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ABSTRACT

A random laser is an optical system where the light is amplified by stimulated emission along random paths
in a disordered medium. In recent years, a new kind of non-invasive sensor based on random lasing has been
proposed.1,2 The striking point is that a sensor based on random lasing has an emission “fed” by the feedback
due to the scattering properties of the medium, making such a system a natural candidate for studying materials
with strong disorder. Here, we report the recent advances in the sensor structure and performances.
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1. INTRODUCTION

Random lasing is an optical phenomenon that can take place inside a disordered medium where a pumping
system establishes a population inversion. The stimulated emission mechanism amplifies the optical radiation
along paths sustained by random scattering events instead by an optical cavity.3–14 Such a “laser-like” radiation
exhibits a spectral narrowing, without a fixed direction and the presence of speckles. In general, a random laser
system is composed by a mixture of an active medium, such as laser dye15 or powder of doped crystal for solid
state laser,16 and scattering material, such as nanoparticles or disorder induced in the structure of the bulk
material. The pumping system is often provided by a laser beam. Random lasing has been observed in biological
material17–23 and differences between healthy and cancerous human tissue has also been reported.24–28

Developing a sensor based on random lasing29–32 is of great interest, since random laser has an emission “fed”
the feedback due to the scattering, making such a system a natural candidate for studying materials with strong
disorder. However, the progresses in biological applications have been slowed by the requirement to the directly
irradiate the sample by the pumping system and to infiltrate the biological tissue with toxic gain material,
although biocompatible suitable substances have been proposed to mitigate the latter problem33,34

In recent years,1,2 a new kind of non invasive sensor based on random lasing has been proposed; such a
sensor consists in a random laser system put inside a spherical transparent box able to optically communicate
with an external sensed medium. The system is maintained below threshold until it is put in contact with a
scattering external medium, so guarantying a feedback signal amplified by stimulated emission. Moreover, the
physical separation between the sensed medium and the material inside the sensor guarantees the non invasivity,
whereas the optical fiber coupling allows the portability as well. Here, we report the recent advances in the sensor
structure and performances, in particular in sensing the dimension of scattering particles. In particular, we have
found that, for a wide range of different diameters of scattering particles dispersed in an external medium, the
peak intensity of the emission spectrum only depends on the reduced scattering coefficient, whereas the other
signal features can be analyzed to retrieve information about the particles sizes.

2. SENSOR STRUCTURE

The sensor consists in a glass hollow sphere with an active medium inside. Through the glass, the sensor
is able to communicate with the external disordered medium through the emitted and received light. Indeed,
spontaneously emitted radiation can propagate to the external disordered medium and then, after a random path
guided by diffusion, an amount of light can go back to the sphere, thus undergoing amplification by stimulated
emission in the active medium. Hence, the external disordered medium provides a feedback mechanism for the
spontaneously emitted radiation, in a way dependent on the characteristics of the disordered external material.
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Figure 1. Experimental set-up scheme: SP = spectrometer, MP = movable polarizer, FP = fixed polarizer, SE = semi-
transparent plate, EM = energy meter, M = mirror, DM = dichroic mirror, F = fiber, L = lens, S = sample. The green
beam is the pump and the red one is the signal. Among the DM and the S the two beam are overlapped.

The active medium inside the cell consists in an alcoholic solution of dye with a small amount of nanoparticles
added to prevent laser action due the refractive index mismatch between the solution and the glass. The pump
beam is provided by a Q-switched Nd:YAG laser and the output signal is sent to the spectrometer by an optical
fiber that has an extremity inside the sensor. By using a dichroic mirror the pump beam is injected into the
same fiber that carries the signal.

The pumping energy is tuned by a pair of polarizers: the first movable by a stepper motor connected to a PC
and the second fixed. A reflection from a semi-transparent plate is sent to an energy meter to indirectly measure
the pumping energy. An automatic acquisition system allows to store the spectrum of each signal pulse and the
energy of the corresponding pump pulse.

The diffusive samples are put in a square container with black walls of side 1.0 cm. The dimensions of the
scattering cell are wide enough to avoid wall effects, for the used particles concentrations. The sensor is partially
immersed inside the liquid sample at the same fixed depth (for the half of the sensor diameter) and is positioned
at the center of the cross section of the cubic cell. In Fig. 1 a scheme of the experimental set-up is shown. The
signal shows an over-threshold behavior with a spectral narrowing once the back scattering from the disordered
external medium becomes strong enough to provided a sufficient feedback. Hence, the spectral characteristics
are strictly connected to the scattering properties, given by the particles size, concentration and refractive index,
of the sensed sample.

3. MEASUREMENT METHOD

In this section, a method to directly measure the scattering property of a water dispersion of nanoparticles of
different dimensions is reported. The method core makes use of a dilution of Intralipid20%, an emulsion of
fat particles suspended in water, as reference sample. Indeed, such a medium has a large characterization and
stability35–41 and the scattering coefficient µs and the reduce scattering coefficient µ′s = µs(1−g), where g is the
asymmetry factor of the scattering function, can be a priori known as the dilution varies. Then, the reference
sample has been prepared with µ′s of 2.33 mm−1 at the radiation wavelength of the signal, that corresponds
to 0.430 mm of transport mean free path, a value typical of diffusive media such as biological tissues. The
absorption coefficient µa is very small and almost identical to that of the water and its contribute can be here
neglected.

Following the hypotheses that µ′s is the main parameters that determines the scattering feedback to the
sensor, samples composed by water monodispersion of nanoparticles of different size are prepared, varying the
concentration in order to reach the same µ′s of the reference. By using the particles radius distribution provided
by the manufacturers of the particles, the desired concentration can be a priori calculated by the single scattering
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Figure 2. Examples of signal from a sample with particles of 190 nm of diameter (µ′s = 2.33 mm−1) at three different
pump energy.

Figure 3. Peak intensity of the signal (normalized to the water value) for the same pump energy of 1.39 mJ. The red
cross is the signal from the Intralipid20% with the same µ′s.

characteristics of the Mie theory. Such a theory allows to determine g and Q (the scattering efficiency) of a single
particle. The reduced scattering coefficient µ′s, for a monodispersion of spherical particles of radius r, is given
by:42

µ′s =
3

4
ρv
Q(1− g)

r
(1)

where ρv is the fractional volume of the particles. Q and g are in general complicated functions of the relative
refractive index of the scatterer nr and the size parameter x = 2πr/λb, where λb is the radiation wavelength in
the bulk material. To obtain the desired µ′s, the concentration of each sample, achieved by adding pure water,
has been fixed according to Eq. 1, given the size of the particle and the refractive index of the material, once the
single particle coefficients Q and g are calculated by a computer program based on Mie theory.43

In order to increase the accuracy in determining the sample concentration, the deviation of Q and g upon the
different wavelengths of the dye emission spectrum and upon the size distribution of the particles radius must be
considered. For the sizes of scattering particles we assumed a lognormal distribution f(r) of the particles radius,
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Figure 4. Peak intensity of the signal (normalized to the water value) for the same pump energy at different pump
energies. The red crosses are the signal from the Intralipid20% with the same µ′s.

with the mean value r̄ and standard deviation σ provided by the manufacturer:

f(r) =
1

rS
√

2π
exp

[
−1

2

(
ln r −m
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)2
]

(2)

where:

m = ln

(
r̄2√

σ2 + r̄2

)
(3)
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√
ln

(
σ2

r̄2
+ 1

)
(4)

Fixed the wavelength, the single scattering parameters Q and g are obtained by averaging over the sphere radius
distribution:

Q(λ) =

∫ ∞
0

drf(r)Q(r, λ) (5)

g(λ) =

∫ ∞
0

drf(r)g(r, λ) (6)

The spectral analysis of the signal from the random laser sensor becomes the a posteriori measurement to
determine the scattering property of the samples.

4. RESULTS

The measurements have been carried out using two different sensors and two sets of particles of different manu-
facturers.

In Fig. 2 we report typical spectra for the random laser signal, for three different pump energies, from a
scattering sample composed by a water dispersion of particles of 190 nm diameter.

In Fig. 3 the peak intensity, normalized to the water value, is shown as a function of particles diameter
at different pump energies (0.19 mJ, 0.39 mJ, 0.65 mJ and 0.89 mJ). The peak intensity is independent of the
diameter in the range analyzed (from ≈ 100 nm to ≈2 µm). Moreover, the peak intensity is consistent to that of
Intralipid20% with the same µ′s (red crosses at the nominal diameter of 0.33 µm). These results indicate that,
by previous calibration of the sensor with a reference medium (Intralipid20%), the µ′s of a material is directly
measurable by a fast and simple procedure. In Fig. 4, another set of particles are sensed with a second sensor
that is characterized by a stronger signal. The peak value is consistent with the one from Intralipid20% for
particles with diameter greater than 100 nm.
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5. CONCLUSIONS

The results show that the peak of the random laser signal from our sensor only depends on the reduced scattering
µ′s of the sensed external medium for particles of a diameter grater than ∼100 nm. Then, once calibrated by a
reference medium, the sensor guaranties a direct measure of the µ′s of the sample for a wide range of particles
diameters. The use of different sensors shows the reproducibility of the measurement.
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