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Abstract

Many natural and artificial systems can be modelled by ensembles of coupled oscillators.
These types of systems can exhibit various synchronisation phenomena, where the
interaction between the oscillators leads them to some kind of coherent behaviour, despite
heterogeneities in the system. Moreover, many such systems are subject to a time-
variable environment which effectively drives them. Many examples can be found in
living systems, e.g., the dynamics of a cell is strongly dependent on the ever-changing
intra- and extra-cellular ionic concentrations.

Motivated by these considerations, this thesis investigates the effect of time-varying
parameters on synchronisation and stability in ensembles of coupled oscillators. Time-
variability is a crucial ingredient of the dynamics of many real-life systems, and interest in it
is only recently starting to grow. Such systems are in general described by nonautonomous
equations, which are hard to treat in general. This present work aims at answering
questions such as: Can time-variability be detrimental/beneficial to synchronisation? If
so, under which conditions? Can time-variability seed new dynamical phenomena? How
can one best treat nonautonomous systems?

The systems studied can be divided into two categories. First, the effect of a driving
oscillator with a time-varying frequency is investigated. It is shown that increasing
the amplitude of the frequency modulation can increase the size of the stability region
in parameter space, under general assumptions. Short-term dynamics and stability
properties are also investigated, and their dynamics is shown to be of importance. Second,
the effect of time-varying couplings between the oscillators is considered. This is shown
to be able to make the synchronous state unstable and yield oscillation death.

Overall, the thesis illustrates that time-variability can be either beneficial or detrimental
to synchronous dynamics, and investigates in detail and gives insight about cases of
both. It argues towards the general fact that short-term dynamics is often crucial to a
physically relevant understanding of nonautonomous systems.
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Glossary, abbreviations, and notations

Glossary and abbreviations

Adjacency matrix Matrix that encodes the coupling of pair of oscillators in a network

Arnold tongue Region of synchronisation in parameter space

Asymptotic Lyapunov exponent (ALE) Lyapunov exponent defined in the limit t→∞

Autonomous dynamical system Dynamical system of which the evolution does not
depend explicitly on time

Chronotaxic system Nonautonomous system with time-varying frequency and amplitude,
yet that is stable against external perturbations

Circadian rhythms Rhythms of about 24 hours, involved in many biological oscillatory
processes

Finite-time Lyapunov exponent (FTLE) Lyapunov exponent defined over a finite time
(long or short)

Frequency mismatch Frequency difference between a driving and a driven oscillator

Instantaneous Lyapunov exponent (ILE) Lyapunov exponent defined over an infinitesi-
mal time

Limit-cycle (LC) Mathematical realisation of a self-sustained oscillator

Nonautonomous dynamical system Dynamical system of which the evolution does de-
pend explicitly on time

Ordinary differential equation (ODE) Mathematical framework used to model a dy-
namical system

Phase oscillator Oscillator described only by a phase

Quasiperiodic (QP) A quasiperiodic function is a function of two independent phases

Runge-Kutta 4 (RK4) Fourth order Runge-Kutta scheme for numerical integration of
ODEs

Self-sustained oscillator (SSO) System that oscillates even without external influence

Suprachiasmatic neurons (SCN) Neurons in the brain responsible for the synchronisa-
tion of circadian rhythms in the body

Synchronisation Adjustment of rhythms of interacting oscillators

Watanabe-Strogatz (WS) Type of network with identical phase oscillators

Wavelet transform (WT) Algorithm for time-frequency analysis of a time series
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Glossary, abbreviations, and notations

Notations

θ Phase
ψ Phase difference
λ(∞) Asymptotic Lyapunov exponent
λ Lyapunov exponent
λ(t) Instantaneous Lyapunov exponent
x Vector
M Matrix
J Jacobian matrix
A Adjacency matrix
L Laplacian matrix
ξ(t) Noise
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1. Introduction

The human body is an incredibly complex – yet beautifully working – machine. Let us

try, just for a minute, to imagine the thousands of structures and processes, at all scales,

working together to keep the body alive and well. At all scales in space: from the heart

cells beating simultaneously to pump blood and bring nutrients and oxygen to the entire

body, and the neurons in the brain firing in a coordinated way so as to think and direct

the limbs, to the heart, the brain, and the lungs working together to maintain essential

functions. And at all scales in time: from the fast beating of the heart, to the daily

rhythms of body temperature, and the ovarian monthly cycles. All these processes, and

many more, work in an extraordinarily coordinated way for life to be maintained. As if

that was not an exceptional enough feat, they do so in the face of ever-changing external

conditions: every living person has had their heart beat too fast out of excitement, or

beat slower when asleep at night – and yet is still alive. This example illustrates the

two main elements of this thesis: the orderliness in time of interacting oscillatory units

– synchronisation – and their maintaining stability, notwithstanding the time-variable

influence of the environment.

Order is often found in nature, although the second law of thermodynamics seems

to indicate that nature should tend to a state of greater disorder. This seems like a

contradiction and has puzzled scientists for a long time, such as the eminent E. Schrödinger

in his book “What is life?” [138]. Structures arise from the complex interaction of many

units, and not only in the living body. As S. H. Strogatz beautifully writes it [146]:

“At the heart of the universe is a steady, insistent beat: the sound of cycles in sync.

It pervades nature at every scale from the nucleus to the cosmos.” Investigating these

questions in the 20th century, I. Prigogine, with his work on self-organisation in dissipative

structures [109], and H. Haken, with synergetics [52], were probably among the pioneers

1



1. Introduction

of what is now called “complexity science”.

Synchronisation is the timely order that arises from interacting oscillatory units; it is the

type of order considered in this thesis. Rhythms, or equivalently oscillatory dynamics,

abound in nature [45, 46]. Theoretical biologist A. Winfree started to model processes

such as circadian rhythms mathematically as an ensemble of coupled oscillators [166].

However, his model was hard to treat mathematically. It was only in 1975, when

Y. Kuramoto simplified it [80], that the field attracted more attention and inspired many

more studies [1, 5, 136]. The model was simple and mathematically tractable, and yet

displayed the emergence of order: synchronisation of all coupled phase oscillators. What is

now known as the “Kuramoto model” became a paradigm in the study of synchronisation

and inspired a whole field of research. Synchronisation has been applied to physics, but

also to chemistry, biology, medicine, neurosciences, engineering, and many other fields.

Examples include diverse aspects of nature [32, 45, 46], circadian rhythms [40, 50, 90],

cardio-respiratory dynamics [22, 98, 149], metabolic oscillations [85], the brain [153, 161],

and climate dynamics [33, 42]. Synchronous dynamics can be crucially needed, such as

for the beating of the heart, but can also be severely detrimental, such as in epileptic

seizures [4, 101]. Phenomena such as ageing [62] and anæstesia [143] are known to alter

synchrony of dynamics. The early globally-coupled-oscillators setting of Kuramoto was

later extended to complex networks of oscillators [5], representing structures also found in,

e.g., sociology, the brain, or the internet. Coupled oscillators exhibiting synchronisation

are the first ingredient of the systems in this thesis.

Most of the literature to date effectively models systems as thermodynamically closed, i.e.

using autonomous models [147]. By definition, an autonomous dynamical system obeys a

time-independent evolution law, and its future state only depends on its own present state.

Hence, in such a model, it is assumed that all variables needed to determine the state

of the system are known, and any external influence is negligible. Very often, however,

systems in nature do depend on the interaction with their environment. Strictly speaking,

the only truly autonomous system is the entire universe. Finally, experimentalists often

do not have access to measure all processes at hand, but can only measure a few of them.

Nonetheless, autonomous modelling has proven successful since its advent first with I.

Newton and then its crucial developments with H. Poincaré and A. Lyapunov. Newton’s
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gravitational force model is an example of a time-independent law. In fact, autonomous

dynamical system theory was originally developed by Newton and later Poincaré with

celestial mechanics in mind. In a sense, autonomous modelling is related to the approach

of reductionism. Starting in ancient Greece with Democritus and his atomist theory,

reductionism in science is the approach that seeks to understand a whole system by

understanding its elementary subparts. Taking this approach as far as possible led to the

development of the successful field of particle physics. However, this approach often does

not work in complex systems, where “the whole is more than the sum of its parts” and a

more holistic approach needs to be applied.

Many systems in nature are thermodynamically open: they exchange energy and matter

with their environment. This is especially true of living systems: how long would one

survive without eating and breathing? Such systems are modelled mathematically by

nonautonomous dynamical systems [72], i.e. dynamical systems which obey a time-

dependent evolution law. To determine the future state of the system, not only is its

own current state needed, but so is the current time. For example, the firing of a neuron

and the metabolism of a cell both strongly depend on the intra- and extra-cellular ionic

concentrations [121]. These concentrations are ever-changing and depend on multiple

other complex processes, and yet neurons keep firing. The heart too (fortunately!)

maintains its function – beating – but is constantly adapting its frequency to external and

internal events. The theory of nonautonomous dynamical systems started being developed

only in the last two decades by the mathematics community [72], but its importance

is only recently starting to be recognised in other communities, such as in physics. Its

importance is especially clear for the life sciences [40, 73, 85], but nonautonomous theory

is also being applied in other fields such as climate dynamics [26, 33, 37, 42, 118], and fluid

dynamics [55, 100, 134, 154, 163]. Such time-variability implies that, often, macroscopic

properties such as synchrony or stability will also be time-varying [14, 20]. This was

observed, e.g., for fish communities in Japan [160]. It is then clear that a finite-time

approach is crucially needed in such cases, and especially in nonautonomous systems.

Nonautonomicity, i.e. for the systems considered to be nonautonomous, is the second

ingredient in this thesis.

Two main realisations of nonautonomicity are considered in this thesis, both motivated
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by clear experimental evidence of their presence in real systems.

First, evidence shows that many oscillatory systems in nature have time-varying fre-

quencies. This is also common knowledge. The heart is a striking example of a stable

system exhibiting an ever-changing frequency. Evidence of this type of oscillations has

also been found in other examples including in cell metabolism [85], cardio-respiratory

dynamics [22, 98, 149], and the brain [153, 161]. The stable yet time-varying oscillations

of such systems seems to be the result of a mechanism of great importance in the main-

taining of life. For this reason, systems with the aforementioned properties were coined

chronotaxic [149–151], and their stability started to be investigated. Time-series analysis

methods have also been developed to resolve in time the dynamical characteristics of

time-varying-frequency oscillators (e.g., wavelet-based spectrum, coherence and bispec-

trum [29] as well as Bayesian inference of coupling functions [142]) rather than analyse

them in a statistical sense (e.g. calculating power-spectrum density) and thereby miss

noteworthy time-dependent dynamical features. Part of the work presented here was

initiated with a view to building on some of these developments.

Second, time-varying networks [57, 58], i.e. networks for which the topology changes over

time, are ubiquitous. Examples include the network of social interactions – people make

new friends – the internet – new pages are created and link to each other – or scientific

collaborations – new collaborations start while others finish with the end of a common

project. Time-varying networks, sometimes also called temporal networks, is a rapidly

growing field, and yet, to date, little is known about synchronisation on this type of

network setting.

This thesis focuses on the two aforementioned cases of time-variability: time-varying

driving frequency, and time-varying network topology. Can time-variability be detrimen-

tal/beneficial to synchronisation? If so, under which conditions? Can time-variability

seed new dynamical phenomena? How can one best treat nonautonomous systems?

Those are the type of questions this thesis aims to answer.
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1.1. Outline of the thesis

Chapter 2 introduces the theoretical concepts and tools used in – and needed for the

understanding of – the subsequent chapters of the thesis. General concepts of dynamical

systems and stability are presented, as well as a review of the relevant literature about

synchronisation in networks of oscillators.

Chapter 3 investigates a quasiperiodically forced nonlinear oscillator. The various

dynamical regimes are described and characterised, over parameter space. In this chapter,

we confirm results obtained for similar systems in the literature. This chapter serves as a

complement to chapter 2.

Chapter 4 introduces time-varying-frequency driving, in a pair of unidirectionally coupled

oscillators. Stability of the driven oscillator, and synchronisation to the driving oscillator,

are investigated via long- and short-term Lyapunov exponents. The growth of the stability

region in parameter space with the frequency modulation amplitude is established, and

explained by the apparition of a regime of intermittent synchronisation.

Chapter 5 investigates a one-dimensional nonautonomous phase equation, generalising

the system and the results of chapter 4. That system is then used to illustrate the

limitations of the traditional asymptotic approach to stability, and how it can differ from

a more physically relevant long-but-finite-time approach.

Chapter 6 considers a model that is a direct generalisation of that in chapter 4 to a

network of identical oscillators driven by a common external driving with a time-varying

frequency. The stability of the synchronous solution is assessed. In the case of attractive

network couplings, results are a direct generalisation of those in chapter 4. In the case of

repulsive network couplings, stability also depends on the topology, and strategies based

on topological changes and time-variability are proposed to stabilise the system.

Chapter 7 investigates the stability of the synchronous state in a network of nonlinear

oscillators where the network connections can change over time. It is shown that the

time-variability in the network topology can induce the instability of synchrony, and even

lead to oscillation death.
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Finally, chapter 8 summarises the work presented in this thesis and discusses possible

directions for future research.
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2. Theoretical background

In this chapter, we introduce concepts, terminology, and results from the literature that

are relevant to the understanding and self-consistency of the thesis. This chapter is not

intended as an exhaustive presentation of the topics considered, and the interested reader

will be referred to the relevant literature for more details.

The chapter is organised as follows. Section 2.1 introduces autonomous and nonau-

tonomous dynamical systems, as well as related concepts. In particular, self-sustained

oscillators are introduced, which will serve as the basic dynamical unit for the whole thesis.

Then, Sec. 2.2 introduces the concept of stability of a dynamical system, together with

Lyapunov and Floquet exponents, and the numerical methods to compute them. The

first two sections allow Sec. 2.3 to introduce synchronisation, the main topic of the thesis.

Finally, Sec. 2.4 introduces networks of oscillators and provides additional background

information about synchronisation in such networks, including relevant results from the

literature.

This chapter is heavily based on [5, 72, 125, 127, 136, 146]. More specifically, the interested

reader is referred to: [147] for autonomous dynamical systems and their stability, [72]

for nonautonomous dynamical systems theory and their stability, [125] for Lyapunov

exponents, [127] for synchronisation in general, and finally [5, 136] for synchronisation

more specifically in complex networks.

2.1. Dynamical systems

Dynamical systems theory studies the evolution over time of the state of a system under

a given law. For a d-dimensional system, the evolution of state x is typically formalised
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2. Theoretical background

by a set of ordinary differential equations (ODEs)

ẋ = f(x), (2.1)

where x is a d-dimensional vector, f is the constant function encoding the evolution law,

and the dot denotes the time derivative, ẋ ≡ dx
dt . Here, and throughout the text, we

consider time as a continuous variable. We thus only consider continuous dynamical

systems, which we will simply refer to as dynamical systems. Discrete dynamical systems,

for which time is a discrete variable, are described by difference equations. Finally, we

only consider deterministic systems, for which no randomness is part of the evolution, as

opposed to, e.g., random dynamical systems.

In Eq. (2.1), the state of the system at future time t only depends on its evolution

law and its current state. The evolution law is constant in time: it is an autonomous

dynamical system. Newton’s law of gravitation is a physical example of such a law: given

two masses at a given distance, Newton’s law states that the attraction between the two

has been, is, and always will be the same. This assumption of time-homogeneity is also

made for most fundamental forces in physics.

For future use, we now briefly define a few standard concepts. The state space of

system (2.1) is the space of all possible states x. Often, it is also called phase space

but we avoid this terminology and reserve the word phase to denote the phase of an

oscillator. The dimension of the state space is denoted by d. Finally, the Jacobian matrix

of system (2.1) at x∗ is defined as J(x∗) = ∂xf(x∗), and its eigenvalues are measures of

the linear stability of the state considered.

Note on terminology: we use the word system in the sense of a physical system being

studied, sometimes including its evolution law; but not in the sense of a set, for example,

of linear equations.

Since the evolution of system (2.1) does not depend on time, the system is defined

over infinite time. In fact, the study of the dynamics of an autonomous system can be

turned into the geometric analysis of static flows in state space. This approach was first

introduced by H. Poincaré when he was studying celestial mechanics. When studying

the dynamics of a system, a very important concept is that of attractors. An attractor
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is, in simple terms, a solution of system (2.1) that attracts other nearby trajectories.

Typical types of solutions include steady states, periodic solutions, or chaotic solutions,

which correspond to the following geometrical objects in state space: a fixed point, a

closed orbit, and a strange attractor, respectively. When studying a given dynamical

system, the study of its attracting solutions (or attractors) is of prime importance. Here,

all attractors are static dynamical objects. Methods such as Poincaré sections, and

delay-embedding for the reconstruction of state space from data, all make the important

assumption that the flow and its attractors are static, and time can go to infinity. Another

crucial concept is that of bifurcation. A bifurcation refers to a qualitative change in the

dynamical behaviour of a system as a parameter value is changed. Such change typically

is the appearance, disappearance, or change in stability of attractors.

In autonomous systems, the stability of an attractor is typically defined by asymptotic

stability: a forward-time trajectory is asymptotically stable if there is a neighbourhood

of its initial condition that contracts in diameter to zero under the flow as time tends to

∞. This definition does not mention any condition on the trajectories diverging before

reaching infinite time, only that they must converge in the limit of infinite time. More

details about stability will be given in the next section.

As mentioned in chapter 1, an autonomous model implicitly assumes that all variables

needed to determine the state of the system are known by the modeller, and any external

influence is negligible. In many real-life systems, however, this assumption is not realistic.

For example, experimentalists often do not have access to measure all processes at hand,

but can only measure a few of them. Strictly speaking, the only truly autonomous system

is the entire universe. To take the external influences into account, nonautonomous

models are needed, which we describe in the next chapter. Autonomous dynamical

systems theory has been very successful and virtually used in all fields of science and

beyond. Despite evidence to suggest that the understanding of real-life systems may

greatly benefit from nonautonomous dynamical systems, such ideas have started to

attract attention from the community only recently, see [28, 149].

For a more detailed presentation of autonomous dynamical systems theory, the interested

reader is referred to the classical textbook [147] and references therein.
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2.1.1. Nonautonomous dynamical systems

When the evolution law of a system explicitly depends on time, the system is nonau-

tonomous and written in general

ẋ = f(x, t). (2.2)

The future of an initial condition of system (2.2) not only depends on the initial condition

itself, but also on the initial time, contrary to autonomous systems – such a solution is

denoted by x(t; t0). Nonautonomous systems such as (2.2) are in general hard to treat

mathematically. Indeed, the flow is not a fixed geometrical object anymore, but one that

evolves with time, and hence many techniques and concepts of autonomous dynamical

systems theory are either not applicable or can be misleading. Moreover, new concepts

are needed to describe such systems. As defined above, the attractor of an autonomous

system attracts close trajectories as time goes to +∞. In nonautonomous systems, two

different types of (asymptotic) attractors need to be defined: forward and pullback. An

attractor, i.e. here a nonautonomous invariant set [72], x∗(t), is said to be forward,

similarly to the autonomous case, if it satisfies

lim
t→+∞

|x(t; t0)− x∗(t)| = 0, (2.3)

and pullback if it satisfies

lim
t0→−∞

|x(t; t0)− x∗(t)| = 0, (2.4)

where the initial time t0 tends to infinity. Such a distinction is clearly not possible for

autonomous systems. If a pullback attractor exists, it is unique. On the contrary, forward

attractors are intrinsically nonunique. Pullback and forward attractors are independent

concepts. This can be seen by considering the two following simple systems. On the one

hand, the nonautonomous system ẋ = 2xt has no forward attractor, but R × {0} is a

pullback attractor. On the other hand, the nonautonomous system ẋ = −2xt, has no

pullback attractor, but has an infinity of forward attractors (see [72]).

Note that in nonautonomous systems, the attractor is an object that evolves in time.

Pullback attractors have been used in climate dynamics and oceanography, in driven
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systems, and were often visualised as ensemble snapshots [42, 43, 137]. An ensemble

snapshot is obtained by evolving a set of initial conditions covering the state space, and

showing their positions at a given time t. Ensemble snapshots allow to visualise the

pullback attractor at time t. Nonautonomous systems also offer new bifurcation scenarios,

investigated for example in [3, 8, 9, 87].

A common misconception is that standard autonomous dynamical systems theory auto-

matically covers the need to understand nonautonomous dynamics, since the introduction

of time into the state space as a variable τ with τ̇ = 1 makes the nonautonomous

system autonomous. However, the qualitative behaviour of this autonomised version of

a nonautonomous system is trivial from the point of view of autonomous theory: all

solutions simply move towards ∞. Autonomous theory generally focuses on bounded

objects – attractors – such as fixed points, periodic orbits, and associated Lyapunov

exponents; but none of these exist for a system involving a component τ = 1 [72, Remark

2.5].

In some simple cases, however, it can be useful to consider an autonomised extended-state

space when analysing a nonautonomous system. In particular, when the system is driven

by a periodic or quasiperiodic system, as will be discussed in chapter 3. In those cases,

one (periodic case) or 2 or more (quasiperiodic case) phase variables are used to represent

time, instead of extending the state space with a linearly growing variable. In that

case, the extended state space is bounded, and so are solutions. Attractors exists in the

extended state space in the sense of autonomous systems. This situation will be discussed

in the next chapter in more detail. Note however, that this applies only in simple cases,

and is only practical when the number of additional variables needed is very small.

In the rest of the text, we use the word nonautonomicity as the noun form of “nonau-

tonomous”. For example, when saying “we investigate the effect of nonautonomicity in

oscillatory systems” we mean “we investigate the effect of being nonautonomous rather

than autonomous, for oscillator systems”. The word nonautonomicity has already been

used in this way in some texts, e.g. [29, 73, 149].

For a more detailed presentation of nonautonomous dynamical systems theory, the

interested reader is referred to the classical textbook [72] and references therein.
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2.1.2. Self-sustained oscillators

Among all dynamical systems, we are most interested in oscillatory ones, and in particular

in self-sustained oscillators (SSO), which abound in nature [127]. Such oscillators have

the following main properties. First, they are self-sustained: they keep on oscillating even

if isolated. Second, the shape of the oscillation is independent of the system parameters,

and of the initial state. Third, the oscillation is stable against (small) perturbations:

after being perturbed, the system will go back to oscillating identically.

Such systems are described formally as limit-cycle oscillators, where the limit-cycle is

the curve in state space associated to the oscillation. The limit-cycle is the attractor of

the system, and any initial condition ends up rotating on it. Specifically, the direction

perpendicular to the limit-cycle – the amplitude – is stable: if pushed away in that

direction, the perturbation decays and the oscillator goes back to the limit-cycle. Note,

however, that the position on the limit-cycle – the phase – is only neutrally stable: if the

oscillator is pushed away along that direction, the perturbation neither grows nor decays.

The latter property allows this type of systems to synchronise, as we will see in the next

section. In Fig. 2.1, we show the dynamics of the Brusselator as an example of a nonlinear

SSO. The Brusselator is a two-dimensional system (x, y) satisfying ẋ = 1− (b+1)x+cx2y

and ẏ = bx−cx2y, where b and c stand for free parameters. For b > c+1, the Brusselator

model displays a limit-cycle.

Limit-cycle oscillators are typically modelled by an autonomous system ẋ = f(x) with a

stable periodic solution x(t) = x(t+ T ) of period T .

Self-sustained oscillators are the base unit for all systems considered in thesis, just as

cells are the base unit for living systems in biology.

Phase oscillators

When self-sustained oscillators are weakly nonlinear and interact weakly, only one scalar

variable is necessary to describe their behaviour: their phase. Such a one-dimensional

description is called a phase oscillator. As the single most basic oscillatory dynamical

unit, they have been used extensively in the literature to understand the basic mechanism
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Figure 2.1.: Dynamics of the Brusselator. The trajectories of two initial conditions are
shown (one black, one red). (a) Dynamics of the y-component over time. (b) Trajectory of
the oscillation in state space (y vs. x). Even though the phase is only neutrally stable –
constant shift between the trajectories in (a) – the direction perpendicular to the LC is
stable – all trajectories end up on the limit-cycle in (b). Parameters are b = 3 and c = 1.

of synchronisation phenomena. The phase oscillators considered in this thesis have a

linearly growing phase

θ̇ = ω, (2.5)

with solution θ(t) = θ(0) + ωt. Its period is fixed, T = 2π/ω. The frequency f , is

related to the angular frequency ω = 2πf simply by a factor 2π. The latter is often more

practical to deal with in the context of synchronisation, and we refer to it simply as the

frequency, and omit “angular”, unless state otherwise.

In nature, however, many oscillators have a time-varying frequency. Simply extending

definition (2.5) yields a nonautonomous self-sustained oscillator

θ̇ = ω(t), (2.6)

where the explicit form of ω(t) can be anything: periodic, or aperiodic. The solution is

now formally θ(t) = θ(0) +
∫ t
0 dt′ω(t′). In the context of Eq. (2.6), there is no fixed period

anymore: the time taken to complete a period of 2π changes with time. The definition of

a period itself needs, in general, careful thinking.

As mentioned previously, phase oscillators models can often be obtained as good approxi-

mations of nonlinear LCs. The transformation to go from one description to the other is

called phase reduction, for which various methods exist [104, 105] for autonomous LCs,

and more recently for nonautonomous LCs [83, 84, 115].
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2.1.3. Chronotaxic systems

To highlight the importance of, and draw attention to, open but stable oscillatory systems,

chronotaxicity was first introduced in [149]. Coming from the Greek chronos – time –

and taxis – order, the term was coined to describe their defining property: the ability to

maintain stable but time-varying frequencies (and amplitude) against ongoing external

influences. Chronotaxicity was introduced as a new class of nonautonomous oscillatory

systems and realised mathematically as a time-dependent oscillating point attractor. As

explained in chapter 1, such systems are very common in real-life – and in particular

living – systems, and those properties could be key to their maintaining stability and

function (and thus life) in the face of external events.

The theory of chronotaxicity was further developed [150] and later generalised in [151].

In the latter work, to avoid the need of an a priori knowledge of a point attractor,

chronotaxicity was defined in terms of a time-dependent region of contraction in state

space. One of the goals of these work was also to argue for the importance to the physics

community of nonautonomous models and methods when dealing with real-life open

systems. Chronotaxicity was also used to model and tackle inverse approach problems

from biological data, see for example [29, 30, 85, 86]. Finally, chronotaxicity can also be

related to generalised synchronisation [127]. The link between the two will be discussed

in Sec. 2.3 where synchronisation is introduced.

2.2. Stability

A key concept in the study of dynamical systems is their stability: their ability to be

resilient against small external perturbations. Indeed, it is much needed if one wants

to understand the effective dynamics of the system. Merely knowing a trajectory exists

without knowing if the tiniest perturbation will send it to a completely different type

of solution, or if all other trajectories are attracted to it, is not enough to have a

comprehensive understanding of the system. Stability analysis is thus a tool of prime

importance to the dynamical systems scientist.

Many notions of stability can be defined and found in the literature. In the case of small

perturbations, one can study the linear regime of the system very close to the original
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system. Such analysis more precisely studies linear stability, which is the only concept

of stability that we use in this text. We will refer to it as just “stability” unless stated

otherwise.

In that context, an equilibrium, or more generally a trajectory, is said stable or unstable

if, after it is kicked away from its original state, it comes back to, or goes away from

the original solution, respectively. If the perturbation does not grow nor decay, the

trajectory is said neutrally stable. This concept is typically formalised by the concept of

Lyapunov exponent (LE). Stability is traditionally understood asymptotically, meaning

that stability/instability is decided by the fate of the perturbation after an infinite time.

However, notions of finite-time stability can also be defined. A first reason to do so, is

that when dealing with experimental or numerical data, one does not have access to

infinite times. Moreover, finite-time – short or long – stability can also be relevant in

systems, and especially nonautonomous ones as will be discussed in the remainder of this

thesis.

2.2.1. Lyapunov exponents

The asymptotic Lyapunov exponent (ALE) of a trajectory is a measure of the exponential

rate of divergence (or convergence) of two initially close initial conditions [125]. For a

one-dimensional system ẋ = f(x), the ALE of a trajectory with initial condition x0 is

defined as

λ(∞) = lim
t→∞

1
t

ln
∥∥∥∥ δx(t)
δx(0)

∥∥∥∥ , (2.7)

where δx(0) ≡ x0−x′0 is the initial distance that separates x0 and another infinitesimally

close initial condition x′0, and δx(t) that same distance after a time t. A positive

asymptotic LE indicates instability in the sense of exponential divergence of nearby

trajectories and is traditionally accepted as a necessary condition for chaotic behaviour.

Similarly, a negative or zero ALE means stability or neutral stability, respectively. Note

that, in the literature, asymptotic LEs are often referred to simply as LEs; here, however,

we reserve the term LE for (long but) finite-time LEs, as will be discussed below.

For a d-dimensional system, a set of d ALEs exists, called the Lyapunov exponent

spectrum. Each ALE is associated to a one-dimensional subspace, the set of ALEs is
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typically ordered in decreasing order

λmax = λ1 ≥ λ2 ≥ · · · ≥ λd. (2.8)

The largest ALE is sufficient to determine the stability in a higher dimensional system.

Indeed, only one unstable direction in state space is sufficient to make the whole trajectory

unstable. Hence, λmax > 0 is a sufficient condition for instability. Additionally, a negative

maximum ALE guarantees all ALEs in the spectrum are negative, and hence guarantees

stability. The existence of such set of exponents is the subject of the Oseledets theorem,

also called Multiplicative Ergodic Theorem [111]. Symmetries in the dynamical system

considered typically yield zero ALEs. For example, symmetry under time-shifts of

autonomous continuous-time dynamical systems implies the existence of a zero ALE in

the spectrum. The zero ALE in the case of an autonomous limit-cycle described above is

due to that symmetry.

Lyapunov exponents also have the powerful property of being dynamical invariant: they

are coordinate-invariant – i.e. independent of the choice of variables – and metric-invariant

– i.e independent of the metric chosen to measure the distance between states. This makes

them an objective and fundamental characterisation of the system.

It is important to point out that the ALE depends on the trajectory considered; there

is in general not a single ALE for a given system. Typically, in systems with multiple

attractors, or more generally to each invariant set, a different ALE will correspond to

each invariant set. Imagine a system defined by a phase with an attracting point and

its repelling counterpart (as will be the case in some chapters of this thesis). Almost

all initial conditions will converge to the attracting point and have a negative ALE. A

trajectory starting exactly on the repelling will however have a positive ALE. Moreover,

different initial conditions in the basin of attracting of the same attractor may even

converge to varying values of ALE; this depends on the existence of an ergodic invariant

measure. Finally, even in autonomous systems, there exist cases for which the ALE does

not exist, i.e. there is no convergence [113].

Note that ALEs need not exist for nonautonomous systems – in fact, nonautonomous

systems need not even be well-defined over infinite-time. However, even if they can be
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defined, ALEs may not necessarily be physically relevant for the limited timescales on

which a system is considered in practice. Finite-time LEs will be discussed below.

In general, the analytical derivation of the Lyapunov spectrum for a given set of ODEs is

a hard problem, and in most cases the spectrum is not analytically known. So then, it is

often necessary to have numerical methods to determine the spectrum. Note that for

phase oscillators systems, it is often possible to have an analytical formula. We discuss

such numerical methods below.

To measure stability, it is also possible to define instantaneous Lyapunov exponents (ILE).

Instantaneous LEs measure the instantaneous rate of growth or decay of two nearby

initial conditions. Such exponents will be used and derived analytically for the system

discussed in chapter 6.

Numerical methods

Various algorithms exist in the literature for the computation of LEs [125]. Algorithms

can be separated into those aiming at computing ALEs from time series (obtained from

numerical or experimental data) without prior knowledge of the underlying system, and

those computing ALEs for a given set of ODEs (or other mathematical realisation of

dynamical systems). Each of these two classes of algorithms can then be subdivided in

two based on whether the algorithm computes the whole Lyapunov spectrum or just the

maximum LE.

The canonical algorithm by Wolf [167] computes the whole spectrum of ALEs from time

series. It is based on the reconstruction of state space from time series, using techniques

such as the Takens-Mañé theorem of delay-embedding [96, 152]. While this algorithm

has been used, it is notorious that extracting reliable ALEs from experimental data is a

hard problem: indeed, ALEs measure sensitivity to initial conditions, and the inherent

noise in experimental data adds effective sensitivity to the data. In the context of this

thesis, only the second kind – which computes ALEs from ODEs – is used, and hence is

the one that we will discuss below.

Although the computation of the sole maximum ALE often has advantages in terms of

computational resources and time needed, the computation of the whole spectrum allows
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for more precision and consistency checks. Here, we describe the general principles of the

canonical algorithm by Benettin [17, 18], which computes the whole spectrum, and was

used in the subsequent chapters of the thesis.

Benettin’s algorithm computes the Lyapunov spectrum associated to a generic system

of ODEs, under fairly general conditions. We now describe the main principles of the

algorithm, of which a pseudocode can be found in [125, Appendix B, Algorithm 1].

The algorithm is based on the numerical computation of the values defined by the d-

dimensional version of (2.7). To do so, the algorithm numerically integrates a trajectory

of both an initial condition x in state space and d initial perturbation vector δx(k) in the

so-called tangent space. Vectors in tangent space are also called tangent vectors, and obey

the system of ODEs linearised around the trajectory. Moreover, the algorithm needs

to compute the growth rates in tangent space associated to each of the d ALEs. The

underlying mathematical idea is the following: the sum of the n first ALEs is related to

the growth rate of a volume of a generic n-dimensional parallelepiped, which can in turn

be computed as the product of the n different lengths of its edges.

Practically, during the integration of the system over a (long) time T = mτ⊥ with integer

m, every τ⊥ s, the set of tangent vectors is orthonormalised, the growth rate of each

direction k stored as α(i)
k (for the i-th orthonormalisation), and the k-th ALE is computed

via the formula

λk = 1
mτ⊥

m∑
i=1

ln ‖α(i)
k ‖. (2.9)

When applying the algorithm, care should be taken when choosing the value τ⊥. Indeed, if

too large, tangent vectors align along the most expanding direction and orthonormalisation

becomes numerically impossible; if too small, computational resources are not used

efficiently since the orthonormalisation has a relative high computational cost compared

to other operations, and it might become very slow.

There exist more than one numerical procedure to carry out the orthonormalisation. The

most popular is the Gram-Schmidt (GS) method, which was used in this thesis and for

which a pseudocode can be found at [125, Appendix B, Algorithm 2]. In this thesis,

unless stated otherwise, τ⊥ = 0.1 s for numerical computations. For more details about

the numerical subtleties involved, see [17, 18, 125].
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Note that when computing ALEs numerically, the infinite-time limit of the definition (2.7)

can never be attained formally, and numerical exponents are thus all strictly speaking

finite-time exponents. We discuss finite-time LEs in the next section.

2.2.2. Finite-time Lyapunov exponents

Finite-time Lyapunov exponents (FTLE) are a measure of stability over finite timescales.

They are defined similarly to ALEs, but over a finite time-window of length τ and initial

time t, [t, t+ τ ].

When τ is taken very small, FTLEs tend to the instantaneous LEs – in fact, that

is how ILEs can be computed numerically. We will refer to them as time-localised

Lyapunov exponent or just FTLE when clear from the context. When τ is taken very

large, FTLEs tend to the asymptotic LEs for autonomous dynamical systems – in fact,

as mentioned earlier, any numerical computation of ALEs are practically FTLEs. By

contrast with time-localised LEs, we will use the term long-term Lyapunov exponent to

refer to a Lyapunov exponent taken over a long time-interval [0, T ]; when clear from

the context, we will sometimes drop the word “long-term”. Technically, a long-term LE

is still a finite-time Lyapunov exponent, but it plays a similar role to asymptotic LE

for autonomous systems. Finally, in nonautonomous dynamical systems where no ALEs

can be well-defined, FTLEs are the only measure of long-term stability. Additionally,

sometimes FTLEs will be computed for intermediate timescales, as in chapter 4 and

6. In those cases, the FTLEs will be proxies for Lyapunov exponents obtained via an

adiabatic approach, which will be eplxained in the aforementioned chapters.

Note that, unlike ALEs, FTLEs are not metric-invariant. They prove to be, however, a

useful tool, as shown by their use in existing literature. Examples include the study of

SNAs [39, 124, 131, 141], metabolic control [38], or in many diverse contexts involving

fluid flows data [55, 64, 88, 100, 134, 140, 154, 156, 163]. In the latter case, coherent

structures within the body of fluid are studied, such as the Red Spot on Jupiter [54]. These

structures are typically identified in terms of FTLEs, and exist completely independently

of whether temporal variations follow an infinitely extendible pattern over time – which,

typically, they do not. Very recently, the distribution of FTLEs in chimera-states was

also investigated [21].
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For the sake of clarity: an asymptotic LE is denoted by λ(∞), a long-term FTLE is

denoted by λ, an instantaneous and a short FTLE is denoted by λ(t). Only in chapter 5,

where long-term FTLEs are computed for different long times windows, the length T of

the time-window will be written explicitly to avoid confusion: λT .

Numerical methods

Various methods exist for the computation of FTLEs [125]. In this thesis, FTLEs

over a time-window τ are computed by computing growth rates α(i)
k every time τ⊥, as

described in the previous section for ALS, and then performing a moving average with a

time-window τ (MAτ ) over all computed growth-rates values as follows

λk(t; τ) = MAτ
({ 1

τ⊥
ln ‖α(i)

k ‖
}
i

)
. (2.10)

When computing long-term LEs, τ is the (large) total time of integration, the moving

average is just an average over all values, in which case formula (2.10) is identical to

formula (2.9). When computing time-localised LEs, τ is taken very small; note that

τ can only be taken as small as τ⊥, which in turn cannot be smaller than the step of

integration used in the RK4 scheme.

2.2.3. Floquet exponents

Floquet analysis provides another way of assessing stability [132], but only for linear

systems of the type

ẋ = A(t) x, (2.11)

where A(t) is a periodic function with period T .

For the sake of clarity and simplicity, we restrict the presentation to the application

of Floquet theory to the stability analysis of limit-cycle solution. Let us consider a

two-dimensional autonomous limit-cycle ẋ = f(x) with T -periodic solution x̃(t). Let

δx = x− x̃ be a small perturbation to the limit-cycle. Linearising the governing equation

yields δẋ = J(t) δx, where J(t) is the Jacobian matrix, periodic of period T as well.

Let us label with Φ(t) a fundamental matrix of the system, i.e., a matrix that satisfies
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Φ̇ = A(t) Φ and is non-singular. Then, for all t, there exists a non-singular, constant

matrix B such that

Φ(t+ T ) = Φ(t) B. (2.12)

Moreover, det B = exp
[∫ T

0 trJ (t) dt
]
. The matrix B depends in general on the choice

of the non-unique fundamental matrix Φ(t). Its eigenvalues, ρi with i = 1, 2, however,

do not. These are called the Floquet multipliers and yield the Floquet exponents, defined

as

µi = T−1 ln ρi. (2.13)

Solutions of the examined linear system can then be written

x(t) = a1 p1(t) eµ1t + a2 p2(t) eµ2t, (2.14)

where the pi(t) functions are T -periodic, and the ai are constant coefficients determined

by the initial conditions.

When the system is linearised around a limit-cycle solution, the maximum Floquet

exponents is identically equal to zero, µ1 = 0, whereas the second exponent is negative,

µ2 < 0. This is also the case for LEs. Here, similarly to LEs, the first exponent is

associated with perturbations along the longitudinal direction of the limit-cycle: these

perturbations are neither amplified nor damped as the motion progresses. The second

exponent, µ2 is negative, meaning that perturbations in the transverse direction are

bound to decay in time, and any initial conditions ends up rotating on the limit-cycle.

For periodic systems, LEs are the real part of the Floquet exponents [125].

2.3. Synchronisation

Synchronisation is the timely adjustment of interacting self-sustained oscillators. In

order to introduce the concept more formally, we consider the simplest example: a uni-

directionally coupled pair of phase oscillators. Let us denote θ0(t) and θ(t) the driving

and driven oscillators with constant frequency ω0 and ω, respectively. The dynamics of

the driven oscillator is

θ̇ = ω + γ sin[θ − θ0(t)], (2.15)
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where γ is the coupling strength, and the driving oscillator simply obeys

θ̇0 = ω0. (2.16)

Now, physically, two types of dynamics can occur: either the two oscillators synchronise,

or they do not. Synchronisation is when both oscillators end up oscillating at the same

frequency (or at commensurate frequencies in the case of higher-order synchronisation,

see below) due to their interaction, although their natural frequencies are different. In

this setting, their common frequency will be that of the driving. Note that coherent

oscillations are synchronised only if they interact: two swings oscillating coherently in two

different countries do so only as the result of chance, and it is very unlikely to happen over

a long period of time. For two synchronisation oscillators, since their effective frequencies

are identical – phenomenon known as frequency entrainment – the difference between

their phases is constant – phenomenon known as phase-locking. Frequency entrainment

and phase-locking are in general independent phenomena, although they are equivalent

in the simple case of fixed-frequency driving (2.15) – chapter 4 discusses the relation

between the two in more details.

The phase difference ψ = θ − θ0 obeys

ψ̇ = ∆ω + γ sinψ, (2.17)

where ∆ω ≡ ω − ω0 is the frequency mismatch. It is a one-dimensional autonomous

equation, and has two types of solutions: a fixed point, and a monotonically growing

solution (or decreasing). Synchronisation corresponds to existence of a stable fixed

point, where the phase difference stays constant – phase-locked. The condition for

synchronisation is γ ≥ |∆ω|, in which case the stable fixed point is

ψ = π − arcsin(−∆ω
γ ), (2.18)

and attracts all initial conditions but the coexisting unstable fixed point ψ = arcsin(−∆ω
γ ).

If the condition for synchronisation is not fulfilled, γ < |∆ω|, solutions monotonically

grow, θ̇ > 0, or decay, θ̇ < 0. The region in parameter space where synchronisation

occurs is called Arnold tongue, and is shown in Fig. 2.2.
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Figure 2.2.: Arnold tongue: region of synchronisation. The region of synchronisation is
associated with a negative LE whereas the non-synchronised has zero LE.

In terms of ALEs, the driven oscillator has λ(∞) < 0 if it is synchronised, and λ(∞) = 0

if not. In other words, in the case of synchronisation, there is phase-locking between the

driven and the driving phase: almost all initial conditions of the driven oscillator end

up rotating with the same phase, and any perturbation decays exponentially. Only one

rotating point attracts almost all solutions. On the other hand, in the non-synchronised

case, no phase-locking occurs, the driven phase is neutrally stable, and different initial

conditions end up with different phases, covering the whole attracting circle.

Solutions of (2.17) have period T , formally given by

T =
∣∣∣∣∫ 2π

0

dψ
∆ω + γ sinψ

∣∣∣∣ , (2.19)

which is finite in the non-synchronisation region, and tends to∞ close to the synchronisa-

tion region. Very close to the border, in the no synchronisation region, the dynamics of ψ

is highly non-uniform, and stay for very long epochs quasi-constant, and then effectuates

a quick rotation of 2π: this phenomenon is called phase slip.

Another important quantity is the frequency difference, often called beat frequency, defined

as

Ωψ = 2π
[∫ 2π

0

dψ
∆ω + γ sinψ

]−1
. (2.20)

As show, in Fig. 2.3, a zero beat frequency corresponds to frequency entrainment, in

the autonomous case. Finally, the mean observed frequency of the driven oscillator thus

reads

〈θ̇〉 = ω + Ωψ. (2.21)

23



2. Theoretical background

1.0

0.5

0.0

(
)

(a)

2 1 0 1 2

1

0

1

(b)

Figure 2.3.: Synchronisation region for a fixed γ = 1. The region of synchronisation
corresponds to that of negative LE (phase stability) and plateau of zero beat frequency
(frequency entrainment).

In the literature, often for networks of oscillators, frequency entrainment, when all

oscillators of the system end up oscillating at the same frequency, is sometimes referred

to as frequency synchronisation. This is to contrast with what is sometimes called phase

synchronisation: when all oscillators of the system oscillate with the same phase. Phase

synchronisation implies frequency synchronisation, but the reverse is not true. Note that,

in the literature, the term phase synchronisation is also used with a different meaning

when talking about the synchronisation of chaotic oscillators. In that context, phase

synchronisation – here referring to phase locking and frequency entrainment – is specified

to distinguish it from complete synchronisation – where all chaotic oscillators follow the

exact same trajectory. To avoid confusion, we will in general not use the terms phase

synchronisation and frequency synchronisation but will specify what is used if not clear

from the context.

So far, we have only considered synchronisation where the driving and the driven

oscillators complete one cycle in the same time period, also known as 1:1 phase-locking.

Higher order phase-locking dynamics is possible. In general, one calls n :m phase-locking,

or synchronisation, a solution where the driving oscillator complete n cycles while the

driven oscillators completes m cycles, where m and n are integers. The condition on

parameters to have n :m phase-locking, is that the phase difference ψn:m = mθ − nθ0,

which obeys

ψ̇n:m = (mω − nω0) + γ sinψn:m, (2.22)

has a stable fixed point. Subtongues of higher order phase-locking can be computed in
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some cases, and decrease in size as the order is increased. Such phase-locking is also

directly linked to multistability, see [33]. For mode details about n :m phase-locking,

see [127].

More broadly, one can speak of generalised synchronisation when the state of the driven

system is determined by the state of the driving system. This definition also includes

synchronisation by quasiperiodic forcing (see chapter 3) and other types of synchronisation

not considered, that can occur, e.g., with coupled chaotic oscillators.

The traditional concepts in this section are presented as in the literature [127] for two

coupled fixed-frequency SSOs, and will be revisited in the different chapters of this thesis

for SSOs with time-varying frequency. The first few studies considering synchronisation

between time-varying oscillators include [41, 65, 149–151]. In [149–151], the above-

mentioned concept of chronotaxicity was introduced to describe a class of nonautonomous

oscillatory systems with time-varying yet stable frequency and amplitude. Chronotaxic

systems were defined in terms of a moving point attractor, and can be seen as an important

type of generalised synchronisation. In [65], a nonautonomous version of system (2.17)

was studied, the same equation considered in chapter 4. It provides a description of

solutions, and in particular derives a condition on the slowness of the nonautonomicity

needed for the solutions to be valid. This work will be discussed in further details in

chapter 4. Finally, in [41], a similar nonautonomous version of Eq. (6.4) was considered,

and rich Canard solutions were found, for which trajectories were going to and staying on

unstable branches for long transients. Other existing work on the topic but considering

networks of oscillators will be presented in the next section.

2.4. Networks and synchronisation

Synchronisation can also occur in large ensembles of coupled oscillators. Such oscillators

can be coupled in simples ways – globally, like in the Kuramoto model, or locally to their

nearest neighbour in lattice structures, for example – and in more intricate ways. In

general, such ensembles can be referred to as networks of oscillators, and the network

– the structure of the couplings – can be simple or complex. Network structure are

ubiquitous [108], as argued in chapter 1. Networks of oscillators have been used in
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many diverse fields from neurosciences to ecology and social sciences. In this section, we

define relevant concepts relative to networks of oscillators and synchronisation in such

networks.

Historically, the paradigmatic model for synchronisation in network of oscillators is the

Kuramoto model for phase oscillators [1, 81]. Such network, for N oscillators, reads

θ̇i = ωi +D
N∑
j=1

Aij sin(θj − θi), (2.23)

with i = 1, . . . , N , and where ωi is the frequency of oscillators i, D is a coupling constant,

Aij are the elements of the adjacency matrix A, and oscillators are coupled with a sine

function vanishing for identical phases. The important idea in this model is that, above

a certain critical coupling strength, all oscillators synchronise, i.e. they behave in a

coherent way, despite their different frequencies. This synchronisation can be measured

by an order parameter R defined in terms of the complex mean field

Z = ReiΦ = 1/N
∑
j

eiθj . (2.24)

When all oscillators have the same phase, R = 1; when they are spread maximally, R = 0.

In (2.23), the order parameter R undergoes a bifurcation from zero – small coupling

strength D – to positive (tending to one) values – for large coupling strength D. In 2008,

E. Ott and T. M. Antonsen found a low-dimensional description of system 2.23 in the

thermodynamic limit N →∞, sometimes called the Ott-Antonsen (OA) manifold [112].

Moreover, they showed that this manifold is the only attractor, as long as the natural

frequencies are drawn from a continuous distribution.

Before describing the dynamics in further details, we define and describe in more details

the concept of network and adjacency matrix. In general, some of these oscillators are

coupled and influence each other’s dynamics directly, and some are not. Two coupled

oscillators are also said to be connected or linked. The connexions in such ensemble can

be represented by a mathematical graph or in this context more often called network.

A network is composed of nodes and links. Each node represents an oscillator, and

each link between two nodes represents a link, or coupling, between two oscillators.

The information about the topology of the network, i.e., which pairs of oscillators are
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coupled, is stored in the N ×N adjacency matrix A. The value of each element Aij is

either 1 if oscillators i and j are connected, or 0 if they are not. In this thesis, we only

consider undirected networks, in which connections are symmetric such that the adjacency

matrix is symmetric: Aij = Aji. In undirected networks, connections are asymmetric,

and oscillator j can drive oscillator i without the reciprocal being true. An important

quantity is the connectivity of each node, i.e., the number of other oscillators node i

is coupled too, which is defined as Ki =
∑N
j=1Aij . Finally, in weighted networks, the

entries Aij can take real values. In this thesis, we only consider unweighted undirected

networks.

Different classes of networks exist, based on the properties of their adjacency matrix. We

briefly describe the types used in this thesis. The simple case is that of a globally coupled

network, also called all-to-all coupling, where, as the name indicates, Aij = 1 for all pairs

of oscillators. Global coupling was initially used by Y. Kuramoto in his study. Nearest

neighbour coupling refers to a lattice structure where only neighbouring are coupled.

On the other extreme, in random networks, connexion are drawn at random from a

chosen distribution. Finally, intermediate cases include scale free networks, which are

defined by their connectivity following a power-law distribution. A notorious example of

scale-free network is the Barabási-Albert type which builds an adjacency matrix following

an algorithm based on preferential attachment. More details as well as other types of

networks can be found in [5, 108, 136] and references therein.

Note that all types of networks described so far are static networks: their adjacency

matrix is constant. Most of the literature to date deals with static networks [5, 108, 136].

Evidence for time-varying networks, sometimes called temporal networks, exists [57, 58]

and the topics has very recently started to attract the attention of the community, see

for example [66, 119].

2.4.1. Watanabe-Strogatz

In this thesis, we only consider networks of identical oscillators, for which ωi = ω for all i.

Such networks of identical frequency phase oscillators are often called Watanabe-Strogatz

(WS) networks in reference to the results by the authors of the same name [164, 165],
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who originally studied the following system in the global coupling setting, Aij = 1,

θ̇i = ω +D
N∑
j=1

Aij sin(θj − θi). (2.25)

In system (2.25), a fully-synchronous solution always exists, where all oscillators have

exactly the same phase. It is a condition of utmost coherence that can only be achieved

because the oscillators are identical. In contrast, the Kuramoto model (2.23) can never

achieve such perfect synchrony: oscillators can at most be very coherent and their phase

distributed in a small cluster. Here, in system (2.25), and in the rest of the thesis, we

study the stability of the fully synchronous state. Discussions on the links between the

WS and the OA theories as the distribution of natural frequencies tends to a Dirac delta

can be found in [126] and references therein.

Originally, [164] considered a globally coupled network, and showed that the dynamics

of (2.25) could be reduced to a low-dimensional system consisting of 3 macroscopic

variables. Moreover, they were the first to show that the synchronous solution was

a global attractor: almost all initial conditions converge to it. In fact, they studied

the system with the more general coupling g(θj , θi) = sin(θj − θi − δ), with a time-lag

δ ∈ [−π/2, π/2]. For δ = ±π/2, the coupling is effectively a cosine, yielding a conservative

kind of coupling, and no dissipation to the synchronous state. For intermediate values,

attractiveness of the synchronous solution depends on the sign of the derivative of the

effective coupling D sin(θj − θi − δ) at the origin. If the derivative is negative, the

synchronous solution is attractive, and the coupling is referred to as attractive. If the

derivative is positive, the synchronous solution is repulsive, and the coupling is referred

to as repulsive. In fact, almost all initial conditions then converge to attractive incoherent

states. For more complex configurations, the master stability function formalism was

introduced in [116], based on the computation of the eigenvalues of a specific matrix

evaluated on the synchronisation manifold.

2.4.2. Beyond Watanabe-Strogatz networks

The WS system has been extended in many diverse directions – complex topologies,

different coupling functions – and new types of dynamics were observed. The synchronous
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solution always exists, however, as long as the coupling function g(θi, θj) = g(θi − θj)

vanishes at the origin. Nonetheless, its local stability depends on the sign of Dg′(0).

T.-W. Ko and G. B. Ermentrout studied the coupling function g(θ) = sin(θ − α) + sinα,

which is zero but not anti-symmetric at the origin. They approximated the system by

simplifying the topology DAij → Ki/N with weights depending on the connectivity

degrees. They observed partially locked states [74], where a subpopulation is phase-locked,

but the rest drifts independently, like in chimera states [82, 114]. Such heterogeneity was

surprising for identical frequency oscillators, but was explained by the distribution of

couplings Ki. It was also noticed that the asymmetry in the coupling function g combined

to the heterogeneous couplings Ki could stabilise incoherent states [74], and even yield

bistability with the synchronous state. A bit earlier, Y. Kuramoto [82] discovered chimera

states, which are possible even in identical oscillator networks [114]. These phenomena

show that even identical oscillators can have rich dynamics, despite their apparent

simplicity compared to networks with distributed frequencies.

In [10], splay-states – rotating states that consist of a number of equidistant clusters of

oscillators – were investigated. More complicated configurations of clustered states exist,

for example [75], and [110] which discussed how to design clustered states in globally

coupled oscillators by tuning the coupling function. In [7], the role of additional types

of coupling functions is investigated. For a more focused study on the role of coupling

functions in general, see [142]. The effect of topology has also been investigated, e.g.,

in [157] for small-world networks.

In 2011, H. Hong and S. H. Strogatz (HS) studied [59] a “conformists and contrarians”

of the WS system

θ̇i = ω + 1
N

N∑
j=1

Ki sin(θj − θi), (2.26)

with both Ki both positive and negative, i.e. attractive and repulsive links – or in

their words, conformists and contrarians. Using the WS approach and the OA ansatz,

they observed and described 4 types of dynamics: a 2-cluster state, travelling waves,

incoherence, and a so-called blurry state. Surprisingly, they found that this system

has richer dynamics than its counterpart with non-identical frequencies. Many studies

followed in the direction and extended the HS model, e.g. [24, 168].
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Although all the above-mentioned studies consider static networks of fixed-frequency

oscillators, it is still possible to observe time-varying macroscopic properties. An example

of this is the work in [20] where chaotic dynamics of the order parameter was observed

in a symmetric system of identical phase oscillators.

2.4.3. Nonautonomicity in networks

A category of nonautonomous networks is that of static network driven by an external

oscillator. Such a system was studied in for the Kuramoto model (heterogeneous fre-

quencies) in [112] for a fixed-frequency driving. More recently, the dynamics of order

parameter in the Kuramoto model was derived for a nonautonomous version of Kuramoto

model in [120]. The cases of time-varying coupling and time-varying frequencies were

considered, in an adiabatic and an non-adiabatic limit. Finally, the stability of the

low-dimensional manifold of the Kuramoto model was also considered and proven for

various general parameter variations in [122].

Little work has been done on driven networks. For networks of identical oscillators driven

by a constant frequency, the effect of driving a selected subset of nodes was investigated

for regular [133] and multiple complex topologies [76, 77]. H. Kori [76] investigated

directed networks of identical oscillators presenting a hierarchical structure, which were

driven by a pacemaker with a heterogeneous strength, and a more general coupling

function depending on the phase differences. It was shown that the Arnold tongue (region

of synchronisability) becomes increasingly narrow for networks with higher hierarchical

organisation. To the best of our knowledge, the very few studies investigated time-varying

parameters and time-varying driving are for network with heterogeneous frequencies are

those cited above.

As mentioned earlier, time-varying networks [57, 58] have been attracting attention

recently, e.g., in epidemic spreading [102] or in statistical physics [117]. However, despite

evidence for the importance and the presence of time-varying networks, little research

has been done on time-varying networks of oscillators. One of the few is [119] where

time-variability was shown to induced instability of the homogeneous steady state.
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2.5. Summary

In this chapter, basics of dynamical systems theory were introduced. Autonomous and

nonautonomous models were compared, and concepts such as attractors and bifurcations

were discussed in both cases. Notions of self-sustained oscillators, the base unit of

all systems considered in this thesis, and chronotaxic systems, were introduced. The

need for nonautonomous models for realistic modelling of living-systems was argued.

Then, a detail discussion about stability was provided. In particular, Lyapunov and

Floquet exponents were defined, and numerical methods for their computation were

presented in detail. Different types of Lyapunov exponents were introduced, to assess

stability over different time scales. Finite-time stability was discussed, and compared

to the traditional notion of asymptotic stability which cannot always be applied to

nonautonomous systems. Synchronisation was subsequently introduced for a pair of

coupled oscillators with fixed-frequencies, and related concepts were presented. Finally,

the presentation of synchronisation was extended to networks. The current and relevant

literature on the topic was reviewed, and the context of the work of this thesis made

clear. As we saw, little is yet known about nonautonomous systems of coupled oscillators,

despite much evidence for the existence and the importance of such systems, which

motivates the work in this thesis.
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3. Attractors and multistability for a

quasiperiodically driven oscillator

3.1. Introduction

Often, and especially in living systems, assuming that the external influence driving

the system is periodic is too simplistic for a realistic model, as argued in chapter 1.

In this chapter, we consider the simplest kind of (autonomous) aperiodic driving: a

quasiperiodic driving. A quasiperiodic function can be defined as a function of two

or more independent phases. Quasiperiodic driving has been used, e.g., to model the

influence of the atmosphere on climate [33, 39, 42].

This chapter introduces concepts and numerical techniques that will be useful in the

subsequent chapters of the thesis. Here, the different types of dynamics exhibited by

the considered quasiperiodically forced oscillator are characterised, and the double-

tongue structure of parameter space is shown. The focus is put on that structure.

Quasiperiodically forced systems are known to exhibit strange nonchaotic attractors

(SNA), which are stable object but with a strange structure and interesting finite-time

properties. The strange attractors – chaotic and nonchaotic – are only briefly discussed

and their interesting properties described, as they do not serve the rest of the thesis.

Note that the topic of quasiperiodically forced oscillators has been extensively studied for

the last ten years, and further details about this type of systems can be found in [39].

The chapter is organised as follows. Section 3.2 introduces the model and defines

quasiperiodicity. Section 3.3 illustrates the different types of dynamics exhibited by

the system. Section 3.4 then provides theoretical analysis to characterise the different
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3. Attractors and multistability for a quasiperiodically driven oscillator

regimes, and understand the stucture of the phase diagram in parameter space. Section 3.5

confirms numerically the analysis, and finally a summary is given in Sec. 3.6.

3.2. Model

We consider a Poincaré limit-cycle oscillator [29], of which the y variable is quasiperiodi-

cally forced with forcing f(t). In cartesian coordinates, the system reads

ẋ = ε

(
rp −

√
x2 + y2

)
x− ω0y,

ẏ = ε

(
rp −

√
x2 + y2

)
y + ω0x+ γf(t),

(3.1)

where rp and ω0 are the radius and the frequency of the unforced oscillator, respectively,

and ε is the attraction coefficient to that radius in the radial direction. This system

is borrowed from [29]. The quasiperiodic driving drives the y-variable with strength

denoted by γ, and its explicit form given by

f(t) = sinω1t+ sinω2t, (3.2)

where the two frequencies ω1 and ω2 are incommensurate, i.e. there are no two integers

n,m such that ω1/ω2 = m/n. If – on the contrary – the two frequencies were commen-

surate, then f(t) would simply be periodic. As mentioned earlier, such quasiperiodic

function is aperiodic.

In polar coordinates, the system is rewritten

ṙ = ε(rp − r)r + γf(t) sin θ,

θ̇ = ω0 + γf(t)cos θ
r

,
(3.3)

which makes the amplitude-phase coupling explicit.

In the unforced oscillator, γ = 0, however, the radius and the phase are uncoupled. The

system present an attracting linear limit-cycle oscillator with radius rp and frequency ω0

centred at the origin, and a repelling fixed point at the origin. The limit-cycle solution is

stable along the radial direction, but only neutrally stable along the angular direction.

In terms of LEs, this corresponds to a negative and a zero LE for the radial and angular
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3. Attractors and multistability for a quasiperiodically driven oscillator

directions, respectively. This means any initial condition will end up rotating on the

limit-cycle with its own different phase, which depends on the initial condition.

When γ 6= 0, the forcing can in general be expected to synchronise the driven oscillator,

or to alter its limit-cycle.

3.3. Types of dynamics

Before analysing the system in further details, we illustrate the different types of dy-

namics exhibited by system (3.1) in the (γ, ω0)-parameter space, by means of numerical

integration. All numerical integration in this chapter are carried out using a 4th-order

Runge-Kutta scheme, with integration times step of 0.01 s, and we set rp = 1, ε = 5,

ω1 = 4, and ω2 = 2π, unless stated otherwise.

Just as in periodically driven oscillators, synchronisation phenomena and an Arnold

tongue-like structure of parameter space are expected. In addition to these features, it is

known that quasiperiodically forced oscillators can exhibit chaotic and strange nonchaotic

(SNA) attractors [39]. Here, we describe quantitatively the different behaviours, which

will be characterised more formally in the subsequent sections. To the naked eye, three

main types attractors are observed, which will be analysed in more details in the next

section: a moving limit-cycle (MLC), a (or multiple) moving point attractor(s) (MPA),

and a moving one-dimensional attractor exhibiting folding (1DA). The MLC corresponds

to a non-synchronised regime.

3.4. Theoretical analysis

3.4.1. 4-dimensional autonomous formulation

Nonautonomous systems such as (3.1) are hard to treat mathematically in general [72]. As

explained in chapter 1, one can always turn a nonautonomous system into an autonomous

one by adding variable τ accounting for time in the state space. Such new variable

thus has time derivative τ̇ = 1. Such a description, even if mathematically equivalent,

is in general of not much use since trajectories in such an extended state space are all
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Figure 3.1.: Ensemble snapshots of system (3.1) for different regimes: (a) Moving limit-
cycle, (b) single moving point attractor, (c) double moving point attractor, and (d) chaotic
attractor. The snapshots are the results of the evolution of 100 random initial conditions,
and are shown for different times, after a transient of 100 s. Each colour represents a
different time as indicated by the legends.

unbounded. Indeed, they all grow to infinity together with τ , which grows monotonically.

Autonomous dynamical system theory deals with bounded objects – attractors – and

study their properties, e.g, stability. Such attractors do not exist in such extended state

space.

In some specific cases, a useful autonomous description exists for nonautonomous systems.

This is the case for periodic or quasiperiodic external driving for example. Indeed, in such

systems, time can be described by one or more periodic variables, and the state space

is then bounded. Thus, system (3.1) can be rewritten as a 4-dimensional autonomous

system in state space R2 × T2, i.e. the product of the real plane and the two-torus, by
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adding two new variables θ1 and θ2

ẋ = ε

(
rp −

√
x2 + y2

)
x− ω0y,

ẏ = ε

(
rp −

√
x2 + y2

)
y + ω0x+ γ[sin θ1 + sin θ2],

θ̇1 = ω1,

θ̇2 = ω2.

(3.4)

Here, two additional variables were necessary to account for the two frequencies of the

quasiperiodic driving. For a periodic driving, only one suffices.

When γ = 0, the now sub-systems (x, y) an (θ1, θ2) are uncoupled, so that system (3.4)

has two uncoupled sub-systems. The first sub-system, (x, y), is attracted to a limit-cycle

oscillator in R2, whereas the second, (θ1, θ2), covers the whole two-torus T2 ergodically.

We now describe the different types of dynamics present in the system, as summarised in

Tab. 3.1. A fixed point in the sub-system in R2 is equivalent to a two-torus in the extended

state space R2 × T2 [56]. That is the simplest attractor possible, and it corresponds

to a quasiperiodic solution with 2 frequencies in the 4-dimensional space. In the case

of higher-order mode-locking, as described in chapter 1, multiple point attractors can

coexist [33]. This corresponds to having multiple 2-tori coexisting in the 4-dimensional

space, or multiple moving point attractors in the 2-dimensional state space. Another type

of dynamics can occur when no mode-locking occurs. The trajectory is then described

by 3 phases and lives on a 3-torus in the extended space. In the 2-dimensional state

space, what is observed is a moving limit-cycle (MLC), which can never be observed in

an autonomous 2-dimensional system.

Additionally, quasiperiodically forced systems are known to exhibit strange nonchaotic

attractors [47, 129, 130] and chaotic attractors [35]. For a long time, since the advent

of chaos theory, it was thought that a strange attractor was always chaotic. SNAs

showed that strangeness and chaoticity were actually independent concepts. One way of

defining a strange attractor is for it to have a fractal dimension [34]. And, in the case

of SNAs, a fractal dimension does not imply chaotic dynamics. In fact, the dynamics

on an SNAs is notoriously intermittent, and yet, asymptotically stable in the sense of

a negative ALE, contrary to a strange chaotic attractor that has a positive maximum
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ALE. The intermittent dynamics on an SNA means a trajectory will intermittently

alternate between epochs of smooth dynamics and epoch of erratic dynamics, and yet,

overall, the dynamics is stable. One way to characterise SNAs is by the distribution

of the (long enough) FTLEs. Indeed, over very short time windows, the ILE is highly

fluctuating [141]. However, since their ALE is negative, if one takes a time-window of

length T long enough (but smaller than the total time of the trajectory), all FTLEs

should be negative. Nonetheless, the intermittent behaviour of SNAs means that even

for long time windows, they still exhibit some positive FTLEs. This is often analysed by

looking only at the distribution of LEs which characteristically has positive values even

for long time windows [67, 131]. Another type of stable attractor will have the whole

distribution of FTLEs covering only negative values already for relatively short time

windows, and hence they can be differentiated. Other ways to characterise SNAs can

be applied, such as phase sensitivity [124]. For more details about SNAs see [39] and

references therein.

In terms of ALEs, the two phases θ1 and θ2 have a zero ALE. The driven oscillator (x, y)

however, can have different values of ALE depending on the values of the strength of the

driving γ and the natural frequency of the oscillator ω0, as we shall see.

Attractor (4-d) Lyap. spectrum Strange Behaviour (in 2-d) Abbrev.

2-torus (0, 0,−,−) No Moving point 1MPA
Double 2-torus (0, 0,−,−) No 2-point attractor 2MPA
3-torus (0, 0, 0,−) No Moving limit-cycle MLC
Strange nonchaotic (0, 0,−,−) Yes 1-d and folding SNA
Strange chaotic (+, 0, 0,−) Yes 1-d and folding SC

Table 3.1.: Characterisation of attractors. Modified from [56].

3.4.2. Major tongues: approximation

In this subsection, we give an analytical approximation of the border for the 1MPA

solution, corresponding to 1 : 1 synchronisation. As seen in chapter 1, in the case of

periodic forcing of a phase oscillator, the border of the synchronisation – or Arnold

tongue – can be derived analytically by requiring that the phase difference has a stable

fixed point. In the present case, two independent frequencies, ω1 and ω2, are driving the
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oscillator so that we can expect a double tongue structure: each tongue centred at the

corresponding frequency, and corresponding to a solution that is synchronised to that

frequency.

Another difference is that in the present case, the oscillator is nonlinear. We first make

the rough assumption that radial dynamics in (3.3) is negligible in the 1MPA solution,

r(t) ' rp = 1, and that only the phase dynamics needs to be taken into account

θ̇ = ω0 + γ[sin(ω1t) + sin(ω2t)] cos θ. (3.5)

Using a trigonometric identity, Eq. (3.5) can be expanded as

θ̇ = ω0 + γ

2 [sin(θ + ω1t)− sin(θ − ω1t) + sin(θ + ω2t)− sin(θ − ω2t)]. (3.6)

Now, we assume that the natural frequency of the oscillator is very close to the first

frequency of the forcing, ω0 − ω1 � 1, and derive the border of the corresponding

tongue similarly to chapter 2. In the reference frame rotating with angular velocity ω1,

ψ = θ − ω1t, the system reads

ψ̇ = (ω0−ω1)+ γ

2 [sin(ψ+2ω1t)−sin(ψ)+sin(ψ+(ω1 +ω2)t)−sin(ψ+(ω1−ω2)t)]. (3.7)

Assuming γ is small, the second term on the right-hand side of the equation is O(γ),

and hence ψ is varying slowly. However, 2ω1t, (ω1 + ω2) t, and (ω1 − ω2) t correspond to

fast oscillations. Thus, we can approximate those terms by assuming that ψ is almost

constant over one period of the fast oscillations, and average them over that time. This

yields, for the first term, the average

1
T1

∫ T1

0
dt′ sin(ψ + 2ω1t

′) = 0, (3.8)

where T1 = 2π
2ω1

. Similarly, integrated over their own period, the two other fast oscillating

terms average to zero, so that (3.7) becomes

ψ̇ = (ω0 − ω1)− γ

2 sin(ψ). (3.9)

This is the Adler equation (2.17) discussed in chapter 2, with a rescaled coupling strength.
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As discussed previously, this equation exhibits synchronisation, which corresponds in this

case to a phase-locked solution of the system, with main frequency ω1. The fixed point is

given by ψ∗ = arcsin 2∆ω
γ which only exists for

γ ≥ 2 |∆ω|. (3.10)

The latter inequality is an approximation of a region of the phase diagram, for small γ,

and natural frequency close to ω1, where the system has a single point attractor. Another

such regions, this time for a solution with main frequency ω2 is derived similarly by

assuming, ω ' ω2. The derived borders, of slopes ±2, are shown in parameter space in

Fig. 3.2.

γ

ω0ω1 ω20

sync.

no sync.

Figure 3.2.: Double Arnold tongue structure in parameter space, analytically approxi-
mated, and given by Eq. (3.10).

3.5. Numerical characterisation

In this section, we characterise the different dynamical regimes and determine the tongue

structure of parameter space.

3.5.1. Lyapunov exponents

First, the maximal LE is computed numerically, over parameter space, as shown in

Fig. 3.3. This is done by applying Benettin’s algorithm [17, 18]. In order to do so, (x, y)

of system (3.1) was integrated together with vectors (δx, δy) in tangent space obeying
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Figure 3.3.: Maximum Lyapunov exponent across parameter space: double Arnold tongue
structure. Other subtongues are also present, as well as some small chaotic regions close to
tongue borders. Dashed black lines represent the approximate border of the region 1MPA
region, given by Eq. (3.10). Grey represents values that are numerically zero (in this case,
when |λmax| < 10−2, due to numerical precision).

the linearised system (3.1).

˙δx =
(
ε

(
rp −

√
x2 + y2

)
− εx2√

x2 + y2

)
δx−

(
εxy√
x2 + y2 + ω0

)
δy,

δ̇y =
(
ε

(
rp −

√
x2 + y2

)
− εy2√

x2 + y2

)
δy −

(
εxy√
x2 + y2 − ω0

)
δx.

(3.11)

The RK4 time step used was 0.01 s for a total time of 1000 s and the orthonormalisation

was performed every 0.1 s using the Gram-Schmidt procedure. The LE was computed for

a random initial condition, drawn for (x, y) in [−1, 1]× [−1, 1] and the 2 tangent vectors

were drawn randomly, and then made orthonormal.

The maximum LE λmax in Fig. 3.3 clearly shows two main tongues where λmax <

0, corresponding to a synchronisation regime. Strictly speaking, a negative LE can

correspond to synchronisation or to an SNA, as discussed previously and summarised in

Tab. 3.1. However, further analysis such as the cluster analysis provided below confirms

that in this case, a negative LE corresponds almost always to synchronisation and not to

an SNA. The borders of those two Arnold tongues is well approximated by formula (3.10)

(see dashed black lines). Finer details of the parameter space structure reveal sub-tongues

of negative LE values, which correspond to n :m synchronisation, as will be investigated

below in further details. The rest of parameter space is, as expected, mainly a large

region of the moving limit-cycle behaviour, defined unequivocally by a zero LE. Finally,
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small regions of λmax > 0 indicate chaotic dynamics. It is known that chaotic dynamics

can occur in quasiperiodically forced oscillators, and that these are confined in regions

in parameter space that tend to be small [35, 39]. Moreover, they tend to occur near

(small) regions of SNAs. Different routes to chaos have been described in the literature,

see [35] and references therein.

In the next section, we differentiate between single and multiple point attractors by

means of a clustering analysis.

3.5.2. Multistability

In this section, we further analyse the synchronisation tongues, and differentiate between

the different n :m sub-tongues, which cannot be differentiated solely based on λmax.

As described in chapter 2, n :m synchronisation corresponds to the driving completing

n of its periods while the driven oscillator completes exactly m. Here, we focus on

the n : 1 cases, where the driving oscillates n times faster than the oscillator it drives.

As mentioned in [127] and explained in [33], in the case of periodic driving, for n : 1

synchronisation, random initial conditions will converge to n different solutions. In other

words, there are n coexisting attracting solutions, and different initial conditions will

end up on the any of those: the system is multistable. Moreover, in the periodic forcing

case, those coexisting solutions are periodic and time-shifted versions of each other. If

the forcing is quasiperiodic as in the present case, however, there can still be multiple

attracting solutions, but they are neither periodic, nor time-shifted versions of each other.

The number of coexisting solutions depends on the parameters of the driving and of the

driven system. Finally, the basin of attraction of a solution is defined as the region in

state space in which initial conditions will converge to that solution. Basins of attraction

give additional information about the structure of the state space and the stability of its

attracting solutions.

In order to differentiate between the various synchronisation tongues, we follow the

approach used in [33] and use a numerical clustering technique to assess multistability.

The procedure is as follows. First, evolve a (large) number of random initial conditions

covering the state space. Then take the positions of all trajectories at a fixed time, after

transients: this is a so-called ensemble snapshot of the system at that time. Such a
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Figure 3.4.: Multistability from clustering. (a)-(d) Set of initial conditions covering state
space for 4 different regimes and (e)-(h) their state after 400 s. In (e)-(h), the number in
the bottom left corner indicates the number of clusters detected. Different colours represent
different clusters, obtained form (e)-(h). Hence, in (a)-(d), all points of a given colour
represent the basin of attraction of the cluster corresponding to that colour (meaningful
here only for point attractors).

snapshot will resemble one of the cases of Fig. 3.1. Finally, using an appropriate clustering

technique, count the number of clusters of trajectories present in the snapshot. For each set

of parameters, 100 random initial conditions were evolved. A mean shift clustering [27]

technique was used, namely the Python function sklearn.cluster.MeanShift with

parameters bandwidth=0.1 to optimise success of the clustering for the considered

system, and bin_seeding=True to speed up the process.

The results obtained by such procedure are illustrated in Fig. 3.4 for 4 different regimes:

1MPA, 2MPA, chaos, and MLC. The clustering reaches the following conclusions: when

the trajectories are clearly clustered in a few (. 4) clusters, the algorithm successfully

detects the exact number of clusters. In the case of the moving limit-cycle regime, or

the chaotic one-dimensional attractor however, the clustering technique detects multiple

clusters. In both those cases, exactly how many clusters are detected is dependent on

the clustering algorithm and the parameters used. However, the exact number is not

important in this case, since there is no true number, and a high number is already

indicative of not being a multiple point attractor. A clustering technique alone is not

able to differentiate between the MLC and the chaotic attractor, but this can be achieved

based on their LE which is zero and positive, respectively.
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Figure 3.5.: Multistability: number of clusters across parameter space. A value of 1
corresponds to a single MPA. A value of 2 and 3 corresponds to a 2MPA and 3MPA,
respectively. High values, i.e. higher than 6, are surely a one-dimensional attractor: either
a MLC, or a chaotic attractor or SNA. Values in between 3 and 6, as computed here, do
not differentiate unequivocally between point attractors and one-dimensional attractors.
The number of clusters is computed as follow: evolve a grid of initial conditions, and after
transients, use a mean shift clustering algorithm.1 More details in main text.

The results of the described clustering analysis are shown in Fig. 3.5 over parameter

space. First, the structure of state space obtained here agrees with that obtained from

the LEs and shown in Fig. 3.3. Second, it allows to clearly associate different tongues to

different regimes of multistability. Indeed one can clearly observe two main tongues of

1:1 synchronisation, as well as smaller tongues of 2:1 and 3:1 synchronisation.

The described clustering process is not perfect, as intermediate numbers of clusters such

as 5 are not conclusive without a closer examination. The process can be fine tuned, but

the present setting is good enough for our purpose, and reveals the tongue structure.

3.5.3. No rotation

In this section, the case with no rotation, ω0 = 0, is investigated, as it is makes a more

analytical understanding of state space possible. For the ease of the reader, we write the

system considered, i.e. system (3.1) with no rotation

ẋ = ε

(
rp −

√
x2 + y2

)
x,

ẏ = ε

(
rp −

√
x2 + y2

)
y + γf(t),

(3.12)

First, note that the system is now invariant under the transformation x 7→ −x. In other
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words, the system on the right side of the y-axis is a mirror image of that on its left side.

This symmetry is broken in the general rotating case.

We now derive the nullclines of the system. The x-nullcline is defined as the set of points

for which ẋ = 0. Identically, the condition ẏ = 0 defines the y-nullcline. Fixed points are

found at the intersection between the x and y-nullcline.

First, we simplify the system even more by assuming γ = 0. Then, nullclines are as

follows

x-nullcline: x = 0 and x2 + y2 = rp, (3.13)

y-nullcline: y = 0 and x2 + y2 = rp. (3.14)

The circle of radius rp is stable radially and neutrally stable in the angular direction. All

trajectories are attracted to that circle, but do not rotate on it. The origin is an unstable

fixed point.

Now, in general γ 6= 0. Then, the x-nullclines are not changed, but the y-nullclines are.

Moreover, they are changing quasiperiodically in time. This is illustrated in Fig. 3.6,

where the nullclines are computed numerically and shown for three fixed values of f(t)

showing different topology, namely 0, 0.5, and 1.3. Note the graph for −f(t) is the same

as that for f(t) (opposite value), but upside-down (y 7→ −y).
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Figure 3.6.: Vector field in state space at different times, for ε = 5, rp = 1, and γ = 1. x
and y nullclines are in red and green, respectively. The f(t) interval for the existence of 3
fixed points (but only one stable) is [−1.25, 1.25] (cf figure 3.7). The graph for −f(t) is
the same as that for f(t) (opposite value), but upside-down (y 7→ −y).

Here, investigating the structure of state space and its attractors for fixed values of time

can provide at best qualitative insight about the dynamics. Indeed, since f(t) changes at
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a similar timescale to the driven oscillator, the latter does not have time to converge and

reach the new attractors. Rather, the attractors change in time and trajectories keep

converging to them without ever reaching them. Trajectories would reach the attractors

only if f(t) was very slow compared to the oscillator dynamics (this approach is used in

chapters 4, 5, and 6).

Despite the above considerations, understanding the time-dependent structure of state

space and the existence of attractors can be useful. From Fig. 3.6, one can see that all

fixed points are on the y-axis at those fixed times. Other effective fixed points can also

exist in the rest of the state space, as we shall see below, but first the fixed point on the

vertical axis are investigated analytically.

Dynamics on the y-axis

First, notice that the y-axis is an invariant subspace. Indeed, ẋ = 0 if x = 0 so that all

points on the y-axis remain on it. One can solve exactly the intersection of the y-nullcline

with the y-axis, x = 0

ε (rp − |y|) y + γf(t) = 0. (3.15)

which has solutions

y+
± = rp

2 ±
1
2

√
r2
p + 4γf

ε
, (3.16)

if y > 0, and solutions

y−± = −rp2 ±
1
2

√
r2
p −

4γf
ε
, (3.17)

if y < 0.

These functions are illustrated in a bifurcation diagram in Fig. 3.7. The linear stability

is assessed and displayed in the figure. For any given value of time t, f(t) takes values

in [−2, 2]. Outside of the interval [−ε4γ ,
ε

4γ ], the system has one stable fixed point. Inside

the interval, however, three fixed points are present: one stable, one unstable, and one

saddle node. The saddle node is however stable along the y-axis so that the y-dynamics

has two stable and one unstable fixed points. As time evolves, and f(t) takes all possible

values in the interval [−2, 2], trajectories go through a hysteresis cycle. Indeed, when the

driving f(t) is maximum, all trajectories converge to the unique stable fixed point and
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3. Attractors and multistability for a quasiperiodically driven oscillator
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Figure 3.7.: Fixed points on
the y-axis, as a function of
the forcing f(t), given by Eqs.
(3.16) and (3.17). Solid, dashed,
and dotted-dashed black curves
represent stable, unstable, and
saddle points, respectively. The
saddle points are stable along
the y-axis, so that the system
exhibits hysteresis on the y-axis.
Parameter ε = 5.
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Figure 3.8.: Effective bifurcation for ω0, no rotation, obtained by numerical integration
and clustering. As γ is increased from 0, the system exhibits a first transition at γ ' 0.5
from MLC to 2+2 moving point attractors (2 on the y-axis and 2 elsewhere). At γ ' 2.5
the transition goes from 2+2 moving point attractors to 1+2 moving point attractors.
Finally, above γ ' 6, all point attractors merge into a single 1MPA. This confirms the
qualitative behaviour expected from Fig. 3.7: as γ is increased, on the y-axis, the two point
attractors merge into one. Each cluster in (e)-(h) is represented by a different colour, and
the same colour is used for the initial conditions in the corresponding basin of attraction
in (a)-(d).

stay on the stable branch (black solid line in Fig. 3.7) as f(t) takes lower values, and

until it takes values smaller than −ε4γ and jumps to the other unique stable fixed point.

The range of f(t) values – and hence the amount of time – for which there exists two

stable fixed points depends on the driving strength γ. Indeed, as γ is increased, the

interval [−ε4γ ,
ε

4γ ] tends to the singleton {0}, and the system has one stable fixed point

at any moment in time. On the other hand, if γ < γ∗ = ε/8, the y-axis dynamics has

two stable fixed points at any given time and does not go through hysteresis. The actual
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3. Attractors and multistability for a quasiperiodically driven oscillator

bifurcation is illustrated in Fig. 3.8.

3.6. Summary

In this chapter, we have considered a quasiperiodically forced oscillator. Quasiperiodic

driving was chosen as a starting point for the study of aperiodic driving, and other

types of aperiodicity will be investigated in the subsequent chapters. The different types

of dynamics exhibited by the system were described and investigated. In particular,

the synchronisation and moving limit-cycle regimes were analysed in greater detail due

to their relevance for the remainder of the thesis. Analytical and numerical results

were provided. The structure of parameter space was assessed mainly using LEs and a

clustering technique. The strange regimes – chaotic and nonchaotic – have been described

and the chaotic regime has been identified in parameter space using Lyapunov exponents.

The interested reader will find diverse techniques in the literature to characterise those

regimes in greater detail, see for example [39] and references therein.

In the next chapter, aperiodicity in the driving consists of single main frequency, but mod-

ulated over time. Similar analysis in terms of Lyapunov exponents will be performed.
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4. Stabilisation by nonautonomous driving

4.1. Introduction

Complex oscillatory dynamics abounds in nature. Despite many real-life examples

exhibiting stable oscillations with a time-varying frequency (e.g., [22, 61, 85]), little is

known theoretically about the properties of this type of behaviour. This kind of oscillation

requires aperiodic external driving, making the system nonautonomous by nature [72],

such that most of the traditional analytical methods are unusable or insufficient. The case

of periodic forcing with a constant frequency, which has been extensively investigated to

date, is often too simplistic to account for reality. In the previous chapter, quasiperiodic

driving was considered, which is the simplest autonomous aperiodic driving.

In this chapter, we consider another much less studied type of aperiodic driving: driving

with time-varying frequency. We consider oscillators subject to driving with slowly

varying frequency, and investigate both short-term and long-term stability properties.

This work aims at filling the gap between the existing theory of deterministically driven

systems where constant frequency is typically assumed and the statistical theory of

systems driven by noise.

We present three major contributions to the field of interacting nonautonomous systems:

Firstly, we present notions of stability, synchronisation and instantaneous frequency

entrainment in the nonautonomous setting, and the relationships between these concepts;

and we investigate these concepts for the simplest example of a phase oscillator subject

to driving with slowly time-varying frequency. In so doing, we enable the notion of

chronotaxicity [149–151] to be broadened beyond its current description, and we compare

the stability properties in this setting with the traditional settings of fixed-frequency

driving on the one side and driving by stationary noise on the other. Secondly, we
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introduce an approach to analysing time-dependent dynamical stability from a time-series

consisting of time-localised LEs, that is, finite-time LEs taken over a time-window with a

moving centre. By contrast, typically, dynamical stability is assessed only in terms of

time-averaged stability, for example by the asymptotic LE [125]. Thirdly, numerically and

analytically, we show enlargement of the stability region in parameter space for the phase

oscillator subject to driving with slowly varying frequency, and we show that this growth is

specifically due to the growth of a subregion characterised by intermittent synchronisation

where the time-localised dynamical stability is varying. This mathematical phenomenon

of stabilisation has two major practical implications: (i) deterministically varying the

frequency of external driving could be implemented as a means of inducing stability in

complex systems, and (ii) dynamical systems where stability is induced by deterministic

frequency variation are an excellent candidate for modelling living systems, which are

highly complex and yet usually operate stably within a time-varying environment.

The chapter is organised as follows. In Sec. 4.2, we introduce a simple one-dimensional

phase oscillator model. We then provide an explanation of notions of synchronisation

and stability for nonautonomous systems, followed by a theoretical analysis of the one-

dimensional model, showing the enlargement of the stability region, as well as the birth

of an intermediate region of intermittent synchronisation. We illustrate these phenomena

with numerical results for both long-time and short-time behaviour. In particular, in

Sec. 4.2.5, we discuss the relationship between the deterministic system considered here

and the analogous case with noisy driving as considered in previous works. In Sec. 4.3,

we illustrate the stabilisation phenomenon numerically in higher-dimensional systems,

and argue that it is of general importance. Finally, in Sec. 4.4 we discuss the results, and

in Sec. 4.5 we provide a brief summary.

4.2. One-dimensional case

4.2.1. Model

The system we consider is a driven phase oscillator of the form

θ̇1 = ω1 + γ sin[θ1 − θ0(t)], (4.1)
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4. Stabilisation by nonautonomous driving

where the driving has strength γ, phase θ0(t), and a time-varying frequency

θ̇0 = ω0[1 + kf(ωmt)], (4.2)

where ω0 is the non-modulated driving frequency, f is a bounded function, and ωm and k

are the modulation frequency and relative amplitude, respectively. The phase oscillator θ1

may represent, for example, the phase on the stable limit cycle of an oscillator satisfying


ṙ = ε(rp − r)r

θ̇1 = ω1 + γ sin[θ1 − θ0(t)]
(4.3)

where rp is the amplitude of the limit cycle and ε is the restoring constant.

Note that if f(ωmt) is itself the solution of a dynamical system, system (4.1)-(4.2) can

be seen as an autonomous system in an extended state space by adding the variables

corresponding to that system to the state space, as discussed in chapter 2. However,

f(ωmt) need not in general be the solution of a dynamical system. Moreover, even if it

is, the dimension of that system can make the extended state space impractical to work

with when too many variables need adding.

The unforced system (4.1) with γ = 0 is a typical autonomous phase oscillator [146], and

hence its phase is neutrally stable (zero LE).

In the forced system, i.e. γ 6= 0, the traditional constant-frequency forcing case, presented

in Eq. (2.15), is recovered for k = 0. As described in chapter 2, in this case, depending

on the parameters, the system lies in one of two regimes: either 1:1 synchronisation

(negative LE), or neutral stability (zero LE). The condition for synchronisation, γ > |∆ω|,

with the frequency mismatch ∆ω = ω1 − ω0, is derived analytically [127] by requiring

that the equation for the phase difference

ψ̇ = ∆ω + γ sinψ (4.4)

has a stable fixed point. This condition for synchronisation corresponds to a so-called

Arnold tongue [6] in (γ, ω1)-parameter space. This Arnold tongue can be seen in

Fig. 4.2(a) as the region appearing in shades of blue, corresponding to negative values of
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the numerically computed LE. Since (4.4) is an autonomous differential equation, the

numerical LE computed over a long time will approximate well the asymptotic LE, except

possibly when the parameters lie extremely close to the border of the Arnold tongue.

Note that Eq. (4.4) is the in fact the Adler equation (2.17) presented in chapter 2, and

will now be referred to as Eq. (4.4).

For k 6= 0, the equation for the phase difference is now the nonautonomous equation

ψ̇ = ∆ω(t) + γ sinψ, (4.5)

with frequency mismatch ∆ω(t) = ω1 − ω0[1 + kf(ωmt)]. Throughout this paper, we

assume that the modulation is much slower than the dynamics of the system, i.e. ωm is

very small.

4.2.2. Synchronisation in autonomous and nonautonomous systems

Suppose an oscillatory system θ1 with no internal time-dependence is subject to driving

from another oscillator θ0 with fixed frequency different from the natural frequency of θ1.

We say that θ1 is synchronised to θ0 if over time, the trajectory of θ1 loses memory of its

precise initial phase and instead follows a periodic behaviour whose period is a rational

multiple n
m of the period of θ0. In this case, we say that θ0 entrains the frequency of θ1,

and we describe the synchronisation as n :m synchronisation. This implies in particular

that the difference in unwrapped phase between an n-fold cycle of θ0 and an m-fold cycle

of θ1 stays bounded over all time – a phenomenon referred to as phase-locking between

θ1 and θ0.

The particular phenomenon that θ1(t) loses memory of its initial phase is called phase

stability. If θ1 is a phase oscillator (as in our model), then phase stability can be

assessed in terms of the sign of Lyapunov exponent associated to the trajectory θ1(t): a

negative LE indicates stability. Stability inherently implies resilience against the effects

of other possible perturbations not accounted for in the model. When the phase of a

driven oscillator is stabilised by a fixed-frequency driving oscillator, typically this implies

n : m synchronisation for some integers n and m; we emphasise that this statement is

specific to fixed-frequency driving. For n :m synchronisation where (in lowest terms)
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n ≥ 2, it is not possible for θ1(t) to lose all memory of its initial phase: for any

1 ≤ i ≤ n − 1, delaying the initial phase by a suitable amount will delay the phase of

the eventual periodic motion by i
n . However, in the case of 1 :m synchronisation, it is

possible for θ1 eventually to lose all memory of its initial phase; in this case, we say that

the phase is globally stable.

Synchronisation has also been investigated in the context of systems driven by noise,

such as zero-mean Gaussian white noise or a pulse train with independent and identically

distributed consecutive waiting times [123, 127, 158]. For an oscillator θ1 driven by

such noise, one does not have a notion of n : m synchronisation between this driven

oscillator and the noise ξ driving the oscillator. This is because, even if the noise is

stationary noise, any one realisation of the noise does not have a deterministic periodic

behaviour. As described in [127, Section 15.2], instead of defining synchronisation in

terms of “phase locking”, one can think of synchronisation here as meaning that over

time, θ1 loses memory of its precise initial state and instead follows some path that is

determined by the realisation of the noise – but since the noise itself has no deterministic

regular behaviour, this phenomenon can only be physically manifested as synchronisation

by common noise between copies of θ1.

Synchronisation by common noise is a particular case of the phenomenon of synchro-

nisation by common external driving (which may be noisy or deterministic): Suppose

we have an array θ1, . . . , θn of self-sustained oscillators whose internal dynamics are

described by exactly the same system θ̇i = f(θi), where f does not depend on i; and no

direct coupling is introduced between these oscillators, but instead all these oscillators

are simultaneously subject to driving from the same external driver p(t) (which could be

noisy or deterministic). Thus the n driven oscillators are now indirectly coupled, and it

may happen that as a result of this indirect coupling, over time the trajectories of θi lose

memory of their initial states and instead follow the same path as each other. This may

be viewed as a kind of perfectly instantaneous 1:1 synchronisation between the driven

oscillators.

The relationship between the above concepts is as follows. For a self-sustained phase

oscillator θ1 subject to driving by an external driver p(t), the following statements are

equivalent:
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The physical interpretation of the implication (ii)⇒(i) is that the driving p(t) causes θ1

to become resilient in its course of following the path laid out by p(t), although as we

shall see, this resilience may only be intermittent. Such driving-induced resilience may

play an important role in many real-world systems that exhibit remarkable stability in

the face of continuous environmental perturbations.

In our model, if k 6= 0 then the driving is a deterministic oscillator θ0 with non-fixed

frequency. Hence, it will be useful for us to discuss notions of synchronisation for oscillators

subject to deterministic oscillatory driving with time-varying frequency. Such driving

shares in common with fixed-frequency driving that it is deterministic and oscillatory, and

it shares in common with noisy driving that it does not possess a phase which proceeds

in cycles of a fixed period. Therefore, on the one hand, as with noisy driving, it is not

clear that one can correctly define a notion of n :m frequency entrainment, though the

slightly weaker phenomenon of n :m phase-locking can still occur; nonetheless, as in [65],

one can still consider the question of whether identical copies of the driven oscillator are

caused to synchronise by simultaneous driving from the driving oscillator.

Having stated that n :m frequency entrainment is difficult to define in our setting, let us

now highlight our slow variation assumption. Under this assumption, one can define a

notion of instantaneous frequency entrainment. In general, if a pair of phase oscillators

θ1, θ0 is governed by a nonautonomous differential equation


θ̇0 = f1(t, θ0)

θ̇1 = f2(t, θ0, θ1)
(4.6)

and it is assumed that f1(t, · ), f2(t, · , · ) vary slowly with t, then we can say that there is

frequency entrainment at time t if the solution of the associated autonomous differential

equation 
d

dsθ0(s) = f1(t, θ0(s))

d
dsθ1(s) = f2(t, θ0(s), θ1(s))

(4.7)

exhibits frequency entrainment. In the case of our model, at any time t, there is

instantaneous 1:1 frequency entrainment between θ1 and θ0 if and only if the differential

equation d
dsψ(s) = ∆ω(t) + γ sinψ(s) has a stable fixed point [compare with Eq. (4.4)].
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Just as negative Lyapunov exponents are connected with the presence of frequency

entrainment for fixed-frequency driving, so likewise instantaneous frequency entrainment

will typically be connected with negative finite-time Lyapunov exponents defined over a

suitable time-window. Finite-time Lyapunov exponents are a measure of stability over

finite timescales. We will use the term time-localised Lyapunov exponent to refer to

FTLE taken over a sliding time-window [t, t + τ ] which slides along with time t. By

contrast, we will use the term long-term Lyapunov exponent to refer to a Lyapunov

exponent taken over a long time-interval [0, T ]; when clear from the context, we will

sometimes drop the word “long-term”. Technically, a long-term LE is still a finite-time

Lyapunov exponent, but it plays a similar role to asymptotic LE for autonomous systems.

Asymptotic LE need not exist for nonautonomous systems – indeed, nonautonomous

systems need not even be well-defined over infinite-time. But moreover, even if they can

be defined, asymptotic LE may not necessarily be physically relevant for the limited

timescales on which a system is considered in practice.

4.2.3. Theoretical analysis

In contrast to the autonomous case, the existence of an attracting equilibrium point for

the vector field on the right-hand side of Eq. (4.5) (regarded as a function of ψ) can

change with time t; as shown in Fig. 4.1(a), for a sinusoidal modulation f( · ) = sin( · ),

if k is large enough then within each modulation period the vector field undergoes two

saddle-node bifurcations. Since we assume that the modulation is much slower than the

dynamics of the system, the system adiabatically follows the moving attracting point

ψslow(t) = π− arcsin[−∆ω(t)/γ] for Eq. (4.5), when it exists. (A more technically precise

description of how ωm needs to compare with the values of other parameters in order

to qualify as “small” for the purposes of this adiabatic approach can be found in [65].)

On faster timescales, one could view ∆ω(t) as approximately constant and consider the

stable point in the quasi-stationary limit.

Following the idea that solutions follow the moving attracting point ψslow when it exists,

we derive three regions, with qualitative features corresponding to the following conditions

on Eq. (4.5): (I) no existence of the attracting point at any time t, (II) existence of

the attracting point for all t, and (III) alternation over time between the existence and
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Figure 4.1.: (a) Time-varying existence of the attracting point of Eq. (4.5). The (∆ω(t))-
dependent curve of ψ̇ against ψ moves up and down over time, as indicated by the two solid
lines representing where the curve could be at two different instants in time. When this
curve lies between the dashed lines, the system has an attracting point, and otherwise, not.
(b) Phase diagram showing three regimes. Light (region I in the text), medium (region III),
and dark grey (region II) show where the system is never synchronising, intermittently
synchronising, and always synchronising, respectively. Solid white curves show the border
between synchronisation and non-synchronisation for if f( · ) is set to 0; and white dashed
curves show the border between synchronisation and non-synchronisation for if f( · ) is set
to ±1. When k is increased, regions I and II decrease while region III increases; hence in
particular, the Arnold tongue consisting of the union of regions II and III increases.

non-existence of the attracting point. If we assume that f( · ) varies throughout the

interval [−1, 1], then these conditions on the parameters are precisely

(I): γ ≤ |ω1 − ω0| − ω0k, (4.8)

(II): γ ≥ |ω1 − ω0|+ ω0k, (4.9)

(III): |ω1 − ω0| − ω0k ≤ γ ≤ |ω1 − ω0|+ ω0k, (4.10)

as illustrated in Fig. 4.1(b). In region I, the slow variation assumption implies that

solutions behave similarly to the neutrally stable regime of the fixed-frequency-driving

system; solutions of (4.1) or (4.5) will exhibit neutral stability, with a long-term Lyapunov

exponent that is essentially zero. In region II, the attracting point exists at all times,

and attracts solutions starting from throughout the circle to itself; thus, the driven

oscillator θ1 is globally stable, losing memory of its initial state and following the motion

of θ0(t) + ψslow(t). In particular, long-term LEs will be negative. There is instantaneous

1:1 frequency entrainment at all times; moreover, the attracting point moves within a

bounded arc of the circle, and thus we have 1:1 phase-locking between θ1 and θ0.

In region III, the attracting point exists at some times but not other times. We refer to the
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epochs during which the attracting point exists as stable epochs; the remaining epochs are

epochs of neutrally stable dynamics. During the stable epochs, solutions from throughout

the circle are attracted to the attracting point. While following the attracting point, these

solutions pick up a negative contribution to the Lyapunov exponent, due to the gradient

of the instantaneous vector field being itself negative at the attracting point; and then

during each of the epochs of neutral stability, the solutions receive zero net contribution

to the Lyapunov exponent, meaning that overall, as in [65], long-term LE are negative and

the solutions remain synchronised with each other over all time. There is instantaneous

1 : 1 frequency entrainment during the stable epochs but no instantaneous frequency

entrainment during the epochs of neutral stability; we will refer to this phenomenon as

intermittent synchronisation. Overall, we do not have phase-locking between θ1 and θ0.

However, unlike in the case of fixed-frequency driving, synchrony of an array of identical

copies of θ1 [represented as different simultaneous solutions of Eq. (4.1)] is achieved and

endures (even through the epochs of neutral stability) in the absence of a phase-locking

mechanism. In other words, there does not need to be a phase-locking mechanism in

place in order for the driving θ0(t) to cause θ1 to lose all memory of its initial condition

and follow a path determined by the evolution of θ0(t).

Let us mention that there will be some very small subregions of region III where in

theory, if one waits long enough, θ1 will come close to the instantaneous repeller around

the start of a stable epoch [48] and thus receive a positive contribution to the LE, such

that the reasoning here and in [65] can eventually break down and the asymptotic LE (if

f( · ) is defined ad infinitum) could even be zero.

So then, in analogy to the case of fixed-frequency driving, we define the Arnold tongue as

being the union of region II and region III, that is, the total region where the long-term

LE will be negative.

From Eq. (4.10), the role of the modulation amplitude k here is clear: as k increases

from 0, regions I and II decrease in size (although still extending infinitely), being

symmetrically pushed back by the appearance and growth of region III, such that overall,

the Arnold tongue is enlarged. In other words, increasing modulation amplitude induces

stability.
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4.2.4. Numerical results

For our numerics in this section, we take θ0(t) = ω0(t− k
ωm

cos(ωmt)); so the frequency

modulation f(ωmt) is a sine wave f(ωmt) = sin(ωmt). Nonetheless, the results presented

are just as valid for more general aperiodic slow modulation, and are demonstrated

numerically to be true for aperiodic modulations in Sec. 4.2.6. We set ω0 = 4 and

ωm = 0.05, except where stated otherwise, and we investigate the effect of the remaining

free parameters γ, ω1, and k. We integrate the two-dimensional system (4.3) with rp = 1

and ε = 5, except that for Fig. 4.3 (showing synchronisation between solutions of (4.1)

with different initial conditions) and Fig. 4.6 (showing long-term LE together with average

frequency entrainment), we simply integrate (4.1). All Lyapunov exponents, both long-

term and time-localised, are computed following Benettin’s canonical algorithm [17, 18];

for the time-localised LE, we use a moving average of the expansion coefficient. In (4.3),

the radial LE at the limit cycle is equal to −5; therefore, since the maximum LE is greater

than −5 in all our numerical experiments, it follows that this maximum LE corresponds

to the phase dynamics defined by (4.1). The same is also true of time-localised LE, at

least after the first few moments needed for the trajectory to approach the limit cycle.

First, we investigate the long-term stability of the system, by means of the numerically

computed maximum LE defined over a long time-window. Stability is indicated by a

negative value for the LE. In Fig. 4.2, we see that there is an Arnold tongue (shades of

blue) similar to that shown in Fig. 4.1(b). As illustrated in Fig. 4.3, solutions of Eq. (4.1)

synchronise with each other when the parameters lie in the Arnold tongue, but not when

the parameters do not lie in the Arnold tongue. As shown in Fig. 4.2, the Arnold tongue

is enlarged as the amplitude k of the frequency modulation is increased.

In other words, stability is induced by varying the frequency of the forcing over time.

Quantitatively, we observe that the width of the Arnold tongue grows linearly with k.

While Fig. 4.2 shows the long-time stability, region III can only be distinguished and

understood from the point of view of time-localised stability. The dynamics of Eq. (4.1)

is illustrated over time for the three regions in Figs. 4.4(a)–4.4(f), by time-frequency

representation and by time-localised LE – namely, maximum LE defined over the time-

window [t, t+ τ ] where τ is a fixed number. Here, we take τ = 0.1 s.
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Figure 4.2.: Numerically obtained long-
term maximum Lyapunov exponent λ1
over parameter space for (4.3), with dif-
ferent k. The LE are computed over 5 cy-
cles of the frequency modulation (about
630 s). In each case, 20 random initial
conditions were taken from the square
[−1, 1]× [−1, 1], and the average maxi-
mum LE over these trajectories is plot-
ted. (a) k = 0, (b) k = 0.1, (c) k = 0.4,
(d) k = 0.8. The Arnold tongue (shades
of blue) is enlarged as k increases. Grey
represents zero values.

Region III is a region of intermittent synchronisation where trajectories alternate between

epochs of time-localised stability and epochs of time-localised neutral stability; indeed, as

the time t evolves, the time-localised LE alternates between epochs where it is negative,

and epochs where it oscillates with high frequency around an average value of zero, as is

seen in Fig. 4.4(e). Averaging over the total time yields a negative LE, meaning overall

stability on average, even though the short-term stability is time-varying. Region I is

thus the only region with a long-term LE of zero, and this region decreases in size, which

means that the region of stability increases.

The distinction between the three regions can be seen by looking at the time-frequency

representation of a trajectory in each of these regions, as shown in Figs. 4.4(a)–4.4(c). In

all three cases, the changing frequency of the driver is reflected in the frequency content

of the driven oscillator. In Fig. 4.4(a), representing region II, the driving frequency is

the only frequency present, as the frequency of the driven oscillator is entrained by that

of the driving at all times. In Fig. 4.4(c), representing region I, we also see the natural
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Figure 4.3.: Trajectories of five solutions θ1(t), . . . , θ5(t) of Eq. (4.1), with initial conditions
θi(0) = i−1

5 .2π, subject to the same driving θ0(t). Here, γ = 2.5 and k = 0.4. In (a),
ω1 = 4, and so the system is in region II according to Eq. (4.9); in (b), ω1 = 6, and so
the system is in region III according to Eq. (4.10); in (c), ω1 = 9, and so the system is in
region I according to Eq. (4.8). In each case, the upper plot shows the first 8 seconds of the
sine of the five trajectories, while the lower plot shows the distance between θ1(t) and θ2(t)
over about the first 630 seconds (more precisely, 5 cycles of the frequency modulation);
in (a) and (b), the inner graph shows the same information on a logarithmic scale. In (a)
and (b), the system lies within the Arnold tongue as described in Sec. 4.2.3, and the five
trajectories are observed to synchronise and to remain in synchrony; by contrast, in (c),
the system does not lie within the Arnold tongue, and no synchronisation is observed.

frequency of the driven oscillator (cream, representing the highest amplitude), though

slightly modulated by the driving. The fact that these two frequency modes are distinct

shows that the driven oscillator’s frequency is not entrained by the driving at any time.

In Fig. 4.4(b), representing region III, we see the maximum-amplitude frequency mode

overlapping the driving frequency at some times, but not at other times. The times

of overlap are when the frequency of the driven oscillator is entrained by that of the

driving, and the other times are when there is no frequency entrainment. Thus, in this

region, we have intermittent frequency entrainment. Comparing (a), (b), and (c) with

(d), (e), and (f) in Fig. 4.4, we can see that in all three regions, absence of frequency

entrainment coincides with time-localised LE that oscillate about 0, while the occurrence

of frequency entrainment coincides with time-localised LE that stay negative over a longer

time-interval.

Now when investigating numerically the time-evolution of the time-localised LE, as

in Fig. 4.4(e) one can clearly distinguish between those time-intervals where the time-

localised LE oscillates with high frequency around zero, and those time-intervals of length

much greater than the periods of these aforementioned high-frequency oscillations during

which the time-localised LE remains negative; and hence, one can numerically distinguish

between the three regions. The proportion Pt of time taken up by time-intervals where the
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Figure 4.4.: Analysis of the time-variable dynamical properties of a trajectory of (4.3),
in the three regions [see Fig. 4.1]; in (a)–(f), a random initial condition is taken from
the square [−1, 1]× [−1, 1]. (a)–(c) Time-frequency representation (showing amplitude)
of θ1(t) obtained as the (unwrapped) polar angle of the trajectory of (4.3), extracted
using a continuous Morlet wavelet transform (p = 1) with central frequency 3; and (d)–(f)
maximum FTLE for the trajectory of (4.3) over a time-window of width τ = 0.1 s for
regions II, III, and I, from left to right. Parameters are set to k = 0.4 and γ = 2.5; in
(a) and (d) ω1 = 4, in (b), (e), and (g) ω1 = 6, and in (c), (f), and (h) ω1 = 9. (a), (d)
Region II exhibits frequency entrainment and a stable phase at all times. (b), (e) Region
III shows intermittent, but regular, epochs of frequency entrainment; the phase is stable on
average over a long time. (c), (f) Region I, no frequency entrainment, and a FTLE rapidly
oscillating around zero. (g), (h) Prediction (red) of the main observed frequency of the
system over time, based on Eq. (4.12) with values of Ωψ(t) taken from the Ωψ curve with
k = 0 in Fig. 4.6(b), for (g) region III, and (h) region I. Interestingly, in region I, the main
observed frequency oscillates in anti-phase with those of the driving frequency (dashed).
Note that we here only predict the main frequency, and not the higher harmonics observed
in (b) and (c).

time-localised LE remains negative is plotted in Figs. 4.5(a) and 4.5(c), across different

parameter values. As in Figs. 4.4(d)–4.4(f), we expect Pt = 1 in region II, 0 < Pt < 1 in

region III, and Pt = 0 in region I. We also plot in Figs. 4.5(b) and 4.5(d) the analytically

obtained proportion Pt of time for which the instantaneous vector field has a stable

equilibrium. This is given by

Pt =



0, (A) if γ < |∆ω(t)| ∀t,

1, (B) if γ > |∆ω(t)| ∀t,

1
π

[
arcsin

(
γ−(ω1−ω0)

ω0k

)
− arcsin

(
−γ−(ω1−ω0)

ω0k

)]
, (C) if − γ ≥ ∆ω− and γ ≤ ∆ω+,

1
π arcsin

(
γ−|ω1−ω0|

ω0k

)
+ 1

2 , (D) else,
(4.11)

where ∆ω± = ω1 − ω0(1 ∓ k). The close resemblance between (a), (c) and (b), (d)

helps confirm the validity of the numerical approach to distinguishing between the three
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4. Stabilisation by nonautonomous driving

regions. Figure 4.5(b) provides a quantitative picture for the qualitative skeleton shown

in Fig. 4.1(b).
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Figure 4.5.: Analytical and numerical characterisation of the three regions based on the
proportion of time spent in the stable regime, over (γ, ω1)-parameter space with k = 0.4.
In (a) and (c), Pt is calculated numerically based on time-localised maximum LE (with
window τ = 0.1 s) for 20 trajectories of (4.3) with random initial conditions in the square
[−1, 1]× [−1, 1], over four cycles of the frequency modulation (about 500 s), and the result
is averaged over the 20 trajectories. In (b) and (d), the analytical result according to
Eq. (4.11) is shown. Plots (c) and (d) show Pt from (a) and (b) for selected γ values. Three
distinct regions appear clearly, respectively with Pt values of zero (region I), one (region II),
and in between zero and one (region III). Analytical and numerical characterisations show
good agreement.

The average frequency difference Ωψ = 〈ψ̇〉 = 〈θ̇1〉 − ω0 is a measure of the “average

frequency entrainment” of the system [127]. In the traditional autonomous case k = 0

where the driving frequency is constant, nullity of Ωψ is equivalent to actual frequency

entrainment, as discussed in chapter 1. The quantity Ωψ is shown in Fig. 4.6(b) for

γ = 2.5 across different values of k. In Fig. 4.6(a), the corresponding curves for the

long-term Lyapunov exponent are displayed. Curves for Ωψ for k > 0 are extremely

similar to the case of driving with bounded noise ξ(t), ψ̇ = ∆ω+γ sin(ψ)+ξ(t) (see [127]).

This will be explored in further detail in Sec. 4.2.5. The similarity is due to the fact

that only averages are considered, and time is forgotten. However, investigation of

finite-time dynamics reveals that in region III, the frequency difference alternates between

epochs where it is zero and epochs where it is non-zero [as in Fig. 4.4(g)]. To obtain

this, we calculate the main observed frequency θ̇1,main/2π of trajectories using the slow

modulation assumption, by taking

θ̇1,main(t) = θ̇1(t) + Ωψ(t) (4.12)
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4. Stabilisation by nonautonomous driving

where Ωψ(t) is the Ωψ-value associated with the autonomous differential equation d
dsψ(s) =

∆ω(t) + γ sinψ(s); results are plotted in Figs. 4.4(g) and 4.4(h).

Figure 4.6.: Numerically obtained time-averaged stability properties for a trajectory of
Eq. (4.1) starting at θ1(0) = 0, computed over 10 cycles of the frequency modulation (about
1260 s). (a) Lyapunov exponent λ1, and (b) average frequency difference Ωψ, for γ = 2.5
and different values of the frequency modulation amplitude k. For k = 0, the region of
phase stability (as given by λ1 < 0) and the region of permanent frequency entrainment (as
given by Ωψ = 0) coincide; but for k > 0, the regions do not coincide: as k is increased, the
region with λ1 < 0 is increased while the region with Ωψ = 0 is decreased. The graphs look
very similar to those in the case of harmonic driving with bounded noise [127]; therefore,
investigation of time-variable dynamics for nonautonomously driven oscillators is necessary
for an accurate understanding of the dynamical nature of the system.

4.2.5. Comparison between nonautonomous and noisy systems

Experimental science essentially seeks to understand the underlying mechanics of a

system that gives rise to the observed behaviour. Since the study of time-homogeneous

dynamics (deterministic or noisy) is very well developed in comparison to the study of

nonautonomous dynamics, there is a tendency to assume that for modelling purposes,

the dynamics of a real-world system may be treated as statistically time-homogeneous.

In this section we will illustrate, using our above-identified phenomenon of intermittent

time-localised stability, how such a tendency may lead to the complete misidentification

of some key aspect of the internal mechanics of a system.

There are various methods for analysing experimentally obtained time-series that are

based on time-averaged properties of the time-series, such as power spectra. The theory

of both deterministic autonomous dynamical systems and autonomous systems perturbed
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4. Stabilisation by nonautonomous driving

by stationary noise is well developed, and in particular it is well-known that adding

noise to a system can create stability which was not present in the absence of noise,

e.g. [97, 106, 123, 127, 158]. Indeed, a one-dimensional phase oscillator model will almost

invariably exhibit asymptotic stability of solutions when driven by stationary white

noise [95]. Therefore, when seeking to understand the mechanism by which a real-world

system behaves robustly against unpredictable external perturbations, if one observes in

a time-series of measurements from the system a power spectrum similar to that of some

noisy model, and if moreover this noisy model is known to exhibit stability with negative

Lyapunov exponents as a consequence of the noise, then naturally one may come to the

conclusion that the real-world system under investigation is subject to a significant level

of noise and that this noise plays the key role in causing stability.

However, our results for the deterministic system (4.1)–(4.2) demonstrate that such a

conclusion may be profoundly erroneous. The frequency modulation in (4.2) may be an

entirely deterministic process that is not subject to any significant levels of noise. This

gives rise to the deterministic nonautonomous equation (4.5), and we will illustrate that

the time-averaged properties of (4.5) [with f( · ) = sin( · )] are very similar to those of a

noisy counterpart

ψ̇ = (ω1 − ω0) + γ sinψ + ξ(t) (4.13)

where ξ(t) is bounded noise. Physically, Eq. (4.13) represents the phase difference under

a model in which the driving frequency modulation is assumed to be noisy. The similarity

that we shall illustrate between the time-averaged properties of (4.5) and (4.13) proves

an important point: Since real-world systems are open and therefore subject to time-

variability, one must examine temporally evolving dynamical properties of a system

rather than just time-averaged properties, in order to account for the possibility that the

mechanisms behind features of the observed behaviour are due to nonautonomicity. In

the case of the system (4.1)–(4.2), in region III, the mechanism behind stability is not

stationary noise but deterministic intermittent frequency entrainment between driving

and driven oscillators, arising from the slow variation of the driving frequency.

For simulations, dichotomous Markov noise ξ(t), which switches between ±D at rate µ

(with ξ(0) = +D), was used [70]. Nonetheless, it is expected that any bounded noise will

show similar behaviour to that presented here [127]; moreover, although the asymptotic
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Figure 4.7.: Numerically obtained time-averaged stability properties for autonomous
(plain black), nonautonomous (dashed red), and bounded noise (dotted-dashed black)
driving, computed over about 1260 s (10 cycles of the periodic frequency modulation used
for the nonautonomous case). For the autonomous and nonautonomous cases, Eqs. (4.4)
and (4.5) respectively were integrated, with ψ(0) = 0; for the noisy case, one sample path
of ξ(t) was generated, and Eq. (4.13) was integrated with ψ(0) = 0, using the same sample
path ξ(t) for all ω1 values. Parameters are set to ω0 = 4 and γ = 1; for the nonautonomous
case, f = sin( · ), k = 0.1 and ωm = 0.05, and for the noisy case D = 1.6 and µ = 10.
(a) Lyapunov exponent λ1, and (b) average frequency difference Ωψ. The nonautonomous
and noisy cases, observed on average, present the same enlarging of the negative Lyapunov
exponent region, and their Ωψ is almost exactly identical, including the plateau.

properties of unbounded noise models exhibit a slightly different behaviour [127], any noise

will effectively serve as bounded noise over typical physically relevant finite timescales.

On average, the noisy and the nonautonomous systems will have properties as illustrated

in Fig. 4.7 that look essentially the same. Indeed, both can be made to have an increased

region for negative LE [see Fig. 4.7(a)] and a smaller plateau for average frequency

entrainment [see Fig. 4.7(b)], as compared to the autonomous case given by k = 0 or

D = 0.

The noisy and the nonautonomous systems can, however, be distinguished based on

their dynamics over time. This is illustrated in Fig. 4.8 by trajectories and their

time-frequency representation. In the nonautonomous case, one can see the regularly

intermittent frequency entrainment between driving and driven phases in Fig. 4.8(c),

where frequency entrainment corresponds to those times where the instantaneous power-

frequency spectrum has only a single peak, and in Fig. 4.8(b), where frequency entrainment

corresponds to the regular plateaus in the phase difference. By contrast, in the noisy

case, the instantaneous power-frequency spectrum shown in Fig. 4.8(e) is significantly
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Figure 4.8.: Dynamics of driven oscillator θ1 with (a)–(d) nonautonomous and (b),
(e), and (f) bounded noise driving; here θ1 evolves according to Eq. (4.1) with θ0(t) =
ω0[t− k

ωm
cos(ωmt)] in the nonautonomous case, and θ0(t) = ω0t−

∫ t
0 ξ(s) ds in the noisy

case, and θ1(0) = θ0(0) in both cases. Parameters are set to ω0 = 4, γ = 1, ω1 = 3; for
the nonautonomous case k = 0.1 and ωm = 0.05, and for the noisy case D = 1, µ = 4.
First ψ(t) is numerically obtained by integrating Eq. (4.5) or (4.13) as appropriate, with
ψ(0) = 0, and then θ1(t) is obtained by θ1(t) = ψ(t) + θ0(t). (a) Sine of the driven phase
θ1, in the nonautonomous setting. (b) Phase difference ψ between the driving and driven
oscillators, over time. The nonautonomous case presents epochs of phase-locking as seen by
the regular plateaus, whereas the noisy phases’ difference drifts without ever phase-locking
to the driving, with an average velocity that is close to that of the nonautonomous curve.
(c), (e) Time-frequency representation (showing power, i.e. square of the amplitude) for θ1
extracted using continuous Morlet wavelet transform (with p = 1) with central frequency
3, and (d, e) the associated time-averaged power. The main difference is the presence of
intermittent frequency entrainment in the nonautonomous case. The average-power spectra
are very similar, and do not clearly distinguish the two cases. Long-term LEs were also
found to be negative in both cases: for the nonautonomous Eq. (4.5) with ψ(0) = 0, the
LE over 500 s was about −0.32, and for the noisy Eq. (4.13) with ψ(0) = 0, the LE over
500 s was about −0.24.

more bumpy around a peak that stays roughly fixed over time, and the phase difference

in Fig. 4.8(b) looks like it is essentially drifting at all times. Despite these starkly visible

differences in time-variable properties, the average power spectra as shown in Figs. 4.8(d)

and 4.8(f) are reasonably similar to each other.

4.2.6. Aperiodic modulation

We now consider numerically a quasi-periodic frequency modulation function f( · ) given

by

f(t) = 0.5[cos(ωmt) + cos(ωmπt/4)]. (4.14)
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Figure 4.9.: Numerically obtained long-term maximum Lyapunov exponent λ1 over
parameter space for (4.3) with θ0(t) = ω0{t+ 0.5k

ωm
[sin(ωmt) + 4

π sin(ωmπt/4)]}. Here, as in
Sec. 4.2.4, ω0 = 4, ωm = 0.05, rp = 1 and ε = 5. The LE are computed over 5 cycles of the
frequency modulation (about 630 s). In each case, 20 random initial conditions were taken
from the square [−1, 1]× [−1, 1], and the average maximum LE over these trajectories is
plotted. (a) k = 0, (b) k = 0.4, (c) k = 0.8. The Arnold tongue (shades of blue) is enlarged
as k increases. Grey represents zero values.

As expected, and shown in Fig. 4.9, the enlargement of the Arnold tongue holds. Moreover,

more quantitatively, the results shown in Figs. 4.9(b) and 4.9(c) are almost identical

to those shown in Figs. 4.2(c) and 4.2(d), respectively. This is because f( · ) oscillates

throughout the interval [−1, 1] in both cases, and therefore Eqs. (4.8)–(4.10) for the three

different regions still hold.

4.3. Higher-dimensional cases

In the above section, we showed analytically, and confirmed numerically, that enlargement

of the stability region will always occur in the simple one-dimensional case. Nonetheless,

the phenomenon of stabilisation by slow variation of the driving frequency, and the

phenomenon of intermittent synchronisation under such variation of the driving frequency,

may be found in a broader class of systems. To illustrate the more general scope of

the stabilisation phenomenon, we illustrate it numerically in nonlinear driven oscillators.

We consider three cases: first, a typically forced van der Pol (vdP) oscillator; second,

a vdP oscillator with the phase driven via diffusive coupling; and finally, a typically

forced Duffing oscillator. All three cases are investigated with nonautonomous driving
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Figure 4.10.: Numerically obtained long-term maximum Lyapunov exponent λ1 over
parameter space for the forced weakly nonlinear vdP oscillator [see Eq. (4.15)], with ε = 0.1,
ω0 = 1, and ωm = 0.02, for different amplitude of frequency modulation k. In each case,
20 random initial conditions (x(0), ẋ(0)) were taken from the square [−1, 1]× [−1, 1], and
the average maximum LE over these trajectories is plotted. The negative LE region (blue
shades) increases as k is increased. Grey represents zero values.

θ0(t) = ω0(t− k
ωm

cos(ωmt)), with ωm = 0.02. Long-term LE are computed over 10 cycles

of the frequency modulation (about 3140 s).

4.3.1. Typically forced van der Pol

We consider a vdP oscillator that is directly forced by the external phase oscillator θ0(t),

so that the vdP oscillator satisfies the differential equation

ẍ = ε(1− x2)ẋ− ω1
2x+ γ sin[θ0(t)]. (4.15)

For investigation of LE, we treat this as a first-order equation in (x, y)-space with ẋ = y

(and numerically integrate it as such). The long-term maximum LE is shown over

parameter space in Fig. 4.10. The region with negative LE increases with the amplitude

k of the frequency modulation, showing that the enlargement of the negative LE region

still holds in this nonlinear case.

Moreover, consideration of time-localised LE, as shown in Fig. 4.11(b), suggests that

for some parameter values we have intermittency between epochs of stable dynamics

and epochs of neutrally stable dynamics. Unlike in Fig. 4.4(e), the stable epochs are

not characterised by negativity of LE defined over a very short sliding window, but

rather over a suitably longer sliding window. This is because, if one were to freeze the

driving frequency θ̇1 at any moment in time during such an epoch of stable dynamics,

the solution of the resulting periodic differential equation (4.15) would not converge to
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a fixed point but most likely to a stable periodic orbit, for parts of which the vector

field is locally contractive and other parts not, with contraction on average over each

period. Hence, the intermittency is demonstrated most clearly by taking time-localised

LE over a wider moving time-window, whose width is likely to incorporate several

periods of the aforementioned stable periodic orbit. In Fig. 4.11(b), we see quite clearly

(in red) the alternation between plateaus of zero time-localised LE and epochs where

the time-localised LE dips to become negative. In the time-frequency representation

shown in Fig. 4.11(a), during the epochs of zero time-localised LE, the power is shared

mostly between two distinct peaks in the instantaneous spectrum, but during the epochs

of negative time-localised LE, virtually all the power is concentrated around a single

peak. As in Fig. 4.4(e), this suggests that instantaneous 1 : 1 frequency entrainment is

taking place during the epochs of negative time-localised LE, but not the epochs of zero

time-localised LE, and so overall the system exhibits intermittent synchronisation.
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Figure 4.11.: Intermittency in the typically forced vdP system (4.15). Parameters are
set to k = 0.5, γ = 1, ω1 = 1, ε = 0.1, ωm = 0.02, ω0 = 1; results are for a random
initial condition (x(0), ẋ(0)) taken from the square [−1, 1]× [−1, 1]. (a) Time-frequency
representation (showing amplitude) of x(t), extracted using a continuous Morlet wavelet
transform (p = 1) with central frequency 2. (b) Shorter-time-window FTLE max, with
window length 0.1 s, is shown in black, and longer-time-window FTLE max, with window
length 25 s, is shown in red. The longer-time-window FTLE alternates between epochs
where it is negative, and epochs where it is zero. These epochs of negative values coincide
with those epochs where, in (a), there appears to be a single main peak in the instantaneous
power-frequency spectrum.
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4.3.2. Diffusively forced van der Pol

We take the polar coordinate representation of the unforced vdP oscillator (Eq. (4.15)

without γ sin[θ0(t)]) as a first-order equation in (x, ẋ)-space, and we now drive the angular

component with a diffusive coupling:

ṙ =(1− ω1
2)r cos θ1 sin θ1 + ε(1− r2 cos2 θ1)r sin2 θ1,

θ̇1 =ε(1− r2 cos2 θ1) sin θ1 cos θ1 − ω1
2 cos2 θ1 − sin2 θ1 + γ sin[θ1 − θ0(t)].

(4.16)

The long-term maximum LE is shown over parameter space in Fig. 4.12. Increasing k

reduces both the region of neutral stability and the very small region of chaos, while the

region of stability grows.
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Figure 4.12.: Numerically obtained long-term maximum Lyapunov exponent λ1 over
parameter space for the diffusively phase forced van der Pol oscillator [see Eq. (4.16)], with
ε = 0.1, ω0 = 1, and ωm = 0.02, for different amplitude of frequency modulation k. In each
case, 20 random initial conditions (x(0), ẋ(0)) were taken from the square [−1, 1]× [−1, 1],
and the average maximum LE over these trajectories is plotted. The stability region
(shades of blue) is enlarged as k increases, and chaotic (red) points in (a) are turned stable
(shades of blue) in (c). Grey represents zero values.

4.3.3. Forced and coupled Duffing oscillator

Here, we consider two Duffing oscillators, x and x1, unidirectionally diffusively coupled

with strength gd so that x1 drives x. Additionally, the driven Duffing oscillator is directly

forced with external nonautonomous driving:

ẍ = −δẋ− ω1
2x− βx3 + gd(x− x1) + γ cos(θ0(t)),

ẍ1 = −δẋ1 − ω1
2x1 − βx3

1,

(4.17)
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We fix parameters δ = 0.3, β = 0.1, ω0 = 1.2, ωm = 0.02, and coupling strength gd = 0.5.

For investigation of LE, we treat the system as a first-order equation in (x, y, x1, y1)-space

with ẋ = y, ẋ1 = y1 (and numerically integrate it as such). The long-term maximum

LE is shown over parameter space in Fig. 4.13. As k is increased, the chaotic region

essentially decreases, giving way to either stability or neutral stability. The stability

region does not strictly increase, as parts of the stability region become neutrally stable

as k is increased; nonetheless, the phenomenon is still observed that for various fixed

values of all the parameters other than k, increasing k has the effect of turning chaos

into stability. From a control point of view, if the region of interest in parameter space is

the chaotic region, one can stabilise the dynamics by adding time-variation to the forcing

frequency.
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Figure 4.13.: Numerically obtained long-term maximum Lyapunov exponent λ1 over pa-
rameter space for the coupled and forced Duffing oscillator (4.17), for different amplitude of
frequency modulation k. In each case, 20 random initial conditions (x(0), ẋ(0), x1(0), ẋ1(0))
were taken from [−1, 1]4, and the average maximum LE over these trajectories is plotted.
The region of chaotic behaviour (red) is reduced as many points are turned stable (shades
of blue) as k is increased. Grey represents zero values.

4.4. Discussion

The work was motivated by real systems that exhibit dynamics with time-varying

frequencies and are stable against external perturbation [22, 33, 61, 85, 98, 149, 153,

161]. Surprisingly, not much analytical work has been carried out on such systems, and

most of the work that has been carried out has used noisy driving [97, 106, 145] as the

foundation of the model, or noise consisting of impulses at random times [123, 127]. In

these studies, it was shown that noise can create and increase stability. Outside of a

stochastic approach, the only other way to incorporate time-variability is to model the

system as a deterministic nonautonomous dynamical system. However, not much analytic
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theory of nonautonomous systems has been developed yet. The problem is additionally

complicated by the fact that an asymptotic approach does not give the full picture as the

evolving dynamics over shorter timescales is missed. As illustrated in this work, changes

in dynamical behaviour over shorter timescales are of crucial importance in the types of

systems considered. For if they had not been considered in this work, the phenomenon

of intermittent synchronisation would have been missed. The work in this paper has

provided a key insight into systems subject to time-varying influences, by identifying the

phenomenon of intermittent synchronisation and the region in parameter space where it

occurs, and thereby showing the enlargement of the Arnold tongue. This insight also

has potential for being the foundation of future methods to induce stability in complex

or other systems; the fact that nonautonomous driving allows for average stability to

be achieved without the need to maintain frequency entrainment at all times may be of

significant advantage.

The basic adiabatic reasoning underlying our analytical approach is the same as that

employed and investigated in [65]. It is this reasoning that has led us to our new

discovery that increasing time-variability inherently induces stability in phase oscillators.

We have also employed numerical tools to visualise time-localised dynamics as derived

by this adiabatic reasoning, namely time-localised LEs as in Figs. 4.4(d)–4.4(f) and

time-frequency representation as in Figs. 4.4(a)–4.4(c). We hypothesise that for a time-

frequency representation applied to experimental data, a result resembling Fig. 4.4(b)

could be a signature of intermittent synchronisation. We also investigated the slow

variation assumption in higher-dimensional systems, and numerically illustrated the

creation of stability as the amplitude of variation is increased, as well as the occurrence of

intermittent synchronisation. In this way, we showed that the phenomena of stabilisation

and intermittent synchronisation under slow variation of the driving frequency occur

more broadly than just in the case of phase oscillators.

Chronotaxic systems have been introduced to model the distinctive feature of real-life

oscillatory systems, that they are able to keep their time-varying dynamics resistant to

external perturbations [149–151]. Chronotaxic systems were defined in previous works by

the necessary condition that a time-dependent attractor exists, and that trajectories in

its close vicinity always move closer to it [149], or alternatively just by the existence of a
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positively invariant time-varying region in which the dynamics is always contracting [151].

However, it seems reasonable to expect that in real life, there exist stable oscillatory

systems for which no trajectory is always instantaneously locally attractive. Instead, in

contrast to currently existing definitions of chronotaxicity, an intermittent synchronisation

phenomenon such as identified in this work would give rise to stability on average. Thus,

we have broadened the definition of chronotaxic systems, increasing its potential for

effectively modelling and understanding real-life systems, which are nonisolated and

therefore continuously subjected to time-varying external influences.

4.5. Summary

In this chapter, we have shown that driving a phase oscillator with an arbitrary slowly

varying frequency always induces stability in the following sense: the larger the amplitude

of the frequency modulation, the larger the stability region. Note, however, that for

a given point in parameter space, the strength of the stability, i.e. the magnitude of

the LE, can either decrease or increase as the amplitude of the frequency modulation

is increased. We have furthermore shown numerically that this phenomenon occurs

in more complex cases where the driven oscillator is higher-dimensional and nonlinear,

hinting at the wider scope and importance of the effect at hand. We have even shown

numerically that chaotic regions in parameter space can be made stable by the same

mechanism. If only the quantities λ1 and Ωψ, which describe time-averaged properties of

the system, are considered, the system looks the same as in the case of driving with noise.

However, in reality, our fully deterministic example exhibits some time-localised frequency

entrainment, whereas none is exhibited in the case of driving with bounded noise. It is

therefore clear that the nonautonomous deterministic system could be misinterpreted as

a noisy one if only time-averaged quantities are considered.

The enlarged stability region makes time-variable driving very suitable for real-world

modelling and for engineering, where a controlled adjustment of the frequencies is often

of key importance. We believe that this type of model will find applications in many

fields, including physics, biology, medicine, and climate dynamics.

73



4. Stabilisation by nonautonomous driving

In the next chapter, the study is extended to a system with a more general modulation.

Results are extended and expressed in a more formal mathematical language. The system

considered is used as an example to highlight the possible mismatches between a long

but finite-time analysis and an asymptotic one.
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analysis

5.1. Introduction

Dynamics, as introduced by Newton to describe celestial motion, and later extended by

Lyapunov [94] and Poincaré [128] to include stability analysis, has been fruitfully applied

to various fields in the sciences. Still, all of this has mostly, to date, been based on two

main assumptions, that the dynamics of the systems is time-homogeneous, and that the

physical behaviour exhibited can be described by coordinate-invariant time-asymptotic

dynamics. However, many real-world systems are open [22, 31, 33, 40, 49, 85, 99, 118,

139] and thus too prone to time-variable influences to be reasonably modelled by a

time-independent evolution law [72, 73], as argued in chapter 1. Even the external driving

may follow no time-homogeneous deterministic or probabilistic model, making most

existing nonautonomous dynamics theory [72, 73] unsuitable. When dealing with the

finiteness of experimental data, infinite-time models can and their asymptotic analysis

have proven successful in various cases, but can also be unsuitable because of their very

own nature.

Accordingly, finite-time dynamical systems theory has recently been gaining attention [19,

44, 53, 68, 69, 89, 135]. Such theory and associated data-analysis methods have been

applied most notably to studying coherent structures in diverse fluids [54, 55, 64, 88, 100,

134, 140, 154, 156, 163]. Time-localised dynamical stability for a multispecies population

was investigated from data in [160].

In this chapter, we demonstrate the limitations of the above-mentioned two assumptions

by uncovering a dynamical phenomenon that cannot be described by the standard
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approach based on these assumption. Specifically, we show that for very general slowly

varying one-dimensional phase-oscillator systems – a generalisation of the system of

chapter 4 – sufficiently broad variation inherently induces stability in the system.

This chapter is composed of three main sections. In Sec. 5.2, a dynamical system defined

over finite-time is defined ,and the analytical bases for finite-time stability are established.

In Sec. 5.3, results form the section before are generalised. Finally, in Sec. 5.4, an

infinite-time system is considered, and it is shown how a finite-time analysis gives results

different from a traditional asymptotic approach.

5.2. Finite-time model and stability

First let us consider, over the time-interval [0, T ] with T = 2π × 105 s, the differential

equation

ψ̇(t) = −γ sin(ψ(t)) + ∆ω +Kg(t) (5.1)

with γ = 1
3 rad/s and ∆ω = 1 rad/s, and with g : [0, T ]→ R being a continuous function

whose graph is as shown in Fig. 5.1. The study of Eq. (5.1) is motivated by Eq. (4.5)

from chapter 4. For consistency, the notation is kept the same, even though Eq. (5.1)

is now studied independently of Eq. (4.5). The parameter K > 0 rad/s represents the

breadth of time-variability, just like ∆ω in Eq. (4.5) (strictly speaking K = kω1, since

the frequency modulation is relative in Eq. (4.5), and absolute in Eq. (5.1)).

0 1 2 3 4 5 6
Time (105 s)

0.5

0.0

0.5

g(
t)

Figure 5.1.: Graph of g(t) in Eq. (5.1).

The function g(t) in Fig. 5.1 was effectively constructed by taking a sample realisation

of a Brownian [0, T ]-bridge and passing it through a lowpass filter with very low cut-

off frequency (namely 1
2π×103 Hz), so that, as seen in Fig. 5.1, the rate of change of g

over time is slow compared to the values of ∆ω and γ. Since g(t) originates from a

Brownian bridge process, there is no physically meaningful way to extend the model (5.1)

76



5. A bounded-time approach to dynamics analysis

beyond the time-range [0, T ] of the bridge itself, while both its extremities at 0. Thus,

asymptotic-dynamics concepts and methods are inapplicable.

A Brownian bridge effectively describes the result of conditioning a finite-time zero-drift

Brownian motion on the event that the start and end values are the same. For the

construction of g(t), we start by simulating a realisation of Brownian motion (Wt)0≤t≤T ,

T = 2π × 105 s, with Wt ∼ N (0, tT ). We then construct the Brownian bridge realisation

(Bt)0≤t≤T by Bt := Wt − t
TWT . We pass the signal (Bt)0≤t≤T through a 5th order

Butterworth lowpass filter with cut-off frequency 1/(2π × 103) Hz. The output is g(t).

Numerically, we used a time step of 0.01 s to construct the Brownian bridge, and the

Butterworth filter was performed via cascaded second-order sections (in Python, with

the function “scipy.signal.sosfilt”). Finally, we linearly interpolated the output of the

filter to get g(t) as shown in Fig. 5.1.

All numerical integration in this chapter was performed using the RK4 scheme with a

time step of 0.01 s, unless stated otherwise.

5.2.1. Stabilisation phenomenon

A bifurcation diagram for the system (5.1) with respect to the parameter K, obtained by

simulating the trajectories of 50 initial conditions up to time T = 2π × 105 s, is shown in

Fig. 5.2(b).

The results shown in Figs. 5.2(a) and 5.2(b) were obtained by numerically integrating

Eq. (5.1). The long-term FTLE shown in (a) were calculated according to Eq. (5.4). The

results in Fig. 5.2(c) were obtained by evolving the 50 points 2πi
50 under the time-reversed

version of (5.1), namely the differential equation

ψ̇(t) = γ sin(ψ)−∆ω −Kg(T − t). (5.2)

Despite the non-existence of infinite-time dynamics for this inherently timebound model,

we clearly see in Fig. 5.2(b) a transition from neutrally stable dynamics, where trajectories
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Figure 5.2.: Dynamics of (5.1) with varying K. The system becomes stables for K > K∗.
In (a) and (b), for each K-value, results for the evolution ψ(t) of 50 equally spaced initial
conditions ψ(0) = 2πi

50 , i = 0, . . . , 49, are shown: (a) shows the FTLE λT , as defined by
(5.4), for these trajectories; (b) shows the positions ψ(T ) of these trajectories at time T .
In (c), for each K-value, the positions of ψ(0) for the 50 trajectories ending at the points
ψ(T ) = 2πi

50 , i = 0, . . . , 49, are shown. In all three plots, the value K∗ as defined in (5.3) is
marked in dashed black, and T = 2π × 105 s.

fill the circle, to stable dynamics, where trajectories cluster around a point. So, as in

chapter 4, sufficient breadth of time-variability induces stability.

The dashed line in Fig. 5.2(b) marks the value

K∗ := γ −∆ω
min0≤t≤T g(t) , (5.3)

that is, the upper end of the range of K-values for which every solution ψ(t) of (5.1) has

ψ̇(t) > 0 for all time t ∈ [0, T ]. We see in Fig. 5.2(b) that the transition from neutral

stability to stability takes place precisely at K = K∗. This stabilisation can be further

assessed via the long-term FTLE λT associated to each trajectory (ψ(t))0≤t≤T of (5.1),

computed by

λT = 1
T

∫ T

0
−γ cos(ψ(t)) dt. (5.4)

The values of λT for the trajectories of 50 initial conditions are shown in Fig. 5.2(a),

and again K∗ is marked. For each K-value, we see that the 50 trajectories share

indistinguishably the same FTLE value, being indistinguishable from 0 for K < K∗ and

clearly negative for K > K∗. This confirms the stabilisation shown in Fig. 5.2(b). A

reverse-time bifurcation diagram is shown in Fig. 5.2(c); from plots (b) and (c) we see

that if K > K∗, then trajectories are repelled away from a very small repulsive area and

are mutually attracted into a very small area. Thus, the stabilisation phenomenon that

we see strongly resembles a saddle-node bifurcation of autonomous dynamical systems.

And yet, the bifurcation observed in Fig. 5.2 cannot in any way be related to autonomous,

or even time-asymptotic nonautonomous, dynamics.
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The stabilisation as K rises above K∗ is explained by the following adiabatic reasoning.

Locally around each time t, if the instantaneous vector field −γ sin( · ) + ∆ω + Kg(t)

has no equilibrium then trajectories move approximately periodically round the circle

with no significant clustering or dispersion of trajectories, but if the instantaneous vector

field −γ sin( · ) + ∆ω + Kg(t) has an equilibrium y then trajectories cluster together

increasingly tightly near y.

We now show the same stabilisation phenomenon is still occurring when we consider (5.1)

not on the whole time-interval [0, T ] but just on a subinterval [0, T ′], where T ′ = π×104 s.

We use the same function g(t), only going up to time T ′. This function still attains

negative values on the subinterval [0, T ′], and so the critical K-value is now given by

K∗ = γ −∆ω
min0≤t≤T ′ g(t) . (5.5)

Results are shown in Fig. 5.3, with γ and ∆ω as in Fig. 5.2. Plots (a) and (b) are

Figure 5.3.: Stabilisation of (5.1) on time [0, T ′] with T ′ = π × 104 s. Other parameters
are γ = 1

3 rad/s and ∆ω = 1 rad/s. In (a) and (b), for each K-value, results for the
evolution ψ(t) of 50 equally spaced initial conditions ψ(0) = 2πi

50 , i = 0, . . . , 49, are shown:
(a) shows the FTLE λT ′ , as defined by Eq. (5.4), for these trajectories; (b) shows the
positions ψ(T ′) of these trajectories at time T ′. In (c), for each K-value, the positions of
ψ(0) for the 50 trajectories of (5.1) with ψ(T ′) = 2πi

50 , i = 0, . . . , 49, are shown. The value
K∗ as defined in (5.5) is marked by the black dashed line.

obtained exactly as for Fig. 5.2, and likewise plot (c) by evolving the 50 points under the

differential equation

5.3. Generalisation

In this section and the next, mathematical propositions are presented, not as original

work from the candidate of this thesis, but rather to highlight a relevant development

in a preprint co-authored by the aforementioned candidate. A future publication will
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comprehensively present the full details of the propositions and of the proofs. The

propositions themselves were the result of discussion with the candidate and inspired by

the work presented in the previous chapter. All numerical analysis was carried out by

the candidate.

To generalise, consider on the phase space S1 = R/(2πZ) a differential equation

ψ̇(t) = F (ψ(t), tT ) (5.6)

defined on the time-interval [0, T ], where F : S1 × [0, 1] → R is a function that we will

assume to be smooth. In this time-varying differential equation, F specifies the overall

shape of variation, while T specifies the slowness at which this shape of variation is

realised. Eq. (5.6) could describe various physical situations, due to existence of phase

reduction methods for slowly varying systems [83, 84, 115]. At any time t ∈ [0, T ], an

instantaneous stable equilibrium of (5.6) means a point y t
T
∈ S1 such that F (y t

T
, tT ) = 0

and ∂F
∂ψ (y t

T
, tT ) < 0.

We consider two cases:

• Case I: either F (ψ, τ) > 0 for all ψ and τ , or F (ψ, τ) < 0 for all ψ and τ .

• Case II: there exist times t ∈ [0, T ] at which (5.6) has a unique instantaneous stable

equilibrium.

For generic F , if the function F ( · , 0) or F ( · , 1) has no zeros then the system is either

in Case I or Case II. Generalising results of [65] and chapter 4, adiabatic consideration as

exemplified above for (5.1) yields the following. Assuming slow variation of F : in Case I,

(5.6) exhibits neutrally stable dynamics; in Case II, typically, (5.6) exhibits global-scale

stable dynamics. The neutral stability in Case I means that there is no significant

attractivity or repulsivity of the solutions. The global-scale stability in Case II means

that all solutions starting outside some very small “repulsive” arc will cluster together

over time into a very small arc.

We can make this finite-time-dynamics analysis more rigorous. An arc J ⊂ S1 will mean

a closed connected proper subset of S1 with non-empty interior. Given an arc J0 ⊂ S1

of initial conditions ψ(0), we write Jt for the arc of subsequent positions ψ(t) at time t.

The neutral stability in Case I is described by the following.
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Proposition 1. Fix any F within Case I. There exists a constant cF ≥ 1 independent

of T , such that for every arc J0, for all t ∈ [0, T ],

1
cF
≤ length(Jt)

length(J0) ≤ cF .

Proposition 1 can be obtained without a formula for cF as an immediate consequence of

[48, Theorem 2]. However, a constructive proof with a formula for cF (obtained using

Grönwall’s inequality [36]) is given in the Supplementary Material of [107]. Proposition 1

implies in particular that the FTLE associated to all trajectories over [0, T ] are bounded

in absolute value by 1
T log cF , and thus these FTLE tend to 0 as T →∞.

In Case II, if there is only one time-interval during which an instantaneous stable

equilibrium exists, the stability can be mathematically formalised and quantified 1 as

follows.

Proposition 2. Fix F such that there exist 0 ≤ τ1 < τ2 ≤ 1 satisfying:

• for all τ ∈ [0, τ1) ∪ (τ2, 1] and ψ ∈ S1, we have F (ψ, τ) 6= 0;

• there is a continuous map τ 7→ yτ from [τ1, τ2] to S1 such that for each τ ∈ (τ1, τ2),

we have F (yτ , τ) = 0 and ∂F
∂ψ (yτ , τ) < 0;

• there exists 0 < δ ≤ τ2 − τ1 and a continuous map τ 7→ zτ from [τ1, τ1 + δ] to

S1 such that for each τ ∈ (τ1, τ1 + δ], we have F (zτ , τ) = 0, ∂F
∂ψ (zτ , τ) > 0 and

F (ψ, τ) 6= 0 for all ψ ∈ S1 \ {yτ , zτ}.

Let

Λ :=
∫ τ2

τ1
∂1F (yτ , τ) dτ < 0. (5.7)

Fix any ε > 0. Then, provided T is sufficiently large, there exists an arc P with

length(P ) < ε such that for every arc J0 not intersecting P ,

∣∣∣∣ 1T log
( length(JT )

length(J0)

)
− Λ

∣∣∣∣ < ε.

1The proof is very similar to the proof of [48, Proposition], following adiabatic reasoning as described
for Eq. (5.1), such that in principle one could construct an explicit formula defining “sufficiently large”
T . The full proof, while not requiring any deep insight, is nonetheless technically involved, and will
be published in a future work.
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The quantity Λ defined in (5.7) is an approximation of the FTLE over [0, T ] associated

to all trajectories except those starting in a small arc P .

If there is more than one time-interval during which an instantaneous stable equilibrium

exists, then generally this will just further reinforce the mutual synchrony of trajectories.

However, it is also theoretically possible that the cluster of trajectories formed over one

or more of these time-intervals will happen to land in the small repulsive arc associated

to the next of these time-intervals, causing the cluster to be re-dispersed. Generally

(apart from some degenerate classes of examples), this behaviour will be very rare and

will require extremely fine tuning of parameters.

5.4. Infinite-time model

We now consider a second example, namely the differential equation

ψ̇(t) = −γ sin(ψ(t)) + ∆ω +K cos(ωmt) (5.8)

with γ, ωm > 0 and ∆ω,K ≥ 0. This is essentially the same as used for the numerics in

chapter 4. It has also been studied in [23, 41, 48, 63] and references therein.

Slow variation here means that Kωm is small. If we fix ∆ω > γ, and consider Eq. (5.8)

over a time-interval [0, T ] with T > π
ωm

, then the critical K-value between Case I and

Case II is K∗ = ∆ω−γ: for K < K∗ we expect neutrally stable dyamics, and for K > K∗

we expect stable dynamics, just as in (5.1). Moreover, if the duration is a whole number

of periods T = 2πn
ωm

, then one can derive as in [65] and Eq. (5.7) above an approximation

Λ̃ for the FTLE associated to the trajectories of (5.8) (apart from those starting in some

very small arc), by adiabatically following the instantaneous stable equilibrium when it

exists; that is, we define

Λ̃ = 1
π

∫
{0≤s≤π : |∆ω+K cos(s)|<γ}

−γ cos(yτ ) dτ (5.9)

where yτ is the instantaneous stable equilibrium at time t = τ
ωm

, given by yτ =

arcsin
(

∆ω+K cos(τ)
γ

)
. For K < K∗, we have Λ̃ = 0, and for K > K∗, we have Λ̃ < 0.
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5.4.1. Stabilisation phenomenon

Fig. 5.4 shows bifurcation diagrams in terms of forward-time, reverse-time and FTLE

simulations over 100 periods of the nonautonomous driving, for varying K and for varying

∆ω. These all very clearly show neutral stability for K < ∆ω − γ and stability for

K > ∆ω − γ, as predicted, with FTLE being approximated very well by Λ̃ (as also in

Fig. 5.6 for small ωm).

In Figs. 5.4 and 5.6, computation of initial positions ψ(0) given final positions ψ(T )

(where T is a multiple of 2π
ωm

) is achieved by evolving the given values of ψ(T ) under the

time-reversed system

ψ̇(t) = γ sin(ψ)−∆ω −K cos(ωmt). (5.10)

Finite-time LE are computed according to Eq. (5.4). The value of Λ̃ in (5.9) is computed
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Figure 5.4.: Dynamics of (5.8), with varying K in (a)–(c) and varying ∆ω in (d)–(f). In
all plots, ωm = 10−3 rad/s, T = 2π×105 s, and γ = 1

3 rad/s. In (a)–(c), ∆ω = 1 rad/s and
the value ∆ω − γ = 2

3 rad/s is marked by the black dashed line. In (d)–(f), K = 1
3 rad/s

and the value K + γ = 2
3 rad/s is marked by the black dashed line. In (a), (b), (d),

and (e), results for the evolution ψ(t) of 50 equally spaced initial conditions ψ(0) = 2πi
50 ,

i = 0, . . . , 49, are shown: (a) and (d) show the FTLE λT , as defined by (5.4), for these
trajectories, and also shows Λ̃ (defined in (5.9)) in grey; (b) and (e) shows the positions
ψ(T ) of these trajectories at time T . In (c) and (f), the positions of ψ(0) for the 50
trajectories of (5.8) with ψ(T ) = 2πi

50 , i = 0, . . . , 49, are shown.
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by the explicit formula

Λ̃ =



0 ∆ω > γ and K ≤ ∆ω − γ

− 1
π

∫ π
0

√
γ2 − (∆ω +K cos(t))2 dt ∆ω < γ and K < ∆ω − γ

− 1
π

∫ π
arccos( γ−∆ω

K )
√
γ2 − (∆ω +K cos(t))2 dt either ∆ω ≥ γ and ∆ω − γ < K < ∆ω + γ,

or ∆ω < γ and γ −∆ω ≤ K < γ + ∆ω

− 1
π

∫ arccos(−∆ω+γ
K )

arccos( γ−∆ω
K )

√
γ2 − (∆ω +K cos(t))2 dt K ≥ ∆ω + γ

where γ, ∆ω and K are all assumed to be nonnegative.

Now, let us illustrate the synchronising dynamics developing over time, for ∆ω = K = 1 rad/s

and γ = 1
3 rad/s, again with ωm = 10−3 rad/s. Fig. 5.5 shows behaviour over the first 5 periods

of cos(ωmt): above each t-value are shown the values of log f ′0,t(ψ0) for 50 equally spaced points

ψ0 = 2πi
50 , i = 0, . . . , 49, where f0,t : S1 → S1 is the map sending an initial condition to its position

at time t. These values are computed by

log f ′0,t(ψ0) = tλt

where, for each t, λt is the FTLE as in Eq. (5.4) with ψ(0) = ψ0. In agreement with the description

give earlier, all the trajectories exhibit neutrally stable evolution until some time when they

start to synchronise, corresponding to when the instantaneous vector field has a fixed point; the

achieved synchrony is maintained during the next time-interval corresponding to when there is no

fixed point for the instantaneous vector field; this synchrony is then strengthened further during

the next time-interval corresponding to when there is a fixed point again; and so on. Again, we

see Λ̃ being a good prediction for the FTLE over integer time-periods.

5.4.2. Mismatch between infinite-time and finite-time analysis

But unlike in (5.1), the nonautonomous term K cos(ωmt) in Eq. (5.8) happens to be periodic.

Accordingly, analysing (5.8) within the framework of coordinate-invariant asymptotic dynamics,

one obtains the following basic fact.2

Proposition 3. Fix ∆ω > γ > 0. For any K > 0, there are intervals of ωm-values arbitrarily

close to 0 for which the system (5.8) is neutrally stable, with all trajectories having an asymptotic

Lyapunov exponent of exactly zero.

2This follows from [63, Theorems 1 and 4].
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Figure 5.5.: Evolution of synchrony of solutions of (5.8), over the time-interval [0, 10π
ωm

], i.e.
5 time-periods. Parameters are ωm = 10−3 rad/s, ∆ω = K = 1 rad/s and γ = 1

3 rad/s. For
each t-value, the values of log f ′0,t(ψ0) for 50 equally spaced points ψ0 = 2πi

50 , i = 0, . . . , 49,
are shown in black, where f0,t : S1 → S1 is the map sending an initial condition to its
position at time t. Also, for each t-value, the value of tΛ̃ is shown in blue.

This stands in contrast to what the numerics in Fig. 5.4 would suggest – namely that as expected

from our finite-time adiabatic reasoning, provided Kωm is small, K > ∆ω − γ implies stable

dynamics. The discrepancy between this and Proposition 3 is illustrated in Fig. 5.6. This

discrepancy is due precisely to the re-dispersion effect described further above; it requires extreme

fine-tuning (as evidenced further in Fig. 5.7 below) and thus is not observed in any of our

simulations. But the mathematical tools necessary to obtain Proposition 3 do not reveal any such

information. Thus, an asymptotic-time approach risks positively obscuring the very significant

stabilisation phenomenon observed in Fig. 5.4, which would generally be of far greater physical

relevance than the tiny intervals of exceptional ωm-values.

Three cases

Before explaining in more details the reasons for the discrepancy, we detail the three types of

dynamics that Eq. (5.8) exhibits. As a slight generalisation of Eq. (5.8), we can consider

ψ̇(t) = −γ sin(ψ(t)) + ∆ω +Kp(ωmt) (5.11)

where p( · ) is any smooth 2π-periodic function satisfying
∫ 2π

0 p(s) ds = 0.

Once again, an arc is a closed connected proper subset of S1 with non-empty interior. Given an

arc J0 ⊂ S1 of initial conditions, we write Jt for the arc of positions of the subsequent trajectories

of (5.11) at time t. By [63, Theorems 1 and 4], from the point of view of coordinate-invariant

asymptotic dynamics, Eq. (5.11) may exhibit neutrally stable dynamics or global-scale stable

85



5. A bounded-time approach to dynamics analysis

Figure 5.6.: Discrepancy between finite-time approach and asymptotic analysis, in sys-
tem (5.8) with varying ωm. Other parameters are γ = 1

3 rad/s and K = ∆ω = 1 rad/s.
(a) For each ωm-value, the FTLE λT as defined by (5.4) are shown for the trajectories of 50
equally spaced initial conditions ψ(0) = 2πi

50 , i = 0, . . . , 49, with T = 200π
ωm

(i.e. 100 periods).
The value Λ̃ defined in (5.9) is marked in grey. The FTLE are indeed approximately equal
to Λ̃ over the whole ωm-range, especially for smaller ωm. (b) Zoomed-in version of (a);
the red points indicate the location of the small intervals of ωm-values for which all initial
conditions have zero asymptotic Lyapunov exponent. (c) Forward (hollow circle) and
backward (solid circle) evolution of 50 equally spaced points 2πi

50 , i = 0, . . . , 49, over the
time-interval [0, 2π

ωm
]. In both forward and backward time, the 50 trajectories cluster around

one point; the values of ωm where the two curves of clustered points cross correspond to
where the red points are marked in (b).

dynamics, otherwise it must exhibit dynamics lying at the “boundary” between these two. More

precisely, the three possible scenarios are as follows:

• Neutrally Stable Scenario: There exists c ≥ 1 such that for every arc J0, for all t ∈ [0,∞),

1
c
≤ length(Jt)

length(J0) ≤ c.

In this case, the ALE associated to all trajectories is 0.

• Stable Scenario: There exists λ(∞) < 0 and p ∈ S1 such that for every arc J0 with p /∈ J0,

1
t

log
(

length(Jt)
length(J0)

)
→ λ(∞) as t→∞.

In this case, the ALE associated to every trajectory except the trajectory starting at p

is λ(∞). The trajectory starting at p is an unstable 2π
ωm

-periodic trajectory, and all other

trajectories are attracted to a stable 2π
ωm

-periodic trajectory.
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• Boundary Scenario: There is a 2π
ωm

-periodic solution which asymptotically attracts all

trajectories from one direction but is unstable due to being locally repulsive in the other

direction. In this case, the ALE associated to every trajectory is 0.

The first two scenarios are infinite-time analogues of the dynamics described in Propositions 1

and 2 respectively. Proposition 3 asserts that if ∆ω > γ then for any K > 0 there are intervals

of ωm-values arbitrarily close to 0 for which the dynamics is described by the neutrally stable

scenario. The reason for this is as follows:

If there does not exist a 2π
ωm

-periodic solution, the system must be in the neutrally stable scenario.

By classical Poincaré-Denjoy theory, the existence or non-existence of 2π
ωm

-periodic solutions can

be determined by the asymptotic rotation number

Ω := lim
t→∞

ψ̂(t)
t

(5.12)

where ψ̂ : R→ R is any lift of any solution of (5.11); the value of ψ̂(0) does not affect the value of

Ω. There exists a 2π
ωm

-periodic trajectory if and only if Ω is an integer multiple of ωm. Now it is

well-known that Ω depends continuously on parameters – in this case, if we fix ∆ω and γ, then Ω

depends continuously on K and ωm. But also, observe that Ω ∈ [∆ω − γ,∆ω + γ]. Therefore,

if ∆ω > γ, then Ω
ωm

must tend continuously towards ∞ as ωm → 0 regardless of the value of

K (even if K is not actually a fixed value but varies as a continuous function of ωm). Hence

in particular, there must be intervals of ωm-values arbitrarily close to 0 for which Ω
ωm

is not an

integer and so (5.11) is in the neutrally stable scenario.

Discrepancy

We now turn back to explaining the discrepancy shown in Fig. 5.6. The value of Λ̃ marked in

grey in Figs. 5.6(a) and 5.6(b), as defined by Eq. (5.9), is given by

Λ̃ = − 1
π

∫ π

arccos(− 2
3 )

√
1
9 − (1 + cos(t))2 dt.

In Fig. 5.6(b), the ωm-values at which the red points are marked were numerically obtained as

follows: For the unwrapped phase x(t) as governed by the differential equation

ẋ(t) = −γ sin(x(t)) + ∆ω +K cos(ωmt)

on the real line, setting x(0) = 0, it was observed that x( 2π
ωm

) increased approximately linearly

with 1/ωm, with increments across consecutive values in the (1/ωm)-discretisation being strictly

positive and very small compared to 2π. Hence it is possible to carry out linear interpolation of
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the wrapped phase ψ( 2π
ωm

) as a function of 1/ωm (with ψ(0) = 0). Where this linearly interpolated

function of 1/ωm crosses π
2 and 3π

2 is where the red points are marked; as in Fig. 5.6(c), the

locations of ψ( 2π
ωm

) are the same for the other 49 initial conditions ψ(0) = 2πi
50 as for ψ(0) = 0.

Let us now explain the reasoning behind why these points indicate the location of Neutrally

Stable Scenario intervals:

Let f0, 2π
ωm

: S1 → S1 be the map sending an initial condition ψ(0) to its position ψ( 2π
ωm

) at time
2π
ωm

. It is not hard to show that the reflection ψ 7→ π − ψ, i.e. the reflection preserving the points
π
2 and 3π

2 , is a conjugacy between f0, 2π
ωm

and its inverse f 2π
ωm

,0.

By [63, Theorems 1 and 4], f0, 2π
ωm

either has: (i) no fixed points, corresponding to the Neutrally

Stable Scenario; (ii) two fixed points sωm and pωm = π − sωm , with sωm attracting and pωm

repelling, corresponding to the Stable Scenario; or (iii) exactly one fixed point pωm ∈ {π2 ,
3π
2 },

corresponding to the Boundary Scenario. Since K lies in the interval (∆ω − γ,∆ω + γ), Eq. (5.8)

defined on the time-interval [0, 2π
ωm

] fulfils all the assumptions of Proposition 2 (with F (ψ, τ) :=

−γ sin(ψ) + ∆ω +K cos(πτ)). Hence, for small enough ωm, it is guaranteed that the map f0, 2π
ωm

has nearly zero gradient throughout the circle minus a tiny arc Pωm , and maps S1 \ Pωm onto

some tiny arc Sωm . Note that the reflection π − Sωm of Sωm is contained in Pωm , and that if

the arcs Sωm and Pωm do not overlap then (5.8) is in the Stable Scenario with sωm ∈ Sωm and

pωm ∈ Pωm . Conversely, whenever (5.8) is in the Stable Scenario, we have that pωm ∈ Pωm , and

therefore sωm ∈ π − Pωm .

Figure 5.7.: FTLE for (5.8) near a red-marked point in Fig. 5.6(b). Parameters are
∆ω = K = 1 rad/s and γ = 1

3 rad/s. For each ωm-value, in blue are shown the FTLE λT
associated to the trajectories of 10 initial conditions ψ(0) = 2πi

10 with T = 200π
ωm

(i.e. 100
periods), and in orange are shown the FTLE λT associated to the trajectories of 2 initial
conditions ψ(0) = 0, π with T = 2000π

ωm
(i.e. 1000 periods). The red dashed line indicates

the location of a small interval of ωm-values for which the asymptotic Lyapunov exponent
is 0. The value of Λ̃ is shown in grey.

The locations of Sωm and Pωm are represented in Fig. 5.6(c) by a hollow circle and a solid circle

respectively. As 1/ωm increases, Sωm moves anticlockwise and Pωm moves clockwise. As these
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small arcs cross past each other – which is the same as when they cross past π
2 or 3π

2 – there must

be a point at which the attracting and repelling fixed points of f0, 2π
ωm

collide. At the moment of

collision, the system is in the Boundary Scenario. As 1/ωm is increased beyond this point, before

the system can return to the Stable Scenario there must be some interval of (1/ωm)-values on

which f0, 2π
ωm

has no fixed points, corresponding to the Neutrally Stable Scenario.

Zoom in

Now Fig. 5.6(b) showed FTLE as a function of ωm. We now zoom in on Fig. 5.6(b), near one

of the ωm-values that was marked by a red point to indicate the presence of a small interval

of ωm-values for which the asymptotic dynamics is described by the Neutrally Stable Scenario.

Results are shown in Fig. 5.7. The location of this small interval is indicated by the red dashed

line; the location on this zoomed in plot was computed by the same method as described above

for Fig. 5.6(b).

In Fig. 5.7, even with the much higher (1/ωm)-resolution than in Fig. 5.6(b), only stable dynamics

is observed for both T = 200π
ωm

(as in Fig. 5.6(b)) and T = 2000π
ωm

; moreover, the values of λT

remain essentially the same as T is changed from 200π
ωm

to 2000π
ωm

.

How slow is slow?

Finally, most of the numerics so far have assumed very slow variation – which, for (5.8), means

that Kωm is very small – and assumed very long times. We now illustrate that the stabilisation

phenomenon described can be observed when the slowness of variation is not so extreme, and the

time is not so long. Fig. 5.8 shows the dynamics of (5.8) for varying K, with ωm = 0.03 rad/s

Figure 5.8.: Dynamics of (5.8) with varying K. Other parameters are ωm = 0.03 rad/s,
γ = 1

3 rad/s and ∆ω = 1 rad/s, and (5.8) is integrated over [0, T ] with T = 10π
ωm

. In (a) and
(b), for each K-value, results for the evolution ψ(t) of 50 equally spaced initial conditions
ψ(0) = 2πi

50 , i = 0, . . . , 49, are shown: (a) shows the FTLE λT , as defined by Eq. (5.4),
for these trajectories, and also shows Λ̃ in grey; (b) shows the positions ψ(T ) of these
trajectories at time T . In (c), for each K-value, the positions of ψ(0) for the 50 trajectories
of (5.8) with ψ(T ) = 2πi

50 , i = 0, . . . , 49, are shown. The value ∆ω− γ = 2
3 rad/s is marked

by the black dashed line.
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and T = 10π
ωm
≈ 103 s (i.e. 5 time-periods), again with γ = 1

3 rad/s and ∆ω = 1 rad/s. We clearly

see neutral stability for K < ∆ω − γ = 2
3 rad/s. At the point that K rises above ∆ω − γ, we

clearly see stabilisation occurring; this stability persists for K-values up to about 3.4 rad/s.

5.5. Summary

Thus, in this chapter, we have seen that restricting the analysis of dynamics to the traditional

framework has the potential to impede progress in diverse fields of scientific inquiry, such as all

those mentioned further above. The time-variable and finite-time nature of open systems needs

to be incorporated in the development and application of dynamical systems theory.

Specifically, we have analysed the finite- but long-time stability of a system defined only over

finite-time, to which the asymptotic framework cannot be applied. In doing so, we have uncovered

a stabilisation phenomenon, which is a generalisation of that in the previous chapter. For a

system that can be defined over infinite time, we have shown that the asymptotic analysis misses

the stabilisation phenomenon. More specifically, the ALE is zero for some small intervals at

arbitrary large values of parameter K, whereas the FTLE is negative above a critical K. Note

that existence of these intervals is proven, and that we estimated their locations. Determining

the exact intervals, or at least their size remains however a challenge, and would improve our

understanding of the system.

In conclusion, restricting the analysis of dynamics to the time-asymptotic framework has the

potential to impede progress in diverse fields of scientific inquiry. The true temporal nature of

open systems needs to be incorporated in the development and application of dynamical systems

theory. The reality of unignorable time-variability also has implications for inverse problem

methodologies; time-localised analysis and inference methods [29, 142] will not only reveal more

information than their time-independent counterparts but also allow for much more reliable

conclusions about systems that may be time-varying.

In the next chapter, we extend the ideas of this chapter and chapter 4 to study a driven network

of oscillators.
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oscillators

6.1. Introduction

Ensembles of coupled oscillators driven by a common external driving can represent natural and

man-made systems. A typical example is the day-light cycles drive the suprachiasmatic nucleus

neurons in our brain, which in turn control all circadian rhythms in our bodies, making sure

the body’s different clocks tick together [40]. In this chapter, we extend the study of chapter 4

by considering network of oscillators driven by a time-varying external oscillator. The network

is composed of identical copies of the driven oscillator of chapter 4. Two cases are considered:

attractive and repulsive couplings. Results of chapter 4 are extended in both cases, analytically

and numerically. Results indicate when time-variability in the driving is beneficial for stability,

and provides control strategies to stabilise the dynamics.

This chapter is composed of two main sections. In Sec. 6.3, we provide an analytical linear

stability analysis of the synchronous solutions. These results are then discussed and confirmed

numerically in Sec. 6.4, in the attractive and repulsive cases.

6.2. Model

We consider a driven network of N identical oscillators defined by phases θi and frequency ω,

θ̇i = ω +D

N∑
j=1

Aij sin(θi − θj) + γ sin[θi − θ0(t)], (6.1)

for i = 1, . . . , N , with coupling constant D, and where A stands for any (undirected) adjacency

matrix with elements Aij ∈ {0, 1}. Each oscillator is driven with strength γ ≥ 0 by the same

external oscillator with phase θ0(t) and time-varying frequency

θ̇0 = ω0[1 + kf(ωmt)], (6.2)
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where ω0 is the non-modulated frequency, f is a bounded function, and k and ωm are the

amplitude and frequency of the imposed modulation, respectively. Note that f(ωmt) is a generic

function, and need not be periodic; without loss of generality, we bound its image in [−1, 1].

System (6.1)-(6.2) is a direct generalisation to networks of the single driven oscillator system

presented in chapter 4.

The non-driven network, γ = 0, is an autonomous system. In this case, a (fully) synchronous

solution always exists, i.e. a solution where all oscillators are in the same state at all times,

θi = θj for all i 6= j. This is as long as the network is connected, meaning that there is a path

between any two nodes (oscillators). The synchronous solution is stable (unstable) if the coupling

between oscillators is attractive (repulsive), i.e., D < 0 (> 0) [155]. In the repulsive case, the

system is attracted to an incoherent state.

6.3. Theoretical analysis

In the driven system, γ 6= 0, synchronous solutions also exist. It is convenient to go to the rotating

frame of the driving, ψi = θi − θ0(t), where system (6.1) is rewritten

ψ̇i = ∆ω(t) +D

N∑
j=1

Aij sin(ψi − ψj) + γ sinψi, (6.3)

for i = 1, . . . , N , where ∆ω(t) = ω − ω0[1 + kf(ωmt)] is the time-dependent frequency mismatch.

We refer to the θi as the phases, and to the ψi as the phase differences between the phase of the

driving and that of the i-th oscillator. System (6.3) is nonautonomous due to the time-dependent

frequency mismatch, and is hence hard to treat in general. In the rest of the study, we assume ω0

is modulated slowly, i.e., ωm � ω0, and use an adiabatic approach to study the existence and

stability of synchronous solutions.

6.3.1. Autonomous case

To that end, we first consider the simpler case of a constant driving frequency, recovered for k = 0,

for which ∆ω(t) = ∆ω = ω − ω0 is constant and system (6.3) is autonomous. A synchronous

solution, ψi = ψ̃ for all i = 1, . . . , N , always exists, and obeys

˙̃ψ = ∆ω + γ sin ψ̃, (6.4)

which is the so-called Adler equation describing a single driven oscillator [127]. From Eq. (6.4),

two types of synchronous solutions can be identified: synchronised (to the driving), or not . First,
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if γ ≥ |∆ω| is satisfied, there exists a stable fixed point. This fixed point corresponds to the

synchronous synchronised (SS) solution, ψss = π − arcsin(−∆ω/γ), characterised by a constant

phase difference, ψ̇ss = 0. Second, if the synchronisation condition is not met, γ < |∆ω|, there

exists a synchronous not synchronised (SNS) type of solutions, denoted ψsns, which grows (or

decays) monotonically, ψ̇sns > 0 (or < 0).

We now investigate the linear stability against a small heterogeneous perturbation δψi around

those solutions. This is determined by linearising Eq. (6.3) for each node around a solution ψ̃(t),

which stands for either the SS or SNS,

δψ̇i = −D
N∑
j=1

Lijδψj + γδψi cos ψ̃(t). (6.5)

Here, Lij = Aij −Kiδij denotes the Laplacian matrix of the network, defined in terms of the

connectivity of each node Ki =
∑N
j=1Aij , and the Kronecker delta δij . One can now decouple

this N -dimensional problem by projecting it onto the eigenbasis of the Laplacian, defined as

N∑
j=1

Lijφ
(α)
i = Λαφ(α)

i , (6.6)

where the φ(α) are the eigenvectors associated to the eigenvalues Λα, for α = 1, . . . , N . The

latter are non-positive and real, since the network is assumed to be undirected, and ordered

Λ1 = 0 > Λ2 ≥ . . . ≥ ΛN . The perturbation can be decomposed in that basis, and we look for

solutions of the form δψi(t) =
∑N
α=1 cαe

∫ t
0
λα(t′) dt′

φ
(α)
i . Plugging into Eq. (6.5) and solving for

each α yields the instantaneous Lyapunov exponent spectrum

λα(t) = −DΛα + γ cos ψ̃(t), (6.7)

which is completely general and also valid in the nonautonomous case, as will be seen later.

Now in the autonomous case, ψ̃(t) is periodic modulo 2π [127] and hence (long-term) Lyapunov

exponent spectrum is well defined as the time-average of the instantaneous values

λα = −DΛα + γ〈cos ψ̃(t)〉. (6.8)

For the sake of clarity, note that by A choice of notation, the λα (superscript) are, in general,

not in descending order whereas the λα (subscript) are by definition the exponents in descending

order, as introduced in Eq. (2.8) of chapter 2.
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An explicit form of formula (6.8) is obtained by splitting it into two cases

λα =


−DΛα −

√
γ2 −∆ω2 if γ > |∆ω|,

−DΛα else.
(6.9)

For the synchronised case, γ > |∆ω|, the explicit solution ψss = π − arcsin(−∆ω/γ), which is

constant, was plugged into formula (6.8). For the not synchronised case, the solution is ψsns, for

which the averaging term in formula (6.8) vanishes.

6.3.2. Nonautonomous case

In general, the driving frequency is time-dependent, k 6= 0, and synchronous solutions obey a

nonautonomous version of Eq. (6.3)

˙̃ψ = ∆ω(t) + γ sin ψ̃, (6.10)

which was studied in [65] and chapter 4. As previously mentioned, here and throughout the paper,

we assume slow modulation of the frequency, i.e. ωm small. Equivalently, ∆ω(t) varies much

more slowly than the dynamics of the system. Hence, there is a separation of timescales: ∆ω(t)

is the slow variable, and ψ̃(t) the fast one. Thus, over the fast timescale, the frequency mismatch

is quasi-static, and the slowly moving point attractor ψss(t) = π − arcsin(−∆ω(t)/γ) is followed

adiabatically, when it exists [65]. This state corresponds to the SS solution of the autonomous

case, and differs with it in being only quasi-constant, i.e., ˙̃ψss = 0 over the fast timescale, and

existing only at times such that γ > |∆ω(t)|.

Consequently, in contrast to the autonomous case, Eq. (6.10) shows three types of synchronous

solutions: two of them correspond to the SS and SNS solutions as discussed in the autonomous

case, whereas a third type exhibits intermittent synchronisation. Three regions in parameter space

can thus be defined, each corresponding to the existence of one of those types solutions, as in

chapter 4, as illustrated in Fig. 6.1. In region I, the condition γ > |∆ω(t)| is not met at any time.

The solution grows (or decays) monotonically and we denote it ψsns(t). In region II, the condition

γ > |∆ω(t)| is met at all times. The solution is denoted by ψss(t) and has an approximately null

time derivative, as described above. In region III, γ > |∆ω(t)| is met only at certain times. The

phase difference alternates between times of growth (or decay), and quasi-constant (bounded)

epochs. We call it synchronous intermittently synchronised (SIS), and denote it ψsis(t). The three

types of solutions are illustrated in Fig. 6.2(a) and will be discussed in the next section.

The three regions, depicted in Fig. 6.1, are equivalently defined by the following time-independent
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Figure 6.1.: Re-
gions of existence
of synchronous so-
lutions. Region I:
no synchronisation
(SNS). Region II:
synchronisation (SS).
Region III: intermit-
tent synchronisation
(SIS).

conditions: (I) γ ≥ |∆ω| + ω0k, (II) γ ≤ |∆ω| − ω0k, and (III) |∆ω| − ω0k ≤ γ ≤ |∆ω| + ω0k,

where we denote ∆ω ≡ ω − ω0 the central frequency mismatch, or alternatively, the frequency

mismatch of the autonomous case (see chapter 4). Note that these regions are defined based

on the condition of existence of the aforementioned types of solutions, and not based on their

stability.

The adiabatic assumption allows us to obtain the following formula for the adiabatic LE spectrum,

as a nonautonomous version of formula (6.9), by retracing the same reasoning

λα(t) =


−DΛα −

√
γ2 −∆ω(t)2 for t : γ > |∆ω(t)|,

−DΛα else.
(6.11)

Equation (6.11) enables us to draw conclusions about the stability of the aforementioned states.

The stability of the SS solution can be assessed by the first condition in Eq. (6.11). The stability

of the SNS is determined by the second condition in Eq. (6.11). Finally, the stability of the SIS is

determined by the first condition of Eq. (6.11) at times such that γ > |∆ω(t)|, and the second

condition the rest of the time.

Note that this result holds true regardless of the network size, topology, or the shape of the

frequency modulation function f(ωmt).

6.4. On the stability of the synchronous solution

We now examine the stability of the synchronous solutions further via formula (6.11) in the

attractive and repulsive cases.
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6.4.1. Attractive case

In this case, D < 0, all oscillators tend to display the same phase, when not driven. For a given

network, only the largest LE λmax(t) determines the stability. In this case, it is λmax(t) = λ1(t)

which corresponds to Λ1 = 0 in formula (6.11), and reads

λmax(t) =


−
√
γ2 −∆ω(t)2 for t : γ > |∆ω(t)|,

0 else,
(6.12)

a condition which is identical to that obtained for the single oscillator case considered in chapter 4,

even though we have now an arbitrary network of oscillators.

For the sake of clarity, we set f(ωmt) = sin(ωmt) in numerical examples. Note, however, that the

analysis is independent of the explicit form of f(ωmt), which can in general be aperiodic, or even

defined only over a finite timespan, as discussed in chapter 5.

Typical dynamics of the ψi is shown for the three regions in Fig. 6.2(a). The SS (solid) and SNS

(dotted) are bounded and unbounded, respectively, as mentioned in the previous section. For

the SS (SNS), γ > |∆ω(t)| (γ < |∆ω(t)|) is always met, and hence the LE is negative (zero),

i.e., stable (neutrally stable) at all times, as seen from Eq. (6.12). However, the SIS (dashed)

stays bounded only intermittently. In this example, the timescale that controls the alternation of

those epochs is the period of the imposed modulation, Tm = 2π/ωm, which could be arbitrarily

long. Note that these epochs of growth are not the typical 2π phase slips of the fixed-frequency

single oscillator case [127], observed close to the synchronisation border. Here, the “slip” is a drift

caused by the temporary neutral stability, and its relative importance depends on the length of

that neutrally stable epoch, as seen from Fig. 6.2(b).

Now, the SIS is analysed further as shown in Fig. 6.2(b)-(d). Figure 6.2 (b) shows the adiabatic

LE (dashed black) (6.12). Epochs where it is negative (null) correspond to the ψi growing (staying

bounded). Moreover, Fig. 6.2 (b) shows the agreement between the instantaneous LE (6.7) (grey)

and the adiabatic LE (6.12). This confirms a posteriori the adequacy of the adiabatic approach.

The intermittency can also be seen in the time-frequency representation of sin θ1(t) for a trajectory

of system (6.1), as shown in Fig. 6.2(c). Here, stability epochs correspond to the frequency being

entrained by the driver (one frequency mode), whereas neutral stability epochs correspond to the

presence of two frequency modes plus harmonics. Finally, a negative maximum LE guarantees

convergence of different initial conditions, as long as they are in the basin of attraction of the

synchronous solution, even if the trajectory is only intermittently synchronised to the driving.

This is illustrated in Fig. 6.2(d).
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Figure 6.2.: Finite-time dynamics and stability, in the attractive case D < 0. (a) Typical
dynamics of the phase difference ψi in the three regimes: synchronised (solid, γ = 3),
intermittently synchronised (dashed, γ = 2), and not synchronised (dotted, γ = 1).
Panels (b)-(d) only consider the intermittently synchronised trajectory. (b) Instantaneous
stability, measured by the instantaneous LE (grey) given by Eq. (6.8) and the adiabatic
approach (dashed black) of Eq. (6.12). The average LE, as defined in Eq. (6.13) is negative
(dotted red). (c) Time-frequency representation computed applying continuous Morlet
wavelet transform with central frequency 3 to the signal y(t) = sin θ1(t). Epochs of
boundedness (drift) ψi correspond to negative (zero) λ(t), and (no) frequency entrainment
in (c) (respectively). (d) Convergence of two different initial conditions, in red and black,
respectively, in the intermittent synchronisation regime. Each initial condition is a quasi-
synchronous N -dimensional state. Each state first quickly becomes synchronous, and then
converges to the synchronised solution. Other parameters are N = 20, D = −0.5, k = 0.4,
∆ω = 2, ω0 = 1. (e) Network used for the numerics: random with connection probability
p = 0.5 and ΛN = −15.9. Note that the results do not depend on the network considered.

Note that all other non-maximal LEs of the spectrum are negative at all time, λi(t) < 0, for

i = 2, . . . , N , since the corresponding Laplacian eigenvalues are negative. The exponent λ1

measures the stability against a homogeneous perturbation, whereas the rest of the spectrum

corresponds to any heterogeneous perturbation. In other words, any synchronous solution will
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6. Stability in network of identical oscillators

stay synchronous – all oscillators with the same phase – against any perturbation. During stable

epochs, even the common phase of the synchronous state is stable. During neutrally stable

epochs, however, the common phase of the synchronous solution can be pushed by a homogeneous

perturbation, and change without the perturbation decaying or growing.
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Figure 6.3.: Stability region increases with amplitude of nonautonomicity k, in the
attractive case D < 0. (a)-(c) Quantitative stability measured by the LE of formula (6.13):
the region of stability (shades of blue) increases with k. Gray values represent zero values
of the LE. (d) Same LE values as in (a)-(c), shown only for γ = 2.5, for the different k
values: 0.0 (solid), 0.4 (dashed), and 0.8 (dotted). The range of ∆ω for which λmax < 0
increases with k. Parameters are D = −0.5, w0 = 2. This picture holds true for any
network topology.

On average, over a time T , the maximum exponent is

λmax = 1
T

∫ T

0
dt λmax(t) ≤ 0. (6.13)

Note that the LE in Eq. (6.13) is strictly zero only in region I where the system does not

synchronise to the driving at any time. Indeed, in region III, the adiabatic LE alternates between

zero and negative values, and is negative on average. Moreover, region I decreases in size as k is

increased, and so the remainder of parameter space, corresponding to stability λmax < 0, grows.

In other words, by increasing the amplitude of the nonautonomous modulation, one makes the

region of stability larger in parameter space. In this region of stability, different initial conditions

converge to one unique trajectory. In Fig. 6.3, panels (a)-(c) show the enlargement of the negative

LE region in parameter space as k increases from 0.0 to 0.4, and 0.8. Panel (d) combines and

shows those LE values for all three values of k, but for a single value of the forcing strength

γ = 2.5. The region of stability is the union of regions II and III. Region II, where trajectories are

always synchronised to the driving, decreases in size as k is increased, but region III grows enough

so that their union grows. The phenomenon does not depend on the explicit form of f(ωmt) and

was also illustrated numerically, in the single driven oscillator case, for different aperiodic f(ωmt)

in chapter 4, and f(ωmt) defined over a finite time in chapter 5.
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6. Stability in network of identical oscillators

6.4.2. Repulsive case

In this case, D > 0, all oscillators have a tendency towards pairwise asynchrony, when not

driven. In the unforced network, the synchronous solution is always unstable, but if forced,

the synchronous solution can be stable or unstable. The largest adiabatic LE, in this case

λmax(t) = λN (t) corresponding to ΛN < 0 in formula (6.11), is given by

λmax(t) =


−DΛN −

√
γ2 −∆ω(t)2 for t : γ > |∆ω(t)|,

−DΛN > 0 else.
(6.14)

Firstly, when the driving strength is not large enough, i.e., γ < |∆ω(t)|, synchronous solutions

are unstable – i.e., always for the SNS and during the non-synchronised epochs for the SIS. This

is in contrast with the attractive case, which exhibited neutral stability under the same condition.

Secondly, when γ > |∆ω(t)|, two effects compete: the network couplings push oscillators away

from each other (positive first term) whereas the external driving brings them back towards a

synchronous state (negative second term). This is again in contrast with the attractive case,

which only exhibits stability under the same condition. Those two effects exactly compensate

each other if

γ =
√

(DΛN )2 + ∆ω2(t), (6.15)

which has a minimum when ∆ω = 0 at γ = −DΛN . This is shown for the autonomous case k = 0

in Fig. 6.4(a) (dashed white).
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Figure 6.4.: Stability region decreases with ΛN , i.e. with largest degree of connectivity,
in the repulsive, D > 0, autonomous, k = 0, case. (a) Theoretical qualitative regions.
Region I: no synchronisation (light grey). Region IIa: synchronisation unstable (dark grey
vertically hatched). Region IIb: synchronisation stable (dark grey horizontally hatched).
(b)-(d) Quantitative stability measured by the LE: the region of stability IIb (shades of
blue) decreases with ΛN , while the region of instability IIa (shades of red) increases. White
values represent zero values of the LE. Above each panel, an example network that has the
corresponding value of ΛN is shown. Parameters are D = 0.5, w0 = 2.

In the autonomous case, k = 0, the frequency mismatch is constant in time. Hence, condition (6.15)

divides region II into two subregions based on stability: regions IIa (IIb) where the SS is unstable
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Figure 6.5.: Control of the stability by
cutting a few chosen links, in the repul-
sive case D > 0. (a), (c) Trajectory of a
synchronous synchronised initial condition
of the phase difference ψi, in (b), (d) the
corresponding network, respectively. In
the initial network (b), the synchronous
state is unstable (a). By cutting a few
chosen links (red), in the new network (d),
the synchronous state is made stable (c).
The initial network is a Barabási-Albert
with N = 30, and 5 links are cut. Other
parameters are D = 0.5, γ = 6.5, ∆ω = 2,
ω0 = 1, k = 0.

(stable) corresponding to γ values smaller (larger) than that of condition (6.15). The regions are

shown in parameter space in Fig. 6.4(a), and are confirmed by the computation of the λmax, as

shown Fig. 6.4(b)-(d) for different values of ΛN . As the largest-magnitude eigenvalue ΛN of the

Laplacian, or alternatively the network coupling strength D, is increased, the region of negative

λmax decreases in size.

This observation can be used as a viable control strategy. Indeed, note that the eigenvalues of

the Laplacian, and in particular ΛN , are determined by the topology of the network considered.

Moreover, the inequality |ΛN | ≤ 2Kmax holds, where Kmax is the number of connections of the

most connected node [2]. In other words, the stability of the dynamics is directly determined

by the topology, and in particular by the connectivity of the most connected node. Here, in

the repulsive case, more connections between nodes, and in particular to the most connected

one, means less stability. So then, one can optimally decrease the absolute value of ΛN – or

equivalently increase the region of stability – by cutting the edges of the most central node, which

in turn amounts to reducing Kmax. This is illustrated in Fig. 6.5 where the SS is stabilised by

cutting only 5 chosen links (red) out of 81 (≈ 6%). The original network is a Barabási-Albert one

[see Fig. 6.5(b)] 1, for which this strategy is most effective, since only a few nodes have very high

connectivity.

As a by-product of the analysis, in region IIa, we numerically observed partially-locked states [74],

or chimera-like states [82, 114], where most of the oscillators are phase-locked to the driving in a

quasi-synchronous cluster, while the rest of the oscillators drift independently. Such dynamics is

illustrated in Fig. 6.6.

In general, in the nonautonomous case, k 6= 0, an additional type of intermittent synchronisation

can be exhibited, which here alternates between stability and instability. That is, the adiabatic

1The network topology was created with the Python function barabasi_albert_graph(N, m) from the
NetworkX package [51], with N = 30 the total number of nodes, and m = 3 the number of nodes
added.
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Figure 6.6.: Chimera-like behaviour: mix between synchronised and drifting oscillators.
The network used is random with connexion probability p = 0.5. Other parameters are
D = 0.5, γ = 4.6, ∆ω = 2, ω0 = 2, k = 0.

LE for the synchronous solutions alternates between negative and positive values. This happens

in a new region IIc which, as k is made progressively larger than 0, appears at the border between

regions IIa and IIb and subsequently grows, as illustrated in Fig. 6.7(a) in squared grey hatch.

Region IIc can be defined as all pairs (γ,∆ω) such that γ is greater than the value of condition (6.15)

at certain times and smaller at others. Equivalently, it is {(γ,∆ω) : ∃ t : γ =
√

(DΛN )2 + ∆ω2(t)}.

The region is constant in time, and the explicit form of its boundaries is uninformative and is

hence omitted here. In region IIc, the long-term LE can be either positive or negative. For small

enough values of the coupling strength D, the region of negative LE increases with k, just as in

the attractive case of Sec. 6.4.1. This effect can be achieved for relatively small values of the

coupling strength D.

4 0 4
0

2

4

D N

2 0k

(a)
4 0 4

(b)

N = 4

4 0 4

0

1

2

m
ax D N

(c)

k = 0.0
k = 0.3
k = 0.6

2

0

2

Figure 6.7.: Stability regions, in the repulsive, D > 0, nonautonomous, k = 3, case.
(a) Theoretical qualitative regions. Birth of region IIc (square hatch), where the SS is
alternates between stability and instability. Other regions are I (light grey) and III (medium
grey) [see Fig. 6.3], and IIa (vertical hatch) and IIb (horizontal hatch) [see Fig. 6.4]. (b)
Quantitative stability measured by the LE. White values represent zero values of the LE.
(c) LE for a fixed γ = 2.5 and different values of k. Other parameters are D = 0.5, w0 = 1.

However, while alternation between neutral stability and stability guaranteed overall stability

and convergence in the previous section, alternation between stability and instability does not.

Here, in region IIc, for a synchronous initial condition, a negative LE associated to its trajectory

does not guarantee the state will stay synchronous and converge to the SS solution, as shown

in Fig. 6.8(b). Indeed, during epochs of instability, any perturbation can push the state far
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Figure 6.8.: Control strategy: fully synchronous state enforced intermittently by nonau-
tonomous driving. Trajectory of a synchronous initial condition for N = 20 oscillators for
(a) constant and (b) modulated driving frequency. (a) Synchronous solution is unstable
and yields patterns. (b) Time-variability of the driving forces state to be synchronous
intermittently. Other parameters are D = 0.5, γ = 4.6, ∆ω = 2, ω0 = 2. Network used is
random with p = 0.2 and ΛN = −8.68.

away from its original synchronous solution exponentially fast. However, if no other attractor

exists during the epochs of stability, then the system will return to the synchronised synchronous

state when the next epoch of stability occurs. Thus it alternates between the two regimes, as

shown numerically in Fig. 6.8(b). This effect is purely due to the time-variability of the driving,

controlled by k. Moreover, there is subregion in parameter space which is unstable (region IIa)

when k = 0, but turns intermittently stable (region IIc) for k > 0. This can be used as a control

strategy as illustrated in Fig. 6.8: one forces a completely incoherent state [panel (a)] to be

synchronous and synchronised indefinitely often and long, by allowing time-variability in the

driving frequency. Thus, time-variability can also be used to counter-balance the desynchronising

effect which is produced by a highly connected network, as shown in Fig. 6.5. Finally, this strategy

can be useful when the requirement for synchronicity are not so stringent and the system under

inspection does not need to be synchronous at all times.

6.5. Summary

In this chapter, we studied the effect of driving an arbitrary network of identical phase oscillators

with an external time-varying-frequency oscillator, extending the work of chapter 4. This is in

contrast with previous studies of forced networks, which do not consider time-variability, a crucial

ingredient in real-world systems. Stability – both short- and long-term – of the synchronous

solutions was assessed by linear stability analysis, and results were confirmed via numerical

simulations. The system studied is nonautonomous and hard to treat in general, hence we

assumed slow time-variability. Two cases were treated: attractive and repulsive couplings, where

oscillators tend to be in phase and out of phase, respectively.
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6. Stability in network of identical oscillators

In the attractive case, we showed that increasing the amplitude k of the frequency modulation

enlarged the stability region in parameter space, as defined by a negative Lyapunov exponent. In

other words, a more variable driving makes the stability of synchronous behaviour more robust

against parameter changes. This is the direct generalisation to networks of the result that was

obtained for a single driven oscillator in chapter 4. An additional region of intermittency between

stability and neutral stability appears, as a result of the time-variability in the frequency.

In the repulsive case, we first demonstrated a control strategy, where the synchronous solution

can be made stable by cutting a few chosen links in the network. Moreover, we established the

phase diagram of the synchronous solutions. We then showed that one could counter-balance

the desynchronising effect of connectivity by allowing time-variability in the driving frequency.

Indeed, we showed that the time-variability of the frequency can drive the system back to a

synchronous state intermittently, where it was asynchronous with a fixed-frequency driving. This

observation can serve as an alternative control protocol. Finally, as a by-product of the analysis,

we numerically observed chimera-like states.

Dynamics of the phase and frequency is illustrated in detail in the different cases. Such classification

can potentially be of use to experimentalists who can only measure phase and frequency, and

may have only limited or no knowledge of an external driving. Moreover, we illustrated diverse

and simple control strategies to enhance synchronisability that could explain how living systems

maintain stability in a changing environment, and could also be implemented directly.

Finally, many of the interesting and physically relevant features observed in this system were either

happening over finite time, or explained by the finite-time analysis of dynamics. Consequently, a

solely asymptotic analysis would have missed much of the dynamical intricacies at hand. From

this, we conclude that nonautonomous networks of coupled oscillators, such as the present one,

exhibit features reminiscent of those observed in living systems, and that a finite-time approach

is crucial to their understanding.

In the next chapter, the nonautonomicity of the system comes from the evolving network topology,

and we show how such plasticity can lead to desynchronisation and oscillation death.
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Time-varying network topology
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7. Desynchronisation in network with

fast-varying couplings

7.1. Introduction

As argued in chapter 1, natural and artificial systems are often composed of individual oscillatory

units, coupled together so as to yield complex collective dynamics [46, 81, 109, 127, 146]. Weak

coupling of nonlinear oscillators leads to synchronisation [127], a condition of utmost coordination

which is eventually met when the parts of a system operate in unison. In the last decade, the

emphasis being primarily placed on the pivotal role exerted by the – fixed – topology of the graph

that shapes the underlying couplings [5, 15].

At the other extreme entirely, when the coupling strength is made to increase, oscillations may go

extinct. Oscillation death is observed in particular when an initially synchronised state evolves

towards an asymptotic inhomogeneous steady configuration [25, 60, 103, 169], in response to an

externally injected perturbation [78]. The ability of disrupting synchronous oscillation may prove

to be relevant for e.g. neuroscience applications. It could be in fact exploited as a dynamical

regulator [13, 71, 79], to oppose pathological neuronal states that are found to consistently emerge

in Alzheimer and Parkinson diseases

In this chapter, we investigate the role of time-variability on synchronisation from a different angle

from previous chapters: that of an evolving network topology, as opposed to previous chapters

which considered time-variability in the driving frequency. Moreover, here, the variation is chosen

to be fast compared to the nonlinear dynamics on each node. In a recent Letter [119], the process

of pattern formation for a multispecies model anchored on a time-varying network was analysed. It

was in particular shown that a homogeneous stable fixed point can turn unstable, upon injection of

a non-homogeneous perturbation, via a symmetry breaking instability which is reminiscent of the

Turing mechanism [159], but solely instigated by the intrinsic network dynamics. Starting from

these premises, the aim of this chapter is to extend the theory presented in [119] to the relevant

setting where the unperturbed homogeneous solution typifies as a collection of synchronised
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7. Desynchronisation in network with fast-varying couplings

limit-cycles. In other words, we analyse how the synchrony of a large population of nonlinear,

diffusively coupled oscillators may be disrupted by network plasticity. Surprisingly, oscillation

death can be induced by a piecewise constant time-varying network, also when synchrony is

guaranteed on each isolated network snapshot. Our analysis provides a solid theoretical backup

to the work of [148], where the oscillation death phenomenon is numerically observed on fast

time-varying networks.

7.2. Model

Consider two different species living on a network that evolves over time and denote by xi and yi

their respective concentrations, as seen on node i. The structural properties of the (symmetric)

network are stored in a time-varying N × N weighted adjacency matrix Aij(t). For the ease

of calculation, we will hereafter assume N constant. As in the previous chapter, the Laplacian

matrix is denoted by L and its elements read Lij(t) = Aij(t)−Ki(t)δij , where Ki(t) =
∑
j Aij(t)

stands for the connectivity of node i, at time t. The coupled dynamics of xi and yi, for i = 1, ..., N ,

is assumed to be ruled by the following, rather general equations

ẋi = f(xi, yi) +Dx

N∑
j=1

Lij(t/ε)xj ,

ẏi = g(xi, yi) +Dy

N∑
j=1

Lij(t/ε)yj ,

(7.1)

where Dx and Dy are appropriate coupling parameters. Here, f and g are nonlinear reaction

terms, chosen so that system (7.1) exhibits a homogeneous stable solution (xi, yi) ≡ (x̄(t), ȳ(t))

∀i which is periodic of period T . To state it differently, when Dx = Dy = 0, the above system

is equivalent to N identical replicas of a two dimensional deterministic model, which displays

a stable limit-cycle. For Dx 6= 0 6= Dy, there exists a homogeneous time-dependent solution,

i.e. one in which all oscillators of the network rotate with the same phase. This homogeneous

solution corresponds to the synchronised regime that of which we shall investigate the stability.

The parameter ε controls the timescale of the Laplacian dynamics. We will specifically inspect

the case of a network that is periodically rearranged in time and denote with Ts the period

of the network modulation, as obtained for ε = 1. By operating in this context, we will show

that synchronisation can be eventually lost when forcing ε below a critical threshold. When

successive swaps between two static network configurations are considered over one period Ts (as

it is the case in the example addressed in the second part of the chapter), ε sets the frequency of

the blinking. The extension to non-periodic settings is straightforward, as discussed in details

in [119].
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Synchronisation in fast blinking networks has been investigated in the special case of small-world

networks [16]. They showed that the blinking network provides more reliable synchronisation

than its static small-world counterpart. The focus of that study was to obtain rigorous bounds

on the coupling strength to obtain synchronisation, whereas in this chapter we show that time-

variability can induce instability, and our results hold for any kind of network, with an arbitrary

time-variability of the topology.

7.3. Theoretical analysis

To proceed with the analysis we compactify the notation by introducing the 2N -dimensional

vector x = (x1, . . . , xN , y1, . . . , yN )>. The dynamics of the system can be hence cast in the

form

ẋ = F(x) + L(t/ε)x, (7.2)

where F(x) = (f(x1, y1), . . . , f(xN , yN ), g(x1, y1), . . . , g(xN , yN ))> and the 2N × 2N block diag-

onal matrix L reads

L(t) =

 Dx L(t) 0

0 Dy L(t)

 . (7.3)

As mentioned above, the nonlinear reaction terms, now stored in matrix F , are chosen so as to

have a stable limit-cycle in the uncoupled setting Dx = Dy = 0.

7.3.1. Floquet theory

The stability of the limit-cycle (x̄(t), ȳ(t)) can be assessed by means of a straightforward application

of the Floquet theory [132]. To this end, we focus on the two dimensional system obtained in

the uncoupled limit and introduce a perturbation of the time-dependent equilibrium, namely

δx = (x−x̄, y−ȳ)>. Linearising the governing equation yields δẋ = J (t)δx, where J (t) = ∂xF(x)

is periodic of period T . Let us label with Φ(t) a fundamental matrix of the system. Then, for all

t, there exists a non-singular, constant matrix B such that:

Φ(t+ T ) = Φ(t)B. (7.4)

Moreover, det B = exp
[∫ T

0 trJ (t) dt
]
. The matrix B depends in general on the choice of the

fundamental matrix Φ(t). Its eigenvalues, ρi with i = 1, 2, however, do not. These are called the

Floquet multipliers and yield the Floquet exponents, defined as µi = T−1 ln ρi. Solutions of the
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examined linear system can then be written:

x(t) = a1p1(t)eµ1t + a2p2(t)eµ2t, (7.5)

where the pi(t) functions are T -periodic, and ai are constant coefficients set by the initial

conditions. When the system is linearised about limit-cycles arising from first-order equations,

one of the Floquet exponents is identically equal to zero, µ1 = 0. The latter is associated with

perturbations along the longitudinal direction of the limit-cycle: these perturbations are neither

amplified nor damped as the motion progresses. The other exponent, µ2 takes instead negative

real values, if the limit-cycle is stable, meaning that perturbations in the transverse direction are

bound to decay in time.

7.3.2. Partial averaging theorem

We now turn to discussing the original system (7.2). The reaction parameters are set to yield

a stable limit-cycle for Dx = Dy = 0. Furthermore, we assume the oscillators to be initially

synchronised, with no relative dephasing. We then apply a small, non-homogeneous, hence

node-dependent perturbation and set to explore the conditions which can yield a symmetry

breaking instability of the synchronised regime, from which the oscillation death phenomenon

might eventually emerge. We are in particular interested in investigating the role played by the

nonautonomous network dynamics in inducing the aforementioned instability. Introduce a small

inhomogeneous perturbation around the synchronous solution δx = (x1 − x̄, . . . , xN − x̄, y1 −

ȳ, . . . , yN − ȳ)>, and linearise the governing equation (7.2) so as to yield

δẋ = [J (t) + L(t/ε)]δx. (7.6)

This is a nonautonomous equation, and it is difficult to treat it analytically [72], owing in particular

to the simultaneous presence of different periods. To overcome this limitation, and gain analytical

insight into the problem under scrutiny, we introduce the averaged Laplacian 〈L〉 = 1/Ts
∫ Ts

0 L dt

and define the following system

ẏ = F(y) + 〈L〉y. (7.7)

As we will rigorously show in the following, the stability of the synchronous solution of system

(7.2) is eventually amenable to that of system (7.7). Stated differently, assume that an external

non-homogeneous perturbation can trigger an instability in system (7.7). Then, ε∗ exists such that

the original system (7.2) is also unstable for 0 < ε < ε∗. In other words, by setting ε sufficiently

small, and thus forcing a high frequency modulation of the network Laplacian, one can yield a
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loss of stability of the synchronous solution. Oscillation death can eventually emerge as a possible

stationary stable attractor of the ensuing dynamics, promoted by the inherent ability of the

network to adjust in time.

As a first step towards proving the results, we shall rescale time as τ = t/ε. Eq. (7.6) can be

hence cast in the equivalent form

δx′ = ε[J (ετ) + L(τ)]δx, (7.8)

where the prime denotes the derivative with respect to the new time variable τ . The partially

averaged version of (7.8) [or alternatively the linear version of system (7.7), after time rescaling],

reads δy′ = ε[J (ετ) + 〈L〉]δy. In the following, we will show that δy(t)− δx(t) ∈ O(ε) for up to a

time τ ∈ O(1/ε), provided that δy(0) = δx(0) and for ε < ε∗. This conclusion builds on a theorem

that we shall prove hereafter in its full generality, and which extends the realm of applicability of

the usual averaging theorem. Denote x ∈ Rd, and consider the following equation

ẋ = εf1(x, εt) + εf2(x, t), (7.9)

where f1(x, t) is T -periodic in t, and f2(x, t) is Ts-periodic in t. Notice that f1(x, εt) is T/ε-periodic.

It is assumed that f1 and f2 and their derivative are well behaved Lipschitz-continuous functions.

Observe incidentally that Eq. (7.8) is recovered by replacing t 7→ τ , x 7→ δx, f1(x, εt) 7→ J (ετ)δx,

f2(x, t) 7→ L(τ)δx, and d = 2N .

The standard version of the averaging theorem [162] requires dealing with periodic functions,

whose periods are independent of ε. This is obviously not the case for f1( · , εt). To bypass this

technical obstacle, we will adapt the proof in [162] to yield an alternative formulation of the

theorem which allows for partial averaging to be performed. Define

u(x, t) =
∫ t

0
ds [f2(x, s)− 〈f2〉], (7.10)

where 〈f2〉 = 1/Ts
∫ Ts

0 f2(x, t) dt is the average of f2 over its period. Introduce then the near-

identity transformation

x(t) = z(t) + εu(z(t), t), (7.11)

which yields

ẋ = ż + ε
∂u

∂z ż + ε
∂u

∂t
. (7.12)

Moreover, ∂u/∂t (z, t) = f2(z, t) − 〈f2〉 by definition of u, see Eq. (7.10). Then making use of
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Eq. (7.9), it is straightforward to get

≡Γ︷ ︸︸ ︷[
1 + ε

∂u

∂z

]
ż = ε [f1(z + εu, εt) + f2(z + εu, t)− f2(z, t) + 〈f2〉] ,

(7.13)

Invoking the Lipschitz-continuity of f2 and the boundedness of u yields

||f2(z + εu, εt)− f2(z, εt)|| ≤ Lε||u(z, εt)||,

≤ LεM,

(7.14)

where L and M are positive constants. Hence

Γż = εf1(z + εu, εt) + ε〈f2〉+O(ε2),

' εf1(z, εt) + ε〈f2〉.
(7.15)

We do not know in general if Γ is invertible, but the identity is and, by continuity, so is any

matrix sufficiently close to it. Hence, there exists a critical value ε∗ � 1 such that Γ is invertible,

if 0 < ε < ε∗. We provide later on a self-consistent estimate for the critical threshold ε∗. Up to

order O(ε), we have

Γ−1 '
[
1− ε ∂u

∂z

]
. (7.16)

Hence finally,

ż ' ε [f1(z, εt) + 〈f2〉]. (7.17)

In conclusion, system (7.9) behaves like its partially averaged version (7.17), for times which grow

like 1/ε, when ε is made progressively smaller. Back to the examined model, system (7.8) stays

thus close to its partially averaged version

δy′ = ε[J (ετ) + 〈L〉]δy, (7.18)

which, in terms of the original timescale t amounts to

δẏ =M(t)δy, (7.19)

whereM(t) = J (t) + 〈L〉 is a T -periodic 2N × 2N matrix. It is worth emphasising that systems

(7.2) and (7.19) agree on times O(1), owing to the definition of the variable τ . Imagine conditions

are set so that an externally imposed, non-homogeneous perturbation may disrupt the synchronous

regime, as stemming from Eq. (7.19). Then, the same holds when the perturbation is made to

act on system (7.2), the target of our analysis. The onset of instability of (7.2) can be hence

rigorously assessed by direct inspection of its partially averaged counterpart (7.7), which yields the
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linear problem (7.19). Patterns established at late times can be however different, the agreement

between the two systems being solely established at short times.

7.3.3. Projection onto eigenbasis

System (7.19) can be conveniently studied by expanding the perturbation on the basis of the

average Laplacian operator, 〈L〉 = 1/Ts
∫ Ts

0 L dt 1. Introduce φ(α), such that
∑N
j=1〈L〉ijφ

(α)
j =

Λαφ(α)
i , where Λα stands for the eigenvalues of 〈L〉 and α = 1, . . . , N . Note that the eigenvectors

are time-independent, as the averaged network (hence, the Laplacian) is. Write then δxi(t) =∑N
α=1 c

x
α(t)φ(α)

i and δyi(t) =
∑N
α=1 c

y
α(t)φ(α)

i , where cxα and cyα encode the time-evolution of the

linear system [11, 12, 103]. Plugging the above ansatz into equation (7.19) yields the following

consistency condition:

ċα = Mα(t)cα, (7.20)

where cα = (cxα, cyα)>, and

Mα(t) = J(t) + Λα

 Dx 0

0 Dy

 . (7.21)

The fate of the perturbation is determined upon solving the above 2 × 2 linear system, for

each Λα. To this end, remark that Mα is periodic, with period T , ∀α. Solving system (7.20)

amounts therefore to computing the Floquet exponents µ(α)
1 and µ(α)

2 , for α = 1, . . . , N . The

dispersion relation is obtained by selecting the largest real part of µ(α)
i , i = 1, 2, at fixed α [25].

For undirected networks (Aij = Aji), the Laplacian is symmetric and the Λα are real and

non-positive 2. For α = 1 the largest Floquet multiplier is zero, since the model displays a stable

limit-cycle in its uncoupled version (Λ1 = 0). We then sort the indices (α) in decreasing order of

the eigenvalues, so that the condition 0 = Λ1 ≥ Λ2 ≥ ... ≥ ΛN holds. If the dispersion relation is

negative ∀ Λα with α > 1, the imposed perturbation fades away exponentially: the synchronous

solution is therefore recovered, for both the average system (7.19), and its original analogue, in

light of the above analysis, and for all ε. Conversely, if the dispersion relation takes positive

values for some Λα value belonging the Laplacian eigenvalue spectrum for the given network,

then the perturbation grows exponentially in time, for ε smaller than a critical threshold. The

initial synchrony for the original system (7.2) is hence lost and patterns may emerge.

1The diagonalisability of the Laplacian matrix is a minimal requirement for the analytical treatment to
hold true. This condition is trivially met when the network of couplings is assumed symmetric, as in
the example worked out in the following.

2This condition needs to be relaxed when dealing with directed graphs. The general philosophy of the
calculation remains however unchanged, at the price of some technical complication as discussed
in [12].
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7. Desynchronisation in network with fast-varying couplings

7.4. Theoretical example and numerical results

To clarify the conclusion reached above, we shall hereafter consider an example, borrowed

from [119].

7.4.1. Node dynamics

We introduce the Brusselator model, a universally accepted theoretical system for exploring the

dynamics of autocatalytic reactions. This implies selecting f(x, y) = 1 − (b + 1)x + cx2y and

g(x, y) = bx− cx2y, where b and c stand for free parameters. For b > c+ 1, the Brusselator model

displays a limit-cycle.

7.4.2. Network topology and dynamics

Following [119], we then consider two networks, made of an even number, N , of nodes arranged

on a periodic ring, and label their associated adjacency matrices A1 and A2, respectively. Nodes

are connected in pairs, via symmetric edges. When it comes to the network encoded in A1, the

couples are formed by the nodes labelled with the indexes 2k − 1 and 2k for k = 1, 2, ..., N/2

[see panel (a) in Fig. 7.1]. The network specified via the adjacency matrix A2 links nodes 2k

and 2k + 1, with the addition of nodes 1 and N [as depicted in panel (a) in Fig. 7.1]. Both

networks return an identical Laplacian spectrum, namely two degenerate eigenvalues Λ1 = 0

and ΛN = −2, with multiplicity N/2. The parameters of the Brusselator are set so that the

synchronised solution is stable on each network, taken independently. This is illustrated in panel

(c) of Fig. 7.1, where the corresponding dispersion relation (largest real part of the Floquet

multipliers vs. −Λα) is plotted with black star symbols. Introduce now the time-varying network,

specified by the adjacency matrix A(t), defined as:

A(t) =


A1 if mod (t, Ts) ∈ [0, η[,

A2 if mod (t, Ts) ∈ [η, 1[,
(7.22)

where η (resp. 1− η) is the fraction of Ts that the network spends in the configuration specified

by the adjacency matrix A1 (resp. A2). The average network is hence characterised by the

adjacency matrix 〈A〉 = ηA1 + (1− η)A2, see panel (b) in Fig. 7.1.
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7.4.3. Numerical results

We then set to consider the stability of the synchronised state in presence of a time-varying

network, and resort to its static, averaged counterpart. The average network Laplacian has many

more distinct eigenvalues, and these latter fall in a region where the largest real part of the Floquet

exponents is positive, as can be appreciated in Fig. 7.1, panel (c), thus signalling the instability.

The solid line stands for the dispersion relation that is eventually recovered when the couplings

among oscillators extends on a continuum support and the algebraic Laplacian is replaced by

the usual second order differential operator [25, 103]. Since the dynamics hosted on the average

network is unstable, the synchrony of the homogeneous state can be broken on the time-varying

setting, by properly modulating ε below a critical threshold. This amounts in turn to imposing a

fast switching between the two network snapshots, as introduced above. In Fig. 7.1, panel (d), the

asymptotic pattern as displayed on a time-varying network, for a sufficiently small ε is depicted.

The nodes of the network are coloured with an appropriate code chosen so as to reflect the

asymptotic value of the density displayed by the activator species x. A clear pattern is observed

which testifies on the heterogeneous nature of the density distribution, following the symmetry

breaking instability seeded by the inherent network dynamics. Interestingly, the equilibrium

density, as displayed on each node of the collection, converges to a constant: synchronous

oscillations, which define the initial homogeneous state, are self-consistently damped to yield a

stationary stable, heterogeneous distribution of the concentrations. This is the oscillation death

phenomenon to which we made reference above. For the sake of clarity, this effect has been here

illustrated with reference to a specific case study, engineered so as to allow for an immediate

understanding of the key mechanism. The result reported holds however in general and apply to

other realms of investigation where time-varying network topology and nonlinear reaction terms

are more complex.

To shed further light onto the dynamics of the system, we introduce the macroscopic indicator

S(ε, t) = 1
N
‖x(t)− x̄(t)‖2, (7.23)

where x̄(t) = (x̄, . . . , x̄, ȳ, . . . , ȳ). S(ε, t) enables us to quantify the, time-dependent, cumulative

deviation between individual oscillators trajectories, and the homogeneous synchronised solution.

S(ε, t) will rapidly converge to zero, if the synchronous state is stable. Conversely, it will take

non zero, positive values, when the imposed perturbation destroys the initial synchrony. To

favour an immediate reading of the output quantities, we set to measure 〈S〉, the average of

S(ε, t), on one cycle Ts. In formulae, 〈S〉 = T−1
s

∫ t+Ts
t

S(ε, u) du, where t is larger than the

typical relaxation time (transient). In Fig. 7.2, main panel, 〈S〉 is plotted against ε, normalised

to the value it takes in the limit ε → 0, for a choice of the parameter that corresponds to the
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Figure 7.1.: Instability in time-varying networks. (a) Dynamics of A(t), as obtained by
alternating two static networks with adjacency matrices A1 and A2 (see main text for a
detail account of the imposed couplings), over a cycle of time duration Ts. Each network in
this illustrative example is made of N = 6 nodes. (b) The associated time-averaged network
〈A〉 = ηA1 + (1 − η)A2. (c) Dispersion relation (max (Re µα) against −Λα) obtained
by assuming (i) the averaged network 〈A〉 (red circles), (ii) each static network (black
stars) and (iii) the continuous support case (black curve). The networks are generated
according to the procedure discussed in Secs. 7.4.1 and 7.4.2, but assuming now N = 50.
Other parameters are set to b = 4.5, c = 2.5, Dx = 2, Dy = 20, Ts = 1, and η = 0.3.
(d) Asymptotic, stationary stable patterns, obtained for ε = 0.1 < ε∗. Shades of grey
represent the value of the x variable.

dispersion relation depicted in Fig. 7.1. A clear, almost abrupt, transition is seen, for ε∗ ' 0.25,

in qualitative agreement with the above discussed scenario. For ε < ε∗, the oscillation are turned

into a stationary stable pattern, as displayed in the annexed panel. By monitoring S(ε, t) for

a choice of ε below the critical threshold, one observes regular oscillations that can be traced

back to the term x̄ in equation (7.23). At variance, synchronous oscillations prove robust to

external perturbation when ε > ε∗: the order parameter S(ε, t) is identically equal to zero, the

two contributions in the argument of the sum on the right hand side of equation (7.23) cancelling

mutually.

To conclude the analysis, we will provide an approximate theoretical estimate of the critical

threshold ε. The proof of the partial averaging theorem, as outlined above, assumes an invertible

change of coordinates. It is therefore reasonable to quantify ε∗ by determining the range ε for
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Figure 7.2.: Critical threshold ε∗. Average pattern amplitude, 〈S〉, as a function of
ε, normalised to the amplitude of the pattern referred to the averaged network 〈A〉 =
ηA1 + (1− η)A2 (as formally recovered in the limit ε→ 0). Here, N = 50 nodes. Other
parameters are set to b = 4.5, c = 2.5, Dx = 2, Dy = 20, and η = 0.3. (Insets) Dynamics
of x, on each node, over time. Shades of blue represent the value of x. (Left) for ε = 0.1,
the synchronous solution is unstable. After a transient time, oscillation death is seen, and
a heterogeneous pattern develops. (Right) for ε = 0.4, the synchronous solution is stable.
S(ε, t) is also plotted vs. time for the two considered settings.

which the invertibility condition is matched [119]. In formulae:

ε∗ = min{ε > 0 : det Γ(ε) = 0}. (7.24)

Using the block structure of ∂u/∂z =
∫ τ

0 [L(t) − 〈L〉] dt, one gets a more explicit form of the

determinant

det(12N + ε∂u/∂z) = det
(

1N + εDx

∫ τ

0
[L(t)− 〈L〉] dt

)
× det

(
1N + εDy

∫ τ

0
[L(t)− 〈L〉] dt

)
,

(7.25)

which is zero if either of the determinants is zero. A straightforward manipulation yields, for the

inspected network model, the following closed expression:

ε∗ ' 1
Λ12
N η(1− η)T min

[
1
Dx

,
1
Dy

]
, (7.26)

where Λ12
N stands for the maximum eigenvalue (in absolute magnitude) of the operator (L1 −L2),

with L1 and L2 being the Laplacian matrices associated to the static networks as specified by

the adjacency matrices A1 and A2. Performing the calculation returns ε∗ = 0.12, a coarse

approximation of the exact critical value, as determined via direct numerical integration 3.

3As an alternative for computing ε∗, assume T and εTs are commensurable (if not, adjust the value of ε
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Figure 7.3.: Phase diagram for the Brusselator model coupled via time dependent pairwise
exchanges, as illustrated in the caption of Fig. 7.1, with N = 6. The equilibrium solutions
relative to species x are plotted by varying Dy, at fixed Dx = 2. The stability is computed
for the average analogue (7.7) of model (7.1). The horizontal (red, straight) lines refer to
the limit cycle: the maximum and minimum values as attained by the uncoupled oscillators,
over one period, are respectively displayed. Black lines stand for the fixed points. Dashed
lines refer to the unstable solutions, whereas solid lines implies stability. White circles are
obtained from direct simulations of model (7.1) with ε = 0.1 and illustrate the oscillation
death phenomenon, as discussed in the main text. The panel on the right is a zoom of the
lower portion of the main plot. The shaded regions are drawn to guide the reader’s eye
across the different regimes: synchronisation, oscillation death with 3-fixed point pattern,
and oscillation death with 6-fixed point pattern correspond to the region in white, light
grey, and dark grey, respectively. Notice that we chose to display a partial subset of the
complete phase diagram. All stable manifolds are plotted. A limited subset of the existing
unstable branches is instead shown for graphic requirements.

Finally, we shall inspect how the oscillation death phenomenon is influenced by the strength of

the imposed coupling, here exemplified by the constant Dy, which we modulate when freezing Dx

to a nominal value. In Fig. 7.3 different attractors, and their associated stability, are depicted,

for species x, for distinct choices of the control parameter Dy. Here, the Brusselator model

is assumed as the reference reaction scheme; the network of pairwise exchanges (N = 6), as

illustrated in the caption of Fig. 7.1, is employed. The horizontal straight (red) lines refer to the

limit cycle solution, and identify respectively the maximum and minimum value, as attained by

the uncoupled oscillators, over one period. The solid trait marks the stable branch, while the

dashed line is associated to the unstable solution. The bifurcation point is calculated analytically,

from a linear stability analysis carried out for the average system (7.7). Beyond the transition

correspondingly) and define the common period for the reaction and diffusion parts,

Tc = LCM(T, εTs).

Compute the Floquet multipliers for the 2N × 2N system which is periodic with period Tc. Repeating
the above procedure for decreasing values of ε (and making sure T and εTs are still commensurable)
yields the critical ε, i.e. the largest ε for which not all µi’s are negative.
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point, when the homogeneous solution breaks apart, three stable solutions are shown to exist,

corresponding to distinct values of the concentration x. These latter branches protrude inside the

region where synchronous oscillations are predicted to be stable: the unstable manifolds which

delineate the boundaries of the associated basins of attractions are not displayed for graphic

requirements. Open (white) circles follow direct integration of model (7.1). In the simulations, ε

is set to 0.1: the slight discrepancy between predicted and observed value of Dy (at the onset

of the desynchronisation) stems from finite size corrections (the theory formally applies to the

idealised setting ε→ 0). When synchrony is lost, the system evolves towards an asymptotic state

that displays oscillation death: each node is associated to a stationary stable density, which is

correctly explained by resorting to the average model approximation (7.7). Increasing further

the coupling strength Dy, results in a significant complexification of the phase space diagram,

which considerably enrich the zoology of the emerging oscillation death patterns, as displayed in

Fig. 7.3 above the supercritical pitchfork bifurcations.

7.5. Summary

In this chapter, we have considered the synchronous dynamics of a collection of nonlinear self-

sustained oscillators, coupled via a generic graph. Time-variability was considered through a

fast evolving network topology, in contrast with the previous chapters who considered a driving

frequency with a slowly varying frequency. Here, we showed that the plasticity of the underlying

network of couplings, i.e. its inherent ability to adjust in time, may seed an instability which

destroys synchrony. This is in contrast with the general trend of previous chapters, where

time-variability was mostly stabilising the dynamics. The system, endowed with a time-varying

network of interlinked connections, behaves as its (partially) averaged analogue, provided the

network dynamics is sufficiently fast. This result is formally established by proving an extended

version of the celebrated averaging theorem, which allows for partial averages to be performed.

Interestingly, the network driven instability materialises in asymptotic, stationary stable patterns.

These latter are to be regarded as a novel evidence for the oscillation death phenomenon. In the

next and last chapter, we summarise the work in this thesis, draw concluding remarks and outline

possible future work.
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8.1. Summary

The work in this thesis aimed at combining two important ideas: synchronisation phenomena

in coupled oscillator systems, and the fundamental openness of systems in nature, realised

as nonautonomicity. Although synchronisation has been an active field of research in recent

decades, the effect of nonautonomicity has only recently started gaining attention from the physics

community. We believe that the combination of both these ingredients is key to the understanding

of many real-life and man-made systems. Motivated by the modelling and understanding of

living systems, theoretically and from data, this thesis investigated synchronisation and stability

in nonautonomous oscillatory systems. More specifically, networks of coupled oscillators were

studied, with time-varying parameters: either a time-variable driving frequency, or a time-variable

network topology. Can time-variability be detrimental or beneficial to synchronisation? If so, how,

why, and under which conditions? How can one deal mathematically with such nonautonomous

systems, to extract meaningful physical insight? These are some of the questions that this thesis

aimed to answer.

At the start, the theoretical background necessary to the understanding of the rest of the thesis was

introduced. Autonomous and nonautonomous dynamical systems were introduced. Self-sustained

oscillators, which serve as the dynamical base unit of all the thesis, were defined and discussed.

The importance of time-variable but stable dynamics was then highlighted by the presentation of

chronotaxic systems. Then, the concept of stability and its quantitative measures were discussed

in details. Namely, Lyapunov exponents and Floquet exponents were introduced. Different types

of Lyapunov exponents were presented, and served as the basis for a discussion of long-term and

short-term stability. Numerical methods for the calculation of these exponents were presented

and discussed in detail. Subsequently, synchronisation and related concepts were introduced,

and illustrated for two unidirectionally coupled oscillators with fixed frequencies. Then, the

relevant literature was reviewed for synchronisation in networks. Finally, the state of the art in

the literature on the treatment of time-variability in coupled oscillators systems was presented,

and the research questions of the thesis were then presented.
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As a complement to the theoretical background, a quasiperiodically driven oscillator was studied.

To the best of our knowledge, this particular system has not been studied in the literature. The

investigation, mostly using methods known in the literature, led to results similar to those for

similar systems found in the literature. The double Arnold tongue structure was revealed via

the computation of Lyapunov exponents, and subtongues of higher-order synchronisation were

investigated via clustering. The system studied was an example of aperiodic yet with constant

frequencies, and served to illustrate traditional approaches to modelling complex external driving

in the literature, and to motivate the next chapters.

In the next three chapters – namely 4, 5, and 6 – the first main idea of the thesis was investigated:

external driving with time-varying frequency, where the variability is assumed to be slow.

First, the simplest case of a system involving time-varying driving frequency was considered: a

unidirectionally coupled pair of oscillators. This system generalised the canonical synchronising

system consisting of a pair of unidirectionally coupled oscillators with fixed driving frequency.

Moreover, it fills the gap between the latter and its corresponding noisy version. An analytical

and numerical analysis of stability was provided across the parameter space – not only long-term

stability but also short-term stability. This was done by means of Lyapunov exponents, as well as

by the introduction of short-term LEs and by time-frequency analysis. The region of stability

– where the maximum LE is negative – was shown to grow with the strength of the frequency

modulation. This was explained to be caused by the birth of a new region in parameter space of

intermittent synchronisation. A comparison with the noisy setting was also provided.

Second, the same system is considered and generalised to more general dynamics. A formal

mathematical approach is adopted and confirms and generalises the results obtained previously.

More importantly, the example is used to illustrate the mismatch that can exist between a

traditional asymptotic-time analysis and a (long- but) finite-time one. The stabilisation observed

previously is shown to be missed by a strictly asymptotic approach. It is also argued that in

many real-life systems, and especially nonautonomous, a finite-time approach to dynamics is

crucial, and sometimes even the more physically relevant one.

Third, results were generalised to a network of identical phase oscillators driven by a common

time-varying-frequency driving. The stability of the synchronous solution is studied. An analytical

derivation of the Lyapunov exponents – both instantaneous and long-term – is provided and

confirmed by numerical results. Two cases are considered: attractive and repulsive coupling among

the oscillators of the network. In the attractive case, results for the coupled pair of oscillators

immediately generalise to the network: stabilisation via the enlargement of the negative LE

region, and the existence of a regime of intermittent synchronisation, still hold. In the repulsive

case, other phenomena can occur, as the synchronous solution is unstable when undriven. Based
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on the understanding of the role of the topology and the time-variability of the driving frequency,

two control strategies are suggested to stabilise the system.

Finally, the second main idea of the thesis is investigated: nonautonomicity via a time-evolving

network topology. Here, contrary to the previous system, the variability is assumed to be fast.

The stability of the synchronous solution is assessed. In order to do so, a extended version of the

averaging theorem is proved. Then, Floquet theory is applied. It is shown that, with some tuning

of the parameters, time-variability can seed an instability of the synchronous solution and yield

oscillation death.

8.2. Original contributions

The original contributions of this work are listed below:

• It was shown that nonautonomous driving – as opposed to fixed-frequency driving – can

stabilise the system by making the region of stability larger, for a pair of oscillators. See

Figs. 4.2 for phase oscillators and Sec. 4.3 for nonlinear ones.

• The enlargement of stability due to the nonautonomous driving was compared to the case

of synchronisation by noisy perturbation of the periodic driving, and shown former was

shown to exhibit intermittent frequency entrainment contrary to the latter. See Sec. 4.2.5.

• A new regime of intermittent synchronisation was observed and characterised. The stabili-

sation phenomenon was explained by the birth and subsequent growth of the region of this

intermittent regime. See Figs. 4.1 and 4.4.

• The stabilisation phenomenon was then generalised for arbitrary networks of identical phase

oscillators with attractive couplings. Analytical results in terms of LEs and instantaneous

LEs were provided and confirmed by numerics. The intermittent regime was also observed

and described. See Sec. 6.4.1.

• The case of repulsive couplings was also investigated. The results were used to propose two

control strategies to stabilise the dynamics, one in terms of changing the topology and the

other in terms of varying the driving. See Sec. 6.4.2.

• For both the attractive and repulsive cases, a classification of the dynamical regimes

in terms of phase dynamics, finite-time stability, and time-frequency representation was

provided. This classification could prove useful to experimentalists that only have access

to phase and and frequency measurements, and could thus help the inverse approach. See

chapter 6.
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• It was also shown that nonautonomicity in the form of time-varying network connections

can induce instability and desynchronise the network. Results obtained analytically and

confirmed by numerics. See chapter 7 and Fig. 7.1.

• As a result, oscillation death was shown to be induced by the time-variable network topology.

This provides a new mechanism for the appearance of oscillation death, which to date has

only been observed in static settings. A bifurcation diagram was computed, unveiling the

structure of the heterogeneous steady state. See Fig. 7.3.

• An extended version of the acclaimed averaging theorem was proved, where a partial

average can be performed over the fast-changing network topology. See Sec. 7.3.2.

Altogether, we have investigated the relationship between synchronisation and nonautonomicity for

coupled oscillators. We have shown that nonautonomicity can be either beneficial or detrimental

to synchronisation and stability. In order to do so, we used a finite-time approach to dynamics

and stability, and in particular introduced the use of finite-time Lyapunov exponents and other

finite-time methods.

8.3. Future perspectives

The study of nonautonomous oscillatory systems has only recently been attracting attention and

many more questions remain open for future research. This is especially true when it comes to

the modelling of living systems. Below, we list a few of these possible perspectives, some more

specific and short-term, others more general and long-term.

In the first part of the thesis, a driving with a slowly varying frequency was considered. The

assumption of slow variation is biologically reasonable and makes the system more mathematically

tractable than the general case. For the sake of completeness, however, it would be interesting to

investigate what happens in the other extreme case: fast modulation. This is the limit that was

considered for the system in the last chapter. In such a scenario, we expect to be able to apply

some averaging technique to investigate the dynamics.

Following a similar idea, one could consider the system in chapter 7, but this time with slowly

varying topology, instead of fast. In many cases, slow variation of network links is a realistic

assumption, such as in the brain. We expect such setting to exhibit intermittent behaviour,

that the current use of the Floquet exponents would not capture. Such systems could need the

introduction of some kind of finite-time Floquet or Lyapunov exponents. Interesting dynamics

could arise in such a setting.

121



8. Summary and conclusions

More generally, a question that naturally arises after all the work of this thesis: how can one

treat nonautonomous systems for which the external modulation is neither slow nor fast, but at a

similar timescale that of the considered system? Slow variation allows one to use an adiabatic

approach, and fast variation makes it possible to use averaging techniques. The in-between,

however, is not easily tractable mathematically, and yet probably exhibits rich dynamics.

In chapter 7, we observed oscillation death, induced by the time-variability in the network topology.

To the best of our knowledge this is the first evidence of time-variability-induced oscillation death.

So far, oscillation death was a byproduct of the study, and its structure was studied partially,

but not the mechanisms behind it. Investigating such phenomenona in more detail is a potential

direction for future work. One could moreover investigate whether oscillation death can ever

occur due to other implementations of time-variability such as time-varying frequencies or shape

of coupling function.

Indeed, apart from time-varying topology and frequencies, evidence shows that in some natural

systems, the form of the coupling changes with time (without any change in the strength of

the coupling) [144]. This topic is clearly related, and future research on such topics seems

promising.

The motivations for the present work were the understanding of real-world systems, and in

particular living systems. A next step in that direction would be to use the approach presented

in this thesis to model and analyse systems based on real experimental data. A good candidate

for this would be metabolic oscillations occurring in cells.

In order to do this, it might also be useful to investigate theoretically the effect of nonautonomicity

in the context of networks of oscillators with distributed natural frequencies, in contrast to the

identical frequencies considered here.

Finally, more generally, synchronisation in nonautonomous oscillatory systems to model living

systems can clearly gain from exchanges with the out-of-equilibrium statistical physics and

out-of-equilibrium thermodynamics communities. Some efforts have been made in that direction,

and both fields could gain from more interaction.
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