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Abstract: A new methodology for the synthesis of small molecules containing the S-Se bond is
reported. Aryl- and alkyl-selenols react smoothly with N-thiophthalimides to afford the corresponding
selenenylsulfides through a clean SN2 path occurring at the sulfur atom. The reaction proceeds under
very mild conditions in DMF in absence of catalysts for most of the substrates. The scope of the reaction
was found to be broad, allowing a wide series of selenols and N-thiophtalimides to be efficiently
employed in this procedure. Owing to the instability of the S-Se bond, selenenylsulfides exhibited
a remarkable tendency to disproportionate to the corresponding symmetric diselenides and disulfides.
Preliminary evaluation of the catalytic antioxidant properties of novel selenenylsulfides showed their
behaviour as GPx mimics.
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peroxidase (GPx) mimics; sulfur

1. Introduction

Antioxidants are compounds able to prevent or inhibit the oxidation of other molecules, and can
be natural or synthetic [1,2]. Natural systems include both low molecular weight derivatives, such as
polyphenols, ascorbic acid, lipoic acid and vitamin A, and also several enzymes, namely glutathione
peroxidase (GPx), thioredoxine reductase (TrxR), superoxide dismutase (SOD), and catalase. Elements
like zinc, selenium, iron, and copper are responsible of the activity of certain enzymes. Also, synthetic
antioxidants found an extensive use in medicinal and food chemistry.

In this context, selenium and its organic derivatives play an essential role in biochemistry and
medicine. In fact, organoselenium compounds, together with some sulfur and tellurium derivatives,
find application as antioxidants, anticancer, chemo-protectors, and enzymes modulators [3–9]. Several
studies established the role of selenium in biological systems [10,11].

The catalytic activity of enzymes and of synthetic antioxidants has been ascribed to the heteroatom
present in the active site. Selenium derivatives are well known to behave as mimics of the selenoenzyme
GPx [12–14]. Besides this activity, the positive effect of selenium containing molecules against various
diseases has been also attributed to other antioxidant mechanisms, such as ROS (reactive oxygen
species) scavenging properties and metal coordination (iron and copper) to prevent DNA damage [15].
Organoselenium compounds usually behave as more efficient systems with respect to sulfur analogues
in cancer prevention or as radical scavengers.

On the basis of the catalytic cycle proposed for GPx, the selenol moiety of the enzyme (EnzSeH)
is oxidized by the peroxide, forming a selenenic acid (EnzSeOH), which reacts with a thiol (typically
glutathione, GSH) leading to a selenenylsulfide (EnzSeSG). The mixed selenosulfide reacts with
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a second equivalent of GSH, to reform the selenol, together with oxidized glutathione GSSG.
The selenenylsulfide, containing the Se-S bridge, represents the key intermediate for the activity of the
enzyme [7,16–19]. Taking into account the importance of this process, several synthetic approaches to
obtain selenated small molecules as enzyme mimics have been developed. However, to the best of our
knowledge, a limited number of methods are reported for the preparation of selenenylsulfides. These
methods typically exploited the reactivity of diselenides in thiol-diselenide exchange or foresee the
reaction of sulfenyl derivatives with thiols [16,17,20–22].

It is well established that the Se-S bridge is unstable and undergoes disproportionation reaction
to afford diselenides and disulfides. Some examples are reported on selenenylsulfides stabilized by
sterically bulky groups or by intramolecular Se . . . Het (N, O) interactions [23].

Owing to the interest in these selenium containing compounds, the search for novel procedures
to prepare small molecules containing the Se-S unit is of great interest.

Our long-dated interest in the chemistry of silyl chalcogenides allowed to disclose novel
procedures to access a plethora of sulfur and selenium containing molecules exploiting the nucleophilic
behaviour of the chalcogen atom towards various electrophiles [24–29]. Recently we reported the
reaction of bis(trimethylsilyl)selenide (HMDSS) with N-thiophtalimides as a mild, general metal free
procedure for the synthesis of variously substituted disulfides [30].

Indeed, despite the interest in the reactivity of selenols as nucleophilic selenium transfer reagents,
their use has been critically limited by their instability. However, HMDSS was efficient in the opening
of ring strained heterocycles, namely epoxides, episulfides and aziridines, leading to a wide range
of β-functionalized selenols, which were stable enough to react with electrophiles under controlled
catalytic conditions [31]. Differently substituted stable aryl selenols were also prepared by reduction
of the parent diselenides to explore their activity as enzyme inhibitors [32].

On the basis of our findings on the behaviour of selenols we report here a new approach for the
preparation of selenenylsulfides using N-thiophtalimides as suitable electrophiles.

2. Results and Discussion

We began our investigations by studying the reaction of benzeneselenol 1a with
2,4-dimethoxyphenyl N-thiophthalimide 2a (Table 1). The reaction was initially performed at 0 ◦C for
2 h in the presence of Et3N, using CHCl3 as the solvent (Table 1, entry 1). Interestingly, under
these conditions the formation of the desired selenenylsulfide 3a was observed, albeit together
with a comparable amount of diselenide 4a and disulfide 5a. Furthermore, ca. 30% of the starting
N-thiophthalimide 2a remained unreacted. Similar results, both in terms of conversion and 3a:4a:5a
ratio, were obtained upon performing the reaction at −78 ◦C for 4 h (entry 2). We evaluated whether
the solvent could have an effect on the reaction outcome. We found that the use of acetonitrile in
place of chloroform gave the diselenide 4a and the disulfide 5a as main reaction products, together
with a larger amount of unreacted 2a (ca. 50%, entry 3). The use of toluene gave slight 3a:4a:5a ratio
improvements, although poor conversion was achieved (Table 1, entry 4). Remarkably, when DMF was
used as solvent in the presence of Et3N or Cs2CO3/TBAI, complete consumption of 2a was observed
within 2 h. Under these conditions a comparable mixture of compounds 3a, 4a, and 5a was observed
(entries 5 and 6). Finally, we were delighted to find that the desired selenenylsulfide 3a was smoothly
formed as major product simply treating selenol 1a with N-thiophthalimide 2a in DMF, in absence of
any catalyst (entry 7). This observation seems to suggest that the formation of selenenylsulfide 3a is
the result of a clean SN2 at sulfur of 2a by the nucleophile 1a, favoured in polar aprotic solvents such
as DMF.

In our hands compound 3a proved to be rather unstable, as the selenenylsulfide exhibited
a remarkable tendency to form the corresponding symmetrical diselenide 4a and disulfide 5a. Indeed,
selenenylsulfide 3a significantly decomposed on silica gel during flash chromatography purification
(36% isolated yield). Similar behaviour was observed when using a different stationary phase such as
neutral Al2O3. We also observed that both bases and acids could promote the conversion of 3a into 4a
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and 5a. Intriguingly, the mild acidity of chloroform proved to be sufficient to induce fast conversion of
3a, which could also be observed while acquiring the 1H NMR spectrum in CDCl3.

Table 1. Optimization of the reaction conditions for the synthesis of 3a from 1a and 2a.
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Entry Solvent Base Temperature Time 3a:4a:5a a Conversion (%) a

1 CHCl3 Et3N 0 ◦C to r.t. 2 h b 36:32:32 71 c

2 CHCl3 Et3N −78 ◦C 4 h 34:33:33 88 c

3 CH3CN Et3N 0 ◦C to r.t. 4 h 18:41:41 52 c

4 PhMe Et3N 0 ◦C to r.t. 24 h 42:29:29 67 c

5 DMF Et3N 0 ◦C to r.t. 2 h 32:34:34 >95

6 DMF Cs2CO3/TBAl 0 ◦C to r.t. 2 h 44:28:28 >95

7 DMF - r.t. 4 h 72:14:14 >95

a Determined by 1H NMR of the crude reaction mixture. b Longer reaction time led to improved conversion but
lower 3a:4a:5a ratio. c 29%, 12%, 48%, and 33% of starting N-thiophthalimide 2a remained unreacted, respectively
for entries 1, 2, 3, and 4.

Having established optimum reaction conditions for the conversion of selenols and
N-thiophthalimides into the corresponding selenenylsulfides, we explored the scope and the limitation
of the reaction. We initially focused our attention on variations of the N-thiophthalimide structure.
We found that, under the optimised reaction conditions, variously substituted N-arylthiophthalimides
2a–f, bearing different substituents, such as alkyl, unprotected hydroxyl, methoxy, and silyloxy
moieties at different positions of the aromatic ring, reacted smoothly with benzeneselenol 1a,
enabling the formation of aryl(phenylselanyl)sulfanes 3a–f (Scheme 1). Furthermore, the reaction
was also applied to the N-arylthio derivative of δ-tocopherol 2g, leading to the formation of
compound 3g bearing a vitamin E-like skeleton and the phenylseleno moiety. Intriguingly, the
2-chloro-1-N-cyclohexylthiophthalimide 2h proved to be scarcely reactive under the standard
conditions. Nonetheless, 1a and 2h readily reacted in the presence of Cs2CO3 and TBAI to afford
alkyl(phenylselanyl)sulfane 3h. However, as previously observed for compound 3a, although
selenenylsulfides 3b–h were formed in good yields, a significant decomposition occurred during
purification. Whereas pure 3b,c,h could be isolated in moderate yields, aryl(phenylselanyl)sulfane 3d–g
gave only the corresponding diselenide 4a and disulfides 5d–g upon flash column chromatography
(Scheme 1). Having demonstrated that a variety of aryl- and alkyl- N-thiophthalimides could be
successfully employed in this reaction, we next explored the scope of the reaction with respect to
differently substituted selenols. Pleasingly, arylselenols 1b–d, bearing methyl and methoxy groups
onto different position of the aromatic ring, reacted efficiently with N-arylthiophthalimide 2a and
N-alkylthiophthalimide 2h to yield the corresponding substituted selenenylsulfides 3i–m. Despite
the instability exhibited by S-Se bonds, compounds 3i–m were obtained in good to moderate isolated
yields (Scheme 1).
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Scheme 1. Scope of the synthesis of selenenylsulfides from selenols and N-thiophthalimides.

Finally, in order to evaluate whether this reactivity could also be extended to functionalized
alkyl selenols, β-hydroxy selenol 1e was treated with N-thiophthalimides 2a and 2h. Unfortunately,
albeit selenenylsulfides 3n and 3o were efficiently formed, complete disproportionation occurred
during purification on silica gel, leading exclusively to the isolation of diselenide 4e and disulfides
5a,h (Scheme 1).

Worthy of mention is the complete chemoselectivity observed in the reactions of selenols with
N-thiophthalimide 2h. In fact, despite working in the presence of a remarkably strong nucleophilic
selenate ion and a potentially very good leaving group, no trace of the attack on the chloro substituted
carbon was observed, being the sulfur atom of 3h the unique electrophilic partner of these reactions.

The amount of diselenides 4 and disulfides 5 could not be reduced working under strictly
controlled conditions (i.e., using dry-box, in absence of light, fast manipulation). The observed
behaviour is in accordance with previous reports on the low stability of this kind of structures which,
amongst other factors, depends on the nature of substituents on the sulfur or selenium atoms [19,23].

As stated above, a selenenylsulfide is postulated to be the key intermediate of the GPx catalytic
cycle. The selenium atom of a selenocysteine residue (Sec) of the GPx catalytic triad and the thiol
group of a molecule of GSH are indeed involved in the formation of the selenenylsulfide which, upon
reaction with a second molecule of GSH regenerates the catalytically active selenol moiety of Sec.
This biochemical mechanism allows the reduction, in living cells, of harmful hydroperoxides to safe
alcohols and water, therefore accounting for the biological relevance of S-Se bonds formation [1,3,4].



Catalysts 2019, 9, 333 5 of 11

Thus, having developed a novel procedure for the synthesis of small molecules containing the
S-Se moiety, we sought to preliminary test their GPx-like activity. The thiol peroxidase-like activity
of compounds 3h and 3l was studied according to the DTT oxidation test (Figure 1) [33–35]. Indeed,
selenenylsulfides 3h,l behaved as medium effective catalysts with T50 around 70 min [36] Furthermore,
in line with previous findings on the antioxidant properties of different organoselenium compounds [37,38],
the presence of a methoxy group onto the arylseleno moiety renders selenenylsulfide 3l more efficient than
3h (Figure 1). To get more insight on the GPx activity of these new compounds [39–42], in Figure 1 are
reported data obtained for diselenides 4a and 4c and disulfide 5h measured under the same conditions.
Thus, while diselenides 4a,c promoted a faster oxidation than selenenylsulfides with T50 around 20 min,
disulfide 5h did not exhibit significant catalytic antioxidant properties (Figure 1).
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Figure 1. Oxidation of DTTred with H2O2 in the presence of Se- or S-containing catalysts (10 mol%).
Reaction conditions: [DTTred]0 = 0.14 M, [H2O2]0 = 0.14 M, [catalyst] = 0.014 M, CD3OD (0.6 mL).
Reaction progress was monitored by means of 1H NMR. The mean ± SD values of three separate
experiments are reported.

3. Materials and Methods

3.1. Experimental Section

All the reactions were performed under a positive pressure of nitrogen and were monitored by
TLC using commercially available precoated plates (silica gel 60 F 254) and compounds were visualised
by fluorescence quenching or by staining the plates with acidic p-anisaldehyde solution. Silica gel
60, 230–400 mesh, was used for flash column chromatography. Dry solvents were obtained using
a Pure Solv™ Micro system. Commercially available reagents were used as obtained from freshly
opened containers without further purification. Aryl selenols 1a–d [32], alkyl selenol 1e [31], and
N-thiophthalimides 2 [43–48] were prepared according to reported procedures. Spectroscopic data of
diselenides 4a–e [26,49] and disulfides 5a–h [30] matched those previously reported in the literature.

1H and 13C NMR spectra were recorded in CDCl3 or C6D6 with a Varian Mercury Plus instrument
or with a Varian INOVA instrument at 400 and 100 MHz, respectively. The corresponding residual
non-deuterated solvent was used as a reference (CDCl3: 7.26 ppm for 1H and 77.0 ppm for 13C; C6D6:
7.16 ppm for 1H and 128.0 ppm for 13C). 77Se NMR spectra were recorded using Bruker 400 Ultrashield
spectrometer (Bruker, Milan, Italy), operating at 76 MHz. Diphenyl diselenide (PhSe)2 was used as an
external reference for 77Se NMR (δ = 461 ppm). 1H NMR data are reported as follows: chemical shift,
integration, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, m = multiplet, dd =
doublet of doublet, etc.), coupling constant (J) or line separation (ls), and assignment. Mass spectra
(MS) were determined by ESI (Thermo Fisher Scientific, Milan, Italy). See Electronic Supplementary
Material for details.
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3.2. General Procedure for the Synthesis of Selenenylsulfides 3

A solution of selenol 1 (0.20 mmol, 1.0 eq.) in dry DMF (0.5 mL) was added to a solution of
N-thiophthalimide 2 (0.24 mmol, 1.2 eq.) in dry DMF (1.5 mL) at room temperature under inert
atmosphere (N2); the reaction mixture was stirred for 4 h (reaction progress monitored by TLC).
Afterwards, the mixture was diluted with Et2O (5 mL) and then H2O (3 mL) was added. The organic
phase was extracted with Et2O (5 mL), washed with water (3 × 5 mL) and brine (5 mL), and then
dried over Na2SO4; filtered and concentrated in vacuo. The crude material was purified by flash
chromatography to afford selenenylsulfides 3.

3.2.1. Synthesis of (2,4-Dimethoxyphenyl)(phenylselanyl)sulfane 3a

Following the general procedure, N-thiophthalimide 2a (57 mg, 0.18 mmol) and benzeneselenol
1a (24 mg, 0.15 mmol) gave, after flash chromatography (petroleum ether/Et2O 5:1, 3a: Rf = 0.47; 4a:
Rf = 0.95; 5a: Rf = 0.14), selenenylsulfide 3a (18 mg, 36%) as a yellowish oil. 1H NMR (400 MHz, C6D6)
δ (ppm): 7.63-7.69 (2H, m), 7.52 (1H, d, J = 8.5 Hz), 6.93-7.04 (3H, m), 6.28 (1H, d, J = 2.5 Hz), 6.11 (1H,
dd, J = 2.5, 8.5 Hz), 3.22 (3H, s, CH3O), 3.17 (3H, s, CH3O). 13C NMR (100 MHz, C6D6) δ (ppm): 162.1,
160.3, 135.3, 130.9, 128.8, 128.0, 127.5, 127.1, 104.9, 99.3, 54.8, 54.6. HRMS m/z calcd for C14H15O2SSe
326.9958, found 326.9963.

3.2.2. Synthesis of 1-((Phenylselanyl)thio)naphthalen-2-ol 3b

Following the general procedure, N-thiophthalimide 2b (58 mg, 0.18 mmol) and benzeneselenol
1a (24 mg, 0.15 mmol) gave, after flash chromatography (petroleum ether/Et2O 20:1, 3b: Rf = 0.48;
4a: Rf = 0.83; 5b: Rf = 0. 38), selenenylsulfide 3b (12 mg, 25%) as a yellowish oil. 1H NMR (400 MHz,
CDCl3) δ (ppm): 8.05 (1H, d, J = 8.4 Hz), 7.75–7.80 (2H, m), 7.59 (2H, ap.d., J = 8.1 Hz), 7.32–7.43 (2H,
m), 7.25–7.29 (3H, m), 7.16 (1H, d, J = 8.4 Hz), 6.70 (1H, s, OH). 13C NMR (100 MHz, CDCl3) δ (ppm):
156.9, 135.0, 135.0, 132.8, 131.5, 129.5, 129.3, 129.2, 128.5, 128.5, 127.4, 125.1, 123.8, 116.7. 77Se NMR
(76 MHz, CDCl3) δ (ppm): 637.9. HRMS m/z calcd for C16H12NaOSSe 354.9672, found 354.9681.

3.2.3. Synthesis of 4-((Phenylselanyl)thio)-2,6-dipropylbenzene-1,3-diol 3c

Following the general procedure, N-thiophthalimide 2c (89 mg, 0.24 mmol) and benzeneselenol
1a (31 mg, 0.20 mmol) gave, after flash chromatography (petroleum ether/Et2O 8:1, 3c: Rf = 4.2; 4a:
Rf = 0.92; 5c: Rf = 0.26), selenenylsulfide 3c (30 mg, 39%) as a yellowish oil. 1H NMR (400 MHz, CDCl3)
δ (ppm): 7.62 (2H, app.d, J = 8Hz ), 7.28–7.41 (3H, m), 6.89 (1H, s), 6.21 (1H, s, OH), 4.90 (1H, s, OH),
2.60 (3H, t, J = 8 Hz, CH3), 2.40 (3H, t, J = 8 Hz, CH3), 1.46–1.63 (4H, m), 0.81–1.02 (4H, m). 13C NMR
(100 MHz, CDCl3) δ (ppm): 155.0, 154.7, 134.1, 134.0, 132.2, 129.2, 128.9, 120.5, 114.6, 111.1, 31.4, 26.0,
22.7, 22.0, 14.1, 13.8. 77Se NMR (76 MHz, CDCl3) δ (ppm): 641.8. HRMS m/z calcd for C18H22NaO2SSe
405.0403, found 405.0397.

3.2.4. Synthesis of (2-Chlorocyclohexyl)(phenylselanyl)sulfane 3h

Following a slightly modified general procedure, a solution of benzeneselenol 1a (31 mg,
0.20 mmol) in dry DMF (2.5 mL) was cooled at 0 ◦C under inert atmosphere and treated with Cs2CO3

(65 mg, 0.20 mmol, 1.0 eq.) and TBAI (74 mg, 0.20 mmol, 1.0 eq.). Afterwards, a DMF solution (0.5 mL)
of N-alkylthiophthalimide 2h (70 mg, 0.24 mmol, 1.2 eq.) was added and the mixture was allowed
to warm to room temperature and stirred for 4 h. Then, the mixture was diluted with Et2O (5 mL)
and then saturated aq. NH4Cl (3 mL) was added. The organic phase was extracted with Et2O (5 mL),
washed with brine (3 × 8 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude
material was purified by flash chromatography (petroleum ether, 3h: Rf = 0.54; 4a: Rf = 0.65) to afford
selenenylsulfide 3h (26 mg, 42%) as a yellowish oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.58–7.64 (2H,
m), 7.22–7.31 (3H, m), 3.99–4.04 (1H, m, CHCl), 2.97–3.02 (1H, m, CHS), 2.27–2.29 (1H, m), 2.16–2.27
(1H, m), 1.55–1.73 (4H, m), 1.32–1.42 (2H, m). 13C NMR (100 MHz, CDCl3) δ (ppm): 131.5, 129.7, 129.1,
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127.3, 62.6, 55.2, 34.5, 31.6, 24.0, 23.7. 77Se NMR (76 MHz, CDCl3) δ (ppm): 463.6. HRMS m/z calcd for
C12H16ClSSe 306.9826, found 306.9833.

3.2.5. Synthesis of (2,4-Dimethoxyphenyl)(p-tolylselanyl)sulfane 3i

Following the general procedure, N-thiophthalimide 2a (57 mg, 0.18 mmol) and
4-methylbenzeneselenol 1b (26 mg, 0.15 mmol) gave, after flash chromatography (petroleum
ether/Et2O 15:1, 3i: Rf = 0.43; 4b: Rf = 0.95; 5a: Rf = 0.10), selenenylsulfide 3i (14 mg, 27%). 1H NMR
(400 MHz, CDCl3) δ (ppm): 7.49 (2H, ap.d., J = 8.0 Hz), 7.41 (1H, d, J = 9.2 Hz), 7.07 (2H, ap.d.,
J = 8.0 Hz), 6.38–6.46 (2H, m), 3.80 (3H, s), 3.79 (3H, s), 2.34 (3H, s). 13C NMR (100 MHz, CDCl3)
δ (ppm): 159.9, 155.3, 136.1, 132.9, 132.4, 130.5, 105.7, 99.6, 56.4, 56.0, 21.6. HRMS m/z calcd for
C15H17O2SSe 341.0114, found 341.0102.

3.2.6. Synthesis of (2-Chlorocyclohexyl)(p-tolylselanyl)sulfane 3j

Following a slightly modified general procedure, a solution of 4-methylbenzeneselenol 1b (26 mg,
0.15 mmol) in dry DMF (2.5 mL) was cooled at 0 ◦C under inert atmosphere and treated with
Cs2CO3 (49 mg, 0.15 mmol) and TBAI (56 mg, 0.20 mmol). Afterwards, a DMF solution (0.5 mL) of
N-alkylthiophthalimide 2h (53 mg, 0.18 mmol) was added and the mixture was allowed to warm
to room temperature and stirred for 4 h. Then, the mixture was diluted with Et2O (5 mL) and then
saturated aq. NH4Cl (3 mL) was added. The organic phase was extracted with Et2O (5 mL), washed
with brine (3 × 8 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude material was
purified by flash chromatography (petroleum ether, Rf = 0.45) to afford selenenylsulfide 3j (13 mg,
28%). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.53 (2H, ap.d., J = 8.1Hz), 7.12 (2H, ap.d., J = 8.1 Hz),
4.03-4.08 (1H, m, CHCl), 2.99-3.04 (1H, m, CHS), 2.34 (3H, s, CH3), 2.29–2.33 (1H, m), 2.17–2.28 (1H, m),
1.62–1.75 (4H, m), 1.36–1.43 (2H, m). 13C NMR (100MHz, CDCl3) δ (ppm): 138.2, 132.9, 131.1, 130.6,
63.2, 55.7, 34.8, 32.0, 24.5, 24.2, 21.7. HRMS m/z calcd for C13H17ClNaSSe 342.9802, found 342.9818.

3.2.7. Synthesis of (2,4-Dimethoxyphenyl)((4-methoxyphenyl)selanyl)sulfane 3k

Following the general procedure, N-thiophthalimide 2a (57 mg, 0.18 mmol) and
4-methoxybenzeneselenol 1c (28 mg, 0.15 mmol) gave, after flash chromatography (petroleum
ether/Et2O 10:1, 3k: Rf = 0.25; 4c: Rf = 0.42; 5a: Rf = 0.12), selenenylsulfide 3k (17 mg, 32%). 1H NMR
(400 MHz, CDCl3) δ (ppm): 7.53 (2H, ap.d., J = 8.8 Hz), 7.43 (1H, d, J = 9.1 Hz), 6.83 (2H, ap.d., J = 8.8
Hz), 6.40–6.46 (2H, m), 3.83 (3H, s), 3.82 (3H, s), 3.81 (3H, s). 13C NMR (100MHz, CDCl3) δ (ppm): 160.2,
159.9, 155.6, 136.6, 136.0, 134.0, 124.3, 115.3 105.6, 99.5, 56.4, 56.0, 55.9. 77Se NMR (76 MHz, CDCl3) δ

(ppm): 504.8. HRMS m/z calcd for C15H16NaO3SSe 378.9883, found 378.9896.

3.2.8. Synthesis of (2-Chlorocyclohexyl)((4-methoxyphenyl)selanyl)sulfane 3l

Following a slightly modified general procedure, a solution of 4-methoxybenzeneselenol 1c
(37 mg, 0.20 mmol) in dry DMF (2.5 mL) was cooled at 0 ◦C under inert atmosphere and treated
with Cs2CO3 (65 mg, 0.20 mmol, 1.0 eq.) and TBAI (74 mg, 0.20 mmol, 1.0 eq.). Afterwards, a DMF
solution (0.5 mL) of N-alkylthiophthalimide 2h (70 mg, 0.24 mmol, 1.2 eq.) was added and the mixture
was allowed to warm to room temperature and stirred for 4 h. Then, the mixture was diluted with
Et2O (5 mL) and then saturated aq. NH4Cl (3 mL) was added. The organic phase was extracted
with Et2O (5 mL), washed with brine (3 × 8 mL), dried over Na2SO4, filtered and concentrated in
vacuo. The crude material was purified by flash chromatography (petroleum ether, Rf = 0.26) to afford
selenenylsulfide 3l (17 mg, 26%). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.58 (2H, app.d., J = 8.8 Hz),
6.85 (2H, app.d., J = 8.8 Hz), 4.01–4.15 (1H, m), 3.81 (3H, s, CH3O), 2.90-3.11 (1H, m), 2.07–2.38 (2H, m),
1.52–1.81 (4H, m), 1.28–1.41 (2H, m). 13C NMR (100 MHz, CDCl3) δ (ppm): 160.4, 135.6, 134.0, 115.5,
63.2, 55.9, 55.6, 34.5, 31.8, 24.3, 24.0. 77Se NMR (76 MHz, CDCl3) δ (ppm): 503.6. HRMS m/z calcd for
C13H17ClNaOSSe 358.9752, found 358.9741.
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3.2.9. Synthesis of (2-Chlorocyclohexyl)((2-methoxyphenyl)selanyl)sulfane 3m

Following a slightly modified general procedure, a solution of 2-methoxybenzeneselenol 1d
(28 mg, 0.15 mmol) in dry DMF (2.5 mL) was cooled at 0 ◦C under inert atmosphere and treated with
Cs2CO3 (49 mg, 0.15 mmol) and TBAI (56 mg, 0.15 mmol). Afterwards, a DMF solution (0.5 mL) of
N-alkylthiophthalimide 2h (53 mg, 0.18 mmol) was added and the mixture was allowed to warm
to room temperature and stirred for 4 h. Then, the mixture was diluted with Et2O (5 mL) and then
saturated aq. NH4Cl (3 mL) was added. The organic phase was extracted with Et2O (5 mL), washed
with brine (3 × 8 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude material was
purified by flash chromatography (petroleum ether/Et2O 100:1, Rf = 0.30) to afford selenenylsulfide
3m (20 mg, 40%). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.82 (1H, dd, J = 1.6, 7.7 Hz), 7.23-7.28 (1H, m),
7.00–7.04 (1H, m), 6.85 (1H, dd, J = 1.1, 8.1 Hz), 4.05–4.09 (1H, m, CHCl), 3.91 (3H, s, CH3O), 2.96–3.01
(1H, m, CHS), 2.34–2.36 (1H, m), 2.23–2.33 (1H, m), 1.62-1.78 (4H, m), 1.36-1.41 (2H, m). 13C NMR
(100 MHz, CDCl3) δ (ppm): 157.0, 129.1. 128.5, 126.1, 122.4, 110.9, 63.5, 56.5, 55.5, 35.2, 32.3, 24.6, 24.4.
HRMS m/z calcd for C13H17ClNaOSSe 358.9752, found 358.9745.

3.3. GPx-Like Catalytic Activity Measurments

GPx-like activity was determined according to a reported NMR assay [28–30]. DTTred (0.14 mmol)
and catalyst (0.014 mmol) were dissolved in CD3OD (0.6 mL), and the solution was added to 35%
H2O2 (14 µL, 0.14 mmol) to start the reaction. 1H NMR spectra were measured at a variable reaction
time at 25 ◦C. The relative populations of DTTred and DTTox were determined by integration of the 1H
NMR signals.

4. Conclusions

In summary, we have disclosed a novel procedure to convert selenols and N-thiophthalimides into
the corresponding selenenylsulfides under very mild procedure. These small molecules, containing
the S-Se bond, resemble the key intermediate involved in the GPx catalytic cycle and, therefore, could
be employed as useful and simple models to gain insight into the GPx mechanism. Furthermore,
preliminary evaluation of the catalytic antioxidant properties of selenenylsulfides showed that they
possess GPx-like activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/4/333/s1.

Author Contributions: Conceptualization, D.T. and S.M.; methodology, C.B.; data curation, C.V.;
writing—original draft preparation, D.T. and A.C.; writing—review and editing, D.T., A.C. and S.M.

Funding: This research was founded by Ente Cassa Risparmio Firenze.

Conflicts of Interest: The authors declare no conflict of interest.

Notes and References

1. Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5,
27986–28006. [CrossRef]

2. Lü, J.-M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental
approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [CrossRef]

3. Sarma, B.K.; Mugesh, G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org. Biomol. Chem.
2008, 6, 965–974. [CrossRef] [PubMed]

4. Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium
compounds. Chem. Rev. 2001, 101, 2125–2179. [CrossRef] [PubMed]

5. Banerjee, B.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev. 2011,
255, 2968–2990.

6. Mónica Álvarez-Pérez, M.; Wesam, A.; Małgorzata, A.M.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and
diselenides: A review of their anticancer and chemopreventive activity. Molecules 2018, 23, 628. [CrossRef]

http://www.mdpi.com/2073-4344/9/4/333/s1
http://dx.doi.org/10.1039/C4RA13315C
http://dx.doi.org/10.1111/j.1582-4934.2009.00897.x
http://dx.doi.org/10.1039/b716239a
http://www.ncbi.nlm.nih.gov/pubmed/18327317
http://dx.doi.org/10.1021/cr000426w
http://www.ncbi.nlm.nih.gov/pubmed/11710243
http://dx.doi.org/10.3390/molecules23030628


Catalysts 2019, 9, 333 9 of 11

7. Wessjohann, L.A.; Schneider, A. Synthesis of selenocysteine and its derivatives with an emphasis on
selenenylsulfide (-Se-S-) formation. Chem. Biodivers. 2008, 5, 375–388. [CrossRef]

8. Angeli, A.; Tanini, D.; Capperucci, A.; Malevolti, G.; Turco, F.; Ferraroni, M.; Supuran, C.T. Synthesis of
different thio-scaffolds bearing sulfonamide with subnanomolar carbonic anhydrase II and IX inhibitory
properties and X-ray investigations for their inhibitory mechanism. Bioorg. Chem. 2018, 81, 642–648.
[CrossRef] [PubMed]

9. Angeli, A.; Tanini, D.; Capperucci, A.; Supuran, C.T. First evaluation of organotellurium derivatives as
carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorg. Chem. 2018, 76, 268–272. [CrossRef]

10. Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. [CrossRef]
11. Bhuyan, B.J.; Mugesh, G. Biological and biochemical aspects of selenium compounds. In Organoselenium

Chemistry: Synthesis and Reactions; Wirth, T., Ed.; Wiley-VCH Verlag & Co.: Weinheim, Germany, 2012.
12. Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and Organotellurium Compounds: Toxicology and

Pharmacology. Chem. Rev. 2004, 104, 6255–6286. [CrossRef] [PubMed]
13. Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still

unfulfilled. Free Radic. Biol. Med. 2014, 66, 65–74. [CrossRef] [PubMed]
14. Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase

activity. Chem. Soc. Rev. 2000, 29, 347–357. [CrossRef]
15. Zimmerman, M.T.; Bayse, C.A.; Ramoutar, R.R.; Brumaghim, J.L. Sulfur and selenium antioxidants:

Challenging radical scavenging mechanisms and developing structure-activity relationships based on
metal binding. J. Inorg. Biochem. 2015, 145, 30–40. [CrossRef] [PubMed]

16. Haratake, M.; Tachibana, Y.; Emaya, Y.; Yoshida, S.; Fuchigami, T.; Nakayama, M. Synthesis of nanovesicular
Glutathione Peroxidase mimics with a selenenylsulfide-bearing lipid. ACS Omega 2016, 1, 58–65. [CrossRef]

17. Boutureira, O.; Bernardes, G.J.L.; Fernàndez-Gonzàlez, M.; Anthony, D.C.; Davis, B.G. Selenenylsulfide-
linked homogeneous glycopeptides and glycoproteins: Synthesis of human “Hepatic Se Metabolite A”.
Angew. Chem. Int. Ed. 2012, 57, 1432–1436. [CrossRef]

18. Cheng, Q.; Sandalova, T.; Lindqvist, Y.; Arnér, E.S.J. Crystal structure and catalysis of the selenoprotein
Thioredoxin Reductase 1. J. Biol. Chem. 2009, 284, 3998–4008. [CrossRef] [PubMed]

19. Engman, L.; Andersson, C.; Morgenstern, R.; Cotgreave, I.A.; Andersson, C.-M.; Hallberg, A. Evidence for a
common selenolate intermediate in the glutathione peroxidase-like catalysis of α-(phenylselenenyl) ketones
and diphenyl diselenide. Tetrahedron 1994, 50, 2929–2938. [CrossRef]

20. Venkateswarlu, C.; Gautam, V.; Chandrasekaran, S. Synthesis of mixed glycosyl disulfides/selenosulfides
using benzyltriethylammonium tetrathiomolybdate as a sulfur transfer reagent. Carbohydr. Res. 2015, 402,
200–207. [CrossRef] [PubMed]

21. Ahrika, A.; Auger, J.; Paris, J. Stabilisation of 2-nitrophenyl-selenosulfide, -diselenide and -thioselenide ions
in N,N-dimethylacetamide. N. J. Chem. 1999, 23, 679–681. [CrossRef]

22. Potapov, V.A.; Amosova, S.V.; Petrov, P.A.; Romanenko, L.S.; Keiko, V.V. Exchange reactions of dialkyl
dichalcogenides. Sulfur Lett. 1992, 15, 121–126.

23. Kumar, K.; Kandasamy, K.; Singh, H.B.; Wolmershäuser, G.; Butcher, R.J. Chelate ring size effect on
the reactivity of [2-(2-phenyl-5,6-dihydro-4h-1,3-oxazinyl)]lithium and Se···N interactions in low-valent
organoselenium compounds: facile isolation of diorganotriselenide. Organometallics 2004, 23, 4199–4208.
[CrossRef]

24. Tanini, D.; Grechi, A.; Dei, S.; Teodori, E.; Capperucci, A. An easy one-step procedure for the synthesis of
novel β-functionalised tellurides. Tetrahedron 2017, 73, 5646–5653. [CrossRef]

25. Capperucci, A.; Salles, C.; Scarpelli, S.; Tanini, D. Selective access to sulfurated and selenated heterocycles by
intramolecular cyclization of β-substituted sulfides and selenides. Phosphorus Sulfur Silicon Relat. Elem. 2017,
192, 172–174. [CrossRef]

26. Tanini, D.; Capperucci, A.; Degl’Innocenti, A. Bis-(trimethylsilyl)selenide in the Selective Synthesis of
β-Hydroxy, β-Mercapto, and β-Amino Diorganyl Diselenides and Selenides Through Ring Opening of
Strained Heterocycles. Eur. J. Org. Chem. 2015, 357–369. [CrossRef]

27. Capperucci, A.; Tanini, D. Silicon-assisted synthesis and functionalization of sulfurated and selenated
compounds. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1320–1338. [CrossRef]

http://dx.doi.org/10.1002/cbdv.200890038
http://dx.doi.org/10.1016/j.bioorg.2018.09.028
http://www.ncbi.nlm.nih.gov/pubmed/30253337
http://dx.doi.org/10.1016/j.bioorg.2017.12.010
http://dx.doi.org/10.1021/acschembio.6b00031
http://dx.doi.org/10.1021/cr0406559
http://www.ncbi.nlm.nih.gov/pubmed/15584701
http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.006
http://www.ncbi.nlm.nih.gov/pubmed/23499840
http://dx.doi.org/10.1039/a908114c
http://dx.doi.org/10.1016/j.jinorgbio.2014.12.020
http://www.ncbi.nlm.nih.gov/pubmed/25600984
http://dx.doi.org/10.1021/acsomega.6b00046
http://dx.doi.org/10.1002/anie.201106658
http://dx.doi.org/10.1074/jbc.M807068200
http://www.ncbi.nlm.nih.gov/pubmed/19054767
http://dx.doi.org/10.1016/S0040-4020(01)87004-6
http://dx.doi.org/10.1016/j.carres.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25498020
http://dx.doi.org/10.1039/a903454d
http://dx.doi.org/10.1021/om049722f
http://dx.doi.org/10.1016/j.tet.2017.07.061
http://dx.doi.org/10.1080/10426507.2016.1252364
http://dx.doi.org/10.1002/ejoc.201403015
http://dx.doi.org/10.1080/10426507.2015.1024790


Catalysts 2019, 9, 333 10 of 11

28. Tanini, D.; Barchielli, G.; Benelli, F.; Degl’Innocenti, A.; Capperucci, A. Aziridines ring opening by silyl
chalcogenides: A stereoselective access to polyfunctionalized molecules as precursor of sulfurated and
selenated heterocycles. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1265–1270. [CrossRef]

29. Capperucci, A.; Tanini, D.; Borgogni, C.; Degl’Innocenti, A. Thiosilane- and organoselenosilane-mediated
novel access to 3,7- disubstituted-1,2,5- trithiepanes and −1,2,5-dithiaselenepanes. Heteroat. Chem. 2014, 25,
678–683. [CrossRef]

30. Viglianisi, C.; Bonardi, C.; Ermini, E.; Capperucci, A.; Menichetti, S.; Tanini, D. Selenosilane-Promoted
Selective Mild Transformation of N-Thiophthalimides into Symmetric Disulfides. Synthesis 2019, 51,
1819–1824. [CrossRef]

31. Tanini, D.; Tiberi, C.; Gellini, C.; Salvi, P.R.; Capperucci, A. A Straightforward access to stable β-functionalized
alkyl selenols. Adv. Synth. Catal. 2018, 360, 3367–3375. [CrossRef]

32. Angeli, A.; Tanini, D.; Nocentini, A.; Capperucci, A.; Ferraroni, M.; Gratteri, P.; Supuran, C.T. Selenols: A
new class of carbonic anhydrase inhibitors. Chem. Commun. 2019, 55, 648–651. [CrossRef]

33. Tanini, D.; Grechi, A.; Ricci, L.; Dei, S.; Teodori, E.; Capperucci, A. Novel functionalized organotellurides
with enhanced thiol peroxidase catalytic activity. New J. Chem. 2018, 42, 6077–6083. [CrossRef]

34. Tanini, D.; D’Esopo, V.; Chen, D.; Barchielli, G.; Capperucci, A. Novel sulfur and selenium-containing
antioxidants: Synthesis and evaluation of their GPx-like activity. Phosphorus Sulfur Silicon Relat. Elem. 2017,
192, 166–168. [CrossRef]

35. Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A watersoluble cyclic selenide with enhanced
glutathione peroxidase-like catalytic activities. Eur. J. Org. Chem. 2010, 3, 440–445. [CrossRef]

36. T50 is the time required, in seconds, to halve the initial thiol concentration after the addition of H2O2.
37. Bhabak, K.P.; Mugesh, G. A simple and efficient strategy to enhance the antioxidant activities of

amino-substituted glutathione peroxidase mimics. Chem. Eur. J. 2008, 14, 8640–8651. [CrossRef]
38. Bailly, F.; Azaroual, N.; Bernier, J.L. Design, synthesis and glutathione peroxidase-like properties of

ovothiol-derived diselenides. Bioorg. Med. Chem. 2003, 11, 4623–4630. [CrossRef]
39. In our hands, S-Se bond exhibited a certain degree of instability. However, selenenylsulfides 3h and 3l

proved to be stable for longer times (few days) with respect to those required to perform the GPx-like
activity measurements (1 or 2 h). A possible mechanism for the catalytic action of selenylsulfides involves:
(i) nucleophilic attack of one of the thiol moieties of DTT onto the Se atom of 3, with the formation of
a selenenylsulfide bearing the DTT skeleton; (ii) intramolecular nucleophilic attack of the residual SH moiety
onto the S atom of the selenenylsulfide with formation of DTTox and an arylselenol; (iii) H2O2 oxidation of
the selenol to the corresponding selenenic acid (ArSeOH); (iv) eventually, ArSeOH undergoes redox reactions
with DTT and H2O2, as reported for the catalytic activity of diselenides (see reference [42]). Notably, in this
first step (i), likely the rate-determining one, the attack at selenium is both kinetically and thermodynamically
favoured over attack at sulfur (see references [40–43]). On the other hand, the attack at sulfur is favoured in
the second step (ii), due to the formation of a six membered cyclic disulfide (DTTox). Further investigations
in order to better elucidate the reaction mechanism are currently ongoing.

40. Bortoli, M.; Wolters, L.P.; Orian, L.; Bickelhaupt, F.M. Addition-Elimination or Nucleophilic Substitution?
Understanding the Energy Profiles for the Reaction of Chalcogenolates with Dichalcogenides. J. Chem. Theory
Comput. 2016, 12, 2752–2761. [CrossRef]

41. Bhabak, K.P.; Mugesh, G. Functional Mimics of Glutathione Peroxidase: Bioinspired Synthetic Antioxidants.
Acc. Chem. Res. 2010, 43, 1408–1419. [CrossRef]

42. Bachrach, S.M.; Demoin, D.W.; Luk, M.; Miller, J.V., Jr. Nucleophilic Attack at Selenium in Diselenides and
Selenosulfides. A Computational Study. J. Phys. Chem. A 2004, 108, 4040–4046. [CrossRef]

43. Capozzi, G.; Gori, L.; Menichetti, S.; Nativi, C. Phthalimidesulfenyl Chloride. Part 4. Addition to Acetylenes
and Synthetic Utilization of their Adducts. J. Chem. Soc. Perkin Trans. 1 1992, 1923–1928. [CrossRef]

44. Capozzi, G.; Nativi, C.; Menichetti, S.; Rosi, A.; Franck, R.W.G. Phthalimidesulfenyl Chloride Part 6. The
First Example of an alpha-Oxothione Acting as Heterodiene: Synthesis of 2,3-Dihydro-1,4-Oxathiines.
Tetrahedron Lett. 1993, 34, 4253–4257. [CrossRef]

45. Capozzi, G.; Menichetti, S.; Neri, S.; Skowronska, A. Fluoride Ion Promoted Synthesis of Thiiranes. Synlett
1994, 267–268. [CrossRef]

46. Menichetti, S.; Aversa, M.C.; Cimino, F.; Contini, A.; Tomaino, A.; Viglianisi, C. Synthesis and ‘double-faced’
antioxidant activity of polyhydroxylated 4-thiaflavans. Org. Biomol. Chem. 2005, 3, 3066–3072. [CrossRef]

http://dx.doi.org/10.1080/10426507.2014.1002615
http://dx.doi.org/10.1002/hc.21157
http://dx.doi.org/10.1055/s-0037-1610354
http://dx.doi.org/10.1002/adsc.201800602
http://dx.doi.org/10.1039/C8CC08562E
http://dx.doi.org/10.1039/C8NJ00700D
http://dx.doi.org/10.1080/10426507.2016.1252365
http://dx.doi.org/10.1002/ejoc.200901114
http://dx.doi.org/10.1002/chem.200800963
http://dx.doi.org/10.1016/S0968-0896(03)00504-2
http://dx.doi.org/10.1021/acs.jctc.6b00253
http://dx.doi.org/10.1021/ar100059g
http://dx.doi.org/10.1021/jp037972o
http://dx.doi.org/10.1039/p19920001923
http://dx.doi.org/10.1016/S0040-4039(00)60541-5
http://dx.doi.org/10.1055/s-1994-22822
http://dx.doi.org/10.1039/b507496g


Catalysts 2019, 9, 333 11 of 11

47. Lodovici, M.; Menichetti, S.; Viglianisi, C.; Caldini, S.; Giuliani, E. Polyhydroxylated 4-Thiaflavans as
Multipotent Antioxidants: Protective Effect on Oxidative DNA Damage in vitro. Bioorg. Med. Chem. Lett.
2006, 16, 1957–1960. [CrossRef] [PubMed]

48. Viglianisi, C.; Marcantoni, E.; Carapacchi, V.; Menichetti, S.; Marsili, L. A base-mediated mild sulfenylation
of indoles and pyrrole with α-acylthiones. Eur. J. Org. Chem. 2014, 6405–6410. [CrossRef]

49. Singh, D.; Deobald, A.M.; Camargo, L.R.S.; Tabarelli, G.; Rodrigues, O.E.D.; Braga, A.L. An Efficient One-Pot
Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se0 or Te0/Base.
Org. Lett. 2010, 12, 3288–3291. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.bmcl.2005.12.078
http://www.ncbi.nlm.nih.gov/pubmed/16458004
http://dx.doi.org/10.1002/ejoc.201402894
http://dx.doi.org/10.1021/ol100558b
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Experimental Section 
	General Procedure for the Synthesis of Selenenylsulfides 3 
	Synthesis of (2,4-Dimethoxyphenyl)(phenylselanyl)sulfane 3a 
	Synthesis of 1-((Phenylselanyl)thio)naphthalen-2-ol 3b 
	Synthesis of 4-((Phenylselanyl)thio)-2,6-dipropylbenzene-1,3-diol 3c 
	Synthesis of (2-Chlorocyclohexyl)(phenylselanyl)sulfane 3h 
	Synthesis of (2,4-Dimethoxyphenyl)(p-tolylselanyl)sulfane 3i 
	Synthesis of (2-Chlorocyclohexyl)(p-tolylselanyl)sulfane 3j 
	Synthesis of (2,4-Dimethoxyphenyl)((4-methoxyphenyl)selanyl)sulfane 3k 
	Synthesis of (2-Chlorocyclohexyl)((4-methoxyphenyl)selanyl)sulfane 3l 
	Synthesis of (2-Chlorocyclohexyl)((2-methoxyphenyl)selanyl)sulfane 3m 

	GPx-Like Catalytic Activity Measurments 

	Conclusions 
	References

