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Abstract: Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that
mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain.
Previous studies revealed a parallel between PNNs formation and the closure of the
critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN
manipulations in adult animals. However, the mechanisms through which perineuronal
nets modulate plasticity are still poorly understood. Recent work indicated that
perineuronal nets may convey molecular signals by binding, and storing proteins with
important roles in cellular communication. Here we report that Semaphorin 3A (Sema-
3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net
components, is necessary to dampen ocular dominance plasticity in adult rats. First,
we showed that the accumulation of Sema-3A in PNNs in the visual cortex correlates
with critical period closure, following the same time course of perineuronal nets
maturation. Second, the accumulation of Sema-3A in perineuronal nets was
significantly reduced by rearing animals in the dark in the absence of any visual
experience. Finally, we developed and characterized a tool to interfere with Sema-3A
signaling by means of AAV-mediated expression of receptor bodies, soluble proteins
formed by the extracellular domain of the endogenous Sema-3A receptor (neuropilin1)
fused to a human IgG Fc fragment. By using this tool to antagonize Sema-3A signaling
in the adult rat visual cortex, we found that the specific inhibition of Sema-3A promoted
ocular dominance plasticity. Thus, Sema-3A accumulates in perineuronal nets in an
experience-dependent manner and its presence in the mature visual cortex inhibit
plasticity.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Pisa, December 10th, 2018 

 Dear Editor, 

We have received the review of our manuscript "Inactivation of Semaphorin-3A promotes 
ocular dominance plasticity in the adult rat visual cortex.” We are glad that both reviewers 
were positive about our manuscript. For rev #4 the manuscript was already acceptable for 
publication, while the issues raised by rev #3 were answered by new experimental results. 
These novel results show that: 

1. interfering with Sema3A signaling by AAV-mediated expression of soluble receptor 
bodies does not significantly contribute to modify the structural relationship between 
PNNs and Sema-3A; 

2. The time course of WFA positive and Sema-3A positive PNNs progresses in 
parallel during postnatal development.  

3. All the receptor bodies used in the study have the expected molecular weight and 
are effectively released in the culture medium, as shown by western blot analysis. 
These results, together with our data showing functional interference in growth cone 
collapse assays, give a better characterization of the molecular tool employed to 
counteract Semaphorin-3A.  

We hope that now the paper is suitable for publication. A point-to-point rebuttal follows 
Best regards, Tommaso Pizzorusso 

Ref #3 

Major points:  
 1. Title: "Inactivation" is not suitable with current strategy. "Inhibition or 
interference" would be more appropriate.  
 
A: We agree, the title was changed accordingly replacing “Inactivation” with “Inhibition”. 
 
 2. Experimental procedures:  
Indicate number of animals used in the study as well as institutional approval of 
experiments.  
 
A: The requested info was added in the first paragraph of the Experimental Procedures 
 
 3. Results: Reviewer requests WFA-positive PNN numbers at P14, P28, P45 and 
P90 to be compared with Sema-3A and WFA-double positive PNN numbers in Fig. 1E. 
This would clarify the correlation and time course between the formation of PNN and 
accumulation of Sema-3A.  
 
A: We have included new data providing a quantitative analysis of Sema-3A and WFA 
positive PNNs at different ages in the fig. 1. These new results confirm the progressive 
formation of perineuronal nets during postal development and show that Sema-3A 
aggregates onto WFA positive structures in a similarly age-dependent manner. 
 
 - the last sentence in page 11, " suggesting that Sema-3A could inhibit plasticity in 
the adult rat visual cortex." remains a matter of speculation. The reduced levels of Sema-
3A positive PNN may be results from reduced formation of PNNs.  

Cover Letter Click here to access/download;Cover Letter;rebuttal mol
neurobiol JV.docx

https://www.editorialmanager.com/moln/download.aspx?id=216344&guid=191ead03-d3d9-4ef7-9774-c3e8f2700ac7&scheme=1
https://www.editorialmanager.com/moln/download.aspx?id=216344&guid=191ead03-d3d9-4ef7-9774-c3e8f2700ac7&scheme=1


 
A: we agree, we have eliminated the sentence. 
 
 - Soluble Npn receptors:  Estimated molecular weights and actual protein sizes of 
several mutant Npn ectodomains fused with IgG Fc fragment are not indicated. Purified or 
concentrated recombinant proteins are better to be shown in figures although Npn1-Fc, 
Npn1-Y297A-Fc and Npn1-VEGF-Fc has already been reported by other groups. These 
results will support the main results. Otherwise, the authors' findings cannot be 
scientifically convincing. Biochemical experiments using the above mentioned 
recombinants as well as their original Npn1-T316R-Fc and Npn2-Fc proteins to examine 
the efficacy of soluble receptors and selective binding to Sema-3A are strongly 
recommended. Those could show the fundamental ability of soluble receptors. Importantly, 
the in vitro results may relate to the discussion of in vivo experiments. 
 
A: We thank the referee for prompting us to further strengthen the data supporting the use 
of receptor bodies for Sema-3a antagonization in vivo: we have included in Fig. 3 a 
western blot of the conditioned medium showing the molecular weights of the Npn1 and 
Npn2 receptor bodies and confirming that receptor bodies are released in the extracellular 
space. Moreover, we have added immunocytochemistry data showing the high specific 
staining for Fc in the cells transfected with the receptor bodies but not in the cells 
transfected with control GFP. These data add to the results of the functional growth cone 
collapse assay showing high selectivity of the receptor bodies in antagonizing Sema-3a 
effects [no effect was present when cells were treated with receptor bodies in absence of 
Sema-3A (Fig. 3)], and the immunohistochemistry data showing producing cells and 
released receptor bodies after in vivo transduction (Fig. 4). Altogether these data provide 
solid support for the efficacy of our approach to Sema-3a antagonization in vivo.  
 
 Reviewer would like to know if AAV mediated Npn1-Fc and others' expression 
could actually interfere the Sema-3A or not and affect the numbers of Sema-3A and WFA- 
double positive PNNs in the visual cortex of adult rat compared with the control. This may 
strongly emphasize the modulation of PNNs using the current system.  
 
A: We thank the referee for suggesting a way to further characterize the molecular effect of 
Npn1-Fc on Sema-3A aggregation onto PNNs. We performed the requested experiments 
as follows. We treated adult rats by injections of AAVs in the visual cortex expressing 
Npn1-Fc and VEGF-Fc as a control. We chose VEGF-Fc because it is the most stringent 
control treatment that showed no significant enhancement of adult ocular dominance 
plasticity. Staining for WFA and Sema-3A showed that the density of Sema-3A PNNs is 
not significantly different between the 2 experimental groups, suggesting that the 
functional effect of Npn1-Fc on ODP is not mediated by a disaggregating effect toward 
Sema-3A on PNNs.      

Minor points:  

 

 
 1. Experimental procedures, there are many small mistakes probably due to the 
differences of authors in each paragraph.  



- GIBCO and GIBCO-Invitrogen Corp.  
- Postnatal day is normally abbreviated in capital letter (e.g. P90). Please check in page 8 
(small letter) and 14 (capital letter).  
- The notations of percentile in "immunohistrochemistry" are different from those in other 
pages.  
 2. Figure 4E: change "AAN-Npn1" to "AAV-Npn1". 
 
A: These mistakes were corrected. 
 

Ref# 4 
We thank the referee for appreciating our work. The manuscript was checked for 
grammatical errors.  
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Abstract 

Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly 

surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies 

revealed a parallel between PNNs formation and the closure of the critical period. Moreover, 

ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. 

However, the mechanisms through which perineuronal nets modulate plasticity are still 

poorly understood. Recent work indicated that perineuronal nets may convey molecular 

signals by binding, and storing proteins with important roles in cellular communication. Here 

we report that Semaphorin 3A (Sema-3A), a chemorepulsive axon guidance cue known to 

bind to important perineuronal net components, is necessary to dampen ocular dominance 

plasticity in adult rats. First, we showed that the accumulation of Sema-3A in PNNs in the 

visual cortex correlates with critical period closure, following the same time course of 

perineuronal nets maturation. Second, the accumulation of Sema-3A in perineuronal nets 

was significantly reduced by rearing animals in the dark in the absence of any visual 

experience. Finally, we developed and characterized a tool to interfere with Sema-3A 

signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed 

by the extracellular domain of the endogenous Sema-3A receptor (neuropilin1) fused to a 

human IgG Fc fragment. By using this tool to antagonize Sema-3A signaling in the adult rat 

visual cortex, we found that the specific inhibition of Sema-3A promoted ocular dominance 

plasticity. Thus, Sema-3A accumulates in perineuronal nets in an experience-dependent 

manner and its presence in the mature visual cortex inhibit plasticity.  
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Introduction  

Perineuronal nets (PNNs) are condensed structures of extracellular matrix (ECM) that 

ensheath the soma, proximal axon, and dendrites of neurons in many parts of the central 

nervous system (CNS) [1–4]. Their maturation in the visual cortex closely matches the 

closure of the critical period [1,5]. Importantly, degradation of PNNs with chondroitinase ABC 

(chABC), has been shown to restore a juvenile-like condition in many experimental 

paradigms of neuroplasticity in both mice and rats, including ocular dominance (OD) 

plasticity and extinction of fear memories, thus establishing a causal connection between 

PNNs and reduced plasticity [1,6–9]. Moreover, experimental paradigms known to modulate 

the level of plasticity in the brain (dark rearing (DR) and environmental enrichment) have 

also a profound impact in PNNs regulation, reinforcing the idea that plasticity and PNNs are 

tightly coupled [1,10–13]. The precise molecular mechanisms that are responsible for PNNs 

effect on plasticity remain elusive. The great majority of the PNNs in the visual cortex of rats 

and mice surrounds parvalbumin (PV) positive neurons [1,14], a class of inhibitory 

interneurons important for OD plasticity [15–23]. A proposed model suggests that the 

complex structures of PNNs may act as a scaffold by binding plasticity-regulating molecules 

and by presenting them in high concentration to the neurons they enfold [24]. Indeed, Otx2 

has been shown to bind to chondroitin sulfate chains, an abundant glycosaminoglycan 

(GAG) in PNNs. This binding is necessary for Otx2 internalization in PV positive, PNN-

bearing, interneurons and, in turn, for critical period closure [6,25]. The PNN-binding 

capability of Otx2 is dependent upon a basic motif enriched in arginine-lysine (RK) doublets 

at its N-terminus [26]. Recent work provided evidence that Semaphorin-3A (Sema-3A), a 

chemorepulsive protein prominently expressed in the postnatal and adult brain, has a strong 

affinity for CSPGs, is concentrated in PNNs and, like Otx2, contains an arginine-lysine rich 

basic domain at its C-terminus [27–29]. Moreover, enzymatic or genetic disruption of PNNs 

integrity leads to a decline in Sema-3A-positive PNNs further confirming their binding. Within 

the PNN, Sema-3A interacts specifically with 4,6-disulfated form of chondroitin sulfate chains 

https://paperpile.com/c/8i7VNb/ne2D+BTXOL+R0TEg+YSaVU
https://paperpile.com/c/8i7VNb/ne2D+u5dyo
https://paperpile.com/c/8i7VNb/2lBk+8Kn7T+ne2D+hmNe+Y99HL
https://paperpile.com/c/8i7VNb/GH7F9+ne2D+tgYmg+OnTyi+co9n6
https://paperpile.com/c/8i7VNb/ne2D+hCR2F
https://paperpile.com/c/8i7VNb/GuPma+wL2Fa+JOlhH+NDtOW+CLpUk+W5C5A+3Z5KW+1Gcf5+iBVXm
https://paperpile.com/c/8i7VNb/Xxzpj
https://paperpile.com/c/8i7VNb/2lBk+8B4dc
https://paperpile.com/c/8i7VNb/G8chI
https://paperpile.com/c/8i7VNb/dQ1uZ+EOP28+8Y3Ui
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(CS-E), a specific sulfation pattern in CS molecules [28,30]. The biological effect of Sema-3A 

binding to PNNs is still poorly understood, however, in dorsal root ganglia neurons, Sema-3A 

is known to induce growth cone collapse and neurite growth inhibition and this effect is 

amplified by its binding to GAGs [27]. These results suggest that Sema-3A might act as a 

plasticity inhibiting factor, through its accumulation in PNNs. 

To test this hypothesis we interfered with Sema-3A function using secreted decoy Sema-3A 

receptors (“receptor bodies”) composed of the extracellular domain of the Sema-3A receptor 

Neuropilin1 (Npn1) fused to human IgGFc. Npn1 is a co-receptor for Sema-3A and VEGF. 

Therefore two mutant isoforms of Npn1, which selectively bind to Sema-3A [31] or VEGF 

[32], were used to discriminate between the effects of interfering with the function of Sema-

3A or VEGF. Adeno-associated viral vector-mediated delivery of the receptor body 

scavenging Sema-3A, but not VEGF, promoted OD plasticity in the adult rat visual cortex 

indicating that persistent Sema-3A signaling in the visual cortex is necessary to maintain 

reduced levels of plasticity. 

 

Experimental Procedures 

Animal housing 

Animals were maintained at 22°C in 12-h light-dark cycle. For dark rearing experiments, 

animals were reared in complete darkness from birth. Food and water were available ad 

libitum. All necessary efforts were made to minimize both stress and the number of animals 

used. A total of 62 rats were used. All experiments were carried out in accordance with the 

European Communities Council Directive of 24 November 1986 (86/609/EEC) and were 

approved by the Italian Ministry of Health (authorization number 1152/2016-PR).  

https://paperpile.com/c/8i7VNb/EOP28+pzW3W
https://paperpile.com/c/8i7VNb/dQ1uZ
https://paperpile.com/c/8i7VNb/FbZA
https://paperpile.com/c/8i7VNb/Bu1A8
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Preparation of Sema-3A- or Npn-conditioned medium and 

western blot analysis 

HEK293T cells were transfected with Npn1-Fc, Npn1-VEGF-Fc, Npn1-Y297A-Fc, Npn1-

T316R-Fc, Npn2-Fc or a myc-Sema-3A expression construct using the polyethyleneimine 

(PEI) method [27, 33] ; for 20ug DNA, 80ug of PEI was used. The culture medium (DMEM-

GlutaMax, supplemented with 2% FCS and 1x PenStrep) was refreshed one day after 

transfection. Medium was collected 48h after transfection and processed for Western Blot 

analysis as follows. Samples were spun to remove cell debris and boiled with loading buffer 

containing 10% SDS and 10% B-mercaptoethanol and loaded onto 8% SDS-PAGE gels.  A 

standard curve of known protein concentrations (200ng, 400ng, 800ng per well; hSema3A-

Fc, R&D systems, 1250-S3) was loaded alongside the conditioned medium samples in order 

to determine the concentration of Sema-3A or neuropilin in the conditioned medium. 

Membranes were blotted with rabbit-anti-Sema-3A (1:1000, Abcam, Ab23393) or goat-anti-

Fc (1:5000, Chemicon, AP113), developed using IRDye-secondary antibody (IRDye800® 

1:2500, LI-COR Biosciences 925-32214) and scanned with the Odyssey Infra-red imaging 

system (LI-COR Biosciences). The resulting bands were analyzed for quantification 

purposes.  

In preparation for immunocytochemistry, transfected cells were fixed with 4% 

paraformaldehyde (PFA) in 0.1M phosphate buffer (pH 7.4) for 15 minutes, washed with 

PBS and stained with the same antibodies as indicated above.. 

Dorsal root ganglion explants culture and growth cone collapse 

assay 

Glass coverslips were pre-coated overnight with 0.5 mg/ml poly-ornithine (Sigma Aldrich, P-

3655).  On the day of use, the glass coverslips were washed with water and subsequently 

coated with 40 μg/ml laminin (Invitrogen). After a 2 hour incubation at 37oC, the laminin 

https://paperpile.com/c/8i7VNb/9BrbQ
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solution was removed, coverslips were washed briefly with DMEM/F12 medium and freshly 

prepared culture medium (DMEM/F12 1:1 (GIBCO) containing N2 supplement (Sigma 

Aldrich), 20 ng/ml NGF (Recombinant Rat beta-NGF, 556-NG-100, R&D Systems Europe 

Ltd.), PenStrep (GIBCO), 2 mM L-Glutamine (GIBCO)) was placed in each well before the 

DRG explants were added. A timed-pregnant (E15) Wistar rat was deeply anesthetized by 

CO2-inhalation and decapitated. The uterus was removed and placed into ice-cold Lebowitz 

(L15, GIBCO) medium. Under sterile conditions, embryos were removed from the uterus, 

and the spinal cord was dissected to reveal the dorsal root ganglia (DRGs). Individual DRGs 

(clean of any loose connective tissue and nerve roots) were centered on the laminin-coated 

glass coverslips, submerged in 500µl of culture medium. DRG explants were cultured 

overnight at 37oC with 5% CO2 to allow for neurite outgrowth and growth cone formation. 

Treatment solutions containing various quantities of GFP-, Sema-3A- and/or Npn-receptor 

body-conditioned medium were prepared by transfecting HEK cells with the appropriate 

expression plasmids and concentrating medium using an Amicon 100 kDa MWCO Ultra-15 

device (Millipore). These samples were incubated on ice for 1 hour to allow for stabilization 

of the protein interactions and were warmed briefly (in a water bath at 37oC) before 

slowlyapplying the mixtures onto the DRGs. The volume added per well did not exceed 10% 

of the total volume in the well (maximum 50ul treatment mixture in a well, containing 500μl of 

culture medium). DRGs were incubated with conditioned medium samples for 30 minutes at 

37oC. Following a 1 hour fixation in 4%PFA/10% sucrose in PBS, DRGs were washed with 

PBS/0.2% Triton X (PBS/Tx) and subsequently incubated with Phalloidin-TRITC (Sigma, 

P1951) in PBS/Tx for 3 hours at RT to visualize the actin cytoskeleton. Following a second 

wash in PBS/Tx, coverslips containing the DRGs were mounted onto glass slides using 

Mowiol 4-88 mounting medium (Sigma-Aldrich). Fluorescent images were obtained using a 

Zeiss Axiovert microscope, and growth cones were scored as normal (presence of 

lamellipodia and/or ≥ 3 filopodia) or collapsed (no lamellipodia, < 3 filopodia or bullet 

shaped) based on the classification described by [34]. For each treatment group, the 

https://paperpile.com/c/8i7VNb/YR02U
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percentage of growth cones was normalized to the percentage growth cones in the GFP-

condition. Data represents pooled data from DRGs across 5 independent experiments. 

AAV production 

Npn1 is a co-receptor for Sema-3A as well as for vascular endothelial growth factor (VEGF).  

We, therefore, generated AAV vectors encoding the extracellular domain of wildtype Npn1 

(recognizing both Sema-3A and VEGF), and AAV vectors which harbor Npn1 mutants 

recognizing either Sema-3A (Npn1-Y297A-Fc; Herzog et al 2011) or VEGF (Npn1-VEGF-Fc; 

Gu et. al. 2002). Based on the studies of Parker and colleagues [35,36] an additional mutant 

(NPR1-T316R) was created in which the threonine (T) at position 316 to an arginine (R) 

results in a complete abolishment of VEGF-A164 binding (Npn1-T316R), and has 

significantly compromised Sema-3A binding in biochemical assays [37] thus potentially 

generating a binding-deficient receptor. 

Adeno-associated viral vector transfer plasmids containing the coding sequences for Npn1-

Fc, Npn1-VEGF-Fc, Npn1-Y297A-Fc, Npn1-T316R or Npn2-Fc (Moloney et. al. submitted) 

were used to produce adeno-associated viral vectors (AAVs). The packaging plasmids 

containing cap and rep genes for serotype 8 (p5E18VD2/8) and the adenovirus helper 

functions (pAddeltaF6) were kindly provided by Jim Wilson. A batch of AAV8 was made 

using the following protocol. Six 15-cm Petri dishes each containing 1.25x107 HEK 293T 

cells in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal calf serum (FCS) 

and 1% penicillin/streptomycin (PS; all GIBCO) were prepared one day before transfection. 

The medium was refreshed 1 hour prior to transfection to Iscoves modified Eagle medium 

(IMEM) containing 10% FCS, 1% PS and 1% Glutamine. Transfer plasmids were co-

transfected using polyethyleneimine (PEI, MV25000; Polysciences Inc., Warrington, PA, 

USA) in a ratio of 1:1:1 with the plasmids resulting in a total amount of 50ug of DNA per 

plate. The day after transfection, the medium was replaced with fresh IMEM with 10% FCS, 

1% PS and 1% Glutamine. Two days later (3 days post-transfection), cells were harvested in 

D-phosphate buffered saline (D-PBS, GIBCO) and lysed with 3 freeze-thaw cycles. Genomic 

https://paperpile.com/c/8i7VNb/NoMnk+vYxsN
https://paperpile.com/c/8i7VNb/IZABc
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DNA was digested by adding 10 μg/ml DNAseI (Roche Diagnostics GmbH, Mannheim, 

Germany) into the lysate and incubating for 1 hour at 37oC. The crude lysate was cleared by 

ultracentrifugation at 4000 rpm for 30 minutes. The viral vector was purified from the crude 

lysate using the iodixanol gradient method [38–40], diluted in D-PBS/5% sucrose and 

concentrated using an Amicon 100 kDa MWCO Ultra-15 device (Millipore). All AAV vectors 

were stored at -80oC until use. Titers (genomic copies/ml) were determined by quantitative 

PCR on viral DNA primers directed against the enhancer portion of the CMV promoter 

(Forward: CCCACTTGGCAGTACATCAA; Reverse: GGAAAGTCCCATAAGGTCATGT).  

Intracortical injections 

Adult (>P90) rats were initially anesthetized with isoflurane (3%) and deeply anesthetized 

with an intraperitoneal injection of avertin (2,2,2-tribromoethanol, 20 μL/g). The animals were 

placed in a stereotaxic frame and the head was fixed with prilocaine (EMLA) covered 

earbars. Throughout the procedure, body temperature was monitored using a rectal probe 

and maintained at 37°C with a homeothermic blanket (Harvard Apparatus Ltd, Edenbridge, 

Kent, UK) and a constant flow (1.5 L/min) of oxygen-enriched air was delivered to the 

animal's head. After local disinfection of the head with povidone-iodine, the scalp was cut 

with a scalpel and the skin flaps were retracted. The 2 sites of injection were in 

correspondence to the visual cortex and their position was identified in respect to lambda 

(Anterior: 0 mm, Lateral: 3.8 mm); (Anterior; 2 mm, Lateral: 3.8 mm). 

A 1-mm burr hole was drilled through the skull at the 2 sites with a dental drill while 

continuously applying cold saline over the area to prevent overheating and consequent 

damage to the brain. A glass micropipette with a tip diameter of approximately 30 um was 

filled with 0.75 uL of an AAV solution in sterile saline. When the meninges were exposed, the 

injections were delivered, by piercing the underlying dura mater via the glass micropipette 

connected to a syringe, at a depth of approximately 0.7 mm from the brain surface at each 

injection site. The injection was delivered at a rate of 0.5 uL/min with a 1-min interval before 

https://paperpile.com/c/8i7VNb/BNTzQ+Wf9rc+uCdMz
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retracting the micropipette from the tissue. The scalp was then sutured with surgical suture. 

Animals were allowed to recover from anesthesia in a heated recovery box until fully 

conscious and, afterward, paracetamol (100 mg/kg) was administered in the water. 

Visually evoked potentials 

Adult (>P90) rats were anesthetized with an intraperitoneal injection of urethane (0.7 ml/hg; 

20% solution in saline; Sigma) and head-fixed in a stereotaxic frame. After local disinfection 

of the head with povidone-iodine, the scalp was cut and a portion of the skull (4x4 mm) 

overlying the binocular visual cortex (binocular area Oc1B), contralateral to the deprived eye, 

was drilled and removed, leaving the dura mater intact. The dura mater was then removed, a 

glass micropipette, filled with 3M NaCl (2MΩ impedance) was inserted at 3.5 to 3.8 mm 

lateral to lambda, and a subcutaneous ground electrode was placed in the cervical area. 

Throughout the procedure, body temperature was monitored using a rectal probe and 

maintained at 37°C with a homeothermic blanket (Harvard Apparatus Ltd, Edenbridge, Kent, 

UK) and a constant flow (1.5 L/min) of oxygen-enriched air was delivered to the animal. 

Additional doses of urethane were used to keep the anesthesia level stable throughout the 

experiment. Visual stimuli were computer-generated horizontal sinusoidal gratings (0.08 

cyc/deg) and were presented on a monitor suitably linearized by gamma correction and 

positioned centrally to the vertical midline. The stimulation consisted of the abrupt contrast 

reversal of sinusoidal gratings (temporal frequency: 1 Hz). The receptive field of the 

recorded area was verified by stimulating the contralateral eye with a visual stimulus 

windowed to a vertical stripe in order to test the insertion of the electrode in the binocular 

area. Only traces responding to a windowed stimulus within a field of 20° from the vertical 

midline were considered. 
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Immunohistochemistry 

Adult rats were transcardially perfused with cold phosphate buffer (0.1M pH: 7.4) and 

subsequently with cold paraformaldehyde 4% (in 0.1M phosphate buffer pH: 7.4). Brains 

were then collected and post-fixed by incubating them overnight at 4°C in paraformaldehyde 

4%. After incubation in EDTA (0.25M in PBS, 48h, 4°C) and in Sucrose (25% in PBS, 48h, 

4°C), the brains were snap frozen in 2-methylbutane cooled to -40°C. The samples were 

embedded in Tissue-Tek O.C.T. (Sakura Finetek USA Inc.) and 40µm coronal sections were 

cut in a Leica cryostat and collected in Tris-buffered saline (TBS pH: 7.4). 

For Sema-3A/NeuN double staining, free-floating sections were blocked by incubation in 

bovine serum albumin (BSA, 5%) and Triton X100 (0.2%) in TBS for 1h at room temperature 

(RT) and then incubated overnight at RT with Sema-3A antibody (Santa Cruz C17, 1:50, 

BSA 5%, Triton X100 0.2% in TBS) and for 2h RT with Cy3-conjugated anti-Goat (AbCam 

ab6949, 1:500, BSA 5%, Triton X100 0.2% in TBS) to complete the reaction. Afterwards, 

sections were counterstained with NeuN antibody (Merck Millipore MAB377, 1:500 BSA 5%, 

Triton X100 0.2% in TBS) and for 2h RT with Alexa Fluor 488 conjugated anti-Mouse 

(AbCam ab150105, 1:500, BSA 5%, Triton X100 0.2% in TBS). 

For each animal, at least twelve fields from 5-12 different coronal slices were acquired with a 

Zeiss Apotome.2 system with a Zeiss Plan-NEOFLUAR 20X, NA:0.5 lens. The primary 

visual cortex was identified by comparison with reference images [41]. All the images were 

centered on layer 4 of the cortex. We adjusted the imaging parameters to fit the brightest 

slice and never changed them throughout the entire experiment to ensure the same 

conditions for cell counting. NeuN positive cells and Sema-3A positive nets were counted 

manually with the java plugin cell counter for imageJ. 

https://paperpile.com/c/8i7VNb/Xc9tx
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Experimental design and statistical analysis 

All statistical analysis has been performed in Prism (GraphPad, 5.0). A one-way ANOVA test 

was used, followed by Turkey’s posthoc test to compare multiple groups. Statistical 

significance was set at p≤0.05. When two groups were compared, we used an unpaired, 

two-tailed Student’s t-test. Normality of the data and homoscedasticity were controlled using 

SigmaStat. All data are presented as mean±Standard Error of the Mean (SEM). 

 

 

 

 

Results 

Sema-3A aggregation in perineuronal nets correlates with 

critical period closure 

Previous work demonstrated that critical period closure was correlated with the formation in 

the visual cortex of WFA-positive PNNs [1,14]. If Sema-3A is involved in the inhibitory action 

of PNNs on OD plasticity, it could be expected that the accumulation of Sema-3A in PNNs in 

the visual cortex correlates with critical period closure. To test this hypothesis we performed 

WFA and Sema-3A immunostaining at P14, P28, P45 and P90 (Fig.1). Cells were 

considered to be positive when a full ring of staining surrounded a cell body. The results 

showed that Sema-3A PNN-like staining was absent at P14 and P28, whereas Sema-3A 

staining begins to be present at P45, in coincidence with the closure of the rat critical period 

for OD plasticity. Double staining with WFA and PV confirmed that Sema-3A positive 

structures were WFA-positive PNNs surrounding inhibitory PV-positive interneurons (Fig. 1). 

https://paperpile.com/c/8i7VNb/ne2D+hCR2F
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Thus, Sema-3A positive PNNs represent about half of the WFA positive PNNs in the adult 

and increase in parallel with PNN formation during development.  

To further corroborate the correlation between critical period closure, PNN formation and the 

association of Sema-3A with PNN, we dark-reared (DR) rats until adulthood (P90) and we 

assessed Sema-3A staining in the visual cortex. DR is known to delay the closure of the 

critical period for OD as well as the formation of PNNs [1,10]. Immunohistochemical staining 

for Sema-3A showed that in DR rats there was a significant reduction in the fraction of 

neurons (NeuN positive cells) surrounded by Sema-3A (Figure 2A, B). In control animals the 

average fraction of Sema-3A-positive neurons was 3.6% (SEM=0.78%, N=3). Conversely, in 

dark-reared animals, this percentage significantly dropped to 1.6% (SEM=0.37%, N=7). This 

experiment allows to conclude that the persisting plasticity of DR rats is correlated with 

reduced levels of Sema-3A positive PNN structures. Taken together, these results indicate 

that the high levels of plasticity occurring during early developmental times or after DR are 

accompanied by a low density of Sema-3A-positive PNN-structures in the visual cortex. 

Soluble Npn receptors, except Npn1-VEGF-Fc, are able to 

inhibit Sema-3A-induced growth cone collapse 

To test the role of Sema-3A in PNN of adult rats we developed a tool to interfere with Sema-

3A binding with its receptor in the adult visual cortex. Using the soluble neuropilin1 receptor 

fused to a human IgG Fc fragment supplied by Prof. Roman Giger (University of Michigan, 

USA), we performed site-directed mutagenesis to alter specific residues that had been 

shown to form the basis for selective Sema-3A binding (Y297A mutation) (Npn1(Sema3A)-

FC) [31]. We also adapted the “npn12ABC” mutant, created by Gu and colleagues [32], and 

the “Npn1-T316R-Fc” mutant [35,36], by amplifying the ectodomain of these mutants and 

fusing it to a human IgG Fc fragment to create soluble receptors that bind respectively only 

VEGF, and potentially neither Sema-3A nor VEGF. These constructs were inserted into 

adeno-associated viral plasmids under the control of the CMV promoter. The presence of the 

https://paperpile.com/c/8i7VNb/ne2D+GH7F9
https://paperpile.com/c/8i7VNb/FbZA
https://paperpile.com/c/8i7VNb/Bu1A8
https://paperpile.com/c/8i7VNb/vYxsN+NoMnk
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desired mutations was confirmed by sequencing. The Npn2-Fc construct was created by 

amplifying the ectodomain of the neuropilin2 gene and fusing it to a human IgG Fc fragment. 

Sequencing of the Npn1-Fc and the Npn2-Fc confirmed that the Npn portion is in frame with 

the Fc and that only one stop codon exists, positioned at the 3’end of the Fc portion. To 

characterize the expression of the soluble neuropilin receptors, HEK293T cells were 

transiently transfected with the different Npn constructs. Immunocytochemistry was 

performed on cells 3 days post-transfection and results indicate Npn1-Fc is expressed by the 

transfected cells, with a faint cloud of positive staining found outside the cells suggestive of 

secreted protein (Fig 3A). The Npn1-Y297A-Fc and Npn1-T316R-Fc variants showed a 

similar cellular expression pattern as the Npn1-Fc (data not shown). Western blot analysis 

on conditioned medium harvested 3 days post-transfection showed that all soluble receptors 

are secreted into the medium and have the expected molecular weight (Fig 3B). 

The efficacy of soluble Npn receptors in counteracting Sema-3A action was tested using the 

classical dorsal root ganglion (DRG) growth cone collapse assay. Explanted DRG neurons 

from an E15 rat embryo were cultured overnight on laminin in the presence of 20ng/ml NGF. 

DRGs were treated for 30 minutes with GFP, Sema-3A and/or soluble Npn receptors, after 

which the explants were fixed and the cytoskeleton was visualized using Phalloidin-TRITC. 

The total number of collapsed growth cones (Fig. 3C) and intact growth cones (Fig. 3D) were 

manually counted and graphed to illustrate the percentage of total growth cones (Fig. 3E). 

Untreated and Npn-alone conditions did not differ from GFP condition.  All conditions were 

normalized to the GFP treatment condition and represent pooled data from DRGs across 5 

independent experiments. 

Upon Sema-3A treatment, approximately 44% growth cones remain (p< 0.001, compared to 

GFP treatment). The remaining grey bars illustrate the effects of pre-incubating Sema-3A 

with the soluble Npn receptors (Fig. 3E). When Sema-3A and Npn1-Fc are applied in 

combination, 60% growth cones remain after 30 minutes of treatment (Fig. 3E, p < 0.01, 

compared to Sema-3A treatment alone). Npn1-Y297A-Fc, the isoform which is reported to 

selectively bind Sema-3A and not VEGF, is also efficient in antagonizing Sema-3A function 
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with 68% of growth cones remaining intact in the presence of a 1:1 molar ratio of Sema-3A 

and Npn1-Y297A-Fc (p<0.001, compared to Sema-3A treatment alone). As expected, Npn1-

VEGF-Fc, the isoform which should only bind VEGF, does not prevent Sema-3A-induced 

collapse (50% growth cones, p=0.28, ns compared to Sema-3A treatment). Surprisingly, the 

Npn1-T316R-Fc variant also neutralized Sema-3A function (71% growth cones in the 

presence of a 1:1 molar ratio of Sema-3A and Npn1-T316R-Fc, p<0.01). The explanation for 

this may be that the T316R mutant was originally tested using a truncated Npn1 protein 

consisting only of the b1b2 and not the a1a2 domain [35]. It is plausible that the current 

Npn1-T316R-Fc variant, where the a1a2 domains are intact, “override” the effect of the 

T316R mutation and allow the Npn1-T316R-Fc to continue binding of Sema-3A. Since the 

Npn1-T316R-Fc is not a binding-neutral receptor body we excluded this mutant from further 

in vivo study.  Lastly, Npn2-Fc, a non-conventional Sema-3A receptor [42,43], is able to 

significantly inhibit Sema-3A-induced growth cone collapse (56% growth cones, p<0.05, 

compared to Sema-3A treatment).  

Neuropilin1-Fc promotes adult OD plasticity in the rat visual 

cortex 

To functionally assess the role of Sema-3A in the plasticity of the adult visual cortex, we 

tested whether the interference with Sema-3A function, achieved by AAV8-mediated 

expression of Npn1-FC in the visual cortex, was sufficient to restore OD plasticity after seven 

days of MD in adult (>P90) rats. We first assessed Npn1 expression in the injected rats 

using immunohistochemistry. As shown in Fig. 4A control sections showed low levels of 

expression of endogenous Npn1 in particular in layer II and V with some scattered faintly 

labeled cells in all other layers. The sections of the cortex injected with AAV8-Npn1-Fc 

shows numerous pyramidal neurons as well as other cells which express Npn1-Fc and 

diffuse extracellular staining of secreted Npn1-Fc covering the primary visual and extending 

to the neighboring cortical areas (Fig 4B,C).  

https://paperpile.com/c/8i7VNb/NoMnk
https://paperpile.com/c/8i7VNb/TNHZ+y9hkK
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After assessing in vivo transduction and release of NPN1-Fc, we studied whether this 

treatment could affect Sema-3A positive PNNs. Thus, we transduced Npn1-FC into the 

visual cortex of adult rats and we labeled the sections for Sema-3A and WFA. Since Npn1 is 

also a co-receptor for VEGF, as a control we transduced Npn1-VEGF-FC (AAV-VEGF 

group). This Npn-1 mutant isoform specifically interacts with VEGF [32] but not with Sema-

3A, and does not interfere with Sema-3A induced growth cone collapse (Fig. 3E). Fig. 4D,E 

shows that Sema-3A positive PNNs were not significantly affected by Sema-3a inhibiton 

although a trend for a reduction was observed (AAV-Npn1 group N=5, AAV-VEGF group 

N=5, unpaired two-tail Student’s t-test p=0.204). This suggests that NPN1-Fc does not 

interrupt the association of Sema-3A with PNN but rather interferes with Sema-3A-mediated 

signaling.  

We then assessed whether Sema-3A inhibition could affect ocular dominance plasticity in 

the adult rat visual cortex. Figure 4F shows the ratios of the VEP amplitude obtained by 

stimulating the contralateral or the ipsilateral eye (C/I ratio) in non-deprived rats or after one 

week of monocular deprivation. In naive non-deprived rats, the C/I ratio was around two 

(binocular, BIN group; C/I Ratio= 2.05±0.06; N=5; ANOVA: p<0.0001). Seven days of MD 

did not significantly change the C/I ratio (MD group, C/I Ratio=2.06±0.15; N=4. Post-hoc: 

p>0.9 vs Bin). Strikingly, the rats expressing Npn1-FC showed a significantly lower C/I ratio 

(AAV-Npn1 group; C/I Ratio= 1.29±0.08, N=4. Post-hoc: p<0.001 vs BIN and MD) than BIN 

or MD rats indicating the activation of OD plasticity. As a control, rats were injected with an 

empty vector and monocularly deprived for seven days (AAV-empty). These rats had a C/I 

ratio not different from untreated BIN or MD rats, and the C/I ratios were significantly higher 

than observed in AAV-Npn1 rats (C/I Ratio= 1.87±0.13, N=5. Post-hoc: p>0.8 vs BIN, MD; 

p<0.01 vs AAV-Npn1) indicating that the injection procedure and the viral transduction did 

not alter plasticity levels. Since Npn1 is also a co-receptor for VEGF, we tested rats 

expressing Npn1-VEGF-FC (AAV-VEGF group) or Npn1-Y297A-FC (AAV-Sema-3A group), 

an NPN-1 mutant isoform specifically interacting with Sema-3A [31] and functionally 

interfering with Sema-3A induced growth cone collapse. While seven days of MD did not 

https://paperpile.com/c/8i7VNb/Bu1A8
https://paperpile.com/c/8i7VNb/FbZA
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significantly modify the C/I ratio in AAV-VEGF rats with respect to BIN, MD and AAV-empty 

groups (C/I ratio= 1.78±0.05, N=4. Post-hoc: p>0.5 vs BIN, MD and AAV-empty, p<0.05 vs 

AAV-Npn1, AAV-Sema-3A); the receptor body specific for Sema-3A elicited a plasticity-

enhancing effect (C/I ratio= 1.19±0.11, N=4. Post-hoc: p<0.01 vs BIN, MD, and AAV-empty, 

p< 0.05 vs AAV-VEGF, p>0.9 vs AAV-Npn1), mirroring the outcome of the injection of the 

neuropilin-1 receptor body. 

We also tested another receptor body, Npn2-FC, which is based upon the isoform 2 of 

neuropilin. Remarkably, the injection with this construct, also allowed a shift in OD after 7 

days of MD (C/I ratio= 1.32±0.10, N=5; Post-hoc: p<0.01 vs BIN, MD, and AAV-empty, 

p<0.05 vs AAV-VEGF, p>0.9 vs AAV-Npn1 and AAV-Sema-3A), thus mimicking the effect of 

the previously tested isoform 1. Although the predominant class 3 semaphorin in PNN is 

Sema-3A, Sema-3B is also detectable in PNN (Vo et al 2013). Sema-3B is interacting with 

high affinity with Npn2 and the OD shift may, therefore, have been caused by functional 

interference with Sema-3B. Alternatively, Npn2 can bind to Sema-3A and functional 

interference with soluble Npn2 could also diminish Sema-3A’s function (Nasarre et al. 2009; 

Moloney et al., submitted). 

Taken together, these results demonstrate that functional interference with the signaling of 

Semaphorin-3A can promote OD plasticity in adult rats and also corroborates the idea/notion 

that extracellular chemorepulsive molecules incorporated in the PNN could actively repress 

cortical plasticity in the adult brain and thus participate in the mechanisms for critical period 

closure. 

Discussion 

The role of PNNs in the plasticity of the adult visual cortex of rodents has repeatedly been 

investigated, however little is known about the underlying molecular mechanisms by which 

PNN regulate plasticity. Our data demonstrate that Sema-3A is a plasticity brake associated 

with PNNs in the rat adult visual cortex. Indeed, our results and previous data showed that 
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Sema-3A positive PNNs in the visual cortex increase in parallel with critical period closure, 

whereas dark rearing, ChABC treatment, or Crtl-1 deletion, interventions that preserve 

plasticity in visual cortical circuits, also reduce the accumulation of Sema3A-positive PNNs 

[29,44]. These data suggest that Sema-3A in PNNs can be actively modulated to facilitate or 

restrict plasticity.  

To assess the functional role of Sema-3A in adult OD plasticity we developed and 

characterized a tool to antagonize Sema-3A action in vivo. To selectively scavenge Sema-

3A, we prepared receptor bodies that were tested in the classical assay of DRG growth cone 

collapse, and that could be delivered to the adult visual cortex by AAV vectors intracortical 

injection. We found that interfering with the function of Sema-3A by expression of Npn1-Fc in 

the adult visual cortex promotes OD plasticity. Importantly, a plasticity-enhancing effect was 

also obtained following expression of a receptor body which selectively binds Sema-3A and 

not VEGF. No effect was observed with the empty vector or a vector carrying a mutant 

isoform of Npn1 able to preferentially interact with VEGF but not Sema-3A, strengthening the 

specificity of our results. These data mimic the enhancement in visual cortical plasticity 

observed after targeting PNNs by CSPG GAG digestion by means of chABC or by genetic 

deletion of the PNN stabilizing factors Crtl-1 and aggrecan both in rats and mice 

[1,6,8,44,45] suggesting that at least part of the action of PNNs on plasticity is mediated by 

Sema-3A. 

The active role of Sema-3A in the adult visual cortex is also supported by the 

observation that two of its co-receptors, PlexinA1 and PlexinA4 are located on the plasma 

membrane of PNN-bearing PV cells constituting a microdomain closely associated with PNN 

bound Sema-3A [29]. The ability of PV cells to respond to Sema-3A-Plexin signaling is 

further supported by the abundance in PV cells of flotillin-1 [29], a lipid raft protein that is 

essential for Sema-3A induced growth cone turning and endocytosis [46]. It has to be 

underscored that all these actions of Sema-3A located within PNNs can occur together with 

Sema-3A independent actions of the PNN mediated by Plexin independent signaling 

https://paperpile.com/c/8i7VNb/kfYz+8Y3Ui
https://paperpile.com/c/8i7VNb/ne2D+kfYz+hmNe+2lBk+BP1c
https://paperpile.com/c/8i7VNb/8Y3Ui
https://paperpile.com/c/8i7VNb/8Y3Ui
https://paperpile.com/c/8i7VNb/KJiF4
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pathways including protein-tyrosine phosphatase-sigma, leukocyte common-related 

phosphatase, or Nogo receptor-1 or receptor-3 [47–49].  

The inhibitory action of Sema-3A on OD plasticity could derive from a local effect on 

synaptic inputs onto PV cells as suggested by recent work on cerebellar and hippocampal 

circuits. These studies suggested that Sema-3A in PNNs can be actively modulated to 

facilitate or restrict plasticity [13,29,50]. Once activated, semaphorin signaling has been 

shown to regulate the formation and function of synaptic contacts [51,52]. Specifically, 

Sema-3A increases the clustering of pre- and postsynaptic proteins in cortical neurons in 

vitro [53–56]. In the context of visual cortical plasticity all these mechanisms could contribute 

to the experience-dependent selection of inputs onto PV cells, a cellular population that has 

been shown repeatedly to be involved in regulation of critical periods [15–22,53]. In 

particular, it has been suggested that one of the early events of the plasticity process 

activated by monocular deprivation in juvenile mice is pruning of excitatory inputs onto PV 

cells that would lead to reduced inhibition and increased activation of cortical neurons by 

stimulation of the open eye. This mechanism would reduce with age and its reactivation in 

the adult would enhance plasticity [23]. These experiments indicate that synaptic plasticity at 

the level of PV cells could be an upstream mechanism that could change the network 

properties of the visual cortical circuit [8,16] modulating plasticity levels of the entire network. 

It is likely that PNN bound molecules, such as Sema-3A, acts at this level to regulate 

plasticity levels in the adult visual cortex.  

Intriguingly a plasticity-enhancing activity was detected following expression of Npn2-

Fc. It is not clear whether Npn2 is able to bind Sema-3A: whereas early results showed the 

lack of Npn2 binding by Sema-3A [57,58] and persistence of Sema-3A mediated repulsion in 

the presence of soluble Npn2 receptors [59], more recent data suggests that Npn2 can bind 

Sema-3A and that blocking Npn2-Sema-3A interaction abolish the chemorepulsive action  of 

Sema-3A [42]. These latter data were corroborated by the observation that soluble Npn2-Fc 

also inhibited Sema-3A-induced growth cone collapse in vitro. It is possible that redundancy 

may exist between the two neuropilin receptors within the Sema-3A pathway [43]. Another 

https://paperpile.com/c/8i7VNb/fK7rG+Nx7yi+WVXeC
https://paperpile.com/c/8i7VNb/co9n6+tcg9X+8Y3Ui
https://paperpile.com/c/8i7VNb/WyXoS+01qhF
https://paperpile.com/c/8i7VNb/Lo6WS+VxXFN+hNEiq+9ic7b
https://paperpile.com/c/8i7VNb/GuPma+wL2Fa+JOlhH+NDtOW+CLpUk+W5C5A+3Z5KW+1Gcf5+Lo6WS
https://paperpile.com/c/8i7VNb/iBVXm
https://paperpile.com/c/8i7VNb/wL2Fa+hmNe
https://paperpile.com/c/8i7VNb/Vfye+8YtG
https://paperpile.com/c/8i7VNb/zz1v
https://paperpile.com/c/8i7VNb/TNHZ
https://paperpile.com/c/8i7VNb/y9hkK
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possible explanation of the potentiating effect of Npn2-FC on visual cortical plasticity is that 

Sema-3B, that is also present in PNNs [29], or other Npn2 binding factors, such as Sema-

3F, that have also been involved in plasticity [51,53]. This observation raises the possibility 

that many different proteins are concentrated at the PNN by the interaction with CSPG 

GAGs. Recent work identified a basic motif composed of 15-amino acid enriched in arginine-

lysine (RK) doublets at the N-terminal of Otx2 which is responsible for Otx2 binding to PNNs 

[6]. This peptide motif is present in a small number proteins (Beurdeley et al., 2012; 

Prochiantz and Di Nardo, 2015) that could potentially be enriched in the PNN. The C-

terminus of Sema-3A interacts with CSPGs [60] and the C-terminus of Sema-3A contains an 

RK-peptide sequence which has very high homology to the Otx2 binding site. Moreover, 

Sema-3A and Otx2 share the same preference for interaction with chondroitin sulfate E (CS-

E) [6,28]. Thus, Otx2, semaphorins and other GAG binding proteins could be concentrated 

by the PNN. In this way, the PNN would become a molecular hub changing its function 

depending on its molecular composition. In this view, the regulation of PNN maturation and 

stability could represent a regulatory step to control the extracellular microenvironment 

surrounding PV cells and eventually plasticity of a brain circuit. 

Figure legends 

Figure 1 Sema-3A accumulates in PNN during late postnatal development. (A) Sections of 

the visual cortex of rats at different postnatal ages (P14, P28, P45, P90) were stained for 

Sema-3A, WFA (to detect PNN) and PV (to identify parvalbumin-positive inhibitory 

interneurons). The right-hand column shows a merge of the Sema-3A, WFA and PV 

staining. Sema-3A is not yet detectable in PNN at P28 but becomes increasingly visible in 

the cortex at P45 and P90. At P90 robust Sema-3A labeling is observed. Sema-3A-positive 

PNNs are associated with PV cells. Scale bar 50 μm. (B) Quantification of the density of 

Sema-3A positive and WFA positive cells in the visual cortex. 

 

https://paperpile.com/c/8i7VNb/8Y3Ui
https://paperpile.com/c/8i7VNb/WyXoS+Lo6WS
https://paperpile.com/c/8i7VNb/2lBk
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Figure 2 Dark rearing prevents Sema-3A aggregation in perineuronal nets. (A and B) 

Representative images of NeuN (green) and Sema-3A (red) stained slices of the visual 

cortex in control (N=3) and dark-reared (N=7) rats respectively. (C) In dark-reared (DR) 

animals, fewer of the neurons are surrounded by an aggregation of Semaphorin-3A. (* p <= 

0.05; Two-tailed Student’s T-test) 

 

Figure 3 Soluble neuropilin receptors are expressed and secreted from NRP-Fc transfected 

cells. (A) HEK293T cells were transiently transfected with Npn-Fc expression vectors, and 

processed for immunocytochemistry using HRP-conjugated antibodies directed against Fc. 

Npn1-Fc and Npn1-VEGF-Fc are produced in the cell after transfection. (B) Medium 

samples were loaded onto 8% SDS-PAGE gels and blotted with anti-Fc. All soluble Npn 

receptors are secreted, detected by a band at 150kDa. (C-E) Functional characterization of 

receptor bodies in the dorsal root ganglion (DRG) growth cone collapse assay. The growth 

cones E15 rat embryo DRG neurons collapse in the presence of Sema-3A, the neurite tip 

contains no lamellipodia and ≤1 filopodium (C, arrowhead). (D) Application of a Sema-3A 

and Npn1-Fc mix prevents Sema-3A-induced collapse, the lamellipodia of the growth cones 

remains spread (open arrowhead), and ≥2 filopodia (filled arrowhead). (E) Quantification of 

growth cones after treatment with Sema-3A and soluble Npn receptors.  All conditions were 

normalized to GFP (open bar). Untreated (horizontally scored bar) and Npn-alone (vertically 

scored bar) conditions did not differ from GFP condition.  Sema-3A treatment (8.6 nM; light 

grey bar) results in a significant decrease in growth cones. The remaining 5 grey bars 

illustrate the effects of pre-incubating Sema-3A with soluble Npn receptors. From left to right: 

upon combined Sema-3A and Npn1-Fc treatment there is a significant increase in numbers 

of growth cones; Npn1-VEGF-Fc does not rescue Sema-3A-induced growth cone collapse; 

Npn1-Y297A-Fc and Npn1-T316R show a similar and significant ability for neutralizing 

Sema-3A function and lastly, Npn2-Fc treatment significantly reverses Sema-3A-induced 

growth cone collapse. Data were obtained from 5 independent experiments error bars were 
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generated using the S.E.M.  and a Student’s t-test was used to determine significance (* p 

<0.05, ** p<0.01, *** p<0.001). Scale bar = 20µm 

 

Figure 4 AAV8 mediated NPN1-Fc expression in sections of the visual cortex of adult rat. 

(A) A section of a contralateral control hemisphere not injected with AAV8-NPN1- Fc. (B, C) 

Sections of the visual cortex injected with 1ul of AAV8-NPN1- Fc three weeks after injection 

at low (B) and high magnification (C). Sections were processed for immunohistochemistry for 

NPN1. The control sections show low levels of expression of endogenous NPN1 in particular 

in layer II and V with some faintly scattered cells in all other layers. The sections of the 

cortex injected with AAV8-NPN1- Fc shows numerous pyramidal neurons as well as other 

cells which express NPN1-Fc and diffuse extracellular staining of secreted NPN1-Fc. 

Representative sections are shown. cc is corpus callosum. Scale bar for panel B is 100 μm, 

for panel C is 25 μm. (D-E) The expression of Npn1 receptor body did not significantly alter 

the density of Sema-3A, WFA double positive PNNs. (F) Contra/Ipsi ratio of AAV8 injected 

rats after seven days of monocular deprivation. Examples of typical visual evoked potentials 

recordings are shown in the inset. The top and bottom rows represent respectively the 

contralateral and ipsilateral responses of an MD AAV-empty injected rat and of an MD AAV-

Npn1 injected rat; (Scale bar: 50μV, 50ms). The bars represent the ratio of the contralateral 

and ipsilateral VEPs amplitude in different treatment groups. No injection, transfection with 

an empty vector, a VEGF-specific version of Npn1-FC did not evoke any OD shift after 7d 

MD. Conversely, the transfection with Npr1-FC or with its Sema-3A-specific version allowed 

for an OD shift, thus indicating the reactivation of adult OD plasticity. (***p <= 0.001 vs No 

treatment and Bin groups; One-Way ANOVA; post-hoc: Turkey’s multiple comparison test) 

(BIN: N=5; No Treat: N=4; AAV-Npn1: N=4; AAV-Empty: N=5; AAV-:Sema-3A N=4; AAV-

:VEGF N=4; AAV-Npn2: N=5) 
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