.6 54 - - 

8 18 0.43 175 10 pH 5.6 40-60 - - 

9 18 0.43 175 10 pH 5.6 68 91 17 

10 11 0.43 175 10 pH 5.6 58 85 13 

11 5.6 0.43 175 10 pH 5.6 70 95 23 

12 22 0.43 175 10 pH 5.6 55 85 13 

13 9 0.43 175 10 pH 5.6 70 95 27 

14 33 0.41 925 10 pH 5.6 65 97 12 

15 19 0.19 775 10 pH 5.6 72.5 97 12 

16 14 0.23 320 10 pH 5.6 50 94 20 

17 7 0.23 320 10 pH 5.6 60 93.5 19 

18 9.4 0.43 175 10 pH 5.6 64 100 5 
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• 3 min centrifuge, then remove the supernatant and add PBS. 

• 3 min centrifuge, then remove the supernatant and add PBS. 

• 3 min centrifuge, then remove the supernatant and recover the labeled CNTs. 

The procedure allows to obtain labeled CNTs with purity ranging from 93.5 to 97 % with 

RCY not d.c. around 20% (Table 3, entry 9 to 17). Increasing the number of centrifuge 

cycle is possible to reach the purity of 100%, but this goes to detriment of the RCY which 

falls to 5% (Table 3, entry 18). Experimentally it was observed that the use of more 

concentrated EDTA solution (0.1 M) causes loss of radioactivity: the reason can be 

found in the logKML of EDTA-Ga complex which is slightly greater than logKML of DOTA-

Ga leading to trans-chelation with the excess of EDTA. In summary the results reported 

in Table 3 suggest that: 

1. The labeling with Ga-68 using DOTA-decorated CNTs can be successfully done 

using ad hoc conditions: pH 5.6, T 37°C, 10 min and CNTs conc. of 0.43 mg/mL 

with a maximum volume of 925 µL. 

2. Centrifuge cycles are a good tool to purify the crude mixture. 

3. The use of concentrated EDTA (≥ 0.1 M) in the work-up causes the loss of 

radioactivity. 

4. Three centrifugation cycles are the best compromise to obtain labeled CNTs 

with good purity and RCY. 

 

 

Figure 22. Quality control via radioactive ITLC on the labeling reaction of material 12 with Ga-68: on the 
left crude mixture and on the right after repeated centrifugation cycles. 
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2.3.5 Labeling of NOTA-DDS 13 with Ga-68 

Given the low radiochemical yields obtained, which would have prevented the 

feasibility of the in vivo studies, NOTA-CNT 13 was used for the labeling with Ga-68. 

This ligand is able to provide high metal loading even in mild conditions, because the 

logKML with gallium is ten-fold higher than DOTA.94 Labeling of NOTA-CNT to afford 

[68Ga]13 complex proceeded at 95–100% at 37 °C and pH 5.6 after 10 minutes (ITLC 

quality control Figure 23). The final RCY (non-decay corrected) was 65% (see 

experimental section). 

 

 

Figure 23. Quality control via radioactive ITLC on the labeling reaction of material 13 with [68]Ga. 

 

2.3.6 Radiosynthesis of [18F]FAZA 14 

The radiosynthesis of [18F]FAZA was performed on General Electric Medical System 

(GEMS) TracerLab FXFN automated synthesis module, following a procedure reported 

in the literature (Figure 24).110,111 Such equipment allows to complete the full synthesis 

included the semipreparative HPLC purification in short time (50 minutes) providing 

high radiochemical yield (≥ 27% not decay corrected) and purity (greater than 99%). 

Moreover the use of an automatic module strongly reduces the exposure time to the 

radiation accordingly with the ALARA (As Low As Reasonably Achievable) principles.112  
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The synthesis starts from the commercial precursor 1-(2,3-diacetyl-5-tosyl-(α-D-

arabinofuranosyl)-2-nitroimidazole, the tosylate group is replaced by the 

[18F]fluoride in a nucleophilic substitution, then the hydroxy groups were 

deprotected under basic condition. After quench with KH2PO4 solution the product 

was purified via semipreparative HPLC (C18 column) recovering the pure [18F]FAZA.  

 

 

Figure 24. Schematic representation of GE tracerlab equipped for the [18F]FAZA  synthesis. Green line 
indicates the radioactivity flow and the red line the flow of other reagents. 

 

2.3.7 Metabolism of Labeled CNTs 

One of the concerns about new drugs and DDS is their stability in living organisms. The 

study of metabolism of a certain molecule in vivo is necessary to assess if any 

transformation occurs after administration. This is usually done by HPLC analysis of 

blood and urine samples. The presence of a radioactive tag allows the identification of 
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traces of material, using a gamma counter detector, with high sensitivity and the 

chromatographic separation allows to identify any possible metabolite. However, the 

assess of the metabolism of CNTs is not so trivial; the impossibility to run CNTs on the 

chromatographic column denies application of HPLC for analysis of possible 

metabolites. We resolved to analyze our biological samples by ITLC analysis. This 

enables clear assessment of the stability of the radiometal complex, but did not provide 

information on the integrity of the DDS. 

The in vivo stability of [64Cu]12 and [68Ga]13 complexes was measured 1.5 h post 

injection (Table 4). Blood and urine samples were analyzed by radio-TLC in order to 

assess the amount of circulating free metal. Only 11±14 % (n=4) and the 24±6 % (n=3) 

of free metal were found respectively in blood and urine for [64Cu]12. [68Ga]13 showed 

a lower stability with 37±17 % (n=3) of free metal in blood. These data indicate a 

stability in line with other CNT-radiometal complexes reported in the literature.44,94 

More importantly, the high stability of [64Cu]12 validates the use of PET/CT to assess 

the biodistribution of the nanomaterial. 

 

[64]Cu 
Blood % of 

chelated metal 
Urine % of 

chelated metal 

Mouse 1 100 - 

Mouse 2 100 83 

Mouse 3 72 71 

Mouse 4 83 75 

Mean 88.75 76.33 

stdv 11.90 4.99 

Table 4. Percentage of chelated metal in blood and urine of [64]Cu12 and [68]Ga13, measured by 
radioactive ITLC. 

[64]Ga 
Blood % of 

chelated metal 

Mouse 1 70 

Mouse 2 57 

Mouse 3 43 

mean 56.67 

stdv 11.03 
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2.3.8 Biodistribution and PET imaging 

The in vivo biodistribution of the nano-materials was evaluated by PET/CT at short and 

long-time points, with the short-live isotope Ga-68 and long-lived isotope Cu-64 

respectively. A second study was then performed to elucidate the impact of the 

injection methods on the distribution of the materials. For the first study, seven Balb/c 

mice were inoculated with 4T1 cells in the right mammary fat-pad. Two weeks post 

inoculation, when tumors were palpable, the cohort of mice was divided into two 

groups: the first group (n=3) was imaged with [68Ga]13 and the second group (n=4) with 

[64Cu]12. Both probes were injected intravenously (i.v). For the first group, the PET/CT 

protocol comprised a dynamic PET scan of the first 10 min, followed by 15 min of whole-

body CT scan. The same protocol was applied for 1.5 h and 3 h time points. The second 

group was imaged following an analogous PET/CT protocol, and adding 24h and 48h 

time points.  

The biodistribution profile at early time points suggests an early renal clearance (5% 

ID/cc) probably of the free metal. Radioactivity in the heart, used as estimation of the 

amount of radiopharmaceutical in the blood pool, was less than 10% ID/cc after 3 h, 

proving the modestly fast blood clearance already observed by others. The higher 

uptakes are in the liver (30% ID/cc) and lungs (15% ID/cc), confirming a behavior 

commonly observed for nanoparticles.82 The uptake in the liver might be caused by 

Kupffer cells retention, but proof lays beyond the scope of this study. In addition, 

McDavitt et al. demonstrated that liver sinusoidal endothelium plays a crucial role in 

the CNTs retention and decomposition.90 The spleen (9% ID/cc) also retained significant 

activity, while minimal retention was observed into the muscles. Tumor uptake was 

around 1.5% ID/cc and might be the result of the enhanced permeability and retention 

effect (EPR) plus a small contribution of the biotin. The net biotin contribution may be 

studied in the future with CRISPR biotin knock-out mice or biotin blocking studies. No 
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radioactivity was observed in the mice cranial cavity, suggesting that the CNTs are not 

able to cross an intact blood-brain barrier. 
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Figure 25. Biodistribution 3h post-injection for [64Cu]12 (a) and [68Ga]13 (b); probe retention in the 
tissues (calculated from PET/CT of ROI) of [64Cu]12 (c) and its clearance (d). 

 

The 3h post-injection biodistribution was confirmed by the [64Cu]12 imaging, (Figure 

25) excluding any metal or ligand dependent effect. The Cu-64 labeled material was 

taken up mainly in the liver and lungs, similarly to what seen for the Ga-68 labeled CNT; 

its retention was also similar in the bladder, kidneys and muscles. The blood clearance 

was fast, with less than 5% in the heart after 3h. The tumor uptake was slightly higher 

(around 3%). After 24 h, the radioactivity in the tissues dramatically decreased, the 

activity in all the organs examined was five time lower, with the liver and lungs going 

from 27% and 10% to 5% and 1.5%, respectively. The tumor uptake remained constant 

(≈1% ID/cc) for the first 24 hours. At 48h post-injection, the body clearance was almost 

complete, with activity decreasing to less than 1% in all the main organs. Tumor uptake 
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was also reduced. Radioactivity was found in the feces, suggesting an hepato-biliary 

excretion. As an experimental observation, mice looked scruffy after the imaging 

sessions, but they completely recovered within 2 days, suggesting a good tolerability of 

the nanomaterial. 

 

2.3.9 Biodistribution with different injections methods 

Nine Balb/c mice were inoculated with 4T1 cells in the right mammary fat-pad three 

weeks prior the imaging session. The cohort was divided in three groups and injected 

with compound [64Cu]12: intravenously (IV), intraperitoneally (IP) and subcutaneously 

(SC). The PET/CT images were recorded 3 h later by a 10 min PET scan followed by a 

whole-body CT, 24 and 48 hours images were also acquired. The biodistribution profile 

with the IV injection was the same to that shown above, with higher uptakes in liver 

and lungs, and in tumor the retention of the CNTs was 2.7% ID/cc. These results 

documented day-to-day and batch-to-batch reproducibility. Administration via 

subcutaneous injection completely changed the pharmacokinetics: diffusion occurred 

through the lymphatic system, which was reached after a slow permeation from the 

site of injection. Our experiment showed that labeled-DDS, SC injected, remained at 

the injection site even after 24 h (Figure 26). After 3 hours, only a small amount of the 

injected material distributed to the organs. The SC administered CNTs were mainly 

sequestered by the liver (8.5% ID/cc), followed by kidney (3.4% ID/cc), spleen (2.8% 

ID/cc) and bladder (1.5% ID/cc); the uptake in the lungs was only 1.1% ID/cc. 

Surprisingly the tumor uptake was around 1.9 % ID/cc suggesting that it was not 

affected by the reduced circulating material. The extremely low amount in the heart 

(1.1% ID/cc) and the absence of radioactivity in the muscles confirmed that only a small 

amount elapsed in the blood circulation.   
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Figure 26. Whole PET imaging 24 h post injection using [64]Cu12 material and different types of 
injection: subcutaneous (SC), intravenous (IV) and intraperitoneal (IP); red circle indicates tumor 
position. 

The injection in the peritoneal cavity gave a third biodistribution profile, with a strongly 

reduced lung uptake (3.1 % ID/cc, around 6 times less than with the IV delivery); liver 

trapping was partially avoided (13.1 ID %/cc) (Figure 27). Slightly higher activity was 

observed in spleen (7.7 %), kidneys (5.9 %) and bladder (3.4 %), suggesting a 

concomitant renal excretion of the labeled material. The retention in muscles was, as 

for the other type of injections, close to zero, the tumor showed the highest uptake 

among all the injection and Bio-D experiments, with an average ID %/cc close to 7%. 

However, the variance in the data of the IP series is higher than the IV series, as shown 

by error bars on the tumor uptake, thus reducing its statistical relevance. On the 

contrary, in the lungs, the difference is undeniable, and the IP injection strongly limited 

the off-target uptake. 
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Tissues IP ID%/cc STDV 

Lung 3,07 0,80 

Heart 2,33 0,88 

Liver 13,12 4,03 

Spleen 7,66 3,23 

L Kidney 5,91 2,26 

Bladder 3,43 0,87 

Muscle 0,50 0,34 

Tumor 7,00 3,98 

Table 5.[64Cu]12 retention in different 
tissues with intraperitoneal injection, 
mean value and standard deviation 
(n=3). 

 

 

Activity after 24 hours proportionally decreased in all tissues as a result of probe 

excretion. Except for the SC injection, where most of the radioactivity remained 

trapped in the injection site, no sign of bioaccumulation was evidenced, neither 

in the IV nor in the IP administration. 
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Figure 27. Biodistribution of [64Cu]12 (n=3) after 3h comparing different type of injection; c) 
Biodistribution of [64Cu]12 (n=3) after 24h comparing different type of injection. 
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2.3.10 In vivo efficacy evaluation 

Fifteen Balb/c mice were inoculated with 10,000 4T1-FLUC cells in the left mammary 

fat-pad. Two weeks post cell inoculation, tumors were palpable, and the mice were 

randomly divided into three groups. Tumor sizes were measured via caliper and via 

bioluminescence imaging (BLI). Given the favorable biodistribution profile which 

maximizes tumor uptake, i.p. injections were chosen as method of administration of 

the DDS. The three groups were treated twice a week i.p. with: A) vehicle (PBS solution), 

B) DDS 1, 5 mg/kg and C) combination of doxorubicin and metformin (2 mg/kg and 1.29 

mg/kg, respectively). Measurements of tumor size with caliper and by BLI suggested 

that the group treated with compound 1 had an initially slower growth rate (after 2 

weeks of treatment) with respect to vehicle and drug combination groups (the 

overlapping of error bars made these differences not statistically significant). The 

difference in average tumor size was visible until the third week of treatment when the 

first mice of vehicle groups reached end point. Between the second and the third week 

of treatment, an increase of the tumor growth-rate in group B brought the tumor to 

the size of group C. Within three weeks all mice treated with vehicle reached end-point 

(Figure 28 A and B). Treatment with the drug combination extended the life by 1 week 

and 2 days in 20% of the mice. The DDS-treated group showed the longest life 

expectation with the last mouse reaching end-point after 35 days (Figure 28 C). 

Although no long-term survivors were found, DDS 1 was able to increase the 

intermediate survival and showed improved efficacy compared to the unsupported 

drugs. During the treatment period, no side effects were observed in the mice treated 

with the nanotubes; on the contrary, mice treated with the combination of free drugs 

showed granulation at the injection site. 
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Figure 28. Tumor size comparison at different time points based on caliper measurement; b) BLI 
measurements of tumors after three weeks of treatment; c) survival curve of the three group of mice 
treated with vehicle, combination of drugs and DDS 1. 

 

2.3.11 Study of target engagement with [18F]FAZA  

FAZA imaging of hypoxia was reported, as discussed above, to be a useful tool to 

identify hypoxic tumor. This characteristic can be also exploited to evaluate if 

metformin, inhibiting OxPhos, was able to reverse hypoxic tumor to a normal 

oxygenated state. Since the hypnotized mechanism of action of Met is, actually, to 

inhibit OxPhos, FAZA may confirm the target engagement on the 4T1 hypoxic tumor 

model. Nine Balb/c mice were inoculated with 10,000 4T1-FLUC cells in the left 

A) 

B) C) 
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mammary fat-pad. Three weeks post implantation, tumors were palpable, and the mice 

were randomly divided into three groups. Tumor sizes were measured via caliper and 

via bioluminescence imaging (BLI). Firstly, was evaluated FAZA uptake in the tumor, 

comparing 4T1 with historical data on the A375R melanoma model: the mean values 

for both cell lines are close, in 4T1 tumor the data are less dispersed than A375R. 

 

 

The evaluation of target engagement was carried out as follows.  

- Day O injection of [18F]FAZA on each group and measurement of tumor to 

muscles ratio via PET imaging. Then mice were treated with vehicle, DDS 1 5 

mg/kg or metformin 250 mg/kg. 

Day 1 injection of [18F]FAZA on each group and measurement of tumor to muscles ratio 

via PET imaging. 

  

Figure 29.  Comparison of baseline FAZA uptake on 4T1 and A375R tumor bearing mice. 
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Data were reported as the fold change of FAZA uptake, expressed as T/M, on Day 1 

versus Day 0. A decrease in FAZA uptake, as expected in the event of target 

engagement, should yield a value <0. Vehicle treated mice should average around zero. 

As seen in Figure 30 vehicle treated mice showed no variation in FAZA uptake, 

validating the experimental data. Unfortunately, neither unsupported Metformin or 

DDS 1 gave the expected reduction in FAZA uptake (Figure 30). The absence of FAZA 

reduction could be explained by multiple factors. On one hand, the absence of FAZA 

reduction with free Met did not allow us to validate the experimental protocol. This 

lack of effect is probably due to the time point chosen for the observation. Met, as most 

of small molecules, has a fast pharmacokinetic, the highest retention peak is reported 

after 2 hours, and the body clearance is almost completed after 5 hours through 

glomerular filtration.113,114 All considered, it is unlikely that an effect could be seen 24h 

after administration, when the second PET/CT scan was performed. However, based on 

our previous pharmacokinetic studies, DD1 was known to have the highest uptake in 

the tumor 24h post treatment. The 24h time point seemed more logical for a direct 

comparison.  

  

Figure 30.  [18F]Faza tumor to muscle ratio at Day 1 . 
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On the other hand, Met is linked onto DDS1 covalently and, in order to have an effect, 

it is supposed to be cleaved from the nanosupport and reach the mitochondria where 

it can exert its inhibitory activity. This might not happen, and the intact DDS1 is unlikely 

to be able to react the mitochondria and inhibit Complex-1 with its Met load.  

Take home lesson is that drugs loaded on these supports need to have a clear release 

mechanism, otherwise are unlikely to work. This has been taken into account in the 

design of the second generation of DDS. 

 

2.4 Conclusions of Chapter 2 

 

The second part of this work was focused on the study of pharmacokinetic and in vivo 

efficacy of the multimodal DDS 1. For these purposes the synthetic procedure for the 

preparation of the nanocarrier was modified to introduce the ligand necessary for the 

radiolabeling. The cycloaddition of nitro acetamides was found to be a useful reaction 

to decorate CNTs without using a metal catalyst. Such condition is particularly 

important in the preparation of substrates for the labeling with radiometals, because 

the presence of metal residues, even in traces, could affect negatively the radiolabeling. 

Using the amine group, introduced with the cycloaddition, DOTA or NOTA 

functionalized DDS were prepared. A strategy for the labeling using Cu-64 and Ga-68 

was developed and fine-tuned, and the effect of the labeling reaction on the Dox, 

supramolecular loaded, was negligible. The biodistribution was studied on 4T1 tumor 

bearing mice as function of time and type of injection: intravenous injection provided 

the classical pharmacokinetic profile observed with nanoparticles, with liver being the 

main organ of accumulation. The comparison of different probes confirmed the 

reliability of the results obtained. Subcutaneous injection showed a low efficiency in 

the biodistribution with most of the tracer stacked in the site of injection, however 

tumor uptake comparable with the intravenous injection was observed. Surprisingly, 



― Chapter 2 ― 

 
61 

 

intraperitoneal administration provided a dramatic change in the pharmacokinetic: 

lung uptake was strongly reduced, also liver accumulation was reduced, and more 

important tumor uptake was increased. 

The efficacy was evaluated on 4T1 tumor bearing mice: this challenging cancer model 

was selected because it was reported to respond to doxorubicin, to be OxPhos 

dependent and to overexpress biotin receptors. DDS 1 compared with combination of 

DOX and Met was able to extend survival of 1 week for the 20 % of mice treated. Even 

though this result could seem not impressive, it should be stressed that the tumor 

model is very aggressive and metastatic, generally hard to be treated even with 

immunotherapy. 

Finally, target engagement of metformin with OxPhos Complex-1 using [18F]Faza 

imaging of hypoxia was attempted, but not successful. This might be due to several 

facts: Met might not be released promptly from the nanosupport, or Met covalently 

bound to CNTs might not exert its inhibitory ability, or, finally, the timing of observation 

was not ideal, given that no FAZA reduction was observed in the group of mice treated 

with free metformin. 
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2.5 Summary and final consideration 

 

Achieved goals: 

- A multimodal DDS bearing two different drugs (doxorubicin and metformin) 

and a selector (biotin) was synthesized and characterized. 

- The in vitro efficacy was studied toward two different cell lines. 

- The DDS synthesized was modified to introduce two different ligands suitable 

for the labeling with Ga-68 and Cu-64  

- The labeling protocol was finely-tuned and the effect of the labeling reaction 

on the DOX was evaluated. 

- The pharmacokinetic was studied using PET/CT as function of the radiometal 

and the type of injection: intravenous, subcutaneous and intraperitoneal. 

- The in vivo efficacy was evaluated. 

- Target engagement on OxPhos dependent tumor in vivo was investigated. 

 

Despite that nanomedicine applications of CNTs were extensively studied, there is still 

room available for further investigation. The results showed in this work sustain the 

biocompatibility of these materials after opportune functionalization and pose the 

basis for a second generation of CNTs aimed to overcome the critical issues 

encountered. We are currently working on the synthesis of a second generation of DDS 

bearing a highly toxic drug covalently bound to CNTs through a self-cleavable linker. 

The biocompatibility of our short OxCNTs will be further increased by surface 

modifications, and high-performance selectors will be loaded to greatly increase the 

selectivity of the system for selected tumor types. The drug release, the receptor 

mediated internalization and efficacy will be assessed in vitro before moving to the in 

vivo studies. 
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3.1 Experimental section  

 

3.2 Materials and Methods 

 

MWCNTs were purchased from Sigma-Aldrich, O.D. x L.= 6-9 nm x 5 µm, carbon > 95%, 

CoMoCat©, NOTA-NCS was purchased from Macrocyclics Inc. All the other reagents, 

whose synthesis is not described, were commercially available and have been used 

without any further purification, if not specified otherwise. Rf values are referred to TLC 

on silica gel plate (0.25 mm, Merck silica gel 60 F254). NMR spectra were recorded on 

Varian Gemini 200 MHz or Varian Mercury 400 MHz at room temperature. Chemical 

shifts were reported in parts per million (ppm) relative to the residual solvent peak 

rounded to the nearest 0.01 for proton and 0.1 for carbon (reference: CHCl3 [1H:7.26, 

13C:77.0], DMSO [1H:2.50, 13C:39.7], MeOH [1H:3.35, 13C:49.3]. Coupling constants J 

were reported in Hz to the nearest 0.01 Hz. Peak multiplicity was indicated as follows s 

(singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad signal). IR 

spectra were recorded on a Perkin-Elmer FT-IR 881 or Shimadzu FT-IR 8400s or 

Shimadzu IRAffinity-1s spectrometer. IR data are reported as frequencies in 

wavenumbers (cm-1). Mass spectra were recorded on a Thermoscientific  LCQ-Fleet. 

UV-Vis spectra were recorded on Varian Cary 4000 Uv-vis spectrophotometer using 

1cm cell or a BioTeK Synergy H4 microplate reader. Fluorescence spectra were 

registered on a Jasco FP750 spectrofluorimeter using 1 cm cell. Thermogravimetric 

analysis (TGA) are run under N2 atmosphere (50 or 100 mL min-1) on an EXSTAR Seiko 

6200 analyzer coupled with a ThermoStarTM GSD 301T (TGA-MS) for MS gas analysis 

of volatiles. Elemental analyses were performed with a Thermofinnigan CHN-S Flash 

E1112 analyzer. ICP analysis was made using an Optima 2000 Perkin Elmer Inductively 

Coupled Plasma (ICP) Dual Vision instrument after acidic mineralization. TEM images 

were acquired at the electronic microscopy center CNR Florence (CE.M.E.) with a Philip 
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CM12 with CRYO-GATAN UHRST 3500 technology, digital camera and EDAX 

microanalysis. Radio-TLCs were run on Instant Thin Layer Chromatography Medium 

(iTLC) chromatography paper (Agilent) and read on an AR-2000 radio-TLC Imaging 

Scanner (Bioscan Inc.). PET/CT images were recorded on a Bruker Albira PET/CT/SPECT 

Preclinical Imaging System and reconstructed using an iterative MLEM algorithm. Ga-

68 and Cu-64 were acquired as HCl solutions from the MD Anderson Cyclotron 

Radiochemistry Facility (CRF). 

 

3.3 Synthetic procedures 

 

3.3.1 Oxidation of Multiwalled Carbon Nanotubes 

Pristine nanotubes (500 mg) were dispersed in a 3:1 mixture of 95% sulfuric acid and 

65% nitric acid (30 mL) and heated at 100°C under stirring for 30 minutes. The mixture 

was cooled at room temperature and quenched with 130 mL of milliQ water, the 

obtained solution was centrifuged at 1500 rcf (relative centrifugal force) for 30 minutes, 

the supernatant was removed, and the precipitate dispersed with milliQ water (130 

mL) and centrifuged again. The CNT slurry recovered from centrifugation (still acidic) 

was filtered on a 0.2 µm polycarbonate membrane and washed with water until neutral 

pH of the filtered solution. The process provided 200 mg of oxidized material, elemental 

analysis: C 79.1%, N 0.15%, H 0.62% and O 20.3%. FT-IR showed the C=O absorption 

peak at 1700 cm-1.  

3.3.2 Separation of Oxidized Carbon Nanotubes by length 

Bulk oxidized CNT (140 mg) were dispersed using ultrasound bath in milliQ water (280 

mL) to obtain a 0.5 mg/mL solution. The solution was centrifuged at 10k rcf for 1h and 

supernatant and precipitate were collected. The supernatant was centrifuged again at 

15k rcf for 1h providing a new precipitate and a new supernatant. The procedure was 
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repeated using the supernatant other 3 times using different G force (20, 25 and 30 K 

rcf) as reported in the figure 6. The supernatant of the 30 k rcf centrifuge was dried and 

65 mg of material 2 were obtained, the length was measured with TEM (Figure 31) 

giving an average value of 130 nm accordingly with the literature.68 

 

Figure 31. TEM image of short ox-MW-CNT 2. 

3.3.3 Synthesis of MET-CNT (3) 

Short ox-CNT (2) (35 mg) were dispersed in freshly distilled oxalyl chloride (10 mL) 

under nitrogen. Then the dispersion was stirred at reflux for 24 h, after that the oxalyl 

chloride was accurately removed under vacuum. The acyl chloride CNT directly 

dispersed in dry DMF (9.5 mL), using an ultrasound bath, metformin (170 mg) was 

added to the dispersion and the mixture stirred at 120 °C under nitrogen for 40 h. CNT-

MET were recovered by filtration over a 0.2 µm nylon membrane washing several times 

with DMF and methanol to remove the unreacted metformin. Metformin loading 

ranged from 1.8 to 2 mmol/g as evaluated from elemental analysis on three different 

samples. 
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3.3.4 Synthesis of 4-azidoaniline (4) 

 

Compound 4 was synthesized from 4-bromoaniline in quantitative yield following a 

procedure reported in the literature.115 

3.3.5 Synthesis of MET-N3-CNT (6) (Tour reaction) 

Material 3 (20 mg) was dispersed in dry DMF (2 mL) and sonicated for 15 minutes, then 

4-azidoaniline (61.5 mg, 0.46 mmol) and isoamylnitrite (38.6 mg, 0.33 mmol) were 

added and the mixture stirred at 60°C under nitrogen for 24 h. CNT 5 was recovered by 

filtration on a 0.2 µm nylon membrane, washing with DMF until a colorless solution 

obtained and then with methanol to remove the unreacted materials. FT-IR peak at 

2100 cm-1 confirmed the azide decoration (Figure 46). 

3.3.6 Synthesis of biotin propargylamide (6) 

 

Compound 6 was synthesized accordingly to a procedure reported in literature with a 

yield of 90%.37 

3.3.7 Synthesis of MET-B-CNT (7) 

Compound 7 was synthesized from material 5 accordingly to a procedure previously 

reported. 37  The biotin content was evaluated measuring the sulfur content via ICP-

AES, biotin was found to be 0.210 to 0.277 mmol/g on different samples. 
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3.3.8 Synthesis (E)-tert-butyl (3-(nitromethylene)-7,10-dioxa-2-thia-4-azadodecan-

12-yl)carbamate 

 

1,1-bis(methylthio)-2-nitroethylene (798.4 mg, 4.83 mmol, 1.2 eq) and p-toluensulfonic 

acid monohydrate (34.7 mg, 0.202 mmol, 0.05 eq) were dissolved in 40 mL of ethanol 

and heated at 35 °C. The solution was added with tert-butyl (2-(2-(2-

aminoethoxy)ethoxy)ethyl)carbamate (1,00 g, 4.03 mmol, 1 eq) dissolved in 13 mL of 

ethanol and the mixture stirred at 35 °C for 72 h. The resulting methyl thiol, developed 

during the reaction, was removed with a nitrogen flow bubbling through bleach. The 

solvent was, finally, removed under vacuum and the product recovered after flash 

chromatography on silica gel. Rf = 0.35 (dichloromethane/ethyl acetate 1:1). 1H-NMR 

(200 MHz, CDCl3): δ = 10.6 (bs, 1 H, NH), 6.57 (s, 1 H, CHNO2), 5.5 (bs, 1 H, NHBoc), 3.69-

3.51 (m, 10 H, 5 x CH2), 3.30 (q, J = 6.3 Hz, 2 H, CH2NHBoc), 2.44 (s, 3 H, CH3S), 1.42 (s, 

9 H, (CH3)3C) ppm. 13C-NMR (50 MHz, CDCl3): δ = 156.0 (s, CO2tBu), 106.6 (d, =CH), 79.1 

(s, (CH3)3C), 70.7 (t, CH2O), 70.3 (t, CH2O), 70.2 (t, CH2O), 68.6 (t, CH2O), 44.2 (t, CH2NH), 

40.4 (t, CH2NHBoc), 28.4 (q, 3 C, (CH3)3C), 14.4 (q, CH3S) ppm. MS-ESI: 388 [M + Na]+. 

HRMS-ESI: calculated for C14H27N3O6S 366.16933 [M + H]+, positive ionization measured 

366.16973 ±  0.0001 [M+H]+.  

3.3.9 Synthesis of tert-butyl (2-(2-(2-(2-

nitroacetamido)ethoxy)ethoxy)ethyl)carbamate (9) 
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Compound 9 was synthesized accordingly to the literature with minor changes.116 (E)-

tert-butyl (3-(nitromethylene)-7,10-dioxa-2-thia-4-azadodecan-12-yl)carbamate (256 

mg, 0.7 mmol, 1 eq) was dissolved in 700 µL of a 3 : 1 acetonitrile/water solution and 

heated at 30°C. Then a solution of mercury chloride (190.19 mg, 0.70 mmol, 1 eq, 1 mL 

of CH3CN) was added dropwise and the mixture stirred at 30 °C for 48 h. The reaction 

mixture was than filtered over celite to remove the solid mercury salts and the product 

recovered after flash chromatography on silica gel. Rf = 0.32 (ethyl 

acetate/dichloromethane 2:1). 1H-NMR (400 MHz, CD3OD) δ  5.20 (s, 2H, CH2NO2), 3.66 

(s, 4 H, OCH2CH2O), 3.63 (t, J = 5.2 Hz, CH2O), 3.56 (t, J = 5.6 Hz, CH2O), 3.48 (t, J = 5.2 

Hz, CH2NH), 3.26 (t, J = 5.6 Hz, CH2NH),  1.36 (s, 9H, (CH3)3C) ppm. 13C NMR (101 MHz, 

CD3OD) δ 164.0 (s, C=O), 158.8 (s, C=O), 80.4 [s, (CH3)3C], 71.6 (t, CH2O), 71.5 (t, CH2O), 

71.4 (t, CH2O), 70.5 (t, CH2O), 41.5 (t, CH2NH), 41.1 (t, CH2NH), 29.0 (q, 3 C, (CH3)3C) 

ppm. IR: 3695 (N-H), 2974 (C-H), 2931 (C-H), 2875 (CH), 1723 (s, C=O, carbamate), 1693 

(s, C=O, amide), 1563 (s, N-O), 1603 (w, N-O), 1392, 1255, 1172 cm-1. MS-ESI: positive 

ionization 358 [M + Na]+, negative ionization 334 [M - H]-. MS-ESI: positive ionization 

358 [M + Na]+, negative ionization 334 [M - H]-. HRMS-ESI: calculated for C13H25N3O7 

m/z = 358.15887 [M + Na]+, positive ionization measured m/z = 358.15847 (± 0.0001) 

[M + Na]+. 

3.3.10 Synthesis of DDS 1 

The loading of DOX was carried out following the procedure already reported.37 For 

characterization see section 4.2. 

3.3.11 Synthesis of material 10 

Material 7 (10 mg) and compound 9 were dispersed in a mixture of methanol and water 

1:1 (1.2 mL) using an ultrasound bath (15 min). Then 12 µL of 4.24 M NaOH were added 

and the mixture stirred five days at 60°C. Material 10 was recovered after filtration on 

a 0.2 µm PC membrane washing with water and methanol to remove all the impurities. 

Loading of protected amine 1.40 mmol/g based on TGA-MS section 4.5 and 6. 
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3.3.12 Synthesis of material 11 

Material 10 (10 mg) was dispersed in 4 M HCl in dioxane sonicating for 5 min then the 

dispersion was stirred for 4 h at room temperature. The acid media was removed by 

precipitating the CNT in centrifuge (15 min at 1500 rcf) and pipetting the supernatant, 

then the material was re-dispersed in isopropanol and precipitated in centrifuge to 

remove any residue of HCl. Then to obtain the free amine group the material was 

dispersed in aqueous 0.01 M NaOH and precipitated in centrifuge using the program 

described above. Finally the material was washed with isopropanol to remove the 

NaOH solution and recovered. The amount of free amine group was evaluated with a 

semiquantitative Kaiser Test, section 4.4.  

3.3.13 Synthesis of DOTA-OSU 15 

 

Tri-tert-butyl ester DOTA (40 mg, 0.0698 mmol, 1eq) was dissolved in 1 mL of dry 

acetonitrile, then 5 mg of N-hydroxi-succinimide (0.039 mmol, 1.1 eq) and HBTU 14.8 

mg (0.039 mmol, 1.1 mmol) were added and the mixture stirred under nitrogen for 24 

h. The product purified by flash chromatography on alumina gel (ethyl acetate: 

acetonitrile 4:1, Rf 0.8). Yield 30%. 1H NMR (400 MHz, CDCl3) δ = 3.6 to 2 ppm (serie of 

broad peaks 28H) and 1.44 ppm (s, 27H t-Bu).13C NMR (101 MHz, CDCl3) δ = 173.3 (3C, 

COOtBu), 173.1 (COON), 169.8 (CON), 82.3 (3C, Cq), 55.9 (CH2COON), 55.7 (3C, 
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CH2COOtBu), 53.2 (2C, CH2 succinimide), 38.7 (4C, CH2N macrocycle) and 28.0 ppm (3C, 

CH3 tBu). ESI-MS+ m/z= 692.50 [M+Na]+. 117 

3.3.14 Synthesis of DDS 12 

Material 11 and DOTA-OSU 15 in ratio 1.5:1 in weight were dispersed in dry, amine 

free, DMF (900 µL) under nitrogen and sonicated for 5 min. Then TEA was added, and 

the mixture stirred for 48 at room temperature under nitrogen. Then crude mixture 

was diluted with 5 mL of methanol and centrifuged for 15 min at 1500 rcf, the 

supernatant removed and replaced with 15 mL of fresh methanol. The procedure was 

repeated twice then the solid was washed with 40 mL of a 1:3 mixture of 

methanol/isopropanol and, finally, isopropyl ether. The products were characterized 

via TGA-MS. Then t-butyl groups were removed by suspending the product in a solution 

of trifluoroacetic acid/acetonitrile 2:1 (10 mg/mL conc.) and stirring at room 

temperature for 5 h. Then the solution was diluted with acetonitrile, filtered over PTFE 

membrane (0.2 µm pores), and washed firstly with methanol and then with phosphate 

buffer solution at pH 7.4 to neutralize the residual acidity. Finally, Doxorubicin was 

loaded as reported in point 2.1 and quantified as reported in point 4.2 and 4.6.  

3.3.15 Synthesis of DDS 13 

DDS 13 was synthesized with the same protocol of DDS 12 with the exception that 

NOTA-Bn-NCS (Macrocyclics inc.) was used instead of compound 15, and the 

doxorubicin was directly loaded on the coupling product . For characterization see point 

4.2 and 4.6. 

3.3.16 Synthesis of DDS 14 

DDS 14 was prepared according to a previously reported protocol68 starting from short 

ox-CNT. For characterization see point 4.6.  
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3.4 Radiochemistry  

 

3.4.1 Formation of the 68Ga-NOTA-CNTs-MET complex 

68Ga eluate (567 µCi, 200 µL) was buffered at pH 5.6 with sodium acetate buffer 1 M 

(35 µL), then CNTs-NOTA-Met (50 µL of 1.5 mg/mL solution) was added. The mixture 

was kept at 37°C for 10 minutes, quenched with 380 µL of PBS. Chelated metal 100%. 

Radioactive yield 65% not decay corrected. 

3.4.2 Formation of the 68Ga-NOTA-CNTs-MET-DOXO complex 

Ga-68 eluate (0.05M in HCl, 370 µCi, 100 µL) was buffered at pH 5.6 with sodium 

acetate buffer 1M (35 µL), then material 13 (83 µL of 1.5 mg/mL solution) was added. 

The mixture was kept at 37°C for 10 minutes, quenched with PBS (380 µL) and the 

efficiency of the labeling monitored by iTLC (PBS). [68Ga]13 was obtained with a 93.5% 

radiochemical purity and radioactive yield 60% (not decay corrected). 

3.4.3 Formation of the [68Ga]DOTA-CNTs-MET-DOXO complex 

The standard complexation conditions required heating at 85°C due to the different 

size of Ga(III) ions respect to Cu(II),94,107,118,105 a temperature not compatible with the 

presence of the DOX-CNT complex. For this reason, the procedure was modified 

lowering the temperature. Ga-68 eluate (0.05 M in HCl, 370 µCi, 100 µL) was buffered 

at pH 5.6 with sodium acetate buffer 1M (35 µL), then material 12(50 µL of 1.5 mg/mL 

solution) was added. The mixture was kept at 37 °C for 10 minutes and quenched with 

PBS (380 µL) with an efficiency of 70%. The free metal was removed in centrifuge, the 

CNT were precipitated, and the supernatant replaced with fresh PBS 3 times, after 

purification the sample reached 95% of radiochemical purity with a radioactive yield 

60% not decay correcte 
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3.4.4 Formation of the [64Cu]DOTA-CNTs-MET-DOX complex 

Cu-64 solution (0.1M in HCl, 1 mCi, 1 µL) was buffered at pH 5.6 with sodium acetate 

buffer 1M (50 µL), then material 12 (20 µL of 1.5 mg/mL solution in water) was added. 

The mixture was kept at 37°C for 30 minutes, quenched with 430 µL of PBS. Chelated 

metal 93.5%. Radioactive yield 77.2% not decay corrected. 

3.4.5 Radiosynthesis of [18F]FAZA 

Starting material 1-(2,3-diacetyl-5-tosyl-(α-D-arabinofuranosyl)-2-nitroimidazole 

was purchased from ABX GmbH (Germany) and all other reagent were acquired 

from Sigma-Aldrich (Merk). Purification was performed using Luna C18 5 µm 250 

mm x 10 mm semipreparative HPLC column. Radiochemical and UV purities were 

assessed by analytical HPLC using Econosyl C18 10 µm 250mm x 4.6 mm column. 

The HPLC method for quality control was: A) 10 mM NaH2PO4, B) MeCN; % B: 5 for 

3 min, 5 to 90 in 12 min, 90 to 5 in 2 min, 5 for 3 min. [18F]FAZA retention time was 

10.0 min. [18F]FAZA was obtained in 50 min, with 99% of purity and a radioactive yield 

of 27% not decay corrected. 

 

3.5 Characterization of the synthesized compounds  

 

3.5.1 General procedure for the quality control of the labeling reactions 

The quality control was accomplished via Instant Thin Liquid Chromatography (iTLC), 1 

to 3 µL of the reaction mixture were diluted with 100 µL of EDTA 0.1 M in PBS to chelate 

all the free metal, a 3-5 µL drop was eluted with PBS on iTLC paper and the strip read 

with the iTLC scanner. The radiolabeled CNT stay at baseline and the free metal move 

with the front of the solvent. The instrument displays the results as a chromatogram. 

The quantification was done integrating the area under the peaks.   
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3.5.2 Quantification of Doxorubicin loading 

The quantification was made measuring the UV-Vis absorption (peak at 480-490 nm) 

of the non-loaded DOX after work-up, and back-calculating the concentration with a 

calibration curve, as reported in the literature.119–121 

The calibration curve was built reading the absorbance of five solution at different 

concentration as reported in the table of Figure 32. 

 

Figure 32. Calibration curve of doxorubicin used for the quantification of the loading of CNT, equation 

y=14.78488+0.00226, r2=0.99985. 

Conc. mg/mL Abs 

0,0015 0,024 

0,006 0,093 

0,012 0,183 

0,024 0,353 

0,048 0,714 

 

The solutions of work up were collected and dilute to known volume, then the 

absorbance was measured and the concentration back-calculated giving the amount of 

non-loaded DOX. The loading on the nanotube was calculated by difference between 

the non-loaded and the used DOX. 

 

3.5.3 Doxorubicin loss during the labeling 

The loss of doxorubicin during the labeling reaction was quantified by UV-Vis 

absorption spectroscopy. A stock solution of CNTs-MET-B-DOX 1 in PBS 1.5 mg/mL was 

prepared, then 200 µL of this solution were buffered at pH 5.6 with 400 µL of sodium 

0,00 0,01 0,02 0,03 0,04 0,05

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
Doxorubicin Calibration Curve 

A
b

s

Conc. (mg/mL)

 Abs

 Linear Fit



― Chapter 3 ― 

 
74 

 

acetate buffer 1M and heated at 37°C for 1 h. Aliquots of 100 µL of the reaction solution 

were collected after 10, 20, 30 and 60 minutes and quenched with 100 µL of PBS. The 

nanotubes were precipitated in centrifuge and the absorbance of the supernatant was 

measured. 

 

Figure 33.  Doxorubicin UV-Vis calibration curve for DOXO loss experiment, equation: 
y=1.81497x0.00106, R2=0.99548. Error bars, where not visible, are smaller than symbols. 

Conc.  

mg/mL 

Abs STDV 

0,093 0,174 0,01391 

0,049 0,09 0,00589 

0,025 0,044 9,43E-4 

0,013 0,024 0,00309 

0,006 0,013 0,00471 

0.001 0 0,00455 

 

DOX loss was quantified to be around 15 % during the reaction time, this loss should 

not affect the biodistribution, providing a pharmacokinetic profile similar to the original 

DDS. 

   

0,00 0,02 0,04 0,06 0,08 0,10

0,00

0,05

0,10

0,15

0,20

 Abs

 Linear Fit

A
b

s

Conc. (mg/mL)

Doxo loss calibration curve



― Chapter 3 ― 

 
75 

 

 

Figure 34. Doxorubicin loss at pH 5.6 and 37°C at different time point. 

Time min Abs Conc. Dox loss % 

10 0,027 0,030 14,8 

20 0,028 0,032 15,7 

30 0,029 0,034 16.7 

60 0,031 0,036 17.6 

 

3.5.4 Kaiser test45,63 

The Kaiser test was carried out following a reported procedure. Three solutions were 

prepared:  

A. 500 mg of ninhydrin in 10 mL of ethanol. 

B. 80 mg of phenol in 20 mL of ethanol. 

C. 2 mL of 0.001 M potassium cyanide dilute to 100 mL with pyridine. 

The calibration curve was built using a stock solution of L-valine 1.5 mg/mL in ethanol 

and taking different aliquots and adding different volumes of the reactive solutions: 

A. 75 µL 

B. 75 µL 

C. 100 µL 

The obtained solution was heated at 120°C for 10 minutes, then diluted to 0.5 mL of 

volume with milliQ water and absorbance at 580 nm of each solution was measured. 

0 10 20 30 40 50 60

60

80

100

D
o

x
 b

o
u

n
d

 (
%

)

Time (mins)

 Dox bound



― Chapter 3 ― 

 
76 

 

Vol. µL mg mmol mmol/mL Abs STDV 

66 0,099 0,000845 0,00169 3,864 0,09728 

33 0,0495 0,000423 0,000845 1,885 0,05915 

16 0,024 0,000205 0,00041 0,938 0,01127 

8 0,012 0,000102 0,000205 0,333333 0,00862 

4 0,006 5,12E-05 0,000102 0,146333 0,00764 

2 0,003 2,56E-05 5,12E-05 0,060333 0,00493 

 

Figure 35.UV-vis calibration curve Kaiser Test equation: y= 2338.3744x+0.02549, R2=0.98253. Error 
bars where not visible are smaller than symbols. 

 

Measurements on Materials 

Material Abs M mmol mmol/g of NH2 

11 0.099 7,75E-05 3,87677E-05 0.129 

13 0.088 7.32E-05 3.66E-05 0.120 
Table 6. Quantification of amine group on materials 11 and 13 through semiquantitative Kaiser-test. 

 

3.5.5 General procedure to calculate the payload from TGA-MS spectra 

The amount of payload was calculated from spectra using a graphical approach: the 

time-point for the weight loss due to the decoration was evidenced by the isobutene 
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peak in the MS spectrum, then it was measured as percentage directly from the TGA 

spectrum. From the weight loss % the mmol of the functionalities were calculated 

dividing by the molecular weight of the fragment and finally expressed as mmol/g of 

material. TGA spectra are reported in section 6. 

 

3.5.6 Characterization of final materials 

Characterization of materials was accomplished using different techniques: 

- metformin loading was evaluated measuring the increment of nitrogen 

content before and after functionalization using elemental analysis. 

- Biotin functionalization was estimated measuring the increment of sulfur 

content using ICP-AES. 

- Doxorubicin loading was estimated using UV-Vis as described above. 

- DOTA was quantified by TGA-MS analysis. 

- NOTA was quantified indirectly measuring the drop of free amine groups with 

the Kaiser Test. 

Construct Metformin 
mmol/g 

Biotin 
mmol/g 

Doxorubicin 
%wt 

DOTA 
mmol/g 

NOTA 
mmol/g 

11 2.00 0.21 41.6 - - 

12 1.82 0.137 38.9 0.1 - 

13 1.82 0.228 40 - 0.01 

14 - 0.27 38.6 - - 
Table 7. Characterization of compounds 11 to 14. 

 

3.6 Biological studies 

 

3.6.1 In Vitro studies of toxicity  

Cytotoxic effects of CNTs loaded with metformin, doxorubicin, or both drugs, were 

evaluated by using the MTT method. MCF7 and 4T1 cancer cell lines were seeded in 96 
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multiwell plates and then treated with increasing concentration of CNTs for 48 hours 

at 37°C. After this time, cells were extensively washed with PBS and incubated in the 

presence of 0.5 mg/ml MTT dye (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) for 2 hours at 37°C. Insoluble crystals obtained were dissolved by adding 

DMSO to plate dishes. The absorbance of samples was quantified by using a microplate 

reader (Biorad) measuring the absorbance of samples at 570 nm. All experiments were 

carried out in triplicate. Data reported in the figure represent the mean values ± S.E.M.   

 

3.6.2 In Vivo stability of [64Cu]CNT-DOTA and [68Ga]NOTA-CNT complexes. 

 Samples of blood and urine were collected 1.5 h after injection, samples of blood were 

diluted with 30 µL of PBS and 10 µL of the obtained solution dropped on the iTLC strip; 

urine samples were directly deposed (10 µL) on the strip. The iTLC strip were eluted 

with an EDTA 0.1M solution and then read to measure the amount of bound metal. 

 

3.6.3 PET/CT imaging of tumour bearing mice and analysis 

Mice were briefly anaesthetized (<5 min) using 1% to 2% isoflurane with O2 as a carrier. 

Mice were injected i.v., i.c. or i.p. with of [64Cu]12 or [68Ga]13 in sterile phosphate-

buffered saline (PBS) with a target of 3.7 MBq per mouse. Actual injected dose was 

calculated based on measuring the pre- and post-injection activity in the syringe with a 

dose calibrator (Capintec). Mice were then returned to their cages, quickly became 

ambulatory and could move freely, eat and drink ad libitum for ~45 min. Mice were 

then anaesthetized using 1% and 3% isoflurane, transferred to a pre-clinical 

PET/SPECT/CT system (Albira PET/SPECT/CT, Bruker) and maintained at 0.5% to 2% 

isoflurane with continuous monitoring of respiration during the acquisition. PET images 

were acquired for 10 min using a 15 cm FOV centered on the tumour; CT images were 

acquired for fusion using a 7 cm FOV also centered on the tumour. The same procedure 

was repeated for the 3h, 24h and 48 h PET/CT scans. The 10 min PET/CT dynamic scan 
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was recorded immediately after injection of the tracer, and then mice were allowed to 

awake and freely move around their cages until the 3 h time point. Images were 

reconstructed using MLEM and FBP for PET and CT, respectively, and automatically 

fused by the software. Image data were decay corrected to injection time (Albira, 

Bruker) and expressed as %ID/cc (PMOD, PMOD Technologies). Tumour-to-muscle 

ratios (T/M) were calculated by dividing the activity present in the tumour by the 

activity present in the muscle. 
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Figure 36. Biodistribution at 3 h post injection using the two different labelled materials and 
intravenous injection. 
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Figure 37. Biodistribution at different time point of [64Cu]12 after intravenous injection. 

 

3.6.4 Treatment 

15 Balb/c mice (Taconic) were implanted with 10K 4T1 Fluc-GFP tumors using 

an orthotopic implantation procedure to create a syngeneic immunocompetent 

model of triple negative breast cancer.  Two weeks subsequent to implantation 

mice were treated, ip, twice weekly with either vehicle (PBS (Sigma Aldrich) ), 

metformin+ dox (2 mg/kg) or DDS 1 (5 mg/kg).  Tumor long and short axis were 

measured weekly and tumor volume calculated at 0.5*(long axis x short axis^2) 

.  12 days post treatment mice were imaged for bioluminescence signal (IVIS 

SPECTRUM, Perkin Elmer).[cite any one of our other papers].  Mice reached 
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endpoint as defined by IACUC protocol 00001179 with tumor burden >= 1.5 or 

moribund status as determined by veterinary staff.  
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3.7 Supplementary Figures and Schemes 
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Figure 38. TGA of material 7 (Red) and material 10 (Black). 
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 Figure 39. TGA of CNT-DOTA-tertbutyl ester and material 11. 
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Figure 40.  1H-NMR of (E)-tert-butyl (3-(nitromethylene)-7,10-dioxa-2-thia-4-azadodecan-12-
yl)carbamate. 

 

 
Figure 41. 1H-NMR Compound 9. 
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Figure 42. 13C-NMR Compound 9. 

 
Figure 43. 1H-NMR (400 MHz) of DOTA-OSU 15. 
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Figure 44.13C-NMR (100 MHz) of DOTA-OSU 15. 

 

 
Figure 45. FT-IR spectrum of CNT-Met adduct 3. 
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Figure 46. FT-IR of CNT-Met-N3 6. 

 

 

 
Figure 47. Metabolism ITLC quality control of [64]Cu12 materials in blood A,B and urine C, 1 h post 
injection. 
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Side-Projects 

 

5.1 Nanostructured carbon materials decorated with 

organophosphorus moieties: synthesis and application 

 

Introduction 

The term of carbon nanomaterial (CNMs) comprises many different allotropic species 

of carbon, fullerene, carbon nanotubes and graphene being the most studied and used. 

Since their discovery 2,122,123, they have become very attractive for researchers, due to 

their peculiar physical and chemical proprieties such as chemical and thermal stability, 

electronic conductivity, and their nanometric dimensions that prompted their 

application in chemistry of materials 124 Furthermore, their functionalization with an 

increasing number of molecular moieties 3,125 has extended their use in new fields 

ranging from biology 126 to catalysis. Despite such variability, the classes of reactions 

most used for their functionalization are the same and limited in number. The Tour 

reaction127 is one of the most used synthetic approach for the functionalization of CNTs 

and G. In this reaction, an aniline derivative is transformed into a diazonium salt that, 

upon decomposition, affords a radical species, responsible for the functionalization of 

the graphitic surface.71 A useful alternative to this approach is the reaction of azido 

derivative with CNMs: the high temperature required for the process decomposes the 

azido group to a reactive nitrene species that reacts with the graphitic surface to form 

an aziridine ring. 128 Finally, the use of the CuAAC reaction, 129 between an azide group 

and a terminal alkyne, has revealed a practical synthetic approach for the decoration 

of CNMs with a variety of molecular moieties.130,131 In this work, we present our results 

in the functionalization of oxidized MWCNTs 4 and multilayer graphene platelets(GPs) 

5 132 using amino- or azido-functionalized triphenylphosphine oxides 1 and 2 and the 

terminal alkyne 3 (see figure 1). 
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Figure 1. Structure of phosphine oxide derivatives 1-3, of ox-MWCNTs 4 and of GPs 5. 

 

Such work led to the production of phosphine oxide substituted CNMs. A limited 

number of works describe the introduction of phosphorous moieties onto CNMs. 

Muleja et al synthesized a MWCNTs-TPP system modifying the nanotube with the 

introduction of a phenyl bromide group via diazonium coupling and then of the 

phosphinating reagent. 133 Hamilton et al. described the functionalization of carbon 

nanotube with triphenyl phosphine oxide (TPPO) using the carboxylic group, 

introduced with the oxidation, to covalently link the TPPO. 134 Only one example 

describes the functionalization of a graphene based material with a phosphine. The 

authors report the synthesis, characterization and test of palladium nanoparticles 

supported on phosphine decorated graphene oxide.135 The interest in the introduction 

of a phosphine oxide group in CNMs is due to its ability to promote a wide varieties of 

chemical transformation.136 Phosphines have found large application in organocatalytic 

processes137,138 and, recently, also triphenyl phosphine oxide (TPPO) have found similar 

application.139–142 Despite their utility, very few examples of heterogeneous catalysts 

are described. One example was reported by Tang, who developed a phosphine oxide 

derivative linked to a polystyrene resin. 143 For this reason, a new class of phosphine 

oxide functionalized CNMs can be of interest. Not to say of the wide possibilities offered 
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by the production of metal nanohybrid upon complexation of metal nanoparticles or 

metal ions by the phosphine functionalities.144 

 

Results and Discussion 

The CNMs substrates used for this study are oxidized MWCNTs 4 and GPs 5. The 

oxidation of pristine MWCNTs 145,146 afforded an easily dispersible material and 

removed any possible metal impurities present in the starting substrate. GPs were used 

as example of easily accessible and low cost graphitic material (see experimental 

section). The first functionalization studied was the reaction of (4-aminophenyl) 

diphenylphosphine oxide (1) with the two substrates 4 and 5 (figure 2). 

 

Figure 2. The Tour reaction applied on CNMs 4 and 5. 

 

This reaction was carried out using the well described Tour protocol 147,148: the 

nanomaterials and 1 were dispersed in DMF, then isopentyl nitrite was added and the 

mixture kept at 80°C for 24 h. The ox-MWCNTs derivative 6 was isolated through 

filtration over a 0.2 µm PTFE membranes followed by repeated washings with different 

solvents to remove excess reagents, while the GPs 7 was recovered after several cycles 

of centrifugation and dispersion.  

Subsequently, substrates 4 and 5 were reacted with the azido derivative 2 (Figure 3). 
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Figure 3. The [1+2] nitrene cycloaddition on CNMs 4 and 5. 

 

The mixture of the reagents in dichlorobenzene was kept in the ultrasound bath for 25 

min, to obtain a homogeneous dispersion, and subsequently stirred at 165°C for four 

days. 128,4,149 Again, CNTs derivative 8 was more easily isolated by filtration and repeated 

washing for complete removal of the excess reagents while GPs-Nit-PO derivative 9 was 

recovered using cycles of centrifugation and re-dispersion of the carbon material in 

a 1:1 isopropyl ether-isopropanol solution.  

The decoration of the carbonaceous substrates, 4 and 5, with (4-ethynylphenyl) 

diphenyl phosphine oxide (3), via the CuAAC reaction, required their previous 

modification with the introduction of azido groups. For this purpose, CNMs 4 and 5 

were reacted with 4-azido aniline 10 following, again, the Tour protocol affording 

compounds 11 and 12 (figure 4). 150 

The successful decoration of NMs 11 and 12 was confirmed by elemental analysis and 

IR spectroscopy (see experimental section figure 19 and 20) and, finally, they were 

reacted with compound 3 to afford the functionalized compounds 13 and 14 (figure 4). 
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Figure 4. The Tour reaction with 4-azido aniline (10) on CNMs 4 and 5.and the subsequent CuAAC 
reaction. 

 

The characterization of each material produced was performed via elemental analysis, 

Inductively Coupled Ion Plasma Atomic Emission Spectroscopy (ICP-AES) analysis, IR 

and Raman spectroscopy, XPS analysis. Elemental and ICP analyses were useful for the 

determination of the loading after each chemical transformation. For example, the % 

content of nitrogen in compounds 8 (1.32 %) and 9 (0.42 %) suggested a loading degree 

for 8 (0.58 mmol/g) and 9 (0.3 mmol/g). The values obtained for 11 and 12 indicated a 

functionalization degree of 1.63 mmol/g and 0.075 mmol/g, respectively. The presence 

of the azido group in 11 and 12 was confirmed by the signal at 2118 cm-1 in the FT-IR 

spectra (see supporting material, figures S9 and S10). The ICP-AES was used to 

determine the amount of phosphorus in the complex matrix. The samples were 
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previously mineralized by treatment with nitric acid and a hydrogen peroxide solution 

at high temperature in microwave. The data obtained are reported in Table 1. 

 

Entry Compound 
ICP-AES 

P % 
mmol/g P 

1 4 - - 

2 5 - - 

3 6 1.26 0.40 

4 7 0.27 0.09 

5 8 1.81 0.58 

6 9 0.61 0.20 

7 13 0.85 0.27 

8 14 0.06 0.02 

Table 1: ICP-Analysis results and P loading. 

 

From the data reported in Table 1 it is evident the higher reactivity of Ox-MWCNTs 4 

(entries 3, 5 and 7) respect to GPs 5 (entries 4, 6 and 8) as it was expected considering 

the different nature of the two substrates.151 For both series of reactions, the higher 

efficiency was found for the nitrene cycloaddition (entries 5 and 6) followed by the Tour 

reaction (entries 3 and 4). The decoration using the CuAAC reaction (entries 7 and 8) 

revealed the less efficient. To be noted that this is not due to a poor content in the 

azido component (se data for compounds 11 and 12) but to the low reactivity found in 

the CuAAC step. To be noted is the good agreement for the loading values obtained 

with the elemental analysis (see earlier) and with the ICP AES analysis for compound 8 

and 9 (table 1, entry 5 and 6). X-ray photoelectron spectroscopy analysis showed the 

presence of the P (V) atoms in all the samples considered. The samples for the analysis 

where prepared by dispersion of 1 mg of substance in 1 mL of isopropanol and the 

dispersion was drop casted on a cleaned glass support. The spectra of all TPPO 
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decorated materials were recorded and all showed a signal at a binding energy of 132.8 

eV, where the two components 2p3/2 and 2p1/2, compatible with a phosphine oxide 

species, can be observed (see figure 5). 

 

  
Figure 5. Fitting of the XPS spectrum characteristic of P collected on GPs-Nit-PO 9 showing the two 
components (2p1/2 and 2p3/2) relative to the phosphine oxide group (for XPS spectra of the other 
compounds see supporting info) 
 

Raman spectroscopy analyses were performed on the most functionalized samples, 

compound 8 and 9 (figure 6). Generally, CNMs show two main bands in their Raman 

spectra: one at ≈ 1580 cm-1 (G band) related to sp2 graphitic domain and the second at 

≈ 1360 cm-1 (D band) attributed to the amorphous carbon or deformation vibrations of 

a hexagonal ring.133 Raman spectra of ox-MWCNTs 4 (figure 3, bottom) showed the D 

and G bands centered at 1320 and 1607 cm-1, respectively, 67 while for compound 8 the 

band were at 1312 and 1590 cm-1. Despite the ox-MWCNTs 4 already showed an 

intense D band (ID/IG = 2.57), the functionalization further increased the D band 

intensity, so that the ID/IG for compound 8 raised to 3.58. The Raman characterization 

of the GPs 5 (figure 2, top) showed the D and G bands at 1320 and 1580 cm-1 with a 

visible shoulder at 1610 cm-1, while at 2640 cm-1 is visible the overtone band 2D typical 

of graphene. This latter band, sharp and intense in monolayer graphene, is broadened 
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confirming the high number of layers of the GPs. Upon functionalization The GPs-Nit-

PO 9 spectrum showed the same bands with no significant differences respect to 5. 

1000 1500 2000 2500 3000

A
.U

.

Wavelenght cm-1

GNP

        GNP-Nit-PO

  

Figure 6. Raman spectra: GPs 5 vs GPs-Nit-PO 9 (top), ox-MWCNTs 4 vs ox-MWCNTs-Nit-PO 8 (bottom). 

 

TEM images of functionalized CNM are shown in figure 3. No significant difference can 

be found in the morphology of the materials. In particular, as confirmed by the Raman 

analysis, the GPs present a multilayer structure and no further exfoliation of the multi-

layer GPs was observed. 

400 600 800 1000 1200 1400 1600 1800 2000
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-1

 OXCNTs

         CNTs-Nit-PO
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Figure 7. TEM images of ox-MWCNTs 4 (1), ox-MWCNTs-PO 6 (2), ox-MWCNTs-Nit-PO 8 (3), GPs 5 (4) 
GPs-PO 7 (5), GPs-Nit-PO 9 (6). 

 

A useful extension of these synthetic approaches is the chance to reduce efficiently the 

P=O moiety to the corresponding phosphine. The phosphorus-phosphorus, 

trichlorosilane mediated oxygen transfer protocol, developed by Hamilton [134] and Wu 

[152], was used with compound 6. The reaction was carried out in a Pyrex tube, heating 

for 48 h a degassed solvent solution of compound 6, trichlorosilane and triethyl 

phosphite as final oxygen acceptor. The reduction of the phosphine oxide moiety was 

followed by XPS analysis and confirmed by FT-IR spectroscopy. 
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Figure 8. Reduction of phosphine oxide 6 to the corresponding phosphine 6-red. 
 

Figure 9 shows the XPS spectra registered on starting material 6 (t = 0), and of the 

reaction product after 24 h and after 48 h. The XPS analysis of the starting material 

showed only the peak at binding energy 132.8 eV (related to presence the phosphine 

oxide group), after 24 h a new peak, related to the reduced phosphorus atoms, 

appeared at 130.8 eV, accordingly with value reported by Swartz et al.153 After 48 h the 

peak at 130.8 eV is the main one showing that the reaction is almost complete. 

  

Figure 9. XPS analysis of samples from the reduction reaction of compound 6: starting material (top), 
after 24 h (middle), after 48 h (bottom). 

 

The FT-IR spectroscopy confirmed the reduction of the phosphine oxide group with the 

disappearance of the band at 1114 cm-1 related to the P=O stretching vibration 

(experimental section, figure 12, 13, 14). 
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The most functionalized material, compound 8, was finally tested as organocatalyst in 

a Staudinger Ligation of carboxylic acids and azides being inspired by work of Ashfeld 

and co-workers.142 In this work the reaction between a carboxylic acid and an organic 

azide, to afford the corresponding amide, is catalyzed by PPh3 (10% mole). The process 

is general and affords high yields. The catalytic cycle is guaranteed by the presence of 

PhSiH3 that reduces the triphenylphosphine oxide formed to the starting phosphine. In 

our experiments we substituted triphenylphosphine with the reduced form of 

compound 8, 8-red (figure 10). 

 

  

Figure 10. The Staudinger ligation reaction performed with benzoic (15) or cinnamic acid (18), and 
benzyl azide (16) or 4-MeOC6H4N3 (20) and compound 8-red as catalyst. 

 

As a matter of fact, the reaction reported in figure 10 were successful and afforded the 

expected amides 17 and 19 and 21 in acceptable yields. For a correct comparison with 

the higher yields reported for the reaction performed in homogeneous phase (94 %, 95 

% and 80%, respectively) it should be stressed that in these experiments the amount of 

phosphine used is one order of magnitude lower (1% calculated on the basis of the P 

loading in compound 8). Further experiments aimed to evaluate the action of the 
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catalyst in new reaction cycles revealed a fast degradation of the efficiency: the yield 

of amide 17 dropped to 30 % and 20% in the second and third cycles while no 

conversion was observed in the second cycle for amide 19. The yield of compound 21 

was 48% in the second cycle. 

 

Conclusion 

In conclusion, we developed a simple procedure for the covalent decoration of oxidized 

multi-walled carbon nanotubes and graphene-based materials with three different 

TPPO derivatives. Materials were completely characterized by FT-IR, Raman, XPS 

spectroscopy and TEM, the loading of phosphorus were quantified by ICP-AES. The 

higher loading was obtained with the nitrene cycloaddition on CNTs but good results 

were also obtained with graphene. The reduction of adduct to the correspondent TPP 

was also investigated, the reduction was confirmed by XPS, whose spectra showed the 

complete disappearing of the phosphine oxide peak and the presence of the intense 

phosphine peak in 48 h. The possibility to use the TPP group for further modification as 

binding of Pd nanoparticles, oxidation to phosphine sulfide and selenide are actually 

under investigation in our laboratory. More significantly, we have explored the ability 

of one of these materials (the one with the highest loading in phosphine oxide moiety, 

compound 8) as heterogeneous catalyst in a Staudinger ligation reaction. Despite the 

process is still to be optimized, concerning the yield and the recycling of the catalyst, 

the very low amount of phosphine oxide employed make this approach promising for 

the development of efficient nanostructured materials useful in organo-catalysis. 

 

Experimental 

Materials 

MWCNTs were purchased from Sigma-Aldrich reagent, O.D. x L.= 6-9 nm x 5 µm, carbon 

> 95%, CoMoCat©. GPs were supplied from Nanesa in dry powder or water paste, C:O 

ratio 44:1, carbon > 97%, average flake thickness 10 nm (30 layers), average lateral size 
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10-50 µm. All the other reagents, whose synthesis is not described, were commercially 

available and have been used without any further purification, if not specified 

otherwise. Rf values are referred to TLC on silica gel plate (0.25 mm, Merck silica gel 60 

F254). NMR spectra were recorded on Varian Gemini 200 MHz or Varian Mercury 400 

MHz at room temperature. Chemical Shifts were reported in parts per million (ppm) 

relative to the residual solvent peak rounded to the nearest 0.01 for proton and 0.1 for 

carbon (reference: CHCl3 [1H:7.26, 13C:77.2], DMSO [1H:2.5, 13C:39.5], MeOH [1H:3.35, 

13C:49.3]. Coupling constants J were reported in Hz to the nearest 0.01 Hz. Peak 

multiplicity was indicated as follows s (singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet) and br (broad signal). IR spectra were recorded on a Perkin-Elmer FT-IR 881 

or Shimadzu FT-IR 8400s spectrometer. IR data are reported as frequencies in 

wavenumbers (cm-1). UV-Vis spectra were recorded on Varian Cary 4000 Uv-vis 

spectrophotometer using 1cm cell. Fluorescence spectra were registered on a Jasco 

FP750 spectrofluorometer using 1cm cell. Raman spectra were measured by a 

Renishaw RM2000 instrument, equipped with a diode laser emitting at 785 nm. 

Elemental analyses were performed with a Thermofinnigan CHN-S Flash E1112 

analyzer. ICP analysis were made using an Optima 2000 Perkin Elmer Inductively 

Coupled Plasma (ICP) Dual Vision instrument after acidic mineralization. TEM images 

were acquired at the electronic microscopic center CNR Florence (CE.M.E.) with a Philip 

CM12 with CRYO-GATAN UHRST 3500 technology, digital camera and EDAX 

microanalysis. 

 

Synthesis of (4-aminophenyl)diphenylphosphine oxide 1 and (4-

ethynylphenyl)diphenylhosphine oxide 3 

Compounds 1154  and 3155 were synthesized by literature procedures in 64% and 72% 

yield, respectively. 

 

Synthesis of (4-azidophenyl)diphenylphosphine oxide 2 
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A solution of (4-aminophenyl)diphenylphosphine oxide 1 (1.06 g, 3.61 mmol) in 

acetone (10 mL), H2SO4 (2.7 mL) and H2O (14.4 mL) was added with a solution of NaNO2
 

(0.368 g, 5.33 mmol) in H2O (2.2 mL) at 0oC. After stirring for 1.5 h at 0oC, a solution of 

NaN3
 (0.4 g, 6.13 mmol) in H2O (2 mL) was added dropwise at 0oC. The resulting 

suspension was stirred for 1.5 h at 0oC and at room temperature for 15 h. After the 

completion of the reaction, the mixture was extracted with EtOAc (100 mL). The 

combined organic extracts were washed with brine, dried over anhydrous MgSO4, 

filtered, and evaporated in vacuo to afford azide 2 as an off-white solid (1.09 g, 96%). 

Mp. 119-121 oC.  1H NMR (500 MHz, chloroform-d) δ 7.76 – 7.61 (m, 6H), 7.60 – 7.53 

(m, 2H), 7.52 – 7.44 (m, 4H), 7.17 – 7.05 (m, 2H). 13C NMR (126 MHz, Chloroform-d) δ 

143.98 (d, J = 3.0 Hz), 133.85 (d, J = 10.8 Hz), 132.29 (d, J = 105.0 Hz), 132.08 (d, J = 3.2 

Hz), 132.01 (d, J = 10.1 Hz), 128.80 (d, J = 106.9 Hz), 128.58 (d, J = 12.1 Hz), 119.10 (d, J 

= 13.0 Hz). 31P NMR (202 MHz, chloroform-d) δ 28.61. Elemental analysis: calculated for 

C18H14N3OP: C 67,71; H 4,42; N 13,16%. Found: C 67,66; H 4,48; N 13,22% 

 

Synthesis of p-azido aniline 10 

Compound 10 was synthesized from 4-bromoaniline in quantitative yield following a 

procedure reported in literature.156  

 

Oxidation of CNTs 

A 100 mL flask was added with CNTs 500 mg and 40 mL of a 3:1 solution of 96% sulfuric 

acid/65% nitric acid. The mixture was stirred at reflux for 30 min, diluted with fresh 

water in ice bath and the acidic solution removed by centrifugation (10 min at 1400 

rcf). The solid was dispersed with water and centrifuged 30 min at 1400 rcf. The solid 

was again dispersed with water and filtered over a 0.2 µM PC membrane and washed 

until neutral pH of the filtered solution was obtained. Purified Ox-MWCNTs were 

collected. Yield 39% (194.6 mg). FT-IR: 3431, 1704, 1224 cm-1. Elemental analysis C 

77,72; H 0,84; N 0,19%. 
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Synthesis of CNTs-Tour-PO (6) 

A 5 mL flask was added with CNTs (10 mg, 0.83 mmol) and amino phosphine oxide 1 

(54.3 mg, 0.185 mmol and 2.5 mL of anhydrous DMF. The mixture was kept in 

ultrasound bath for 10 min, under inert atmosphere, and 19.3 mg (0.165 mmol) of 

isopentyl nitrite were added. The mixture was stirred at 80°C under nitrogen for 16 h. 

The dispersion was diluted with a 1:1 solution of isopropanol:di-isopropyl ether  and 

centrifuged for 15’ at 1400 rcf. The supernatant solution was removed and the solid 

was washed by  5 cycles of dispersion in fresh solvent and centrifugation (4 times with 

a 2:1 isopropanol:di-isopropyl ether solution  and once with a 1:1 solution of the same 

solvents. The product was finally recovered and dried to afford 15 mg of a black 

powder. ICP-AES analysis: phosphorus 1.255%, 0.41 mmol/g. FT-IR (KBr): 3328, 1724, 

1579, 1384, 1154 and 1116 cm-1. 

 

Synthesis of GPs-Tour-PO (7) 

A 5 mL flask was added with GPs 11.6 mg (0.95 mmol) , amino phosphine oxide 1 (54.3 

mg, 0.185 mmol) and 2.5 mL of anhydrous DMF. The mixture was kept in an ultrasound 

bath for 30 min, under inert atmosphere, then 19.3 mg (0.165 mmol) of isopentyl nitrite 

were added and the mixture was stirred at 80°C under nitrogen for 16h. The dispersion 

was diluted with isopropanol and centrifuged for 15 min at 1400 rcf. The supernatant 

was removed and the solid was washed by cycle of dispersion in fresh methanol and 

centrifugation (six times). The product was recovered and dried to afford 12.5 mg. ICP-

AES analysis:  phosphorus 0.275%, 0.087 mmol/g. 

 

Synthesis of OX-MWCNTs-Nitrene-PO (8) 

A 50 mL flask was added with CNTs (10 mg) and 20 mL of 1,2-dichlorobenzene. The 

mixture was kept in an ultrasound bath for 30’.  Azido phosphine oxide 2 (39 mg 0.12 

mmol) was added and the dispersion sonicated again for 10’. The resulting dispersion 
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was kept at 165°C under vigorous stirring for 4 days. The mixture was filtered through 

a 0.2 µm pore PTFE membrane and thoroughly washed with a solution of diisopropyl 

ether and isopropanol 1:1. The product was recovered and dried to afford 13.3 mg of a 

black powder. Elemental analysis C 76.07, H 1.12 and N 0.82 %. ICP-AES phosphorus 

1.807%, 0.583 mmol/g. FT-IR (KBr): 3312, 1718, 1559, 1164 e 1114 cm-1 P=O stretching. 

 

Synthesis of GPs-nitrene-PO (9) 

A 50 mL flask was added with GPs (11.5 mg) and 20 mL of 1,2-dichlorobenzene. The 

mixture was kept in ultrasound bath for 30’. Azido phosphine oxide 2 (39 mg, 0.12 

mmol) was added and the mixture sonicated again for 10’. The dispersion was kept at 

165°C under vigorous stirring for 4 days. The mixture was, then, diluted with 

isopropanol and centrifuged 15’ at 1400 rcf. The supernatant was removed, and the 

precipitate was washed by 5 cycles of dispersion and centrifugation (5’ in ultrasound 

bath and centrifugation for 15’ at 1400 rcf), with a solution of di-isopropyl ether and 

isopropanol 1:1. The product was recovered and dried to afford 13.1 mg. Elemental 

analysis C 90.36 %, H 0.58 and N 0.42%. ICP-AES 0,61 % of phosphorous. FT-IR (KBr): 

1195 e 1181 cm-1 P=O stretching.  

 

Synthesis OX-MWCNTs-N3 (11) 

A 10 mL flask was added with CNTs (50 mg), 10 (122.96 mg, 0.91 mmol), dry DMF (5.2 

mL) and the mixture was sonicated with an ultrasound bath (10 min). The dispersion 

was added with isopentyl nitrite 97.62 mg (0.83 mmol) was added and stirred at 60°C 

for 24 h. The suspension was filtered over a 0.2 μm PTFE membrane, and the solid was 

washed with DMF and acetone until colorless solution obtained. CNTs-Azide were 

recovered with acetone and dried to afford 50.5 mg of a black powder. FT IR (KBr): 2118 

nm N3 stretching. Elemental analysis C 66.94 %, H 3.83 % and N 7.00 %. Azide loading 

based on elemental analysis 1.63 mmol/g. 
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Synthesis of GPs-N3 (12) 

A 25 mL flask was added with GPs (33 mg), 10 (82 mg 0.61 mmol), 1,2-dichlorobenzene 

(2.64 mL) and dry DMF (5.2 mL). The mixture was dispersed with ultrasound bath. 

Isopentyl nitrite (63.9 mg, 0.54mmol) was added and the mixture was stirred at 60°C 

for 24 h. The suspension was filtered over a 0.2 μm ptfe membrane and the solid was 

thoroughly washed with DMF and Acetone until a colorless solution was obtained. 

Material was recovered with acetone and dried to obtain 32.5 mg of a black powder. 

FT IR (KBr) 2119 nm N3 stretching. Elemental analysis C 97.7 %, H 0.15 % and N 0.31 %. 

Azide loading based on elemental analysis 0.075 mmol/g. 

 

Synthesis of CNTs-Click-PO (13) 

A 25 mL flask was added with 11 (30 mg, 0.049 mmol of azide), phosphine oxide 3 

(17.75 mg, 0,059 mmol, 1.2 eq) of copper iodide triethyl phosphite (3.49 mg, 0.0098 

mmol, 0.2 eq) and 8.5 mL of degassed dry DMF. The mixture dispersed with an 

ultrasound bath under inert atmosphere. After dispersion, DIPEA 18.35 mg (0.142 

mmol, 2.9eq) was added and the dispersion stirred at 60°C for 48 h. The suspension 

was filtered over a 0.2 μm PTFE membrane and the solid was thoroughly washed with 

DMF and acetone until a colorless solution was obtained. The material was recovered 

and dried to afford 28.2 mg of a black powder. FT-IR (KBr) 3105, 2103, 1722, 1658, 

1579, 1386, 1170 e 1118 cm-1. ICP AES analysis:  phosphorus 0.847%. 

 

Synthesis of GPs-Click-PO (14) 

A 25 mL flask was added with 12 (28.5 mg, 0.0023 mmol of azide), phosphine oxide 3 

(1 mg, 0.0027 mmol, 1.2 eq) copper iodide triethyl phosphite (0.162 mg, 0.00045 mmol, 

0.2 eq) and degassed 1,2-dichlorobenzene (8.5 mL). The mixture was dispersed with an 

ultrasound bath. DIPEA (1 mg, 0.0078 mmol, 2.9 eq) was added and the reaction 

mixture was stirred at 60°C for 48 h. The suspension was diluted with acetone and 

centrifuged (10’ at 1500 rcf) to remove 1,2-dichlorobenzene then the solid was 



― Chapter 5 ― 

 
113 

 

dispersed in DMF and filtered over a 0.2 μm PTFE membrane. The solid was washed 

with DMF and acetone until colorless solution obtained. The material was recovered 

and characterized to afford 28.7 mg of a black powder. ICP AES analysis: phosphorus 

0.057%.  

 

General procedure for the reduction of PO  

A Pyrex tube was added with carbonaceous substrate (5 mg), degassed 1,2-

dichlorobenzene (1 mL) and the mixture was dispersed with an ultrasound bath. The 

mixture was then added with triethyl phosphite (387.6 mg, 2.33 mmol) and 

trichlorosilane (134.2 mg, 0.99 mmol) and the reaction left 48h at 100°C under vigorous 

stirring. The material was washed by repeated dispersion and centrifugation cycles (10’ 

at 1400 rcf): one cycle with isopropanol to remove the reaction solvent, three times 

with 1M aqueous sodium hydroxide, three times with aqueous hydrogen chloride 

0.1M, three times with methanol and three times with isopropyl ether. The reduction 

was checked by XPS spectroscopy. 

 

General procedure for the Staudinger ligation. 

A pirex tube was added with phosphine decorated CNTs (8-red, 5 mg) degassed dry 

toluene (1 mL), carboxylic acid (0.19 mmol, 1 eq), a solution of benzyl azide (0.19 mmol) 

in 0.5 mL of degassed toluene and phenyl silane (21 mg,0.19 mmol, 1 eq) and the 

reaction stirred at 110°C under nitrogen atmosphere for 22 h. The catalyst was 

recovered by centrifugation (2X 15 min. at 1500 rcf) and dispersion with toluene 20 mL. 

The solution was evaporated under vacuum giving the crude product, the amide was 

recovered after flash chromatography (silica) using a mixture of hexane:ethyl acetate 

1:1. 

N-Benzylbenzamide (17): Rf = 0.48 (hexane:ethyl acetate 1:1), yield 75%. Spectral data 

already reported in literature.142  
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N-phenylcinnamamide (19): Rf =0.77 (hexane:ethyl acetate 1:1), yield 55%. Spectral 

data already reported in literature.142  

N-phenylcinnamamide (21): Rf =0.64 (hexane:ethyl acetate 1:1), yield 58%. Spectral 

data already reported in literature.142  

 

XPS Measurements 

The chemical composition of the near surface sample portion was obtained by means 

of X-ray Photoelectron Spectroscopy (XPS). The experiments were carried out in an 

ultrahigh vacuum (UHV, 10-9 mbar) system equipped with a VSW HAC 500 

hemispherical electron-energy analyzer using a non-monochromatic Mg K  X-ray 

source operating at 120 W power (10 kVx10 mA). The samples were introduced in the 

UHV system via a loadlock under an inert gas (N2) flux. Survey and high-resolution 

spectra (C1s, O1s, P2p) were acquired in the constant analyzer energy mode (CAE) at 

pass energy Epas = 22 eV with a step size of 1.0 and 0.1 eV, respectively. The peaks 

were fitted using CasaXPS software employing Gauss-Lorentz curves after subtraction 

of a Shirley-type background. Binding Energy (BE) scale was calibrated taking as 

reference the position of aliphatic C1s component (adventitious carbon) at 284.8 ± 0.1 

eV.  
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Figure 11. XPS spectra of compounds 6, 7, 8¸ e 9, all signals are at 132.8 eV. 
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12. XPS spectra of compounds 6 on the left and 7 on the right, the binding energy of 400.7 eV, which 
evidence the presence of the nitrogen in both samples. 

 

FT-IR SPECTRA 

IR spectra were recorded on a Perkin-Elmer FT-IR 881 or Shimadzu FT-IR 8400s 

spectrometer. All the spectra were recorded in KBr pellets with a concentration of 

substances of 1mg in 100 mg and under nitrogen atmosphere to remove the noise. 
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Figure 13. FT-IR Spectrum of Ox-MWCNTs-Tour-PO (6). 

 
 

Figure 14. FT-IR Spectrum of CNT-Nit-PO (8). 
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Figure 15. FT-IR spectrum GNP-Nit-PO (9). 
 

Figure 16. FT-IR spectrum OxMWCNTs-Click-PO (13). 
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Figure 17. FT-IR spectrum OxMWCNTs-Tour-P (6-red). 

 

Figure 18. FT-IR spectrum OxMWCNTs-Nit-P (8-red). 
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Figure 19. FT-IR spectrum OxMWCNTs-N3 (11). 
 

Figure 20. FT-IR spectrum GNPs-N3 (12). 
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Raman Measurements 

Raman spectra were measured by a Renishaw RM2000 instrument, equipped with a 

diode laser emitting at 785 nm. Sample irradiation was accomplished by using the 50x 

microscope objective of a Leica Microscope DMLM. The beam power was  3̴mW, and 

the laser spot size was adjusted between 1 and 3 micrometers. The backscattered 

Raman signal was fed into the monochromator through 40 micrometer slits and 

detected by an air-cooled CCD (2.5 cm-1 per pixel) filtered by a double holographic 

Notch filters system. Spectra were calibrated with respect to a silicon wafer at 520 cm-

1. 

 
 
 
Figure 21. On the left the raman spectrum of phosphine oxide 2, on the right the signal assignment. 

 

Raman 
 Freq. 

Assignment 

615.5 ring bending in plane 

683 ring bending in plane 

994 Ring breathing mode 

1001 Ring breathing mode 

1027 Ring trigonal mode 

1094 P-Ph stretching 

1120 P-Ph stretching 

1153 H ring bending in plane 

1162 H ring bending in plane 

1172 P=O stretching  

1571 C=C ring stretching 

1589 C=C ring stretching 
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Figure 22. 1H-NMR (200 MHz CDCl3) of product 17. 
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Figure 23. GC-MS Spectra of compound 17: A) Chromatogram of the purified product; B) Mass spectrum 
with chemical ionization; C) Comparison three different chromatograms: black product 17, blue benzyl 
azide and benzoic acid red. 
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Figure 24. 1H-NMR (200 MHz CDCl3) of Product 19. 
 

Figure 25. 1H-NMR (400 MHz CDCl3) of Product 21. 
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Figure 26. GC-MS Spectra of compound 21: top Mass spectrum with chemical ionization; bottom 

chromatogram of the purified product. 
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5.2 Synthesis of fluorescent dyes for the preparation of a 
donor-acceptor system 
 
Light harvesting devices based on organic dyes are top trend topic in the field of 

optoelectronics.  The possibility to fine tune the optic characteristics by modifying the 

structure of the organic dyes has greatly increased the interest of chemists and physics 

working in the field. However a deep understanding of the electron energy transfer 

process is often not trivial. The full comprehension of the overall mechanism involves 

the identification of the energy pathways in the molecular system. Ultrafast pump-

probe techniques are a perfect tool to investigate excited state dynamics and energy 

transfer mechanisms with sub-picoseconds time-scale.157,158 In this work, three 

different dimers bearing a bodipy donor and different acceptor moieties were 

synthesized and characterized (figure 1). The photo-physics behavior of these 

compounds was studied in different solvent by stationary Transient Absorption 

spectroscopy. In order to have a good understanding of the roles played by the 

different factors in the energy transfer rate, we synthesized molecular dyads with 

different donors and varying the nature of the linker between donor and acceptor. 
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Figure 1. Structure of the three bichromophoric compounds synthesized 

 

The complete synthetic approach for the preparation of compounds 1, 2 and 3 is 

reported in figures 2, 3 and 4. 
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Figure 2. Synthesis of compound 1. 

 

 

 

Figure 3. Synthesis of compound 2. 
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Figure 4. Synthesis of compound 3. 

 

Synthesis of compound 5 

 

In a 10 mL round bottom flask 202 mg of 2-(prop-2-yn-1-yl)propane-1,3-diol (1.75 

mmol, 1.5 eq ) and 393 mg of TEA (3.9 mmol 2.2 eq) were dissolved in 7 mL of dry DCM 

under nitrogen atmosphere. Then 501 mg of mesyl chloride (4.4 mmol, 2.5 eq) were 

added dropwise and the reaction mixture stirred at room temperature overnight. Thr 

crude mixture was diluted to 10 mL with DCM and extracted three times with 5 mL of 

water and once with 5 mL of brine, the organic phase was recovered dried with sodium 

sulfate and the solvent removed under vacuum. The product was recovered after flash 

chromatographic column, rf 0.95 AcOEt/Chloroform 1:1. Yield 75%. MS-ESI m/z: 292.93 

[M+Na]+.  
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Synthesis of compound 7 

 

In a 25 mL round bottom flask 113 mg of alkyne 5 (1.14 mmol, 1 eq) were dissolved in 

toluene, then 287 mg of 4-[4-(Diethylamino)styryl]pyridine (1.14 mmol, 1.2 eq) were 

added and the reaction mixture refluxed for 72 h. Three different fractions were 

naturally formed at the end of the reaction, the product was isolated from the orange 

oily fraction after filtration and chromatographic column (eluent AcOEt/ methanol 5:1, 

4:1, 3:1, 2:1, 1:1 and 1:2) rf 0.1 AcOEt/ methanol 1:1. Yield 35%. 1H-NMR δ= 1.19 (t, 3J 

8 Hz, 12H), 2.32 (bs, 2H), 2.72 (pseudo t, 1H), 3.18 (bs, 1H), 3.45 (q, 3J 8 Hz, 8H), 4.66 

(m, 4H), 6.71 (d, 3J 8 Hz, 4H), 7.02 (d, 3J 16Hz, 2H), 7.93 (d,3J = 8 Hz, 4H), 8.62 (d, 3J = 8 

Hz, 4H). 13C NMR δ= 13.8, 19.7, 41.8, 46.4, 61.6, 76.12 e 79.9, 113.6,117.9, 124.3, 124.5, 

133.2, 145.5, 146.4, 152.7, 158.0. ESI MS m/z 292.2 [M]2+. 

 

Synthesis of compound 1 
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In a 5 mL round bottom flask 27.1 mg of azide bodipy 8 (0.05 mmol, 1 eq), 32.5 mg of 

compound 7 (0.06 mmol, 1.25 eq), 12.9 mg of DIPEA (0.1 mmol, 2 eq) and 5.34 mg of 

copper iodide triethyl sulfite (0.015 mmol, 0.3 eq) were dissolved in 3 mL of dry and 

degassed THF. The mixture was stirred at room temperature for 72 h, then the product 

was recovered after flash chromatographic column rf 0.35 DCM/methanol. Yield 72 %. 

1H NMR (400 MHz, CDCl3) δ =  9.37 d ( 5H,3J  = 7.2 Hz), 9.03 s (1H), 8.05 d (2H, 3J =  8.8), 

7.61 d (4H, 3J = 7.2 Hz), 7.75 d (2H, 3J = 16.8 Hz), 7.62 d (4H, 3J = 7.2), 7.57 d (2H, 3J = 

15.6 Hz), 7.40 m (11H), 7.31 d (2H, 3J = 7.2 Hz), 7.24 d ("H, 3J = 16.4 Hz), 6.74 d (2H, 3 J =  

15.6 Hz), 6.59 m (5H), 5.24 pd (1H, 3J = 8.0 Hz), 4.97 t (1H, 3J = 9.6), 4.05 bs (1H), 3.36 q 

(8H, 3J = 6.8), 3.15 d ( 1H, 3J =  5.2 Hz), 1.41 s (6H), 1.19 m (3H) e  1.15 ppm t (12H, 3J = 

6.8 Hz). 13C NMR (400 MHz, CDCl3) δ = 12.61, 15.15, 29.69, 41.02, 44.65, 59.11, 111.51, 

115.60, 118.06, 119.14, 121.04, 121.51, 122.28, 127.58, 128.79, 129.02, 130.08, 

131.25, 136.46, 137.22, 141.98, 143.51, 143.74, 144.07, 150.36, 152.85, 152.85, 154.65 

four isochron carbon. FT-IR λ : 3423 bb OH stretching, 2968 e 2921 w CH stretching, 

1640 circa w H-C=C stretching, 1575 s, 1523 C=C s stretching,1168 e 1153 m C-N  

stretching. MS-ESI m/z: 562.71 [M]2+. 

 

Sintesi del (1S,4S)-4-(hydroxymethyl)-N-(prop-2-yn-1-yl)cyclohexanecarboxamide 11  
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In a 25 mL two necked round bottom flask 100 mg of trans-4-(hydroxymethyl)-

cyclohexyl carboxylic acid (0.63 mmol, 1 eq), 127.7 mg of N-hydroxy-benzotriazole 

(0.945 mmol, 1.5 eq), 79.5 mg of DIC (0.63 mmol 1 eq) and 81.4 mg of DIPEA (0.63 

mmol, 1 eq) were dissolved in 3 mL of dry THF under nitrogen atmosphere. After 20 

minutes 41.9 mg of propargyl amine (0.76 mmol, 1.2 eq) in 3 mL of dry THF were added 

and the mixture stirred for 24 h at room temperature. The solvent was removed under 

vacuum and the solid dissolved in 30 mL of ethyl acetate and washed with: 2 X 10 mL 

of water, 2 X 10 mL of saturated sodium carbonate solution, 2 X 10 mL of 0.5 M HCl 

solution and 2 X 10 mL of brine. The organic phase was dried over sodium sulfate and 

the solvent removed under vacuum. The pure product was recovered after flash 

chromatographic column, rf 0.24 ethyl acetate : DCM 1:1. Yield 44%. MS-ESI m/z 

195.1[M.-]. 1H-NMR 200 MHz CD3OD δ = 1.01 m (2H cyclohexane), 1.46 m (3H 

cyclohexane), 1.85 bd (4H cyclohexane), 2.14 tt (1H in alfa at CO; 3JH-H = 12.2 e 3.4 Hz), 

2.56 t (1H alkyne, 4JH-H
 2.6 Hz), 3.4 d (2H CH2OH, 3JH-H 5.4 Hz) e 3.92 ppm d (2H CH2NH, 

4JH-H 2.6 Hz). 13C-NMR 50 MHz CD3OD δ = 27.92 (1C), 28.48 (2C), 28.63 (2C), 39.66 (1C 

alfa CO), 44.88 (1C CH2N), 67.12 (1C, CH2OH), 70.47 (1C, CH alkyne) e 79.44 (1C, alkyne) 

e 177.25 ppm (1C CO). FT-IR λ = 3628 m OH stretching, 3454 m NH stretching, 3306 s 

CH stretching alkyne, 2928 e 2859 m CH stretching, 2246, 1667 s CO stretching, 1504 s 

, 1451 cm-1 d CH bending. Elemental analysis calculated C 67.66, H 8.78, N 7.17 % 

measured C 67.16, H 7.99 e N 6.88%. 

 

Synthesis of ((1R,4R)-4-(prop-2-yn-1-ylcarbamoyl)cyclohexyl)methyl 

methanesulfonate 12 
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In a 5 mL round bottom flask 77.5 mg of compound 11 (0.4 mmol, 1 eq), 88.9 mg of dry 

TEA (0.88 mmol, 2.2 eq) were dissolved in a 1 mL of dry DCM, then 46.5 mg of mesyl 

chloride  (0.6 mmol, 1.5 eq) in 1 mL of dry DCM were added dropwise and the mixture 

stirred for 12h. The TLC control evidenced the presence of starting material so 1.5 eq 

of mesyl chloride and 2.2 eq of dry TEA were added and the mixture stirred for 8 h. The 

crude mixture was diluted to 30 mL with DCM and washed with: 3 X 15 mL of water and 

5 mL of brine; the organic phase was dried over sodium sulfate and the solvent 

removed under vacuum obtaining the clean product. Yield 85%. MS-ESI m/z 294.93 

[M]+. 1H-NMR 200MHz CD3OD δ =1.11 m (2H cyclohexane) 1.49 qd (2H cyclohexane; 3JH-

H = 12.4 and 3 Hz), 1.87 m (5H cyclohexane), 2.16 tt (1H cyclohexane, 3JH-H = 12.2 e 3.4  

), 2.56 t (1H alkyne, 4JH-H = 2.6 Hz), 3.048 s (3H mesylate), 3.93 d (2H CH2N, 3JH-H = 2.6 

Hz) e 4.05 ppm d (2H CH2O, 3JH-H = 6.2 Hz).  13C-NMR 50 MHz CD3OD δ =27.84 (3C 

cyclohexane), 28.23 (2C cyclohexane), 35.65 (1C cyclohexane alfa to CO), 36.78 (1C 

mesylate), 44.38 (1C CH2N), 70.44 (1C CH alkyne), 74.53 (1C CH2O), 79.38 (1C alkyne) e 

186.85 ppm (1C CO). FT-IR λ = 3452 s NH stretching, 3307 s stretching CH alkyne, 2936 

e 2859 m CH stretching, 2246, 1670 s CO stretching, 1507 s, 1452 m CH bending, 1358, 

1338 m e 1176 cm-1 s SO stretching mesylate. Elemental analysis CHN: calculated C 

52.73, H 7.01 e N 5.12 % , measured C 53.12, H 6.64 e N 5.08 %. 

 

Syntesis of 4-((E)-4-(diethylamino)styryl)-1-(((1R,4R)-4-(prop-2-yn-1-

ylcarbamoyl)cyclohexyl)methyl)pyridin-1-ium iodide 13 
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In a 25 mL two necked round bottom flask 132.4 mg of styryl pyridine (0.22 mmol, 2.4 

eq), 98.9 mg of sodium iodide (0.66 mmol, 3 eq) and 60 mg of compound 12 (0.22, 1 

eq) were dissolved in 9 mL of dry MeCN under nitrogen atmosphere. The mixture was 

refluxed under stirring for 48 h, the solvent was removed under vacuum and the 

product recovered after flash chromatographic column (Al2O3 Brockmann grade  3), 

gradient of polarity of eluent: DCM/AcOEt 1:1, AcOEt, AcOEt/methanol 3:1). Yield 53%. 

1H-NMR 400 MHz δ = 1.19 t ( 8H, CH3 + 2H cyclohexane, 3JH-H 6.2 Hz), 1.47 m (2H, 

cyclohexane), 1.59 m (2H, cyclohexane), 1.78 m (3H cyclohexane), 2.21 m (1H 

cyclohexane alfa CO), 2.57 t (1H alkyne, 4JH-H = 2.6 Hz), 3.51 q (4H CH2N, 3JH-H = 6.2 Hz), 

3.92 d (2H, CH2NH, 4JH-H 2.6 = Hz), 4.23 d (2H, CH2N+, 3JH-H = 7.2 Hz), 6.75 d (2H pyridine, 

3JH-H = 9.2 Hz), 7.05 (1H alkene, 3JH-H = 16.2 Hz), 7.59 d (2H pyridine, 3JH-H = 9.2 Hz), 7.83 

d (1H alkene, 3JH-H = 16.2 Hz), 7.95 d (2H phenyl, 3JH-H = 7 Hz), 8.52 ppm d (2H phenyl, 3JH-

H = 7 Hz). 13C NMR (101 MHz, CD3OD)  δ = 176.52(s), 155.08 (s), 150.20 (s), 143.23 (s), 

143.03(d), 130.69 (d), 122.01 (d), 121.99 (d), 115.69 (d), 111.27 (d), 79.33 (s), 70.63 (d), 

64.85 (t), 44.10(t), 44.03 (t), 38.52 (s), 28.53 (t), 28.11 (t), 27.91(d), 11.52 (q). MS-ESI 

m/z: 430.28 [M]+. 
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Synthesis of compound 2 

 

In a round bottom flask 16 mg of compound 13 (0.03 mmol, 1 eq), 20 mg of azide bodipy 

8 (0.035 mmol, 1.1 eq) and 3.2 mg copper iodide triethyl sulfite (0.009 mmol, 0.3 eq) 

were dissolved in dry THF under nitrogen atmosphere, then 7.8 mg of DIPEA (0.06 

mmol, 2 eq) were added and the mixture stirred at room temperature for 4 days. The 

solvent was removed under vacuum and the product recovered after flash 

chromatographic column (Al2O3 Brockmann grade 3) rf 0.4 DCM:Methanol 30:1. Yield 

47%. 13C NMR (101 MHz, CDCl3) δ = 176.02, 154.34, 152.93, 150.26, 146.75, 143.29, 

141.92, 137.53, 137.09, 136.70, 136.42, 135.18, 133.14, 131.16, 130.07, 129.05, 

128.79, 127.59, 122.25, 121.61, 121.14, 120.80, 119.02, 118.20, 115.62, 111.51, 65.05, 

44.59, 44.12, 38.82, 30.90, 28.77, 28.48, 15.05, 12.58 ppm.1H NMR (400 MHz, CDCl3) δ 

= 8.77 pd (J = 6.3 Hz, 2H), 8.45 s ( 1H), 7.95 d ( J = 8.4 Hz, 2H), 7.78 d (J = 5.9 Hz, 2H), 

7.69 d( J = 16.4 Hz, 2H), 7.61 d ( J = 7.4 Hz, 6H), 7.50 d ( J = 8.8 Hz, 2H), 7.39 ( J = 8.1 Hz, 

5H), 7.36 – 7.24 (m, 4H), 6.85 d ( J = 15.8 Hz, 1H), 6.64 (s, 2H), 6.62 d ( J = 8.9 Hz, 2H), 

4.62 pd ( J = 4.9 Hz, 2H), 4.48 pd (, J = 8.3 Hz, 2H), 3.37 (q, 7.0 Hz, 4H), 2.38 m (1H), 1.96 

bs (4H), 1.81 bs (4H), 1.66 bs (1H), 1.44 s ( 6H), 1.16 (t, J = 7.1 Hz, 6H). ESI-MS m/z 971.87 

[M+]. FT-IR: 3429 bb NH stretching, 2926 w CH stretching, 1641 e 1616 m CO stretching, 

1575 e 1523 s NH bending, 1444, 1409, 1325, 1299, 1269, 1201, 1166, 1108 e 1043 cm-

1. HRMS-ESI [M+] m/z calculated 970.51385, measured 970.51436 δ = 0.52 ppm. 

Synthesis of (1R,4R)-1,4-diethynylcyclohexane-1,4-diyl bis(dodecylcarbamate) 15 
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In a 25 mL two necked flask 100 mg of cyclohexane 14 (0.61 mmol, 1 eq) and 12.3 mf 

of TEA (0.122 mmol, 0.2 eq) were dissolved in 5 mL of dry toluene under nitrogen 

atmosphere, then 298 mg of dodecyl isocyanate (1.4 mmol, 2.3 eq) in 5 mL of dry 

toluene were added dropwise. The reaction mixture was refluxed under stirring for 

48h, the product was recovered after flash chromatographic column rf 0.3 DCM:AcOEt 

10:1.Yield 52 %. 13C NMR (101 MHz, CDCl3) δ 154.47, 83.50, 72.77, 40.83, 33.19, 31.89, 

29.91, 29.62, 29.60, 29.55, 29.52, 29.32, 29.25, 26.76, 22.66, 14.09. 1H NMR (400 MHz, 

CDCl3) δ = 4.64 m (2H, NH), 3.17 m (4H, CH2N), 2.61 s (2H, alkyne), 2.22 m (8H, 

cyclohexane), 1.49 m (4H CH2 beta to NH), 1.25 m (36H), 0.88 t (6H CH3). MS-ESI m/z : 

609.44[M+Na]+.  
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Figure 5. 1H-NMR and H-H COSY NMR of compound 15. 
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Figure 6. 13C-NMR of compound 15. 

 

Synthesis of compound 16 

In a 5 mL round bottom flask 40 mg of alkyne 15 (0.068 mmol, 1 eq), 18.5 mg of bodipy 

azide 8 (0.034 mmol, 0.5 eq), 14.6 mg copper iodide triethyl phosphite (0.041 mmol, 

0.6 eq) were dissolved in 5 mL of dry THF under nitrogen. Then 3.5 mg of dry diisopropyl 

ethyl amine (0.027 mmol, 0.4 eq) was added and reaction mixture stirred at room 

temperature for 48 h. The product was recovered after flash chromatographic column 

rf 0.4 DCM/ethyl acetate 40:1. Yield 48%.1H NMR (400 MHz, CDCl3) δ = 8.14 s (1H, j), 

7.95 d (2H, J3
H-H = 7.95 Hz; h and h’), 7.75 d (2H, J3

H-H = 7.75 Hz, e and e’), 7.63 d (4H, J3
H-

H = 7.63 Hz; c, c, ’c’’ and c’’’), 7.51d (2H, J3
H-H = 7.51 Hz; i and i’), 7.41 t (4H, J3

H-H = 7.41 

Hz; b, b’, b’’ and b’’’), 7.32 m (4H; a, a’, d and d’), 6.67 s (2H; f and f’), 4.80 bs (1H; m), 

4.67 bs (1H; n), 3.15 bs (2H; o), 3.07 bs (2H; s), 2.64 s (1H; r), 2.37 bs (4H; k and k’), 2.21 

bs (4h; l and l’), 1.51 s (6H; g and g’), 1.25 m (40H, p and p’ 20 CH2)and  0.87 ppm t (6H, 

J3
H-H = 8 Hz; q and q’) . 13C NMR (101 MHz, CDCl3) δ = 155.04, 154.55, 153.06, 141.77, 
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137.50, 136.88, 136.70, 136.45, 135.55, 133.16, 130.14, 129.07, 128.79, 127.60, 

120.72, 120.05, 119.12, 118.12, 84.37, 75.32, 73.28, 72.06, 40.82, 32.61, 31.89, 30.84, 

29.88, 29.62, 29.55, 29.53, 29.32, 29.25, 26.79, 22.66, 15.05, 14.10. MS-ESI negative 

ionization: m/z 1126 [M]-.  
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Figure 7. 1H-NMR and H-H COSY of compound 16. 
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Figure 8. 13C-NMR and HSQC of compound 16. 
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Synthesis of compound 3 

  

Compound 3 was prepared following the same procedure for cycloaddition reported 

for compound 16. The product was recovered after flash chromatography column with 

eluent: DCM/AcOEt (50:1, 40:1, 30:1, 20:1, 15:1, 10:1, 5:1, 2:1 and 1:1). Yield 53%. MS-

ESI: m/z 1596.76 [M]-. 13C NMR CRYO (176 MHz, CDCl3) δ = 161.44, 159.68, 155.28, 

154.25, 154.06, 152.77, 150.83, 142.90, 142.39, 141.62, 138.81, 138.48, 138.34, 

137.73, 136.50, 134.65, 133.16, 132.61, 131.12, 130.69, 130.53, 130.11, 129.95, 

129.67, 129.61, 1127.72, 127.59, 121.66, 120.52, 119.19, 118.80, 118.53, 116.62, 

115.20, 74.50, 64.14, 31.76, 30.99, 29.83, 29.48, 29.29, 29.19, 26.66, 22.56, 15.09, 

14.74 and 14.40 ppm. 1H NMR (400 MHz, dmso-D6) δ = 9.98, 8.99, 8.20, 7.71, 7.24, 7.15, 

7.04, 6.94, 6.84, 6.20, 4.08, 3.98, 3.16, 2.84, 2.26, 1.47, 1.20, 0.80 ppm. 
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Figure 9. 1H-NMR on top and 13C-NMR on bottom of compound 3. 
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Figure 10. 1H, 13C HMQC of compound 3. 

 

Figure 11. 1H, 13C HMBC of compound 3. 
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5.3 Synthesis of a Drug Delivery System based on multiwalled 

carbon nanotubes for the disposal of TACAs mimetic. 

 

Cancer cells can be distinguished from normal cells by displaying aberrant levels and 

types of carbohydrate on their surface. These sugar moieties are known as Tumor-

associated carbohydrates antigens (TACAS) and they are considered as promising 

candidate for the development of tumor vaccine. However, carbohydrates alone can 

evoke only poor immune responses. The problem can be solved by conjugation with 

helper-molecules which can allow the recognition by T cells and the activation of a 

strong immune response. Among all the possible candidate for the conjugation 

nanotubes represents a very promising platform. Indeed, opportunely functionalized 

CNTs not only can allow the recognition by immune cells, but also can increase the 

blood circulation time and give the possibility for the introduction of label compound 

to follow the recognition process. The DDS reported in figure 1 was synthesized and 

characterized. The scope was to evaluate if CNTs were able to allow the recognition of 

a small molecule by the immune system. The DDS was designed as follows: oxidized 

multi-walled CNTs (by now CNTs) as carrier, a glycosyl derivative as antigen mimetic, 

and a substituted bodipy dye as fluorescent probe to visualize nanotubes by 

fluorescence in vitro.  A flexible linker was included as spacer between CNTs and the 

antigen mimetic to facilitate the recognition of the active molecule.  
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Figure 1. Structure of the complete DDS: the antigen mimetic is drawn in green, in blue the fluorescent 
probe. 

 
After preparation of the amine modified CNTs we investigated the coupling reaction 

using two model compounds: glycoside X and galactoside X derivatives. The kinetics of 

the reaction were followed observing the formation of p-nitrophenolate by UV-Vis 

absorbance measurements. Indeed, p-nitrophenolate has a strong absorption band in 

the UV region which allows to evaluate the degree of consumption of the activated 

sugar moiety.  

300 400 500 600 700 800

0,0

0,1

0,2

0,3

0,4

0,5

0,6

A
b

s

wavelenght (nm)

429

 
Figure 2. UV-Vis absorbance spectrum of compound 5.  
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Measuring the absorbance of the supernatant in the reaction mixture and plotting the 

absorbance as function of time was possible to obtain the kinetic profile for the 

coupling reaction. 

Figure 3. Schematic representation of the coupling reaction with glycoside. 
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Figure 4. Kinetic of the coupling reaction based on absorbance at 429 nm: on the left profile o 
reaction of compound 3 and on the right with compound 4. 
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The kinetic of coupling reaction with compounds 3 and 4 is showed in figure 4: the study 

demonstrates that most of the reaction is completed after 48 hours for both the model 

compounds; the higher conversion rate is obtained in the 20 hours, then the reaction 

rate slows down and leads to a plateau after 50 hours for compound 4. The adducts 

were characterized by elemental analysis, ICP-AES and FT-IR spectroscopy (see 

experimental section). After the tuning of the coupling reaction the work was focused 

to find a synthetic strategy for the labeling with the fluorescent probe. The efforts were 

directed in the search of a convenient chemistry that avoids the use of metal catalysts. 

For this reason, the chemistry of carboxylic group was exploited: the use of a two steps 

reaction allowed to covalently bind with an amide bond the amine decorated bodipy 9. 

The loading was confirmed by the UV-Vis absorption spectrum and the fluorescence 

emission excluded the supramolecular decoration, which would led to the quench of 

fluorescence emission.  

 

figure 5. 

 

Figure 5. UV-Vis absorption and fluorescence emission spectra of compound 10. 

 

Then the DDS was completed by deprotection of amide group on material 2b and 

coupling with the antigen mimetic 11.  
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Figure 6. Synthesis of the complete DDS. 
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Experimental section 

 

Synthesis of materials 2 

Materials 2 was synthesized accordingly to the previously discussed procedure above 

in this work (pg 69). The material was characterized using TGA-MS showing a loss of 

weight around 30 to 40 % at 206°C with a peak in the mass spectrum at m/z 56.06, 

which can pe attribute to the isobutene due to the decomposition of t-butyl group. FT-

IR : 3753 bb  e 3453 bb NH, OH stretching, 2916 e 2852 CH stretching, 1717 CO 

stretching of carboxylic group, 1577 s CO stretching amide, 1402, 1348, 1223 

and 1085 cm-1. 

 

Synthesis of material 2a 

Materials 2a was synthesized accordingly to the previously discussed procedure above 

in this work (pg 70). FT-IR: 3412 NH stretching, 1716 stretching CO, 1570 stretching 

CONH, 1395, 1085 cm-1 stretching C-NH. 

General procedure for the coupling with model compounds 3 and 4  

In a sealed Pyrex tube were placed 5 mg of material 2b, 3.5 mg of model compound 3 

or 4, 3.5 mg of TEA (34 µmol) and 300 µL of dry DMF, the mixture was sonicated for 10 

min and then stirred at room temperature, aliquots of 10 µL were collected at different 

time point and used for the spectrophotometric analysis. After 72 h the reaction was 

stopped and the purified material recovered after different centrifugation cycles 

washing with: methanol:i-propanol 1:1, i-propanol: di-i-propyl ether 1:1, and di-i-propyl 

ether. FT-IR: 3406 OH and NH stretching, 2918 and 2856  CH stretching, 1730 CO 

stretching carboxylic group, 1583 , 1396 , 1215 , 1089  e 1031 cm-1. ICP-AES analysis  S 

% =0.32, 0.1 mmol of model/g of CNTs.   

 

Synthesis material 8 
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In a 250 mL round bottom flask 35 mg of material 2 were dispersed in 84 mL of MES 

buffer, then 875 mg of N-hydroxysuccinimide and 210 mg of EDC-HCl were added. The 

mixture was stirred for 30 minutes at room temperature and the material recovered 

after filtration over 0.2 µm pore polycarbonate membrane washing with MES and 

water and dried under vacuum. 

 

Synthesis of material 10 

In a 5 mL round bottom flask 10 mg of material 8 and 40 mg of bodipy 9 were dispersed 

in 2.5 mL of dry DMF under nitrogen atmosphere using an ultrasound bath. Then the 

mixture was stirred at 45°C for 72 h . The decorated material 10 was recovered after 

filtration over a ptfe membrane (0.2 µm pores) washing with DMF and methanol until 

colorless solution obtained. Boron amount was quantified by ICP-AES in 0.4 mg/g. UV-

Vis absorbance 0.477 at 622 nm and 0.537 at 350 nm (conc. 0.05 mg/mL). 

 

Synthesis of material 10a 

The deprotection protocol used is the same described above (pg 70). 

 

Synthesis of material 12 

In a pirex tube under nitrogen atmosphere were added CNTs-NH2 (4.7 mg), the 

activated mimetic (4.5 mg), dry DMF (300 µL) and distilled triethyl amine (1.34 mg), the 

mixture was dispersed using an ultrasound bath and stirred under nitrogen at 45 °C for 

72 h. Then the reaction mixture was diluted with methanol and centrifuged for 10 

minutes at 1400 rcf, the precipitate was recovered with methanol and filtered over a 

0.2 µm pores polycarbonate membrane washing with methanol, i-propanol and 

diisopropyl ether. The amount of mimetic was quantified analyzing the sulfur content 

with ICP-AES and found to be 0.1 mmol/g. 
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5.4 Synthesis of a self-immolate disulfide linker 

 

Based on the results obtained in the main body of the project, and especially in the lack 

of target engagement observed in the FAZA experiment, we consider the possibility to 

use a self-cleavable linker for the release of the drug payload. Several suitable linkers 

are reported in literature with different cleavage mechanisms, amides, esters, 

hydrazones and disulfides. Among these, amides require the intervention of a protease 

enzyme and such mechanism requires to fit perfectly in the enzyme pocket which is not 

always trivial with CNTs. Esters are often too labile and can be cleaved also in the blood 

circulation. The choice was therefore reduced to hydrazones and disulfides, and firstly 

we decide to investigate the disulfide linkers efficiency. For this purpose the linker 

showed in Figure 1 was synthesized modifying a reported procedure.64,78,131,159 

 

Figure 1. Drug release mechanism with disulfide linker. 159  

 

The optimized synthetic approach for compound 7 is reported in Figure 2. The disulfide 

linker was prepared starting from the commercially available compounds 1 and 4 

through a 5 steps synthesis with a decent overall yield (53%). The key step is the 

disulfide coupling between compound 3 and 6 where the solvent plays an important 

role. The use of a non-polar solvent, such diethyl ether, strongly reduces the reactivity 
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of the pyridyl byproduct that otherwise can react with compound 7 strongly reducing 

the yield.  

 

Figure 2. Scheme of disulfide linker 7 synthesis. 

 

 

Experimental section 

 

Synthesis of compound 2  

In a 5 mL round bottom flask 160.3 mg of 3-sulfidryl propionic acid (1.51 mmol, 1 eq) 

were dissolved in 1.3 mL of methanol, then 500 mg of compound 1 (2.7 mmol, 1.5 eq) 

were added and the reaction mixture stirred for 2 h at room temperature. The 

complete conversion of the acid was confirmed by TLC analysis (hexane / Ethyl acetate 

1:1). The solvent was removed under vacuum and the crude mixture used directly for 

the further reaction. 1H NMR (300 MHz, CDCl3) δ = 10.4 (br, 1 H, ‐COOH), 8.48 (dd, J = 

3.3, 1.2 Hz, 1 H, Har‐ 6), 7.66 (m, 2 H, Har 3 e Har  4), 7.14 (m, 1 H, Har 5), 3.06 (t, J = 6.9 

Hz, 2 H, S‐CH2), 2.79 (t, J = 6.9 Hz, 2 H, CH2‐COOH) ppm 

13C 13C NMR (75 MHz, CDCl3) δ = 176.1 (‐COOH), 159.2 (Car‐2), 149.4 (Car‐6), 137.4 (Car‐

4), 121.2 (Car‐5), 120.5 (Car‐3), 34.1 (CH2-COOH), 33.8 (S-CH2) ppm. 
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‐COOH), 33.8 (S-CH2) ppm. 

 

Synthesis of compound 3  

In a 25 mL two necked round bottom flask 325.1 mg of crude compound 2 (1.51 mmol, 

1 eq) were dissolved in dry DCM under nitrogen atmosphere and 305.6 mg of dry TEA 

(3.02 mmol, 2 eq) were added dropwise, then the solution was cooled at 0°C and 349.4 

mg of TIPSCl (1.81 mmol, 1.2 eq) were added dropwise. The reaction mixture was then 

stirred for 2 h at room temperature, then 5.44 mL of NH44Cl saturated aqueous solution 

were added and the organic and the aqueous phases were collected and the second 

one extracted three times with 5.4 mL of DCM. The organic phases were collected and 

dried over sodium sulfate, the solvent was removed under vacuum yielding the crude 

product. The product was purified through flash chromatography column (4 cm d, h 15 

cm) eluent petroleum ether : ethyl acetate 20:1. Yield 61%. 1H NMR (200 MHz, CDCl3) δ 

= 8.47 m (1H), 7.66 m (2H), 7.10 (1H), 3.03 t (2H), 2.80 t (2H), 1.25 m (3H) and 1.06 ppm 

d (18H, J3
H-H = 8 Hz). 13C NMR (100 MHz, CDCl3) δ = 171.61 (‐COOSi‐), 160.13 (Car‐2), 

149.84 (Car‐6), 137.26 (Car ‐4), 120.92(Car ‐5), 119.94 (Car‐3), 35.51 (CH2‐COOSi-), 34.04 

(SH‐CH2), 17.93 (CH‐ CH3 x 3), 12.07 (CH‐CH3 x 3) ppm. HRMS (ESI) m/z calculated for 

C17H30NO2S2Si+ (M + H+): 372.1487 measured: 372.1485 (Δ = 0.5 ppm). 

 

Synthesis of compound 5   

In a 10 mL round bottom flask 500 mg of compound 4 (2.8 mmol) were dissolved in 5 

mL of ethanol, then under magnetic stirring 930 µL of hydrogen peroxide 30% in water 

were added dropwise and the mixture stirred at room temperature for 5 h. The reaction 

was quenched adding 17 mL of water, then the mixture was extracted three times with 

12.5 mL of DCM, the organic phases were collected and dried over sodium sulfate, the 

solvent was removed under vacuum giving the purified product (pink oil). Yield 90%.  

1H-NMR (200 MHz, CDCl3) δ = 7.34 m (4H) and 4.04 ppm s (2H). 13C NMR (75 MHz, 

CDCl3) δ = 202.6 (CO), 136.7 (Car‐2), 132.0 (Car ‐1), 128.1 (Car ‐3), 125.9 (Car ‐6), 124.5 (Car 
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‐5), 122.7 (Car ‐4), 46.9 (CH2) ppm. HRMS-ESI m/z calculated for C8H7OS+ (M + H+): 

150.0139, measured: 150.0138 (Δ = ‐0.7 ppm). 

 

Synthesis of compound 6  

In a 50 mL round bottom flask 378.1 mg of compound 5 (2.52 mmol, 1 eq) were 

dissolved in 12.6 mL of THF, then 361.7 mg of lithium hydroxide (15.1 mmol, 6 eq) 

dissolved in water were added at room temperature. After addition was completed the 

reaction mixture was heated at 60°C and stirred overnight. Then 2.7 mL of water and 

13.3 mL of diethyl ether were added, and the reaction quenched with HCl 2 M till pH2. 

The organic and the aqueous phases were separated, and the aqueous phase was 

extracted three times with 23 mL of diethyl ether. The organic phases were collected 

and dried over sodium sulfate, the solvent was removed under vacuum giving the pure 

product. Yield 98%. 1H NMR (400 MHz, CDCl3) δ = 10.10 (br, 1 H, ‐COOH), 7.41 (m, 1 H, 

Har‐6), 7.18‐7.29 (m, 3 H, Har‐3, Har‐4 e Har ‐5), 3.83 (s, 2 H, -CH2), 3.49 (s, 1 H, S-H) ppm. 

13C NMR (100 MHz, CDCl3) δ = 176.16 (‐CO), 133.33 (Car‐2), 132.41 (Car ‐1), 131.00 (Car ‐

3), 130.74 (Car ‐6), 128.25 (Car ‐5), 126.94 (Car ‐4), 39.85 (‐CH2) ppm. HRMS-ESI m/z 

calculated for C8H8O2S+ (M + H+): 168.02450, measured: 168.02445 (Δ = 0.3 ppm). 

 

Synthesis of compound 7  

In a 5 mL round bottom flask 340 mg of compound 3 (0.917 mmol, 1 eq) were 

dissolved in dry diethyl ether under nitrogen atmosphere, the mixture was cooled at -

7°C and 231.4 mg of compound 6 were added and the mixture stirred at -7°C for 48 h. 

The product was recovered after flash chromatographic column (15 cm h, 4 cm d) 

eluent diethyl ether rf 0.9. Yield 51 %. 1H NMR (300 MHz, CDCl3) δ = 7.77 (d, J = 8.4 

Hz, 1 H, Har‐6), 7.28 (m, 3 H, Har ‐3, Har ‐4 e Har ‐5), 3.90 (s, 2 H, ‐CH2-COOH), 2.92 (t, J = 

6.9 Hz, 2 H, ‐CH2-S-), 2.76 (t, J = 6.9 Hz, 2 H, ‐CH2‐COOSi‐), 1.31 (m, 3 H, CH‐CH3 x 3), 

1.22 (d, J = 7.2 Hz, 18 H, CH‐CH3 x 3) ppm. 13C NMR (75 MHz, CDCl3) δ = 176.55 (‐

COOH), 171.85 (‐COO-Si), 137.00 (Car ‐2), 134.00 (Car ‐1), 131.18 (Car ‐3), 131.06 (Car ‐
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6), 128.62 (Car ‐5), 128.23 (Car ‐4), 39.09 (‐ CH2‐COOH), 35.53 (CH2‐COOSi‐), 33.78 

(CH2‐S-), 17.93 (CH‐CH3 x 3), 12.05 (CH‐CH3 x 3) ppm. HRMS-ESI m/z calculated for 

C20H33O4S2Si+: 429.1590, measured: 429.1601 (Δ = 2.6 ppm).
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