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Abstract

A massive amount of data is continuously generated by the activities that people

hold on online platforms, mobile systems and in general using and interacting with

digital systems. Big data, not directly related to social networks, are generated in

large quantities from systems that are not necessarily social systems. In fact, in

the information society a whole lot of activities take place on systems that were not

developed to support explicit social interactions between users.

In this thesis, starting from the observation of users activities within a system, we

want to investigate if it is possible to characterise the existence of social relationships

among them. As people interact, individually or in groups, we want to elicit their

social communities from the temporal and spatial co-occurrence of their activities.

The key assumption of this work is that we suppose that there are multiple, par-

allel, hidden communication channels and social networks where social interactions

take place among users and which determine the observed emergent phenomenon of

actions co-occurrences.

The main original contribution of this thesis is the proposal of innovative method-

ologies for users community discovery from implicit user-system interactions and

their experimental evaluation. The History Based Analysis approach is a novel ap-

proach we have introduced, that exploits the similarity of users’ activity histories

to discover the hidden social communities. To better characterise the histories bi-

nary correlation measures we have introduced and experimented original entropy
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amplification factors that take in account system wide distribution of activities at

a given time to contextualise the user activity similarities. The other relevant in-

troduced approach, the Session Based method, uses graph based representation of

concurrent users’ sessions to elicit the hidden social communities. Both proposed

approaches have been validated using a real world dataset containing the activity

logs of students using a virtual learning environment platform.

A remarkable result of our work has been to confirm that co-occurrence of people

activities is an emerging epiphenomenon of hidden, implicit information exchanges

through side channel communications. Therefore the observation of co-occurrence

of events can be used to elicit social relationships. Interesting extension of this

work include the analysis of real world co-occurrences, like in the case of people,

personal vehicles or other personal objects occurring in the same physical place at

the same time, and in general wherever it co-occurrence can be seen as an emerging

epiphenomenon of people’s relationships and information exchange.

Potential applications of this thesis work can fall in various areas such as busi-

ness, marketing, public administration, including intelligence and military sectors.

Experimental evaluation of the introduced methodologies through tests held in the

domain of eLearning demonstrated the effectiveness of our proposed approaches in

retrieving hidden social communities.

Keywords: Community Detection, Graph Analysis, Similarity Measures, Social

Networks, Modularity, Graph Modelling, Learning Analytics, . . .

ii



Acknowledgements

In first place I would like to record gratitude to my principal supervisor, Prof.

Alfredo Milani, for giving me the opportunity to work with his supervision. His

valuable feedback gave very insightful perspectives on various aspects of the research.

His mentoring extends beyond academic research and I am thankful for his continued

guidance and encouragement.

I also want to express sincerely thanks to Prof. Jiming Liu and Dr. William

Cheung as their kind guidance, advises, great inspirations and generous help. They

took time out of their busy, Hong Kong-style, schedules to provide valuable feedback

and constructive suggestions on my research work.

In the course of my doctoral study, I have had the opportunity to collaborate

with Dr. Valentina Franzoni whose ideas helped - and stressed - me during this study

path. I would like to thank the sixth floor ’s group fellows Dr. Valentino Santucci, Dr.

Andrea Chiancone, Dr. Francesco Santini and Dr. Valentina Poggioni, among the

other researcher in DMI, for their support, understanding and the beers. Moreover,

I want to thank the researchers and staff in Hong Kong Baptist University. Among

the others, this special thank is for Yuanxi Li that supported me thoroughly during

my stays in Hong Kong.

Besides, I would like to thank my lifelong friends Marco Mencacci, Maurizio

Montarani, Antonello Bianchi, Riccardo Martinelli, their families and all the other

friends. Without their support I would not be able to reach this objective.

iii



I would like to express my profound gratitude to my father Francesco and my

mother Anna, she’s now with God and she would be proud of this. They continuously

encouraged me without questions and pushed me to go on. I would like to thank

my brother Matteo, my sister in law Lina, and their daughters Teresa and Martina,

my preferred source of distraction.

iv



Summary

Starting from the big data generated by the observation of people’s activities, this

thesis we have investigated the possibility of finding the underlying social communi-

ties. In Chapter 1, we have identified and motivated the interest in discovering the

social behaviour and interactions from the activities of people. The main objective

of this thesis is then set to find if the co-occurrence of peoples activities can convey

information about their underlying social relationships and communications.

The aim of the literature review, in Chapter 2, is to examine the main contri-

butions that in the year have been proposed to investigate the social communities.

Different approaches have been used to explore the community detection problem.

Some of them use a network-based approach that exploits the measures and topol-

ogy of the networks. Other methodologies use the characterisation of individuals

using specific features and clustering them by exploiting their similarity. Informa-

tion diffusion-based approaches use the timing of information to infer the underlying

social networks and hidden diffusion patterns.

The behaviour discovery from different points of view have been explored in the

works presented in Chapter 3. The behaviour discovery is analysed starting from

explicit and implicit interactions among the individuals. Explicit interactions are

the base for Facebook posts and comments analysis. The content of the short text

messages have been analysed from the perspectives of determining the contextual

information and emotion conveyed by posts and their comments. Explicit interac-
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tions are the aim of mass behaviour modelling to solve the classical problem tragedy

of the commons. Behaviour discovery using implicit interactions is the scope of

the further, challenging works. In the first work we propose a novel framework for

students activities analysis that take in account quantitative information to present

visual interfaces morphing metaphors.

Innovative community discovery approaches from implicit interactions have been

presented in Chapter 4. History Based Analysis approach is the first approach we

introduced in this thesis. We developed a novel approach that exploits the similar-

ity of users’ activity histories to discover the hidden social communities. To better

characterise the histories similarities we developed and tested various entropy ampli-

fication factors. These factors take in account system wide factors to contextualise

the activities similarities. Session based approach use graph based representation

of concurrent users’ sessions to elicit the hidden social communities. Both the ap-

proaches have been tested on a real world dataset where are recorded the activities

of students on a virtual learning environment. Tests demonstrated the effectiveness

of our approaches in retrieving the hidden social communities.

The experimental results comparison of the proposed approaches have been sum-

marised in Chapter 5.

Finally, we draw conclusions and point out to some future research directions.

vi



Table of Contents

Chapter 1 Scope, Challenges and Objectives 1

1.1 Discover and model social behaviour from activities . . . . . . . . . . 2

1.1.1 Co-occurrence of Co-located Activities . . . . . . . . . . . . . 3

1.1.2 Time Co-occurrence . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Space Co-location . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Modelling of Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Explicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Implicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Challenges and Thesis Objectives . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Social Community Detection 10

2.1 Network-based communities . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Graphs and Measures . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Centrality Measures . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Community Detection . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Feature-based communities . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Behavioural-based communities . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Vector Similarities . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



2.4 Information Diffusion-based communities . . . . . . . . . . . . . . . . 32

Chapter 3 Investigating Behaviour and Communities 34

3.1 Behaviour from Explicit Interactions . . . . . . . . . . . . . . . . . . 35

3.1.1 Qualitative classification of interactions . . . . . . . . . . . . . 35

3.1.2 Sentiment polarity and emotion from interactions . . . . . . . 37

3.2 Mass Behaviour Modelling . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Behaviour Quantitative Analysis Tool . . . . . . . . . . . . . . . . . . 44

Chapter 4 Community Discovery Approaches 50

4.1 Problem Description, Domain and Definitions . . . . . . . . . . . . . 51

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Activity Abstraction Level . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.4 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.5 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.6 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Histories Binary Correlation Analysis . . . . . . . . . . . . . . . . . . 62

4.2.1 Interaction Modelling . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 History Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Amplifying Parameters . . . . . . . . . . . . . . . . . . . . . . 67

4.2.4 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.6 Experiments and Evaluation Criteria . . . . . . . . . . . . . . 71

4.2.7 History Binary Correlation Discussion . . . . . . . . . . . . . 72

4.3 Session Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Interaction modelling . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Activities co-occurrence graph . . . . . . . . . . . . . . . . . . 84

viii



4.3.3 Sessions graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.4 Interactions graphs . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5 Community Detection by Graph Analysis . . . . . . . . . . . . 87

4.3.6 Experiments and Evaluation Criteria . . . . . . . . . . . . . . 88

4.3.7 Session Based Analysis Discussion . . . . . . . . . . . . . . . . 88

Chapter 5 Experimental Results Evaluation 94

Conclusions 97

Bibliography 101

Appendices 114

Appendix A Histories Binary Correlation Results 114

Appendix B Session Based Analysis Graph Representations 125

Publications 136

ix



List of Tables

2.1 Contingency table for pairwise vector comparison . . . . . . . . . . . 27

4.1 Composition of the courses included in dataset. . . . . . . . . . . . . 59

4.2 Contingency table for pairwise students’ activities . . . . . . . . . . . 66

4.3 Experiment’s results using different aggregation functions for Session

Based Analysis on C1 course. . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Experiment’s results using different aggregation functions for Session

Based Analysis on C2 course. . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Community size analysis on course C1 and C2 using the best strate-

gies for each approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Sample group assignment where a cluster is formed by elements from

two different Ground Truth groups. . . . . . . . . . . . . . . . . . . . 98

5.3 Sample group assignment where a Ground Truth group is split be-

tween two different clusters. . . . . . . . . . . . . . . . . . . . . . . . 98

A.1 Complete Experiments Results for History Binary Analysis on C1

course. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Complete Experiments Results for History Binary Analysis on C2

course. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

x



List of Figures

2.1 One step of Louvain algorithm for modularity maximization. . . . . . 19

2.2 Pairwise vectors comparison to compute similarity parameters. . . . . 27

3.1 Context tag cloud sample of a Facebook post and its comments. . . . 37

3.2 Ontology based emotion similarity. . . . . . . . . . . . . . . . . . . . 39

3.3 Sentiment polarisation tag cloud sample of a Facebook post and its

comments using the path-based emotion abstraction approach. . . . . 40

3.4 Dimensional Morphing Metaphor for learners’ monitoring. . . . . . . 47

3.5 Bar Morphing Metaphor for learners’ monitoring. . . . . . . . . . . . 48

3.6 Tag Cloud Morphing Metaphor for learners’ monitoring. . . . . . . . 48

4.1 Interactions distribution during course using 1h timeslots. . . . . . . . 55

4.2 Number of accesses by user during course. . . . . . . . . . . . . . . . 56

4.3 Representation of simple sessionsand separation example. . . . . . . . 57

4.4 Sessions representation and separation example. . . . . . . . . . . . . 57

4.5 Bucketing of various activities. . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Visual scheme of the Histories Binary Correlation Analysis approach. 63

4.7 History Summarised Vector with binary values representing the pres-

ence of interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 History Summarised Vectors pairwise comparison to extract measure

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



4.9 Visual representation of τt entropy amplification parameter extraction

for a timeslot of History Summarised Vectors. . . . . . . . . . . . . . 68

4.10 V-measure computed on cluster assignments without for course C1

using entropy amplification on measures. . . . . . . . . . . . . . . . . 72

4.11 V-measure computed on cluster assignments for course C1 using en-

tropy amplification on a parameter. . . . . . . . . . . . . . . . . . . . 73

4.12 V-measure computed on cluster assignments for course C1 using en-

tropy amplification on all parameters. . . . . . . . . . . . . . . . . . . 73

4.13 V-measure computed on cluster assignments for course C1 using en-

tropy amplification on all parameters and missing activities for d pa-

rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14 V-measure computed on cluster assignments for course C2 without

using entropy amplification on measures. . . . . . . . . . . . . . . . . 74

4.15 V-measure computed on cluster assignments for course C2 using en-

tropy amplification on a parameter. . . . . . . . . . . . . . . . . . . . 75

4.16 V-measure computed on cluster assignments for course C2 using en-

tropy amplification on all parameters. . . . . . . . . . . . . . . . . . . 75

4.17 V-measure computed on cluster assignments for course C2 using en-

tropy amplification on all parameters and missing activities for d pa-

rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.18 Impact of EA strategies on similarity measure calculation and Ag-

glomerative clustering on course C1. . . . . . . . . . . . . . . . . . . . 77

4.19 Impact of EA strategies on similarity measure calculation and Ag-

glomerative clustering on course C2. . . . . . . . . . . . . . . . . . . . 78

4.20 Homogeneity, Completeness and V-Measure of best performing mea-

sures and EA strategy using Agglomerative clustering on course C1. . 79

xii



4.21 Homogeneity, Completeness and V-Measure of best performing mea-

sures and EA strategy using Spectral clustering on course C2. . . . . 79

4.22 Visual scheme of the Session Based Analysis approach. . . . . . . . . 83

4.23 Link creation in Activities co-occurrence multigraph. . . . . . . . . . 84

4.24 Link creation in Sessions multigraph. . . . . . . . . . . . . . . . . . . 86

4.25 Link creation in Interactions graph. . . . . . . . . . . . . . . . . . . . 87

4.26 Interactions graph of course C1 based on ϕ
′
sum aggregation function. . 89

4.27 Interactions graph of course C2 based on ϕ
′
sum aggregation function. . 90

4.28 Homogeneity, Completeness and V-Measure of modularity class as-

signments on course C1. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.29 Homogeneity, Completeness and V-Measure of modularity class as-

signments on course C2. . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Homogeneity, Completeness and V-score differences in percentage be-

tween History Based approach best measures and Session Based ap-

proach count aggregation on course C1. . . . . . . . . . . . . . . . . . 95

5.2 Homogeneity, Completeness and V-score differences in percentage be-

tween History Based approach best measures and Session Based ap-

proach count aggregation on course C2. . . . . . . . . . . . . . . . . . 96

B.1 Interactions graph of course C1 based on sum aggregation function. . 126

B.2 Interactions graph of course C1 based on count aggregation function. 127

B.3 Interactions graph of course C1 based on min aggregation function. . 128

B.4 Interactions graph of course C1 based on max aggregation function. . 129

B.5 Interactions graph of course C1 based on mean aggregation function. 130

B.6 Interactions graph of course C2 based on sum aggregation function. . 131

B.7 Interactions graph of course C2 based on count aggregation function. 132

B.8 Interactions graph of course C2 based on min aggregation function. . 133

xiii



B.9 Interactions graph of course C2 based on max aggregation function. . 134

B.10 Interactions graph of course C2 based on mean aggregation function. 135

xiv



Chapter 1

Scope, Challenges and Objectives

A massive amount of data, the big data, is continuously generated by the activities

that people hold on online platforms, mobile systems and in general using and

interacting with digital systems.

Many online platforms have evolved into social systems. In fact their focus on

accumulating knowledge about their users’ social network. This social information is

usually not publicly accessible to everyone, only the owners of the platforms (Face-

book, Twitter, Weibo, etc.) can analyse and get insights from the social network

connections.

On the other hand, big data not directly related to social networks are generated

in large quantities from systems that are not necessarily social systems. In the

information society a whole lot of activities take place on systems that were not

developed to consider, monitor and represent the social interactions between the

people. Starting from such systems, we want to explore and see whether it is possible

to derive social communities from the observation of people activities and their

implicit interactions.
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1.1 Discover and model social behaviour from ac-

tivities

Starting from the observation of people’s behaviour, we want to find if it can char-

acterise the existence of social relationships among them. As people interact, indi-

vidually or in groups, we want to elicit their social communities from the temporal

and spatial co-occurrence of their activities.

Our starting point of view is that the systems we are going to analyse are com-

posed of various components, some explicit/observable and other are implicit/hidden.

The observable components are the people (e.g. system users), the environment (e.g.

a digital system), and a specific set of actions that people can take on the environ-

ment. Examples of implicit components can be communication channels between

people and the various social networks that connect them, which are hidden to the

observers.

If people visit the same place, physical or virtual, in the same moment we can

make the hypothesis that there is a social interaction. Depending on the context, the

co-occurrence of two users actions can have different levels of significance as a clue of

the existence of an interaction. The actions and activities co-occurring in crowded

environments when many other people are interacting (e.g. people in a shopping

mall at start of sales season) doesn’t bring too much information for our purposes,

since it could likely be a random coincidence. On the other hand, activities taken

in isolated environments and unlikely times (e.g. students studying together at late

night) are important to discover the social interactions as they are significant clues

of underlying social communication channels and social connections.

The key component of our work is that we suppose that there are multiple, par-

allel, hidden communication channels and social networks where social interactions
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take place. Our purpose is to elicit and model the properties of the social com-

munities by only observing their effects. In other words co-occurence of actions of

different users is considered as an emergent property of the inherent social network.

1.1.1 Co-occurrence of Co-located Activities

Time and space co-occurrence of activities can bring information about the inter-

actions among people. The conveyed information is useful to discover the social

connections between individuals and to reconstruct the underlying social communi-

ties.

The more frequently people will take activities at the same time (co-occurrence)

and in the same place (co-location), the more we can assume and discover about

their social interactions. The multiple occurrences of actions at the same time and

in the same space will reinforce the assumption that the involved individuals are

belonging to the same social communities.

Think about a group photo. People should gather in the same place and at the

same time to shoot the picture. An observer looking at the group photo can infer

the information that all the people represented in it had some sort of communication

to arrange for the shot. By looking at the behaviour, i.e. how closely or loosely they

gather, the observer can also infer the people’s different social communities. The

photo itself is the representation of social communications and interactions among

people.

1.1.2 Time Co-occurrence

Event timing is important to analyse the interactions among people. When people’s

activities occur in the same moment, or within a short time interval from each

other, we can infer with an high degree of confidence that the co-occurrence is

3



the epiphenomenon of the social interaction among them. The more the events

are distant in time, the less information they convey about the strength of people

relationships.

1.1.3 Space Co-location

Another essential factor to analyse is the location where interactions among people

take place. In general, observable user activities can take place in physical or virtual

spaces.

Physical spaces Activities in physical spaces are conveying information about

the social communities if they take place in the same place or within an observable

distance.

Take for example two individuals that attend a concert. They will probably

have the same musical taste and we can suppose that they belong to the same

group. Multiple occurrences of this kind of events will reinforce our supposition

that there is a link between them.

The same behaviour can be observed for people that meet in shopping malls

during sales season, students that attend the same school, people that work in the

same place, and so on. Some co-location events convey more information than

others, but all of them help to deepen the knowledge of the observed phenomenons.

Virtual spaces The other type of interactions that can be analysed are the one

that happen in the virtual world. People daily interact by sending private and

business emails, visiting social networking websites and have activities that involve

the use of dedicated, web and eLearning systems. All the underlying actions can

be tracked and the information can be used to elicit the knowledge about the social

relationships between the individuals.
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Web Web pages are the basic virtual environment for user activities. People

view pages, read content, click on images and links, and in general interact with

system and the objects contained in it. By doing so, the users leave tracks of their

actions that are recorded and stored in the system logs.

Virtual Learning Environments Virtual Learning Environments (VLE) are

used by teachers and instructors to present to students the content of their courses

using web technologies. The courses can have various and different styles of presen-

tation to students. Interaction with VLEs depend on course style:

• MOOC/SPOC : the course content is fully presented online. Students, using

the VLE, access all the study material, follow lessons and maintain online the

most part of their communications with instructors and peers. Only excep-

tionally the students know each other and communicate using other channels.

The platform is their main meeting place.

• Blended : the blended learning courses mix face-to-face lessons with material

that can be accessed online. Usually students-instructor communication is

taking place in forums and mailing lists. On the other hand, student-student

communication are likely taking place on hidden side channels. The commu-

nications through the platform are very limited and usually are directed from

the instructor to the students.

In all the cases, the actions that take place online are tracked and stored in the

system logs.

5



1.2 Modelling of Interactions

The interactions between people can be modelled in different ways, depending on the

information that is available. In general, interactions can be categorised as explicit

or implicit.

Modelling of explicit interactions require a deeper knowledge on the social links

between people. The social network that is connecting the individual should be

exposed to be examined. On the other hand, the modelling of implicit interactions

is required when the social connections are unknown. This poses new challenges

as the solution of many problems cannot be easily solved without determining the

underlying social network.

1.2.1 Explicit

The social links between people can be derived by the simple observation of explicit

interactions. In this case the environment exposes all the information about the

social network that is connecting the different individuals.

The problems connected to the modelling of explicit interactions have been al-

ready widely explored in literature. Facebook posts and comments have been ex-

amined to understand the role of the social network in information diffusion [9], to

elicit the semantic relatedness [17, 40], to determine the emotions conveyed by the

posts [59, 39], and many other. Twitter social connections have been used to find

the sentiment polarity of posts [96], to discriminate from true and fake followers

[23], and so on. The common trait of all this works is that both the activities of the

individuals and their social interactions are evident and observable.
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1.2.2 Implicit

The modelling of implicit interactions is an emergent, and more challenging, research

field. The domain where the activities take place is partially observable. In fact,

the activities and actions of the individuals are known and observable but the social

connections and interactions between people are hidden to the observer.

We can find different cases where the social interactions are hidden. In some case

the system owners does not give access to it. For example Facebook, Twitter, and

all the other social network platforms give partial or no information about the users

social networks. In other cases the systems, physical or virtual, where these activities

take place cannot record the social interactions between the users. This can be for

the nature of the problem, e.g. a surveillance camera that records unknown people

passing, or because the systems were not developed to take in account the social

interaction information, e.g. web servers and applications. In this latter cases the

only information available is the activity and action type, timing and sometimes the

semantic associated to it.
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1.3 Challenges and Thesis Objectives

The objective of this work is to find whether the co-occurrence of people’s activities

can convey information about their underlying social relationships and communica-

tions.

To characterise the social communities we use indirect information about the

social links between people and we want to understand if it is possible to elicit the

social communities by observing the activities of the individuals within system.

With this work we want to find an answer to the following main research ques-

tions:

• Is it possible to discover social communities basing only on the observation of

people behaviours?

• Shall an external observer, not involved in the communications and looking

only at the activities of the individuals, discover the underlying social commu-

nities?

• Are the social communities an emerging phenomenon of side channel commu-

nications and activities co-occurrence?

Potential applications of this work can fall in various areas. Business, market-

ing, public administration, including intelligence and military sectors, can benefit

from the approaches introduced in this thesis. The social communities knowledge

is elicited from people activities that are an emerging epiphenomenons of hidden,

implicit information about side channel communications.

As a testbed for developing models and methods of community discovery as well

as for experimental evaluation, we have focused on eLearning data. This kind of

data is readily available and we can refer to real social communities are known.
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The thesis is organised as follows. In Chapter 2 we review the social communities

detection problem by introducing related works. In Chapter 3 we present various

novel works whose common trait is the representation and analysis of behaviour.

Chapter 4 we present the innovative social community detection approaches, their

analysis in a specific domain and the approach-specific results. In Chapter 5 the ex-

perimental results from the various approaches are compared and evaluated. Finally,

in Chapter 5 we summarise the thesis work and draw conclusions.
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Chapter 2

Social Community Detection

Social communities elicitation is a particular aspect of the community detection

problem. The latter has been explored from various points of view. The applica-

tions of community detection include the most different fields. From chemistry and

pharmacology, where typical problems consists in finding groups of proteins and

chemical compounds, to social networks, where the social relationships between the

individual are analysed and exploited. As apparent from the previous examples, the

definition of community in each field can vary.

Different approaches take in account the various characteristics of the consid-

ered domain. Some approaches exploit the network characteristics to elicit the

communities, while others analyse the features of the elements to find the common

characteristics in order to group them together.
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2.1 Network-based communities

A great extent of the research efforts in community detection is devoted to the

problems involving a network structure. Networks are, in general, dynamic and

evolving and graphs are their direct mathematical representation. Graph theory

measures and analysis methodologies hence can be used to study social, biological

and information networks.

In social network analysis (SNA) these graph theory tools are used in conjunction

with other visualisation and statistical tools. SNA focus is on the relationships

between the individuals more than the single individual characteristics. This helps

to find explanation of social behaviour using the network of relationships.

2.1.1 Graphs and Measures

Graph theory [16] provides a set of concepts and methodologies to analyse graphs.

A graph G = (V,E) is defined as a collection of vertices V connected to each

other by the edges E. If the edges have directionality, e.g. and connect a starting

vertex to an end one, the the resulting graph is a directed graph. If the edges can

be traversed in both ways the graph is undirected.

Ego Networks The ego network is defined as the subgraph of a social network

formed by a vertex (ego), the other vertices directly connected to it (alters) and

their connecting edges. Ego networks have been extensively studied in sociology

and anthropology literature, that has defined their properties and characteristics.

Tie Strength One of the most studied properties is the tie strength [85] that

defines the connection strength between two vertices and helps to categorise them

vertices in circles [64]. In SNA the measures for tie strength can be based on var-
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ious features. The frequency of interaction between the individuals, the individual

perception of the strength of relationship, the cost of communication (e.g. distance)

between the individuals, or a combination of the previous are all weighting functions

helpful to evaluate the information diffusion on the network [4].

Homophily The homophily is the tendency to relate with people with similar

characteristics. This leads to the formation of homogeneous groups (clusters) where

it is easier to form connections and relationships. The ties within clusters are strong.

Heterophily There is heterophily when there are connections with characteristics

that are not so similar as the ones in homogeneous groups. The heterophily is

desirable in some contexts as it can bring innovation and idea generation. The ties

are weak as the connections are between clusters.

Transitivity The transitivity property of ties. It is defined as in set theory:

if (aTb) ∧ (bTc)⇒ (aTc) (2.1.1)

with a, b, c ∈ V .

Bridging Bridges are vertices and edges that connect between groups. The bridge

links facilitate communications between groups. The nodes connected by bridge are

the contact points between communities and are fundamental for the social network

cohesion.

Cliques In SNA groups of people that interact and share similar characteristics are

defined as cliques. So the graph vertices in cliques verify the properties of homophily

and transitivity. The ties within the cliques are usually strong.
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Degree The degree of a vertex is the number of its connections with neighbours.

In directed graph we can distinguish between in-degree, i.e. the number of links

that lead into the vertex, and out-degree, i.e. the number of links the lead out if the

vertex.

Paths A path between two nodes is a sequence of nodes that should be traversed

to reach one another. The shortest path is the path that connects two nodes with

minimum number of edges traversals. Shortest paths are desirable when looking for

quick information spread on a network.

Assortativity The assortativity express the correlation between two vertices.

This is usually done by computing Pearson’s correlation coefficient (or Pearson’s

r) [78] using degree-degree correlation. This can be computed through the joint de-

gree distribution function P (k1, k2) that is the probability of finding an edge whose

end points have degree k1 and k2 respectively. It has been found that social networks

are in general assortative (positive correlation) since vertices of degree k tend to be

connected to vertices of similar degree. In contrast, “technological networks” like the

Internet are in general disassortative (i.e. node degrees are negatively correlated).

Modularity Modularity value Q is, up to a multiplicative constant, the number

of edges falling within groups minus the expected number in an equivalent network

with edges placed at random [74]. The value that measures the strength of division

of a network into modules.

Given:

• n = |V | number of vertices

• m = |E| number of edges

• u, v ∈ V vertices
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• A adjacency matrix

• Auv number of edges connecting u and v

• kv = deg (v) degree of node v

• δ (Cu, Cv) a function that yields one if Cu = Cv (the two vertices are in the

same community), zero otherwise.

we can define the modularity Q as:

Q =
1

2m

∑
uv

[
Auv −

kukv
2m

]
δ (Cu, Cv) (2.1.2)

The Q value range is in [−1, 1]. The higher is this value, the more distant the

group assignment is from a random one. In general, the higher the value of Q of a

partition, the crisper the community structure is.

2.1.2 Centrality Measures

Degree Centrality The degree centrality measures how much is connected the

vertex. In SNA is used to find the influence and popularity of people. It helps

to identify also which vertex is central with respect to spreading information and

influence their immediate neighbours. Degree centrality for vertex v is defined as:

CD (v) = deg (v) (2.1.3)

Betweenness Centrality Betweenness centrality [42] measure gives information

on which vertices are more likely to appear on communication paths within the

graph. It is useful to identify cut points where the network can be partitioned. It is

defined as
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CB (v) =
∑

s 6=v 6=t∈V

σst (v)

σst
(2.1.4)

where σst is total number of shortest paths from vertex s to vertex t and σst (v) is

the number of those paths that pass through v vertex.

Closeness Centrality Closeness centrality [13] is a measure of the speed of in-

formation spread starting from one vertex to reach the others. In SNA it helps to

identify which people can reach anyone else in the network. It is defined as follows:

CC (v) =
1∑

u d (u, v)
(2.1.5)

where d (u, v) is the distance, in number of edge traversals, between u vertex and

v vertex.

Eigenvector Centrality The eigenvector centrality value of a vertex is propor-

tional to sum of the eigenvector centralities of its neighbours. This brings informa-

tion that a vertex with high eigenvector centrality is connected with other nodes

with high eigenvector centrality. This is similar to Google PageRank algorithm [77]

where links from highly linked pages count more in searches. In SNA is useful to

identify how well a person is connected to other well-connected people. The eigen-

vector centrality is defined as:

CE (v) = xv =
1

λ

∑
u

au,v xu (2.1.6)

where u is a neighbour of v, A = (av,t) is the adjacency matrix of the graph, and

λ 6= 0 is a constant. Th eigenvector formula, in vector form, is:

Ax = λx
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The centrality vector x is the left-hand eigenvector of the adjacency matrix A

associated with the eigenvalue λ. A good choice for λ is the largest eigenvalue in

absolute value of matrix A as this choice will guarantee that if matrix A is irreducible,

or equivalently if the graph is (strongly) connected, then the eigenvector solution x

is both unique and positive.

2.1.3 Community Detection

Communities in graphs can be defined as groups of vertices that have strong ties

between themselves and weak ties with the rest of the graph. Also called clusters or

modules, they contain groups of vertices that exhibit common properties and roles

within the graph structure.

Real networks are in general not homogeneous. The vertex degree distribution is

broad with many low degree vertices and some with large degree. A great number of

edges is found within some particular groups of vertices, and low numbers between

these groups. This property of real networks is the so-called community structure

[44].

Several methods have been proposed to uncover the communities present in a

graph [37]. Community detection problem is a special case of the graph partitioning

problems. These class of problems is NP-hard as there is no known algorithm that

solves the problem in polynomial time [43]. Several heuristic approximated solutions

have been proposed.

In community detection an added difficulty is that there is not a single accepted

rigorous definition of measure for the quality of communities. One of the most

commonly used measure is modularity as defined in paragraph 2.1.1.

Community detection algorithms that use graph information and measures can

be grouped in several different classes. In literature various solutions include graph

partitioning, divisive algorithms, modularity maximization, statistical inference and
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clique-based methods.

Graph Partitioning This is one of the traditional methods for community de-

tection. It generally consists in dividing the vertices in G in a predefined number

of communities k. The problem is, in general, NP-Hard but various approximated

solution have been developed.

The Minimum Cut algorithm is a partitioning algorithm that finds the k com-

munities with the minimal number of edges connecting the the communities. The

number of edges falling between communities is the cut size. Usually the approx-

imated algorithms proceed by bisecting the graph using a various heuristics and

repeating the procedure until the number k of communities is reached [55, 95].

Other methods make use of the Ford and Fulkerson max-flow min-cut theorem [36]

to find efficient approaches to determine minimal cuts in graphs with capacity on

the edges [22].

The main feature, and main drawback of this method, is that the number k

of communities to be found must be specified. In fact, the minimum cut of a

graph is always the one with a single community e.g. there are zero edges between

communities.

Divisive Algorithms Divisive algorithms work by identifying and removing the

edges that connect communities. By doing so the communities will become discon-

nected from each other. The divisive algorithms usually differ by the measure that

is computed to discriminate the edges to be removed.

One popular divisive algorithm is the one developed by Girvan and Newman

[44, 73] in their works exploring social and biological networks. The edge to be

removed are selected by using their edge betweenness centrality. This measure is an

extension to edges of the definition of betweenness centrality for vertices reported

in 2.1.4.
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The algorithm steps can are :

1. compute betweenness centrality for all edges in graph and modularity Q

2. remove one of the edge with largest centrality

3. recalculation betweenness centrality on the resulting graph and modularity Q

4. repeat from step 2 until there are no edges to remove or modularity Q reach

the desired threshold

The result of the algorithm is a dendogram, with individual nodes as leaves.

The dendogram represents the top-down split of the graph obtained by the edges

removal. This algorithm is quite slow and its runtime is acceptable for graphs with

a number of vertices n = |V | ≈ 10000.

Modularity Maximization Modularity value Q, as defined in equation 2.1.2, has

originally been introduced as stopping criterion for the divisive algorithm by Girvan

and Newman [74]. This value has been widely accepted as the best to qualitatively

evaluate communities in graphs.

Modularity is value that measures the strength of division of a network into

modules. Having high modularity groupings in a network is represented by having

dense connections among the nodes within modules and sparse connections between

nodes in different modules.

Modularity maximization methods try to find the grouping that has the highest

modularity value Q within a network. The naive method is to start with one node

and proceed by adding a connected node to the group until the modularity score in-

creases. This problem has been proved to be NP-Hard [18] but heuristic algorithms

have been developed. Greedy [15], simulated annealing [46], evolutionary compu-

tation and other heuristic methods [22] have been used to solve the modularity

maximization optimisation problem.
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Figure 2.1: One step of Louvain algorithm for modularity maximization.

One of the most efficient approaches to modularity maximization is the so-called

Louvain Method. The algorithm introduced by Blondel et al. in “Fast unfolding of

communities in large networks” [15] is particularly efficient even for very large size

networks, with nodes in the order of hundreds of millions.

The Louvain method examines a weighted graph. At start each vertex is assigned

to a different community. In first phase a community aggregation takes place. For

each vertex, the considered vertex will join one of its neighbours’ community if

there is a gain in modularity. This procedure is repeated until there is no gain in

modularity. The second phase consist in building a new graph composed of super-

vertices that are the communities found in the first phase. The edges between

super-vertices are weighted as sum of the weight of the links between nodes in the

corresponding two communities. The process is repeated until there are no changes

in the network structure and the maximum modularity is achieved. In Fig. 2.1

is shown one step of the modularity maximization algorithm. The result of the

algorithm is the assignment to each vertex of a modularity class value.
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Statistical Inference Methods using statistical inference [67] try to generate the

network structure using a model that exploits the features of the input data.

The general approach is to use a stochastic blockmodel [50] and its variants to

produce graphs that contain communities of nodes. The original graph is decom-

posed in communities of vertices that share common properties. Edges within the

communities are more dense than the edges connecting one community to the other.

Various statistical approaches use belief propagation [8, 47, 83] that make use of

Bayes theorem to infer the communities in graphs. In fact, the community detec-

tion problem can be seen as a specific example of statistical inference. The graph

structure, represented by the adjacency matrix, is the evidence of the problem.

The missing information to be inferred by the model is represented by the model’s

parameters and the vertex grouping information.

Furthermore, Markov chain Monte Carlo (MCMC) statistical inference approaches

[79] have been introduced to produce greedy agglomerative heuristic for community

detection in graphs.

Clique-based Methods Cliques are groups of two or more individuals who share

similar characteristics and are connected one to each other forming a network.

Cliques can overlap each other which is a desirable characteristic for many social

network tasks. Detection methods can find cliques of fixed size or with the maxi-

mal number of elements. The former can use percolation methods to determine the

node cliques [61], while the classical algorithm for the latter is the Bron–Kerbosch

algorithm [19].
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2.2 Feature-based communities

In social communities each individual is characterised by unique features. The habits

and profiles of users, but also their behaviour and interactions, can be recorded and

recognised to define the user’s profiles. The clustering algorithms take in account

the different features of the individuals and find the ones that have more in common

to group them together. Each cluster will contain the individuals that are more

similar in the specific feature space given a specific comparison measure. Clustering

of elements that share similar features and interests is widely used in different fields.

From network optimisation to recommender systems and marketing the clustering

algorithms are used to find groups of similar elements. The clustering of geographic

location of web requests help to improve the performance of services on the In-

ternet, by exploiting these features the clusters of web clients can be served by a

dedicated regional server [60]. Identifying clusters of customers with similar inter-

ests is essential for online retailers. Recommendation systems [58], help to guide

the customer choices when browsing online catalogues. This has the double effect of

directing the customers’ choices and increase the sales for business owners. In cus-

tomer relationship management (CRM) systems the goal is to find users to submit

marketing campaigns and evaluate their effects. The customers for marketing cam-

paigns should share common features and their communities are based on similarity

of features and interactions. This helps business to refine the marketing strategies to

match customer expectations [103] as well as to evaluate the customer satisfaction

[6].

Using the clustering approach the result is a class assignment for each of the ele-

ments. All the information to reconstruct a network is already inside the clustering

assignments. As a matter of fact, it’s easy to add links that connect, with different

weights, all the elements intra and extra cluster. The weight will be representative
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of the measure used by the clustering algorithm to compare the elements.

2.2.1 Clustering Algorithms

Various approaches and clustering techniques have been investigated in order to best

adapt to the given domains. The various methodologies can be broadly classified in

four categories, i.e. hierarchical, statistical, partitional and spectral clustering. All

the clustering algorithms, except the statistical ones, use similarity or dissimilarity

measures to compare the elements.

Agglomerative Agglomerative clustering is a technique that falls into the hi-

erarchical clustering algorithms’ category [53]. This technique uses a bottom-up

approach to build nested clusters by repeated merges of elements. Each element

starts in its own cluster and then is linked to the clusters that minimises the sum of

squared differences between all clusters. The elements are usually compared using

a similarity measure.

Divisive Opposite from the approach of agglomerative clustering, the divisive

algorithms are in the hierarchical clustering family [53] and use a top-down approach.

At start all the elements are in the same cluster. Iteratively the clusters are separated

until every object is in its own cluster. The elements are usually compared using a

dissimilarity measure.

Statistical Statistical clustering algorithms are statistical generative models that

represent the process of generating information. These models include a set of

statistical assumptions about the generation of sample data that is representative

of a larger population.

The EM (Expectation-Maximization) [29] is an iterative algorithm for finding

the maximum likelihood of estimated parameters of a statistical model. The model
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depends on latent variables, e.g. from equations which cannot be resolved directly, or

from data which were not observed, where the existence of such data can be assumed

true. EM iteration rotates an expectation step (E), which iteratively calculates the

expected likelihood on the current estimate of parameters, and a maximization step

(M), that estimates which parameters maximise the expected likelihood, calculated

in the E step. The algorithm terminates when updating the parameters does not

increase the likelihood.

Partitional Partitional clustering methods try to find a specific number k of clus-

ters in a set of elements. These elements are immersed in a feature space where

a distance measure can be defined between pairs of elements. The distance is a

measure of dissimilarity between elements basing on the feature’s value. The goal

is to separate the elements in k clusters in a way that maximise (minimise) a given

cost function based on distances. The distances can take in account the differences

between existing elements and/or from virtual elements such as the cluster centroids.

K-Means [68] is a clustering algorithm to partition n elements into k clusters

containing the closest mean differences from centroids. The problem is computa-

tionally difficult (NP-hard), but algorithm exist to solve efficiently the problem by

using heuristics to converge quickly towards a local optimum starting from random

centroids [65].

Spectral Spectral clustering techniques makes use of the spectrum, i.e. the set of

eigenvalues, of a similarity matrix to partition the initial set of elements in different

clusters. The similarity matrix is constructed using a pairwise similarity function.

The eigenvalues are necessary to perform a dimensionality reduction before cluster-

ing in lower dimensions. The techniques are general as the low dimension similarity

matrix can be used in combination with almost all the other clustering methods.

Usually K-Means is used to detect and assign the cluster labelling to elements.
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The clustering assignment using the spectral information renders more evident the

cluster properties of the initial elements.

Different spectral clustering make use of the eigenvectors of different matrices.

Initial works used the eigenvectors of the adjacency matrix [33] or the eigenvectors

of the Laplacian matrix [35]. The latter approach is the most used matrix represen-

tation for spectral clustering techniques. Various optimisation have been proposed

for the computation of the Laplacian matrix and its eigenvectors [92, 75]
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2.3 Behavioural-based communities

The discovery of behaviour-based communities is based on the assumption that if

two people have the same dynamic behaviour they are similar. The behaviour of a

person can be described by the sequences of actions they take during time. These

user histories represent dynamic features that can be used to model the users’

behaviour.

The user modelling is similar to what introduced in feature-based communities

2.2, where clustering is applied using features that can also summarise action se-

quences (e.g. frequency rates, connection time, etc.) but very seldom the action

histories are used as sequences.

In our approach the histories are features that describe dynamic timed sequences

expressing the user’s behaviour. Behaviour similarity (i.e. history similarity) is

computed by looking at temporal correlation of actions.

Social communities can be elicited by clustering the elements using similarities

extracted from user histories. The elements’ similarities can be found by:

• using vector similarity measures;

• training a neural network in order to obtain user behaviour embedding.

Recommender systems are a typical application of history similarity. The histo-

ries of purchases are modelled and compared to find similarities between users and

elicit social communities, such as customer segments, for marketing purposes.

2.3.1 Vector Similarities

The user histories can be represented using vectors, so we can find the correlations

between the elements using vector correlation based similarity measures. Commu-

nities are elicited by using history similarity as clustering similarity measure.
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Each vector element will represent a time slot containing a boolean value repre-

senting the presence or absence of a given feature F. The vectors can be compared

using binary similarity measures, that can emphasise different aspect of the rela-

tionship.

Measure Parameters To apply the various binary similarity measures, the vec-

tors are compared pairwise to compute the measure’s parameters. The parameters’

contingency table is shown in Table 2.1 and exemplified in Figure 2.2. According

to this table the value of each parameter is computed counting all the occurrences

of the corresponding condition on the boolean vector pair. The parameters are

computed according to the following formulas:

a =
∑

F∈Features

(V ector1 [F ] ∗ V ector2 [F ]) (2.3.7)

b =
∑

F∈Features

(V ector1 [F ] + V ector2 [F ]) (2.3.8)

c =
∑

F∈Features

(V ector1 [F ] + V ector2 [F ]) (2.3.9)

d =
∑

F∈Features

(1− V ector1 [F ]) ∗ (1− V ector2 [F ]) (2.3.10)

Cooccurence This simple statistic measure takes in account only of the presence

of features in both sets.

Cooccurrence = a (2.3.11)
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Table 2.1: Contingency table for pairwise vector comparison

Vector 1 Element

Feature F present

Vector 2 Element

Feature F absent

Vector 1 Element

Feature F present
a b

Vector 2 Element

Feature F absent
c d

Figure 2.2: Pairwise vectors comparison to compute similarity parameters.
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Jaccard similarity measure Introduced by Paul Jaccard at the start of 20th

century [52], this measure is also known as the similarity ratio. It does not use the

features’ absence parameter in the computation.

Jaccard =
a

a+ b+ c
(2.3.12)

Russell and Rao (RR) similarity measure This similarity measure, intro-

duced in 1940 by Russell and Rao [88], considers at the denominator the information

about the absence of a features in the two sets.

RR =
a

a+ b+ c+ d
(2.3.13)

Simple Matching (SM) similarity measure Known also as the Rand Index

[82], this measure is the ratio of the number of matches to the total number of

characteristics.

SM =
a+ d

a+ b+ c+ d
(2.3.14)

Dice similarity measure Dice similarity measure [30], also known as Czekanowski

or Sorenson, is similar to the Jaccard index, but give more emphasis to the presence

of common features between the compared sets.

Dice =
2a

2a+ b+ c
(2.3.15)

Sokal and Sneath (SS1) similarity measure n. 1 In their work, Sokal and

Sneath [93], presented various similarity measures. This measure enhances the con-

current presence and absence of features in the two sets.
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SS1 =
2 (a+ d)

2 (a+ d) + b+ c+ d
(2.3.16)

Sokal and Sneath (SS2) similarity measure n. 2 This measure enhances the

disjoint presence and absence of features in the two sets.

SS2 =
a

a+ 2 (b+ c)
(2.3.17)

Sokal and Sneath (SS3) similarity measure n. 3 This measure balances the

concurrent presence and absence of features in the two sets with the disjoint feature’s

parameters.

SS3 =
a+ d

b+ c
(2.3.18)

Sokal and Sneath (SS4) similarity measure n. 4 This measure yields the

conditional probability that a characteristic of one vector is in the same state (pres-

ence or absence) as the characteristic of the other vector.

SS4 =
a
a+b

+ a
a+c

+ d
b+d

+ d
c+d

4
(2.3.19)

Ochiai similarity measure Also known as Fowlkes-Mallows index [38], the Ochiai

similarity measure [76] is the binary form of the cosine vector similarity.

Ochiai =

√
a

a+ b
· a

a+ c
(2.3.20)

Yule Y coefficient of colligation Yules Y coefficient of colligation [106] is a

measure of association between two binary variables.
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Y uleY =

√
ad−

√
bc√

ad+
√
bc

(2.3.21)

2.3.2 Neural Networks

Neural Networks have been successfully applied to various fields of research. The

ability to classify and find correlations between elements makes them suitable for

various tasks. A classical and successful field of application is to natural language

processing (NLP) tasks. A very popular model architecture for estimating neural

network language model (NNLM) have been proposed in [14] using a feedforward

neural network to learn together the representation of word vectors and the statis-

tical language model. Later investigation brought to the separation of the NNLM

tasks from the word embedding learning [71]. This latter task has been found to

be useful to simplify the NLP tasks and have been trained using various corpora

[97, 51]. Although these word representations brought improvements in the accu-

racy, the architectures were computationally expensive to train.

The state of the art for word embeddings has been reached with the continuous

bag of words (CBOW ) and skip-gram models introduced by Mikolov et al. [70].

This approaches start by the observation that two words are semantically similar if

a correlation can be found in the same context. These model overcome the training

limitations of the previous architectures, achieve excellent semantic and syntactic

accuracy while using a simple architecture.

The two models have been implemented in the Word2vec software. When using

the CBOW approach, the model predicts the current word from a window of sur-

rounding context words. The order of context words does not affect the prediction.

When using the skip-gram approach, the model uses the current word to predict the

surrounding window of context words. The nearby context words are given more

importance than distant context words.
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The word embeddings produced by Word2vec have been later used for many

different tasks. This process can be seen as an alternative way to find features

and similarities to feed convolutional neutral networks (CNN), clustering and other

classification algorithms. Some examples include text classification using CNNs [62],

recommender systems using collaborative filtering [12], opinion mining using deep

CNN [80], healthcare analytics using deep models [26], and many more.
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2.4 Information Diffusion-based communities

Information diffusion is a phenomenon that take place in networks. Under this

definition we can include various and different processes. The word of mouth effects

in marketing [54], the spread of information of opinion and news [2], the spread of

infectious diseases [3] are some of the application fields were information diffusion

has been studied.

To study the information diffusion first we need to define what is the contagion

(i.e. the message, idea, disease, virus, etc.) and find a way to track it when it

diffuses through the network. Moreover, the network itself is usually unknown and

we can only observe it when a node gets infected. There is no information from

where the infection came from.

One successful approach, using generative probabilistic model, has been devel-

oped by Gomez-Rodriguez, Leskovec and Krause [45, 86] and implemented in the

NetInf program. In their approach they trace the paths of diffusion through net-

works and simultaneously infer the network structure. This approach needs se-

quences of timed events (cascades) as input, where the nodes of the network and

the time of infection are known. Using this approach the role in spreading the

information and the range of influence of the nodes can be inferred.

This approach has a double nature:

• starting from sequences of timed events it can elicit the underlying network;

• starting from a network can bring the expected diffusion of information.

The NetInf implementation is an efficient approximation of the general problem,

that scales well on very large real datasets.

Social behaviour dynamics, using information diffusion and probabilistic frame-

work, have been further explored using maximum likelihood estimation [105]. Infor-
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mation diffusion have been also applied to detect communities without prior knowl-

edge of the underlying network [81]. Expectation maximization based approaches

have been explored to infer the spread of information on social networks [10, 11].

Other approaches, different from probabilistic models, have been explored to model

the information diffusion using recurrent neural networks (RNN) [100].
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Chapter 3

Investigating Behaviour and

Communities

The investigation for this thesis has started by focusing on the analysis of explicit, di-

rect, interactions among people, in particular on modelling the emerging behaviour,

i.e. the actions that individuals take on the system, in a domain where the commu-

nities of users are known. First we have investigated the discovery of the contextual

importance and emotional information conveyed by short text, next we have explored

models of collective behaviour of agents in the tragedy of the commons problem. In

addition we have developed a tool to investigate the behaviour of users from the

quantitative point of view.

In this chapter we will review the before mentioned works, while in next chapter

we will introduce innovative approaches to model the social behaviour of individuals

and discover social communities where the social relationships and communications

channels among the individuals are hidden to the observer. Session Based Analysis

and History Binary Correlation Analysis approaches, that fall in the Network and

Behaviour community detection techniques introduced respectively in Sections 2.1

and 2.3, exploit different aspects of the activities that people take within systems.
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3.1 Behaviour from Explicit Interactions

In the works we present in this section we analyse the explicit interactions among the

individuals.The assumption is that the social connections and relationships among

the individuals are completely known. The general focus of all these works is on pro-

cessing the interactions’ content assess the properties related to explicit behaviour.

The aim of the two main directions we have explored is on assessing the quality of

social interactions and evaluating their emotional content in the context of Facebook

domain.

These works are based on path-based similarity measures, where the similarity

among words can be measured by exploring a hierarchical taxonomy (e.g. Word-

Net [72], SnowMed, NANDA, etc.), thus measuring the path length that connects

them in such a taxonomy, or collaborative web-based such as Wikipedia and Linked

Data. WordNet distance [20], Leacock-Chodorow similarity [63] and Wu-Palmer

similarity [104] are examples of measures that exploits the hierarchy of an ontolog-

ical knowledge base. Examples of web-based semantic measures based Wikipedia

are Wikipedia Link Vector Model (WLVM) [102], Heuristic Semantic Walk [41] and

Linked Data [7].

3.1.1 Qualitative classification of interactions

The quality of interactions between users can be determined by the content of posts

and comments on a social network. Automatic categorisation of the contextual

information between posts and its comments brings to a classification of users’ be-

haviour [40]. The goal of this work is to find the correlation and contextualisation

of comments in respect to the original Facebook posts.

Facebook comments and shared posts often convey human biases, which play a

pivotal role in information spreading and content consumption, where short infor-
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mation can be quickly consumed, and later ruminated. Such bias is nevertheless at

the basis of human-generated content, and being able to extract contexts that does

not amplify but represent such a bias can be relevant to data mining and artificial

intelligence, because it is what shapes the opinion of users through social media.

Starting from the observation that a separation in topic clusters, i.e. sub-

contexts, spontaneously occur if evaluated by human common sense, especially in

particular domains e.g. politics, technology, this work introduces a process for au-

tomated context extraction by means of a class of path-based semantic similarity

measures which, using third party knowledge e.g. WordNet, Wikipedia, can cre-

ate a bag of words relating to relevant concepts present in Facebook comments to

topic-related posts, thus reflecting the collective knowledge of a community of users.

Experimental evidence shows that clustering on frequency-based bag of words

(see Figure 3.1) can identify the main context words contained in Facebook com-

ments identifiable by human common sense. Group similarity measures are also

of great interest for many application domains, since they can be used to evaluate

similarity of objects in term of the similarity of the associated sets, can then be cal-

culated on the extracted context words to reflect the collective notion of semantic

similarity, providing additional insights on which to reason, e.g. in terms of cognitive

factors and behavioural patterns.

In this research work we introduced a method to investigate and identify the

main context words obtained from Facebook posts and related user comments. The

method is based on Natural Language Processing Part of Speech nouns extrac-

tion from sentences, similarity measurement using WordNet ontology, and cluster-

ing techniques. Results show that clustering on frequency-based bag of words gives

interesting results in the identification of topic contained in Facebook and it is more

similar to human judgement than low level features comparison.
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Figure 3.1: Context tag cloud sample of a Facebook post and its comments.

3.1.2 Sentiment polarity and emotion from interactions

Another qualitative element of the relationship between users includes the sentiment

and emotion conveyed by the posts. The purpose of this research is to analyse the

content of Facebook posts and their comments to classify the users behaviour in

respect to sentiment and emotion [39].

Each word in a short text can potentially convey emotional meaning [94]. Every

word, even those apparently neutral, can evoke pleasant or painful experiences,

more or less abstract, due to their semantic relation with emotional concepts or

categories. Some of such terms or concepts have also an emotional meaning, with

respect to an individual story, while for many others the affective power is part of

the collective imagination. For instance, words such as “war”, “attack”, “bomb”

can convey meanings related to basic negative emotions, e.g. fear and anger.
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In a communication environment such as Facebook, where people like to ex-

press strong concepts and opinions with less filtering than in other social media and

everybody feels free to say anything with weak communication filters, articulated

comments can be expressed by users aggregated in homophily communities [9].

Starting from the observation that users can become polarised comment after

comment, where they comment the same post expressing similar concepts or with

respect to a similar level of abstraction, besides preferential attachment users often

comment the main topic using similar use cases. For example, in the domain of

information security, where a previous comment search for a solution on how to

solve a problem, other users will probably seek help and ask questions about the

same problem, because they trust the source and they think they are facing a similar

problem.

In this research we introduced a novel methodology to separate clusters of emo-

tion abstraction in Facebook comments, where concepts underlying the content of

comments are grouped, by similarity, with the emotional concepts related to basic

emotions models and then linked to the concept of abstraction in an external on-

tology annotated by experts. Figure 3.2 is represented the ontology based emotion

similarity computation using the Ekman model for exemplification. The similarity

is computed as the shortest path between the examined word and the emotion terms

included in the emotion model.

In this process, Natural Language Processing techniques are used to extract

meaningful terms from the short and articulated text of Facebook comments, path-

based similarity measures are calculated on a taxonomy of meanings. WordNet [72]

is used in our priming experimentation as universal knowledge base, but we provide

a description of some other useful state of the art methods on different knowledge

bases and measures.

In this work, preprocessing of Facebook posts and comments, extracted from
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Figure 3.2: Ontology based emotion similarity.

Facebook graph, is applied using basic Natural Language Processing techniques

[101]. The resulting bag of words is processed using simple techniques, where ad-

vanced methods of sentiment analysis are not needed, to obtain a set of candidate

topics that are used to find the level of emotion abstraction. Measures of semantic

similarity path-based measure such WordNet distance, Leacock-Chodorow similar-

ity [63], and Wu-Palmer similarity [104] are calculated, by means of the hierarchy

of WordNet as an ontological knowledge base. Experiments have been implemented

using path-based distances between Facebook comment-extracted terms and basic

emotions, e.g. in the Ekman model. Sentiment polarity analysis of words and com-

ments is then added to the features to study. Preprocessed information, augmented

with the similarity and polarity values, is then submitted to a clustering algorithm

to obtain clusters of words, conveying the emotion valence. A representation of the

approach applied to a Facebook post and its comments is shown in Figure 3.3.
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Figure 3.3: Sentiment polarisation tag cloud sample of a Facebook post and its

comments using the path-based emotion abstraction approach.
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Experimental results show that the proposed approach gives interesting results

in the identification of emotional abstraction of Facebook comments, thus allowing

to discriminate the users’ behaviour in respect to sentiment and emotion.
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3.2 Mass Behaviour Modelling

Emerging behaviour from the interactions of a great number of agents. To solve a

classical problem, the “Tragedy of the Commons” (TOC) [66, 48, 31], we modelled

the social interaction among agents to access a shared resource. Analysis of the

impact of the social interactions helps to understand the influence on the problem

solution.

The tragedy of the commons is a problem in which the sustainability of the

society (a group of agents) reduces due to self-interested individual agents using a

shared resource (a commons). This problem first appeared in the seminal paper of

Hardin in 1968 [48]. Many areas of interest to society like climate change, fisheries

management, and preservation of rain forests exhibit this phenomenon [98].

Researchers in the area of Distributed Artificial Intelligence (DAI) and Multi-

agent systems [89, 32, 56, 21, 91] have also addressed the TOC problem. Different

aspects of the optimisation problem have been explored; from the optimal resource

utilisation by the individuals of the society [89], where the agents have only local

information, to the performance of the society is studied when aspiration levels are

associated with an individual [91]. An aspiration level corresponds to the satisfy-

ing return for an individual. Such an aspiration level is adjusted based on past

experience.

Any attempt to avoid the tragedy of the commons should incorporate in to the

decision making process of an agent the following: the individual gains as well as

the social welfare. However these two aspects often conflict. This issue has been

addressed in the work of Hogg and Jennings [49] in the context of designing socially

intelligent agents, where a framework is proposed for making socially acceptable

decisions.

Consider a society where a public good is available for free (or very little cost)
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to the members of the society. If there is no law associated for the utilisation of

the public good, an individual of the society would like to act in a manner that

maximises its utility of the public good. From an individual perspective this is

the best decision. However if all individuals act in the like manner, the public

good would soon get depleted due to the synergistic behaviour and so the society

collapses. Thus laws are necessary for the proper functioning of a society. When

there is a law in effect it entails a member to abide by it. TOC is concerned with

the situation when there is no such formal law or rule. This is where the behaviour

of an individual comes in to effect that should consider its utility from the public

good and the depletion rate of the public good.

In this work we considered socially motivated agents. The agents make decisions

that consider the welfare of the society. This helps the society to survive for a longer

period of time compared to the situation when the agents would have acted for their

individual gains only.

The approach we introduced is based on the study of different agent behaviours.

First self-interested agents, i.e. the agents interested in their individual gains only,

have been considered. Then we assumed that the agents make decisions based on

the resource availability, individual gains or combination of both. The second class

of agent’s behaviour takes into account the welfare of the society, then the society

survives for a longer time compared to that in previous case. In the third type

of behaviour considered, we defined a measure of greediness and the agents make

decision based on this parameter. A social cooperative behaviour (SCB) algorithm

has been proposed, that converges to equilibrium quickly and with no potential

danger of over utilisation of common resources.

Experimental results shows that the algorithm outperforms state of the art ex-

isting approach.
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3.3 Behaviour Quantitative Analysis Tool

The actions and activities that the students take on the Virtual Learning Environ-

ments (VLE) have been modelled and analysed to discover the quantitative effects

of monitored activities. The analysis is useful for the instructors to evaluate their

learning designs as well as for the students to have better understanding of their

learning style.

To model the behaviour of students in VLE we developed a tool for learning

analytic. The tool displays quantitative information about users’ online activities

and usage of learning objects. The resulting analysis is then presented to the teacher

by using various static and dynamic VLE’s interface morphing metaphors .

This helps instructors to verify the effectiveness of their learning designs (LD).

Acceptance of content and students’ engagement are interesting indicators for in-

structors. These factors can be represented by analysing the usage over the time of

the learning objects with respect to single student, group of students and/or entire

classes. The data to be analysed may include the temporal and quantitative factors

of activities such as the time and number of accesses of learning objects, assign-

ment or projects submissions, etc. Usually these tasks are accomplished through

the visualisation of log reports in textual, tabular or graphical formats.

Direct consultation of activity logs is usually included in the VLE’s interface.

This enables teachers to visualise, sort and filter the information contained in the

general logs. The parameters that the educators can adjust to filter and aggregate

the information are usually very limited. Role aggregation and time window selection

are desired variables needed to fine-tune the analysis task. When those advanced

options are present, the selection of choices is typically very limited. Resulting

information is presented to the user as simple textual or tabular visualisations,

difficult to read and to analyse.
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Learning dashboards [90] help to present Key Performance Indicators (KPI) [99]

through visual elements in the VLE’s control panel. Data is visualised in graphical,

synthetic, form using charts to display the KPIs to the instructor [57]. An extensive

review and evaluation of impact of the state of the art learning dashboards can be

found in the work of Verbert et al. [99].

Tools like Moodle Activity Viewer (MAV) [27], a browser plugin, and Block

Heatmap Moodle plugin [28] provide basic functionality to analyse the learning

objects’ accesses. The information is visualised using color grading overimposed to

the VLE interface with static point of view.

The main drawback of the currently available tools based on log report anal-

ysis is that skilled instructors/administrators are required to understand and use

KPIs to assess the learning process effectiveness. In order to use typical analytic

functions, such as predicting student outcome [5], evaluating the risk of students to

drop out their study track [34], determining courses utilisation levels and quality

for informing the LD process, the teachers usually need specific statistics and data

mining knowledge to give a proper interpretation to textual data and dashboard

charts.

From the educator point of view, all of these tools are often difficult to use or

require an effort to learn new concepts and methodologies. As noted by Chatti et

al. “currently many of the systems are data rich, but information poor” [25] as the

methods previously introduced lack of information for educators whose background

is from fields that does not require knowledge of statistical and data mining concepts

needed to analyse the information presented in log reports and KPIs.

The aim of the innovative tool we introduced is to allow instructors to carry

out learners’ continuous monitoring by exploiting the richness of activity logs and

by reaching the goals of integrating informativeness, immediacy and ease-of-use

for unskilled instructors. We introduced a tool that allows them to fine-tune the
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information visualisation (i.e. using aggregation functions, temporal dynamics, etc.)

to obtain indirect feedback on their teaching material and LD.

The accent of this approach is on the learning objects usage analysis to model the

mass behaviour in respect to the learning objects. In this approach to interaction

analysis we take in account the students mass as a whole. While it’s possible to fine

grain the detail of analysis, the individuals and their social relationships remain in

the background.

We introduced a class of dynamic visual interfaces whose characteristic is to act

on a learning management system’s interface to modify the learning objects appear-

ance. The general idea is to modify elements of the interface in order to express

some key dimension of the data and show them through an in-place dynamic dimen-

sional morphing visualisation. This form of visualisation combines the completeness

of information with the efficacy of representation largely improving the usability of

the eLearning platform monitoring.

In order to facilitate the visual monitoring of the overall impact of the course

resources on students, we compute quantities extracted from the users logs of the

available learning objects and we use them as visualisation parameters. These quan-

tities are used to render visually the relative differences and relationships of the

examined elements among the users.

Temporal information is expression of the chronological access history to the

elements, within the interval of analysis. To render properly this kind of information

we need two time-related values associated with the learning objects: the date of

access and a reference date. While the former is extracted by access logs, the latter

is provided by the user of the monitoring system to set the point of view or temporal

landscape.

Temporal proximity is then rendered with the hot/cold metaphor, where hot

topic refers to resources more recently last accessed which are presented in warm
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Figure 3.4: Dimensional Morphing Metaphor for learners’ monitoring.

colours, i.e. toward the red frequency of the spectrum, while less recently accessed

objects are rendered in cold colours, i.e. closer to the blue/magenta end of the

spectrum. The resulting colour will then be proportional to the time difference

between the object’s access date and the reference date. To point out the peculiar

status of objects that have had no significant access by the users we use a special

colour, either white or black depending on the contrast with the current background.

After analysing the main requirements and choosing the characteristics that

should be dynamically presented to the instructors, we designed different monitor-

ing metaphors to represent in-place the quantitative data gathered from the LMS.

Dimensional, Bar and Tag Cloud interface morphing effects define the transition

from one interface representation to another. In dimensional morphing, shown in

Figure 3.4, the LMS course content appearance is modified by changing the size

(and the colour) of learning objects’ icons and labels. While retaining the ease of

use of the familiar interface structure, this change in dimensions affects the instruc-

tor’s perception of the importance that each activity had during the course. The

dimensions of the icons and labels are then rendered proportionally to the value.
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Figure 3.5: Bar Morphing Metaphor for learners’ monitoring.

Figure 3.6: Tag Cloud Morphing Metaphor for learners’ monitoring.
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The tag cloud morphing use similar concepts to dimensional morphing, but using

a representation with a visually stronger impact as shown in 3.6. In bar morphing,

the usage quantities are represented using the bar metaphor. Shown in Figure 3.5

the bars near the learning object’s description are filled according to the learning

objects usage and coloured according to timing of access of the resource.

The approach integrates static and temporal dynamic controls. It can be easily

integrated in existing LMS that provide learner activity logs and appearance cus-

tomisation. Quantitative and qualitative evaluations of experiments show that the

proposed approach outperforms traditional log reporting for real-time students’ en-

gagement monitoring using cohort and temporal dynamics. The educators reported

in interviews that using the proposed tool they acquired valuable feedback on their

teaching material and learning designs.
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Chapter 4

Community Discovery Approaches

This chapter represents the core contribution of the thesis. We define the prob-

lem of modelling, discovering and analysing the user’s social communities induced

by the observation of user’s actions and activities within a system. Moreover, the

application domain and the dataset used are described. In the second section we

introduce the different approaches that we have explored in our research. The intro-

duced methodology and models have been experimented on the domain of students’

activities within Virtual Learning Environments (VLE). Results are reported at the

end of the corresponding section, while experiments results evaluation is presented

and discussed in the next chapter.
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4.1 Problem Description, Domain and Definitions

The purpose of the research is to verify the validity of the assumption that co-

occurrence of actions and synchronisation of activities within a system are emergent

properties of the underlying social network and that the observation of co-occurrence

of user-system interaction can be used to elicit the social bonds which ultimately

caused them.

The research is focused in the domain of VLEs to discover the communities of

students, basing on the information of their activities within VLEs.

When a student accesses the course material or start an activity in VLE his

actions are recorded in the VLE system logs. The basic information that can be re-

trieved comprises the course that the student accessed, the starting time of student-

system activities, the action type (e.g. read announcements and forum posts, view

and download resources, submit assignments, etc.) and the learning objects he in-

teracted with.

We consider the blended learning environment (BLE) scenario. In BLE students

interact with the VLE to access learning material and perform online activities

supporting the actual course while is held in person in physical classes. Since the

environment is blended, the students interact and share information using a number

of media and communication channels: in addition to the online tools provided by

the VLE, students interact directly in person in the class as well as using social net-

work platforms and instant messaging, apps, etc. The side channel communications

are out of VLE and instructors’ control scope and their digital traces are then not

available to be analysed.

The behaviour of students, when and how they access the VLE can vary under

various circumstances. For example, a lecturer asks the students to check on VLE

for additional learning material to be used for assessment, in this case nearly all the
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students will immediately connect and access the platform to check the examples. In

another case, two students studying together decide to revise a certain lesson topic

or work more on some difficult concepts found during their study. They will arrange

their study schedule, or to check the lesson material, by talking face to face to each

other or by exchanging messages through instant messaging apps (e.g. Telegram,

Whatsapp, etc.). In this case they could login in the VLE together, or within a

short time interval, and access the same learning objects with their own laptop or

mobile devices.

From the system point of view, the social interactions, i.e. the teacher in-class

advice or the students message exchanges on side communication channels, are un-

known. We assume that the system can observe the time and type of activities on

the VLE and this data can be analysed in order to understand if they are a man-

ifestation of an underlying social channel communication. That is to say that our

aim is reverse engineering the social communities and communication channels that

caused the monitored activities. We focused on a higher abstraction level looking for

social communities of interacting students instead of single communicating pairs. In

fact, co-occurrences take place in a noisy environment, i.e. the students actions can

randomly co-occur with no previous communication between them. This random

noise makes difficult to identify a single information exchange between students.

This framework can give insights on students’ interactions, by checking the pres-

ence of similar activities within the VLE and their timings. Using this information,

we can model the students’ social communities by analysing the activities they take

on the VLE and use it as the foundation for eliciting the students’ social communi-

ties.

Community information can be studied at various levels of time and activity

granularity, e.g. one or more courses in a time interval that can span from a few

weeks to several years, by monitoring the students’ activities along the complete
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academic career.

4.1.1 Dataset

The VLE dataset that will be used in the experimental tests of our methodology,

consists of the system logs of two computer science courses at university master level.

The courses have been taught in blended mode with online and offline activities. The

online activities include the access to weekly release of learning material, project

submissions and assessment quizzes on the eLearning platform, while the offline

part of the courses includes in-class face-to-face lessons, group project development

and final examination. The group projects were finally submitted to the instructor

through the online VLE platform for assessment. The students’ group composition

is known and recorded in the system, group members can access the VLE freely and

independently from each other. The dataset consists of all the system log records of

students’ online activities that take place within the learning platform (e.g. access

to teaching material, forum, quiz, feedback, project submission, etc.).

The actual VLE supporting those blended learning courses was the widely known

Moodle, a de facto open source standard eLearning platform. Moodle system logs

contain various information for each student’s event. The general log format include

time, user id, event context, component, event name, description, origin, and IP

address.

For the purpose of this research data have been anonymised and all unnecessary

information has been removed.

4.1.2 Activity Abstraction Level

In general, given a VLE, we consider different activities hierarchical abstraction

levels at which we can conduct the analysis to expose different information and

53



detail on the students’ interactions. For example we can consider user activities at

platform level, i.e. co-occurrences of user activities within the whole platform, at

course level, i.e. activities co-occurring in the same course, and learning object level,

i.e. co-occurrence of activities and actions taken on the same resource/activity in

the same course.

Analysing the activities at learning object level gives the most fine level of de-

tail, while the system activity abstraction level is the most coarse one. The risk of

analysing the activities at platform level is that it will bring too much noisy infor-

mation as too many concurrent actions will be elicited. On the opposite, the risk of

analysing data at learning object level is that the co-occurrence of information will

be too much sparse.

The level of activity abstraction analysis we selected for our approaches is at

course level. This choice is motivated from the observation that instructors usually

encourage the interaction between students by assigning group projects during a

single course. Students should collaborate to develop the projects and this will

have an impact on their study activities. We can assume that students working

on a project together will study and frequently access the course learning material

together.

A preliminary analysis has been conducted to determine if the landscape of the

gathered data can convey useful information for our task.

Fig. 4.1 shows the students’ activities distribution during the course, grouped

by hour. As shown in the image, the online activities of the students mainly hap-

pen around the lesson days, to retrieve the lesson materials and assess the lecture

notes, and at the end of the course, to revise the course content before the exam.

The most interesting information shown in the graph is that the students use the

eLearning system almost continuously during the course delivery. The students ac-

tions, alone or in small groups, can be found even in unlike hours. This behaviour
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Figure 4.1: Interactions distribution during course using 1h timeslots.

brings important information for our research.

Fig. 4.2 represents, for each student, the total number of activities they had

within the VLE during the course enactment. As shown all the students interacted

with the VLE, except one. The average of about 53 access for each student, with

some peaks over 100. Given that the examined course lasted for 90 days, it results

that each student had one access every two days.

4.1.3 Sessions

The session time that each student spend while interacting with the VLE can not

be clearly determined. Similarly to visits of web pages, the start of each session

can be easily identified by looking at the login or web servers’ data delivery actions.

On the opposite, logout from the system is difficult to be determined. The users of

web-based systems, such as the VLE, tend to just close the web browser at the end

of their session instead of using the logout system function. The former behaviour

cannot be recorded in the VLE system log. Different methodologies have been

proposed to define the session duration.
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Figure 4.2: Number of accesses by user during course.

Time-oriented approaches base the session duration by setting an inactivity

threshold. After this threshold is reached the session expires. In literature there

is no agreement on how long it should be the threshold for session expiry. Early

works proposed that 30 minutes is the average session duration while browsing the

web [24]. This assumption has been first accepted and used as industry standard,

but rejected by later works where context and user based thresholds have been sug-

gested [69]. In navigation-based approaches the session duration is based on the

continuity of users’ activities within the system. The session is active until the users

navigates inside the system.

When needed, we base our approaches using a session threshold σ, expressed in

seconds, from the last recorded activity. In Figure 4.3 is represented the typical case

of sessions identified for a single user. Sessions S1 and S2 start with an activity

recorded in the system and end after the σ threshold expires. The two sessions are

separated as the distance betweed S1end and S1start is greater than σ. In Figure 4.4,

Session S1 starts and ends like in previous example and the two sessions separation

follows the same rules. Session S2 starts with the first interaction recorded after the

gap, and ends after the expiration of the session threshold after the last interaction.
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Figure 4.3: Representation of simple sessionsand separation example.

Figure 4.4: Sessions representation and separation example.

The other interactions extend the duration of the session as their distance in time

from the previous interaction is smaller than the σ threshold.

4.1.4 Granularity

The granularity of activities refers to the continuity of activities’ observation. De-

pending from the environment we can classify the granularity types in:

• Continuous: CCTV cameras are an example of continuous granularity. The

observation of activities is continuous until the people is in the camera field of

view;

• Periodic: Cellphone polling is an example of periodic granularity. The obser-

vation of the cellphone position (i.e. to which cell it is connected) is recorded

only when a central system request it. Between two polling intervals the po-

sition of the cellphone is unknown;

• Event: Logs are a typical example of event granularity. An activity is recorded

in system logs only when a certain event is verified, e.g. a user login, a light

is switched on, etc.
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Figure 4.5: Bucketing of various activities.

The granularity of activities can be transformed from event to periodic using

bucketing technique. Event activities are grouped together in single buckets when

they are within a certain γ time threshold. In Figure 4.5 the bucketing technique

is represented. The timeline is divided in n buckets, each Bi bucket has size γ

and contains information about all the activities ai whose timestamps is inside the

bucket interval.

4.1.5 Ground Truth

In order to analyse and compare the results of the students’ clustering algorithms,

the reference ground truth which has been used is the student’s groups composition.

Groups are a non overlapping partition of the students, which is established at the

beginning of the courses. Many assignments and lab activities are group oriented

and a relevant number of the final work is represented by the group projects, which

require a close interaction of the group members along the course period for project

development, report writing and presentation. It is quite reasonable to assume that

the group is a relevant social group of people studying and holding course activities

with similar paces.

The aim of our experiments is to explore the correlation between the grouping

found using the social community detection techniques with the actual course groups

of students. The students attending the courses included in our dataset were required

to develop a group project and submit to the instructor their grouping information.
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Table 4.1: Composition of the courses included in dataset.

Number of Students Number of Groups

Course C1 89 19

Course C2 61 12

Group projects cover multiple topics taught during the course. Hence, the students

are required to have an overall view on all the course content.

The number of students enrolled in each course and the number of groups that

have been formed is summarized in Table 4.1.

The students are encouraged to have social interactions, relationships and col-

laborate with peers to reach a common goal. Without losing generality, we assume

that students that work together to complete the assignment will study together for

all the tasks required during the course.

4.1.6 Evaluation Criteria

To compare with the ground truth, we fixed the number of clusters that the different

clustering algorithms should produce to be the same as the number of students’

groupings submitted to the instructor.

To evaluate the quality of the clustering labels assignment, different measures

highlight different qualities of the detected clusters. Homogeneity, Completeness and

V-measure score [87] are some of the most common measures to evaluate the quality

of clustering results. These measures are completely independent of the number of

classes, the number of clusters, the size of dataset and the clustering algorithm used,

thus can be applied to and compared across any clustering solution.
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Definitions. Given a dataset comprising N data points, and two partitions of

these: a set of classes C = {ci | i = 1, . . . , n}, a set of clusters K = {kj | j =

1, . . . ,m}. Let A = {aij} be the contingency table produced by the clustering

algorithm, representing the clustering solution, where aij is the number of data

points member of the class ci ∈ C and elements of the cluster kj ∈ K. In our

case, the classes are the subdivision of the students in the ground truth grouping

assignment.

Homogeneity. Measures the quality of the cluster assignment by checking if the

clusters contain only elements of a single class in the ground truth assignment.

In order to satisfy the homogeneity h criteria, a clustering must assign only the

data points that are members of a single class to a single cluster. The value H (C|K)

represents the conditional entropy of the class distribution given the proposed clus-

tering, i.e. how close the given clustering to the ideal. The normalisation factor

H (C), needed to render the evaluation not dependent on the size of the dataset and

the distribution of classes sizes, represents the maximum reduction in entropy that

the clustering information could provide.

h =


1 if H (C,K) = 0

1− H(C|K)
H(C)

otherwise

(4.1.1)

where

H (C|K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

(4.1.2)

H (C) = −
|C|∑
c=1

∑|K|
k=1 ack
n

log

∑|K|
k=1 ack
n

(4.1.3)
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Completeness. Measures the quality of the clustering by checking if all the ele-

ments of a single class are assigned to the same cluster.

Completeness c is symmetrical to homogeneity. In order to satisfy the complete-

ness criteria, a clustering must assign all the data points that are members of a single

class to a single cluster. The value H (K|C) represents the conditional entropy of

the cluster distribution given the class of the data points. The value is normalised

using the H (K) factor that represents the maximum distribution of cluster sizes.

c =


1 if H (K,C) = 0

1− H(K|C)
H(K)

otherwise

(4.1.4)

where

H (K|C) = −
|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

(4.1.5)

H (K) = −
|K|∑
k=1

∑|C|
c=1 ack
n

log

∑|C|
c=1 ack
n

(4.1.6)

V-measure. Measures how successfully the criteria of homogeneity and complete-

ness have been satisfied. It is computed as the harmonic mean of distinct homo-

geneity and completeness scores, like precision and recall are combined to compute

the F-measure score [84].

Vβ =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(4.1.7)

V-measure score Vβ is weighted by factor β. If β is greater than 1 completeness

is weighted more strongly in calculation, if β is less than 1, homogeneity is weighted

more strongly.

To evaluate our experiments we choose to use β = 1 to have a balanced score

between homogeneity and completeness.
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4.2 Histories Binary Correlation Analysis

The Histories Binary Correlation analysis approach focuses on the concept of user’s

activity history vector, i.e. a vector which represents the activities held by the

student along a fixed set of predefined time slots. This approach falls into the

behavioural-based social community detection category as introduced in Section

2.3. The co-occurrence of activities gathered from students’ logs conveys informa-

tion about the underlying students’ social relationships and communications. The

student-system activity histories are used in our framework to discover and analyse

the latent students’ social network.

This method exploits the similarity of student-system activity histories to deter-

mine students’ social proximity and characterise group memberships.

This approach works without using any information about the students’ social

network, as it relies only on student history similarities to elicit the underlying social

communities.

In Figure 4.6 is represented the workflow of the Histories Binary Correlation

approach. Starting from the logs of students activities generated by the VLE (phase

a), an History Binary Summarised Vector (HSV) is obtained for each student (phase

b). The HSVs are compared (phase c) using a binary similarity measure ϕ and then

this information is used to extract the social communities information using clus-

tering algorithms (phase d). The obtained social communities are finally evaluated

(phase e) by comparing them with the ground truth.

4.2.1 Interaction Modelling

The information needed to model the students-system activity histories is extracted

from the VLE system logs. Each history is representative of the activities of a

student within the VLE at system level (see Section 4.1.2). From each log record the
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Figure 4.6: Visual scheme of the Histories Binary Correlation Analysis approach.
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information about the timing of actions is extracted and recorded in the appropriate

activity history.

As introduced in Section 4.1.4 data in system logs is at event granularity. We

transformed this data to periodic using the bucketing technique. The activities are

considered in time slots of varying duration, using a γ granularity parameter. This

is used in our approach to highlight the student-student interactions considering the

time for communications to diffuse among the students. The course is divided in

many time slots as needed as in Equation 4.2.8.

History Length =
Period Length

γ
(4.2.8)

History Length is expressed in seconds and the γ granularity parameter is set

at time threshold of 1 hour (3600 seconds). The latter approximation is consistent

with the assumption introduced in Section 4.1.3.

Definition History-Summarised Vector (HSV) of VLE activities of a student i is

a boolean vector of length HistoryLength where each boolean entry j record with

the value HSVi [j] for the presence or absence of activities in the appropriate time

slot j.

In Figure 4.7 is represented the HSV creation starting from one user interactions

with the VLE. The binary value 1 in the first HSV slot B0 is representing the

summary of both the activities a0 and a1. In fact, the first two activities timing is

inside B0 time slot and the 1 binary value is representing the presence of at least

one interaction in that time slot.

4.2.2 History Similarity

A pairwise comparison of student-system activities history vectors is computed to

build a matrix of student-student similarities. Various proximity measures can be
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Figure 4.7: History Summarised Vector with binary values representing the presence

of interactions.
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Table 4.2: Contingency table for pairwise students’ activities

Student 1

Activity present

Student 2

Activity absent

Student 1

Activity present
a b

Student 2

Activity absent
c d

calculated by checking the co-occurrence of activities at the predetermined time

granularity.

The different binary vector similarity measures, as introduced in Section 2.3,

emphasize different aspects of the students-student co-occurrence of activities. Stu-

dents’ HSVs are compared pairwise to compute the parameters by checking the

co-occurrence of activities in the same time slot. The parameters’ contingency ta-

ble, derived from Table 2.1, is shown in Table 4.2.

The parameters are computed according to the following formulas, derived from

the ones introduced in Section 2.3.1:

a =
n∑
t=0

(HSV1 [Bt] ∗HSV2 [Bt]) (4.2.9)

b =
n∑
t=0

(HSV1 [Bt] +HSV2 [Bt]) (4.2.10)

c =
n∑
t=0

(HSV1 [Bt] +HSV2 [Bt]) (4.2.11)

d =
n∑
t=0

(1−HSV1 [Bt]) ∗ (1−HSV2 [Bt]) (4.2.12)
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Figure 4.8: History Summarised Vectors pairwise comparison to extract measure

parameters.

According to the contingency table 4.2, the value of the corresponding param-

eter is increased by one for each time slot that verifies one of the four conditions.

In Figure 4.8 is represented the comparison of two HSV to extract the measure

parameters.

4.2.3 Amplifying Parameters

Parameters as shown in Table 4.2 are the basic form to compute binary similarity

measures. This representation of student-student activities similarity does not take

in account the context in which their activities are immersed.

Adamic and Adar [1] introduced a concept in link prediction where, when predict-

ing the connection between two nodes on a network, the very large neighbourhoods

are less significant than the small ones. The value of Adamic-Adar index A for node

pair is defined by:

A (x, y) =
∑

u∈N(x)∩N(y)

1

log|N (u)|
(4.2.13)

where x, y, and u are nodes of the network and N (u) is the set of neighbours

of node u. The formula makes use of the inverse log frequency of the number

of common neighbours, thus amplifying the value of common neighbours that are
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Figure 4.9: Visual representation of τt entropy amplification parameter extraction

for a timeslot of History Summarised Vectors.

uniquely connected to a few users.

In analogy to this interpretation, the activities that happen when everyone is

connected to the system are less significant than the ones that we record when only

a small number of people is present. For example, when two students are connected

to the VLE at unlikely hours without anyone else online brings more information

about their relationship than when the same two students are connected before the

lesson and everyone is consulting the learning material.

To reflect this concept we introduced an innovative Entropy Amplification (EA)

factor τt for the measures’ parameters. In the EA parameter we take in account the

number of total activities in the considered timeslot t, as shown in Equation 4.2.14.

τt =
s∑
i=0

HSVi [t] (4.2.14)

where s is the total number of students enrolled in the course. The τt computa-

tion for one time slot is represented in Figure 4.9.

We introduce various different strategies to apply the EA to the measures pa-

rameters. The first strategy is to correct only the co-occurrence parameter (i.e. the
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a parameter), the second is to apply EA to all the parameters and the third strategy

is to apply an inverse entropy amplification for the absence of activities parameter

(i.e. the d parameter).

Amplifying co-occurrence parameter (EA-a). This EA strategy consists in

computing the a parameter of the contingency table 4.2 for Student 1 and Student

2 by a weighted counting. Each co-occurence of activity is weighted by a factor that

is inversely proportional the total number of activities on the considered time slot.

a =
n∑
t=0

2

τt
(HSV1 [Bt] ∗HSV2 [Bt]) (4.2.15)

Notice that τt = 1 when only two people are using the VLE in that time slot

and τt ' 0 when the number of people connected tends to +∞.

All the other parameters b, c, and d are computed using a weight of 1 as in the

standard parameters counting.

Amplifying all parameters (EA-abcd). In this EA strategy, the a parameter

is computed as in Equation 4.2.15. The EA applied to the other parameters is done

according the following equations:

b =
n∑
t=0

1

τt
(HSV1 [Bt] +HSV2 [Bt]) (4.2.16)

c =
n∑
t=0

1

τt
(HSV1 [Bt] +HSV2 [Bt]) (4.2.17)

d =
n∑
t=0

1

τt
(1−HSV1 [Bt]) ∗ (1−HSV2 [t]) (4.2.18)

where τt =


1
τt

if τt 6= 0

1 otherwise

(4.2.19)
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Amplifying absence parameter (EA-ad). In this EA strategy a, b, and c

parameters are modified respectively as in Equations 4.2.15, 4.2.16, and 4.2.17.

Parameter d is modified using a strategy similar to the strategy a.

The d parameter is computed by a weighted counting that is inversely propor-

tional to the number of missing activities in the considered time slot. The less

people is absent in the considered time slot, the more informative the information

is.

µt = s− τt (4.2.20)

d =
n∑
t=0

2

µt
(1−HSV1 [Bt]) ∗ (1−HSV2 [Bt]) (4.2.21)

4.2.4 Measures

Different measures emphasize different aspects of the student-student co-occurrence

of activities. Various binary similarity measures have been introduced in Section

2.3.1. The most relevant that we considered to compare pairwise the HSVs are:

• Cooccurence (Equation 2.3.11)

• Jaccard similarity measure (Equation 2.3.12)

• Russell and Rao (RR) similarity measure (Equation 2.3.13)

• Simple Matching (SM ) similarity measure (Equation 2.3.14)

• Dice similarity measure (Equation 2.3.15)

• Sokal and Sneath (SS1 ) similarity measure n. 1 (Equation 2.3.16)

• Ochiai similarity measure (Equation 2.3.20)

70



Each measure, tested with each of the different EA strategies, has been used to

build the student-student similarity matrix.

4.2.5 Clustering

After the student-student similarity matrix is built, this is used to elicit the students’

social communities using clustering techniques.

Since our methodology is general, we selected various clustering algorithms to

elicit the clusters of students hence labelling each student with cluster assignment

labels. Each label is regarded as the social community group assignment of the

student.

The various student-student similarity matrices, each representing a different

of combination of EA strategy and measure, have been used in combination with

various and different clustering techniques. Each matrix is used to compute the

student-student similarities needed by the clustering algorithms.

The clustering algorithms that we considered to elicit the students social com-

munities are:

• Agglomerative

• Expectation Maximization

• K-Means

• Spectral

The characteristics of each algorithm have been discussed in Section 2.2.

4.2.6 Experiments and Evaluation Criteria

Experiments have been held using the dataset described in Section 4.1.1, using all

the measures, EA strategies and clustering algorithms previously introduced. In
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Figure 4.10: V-measure computed on cluster assignments without for course C1

using entropy amplification on measures.

total 112 combinations of measure, parameter and clustering techniques were tested

for each course.

The evaluation criteria for cluster labelling assignments has been introduced

in Section 4.1.6. Homogeneity, Completeness and V-measure scores are computed

to evaluate the quality of the retrieved social communities when compared to the

ground truth communities of students.

4.2.7 History Binary Correlation Discussion

The full results of cluster assignment evaluation in terms of homogeneity, complete-

ness and V-measure can be found on Appendix 1, Table A.1 and Table A.2.

In Figures 4.10, 4.11, 4.13 and 4.12 the results of the evaluation of histories bi-

nary correlation are presented in terms of V-measure scores. The different clustering

techniques are used with different similarity measures and different entropy amplifi-
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Figure 4.11: V-measure computed on cluster assignments for course C1 using entropy

amplification on a parameter.

Figure 4.12: V-measure computed on cluster assignments for course C1 using entropy

amplification on all parameters.
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Figure 4.13: V-measure computed on cluster assignments for course C1 using entropy

amplification on all parameters and missing activities for d parameter.

Figure 4.14: V-measure computed on cluster assignments for course C2 without

using entropy amplification on measures.
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Figure 4.15: V-measure computed on cluster assignments for course C2 using entropy

amplification on a parameter.

Figure 4.16: V-measure computed on cluster assignments for course C2 using entropy

amplification on all parameters.
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Figure 4.17: V-measure computed on cluster assignments for course C2 using entropy

amplification on all parameters and missing activities for d parameter.

cation (EA) strategies on data from course C1. In Figures 4.14, 4.15, 4.17 and 4.16

the V-measure scores are displayed for each similarity measure, EA strategy and

clustering algorithm combination on course C2.

As shown, for course C1 the best performance in community detection is achieved

by the Agglomerative clustering algorithm when combined with Dice, Jaccard and

Ochiai similarity measures. Only Dice measure in combination with Spectral clus-

tering can get close to the other results. These combinations outperform all the

other clustering-measure-EA matchings on average by more than 2%.

The different EA strategies help to improve the results of the best three measures.

In Figure 4.18 the impact of different EA strategies is displayed, showing the results

of the different measures computed on course C1 using Agglomerative clustering.

The comparison is with the measures computed without using entropy amplification.

As shown, the EA strategy EA-abcd applied to the different measures has the best
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Figure 4.18: Impact of EA strategies on similarity measure calculation and Agglom-

erative clustering on course C1.

general performance. Even if the EA-a strategy is achieving very good results

combined with Ochiai and SS1, the results of remaining measures are not improving

as much as with the other strategies. The results of EA-ad strategy are close to the

EA-a strategy on the best performing measures, with slight differences on Dice, SM

and SS1.

For course C2 the best results are achieved by Agglomerative and Spectral clus-

tering algorithms, with very slight differences between each other. In combination

with Dice, Jaccard and Ochiai measures the community detection approach achieve

comparable results to the ones on course C1.

The entropy amplification strategies have a stronger impact on the different

measures when compared with course C1. As shown in Figure 4.19, in this case the

Agglomerative clustering community detection performance is improving the most

when used in combination with the EA-a strategy. The EA-abcd strategy is not
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Figure 4.19: Impact of EA strategies on similarity measure calculation and Agglom-

erative clustering on course C2.

achieving good results, especially with SM and SS1 measures, even when compared

with the EA-ad strategy.

Figure 4.20 shows detailed results for course C1. The best clustering algorithm

is Agglomerative in this case and the best performing Entropy Amplification (EA)

is on all the parameters. From the chart, we can find that Dice, Jaccard and Ochiai

measures achieve better results in terms of completeness than homogeneity. This

means that using this measures the communities elicited from our approach are

maintaining together most of the students in a same ground truth group.

For course C2, in Figure 4.21 results of the best performing measures are shown.

In this case the best clustering algorithm is Spectral and the EA strategy on the

co-occurrence parameter only. Dice, Jaccard and Ochiai measures are the best

performers also on data from this course. Most of the students from the same group

are clustered together, as reported by the completeness score.
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Figure 4.20: Homogeneity, Completeness and V-Measure of best performing mea-

sures and EA strategy using Agglomerative clustering on course C1.

Figure 4.21: Homogeneity, Completeness and V-Measure of best performing mea-

sures and EA strategy using Spectral clustering on course C2.
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In general each clustering method works best using different similarity measures.

All the clustering algorithms have good performances, in terms of V-measure and

Homogeneity scores, when used in combination with using Dice, Jaccard, and Ochiai

measures. For Spectral clustering, SS1 measure help the algorithm to obtain good

results.

In general, Agglomerative and Spectral clustering algorithms have a better per-

formance in identifying the ground truth students’ groupings.

Jaccard and Ochiai similarity measures, in general, are the best performing mea-

sures that help the various clustering algorithms to differentiate the students activ-

ities and to have more homogeneous and complete cluster assignments. As shown

in figures, different clustering algorithms have varying performance when matched

with different proximity measures.

A common trait of the best performing measures is that the concurrent absence

of activities is not taken in account. In our test setting, considering the granularity

parameter γ set at 1 hour time frame, the presence of activities has very sparse

values in the students’ HSV when compared with the absence of activities. This

fact can influence the students’ similarity when using measures that take in account

the d parameter of the contingency table.
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4.3 Session Based Analysis

When a student accesses the course material, his actions are logged by the eLearning

system. The basic information that is recorded comprises the course accessed, the

timing, the action (e.g. reading announcements, viewing and downloading resources,

submitting assignments, answering to forum posts, etc.) and the specific learning

objects accessed by the student.

The focus of the Session approach is on students’ activities in the VLE as it

is based on evaluating the presence of activities, their timings and their duration.

Using this information, the students’ behaviour is modeled by analysing their ac-

tivities within the VLE and using it as the foundation for eliciting the students’

connections, social communities and study behaviour. This approach falls into the

category of the network-based community discovery approaches described in Section

2.1.

Basic idea of the Session based analysis is to use the information about co-

occurrence of student-system activities within sessions to build a student-student

co-occurrence network. The information conveyed by the co-occurrence graph is

used to determine students’ connections and identify their social communities.

Moreover, this approach has several additional advantages that come from the

ability to inspect the network structure. Members of the communities can be differ-

entiated on the basis of their positioning in the network and their neighbourhood

connections. For example community leaders and followers can be identified using

the information from centrality measures together with the timing of interactions.

The proposed method, whose workflow is sketched in Figure 4.22, proceeds

by first creating the activities co-occurrence multigraph (phase b) based on co-

occurrence of activities within a specific session threshold between student pairs;

it proceeds by merging overlapping activities (phase c) obtaining the sessions multi-
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graph and finally applying community detection (phase e) in the students’ interac-

tion graph obtained by applying aggregation and weighting functions (phase d) to

the sessions multigraph.

4.3.1 Interaction modelling

As described in Section 4.1.4 the student-system operations recorded in system logs

are at event granularity level, i.e. they register the type and the beginning time of

some event which require the VLE platform service, while it often omit data about

detailed local user activities. For example, reading a file containing the course lecture

notes will generate a singe event “read” to be recorded on the user logs, while all local

user operations, such as browsing pages or terminating the application (e.g. closing

a PDF reader). The user log information is used to determine the students co-

occurrence of activities. This will lead to the identification of sessions that students

spent often together when taking actions on the VLE.

This approach is motivated by the assumption that co-occurrence of activities

of two students can be the emergent manifestation of some hidden communications

that took place between the students to agree on the activities. Hence, in order to

hypothesise a communication between students, the activities should happen in a

time window, i.e. a session, as defined in Section 4.1.3.

We have decided to use graph as the natural representation for this kind of infor-

mation. Students will be represented as nodes, and labelled links between them will

express theco-occurrences of activity, i.e. the existence of hypotetic communication

events between them.

The student’s communities can then be elicited from this interaction graph

weighted with the actual duration of co-occurrence of activities between the stu-

dents.
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Figure 4.22: Visual scheme of the Session Based Analysis approach.
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Figure 4.23: Link creation in Activities co-occurrence multigraph.

4.3.2 Activities co-occurrence graph

The information about timing of activities that different students took within the

VLE is used to create the activities co-occurrence multigraph. Each student is rep-

resented by a node in the graph. The links between each students’ pair are created

by analysing the VLE logs. A link is created if the distance, in time, between each

pair of activities of different students is falling inside a session threshold σ. As ex-

emplified in Figure 4.23, a link in the activities co-occurrence graph is created when

the distance between the timing of activities (e.g. ai,0, ai,1, ai,0, aj,1) of students Ui

and Uj is less or equal that the σ threshold.

The session threshold σ is the basic parameterwhich represents the session con-

cept. It identifies and separates the different activities that the students take to-

gether on the VLE.
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The links created in the multigraph are labelled with starting and ending times,

as well as with the effective time difference between the activities. Starting time is

the time of the earliest activity in the session (e.g. ai,0), ending time is the time of

the latest activity in the session logs (e.g. ai,1). Links are directional starting from

the user whose actions on the system are earlier than the other one.

4.3.3 Sessions graph

Starting from the activities co-occurrence multigraph, the overlapping activities are

merged to obtain sessions, as depicted in phase c of Figure 4.22.

First the links between each node pair are ordered with respect to their time

labels, then the links are merged through an iterative merging closure process. All

the activities co-occurrence links are initially turned into session links, then two

links between the same pair of student nodes are merged when their time intervals

have a relationship of inclusion or they are overlapping. The merging closure is

calculated, i.e. the process is iterated in the graph, until no further merge is possible.

The duration label of merged links is given by the difference between the earliest

activity start and the latest activity end over all the activities merged. Note that this

duration can exceed the σ session threshold parameter value. In Figure 4.24 is shown

the process of aggregation of sessions to create links in the Sessions multigraph.

Starting from the links in the Activities multigraph, the process finds the overlapping

activities and merges them in sessions and computes the session link weight.

The sessions graph is still a multigraph as multiple sessions, i.e. not merging

links, can exist between each students’ pair at the end of the merging closure process.
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Figure 4.24: Link creation in Sessions multigraph.

4.3.4 Interactions graphs

The interaction graph is the actual graph which is used to elicit students’ com-

munities using network clustering algorithms. The interaction graph is a simple

undirected graph and is generated by summarising by aggregation of the session

multigraph. Different interactions graphs can be obtained using different aggrega-

tion functions to the links existing on the sessions graph.

The aggregation functions ϕ
′

based on the sessions number and time duration

between each two students connected by a link. The weight on the edges can be

determined using ϕ
′

as the count of interactions, other reasonable possibile ϕ
′

are

sum, max, min, and mean aggregation functions. The aggregation process is shown

in Figure 4.25.

Each interactions graph obtained with one of the different aggregation functions
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Figure 4.25: Link creation in Interactions graph.

is a simple graph. The computation of aggregation functions reduces to a single link

the multiple links found between each student pair on the sessions multigraph.

4.3.5 Community Detection by Graph Analysis

Given a students interaction graph, the goal is to detect all the groups of students

in it. Our approach is general as it can use various techniques to elicit the students’

communities.

The community detection problem has been solved using various algorithms as

introduced in Section 2.1.3. In this work we are using the Modularity Maximization

approach 2.1.3, specifically with the Louvain Method. This method makes use of

the weight on the edges to elicit the social communities. Using different weighted

graphs, different modularity class assignments are detected.
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4.3.6 Experiments and Evaluation Criteria

Experiments have been held using the dataset described in Section 4.1.1, extract-

ing from it information about students’ activity time and anonymised student IDs.

The approach has been tested at course abstraction level. Students’ co-occurrence

of activities is computed by setting the session parameter σ at 3600 seconds (1

hour). The resulting graphs are then analysed to elicit the communities of students.

The resulting social communities are compared with the ground truth groupings of

students.

The modularity class label assignments have been computed for each course using

the different aggregation functions count, sum, max, min, and mean to create the

interactions graphs.

The evaluation criteria for cluster labellings has been introduced in Section 4.1.6.

Homogeneity, Completeness and V-measure scores are computed to evaluate the

quality of the retrieved social communities when compared to the ground truth.

4.3.7 Session Based Analysis Discussion

Starting from the interactions graph, the modularity class assignments have been

computed. Figure 4.26 shows the interactions graph resulting from the analysis of

course C1 using the , the sum of session timings as aggregation function. The graph

is almost complete as it has 3866 links between the 89 students, the complete graph

should have 3916 links hence only 50 links are missing. In this figure, the node

colour represents the modularity class assignment and the node size represents its

betweenness centrality measure. Basing on the latter, bigger nodes can be identified

as leaders in the groups while smaller ones are followers. The visual representation

is made by aggregating the followers of each community close to their leaders.

Figure 4.27 shows the interactions graph of course C2, as it results from the
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Figure 4.26: Interactions graph of course C1 based on ϕ
′
sum aggregation function.

89



Figure 4.27: Interactions graph of course C2 based on ϕ
′
sum aggregation function.
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Figure 4.28: Homogeneity, Completeness and V-Measure of modularity class assign-

ments on course C1.

aggregation of links from sessions graph using ϕ
′
sum. In this case the users can-

not be differentiated between leaders and followers using the betweenness centrality

measure, as the graph is complete. In fact, for complete graphs the betweenness cen-

trality measure is null for all the nodes. The node colours represent the modularity

class assignment computed using our approach.

The performance in detection of student social communities, using the modu-

larity class assignments, has been evaluated using the criteria and the measures

described in Section 4.1.6. The Homogeneity, Completeness and V-measure scores

for each of the aggregation functions computed on course C1 are represented in Fig-

ure 4.28 and Table 4.3. As shown, the best performance in terms of V-measure is

obtained by counting the number of sessions shared by each students pair. Using

this aggregation function the completeness score achieves the best results. The sum

of all the sessions graph’s links duration brings to achieve the best homogeneity

score, thus creating communities that contain only students from the same ground
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Figure 4.29: Homogeneity, Completeness and V-Measure of modularity class assign-

ments on course C2.

truth group. In general the scores of count, sum and max aggregation functions are

very close to each other.

The scores for course C2 community detection are represented in Figure 4.29

and Table 4.4. The results confirm the patterns already found in course C1 and the

same considerations apply. Count, sum and max aggregation functions bring very

similar results with slightly better ones for the counting of students sessions.
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Table 4.3: Experiment’s results using different aggregation functions for Session

Based Analysis on C1 course.

Aggregation Function
Homogeneity

Score

Completeness

Score

V-measure

Score

COUNT 0.563946972 0.588506856 0.575965217

SUM 0.570671662 0.579791394 0.575195382

MAX 0.555074718 0.561344604 0.558192055

MIN 0.487618224 0.49199713 0.48979789

MEAN 0.493767447 0.498787509 0.496264783

Table 4.4: Experiment’s results using different aggregation functions for Session

Based Analysis on C2 course.

Aggregation Function
Homogeneity

Score

Completeness

Score

V-measure

Score

COUNT 0.517577634 0.545905643 0.531364352

SUM 0.509247829 0.535132634 0.521869456

MAX 0.485035688 0.503677624 0.494180912

MIN 0.35675456 0.369206826 0.362873897

MEAN 0.421874103 0.433565858 0.427640082
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Chapter 5

Experimental Results Evaluation

Experimental results obtained using the different approaches introduced in this the-

sis have been shown in previous Section 4.2.7 and Section 4.3.7. The History Based

Correlation Analysis and Session Based Analysis have both excellent performance

in eliciting the social communities starting from the activities of students.

The results of the two different approaches differ slightly when we compare the

social communities elicitation performances.

As shown in Figure 5.1 for course C1 the Homogeneity, Completeness, and V-

measure score differences between the History based and Session based approaches

are within 5%. Similar results are shown in Figure 5.2 for course C2.

The social communities elicited using our approaches are composed of evenly

distributed number of components. As shown in Table 5.1, the standard deviation

between the communities is low meaning that the number of students is similar in

each of the groups. The variance is high, especially for course C1 using the Session

Based approach. Going deeper in the analysis we found that only one of the groups

is composed of a bigger number of components compared to the others.

The low variance and limited number of big communities, in combination with

the evaluation scores, are evidence of the quality of the approaches introduced in
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Figure 5.1: Homogeneity, Completeness and V-score differences in percentage be-

tween History Based approach best measures and Session Based approach count

aggregation on course C1.

this thesis.

Hystory Based Correlation Analysis approach is computationally faster but the

trade-off is that some details of the activities and interactions are lost in features

extraction, i.e. binary summarisation which reduces co-occurrence information to

uniform time slots. On the other hand, the Session Based Analysis approach can

maintain a deeper level of detail about the actions and interactions, but it is com-

putationally slower for the extremely high number of links created in the Activities

co-occurrence graph.

History Based approach has, in general, better evaluation in Homogeneity, Com-

pleteness and V-measure scores as well as slightly better quality social communities

when compared with the Session Based approach. In fact, Homogeneity of the found

solutions is increasing more than the Completeness.

Analysing in detail the results we have found that the better Homogeneity score is
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Figure 5.2: Homogeneity, Completeness and V-score differences in percentage be-

tween History Based approach best measures and Session Based approach count

aggregation on course C2.

Table 5.1: Community size analysis on course C1 and C2 using the best strategies

for each approach.

Course Approach Average Size Variance Standard Deviation

C1 History Based 4.68 5.78 2.40

C1 Session Based 5.08 11.10 3.33

C2 History Based 4.52 6.81 2.61

C2 Session Based 5.08 7.90 2.81
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caused by the different assignments of students to groups. More groups found using

the History Based approach contain only students coming from the same groups in

the ground truth, as shown in the sample clustering assignment in Table 5.2.

The lower increase in Completeness score, which is also connected to the variance

and standard deviation of the community sizes, is influenced by the fact that a

ground truth group is split among different assignments. As shown in Table 5.3, the

groups in the Ground Truth can be split in different clusters.

The Completeness score favours bigger groups, where all the group members of

the ground truth communities are assigned to the same group. On the opposite the

Homogeneity score favours smaller groups, even when the ground truth group is split

among different groups. Which feature is preferable is dependent on the problem.

In general the increase of both features is important but it is a difficult task. The V-

measure score reflects a good trade-off between the two values to evaluate the quality

of an assignment. In our results we can see that the increase in Homogeneity leads

to a similar increase for V-measure score thus improving the general quality of the

solution.

Using the Session Based approach we can elicit social communities that have

comparable qualitative performance with the History Based approach, while re-

taining the additional information which can be further analysed from the graph

representation in order to elicit social roles of nodes (e.g. leaders and followers).
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Table 5.2: Sample group assignment where a cluster is formed by elements from two

different Ground Truth groups.

UserID Cluster GroundTruth

id82102 11 5

id75417 11 13

id82847 11 13

id82525 11 13

Table 5.3: Sample group assignment where a Ground Truth group is split between

two different clusters.

UserID Cluster GroundTruth

id75417 11 13

id82847 11 13

id82525 11 13

id62649 15 13
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Conclusions

In this thesis we introduced innovative approaches to elicit hidden communities by

observing user activities. Starting from the analysis of the co-occurrence of activities

and actions taken by individuals, we can elicit their underlying social relationships.

The social communities discovery approaches introduced in this thesis use indirect

information about the social communication channels and links between people.

The first approach we introduced exploits the activity histories similarity to elicit

the hidden social communities. The similarity measures performances have been

augmented by the introduction of novel entropy amplification factors. This helps the

similarity measurement to take in account additional information to contextualise

the activities.

We further investigated the problem by using the session co-occurrence infor-

mation and graph based representation. In this approach the graph features are

used to discover the social communities and retrieve additional information based

on network based measures.

Experimental results on real world dataset demonstrate that it is possible to

discover social communities basing only on the observation of individuals’ behaviour.

An external observer, not involved in the communications and looking only at the

explicit and observable activities of the individuals, can discover the underlying

social communities. From experimental evidence, the social communities elicited

using our approaches are an emerging phenomenon of activities co-occurrence and
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side channel communications. The results indicate that our approaches could not

only retrieve social communities from real world activities information, but also

attain excellent precision in terms of Homogeneity, Completeness and V-measure

scores when compared with the communities in the ground truth.

Community detection from implicit interactions is a challenging and open ended

research topic. The need of community detection techniques from various sectors of

the society requires continuous improvements.

New approaches are in development taking in account the timings of users’ ac-

tivities to elicit the underlying social communities. This new works will exploit in-

formation diffusion based approaches and novel techniques to characterise the user

behaviour embedding. Evolution and dynamics of communities over time are consid-

ered to be explored in future works. This will bring new and deeper understandings

on the interactions between the individuals.
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Appendix A

Histories Binary Correlation

Results

Table A.1: Complete Experiments Results for History Binary Analysis on C1 course.

Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

cooccurrence AC none C Agglomerative 0.3793 0.4978 0.4306

cooccurrence AC none C GaussianMixture 0.4345 0.5595 0.4892

cooccurrence AC none C KMeans 0.4143 0.5216 0.4618

cooccurrence AC none C Spectral 0.3422 0.4526 0.3897

cooccurrence AC ad C Agglomerative 0.2694 0.5872 0.3693

cooccurrence AC ad C GaussianMixture 0.2329 0.4736 0.3122

cooccurrence AC ad C KMeans 0.3052 0.5167 0.3838

cooccurrence AC ad C Spectral 0.2032 0.5479 0.2965

cooccurrence AC abcd C Agglomerative 0.2694 0.5871 0.3693

cooccurrence AC abcd C GaussianMixture 0.2329 0.4736 0.3122

cooccurrence AC abcd C KMeans 0.3052 0.5167 0.3838
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

cooccurrence AC abcd C Spectral 0.2188 0.5464 0.3125

cooccurrence AC a C Agglomerative 0.2694 0.5872 0.3693

cooccurrence AC a C GaussianMixture 0.2329 0.4736 0.3122

cooccurrence AC a C KMeans 0.3052 0.5167 0.3838

cooccurrence AC a C Spectral 0.2188 0.5464 0.3125

dice AC none C Agglomerative 0.5843 0.6026 0.5933

dice AC none C GaussianMixture 0.5886 0.6052 0.5967

dice AC none C KMeans 0.5442 0.5649 0.5543

dice AC none C Spectral 0.5624 0.5800 0.5711

dice AC ad C Agglomerative 0.6124 0.6332 0.6226

dice AC ad C GaussianMixture 0.5769 0.5842 0.5805

dice AC ad C KMeans 0.5643 0.5765 0.5703

dice AC ad C Spectral 0.6105 0.6209 0.6157

dice AC abcd C Agglomerative 0.6124 0.6332 0.6226

dice AC abcd C GaussianMixture 0.5769 0.5842 0.5805

dice AC abcd C KMeans 0.5643 0.5765 0.5703

dice AC abcd C Spectral 0.6105 0.6209 0.6157

dice AC a C Agglomerative 0.5923 0.6058 0.5990

dice AC a C GaussianMixture 0.5830 0.5868 0.5849

dice AC a C KMeans 0.5605 0.5772 0.5687

dice AC a C Spectral 0.5970 0.6146 0.6057

jaccard AC none C Agglomerative 0.6092 0.6259 0.6175

jaccard AC none C GaussianMixture 0.5777 0.5941 0.5858

jaccard AC none C KMeans 0.5358 0.5568 0.5461

jaccard AC none C Spectral 0.5679 0.5868 0.5772
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

jaccard AC ad C Agglomerative 0.6136 0.6242 0.6189

jaccard AC ad C GaussianMixture 0.5827 0.5918 0.5872

jaccard AC ad C KMeans 0.5458 0.5579 0.5518

jaccard AC ad C Spectral 0.5499 0.5913 0.5699

jaccard AC abcd C Agglomerative 0.6136 0.6242 0.6189

jaccard AC abcd C GaussianMixture 0.5827 0.5918 0.5872

jaccard AC abcd C KMeans 0.5458 0.5579 0.5518

jaccard AC abcd C Spectral 0.5499 0.5913 0.5699

jaccard AC a C Agglomerative 0.5978 0.6134 0.6055

jaccard AC a C GaussianMixture 0.5908 0.5939 0.5923

jaccard AC a C KMeans 0.5657 0.5826 0.5741

jaccard AC a C Spectral 0.6064 0.6276 0.6168

ochiai AC none C Agglomerative 0.5805 0.6006 0.5904

ochiai AC none C GaussianMixture 0.5888 0.5947 0.5917

ochiai AC none C KMeans 0.5446 0.5639 0.5540

ochiai AC none C Spectral 0.5333 0.5473 0.5402

ochiai AC ad C Agglomerative 0.6108 0.6313 0.6209

ochiai AC ad C GaussianMixture 0.5788 0.5838 0.5813

ochiai AC ad C KMeans 0.5571 0.5702 0.5636

ochiai AC ad C Spectral 0.5592 0.5735 0.5663

ochiai AC abcd C Agglomerative 0.6108 0.6313 0.6209

ochiai AC abcd C GaussianMixture 0.5788 0.5838 0.5813

ochiai AC abcd C KMeans 0.5571 0.5702 0.5636

ochiai AC abcd C Spectral 0.5592 0.5735 0.5663

ochiai AC a C Agglomerative 0.6376 0.6530 0.6452
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

ochiai AC a C GaussianMixture 0.5349 0.5421 0.5385

ochiai AC a C KMeans 0.5599 0.5813 0.5704

ochiai AC a C Spectral 0.5708 0.5860 0.5783

rr AC none C Agglomerative 0.3800 0.4982 0.4311

rr AC none C GaussianMixture 0.4319 0.5491 0.4835

rr AC none C KMeans 0.4143 0.5216 0.4618

rr AC none C Spectral 0.4684 0.5890 0.5218

rr AC ad C Agglomerative 0.2694 0.5872 0.3693

rr AC ad C GaussianMixture 0.2594 0.4802 0.3368

rr AC ad C KMeans 0.3003 0.4983 0.3747

rr AC ad C Spectral 0.3036 0.5063 0.3795

rr AC abcd C Agglomerative 0.2694 0.5872 0.3693

rr AC abcd C GaussianMixture 0.3101 0.4573 0.3696

rr AC abcd C KMeans 0.3052 0.5167 0.3838

rr AC abcd C Spectral 0.2859 0.5709 0.3810

rr AC a C Agglomerative 0.2694 0.5872 0.3693

rr AC a C GaussianMixture 0.2983 0.4687 0.3646

rr AC a C KMeans 0.3052 0.5167 0.3838

rr AC a C Spectral 0.2945 0.5955 0.3941

sm AC none C Agglomerative 0.3904 0.4798 0.4305

sm AC none C GaussianMixture 0.4803 0.5164 0.4977

sm AC none C KMeans 0.4817 0.5046 0.4928

sm AC none C Spectral 0.3896 0.5120 0.4425

sm AC ad C Agglomerative 0.3961 0.4847 0.4359

sm AC ad C GaussianMixture 0.4234 0.4886 0.4537
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

sm AC ad C KMeans 0.4702 0.5042 0.4866

sm AC ad C Spectral 0.3739 0.4912 0.4246

sm AC abcd C Agglomerative 0.3990 0.4877 0.4389

sm AC abcd C GaussianMixture 0.4305 0.5119 0.4677

sm AC abcd C KMeans 0.4701 0.5031 0.4860

sm AC abcd C Spectral 0.2510 0.4771 0.3290

sm AC a C Agglomerative 0.3904 0.4798 0.4305

sm AC a C GaussianMixture 0.4803 0.5164 0.4977

sm AC a C KMeans 0.4824 0.5050 0.4934

sm AC a C Spectral 0.3226 0.5071 0.3943

ss1 AC none C Agglomerative 0.3615 0.4671 0.4076

ss1 AC none C GaussianMixture 0.4045 0.4802 0.4391

ss1 AC none C KMeans 0.4852 0.5161 0.5002

ss1 AC none C Spectral 0.4799 0.5909 0.5297

ss1 AC ad C Agglomerative 0.3333 0.4579 0.3858

ss1 AC ad C GaussianMixture 0.3714 0.4674 0.4139

ss1 AC ad C KMeans 0.4577 0.5044 0.4799

ss1 AC ad C Spectral 0.4105 0.5582 0.4731

ss1 AC abcd C Agglomerative 0.3461 0.4810 0.4025

ss1 AC abcd C GaussianMixture 0.3433 0.5050 0.4088

ss1 AC abcd C KMeans 0.4281 0.4741 0.4499

ss1 AC abcd C Spectral 0.3400 0.5412 0.4176

ss1 AC a C Agglomerative 0.3976 0.5053 0.4451

ss1 AC a C GaussianMixture 0.4052 0.4728 0.4364

ss1 AC a C KMeans 0.4558 0.4925 0.4735
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

ss1 AC a C Spectral 0.4575 0.5648 0.5055
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Table A.2: Complete Experiments Results for History Binary Analysis on C2 course.

Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

cooccurrence AC none C Agglomerative 0.3748 0.4728 0.4181

cooccurrence AC none C GaussianMixture 0.3431 0.4662 0.3953

cooccurrence AC none C KMeans 0.3843 0.4780 0.4260

cooccurrence AC none C Spectral 0.3154 0.4389 0.3670

cooccurrence AC ad C Agglomerative 0.2192 0.4400 0.2926

cooccurrence AC ad C GaussianMixture 0.2095 0.4532 0.2865

cooccurrence AC ad C KMeans 0.2024 0.5226 0.2918

cooccurrence AC ad C Spectral 0.1874 0.5148 0.2748

cooccurrence AC abcd C Agglomerative 0.2192 0.4400 0.2926

cooccurrence AC abcd C GaussianMixture 0.2095 0.4532 0.2865

cooccurrence AC abcd C KMeans 0.2024 0.5226 0.2918

cooccurrence AC abcd C Spectral 0.2266 0.4340 0.2977

cooccurrence AC a C Agglomerative 0.2192 0.4400 0.2926

cooccurrence AC a C GaussianMixture 0.2095 0.4532 0.2865

cooccurrence AC a C KMeans 0.2024 0.5226 0.2918

cooccurrence AC a C Spectral 0.2266 0.4340 0.2977

dice AC none C Agglomerative 0.5150 0.5424 0.5283

dice AC none C GaussianMixture 0.5162 0.5229 0.5195

dice AC none C KMeans 0.5121 0.5365 0.5240

dice AC none C Spectral 0.5571 0.5841 0.5703

dice AC ad C Agglomerative 0.5411 0.5514 0.5462

dice AC ad C GaussianMixture 0.5276 0.5350 0.5313

dice AC ad C KMeans 0.5249 0.5369 0.5308
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

dice AC ad C Spectral 0.5412 0.5483 0.5447

dice AC abcd C Agglomerative 0.5410 0.5514 0.5462

dice AC abcd C GaussianMixture 0.5276 0.5350 0.5313

dice AC abcd C KMeans 0.5249 0.5369 0.5308

dice AC abcd C Spectral 0.5412 0.5483 0.5447

dice AC a C Agglomerative 0.5606 0.5856 0.5729

dice AC a C GaussianMixture 0.5218 0.5274 0.5246

dice AC a C KMeans 0.4894 0.5226 0.5054

dice AC a C Spectral 0.5352 0.5539 0.5444

jaccard AC none C Agglomerative 0.5033 0.5407 0.5213

jaccard AC none C GaussianMixture 0.5021 0.5147 0.5083

jaccard AC none C KMeans 0.5150 0.5551 0.5343

jaccard AC none C Spectral 0.5687 0.5741 0.5714

jaccard AC ad C Agglomerative 0.5456 0.5680 0.5566

jaccard AC ad C GaussianMixture 0.5321 0.5422 0.5371

jaccard AC ad C KMeans 0.5004 0.5103 0.5053

jaccard AC ad C Spectral 0.5704 0.5863 0.5782

jaccard AC abcd C Agglomerative 0.5456 0.5680 0.5566

jaccard AC abcd C GaussianMixture 0.5321 0.5422 0.5371

jaccard AC abcd C KMeans 0.5004 0.5103 0.5053

jaccard AC abcd C Spectral 0.5704 0.5863 0.5782

jaccard AC a C Agglomerative 0.5606 0.5856 0.5729

jaccard AC a C GaussianMixture 0.4725 0.4804 0.4764

jaccard AC a C KMeans 0.4948 0.5253 0.5096
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

jaccard AC a C Spectral 0.5614 0.5881 0.5744

ochiai AC none C Agglomerative 0.5171 0.5528 0.5344

ochiai AC none C GaussianMixture 0.5582 0.5703 0.56425

ochiai AC none C KMeans 0.5474 0.5756 0.5612

ochiai AC none C Spectral 0.5790 0.5942 0.5865

ochiai AC ad C Agglomerative 0.5669 0.5905 0.5785

ochiai AC ad C GaussianMixture 0.5109 0.5166 0.5138

ochiai AC ad C KMeans 0.5360 0.5471 0.5415

ochiai AC ad C Spectral 0.5693 0.5893 0.5791

ochiai AC abcd C Agglomerative 0.5669 0.5905 0.5785

ochiai AC abcd C GaussianMixture 0.5109 0.5166 0.5138

ochiai AC abcd C KMeans 0.5360 0.5471 0.5415

ochiai AC abcd C Spectral 0.5693 0.5893 0.5791

ochiai AC a C Agglomerative 0.5723 0.5948 0.5833

ochiai AC a C GaussianMixture 0.5791 0.5846 0.5818

ochiai AC a C KMeans 0.4882 0.5138 0.5007

ochiai AC a C Spectral 0.5568 0.5710 0.5638

rr AC none C Agglomerative 0.3748 0.4728 0.4181

rr AC none C GaussianMixture 0.3479 0.4816 0.4040

rr AC none C KMeans 0.3843 0.4780 0.4260

rr AC none C Spectral 0.4042 0.4982 0.4463

rr AC ad C Agglomerative 0.2321 0.4432 0.3046

rr AC ad C GaussianMixture 0.2078 0.4254 0.2792

rr AC ad C KMeans 0.1900 0.5219 0.2786
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

rr AC ad C Spectral 0.3288 0.4958 0.3954

rr AC abcd C Agglomerative 0.2192 0.4400 0.2926

rr AC abcd C GaussianMixture 0.1900 0.3364 0.2428

rr AC abcd C KMeans 0.2036 0.5257 0.2935

rr AC abcd C Spectral 0.2557 0.4793 0.3335

rr AC a C Agglomerative 0.2192 0.4400 0.2926

rr AC a C GaussianMixture 0.2031 0.3629 0.2604

rr AC a C KMeans 0.2024 0.5226 0.2918

rr AC a C Spectral 0.2557 0.4793 0.3335

sm AC none C Agglomerative 0.3095 0.3730 0.3383

sm AC none C GaussianMixture 0.3736 0.4153 0.3934

sm AC none C KMeans 0.3524 0.3980 0.3738

sm AC none C Spectral 0.3697 0.4934 0.4227

sm AC ad C Agglomerative 0.2779 0.3596 0.3135

sm AC ad C GaussianMixture 0.3410 0.3917 0.3646

sm AC ad C KMeans 0.3522 0.3860 0.3683

sm AC ad C Spectral 0.2798 0.3956 0.3278

sm AC abcd C Agglomerative 0.2814 0.3667 0.3184

sm AC abcd C GaussianMixture 0.3596 0.4087 0.3826

sm AC abcd C KMeans 0.3830 0.4182 0.3998

sm AC abcd C Spectral 0.2284 0.4583 0.3049

sm AC a C Agglomerative 0.3095 0.3730 0.3383

sm AC a C GaussianMixture 0.3736 0.4153 0.3934

sm AC a C KMeans 0.3524 0.3980 0.3738
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Experiment
Homogeneity

Score

Completeness

Score

V-measure

Score

sm AC a C Spectral 0.3697 0.4934 0.4227

ss1 AC none C Agglomerative 0.2638 0.3486 0.3003

ss1 AC none C GaussianMixture 0.3492 0.4119 0.3780

ss1 AC none C KMeans 0.4130 0.4520 0.4316

ss1 AC none C Spectral 0.5159 0.5656 0.5396

ss1 AC ad C Agglomerative 0.2644 0.3481 0.3005

ss1 AC ad C GaussianMixture 0.2823 0.3574 0.3154

ss1 AC ad C KMeans 0.3706 0.4076 0.3882

ss1 AC ad C Spectral 0.3650 0.5222 0.4297

ss1 AC abcd C Agglomerative 0.2258 0.3300 0.2682

ss1 AC abcd C GaussianMixture 0.2696 0.3640 0.3098

ss1 AC abcd C KMeans 0.3764 0.4155 0.3950

ss1 AC abcd C Spectral 0.3102 0.4941 0.3812

ss1 AC a C Agglomerative 0.2959 0.3725 0.3298

ss1 AC a C GaussianMixture 0.3882 0.4518 0.4176

ss1 AC a C KMeans 0.4270 0.4597 0.4428

ss1 AC a C Spectral 0.4159 0.4998 0.4540
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Appendix B

Session Based Analysis Graph

Representations

In this appendix the interaction graphs resulting from the computation of the dif-

ferent aggregation functions are reported.
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Figure B.1: Interactions graph of course C1 based on sum aggregation function.
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Figure B.2: Interactions graph of course C1 based on count aggregation function.
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Figure B.3: Interactions graph of course C1 based on min aggregation function.
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Figure B.4: Interactions graph of course C1 based on max aggregation function.
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Figure B.5: Interactions graph of course C1 based on mean aggregation function.
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Figure B.6: Interactions graph of course C2 based on sum aggregation function.
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Figure B.7: Interactions graph of course C2 based on count aggregation function.
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Figure B.8: Interactions graph of course C2 based on min aggregation function.
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Figure B.9: Interactions graph of course C2 based on max aggregation function.
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Figure B.10: Interactions graph of course C2 based on mean aggregation function.
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