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Inverse probability weighting to estimate
causal effect of a singular phase in a
multiphase randomized clinical trial for
multiple myeloma
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Abstract

Background: Randomization procedure in randomized controlled trials (RCTs) permits an unbiased estimation of
causal effects. However, in clinical practice, differential compliance between arms may cause a strong violation of
randomization balance and biased treatment effect among those who comply. We evaluated the effect of the
consolidation phase on disease-free survival of patients with multiple myeloma in an RCT designed for another
purpose, adjusting for potential selection bias due to different compliance to previous treatment phases.

Methods: We computed two propensity scores (PS) to model two different selection processes: the first to
undergo autologous stem cell transplantation, the second to begin consolidation therapy. Combined stabilized
inverse probability treatment weights were then introduced in the Cox model to estimate the causal effect of
consolidation therapy miming an ad hoc RCT protocol.

Results: We found that the effect of consolidation therapy was restricted to the first 18 months of the phase (HR: 0.40,
robust 95 % CI: 0.17-0.96), after which it disappeared.

Conclusions: PS-based methods could be a complementary approach within an RCT context to evaluate the
effect of the last phase of a complex therapeutic strategy, adjusting for potential selection bias caused by
different compliance to the previous phases of the therapeutic scheme, in order to simulate an ad hoc
randomization procedure.

Trial registration: ClinicalTrials.gov: NCT01134484 May 28, 2010 (retrospectively registered)
EudraCT: 2005-003723-39 December 17, 2008 (retrospectively registered)
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Background
Randomized controlled trials (RCTs) are the gold stand-
ard for clinical research because the randomization pro-
cedure is expected to achieve a balanced distribution of
both known and unknown baseline characteristics be-
tween experimental and control treatment arms [1]. Un-
fortunately, selection mechanisms may occur after
randomization, i.e. some patients are lost to follow up or
drop out early or occurrence of competing risk events

such as death from other diseases. Reasons for early
drop out include informed consent withdrawal or toxic-
ities. When a large number of patients do not comply
with the therapeutic protocol, the effect of treatment
may be difficult or impossible to estimate. In fact, the
consequence of selection bias is that the association be-
tween treatment and outcome among those selected for
analysis (because entirely compliant with treatment
protocol) may differ from that among those who are eli-
gible. Patients may decide not to follow, partially follow,
or entirely follow a complex therapeutic program for
reasons related to the outcome [2]. The intention-to-
treat (ITT) analysis provides an unbiased estimate of
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gross treatment effect but is shrunk toward the null
value on the basis of the percentage of compliers. Con-
versely, the per-protocol (PP) analysis may introduce
bias because the groups of patients being compared no
longer have similar characteristics. Thus, it is possible
that some patients are more likely to be treated than
others (possibly depending on prognostic factors) in
which case treatment may erroneously appear more effi-
cacious [3–5].
Another important issue is that RCTs usually compare

the entire therapeutic strategy without any detailed
evaluation of each singular therapeutic phase. The evalu-
ation of a specific phase is complicated because it may
be biased by different compliance to the previous phases.
In fact, during the course of a trial, especially when the
study protocol is complex and the disease is severe,
randomization balance may be lost right from the earli-
est phases due to selective patient withdrawal between
one phase and another.
Several methods have been proposed to tackle these

problems in an RCT setting where post-randomization
imbalance occurs, and also within the context of obser-
vational studies where randomization is not possible.
One popular approach is the use of the propensity score
(PS), a method developed to reduce the effect of observ-
able confounding factors [6].
The aim of this article was to evaluate the effect of the

consolidation therapy, the last phase of a complex thera-
peutic strategy composed by two arms of induction ther-
apy randomly administered to prepare patients to receive
at least one autologous stem cell transplantation (ASCT),
in patients with previously untreated multiple myeloma.
Only patients that received at least one ASCT can proceed
to receive consolidation therapy. Those receiving consoli-
dation therapy receive the same therapy to which they
were randomized during the induction phase. For these
reasons, we needed to adjust for potential selection
bias due to different compliance to previous phases of
therapeutic protocol in order to approximate an RCT
with randomization procedure (consolidation vs not
consolidation phase) after ASCT (with time 0 being
the end of the last ASCT received). We did it by
modelling both the probability to receive at least 1
ASCT and the probability to receive consolidation
phase through a combined PS approach.
This study is justified by the increasing interest being

shown in consolidation therapy on progression free sur-
vival endpoint [7]. Consolidation treatment is one of the
latest phases of MM therapeutic protocols and aims to
further increase the frequency and depth of clinical re-
sponse obtained with previous treatments phases.
The paper is structured as follows. In section 2, we de-

scribe the statistical methods used, in particular, the def-
inition of the PS, the weighting procedure in the survival

analysis, and the Aalen’s additive hazards model to in-
vestigate time-varying covariates. In section 3, we report
the results of the role of the consolidation phase in the
treatment of MM. In section 4 and 5, we discuss the re-
sults and draw our conclusions.

Methods
In this section we describe the statistical methods used
to restore randomization balance to obtain an unbiased
estimate of the causal effect of a treatment. In particular,
we review the definition of the PS and its possible uses,
the weighting procedure in survival analysis, and the
Aalen’s additive hazards model to investigate time-
varying effects.

Propensity score
The propensity score (PS) is the conditional probability
of being treated given a set of observed potential con-
founders. In this way all the information from a large
number of potential confounders is summarized into a
unique balancing score variable (the so-called propensity
score). The PS may warrant that the distribution of mea-
sured baseline covariates is the same in treated and un-
treated subjects. Rosenbaum and Rubin said that PS can
account for imbalance in treatment groups and reduce
bias by simulating a sort of “virtual randomization” of
subjects into treatment groups (conditional exchange-
ability) [6].
The PS is the conditional probability of receiving a

treatment given pretreatment characteristics:

pðXÞ ¼ Pr
�
Z¼ 1

���X
�

where Z = {0, 1} is the indicator of exposure to treatment
and X is the multidimensional vector of pretreatment
characteristics. Thus, if exposure to treatment is random
within cells defined by X, it is also random within cells
defined by the values of the one-dimensional variable
p(X). Bias-removing adjustments can therefore be made
using the PS alone rather than modeling all of the back-
ground covariates individually.
The expected difference in observed responses at p(X)

is equal to the average treatment effect at p(X),
E{r1|p(X), Z = 1} - E{r0|p(X), Z = 0} = E{r1 - r0|p(X)}
where r = {0, 1} is the indicator of the response that
would have resulted if a patient had or had not received
treatment, respectively; these are the potential outcomes in
the two counterfactual situations of treatment and no treat-
ment ([6], Theorem 4 in Rosenbaum and Rubin); [8, 9].
There is still some debate about how to determine a

sufficient set of covariates in the PS model. Brookhart
states that variables that are unrelated to the exposure
but related to the outcome should always be included in
a PS model. The inclusion of these variables decreases
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the variance of an estimated treatment effect without
increasing bias. In contrast, including variables that
are related to the exposure but not to the outcome
increases the variance of the estimated exposure effect
without decreasing bias [10]. Of course if a variable is
related to both exposure and outcome, it must be in-
cluded. Conversely, Pearl argues that, although treated
and untreated units are balanced in each stratum of
the PS, the balance only holds relative to the covari-
ates measured; unobserved confounders may be highly
unbalanced in each stratum. “Such imbalance may be
dormant in the crude estimate and awakened through
the use of PS methods” ([11], page 1415). The effect-
iveness of PS methods rests critically on the choice of
a sufficient set of covariates, which requires in depth
knowledge about the causal relationships among both
observed and unobserved covariates [12].

Inverse probability of treatment weight
Austin explains that there are mainly four ways of
using the PS to reduce or minimize the effects of
confounding when estimating the effects of treat-
ments on outcomes: matching on the PS, stratifica-
tion on the PS, inverse probability of treatment
weighting (IPTW) using the PS, and covariate adjust-
ment using the PS [13]. We chose the IPTW method
because we were mainly interested in population ef-
fect, i.e. the average treatment effect over the mar-
ginal distribution of observed covariates in the study
sample. Moreover, Austin’s results showed that, while
all ways of using PS allow for the estimation of mar-
ginal hazard ratios with minimal bias, IPTW provides
estimates with lower mean squared error; it is also
less subject to loss of information due to lack of
matching.
IPTW is calculated by the inverse of the conditional

probability of receiving the exposure that a patient in-
deed received:

w ¼ Z
pðXÞ þ

ð1−ZÞ
1−pðXÞ

where Z indicates whether or not the subject was treated
while p(X) represents the conditional probability for the
subject to be treated. Both treated subjects with a very
low PS and untreated subjects with a high PS have large
IPTWs to account for unequal probability of receiving
treatment in the original sample.
The aim of IPTW is to reduce selection bias by creat-

ing a “pseudo-population” in which the exposure is inde-
pendent of the measured confounders so that the
treatment effect estimate in a sample thus weighted will
be less biased [14–17].

Stabilized inverse probability of treatment weight
It may happen that treated subjects have a PS near 0
or that untreated subjects have a PS near 1, making
the relative IPTW excessively high and unstable.
Computationally, Xu and Ross noticed that, as in any
weighted regression, unstabilized IPTW changes the
sample size of the original sample, generating an
underestimate of the variance of the estimate of the
effect, producing inappropriately narrow confidence
intervals and leading to the lack of control of the
probability of a type I error [15].
Stabilized inverse probability of treatment weight

(SIPTW) can be obtained by multiplying the IPTW by
the marginal probability of receiving the actual treat-
ment received. Moreover, it preserves the sample size of
the original data, produces appropriate estimation of the
variance of the main effect, and adequately controls the
type I error rate [18, 19].

Adjusted Kaplan-Meier survival curves
Cole et al. demonstrated that, under the assumption of
no unmeasured confounding, adjusted Kaplan-Meier es-
timates for survival curves of treated and untreated -
where each subject is weighted by its IPTW - represent
the survival curve of the entire sample had none been
exposed, and the survival curve of the entire sample had
everyone been exposed, respectively [19]. Xie et al.
showed that the adjusted Kaplan-Meier estimator is con-
sistent even if weights came from the PS computed by a
logistic regression model [20]. This is also true for stabi-
lized inverse probability weighted estimates [21].

Adjusted Cox proportional hazard model
Cole et al. demonstrated that the stabilized inverse prob-
ability of treatment weighting (SIPTW) Cox regression
model provides unbiased estimates, while robust vari-
ance estimation, such as those suggested by Lin and
Wei, can be used to account for the weighting proced-
ure. These results are also valid in the presence of time-
varying confounding [18, 19, 22].

Aalen’s additive hazards model
Exploration of SIPTW weighted Kaplan-Meier survival
curves is recommended in the presence of violation of
the proportional hazard (PH) assumption [21]. In this
case, Aalen’s additive hazards model represents a valid
exploratory graphical method to detect and describe the
nature of time-varying covariate effects [23]. The hazard
function at time t for a model containing p+1 covariates
is: h{t,X,β(t)} = β0(t) + β1(t)x1 + β2(t)x2 +… βp(t)xp.
The coefficient βk(t) provides the change in hazard

at time t from the baseline hazard function β0(t) for a
one-unit change in the respective covariate xk, hold-
ing all other covariates constant. A weighted version
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of the Aalen’s model was discussed by Huffer and
McKeague [24].
The principal difference between Aalen’s and Cox

models is that Aalen’s model allows the effect of the kth

covariate to change continuously over time and represents
a valid method to describe the function. The Aalen esti-
mator is based on the cumulative hazard function (ob-
tained by integrating the hazard function at time t for a
model containing p+1 covariates) where βk(t) represents
the cumulative regression coefficient for the kth covariate

over time. A plot of β̂k tð Þ versus t with its 95 % confidence
interval is a worthwhile method to identify and describe
the possible interaction between the coefficient with time
and also to evaluate its relevance.
Once a significant time-varying effect has been found

for a given covariate, a simple approach would be to
introduce it into the Cox proportional hazard model as
a time-varying covariate and to estimate a specific haz-
ard ratio for each particular time-interval identified. An
appropriate modeling of the time-varying covariates
makes the Cox model suitable for satisfying the propor-
tional hazard assumption.

Results
Study population characteristics and results of the role
of the consolidation phase in the treatment of MM are
described in this section.

Study design
The original study consisted of 480 patients enrolled be-
tween May 2006 and April 2008 from 73 Italian hospi-
tals in a phase III open-label randomized clinical trial
(RCT). Eligible patients were aged 18–65 years and had
previously untreated symptomatic and measurable mul-
tiple myeloma [25].
Enrolled patients were randomized (1:1 ratio) into two

treatment arms: the experimental arm (Arm A) versus
the standard arm (Arm B). Six patients withdrew con-
sent immediately after randomization without starting
therapy. In both arms, patients received induction ther-
apy before undergoing up to two planned autologous
stem cell transplantation (ASCT) procedures followed
by a consolidation phase. The experimental/standard
therapy was administered in both the induction and con-
solidation phases.
The study was approved by an independent ethics

committee or by the institutional review board of
each participating institution, and was performed in
accordance with International Conference on Har-
monisation guidelines on Good Clinical Practice and
with the principles laid down in the Declaration of
Helsinki. All patients provided written informed con-
sent prior to enrollment.

Complete information on pre-treatment baseline char-
acteristics was available for 414 (87.34 %) of the 474 ran-
domized patients (Table 1), which represents the core of
the analysis.
At a median follow up of 54 months from

randomization, 85/200 and 121/214 events/patient (pro-
gression, relapse, or death from any cause) had been re-
corded in the experimental and control arms, respectively.
Overall, 52 patients in arm A and 65 in arm B discon-

tinued treatment before undergoing the consolidation
phase, mainly because of toxicity in Arm A and disease
progression in Arm B (Fig. 1a). To evaluate the specific
role of the consolidation phase miming an ad hoc RCT
(Fig. 1b) it was therefore necessary to consider the selec-
tion process in a differential way on the basis of baseline
characteristics, treatment arm and clinical course. In
doing so, we were able to restore a balanced comparison
for the consolidation phase either conditionally or mar-
ginally by weighting for the conditional probability of re-
ceiving consolidation therapy.

Propensity score, inverse probability of treatment weight
and stabilized inverse probability of treatment weight
estimation
The consolidation phase was administered to patients
who received at least one of the two planned ASCT pro-
cedures. Two selection processes were then modeled,
the first by computing the conditional probability of re-
ceiving at least one ASCT and the second by computing
the conditional probability of undergoing the consolida-
tion phase.
The first PS – of undergoing at least one of the two

planned ASCTs – was calculated on the basis of pre-
treatment baseline characteristics (age, sex, hemoglobin,
platelets, creatinine, LDH, ISS stage, isotype of disease
and cytogenetic abnormalities) and treatment arm. The
second PS – of undergoing the consolidation phase –
was calculated using pre-treatment baseline characteris-
tics, treatment arm and clinical response to the induction
phase (categorized as complete or partial) (Table 2).
We showed detailed models because there is still
some debate about the choice of the proper covariates
in the PS model. To note that, in our case, no vari-
able in the logistic models resulted particularly im-
portant. Nevertheless, it may be possible to proceed
with the re-weighting procedure.
From each PS, the relative inverse probability of treat-

ment weight (IPTW) and the stabilized inverse probabil-
ity of treatment weight (SIPTW) were calculated as
previously described.
Total stabilized inverse probability of treatment

weight (TSIPTW) for each patient was obtained by
multiplying the SIPTW of undergoing the 1st ASCT
by the SIPTW of undergoing the consolidation phase
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(Table 3). It may be noted that the stabilization pro-
cedure made every inverse probability weight more
stable than their respective non stabilized weights.
Three hundred and sixty-two (87.44 %) patients started

the 1st ASCT with a median PS (PS1) of 0.89 (range: 0.56–
0.97; interquartile range (IQR): 0.84–0.93). The SIPTW of
starting the 1st ASCT was obtained as [0.8744/PS1] or [(1-
0.8744)/(1- PS1)] in the event of not starting it. The median
value was 0.97 (range: 0.29–2.62; IQR: 0.93–1.03).
Of the 362 who started the 1st ASCT, 81.77 % also

started the consolidation phase with a median PS (PS2)
of 0.80 (range: 0.58–1.00; IQR: 0.75–0.88).
The SIPTW of starting consolidation therapy was ob-

tained as [0.8177/PS2] or [(1-0.8177)/(1-PS2)] in the
event of not starting it. The median value was 1.00
(range: 0.43–5.79; IQR: 0.87–1.06).

Finally, the TSIPTW was obtained as the product of
SIPTW of starting the 1st ASCT by the SIPTW of start-
ing consolidation therapy. The median value was 0.96
(range: 0.29–5.53; IQR: 0.86–1.07). A TSIPTW> 2 was
observed in a minority of patients (n = 8) who had not
started consolidation therapy. Five of these had not fin-
ished induction therapy due to serious toxicities (n = 3),
progression (n = 1) or death (n = 1) and were removed
from the study; the remaining 3, who had not reached
complete clinical response (CR), dropped out of the
study after the ASCT because of severe toxicity, progres-
sion or protocol violation. For those who did not start
the 1st ASCT (n = 52), the TSIPTW corresponded to the
SIPTW of undergoing the 1st ASCT because the SIPTW
of starting consolidation therapy could not be computed,
obviously.

Table 1 Baseline characteristics according to consolidation compliance

Characteristic Baseline characteristics Consolidation treatment

414 None received
118 (28.50 %)

Received
296 (71.50 %)

P

Age (years) Mean (SD) Mean (SD) Mean (SD)

56.00 (7.21) 57.08 (6.48) 55.57 (7.44) 0.07

Median (IQR) Median (IQR) Median (IQR)

57.47 (51.57–61.74) 58.23 (52.40–62.28) 56.76 (51.08–61.49)

Sex Male 236 (57.00 %) 62 (52.54 %) 174 (58.78 %) 0.25

Female 178 (43.00 %) 56 (47.46 %) 122 (41.22 %)

Haemoglobin (g/dL) >10.5 normal 251 (60.63 %) 67 (56.78 %) 184 (62.16 %) 0.31

≤10.5 abnormal 163 (39.37 %) 51 (43.22 %) 112 (37.84 %)

Platelets (×109 per L) >150 normal 369 (89.13 %) 107 (90.68 %) 262 (88.51 %) 0.52

≤150 abnormal 45 (10.87 %) 11 (9.32 %) 34 (11.49 %)

Creatinine (μmol/dL) ≤1.2 normal 326 (78.74 %) 94 (79.66 %) 232 (78.38 %) 0.77

>1.2 abnormal 88 (21.26 %) 24 (20.34 %) 64 (21.62 %)

LDH (U/L) ≤190 normal 59 (14.25 %) 24 (20.34 %) 35 (11.82 %) 0.03

>190 abnormal 355 (85.75 %) 94 (79.66 %) 261 (88.18 %)

ISS stage 1 180 (43.48 %) 44 (37.29 %) 136 (45.95 %) 0.26

2 162 (39.13 %) 50 (42.37 %) 112 (37.84 %)

3 72 (17.39 %) 24 (20.34 %) 48 (16.22 %)

IgA isotype IgA 81 (19.57 %) 25 (21.19 %) 56 (18.92 %) 0.60

Not IgA 333 (80.43 %) 93 (78.81 %) 240 (81.08 %)

Del(13q) absent 214 (51.69 %) 61 (51.69 %) 153 (51.69 %) 0.99

present 200 (48.31 %) 57 (48.31 %) 143 (48.31 %)

Del(17p) absent 385 (93.00 %) 110 (93.22 %) 275 (92.91 %) 0.91

present 29 (7.00 %) 8 (6.78 %) 21 (7.09 %)

T(4;14) absent 331 (79.95 %) 98 (83.05 %) 233 (78.72 %) 0.32

present 83 (20.05 %) 20 (16.95 %) 63 (21.28 %)

Treatment arm A experimental 200 (48.31 %) 53 (44.92 %) 147 (49.66 %) 0.38

B control 214 (51.69 %) 65 (55.08 %) 149 (50.34 %)

Wilcoxon-Mann-Whitney test was used for continuous variables
Chi square test was used for categorical variables
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Weighted Kaplan-Meier curves
After having estimated the TSIPTW to undergo the con-
solidation phase, 346 patients who could potentially re-
ceive consolidation therapy as they had undergone at
least one ASCT were evaluated in terms of progression-
free survival (PFS), defined as the time elapsed from the
last ASCT evaluation to the date of progression or death
(events), or last follow up (censored).
The consolidation phase did not have an effect on

PFS: a gradual decrease was seen in the survival curves
of patients who had undergone consolidation therapy,
while those who had not started this last phase of ther-
apy rapidly relapsed till about 12 months from the last

ASCT evaluation. After the first year, the two PFS
survival curves became similar (after TSIPTW 1-year
PFS: 93 % vs 75 %, weighted Log-rank test p = 0.9554)
(Fig. 2). This happened because TSIPTWs gave more
weight to patients who did not receive consolidation
therapy and who were more likely to fail during the
first year after ASCT.

Aalen’s additive hazards model to investigate
time-varying effect
As the PH assumption did not hold (Schoenfeld’s test,
p < 0.0001), Aalen’s additive hazards models were fit to
investigate the time-varying effect of the consolidation

Fig. 1 a Study design of a phase III open-label RCT carried out in 73 Italian hospitals. Eligible untreated symptomatic multiple myeloma patients
aged 18–65 years were randomized (1:1 ratio) to receive experimental (Arm A) versus standard (Arm B) treatment as induction therapy before a
maximum of two planned autologous stem cell transplantations (ASCT) followed by a consolidation phase consisting on the same arm of therapy
as induction phase. b Miming an Ad hoc RCT to evaluate the role of consolidation therapy. Eligible untreated symptomatic multiple myeloma
patients aged 18–65 years who had received at least 1 ASCT after having been prepared with induction therapy (Experimental or Standard) were
randomized to receive the same arm of therapy (Experimental or Standard) as a consolidation phase or to not receive any therapy

Pezzi et al. BMC Medical Research Methodology  (2016) 16:150 Page 6 of 10



phase. We fitted a model containing all the prognos-
tic factors – i.e. age, sex, hemoglobin, platelets, cre-
atinine, ISS stage, cytogenetic alterations – and
treatment arm and an indicator for the consolidation
phase (yes/no).
The plot of the cumulative regression coefficient for

the last covariate (consolidation phase) over time
showed a decreasing pattern up to the 18th month
and then a roughly zero slope. The upper confidence
band excluded the null value in the first 18 months
(Fig. 3). This plot suggests that the consolidation
phase may have had an effect on early follow-up
times up to 18 months, but no late effect. The con-
solidation phase appears to have lost its efficacy after
one and half years.

Weighted Cox proportional hazard models with
time-dependent covariate
We performed a weighted Cox proportional haz-
ard model analysis including the consolidation phase as
covariate where all measured confounding factors were
controlled by weighting. The consolidation phase was
specified as an interaction term with the follow-up time.
In particular, we specified 2 dummies to denote early
and late benefit, one for the first 18 months and the
other for the period >18 months, respectively. These
dummies were set to zero for patients who did not re-
ceive the consolidation phase treatment. The first
dummy (early effect of consolidation) was set at 1 for
patients who received the consolidation treatment and
follow-up time from t0 to t18 (or tend of fup, if previous)
and was set to 0 after t18. The second dummy (late con-
solidation effect) was set at 1 for patients who received
consolidation treatment and follow-up time from t18 to
tend of fup, and was set to 0 before t18.
Consolidation therapy resulted in an early effect with

weighted HR = 0.40 (robust 95 % confidence interval
0.17–0.96; p = 0.040), whereas it did not show any im-
pact at later follow-up times (weighted HR = 1.98; robust
95 % confidence interval 0.93–4.20; p = 0.074). The pro-
portional hazard assumption was satisfied (p = 0.9062).

Discussion
The novelty of this article was to use a propensity score-
based approach in an RCT context designed for another
purpose to evaluate the effect of the last phase of a com-
plex therapeutic strategy, adjusting for potential selection
bias caused by different compliance to the previous phases
of the therapeutic scheme. Differential compliance to

Table 2 Propensity score logistic models of receiving at least one ASCT and of receiving consolidation phase treatment

Receiving at least one ASCT Receiving consolidation phase treatment

Coeff. S.E. P > |z| 95 % C.I. Coeff. S.E. P > |z| 95 % C.I.

Age > 50 years 0.2192 0.2005 0.2740 -0.1738 0.6122 -1.1036 0.3268 0.0010 -1.7442 -0.4631

Male sex -0.3034 0.1756 0.0840 -0.6476 0.0408 0.1046 0.1739 0.5470 -0.2361 0.4454

HB≤ 10.5 g/dL -0.1751 0.1809 0.3330 -0.5296 0.1795 0.0556 0.1851 0.7640 -0.3072 0.4183

Plts≤ 150 x109/L -0.1085 0.2592 0.6750 -0.6166 0.3995 0.3935 0.3059 0.1980 -0.2060 0.9930

Crea > 1.2 μmol/dL 0.0577 0.2220 0.7950 -0.3774 0.4927 0.0155 0.2167 0.9430 -0.4092 0.4402

LDH > 190 U/L 0.3097 0.2220 0.1630 -0.1254 0.7448 0.3123 0.2309 0.1760 -0.1403 0.7648

ISS > 1 0.2584 0.1864 0.1660 -0.1070 0.6238 0.1231 0.1770 0.4870 -0.2238 0.4700

IgA isotype 0.0031 0.2062 0.9880 -0.4011 0.4073 -0.1299 0.2136 0.5430 -0.5485 0.2887

Del(13q) 0.0375 0.1765 0.8320 -0.3086 0.3835 -0.0420 0.1722 0.8070 -0.3795 0.2954

T(4;14) -0.1485 0.2099 0.4790 -0.5599 0.2628 0.3715 0.2321 0.1100 -0.0835 0.8264

Del(17p) -0.2640 0.3039 0.3850 -0.8597 0.3317 0.4939 0.4040 0.2220 -0.2979 1.2858

Arm A 0.2628 0.1672 0.1160 -0.0649 0.5906 0.0036 0.1657 0.9830 -0.3212 0.3284

CR at induction 0.1073 0.2476 0.6650 -0.3781 0.5926

Constant 0.7531 0.2990 0.0120 0.1670 1.3392 1.3012 0.4762 0.0060 0.3678 2.2345

Table 3 Estimated inverse probability of treatment weight
(IPTW) and stabilized inverse probability of treatment weight
(SIPTW) of starting 1st ASCT (A), of starting consolidation therapy
(B) and total product (TSIPTW) (C), respectively

Mean ± Standard Deviation Range

Starting 1st ASCT (A)

IPTW 2.00 ± 2.75 1.03–20.88

SIPTW 1.00 ± 0.21 0.29–2.62

Starting Consolidation Therapy (B)

IPTW 1.87 ± 2.52 1.00–31.75

SIPTW 1.00 ± 0.37 0.43–5.79

Total Product (C)

IPTW 2.99 ± 3.74 1.09–34.67

SIPTW 1.00 ± 0.42 0.29–5.53
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earlier therapeutic phases of the protocol and the conse-
quent failure of the randomization balance may have
caused biased results.
Over the last few decades in different research set-

tings, when the randomization procedure was absent
by definition (e.g. observational studies) or was simply
lost (e.g. RCTs with low compliance rate), propensity
score-based approaches were proposed and became
popular. The aim was to re-create an artificial popu-
lation in which treatment assignment could be
ignored, and to compare outcomes in treated and
untreated subjects, mimicking randomization when it

was absent or when the RCT was designed with another
purpose.
Using combined stabilized inverse probability treat-

ment weights, we estimated that consolidation therapy
in newly diagnosed multiple myeloma patients had an
effect on PFS that was restricted to the first 18 months
after the start of therapy.
We applied two sets of weights derived from two distinct

PS equations to try to restore balance to receiving autolo-
gous stem cell transplantation (ASCT) and to ensure
ignorability of the last treatment phase (the so-called con-
solidation phase). We introduced the PS into the model by

PFS 12 mos 18 mos 24 mos

Consolidation 93% 85% 76%
No consolidation 75% 69% 66%

Consolidation

Number at risk
No consolidation

0

50

25

75

100

296 271 210 133 52
52 39 34 26 18

0 12 24 36 48

Months

Consolidation

No consolidation

Fig. 2 Weighted Kaplan-Meier survival estimates for PFS from last ASCT evaluation date, by consolidation treatment

Fig. 3 Plot of the cumulative regression coefficient (95 % CI) for the consolidation phase as a function of follow-up time. Aalen’s additive hazard
model of progression-free survival from last autologous stem cell transplantation
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inverse probability weighting (IPTW). Stabilization of
weights was sufficient to gain robustness.
We used the same approach (IPTW) to calculate

weighted Kaplan-Meier survival curves. Adjusted sur-
vival curves are very useful in exploratory and descrip-
tive phases and comparing them to unweighted curves
permits a simple inspection of the selection forces in a
study. In particular, considering survival curves for pa-
tients receiving or not receiving the consolidation
phase, a selection of poor prognosis patients was evi-
dent in the first follow-up period, after which
weighted and unweighted curves become similar. The
weighted analysis of the consolidation phase showed
a time-dependent benefit which was evident for a short
time span after ASCT. Subsequently, any advantage disap-
peared. There was no evidence of interaction between
consolidation and randomization arms and the sample
size was too small for subgroup analysis.
In a setting such as that of our case study, where the pro-

portional hazards assumption was violated, robustness of
weighting procedures is critical. When the effects are time-
varying, the gap between survival curves may depend on
few risk sets and the weights attributed to a small number
of subjects in those risk sets becomes very influential. An
exploratory and descriptive solution is to investigate the
presence of the time-varying effect through Aalen’s additive
hazards models. A weighted version of this model was
previously evaluated by Huffer and McKeague [24]. We
included time-varying variables in the weighted Cox
models as a set of dichotomous covariates after defining
time intervals of different lengths based on Aalen’s analysis,
so that proportional hazard assumption be satisfied.

Conclusion
Estimating stabilized inverse probability weights by PS
logistic models, combining them to consider the se-
quence of therapeutic phases, carrying out sensitivity
analysis to evaluate the proportional hazard assumption
and time-varying effects, fitting Aalen’s additive hazard
models to investigate time-varying effects and, finally,
estimating a weighted Cox proportional hazard model
with time-varying covariates undoubtedly appears a
complex strategy. However, it is a more appropriate one
to use in the event of lack of compliance to a series of
treatment phases and when there is a time-varying ef-
fect. Both situations are common in cancer trials.
Notably, PS methods can adjust for imbalance caused

by observable covariates. Unobservable covariates can
still exert an effect and distort estimates. Thus, analysis
using PS methods cannot be conclusive in this context.
Ad hoc designed RCTs with randomization proce-
dures planned after ASCT are important to under-
stand what kind of patient really benefits from
consolidation treatment.
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