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We consider statistical-mechanics models for spin systems built on hierarchical structures, which
provide a simple example of non-mean-field framework. We show that the coupling decay with spin
distance can give rise to peculiar features and phase diagrams much richer than their mean-field
counterpart. In particular, we consider the Dyson model, mimicking ferromagnetism in lattices, and we
prove the existence of a number of metastabilities, beyond the ordered state, which become stable in the
thermodynamic limit. Such a feature is retained when the hierarchical structure is coupled with the Hebb
rule for learning, hence mimicking the modular architecture of neurons, and gives rise to an associative
network able to perform single pattern retrieval as well as multiple-pattern retrieval, depending crucially on
the external stimuli and on the rate of interaction decay with distance; however, those emergent
multitasking features reduce the network capacity with respect to the mean-field counterpart. The analysis
is accomplished through statistical mechanics, Markov chain theory, signal-to-noise ratio technique, and
numerical simulations in full consistency. Our results shed light on the biological complexity shown by real
networks, and suggest future directions for understanding more realistic models.
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In the last decade, extensive research on complexity in
networks has evidenced (among many results [1,2]) the
wide spread of modular structures and the importance of
quasi-independent communities in many research areas
such as neuroscience [3–5], biochemistry [6], and genetics
[7], just to cite a few. In particular, the modular, hierarchical
architecture of cortical neural networks has nowadays been
analyzed in depth [8], yet the beauty revealed by this
investigation is not captured by the statistical mechanics of
neural networks, standard (i.e., performing single pattern
retrieval) [9,10], or multitasking ones (i.e., performing
multiple-pattern retrieval) [11,12]. In fact, these models
are intrinsically mean field, thus lacking a proper definition
of metric distance among neurons.
Hierarchical structures have been proposed in the past as

(relatively) simple models for ferromagnetic transitions
beyond the mean-field scenario—the Dyson hierarchical
model (DHM) [13]—and are currently experiencing
renewed interest for understanding glass transitions in finite
dimension [14,15]. Here we investigate their retrieval
capabilities when performing as associative network: we
start studying the DHM mixing the Amit-Gutfreund-
Sompolinsky ansatz approach [10] (to select eligible retriev-
able states) with the interpolation technique (to check their
thermodynamic stability) and we show that, as soon as
ergodicity is broken, beyond the pure ferromagnetic state
(largely discussed in the past, see, e.g., [16,17]), a number of
metastable states suddenly appear and become stable in the
thermodynamic limit. The emergence of such states implies
the breakdown of classical (mean-field) self-averaging and

stems from the weak ties connecting distant neurons, which,
in the thermodynamic limit, effectively get split into
detached modules (see Fig. 1). As a result, if the latter
are initialized with opposite magnetizations, they remain
stable.
This is a crucial point because, once implemented the

Hebbian prescription [9,10] to account for multiple pattern
storage, it allows proving that the system not only executes
extensive serial processing `a la Hopfield [9,10], but its
communities perform autonomously, hence making parallel
retrieval feasible too. We stress that this feature is essen-
tially due to the notion of the metric the system is endowed
with, differently from the multiple retrieval performed by

FIG. 1 (color online). Sketch of the hierarchical topology
underlying the model (here k ¼ 4, N ¼ 2k ¼ 16). Nodes re-
present spins; the larger the distance between two spins the
weaker their coupling. On the right, we highlight how the graph
breaks down in two equivalent components (referred to as “left”
and “right”) as the weakest link Jðk; k; ρÞ [see Eq. (2)] is cut.
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the mean-field multitasking networks which require blank
pattern entries [11,12].
Therefore, the hierarchical neural network is able to

perform both as a serial processor and as a multitasking
processor. We corroborate this scenario merging results
from statistical mechanics, Markov chain theory, the signal-
to-noise ratio technique, and extensive numerical simula-
tions as explained hereafter.
In the DHM, the mutual interaction between 2kþ1 Ising

spins σi ¼ �1, with i ¼ 1;…; 2kþ1, is described by the
following Hamiltonian, defined recursively as

Hkþ1ð~σÞ ¼ Hkð ~σ1Þ þHkð ~σ2Þ −
J

22ρðkþ1Þ
X2kþ1

i<j¼1

σiσj; ð1Þ

where J > 0 and ρ ∈ ð1=2; 1½ tune the interaction strength;
~σ1 ≡ fσig1≤i≤2k , ~σ2 ≡ fσjg2kþ1≤j≤2kþ1 and H0ð~σÞ ¼ 0.
This model is explicitly non-mean-field as we implicitly
introduced a distance: Two spins i and j turn out to be at
distance dij ¼ d if, along the recursive construction, they
first get connected at the dth iteration—of course d
ranges in ½1; k� (see also Fig. 1). It is possible to rewrite
the Hamiltonian (1) in terms of dij as Hkþ1ð~σÞ ¼
−
P

i<jJijσiσj, where

Jij¼
Xk
l¼dij

�
J
22ρl

�
¼Jðdij;k;ρÞ¼J

4ρ−dijρ−4−ðkþ1Þρ

4ρ−1
: ð2Þ

Set the noise level β ¼ 1=T in proper units, we are
interested in an explicit expression of the infinite
volume limit of the mathematical pressure αðβ; J; ρÞ ¼
−βfðβ; J; ρÞ, (where f is the free energy) defined as

αðβ; J; ρÞ ¼ lim
k→∞

1

2kþ1
log

X
~σ

exp½−βHkþ1ð~σÞ�;

whose maxima return the equilibrium states of the system.
The latter are expressed in terms of the global magnetiza-
tion mkþ1 ¼ ð1=2kþ1ÞP2kþ1

i σi and of the set of k magne-
tizations ~m1;…; ~mk, which quantify the state of each
community, level by level; for instance, the two magne-
tizations related to the two largest modules (see Fig. 1) read
off as

mð1Þ
k ¼ mleft ¼

1

2k

X2k
i¼1

σi; mð2Þ
k ¼ mright ¼

1

2k

X2kþ1

i¼2kþ1

σi:

We approach the investigation of the DHM metastabilities
exploiting the interpolative technology introduced in [15],
that allows obtaining bounds beyond the mean-field
paradigm (as fluctuations are not completely discarded).
This procedure, assuming the homogeneity of the sub-
magnetizations (i.e., mleft ¼ mright ¼ m), returns the fol-
lowing expression (see [15,18] for details):

αðβ; J; ρÞ ≥ sup
m

�
log 2þ log coshðβJmC2ρÞ −

βJm2

2
C2ρ

�
;

ð3Þ

where Cy ¼ 2y=½ð2y − 1Þð2y − 2Þ�. However, if we remove
the hypothesis that the two main modules display the same
magnetization, namely, if we call independently mleft ¼ m1

and mright ¼ m2, under the ansatz of mixed state (i.e.,
mleft ¼ −mright), formula (3) is generalized as

αðβ; J; ρÞ ≥ sup
m1;m2

�
ln 2 −

βJ
2
C2ρ

�
m2

1 þm2
2

2

�

þ 1

2
½Lðβm1C2ρÞLðβm2C2ρÞ�

�
; ð4Þ

where LðxÞ ¼ ln coshðxÞ; of course, posingm1 ¼ m2 ¼ m,
we recover (3). Requiring thermodynamic stability, and
using brackets for Boltzmann averages, we obtain the
following disentangled self-consistencies:

hm1;2i ¼ htanhðβJm1;2C2ρÞi; ð5Þ
whose solution is different from the trivial paramagnetic one
(i.e., hm1;2i ¼ 0) below the critical temperature Tc ¼ JC2ρ.
The main idea underlying the derivation of Eq. (4),
representing the behavior of two quasi-noninteracting
subcommunities, is that the interaction term in Eq. (1) is
bounded by 2−ðkþ1Þð2ρ−1Þ that is vanishing in the thermo-
dynamic limit [18]. As a consequence, the metastable
mixed state and the stable ferromagnetic state display an
(intensive) energy gap ΔE ∝ 2−ðkþ1Þð2ρ−1Þ such that, as
k → ∞, both states become stable sharing the same
intensive free-energy (see Fig. 2, left): as the paramagnetic
solution becomes unstable, while thermodynamics is

FIG. 2 (color). Left panel: Schematic representation of the free
energy for the DHM, where minima correspond to equilibrium
states. At finite size the pure ferromagnetic state (denoted by
aligned arrows) is a global minimum, while the mixed state
(denoted by misaligned arrows) is a local minimum. In the
thermodynamic limit both states are global minima and the
system can relax to any of them (although the latter displays a
smaller attraction basin). Right panel: Representation of the
eigenstates of W for a system with k ¼ 4 and ρ ¼ 0.75. Each
column represents a different eigenstate, eigenstates pertaining to
the same degenerate eigenvalue are highlighted. Different colors
represent different entries in the eigenstate, as shown by the color
map on the right.
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dominated by the ferromagnetic behavior, both the ferro-
magnetic (i.e., mleft ¼ mright) and the mixed (i.e.,
mleft ¼ −mright) solutions appear. We can use this argument
iteratively splitting the system into smaller and smaller
blocks: after M iterations, we need a set of different
magnetizations (one for each 2M emerging communities)
until the kþ 1 −M level. The procedure keeps on
working as far as the interaction term, bounded byPkþ1

l¼kþ1−M 2lð1−2ρÞ, remains vanishing, hence at most
MðkÞ=k → 0. The existence of states different from the
purely ferromagnetic one is confirmed by Monte Carlo
simulations (see Fig. 3, left).
This point can be further understood from a different

perspective: the DHM can be looked at as a ferromagnet
embedded in a fully connected topology, where the link
connecting two arbitrary nodes, i and j displays a
weight Jij decaying with the distance between i and j,
and defined according to a suitable metric (e.g., the one
based on the recursion described above or the 2-adic metric
~dij ¼ 2−ord2ði−jÞ, in such a way that Jij ∼ ~d−2ρij [19]).
Moreover, the set of nodes is countable and weights are
finite, i.e., Jmin ¼ 4−ðkþ1Þρ ≤ Jij ≤ Jmax ¼ ð1 − 4−ðkþ1ÞρÞ=
ð4ρ − 1Þ; thus, upon proper normalization of weights Jij →
Wij ¼ Jij=wi, where wi ¼

P
jJij, the graph describes a

Markov chain, where each node represents a state and W
is the transition matrix [20]. The evolution of the random
process is therefore provided by the master equation
pðtþ 1Þ ¼ WpðtÞ → _pðtÞ ¼ WpðtÞ − pðtÞ, whose sta-
tionary distribution, referred to as π, satisfies π ¼ Wπ,
that is, π coincides with the eigenvector ϕλ0 of W
corresponding to eigenvalue λ0 ¼ 1 (that is just the
Perron-Frobenius eigenvalue of W) and it is uniformly
distributed as π ¼ e=2ðkþ1Þ=2. The second-largest eigen-
value λ1 and the related eigenstate are, respectively,

λ1 ¼
X2k
j¼1

W1j − 2kW12kþ1 → 1 −Oð2−ð2ρ−1Þðkþ1ÞÞ;

ϕλ1 ¼ ð1; 1;…; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2ðkþ1Þ=2

;−1;−1;…;−1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2ðkþ1Þ=2

=2ðkþ1Þ=2:

As λ1 converges to 1 in the thermodynamic limit, ergodicity
breaking for the stochastic process is expected. In fact, ϕλ0
and ϕλ1 generate a subspace where any vector is an
eigenvector of W with the same eigenvalue λ ¼ 1.
In particular, we see that

ϕλ0 þ ϕλ1 ¼ ð1; 1;…; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2ðkþ1Þ=2

; 0; 0;…; 0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2ðkþ1Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=2kþ1

q
; ð6Þ

ϕλ0 − ϕλ1 ¼ ð0; 0;…; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2ðkþ1Þ=2

; 1; 1;…; 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2ðkþ1Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=2kþ1

q
; ð7Þ

correspond to stationary states localized on the left and on
the right branch of the graph, respectively. Otherwise
stated, there is no flow between the two main modules
as if they were autonomous. The same holds as we
split each branch in smaller subunits iteratively (see
Fig. 2, right), and mirrors the genesis of metastable states
in the thermodynamics counterpart.
As a final perspective, we check the robustness of states

through a signal-to-noise ratio analysis. To this aim we
express the fields acting on the spins in (1) by writing
Hkþ1ð~σÞ ¼ −

P
ihið~σ; ρ; kÞσi, being

hið~σ; ρ; kÞ ¼
Xkþ1

d¼1

�Xkþ1

l¼d

�
J
22lρ

�
2d−1md−1

fðd;iÞ

�
; ð8Þ

where md−1
fðd;iÞ is the normalized magnetization of spins at

distance d from the ith one. The microscopic law governing
the evolution of the system is a stochastic alignment
with the local field hið~σ; ρ; kÞ, that is, σiðtþ δtÞ ¼
sgnftanh½βhið~σðtÞ; ρ; kÞ� þ ηiðtÞg. In the noiseless limit,
the stochasticity captured by the independent random
numbers ηiðtÞ (uniformly distributed over the interval
½−1;þ1�) is lost, and

lim
β→∞

σiðtþ δtÞ ¼ sgnfhi(~σðtÞ; ρ; k)g: ð9Þ

Thus, if σihið~σ; ρ; kÞ > 0∀ i ∈ ½1; 2kþ1� the configuration ~σ
is dynamically stable. Hereafter, we focus on the ferro-
magnetic-single pattern case and on the mixed-multitasking
case only, referring again to [19] for an extensive treatment.
In the former case, σi¼þ1∀ i∈ ½1;2kþ1�⇒hið~σ;ρ;kÞ>

0∀k;ρ∈ ð1=2;1�. Therefore, the ferromagnetic-single pat-
tern case state is stable for β → ∞.

FIG. 3 (color online). Left panel: Magnetizations obtained by
MC simulations of the DHM for different sizes (main figure) and
by the theoretical curves given by Eq. (5) (inset) holding in the
thermodynamic limit. In the main plot, the spontaneous switch
between serial and mixed state is a finite-size effect. Right panel:
Mattis magnetizations obtained by Monte Carlo simulations of
the HHM for k ¼ 12 and p ¼ 4. Consistently with the analytical
picture [Eqs. (13) and (5) give analogous solutions], the simulta-
neous retrieval of multiple patterns exists and is stable.
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In the latter case, σi ¼ þ1∀ i ∈ ½1; 2k� and σi ¼
−1∀ i ∈ ½2k þ 1; 2kþ1�⇒limk→∞hið~σ; ρ; kÞ ¼ 1=ð21−2ρþ
4ρ − 3Þ > 0∀ ρ ∈ ð1=2; 1�. Therefore, the mixed-multi-
tasking case is stable for β → ∞.
Now, retaining the outlined perspective, we recursively

define the hierarchical Hopfield model (HHM) by the
following Hamiltonian:

Hkþ1ð~σÞ ¼ Hkð ~σ1Þ þHkð ~σ2Þ

−
1

2

1

22ρðkþ1Þ
Xp
μ¼1

X2kþ1

i;j¼1

ξμi ξ
μ
jσiσj; ð10Þ

with H0ð~σÞ ¼ 0, ρ ∈ ð1=2; 1½; beyond 2kþ1 dichotomic
neurons σi, also p quenched patterns ξμ, μ ∈ ð1;…; pÞ
are introduced. Their entries ξμi ¼ �1 are drawn with the
same probability 1=2 and are averaged by Eξ.
Again, we canwrite theHamiltonian of theHHM in terms

of the distance dij, obtaining Hkþ1ð~σÞ¼−
P

i<j
~Jijσiσj,

where

~Jij ¼
4ρ−dijρ − 4−kρ

4ρ − 1

Xp
μ¼1

ξμi ξ
μ
j ; ð11Þ

hence the Hebbian kernel
Pp

μ¼1 ξ
μ
i ξ

μ
j is tuned by the

distance-dependent weight Jðdij; k; ρÞ.
Once introduced suitably Mattis overlaps, both global

mμ ¼
P

2kþ1

i¼1 ξμi σi=2
kþ1, and community restricted, as

mμ
left ¼

1

2k

X2k
i¼1

ξμi σi; mμ
right ¼

1

2k

X2kþ1

j¼2kþ1

ξμjσj; ð12Þ

the statistical-mechanical route, as in the Dyson model,
returns a non-mean field approximation for the pressure
of the single pattern retrieval state as αðβ; p; ρÞ∼
supmflog 2 − ðβ=2Þ Pp

μ¼1 m2
μC2ρ þ Eξ log cosh½Pp

μ¼1

ðβmμC2ρÞξμ�g. Assuming two different families of Mattis
magnetizations fmμ

1;2gpμ¼1 for the two largest communities
(left and right), we get a non-mean-field approximation for
the multiple-pattern retrieval pressure

αðβ; p; ρÞ ∼ sup
fmμ

1;2g

�
ln 2 −

β

2
C2ρ

Xp
μ¼1

ðmμ
1Þ2 þ ðmμ

2Þ2
2

þ 1

2
Eξ

�
L

�Xp
μ¼1

ðβmμ
1C2ρ þ ξμÞ

�

þ L

�Xp
μ¼1

ðβmμ
2C2ρÞ

���
;

whose disentangled optimal order parameters satisfy

hmμ
1;2i ¼ Eξ



ξμ tanh

�
β
Xp
ν¼1

C2ρmν
1;2ξ

ν

��
; ð13Þ

returning again Tc ¼ C2ρ. The behavior of hmμ
1;2i resulting

from Eq. (13) is consistent with the simulation outcomes
(see Fig. 3, right panel). Again, we can iteratively repeat
the procedure as far as the interaction term among the
subcommunities remains vanishing, hence getting MðkÞ ¼
oðkÞ. Therefore, if we want the system to handle p patterns
simultaneously, we need p blocks and this, for k → ∞,
establishes the bound p ¼ oð2kÞ.
This picture is confirmed by the signal-to-noise ratio

analysis: we start from the single pattern state, i.e., σi ¼ ξμi ,
and check its stability writing σihið~σ; ρ; kÞ as a signal term
S plus a noise term R and then comparing their amplitudes:

ξμi hið~σ; ρ; kÞ ¼ ξμi
Xp
ν¼1

ξνi
Xk
d¼1

Jðd; k; ρÞ
X

j∶dij¼d

ξνjξ
μ
j

¼ Sþ RðξÞ; ð14Þ
where S ¼ P

k
d¼1 Jðd; k; ρÞ2d−1 ≥ 0, while

RðξÞ ¼ ξμi
Xp
ν≠μ

ξνi
Xk
d¼1

Jðd; k; ρÞ
X

j∶dij¼d

ξνjξ
μ
j :

As clearly hRðξÞiξ ¼ 0, we need to evaluate when the ratio

S=j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hRðξÞ2iξ

q
→ 1: the latter returns the maximum load

psingle
crit ðk; ρÞ storable by the network before the noise

prevails over the signal and retrieval fails.
As for the stability of the multiple patterns retrieval,

forcing σi¼ξμi ∀i∈ ½1;2k� and σi ¼ ξγi ∀ i ∈ ½2k þ 1; 2kþ1�

FIG. 4 (color). Left panel: Phase diagram for the DHM as
derived from the signal-to-noise ratio analysis. The curves
separating different phases are obtained by solving numerically
the transcendental equation tanh½βhið~σ; ρ; kÞ� ≈ 1 as a function of
β and ρ. Here we fixed k ¼ 7 and we focused on four different
configurations (single pattern state, multitasking state, and states
where subcommunities made of four and eight spins, respectively,
are misaligned with respect to the bulk). Right panel: psingle

crit (solid
line) and pmulti

crit (dashed line), as a function of ρ and for several
choices of k, as explained by the legend. Notice that as ρ increases
the capacity of the system (for both single and multiple retrieval)
decreases, in fact, the magnitude of couplings decreases
exponentially with ρ, hence the overall storage capacity is also
reduced [18,21].
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for μ ≠ γ, and splitting again σihið~σ; ρ; kÞ in a signal plus a
noise term, we can check again the maximum load
pmulti
crit ðk; ρÞ storable by the network. Both psingle

crit ðk; ρÞ
and pmulti

crit ðk; ρÞ are monotonically decreasing functions
of ρ, and they converge to the finite value ð4ρ−1Þð42ρ−2Þ=
ð42ρ−3×4ρþ2Þ2þ1 as k gets larger (see also Fig. 4
and [19]).
Summarizing, beyond classical retrieval, the network is

able to safely handle multiple patterns too. Unlike multi-
tasking mean-field networks [11] (where multiple retrievals
are independent), here the weak ties connecting different
modules may account also for correlated retrieval (as the
retrieved pattern of one module may drive retrieval in other
modules), better mimicking the behavior of biological
systems. However, there is a cost in terms of capacity:
as we can neglect links among upper levels—those that
become effectively negligible in the thermodynamic limit—
globally the network loses a significant amount of bit-storing
synapses. Thus a new compromise appears in non-mean-
field cognitive systems: increasing multitasking capabilities
diminishes the processor capacity, the trigger between them
being ruled mainly by the rate of interaction decay ρ.
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