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The Markovian evolution of an open quantum system is characterized by a positive entropy production, while
the global entropy gets redistributed between the system and the environment degrees of freedom. Starting
from these premises, we analyze the entropy variation of an open quantum system in terms of two distinct
relations: the Clausius inequality, that provides an intrinsic bound for the entropy variation in terms of the
heat absorbed by the system, and an extrinsic inequality, which instead relates the former to the corresponding
entropy increment of the environment. By modeling the thermalization process with a Markovian collisional
model, we compare and discuss the two bounds, showing that the latter is asymptotically saturated in the limit
of large interaction time. In this regime not only the reduced density matrix of the system reaches an equilibrium
configuration, but it also factorizes from the environment degrees of freedom. This last result is proven analyti-
cally when the system-bath coupling is sufficiently strong and through numerical analysis in the weak-coupling
regime.

DOI: 10.1103/PhysRevA.98.032119

I. INTRODUCTION

In recent times research in thermodynamics has risen to
new life, with special attention to the energy balance in
nanoscale devices and a growing interest towards its connec-
tions to information theory [1]. In this framework an issue
naturally arises about the relations between thermodynamic
and information theoretic quantities, for instance, between
the concept of entropy introduced by Clausius and the one
introduced by Shannon [2,3]. Such studies are complicated
by the fact that for open quantum dynamical processes [4]
a definition of heat and work for a quantum engine cannot
be unequivocally given in the presence of correlations and
non-negligible coupling strengths [5–11], or more in general
when the system is driven out of equilibrium [12].

In this work we focus our attention on the irreversible
character of the thermalization process, by studying how the
entropy of a quantum system A is modified when it is placed
into thermal contact with an external reservoir. Specifically,
the entropy increase of A is analyzed in terms of two different
inequalities: the Clausius formulation of the second law and
one that accounts for creation of quantum and classical cor-
relations between A and its environment. A detailed analysis
of these relations is performed for the thermalization scheme
via collisional events introduced by Scarani et al. in Ref. [13].
Collisional models (CMs) [14–16] have been extensively used
to study open quantum systems in a variety of situations, from
cascade systems and networks [17–19], to heat transfer [20]
and thermalization [13,21]. Apart from their intrinsic simplic-
ity, they allow for exact tracking of the environmental degrees
of freedom, a fundamental feature that lets one account for
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the entropy and energy balance in the system. Via exact
analytic results extended by numerical analysis we get an
insight into the final state of the system and the bath after the
thermalization process is completed: in particular we observe
that for the scheme of Ref. [13] the final state of A not
only reaches thermalization locally, but also gets completely
factorized from the many-body environment that triggers the
thermalization via collisions (an effect we dub asymptotic
factorization of A). An explicit proof of this phenomenon
is given which works in the strong-collisions limit regime.
We conjecture that the same result should apply also in the
weak-collisions limit and present numerical evidence of this
fact for the special case where A is a qubit system.

The manuscript is organized as follows. In Sec. II, using a
standard Hamiltonian characterization of the thermalization
process, we present two different bounds on the entropy
increase of A and clarify their relations. In Sec. III instead we
review the CM of Ref. [13] and study how the previous bounds
affect the dynamics of the system in this setting. Section IV is
devoted to the study of the asymptotic factorization property.
The paper ends in Sec. V, where we draw our conclusions.
Technical derivations are reported in the Appendix.

II. QUANTIFYING IRREVERSIBILITY

Consider a quantum system A weakly coupled to a ther-
mal environment B at temperature T . Suppose that, due to
its interaction with B, the system evolves with an entropy
increase �SA and absorbing an amount of heat �QA. Purely
thermodynamic considerations suggest that

�SA � β�QA (Clausius inequality) (1)

as a consequence of the second law [hereafter we use β =
1/(KBT ) to indicate the inverse temperature of the bath,
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KB being the Boltzmann constant]. Equation (1) provides an
“intrinsic” lower bound on the local entropy production as it
involves only quantities that explicitly refer to properties of
the system A. By properly accounting for the onset of classical
and quantum correlations during the thermalization event, an
“extrinsic” bound relating �SA to the corresponding entropy
increase of the bath �SB can also be obtained, leading to the
inequality

�SA � −�SB (2)

(more on this in the following). Limiting how the entropy
of A evolves, Eqs. (1) and (2) provide a characterization of
the irreversibility of the thermalization process. As we shall
clarify later on they are not completely independent, even
though no universal ordering between them can be estab-
lished. A formal derivation of these results can be obtained by
modeling the AB coupling as a time-independent Hamiltonian
Ĥ = ĤA + ĤB + Ĥint and assuming that no correlations are
shared between A and B before their interaction, i.e., writing
the initial state of the joint system as a factorized density
matrix

ρ̂AB(0) = ρ̂A(0) ⊗ η̂
(β )
B , (3)

where ρ̂A(0) is the input state of A, while η̂
(β )
B :=

e−βĤB/ZB(β ) is the Gibbs density matrix describing the
thermal equilibrium of the bath, with ZB(β ) := Tr[e−βĤB ]
being the partition function. With this specification the tem-
poral evolution of A can now be fully specified by the one-
parameter family of completely positive, trace (CPT) preserv-
ing channels {�0→t }t�0 describing, for arbitrary times t , the
mapping

ρ̂A(0) → ρ̂A(t ) = �0→t [ρ̂A(0)] := TrB[ρ̂AB(t )], (4)

with ρ̂AB(t ) := e−iĤ t/h̄(ρ̂A(0) ⊗ η̂
(β )
B )eiĤ t/h̄ being the

evolved state of the joint system. We then say that B induces
thermalization on A if, irrespective from the specific choice of
ρ̂A(0), the latter will be driven by �0→t into the equilibrium
configuration state η̂

(β )
A := e−βĤA/ZA(β ), possibly in the

asymptotic limit of an infinitely long interaction time t → ∞.
Under this premise, since no external work contributes to the
energy balance, the heat absorbed by A can be legitimately
identified with the increases of the local energy of A,
i.e. [6,22],

�QA = Tr[ĤA(ρ̂A(t ) − ρ̂A(0))]. (5)

The conservation of the total energy in the model, i.e.,
Tr[Ĥ (ρ̂AB(t ) − ρ̂AB(0))] = 0, implies that

�QA = −�QB − �Eint, (6)

where �QB := Tr[ĤB(ρ̂B(t ) − ρ̂B(0))] is the heat absorbed
by the bath in the process, while the energy contribution

�Eint := Tr[Ĥint(ρ̂AB(t ) − ρ̂AB(0))] (7)

holds a less clear operational interpretation. In the weak-
coupling regime, the latter term is typically neglected either
because it is assumed to be small as compared to �QA,B

or, more formally, by simply considering interaction Hamil-
tonians that only exchange excitations between A and B
(i.e., [Ĥint, ĤA + ĤB] = 0), leading to the identity �QA =

−�QB. The Clausius inequality can then be derived by inter-
preting the left-hand side (LHS) term of (1) as the variation of
the von Neumann entropy computed on the initial state ρ̂A(0)
and its evolved counterpart ρ̂A(t ), i.e., �SA = S(ρ̂A(t )) −
S(ρ̂A(0)) with S(ρ̂A(t )) := −Tr[ρ̂A(t ) ln ρ̂A(t )]. Accordingly
we can now write

�SA − β�QA = S
(
ρ̂A(0)

∥∥η̂
(β )
A

) − S
(
ρ̂A(t )

∥∥η̂
(β )
A

)
, (8)

where S(ρ̂A‖η̂(β )
A ) := Tr[ρ̂A(ln ρ̂A − ln η̂

(β )
A )] is the relative

entropy [23] of the density matrices ρ̂A and η̂
(β )
A . Assuming

the invariance of η̂
(β )
A under �0→t (which given our working

hypothesis should hold at least in the asymptotic limit of
t → ∞), the inequality (1) then follows as a consequence of
the monotonicity property of the relative entropy under CPT
transformations [4], i.e.,

S
(
ρ̂A(t )‖η̂(β )

A

) = S
(
�0→t [ρ̂A(0)]

∥∥�0→t

[
η̂

(β )
A

])
� S

(
ρ̂A(0)

∥∥η̂
(β )
A

)
. (9)

Equation (8) also clarifies that, at least in the asymptotic limit
where ρ̂A(t ) reaches thermalization, the Clausius bound will
in general not be tight, as in this case Eq. (8) reduces to

�SA − β�QA

∣∣
t→∞ = S

(
ρ̂A(0)

∥∥η̂
(β )
A

)
, (10)

which due to the positivity of the relative entropy is not
null, unless ρ̂A(0) was already at equilibrium. On the other
hand, the extrinsic bound (2) admits an even simpler deriva-
tion: it follows as a consequence of the subadditivity prop-
erty of the von Neumann entropy and its invariance un-
der unitary transformations [23], i.e., S(ρ̂A(t )) + S(ρ̂B(t )) �
S(ρ̂AB(t )) = S(ρ̂AB(0)) = S(ρ̂A(0)) + S(ρ̂B(0)) or, equiva-
lently, from the positivity of the quantum mutual informa-
tion [23]

0 � IA:B(t ) := S(ρ̂A(t )) + S(ρ̂B(t )) − S(ρ̂AB(t )), (11)

with ρ̂B(t ) = TrA[ρ̂AB(t )] the reduced density matrix of the
bath at time t . As anticipated (1) and (2) are not independent:
following the derivation of Ref. [24] it is possible to show that
the difference between their right-hand-side terms satisfies the
identity

β�QA + �SB = −S
(
ρ̂B(t )

∥∥η̂
(β )
B

) − β�Eint (12)

[indeed by invoking the energy conservation identity �QB =
−�QA − �Eint and exploiting the connection between
IA:B(t ), �SA, and �SB detailed in Eq. (11), the iden-
tity (12) reduces to the expression β�QB = −�SA +
IA:B(t ) + S(ρ̂B(t )||η̂(β )

B ) of [24]]. Notice that, for general
choices of the system-bath coupling, the term on the RHS
of Eq. (12) does not have a definite sign with the notable ex-
ceptions of those models for which �Eint is exactly zero (e.g.,
the case where Ĥint commutes with ĤA and ĤB): under this
circumstance the positivity of the relative entropy ensures that
β�QA is smaller than −�SB making the extrinsic bound (2)
tighter than (1).

Markovian regime

Let us focus on the case of a thermalizing process described
by CPT families of maps {�0→t } which are time homoge-
neous and Markovian [25]. As they keep no record of the
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initial time (i.e., �0→t = �t ) and obey a semigroup property
(i.e., �t+τ = �t ◦ �τ for all t, τ � 0, with “◦” indicating the
composition of superoperator), the corresponding dynamics
can be expressed in terms of a master equation [4] with
a Gorini-Kossakowsky-Sudarshan-Lindblad (GKSL) genera-
tor [26,27] formed by a local Hamiltonian contribution ĤA

and a purely dissipative term which effectively accounts
for the influence of the bath B. Under these assumptions
the derivation of the Clausius inequality given in the pre-
vious section can be generalized to bound the differential
entropy increase ∂SA(t ) := S(ρ̂A(t + dt )) − S(ρ̂A(t )) at a
generic time t � 0 of the temporal evolution of A in terms
of the corresponding differential heat increment ∂QA(t ) :=
Tr[ĤA(ρ̂A(t + dt ) − ρ̂A(t ))], i.e.,

∂SA(t ) � β∂QA(t ). (13)

This supersedes the finite time interval version of the bound
which can be now derived from (13) by direct integration, and
it implies that, for time-homogeneous Markovian processes,
the gap between the RHS and the LHS of the Clausius
inequality is a nondecreasing function of time. An analogous
treatment of Eq. (2) is more problematic as the Hamiltonian
derivation of GKSL master equation relies on special assump-
tions on the AB couplings that hide the modifications induced
on the bath degrees of freedom. For properly accounting these
effects we need a framework that permits one to treat all
the degrees of freedom, including the bath ones, on an equal
footing, e.g., exploiting the CM approach we analyze in the
following section.

III. THERMALIZATION VIA COLLISIONS

CMs are simplified yet effective descriptions of the AB
interactions [14,28–30]. Here the thermal bath B is depicted
as a many-body quantum system formed by a huge collection
of N (possibly infinite) identical and noninteracting, small
subsystems b1, b2, . . . , bN , characterized by local Hamilto-
nians Ĥb1 , Ĥb2 , . . . , ĤbN

and initialized in the same Gibbs
thermal state η̂

(β )
b := e−βĤb/Zb(β ). Such subsystems interact

sequentially with A for a finite time δt and are then discarded
to enforce Markovianity [4,13,21,31]. Within this model the
global state of the joint system AB after the first n collisions
is hence expressed as

ρ̂
(n)
AB = Un ◦ · · · ◦ U2 ◦ U1

[
ρ̂

(0)
A ⊗ (

η̂
(β )
b

)⊗N ]
, (14)

with ρ̂
(0)
A and (η̂(β )

b )⊗N being respectively the initial density
matrices of A and B, and where, for k an integer, Uk (· · · ) =
Ûk (· · · )Û †

k is a unitary conjugation induced by the interaction
between A and the kth bath subsystem bk . Accordingly A will
now evolve via a stroboscopic sequence of jumps in which, at
the nth step, the reduced density matrix ρ̂

(n−1)
A := TrB[ρ̂ (n−1)

AB ]
gets mapped into

ρ̂
(n)
A = Trb

[
Un

(
ρ̂

(n−1)
A ⊗ η̂

(β )
b

)] =: �
[
ρ̂

(n−1)
A

]
, (15)

where we decomposed the partial trace upon B into a sequence
of partial traces upon the various bath subsystems to remove
all the degrees of freedom but the nth ones. Equation (15)

makes explicit the Markovian character of the evolution and,
by iteration, clarifies that in the CM the elements of the family
{�t }t�0 are replaced by the powers of the map �, i.e., ρ̂

(n)
A =

�n[ρ̂ (0)
A ].

In order to ensure that for large enough n the system A will
reach the thermal equilibrium state η̂

(β )
A , i.e.,

lim
n→∞ ρ̂

(n)
A = η̂

(β )
A , (16)

we follow Refs. [13,31–35] assuming the environment sub-
systems bk to be isomorphic with A, identifying their local
Hamiltonians with the one of A (i.e., ĤA ≡ Ĥbk

), and taking
the unitaries that mediate the collisions to be partial swap
operators. Specifically for all n integer we assume

Ûn = exp[iθ Ŝn] = cos θ In + i sin θ Ŝn, (17)

where θ ∈] − π, π ] is a dimensionless parameter that gauges
the strength of the collisional event and which is proportional

to the collisional time δt , while Ŝn = Ŝ
†
n = Ŝ

−1
n is the swap

operator coupling system A with the nth environmental bath
subsystem (when acting on states of the form |ψ〉A ⊗ |φ〉bn

it exchanges them, i.e., Ŝn|ψ〉A ⊗ |φ〉bn
= |φ〉A ⊗ |ψ〉bn

). Be-
sides implying the property (16) for all input ρ̂

(0)
A (this being

true [13] as long as θ is not an integer multiple of π ), the
choices detailed above ensure that the sum ĤA + ∑N

n=1 Ĥbn

of the local Hamiltonians of A and B commutes with the
unitary transformation Ûn · · · Û2Û1. Therefore, similarly to
the �Eint = 0 case of the Hamiltonian model, the energy
variations of A in the CM are compensated by an oppo-
site variation for the bath, leading to the identity �Q

(n)
A =

−�Q
(n)
B , where for X = A, B, �Q

(n)
X := Tr[ĤX(ρ̂ (n)

AB − ρ̂
(0)
AB)]

measures the heat absorbed by the X system between the
zeroth and nth step of the process. Using the same arguments
adopted in the previous section on the state (14) it is also
possible to show that both the Clausius inequality (1) and the
extrinsic bound (2) still hold true, i.e.,

�S
(n)
A � β�Q

(n)
A , (18)

�S
(n)
A � −�S

(n)
B , (19)

with �S
(n)
A := S(ρ̂ (n)

A ) − S(ρ̂ (0)
A ) and �S

(n)
B := S(ρ̂ (n)

B ) −
S(ρ̂ (0)

B ) gauging the entropy differences between the zeroth
and nth step of the process. A detailed derivation of this
relation is provided in the Appendix.

Here we only stress that in computing the term on the RHS
of (19) we treat B as a real many-body quantum system, re-
taining all interparticle correlations which may arise between
its subenvironment components b1, b2, . . . , bN due to their
collisions with A. According to this choice the explicit evalua-
tion of �S

(n)
B is a highly demanding task as it requires the full

diagonalization of the density matrix ρ̂
(n)
B of the environment.

An alternative, and much easier to compute, formulation of
this inequality could also be obtained by effectively removing
such correlations (e.g., by replacing the joint state of AB that
is emerging from the nth collision with its reduced factorized
counterpart [31]); this yields the following “local” version of
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FIG. 1. Numerical evaluation of the bounds for the entropy production in the CM for a qubit system. In the plot the behavior of �S
(n)
A

and of the quantities β�Q
(n)
A [intrinsic bound, Eq. (18)], −�S

(n)
B [extrinsic bound, Eq. (19)], and −�S

(n,loc)
B [local version of the extrinsic

bound, Eq. (20)] are shown as a function of the collisional step index n for four different initial states of A represented by the Bloch vectors

r (0) = (0, 0, 1) [ground state of A, panel (a)], (1/2, 0, 0) [panel (b)], (1,0,0) [panel (c)], and (0,0,0) [completely mixed state of A, panel (d)],
respectively. The reported values fulfill the ordering anticipated in Eq. (21), −�S

(n)
B always providing the optimal bound. Furthermore, as n

increases, −�S
(n)
B approaches �S

(n)
A saturating the extrinsic bound (19) in agreement with the asymptotic factorization conjecture of Eq. (23).

In all the plots we set β = 1 and θ = 0.75 (i.e., below the threshold arctan 2; see Sec. IV A).

the extrinsic bound:

�S
(n)
A � −�S

(n,loc)
B , (20)

which is provably weaker than the one we present in
Eq. (19)—see the Appendix for details. Another important
observation is the fact that, for the CM we analyze here,
the identity Eq. (12) still applies. Due to the absence of the
�Eint contribution (see discussion above), this implies that
for the present model the extrinsic bound (19) and its local
counterpart (20) always beat the intrinsic one leading to the
following ordering:

�S
(n)
A � −�S

(n)
B � −�S

(n,loc)
B � β�Q

(n)
A . (21)

As a matter of fact it turns out that the inequality (19) is
asymptotically optimal, the gap between �S

(n)
A and −�S

(n)
B

being exponentially decreasing. Introducing the quantum mu-
tual information I

(n)
A:B := S(ρ̂ (n)

A ) + S(ρ̂ (n)
B ) − S(ρ̂ (n)

AB) [23] and
noticing that S(ρ̂ (n)

AB) = S(ρ̂ (0)
AB) = S(ρ̂ (0)

A ) + S(ρ̂ (0)
B ) due to

unitary invariance of the von Neumann entropy, this result can
be equivalently cast in terms of the following identity:

lim
n→∞ I

(n)
A:B = 0. (22)

The above expression is a major improvement with respect to
the identity (16): while the latter implies that the global state
of A and B approaches the Gibbs configuration η̂

(β )
A locally on

A, Eq. (22) imposes explicit factorization of the joint state in

the asymptotic limit of large n, i.e.,

lim
n→∞ ρ̂

(n)
AB = η̂

(β )
A ⊗ �̂B, (23)

with the density matrix �̂B maintaining a functional depen-
dence upon the input state ρ̂

(0)
A of A as a consequence of

the unitary mapping (14). For |θ | � arctan 2 � 1.107 (strong-
collisions regime) an explicit proof of the asymptotic factor-
ization property (22) is presented in Sec. IV: it works for any
finite-dimensional system A and for all choices of the inverse
temperature β. For lower values of |θ | our argument fails; still
we conjecture that (23) should hold also in those cases. In sup-
port of this conjecture we present some numerical evidences
where we have tested the model for the case where A and the
subsystems bn are qubits with local Hamiltonians ĤA = 1

2 σ̂
(3)
A

and Ĥb = 1
2 σ̂

(3)
b , σ̂ (3) being the third Pauli operator and the

energy scale being measured in units h̄ω = 1. Results are
reported in Sec. III and summarized in Figs. 1 and 2.

Qubit case

Here we study in detail the CM for the special case where
A and the subenvironments b are qubit systems. Adopting the
Bloch sphere representation we write the state ρ̂

(n)
A of A after

the nth collision

ρ̂
(n)
A = ÎA + 
r (n) · 
σA

2
, (24)
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FIG. 2. Numerical evaluation of the intrinsic (18) and extrinsic (19) bounds for the entropy production in the CM for a qubit system.
Dashed lines show the behavior of �S

(n)
A − β�Q

(n)
A as a function of the collisional step n for various values of the partial swap parameter θ

of Eq. (17). Notice that as expected for Markovian processes this is an increasing function of n, which saturates to the value S(ρ̂ (0)
A ‖η̂(β )

A ) in
agreement with (10). The continuous lines represent instead the behavior of �S

(n)
A + �S

(n)
B . In this case the function has no monotonic behavior

and as n increases it tends to nullify in agreement with the factorization prediction of Eqs. (22) and (23). In the inset the same quantity is shown
in logarithmic scale. In all plots the input state of A is associated to 
r (0) = (1/2, 0, 0), while the temperature of the bath is such that β = 1 in
the left panel and β = 0.5 in the right panel.

with ÎA and 
σA = (σ̂ (1)
A , σ̂

(2)
A , σ̂

(3)
A ) being respectively the

identity and Pauli vector operators. From this we can compute
the associated entropy S(ρ̂ (n)

A ) and the mean energy of the
state as

S
(
ρ̂

(n)
A

) = H2

(
1 + |
r (n)|

2

)
, (25)

E
(n)
A := Tr

[
ĤAρ̂

(n)
A

] = r
(n)
3

/
2, (26)

where H2(x) := −x ln x − (1 − x) ln(1 − x) is the Shannon
binary entropy functional and where we have used the fact
that ĤA = 1

2 σ̂
(3)
A . Accordingly, introducing the Bloch vector


r (0) of the input state ρ̂
(0)
A of A, we can then write

�S
(n)
A = H2

(
1 + |
r (n)|

2

)
− H2

(
1 + |
r (0)|

2

)
, (27)

�Q
(n)
A = (

r
(n)
3 − r

(0)
3

)/
2. (28)

From the definition of H2(x) it follows that �S
(n)
A is an

increasing function of the length |
r (n)| of the Bloch vector

r (n), while �Q

(n)
A is just linearly dependent upon the z-axis

component of such vector.
A closed expression for these quantities can then be ob-

tained by exploiting the properties of the partial swap trans-
formation (17), to recast (15) into the following recursive
mapping:


r (n) = cos2 θ 
r (n−1) + sin2 θ 
s, (29)

with 
s being the Bloch vector associated with the input state
η̂

(β )
b = e−βσ̂

(3)
b /2/Zb(β ) of the environmental subsystem b, i.e.,


s = (0, 0, s), s := s(β ) = − tanh(β/2). (30)

Iterating, expression (29) can be formally integrated, giving


r (n) = cos2n θ 
r (0) + (1 − cos2n θ ) 
s
= 
s + cos2n θ�
r (0), (31)

with �
r (0) := 
r (0) − 
s the difference between the Bloch vec-
tor 
r (0) of the input state of A and 
s. The length and the z-axis
component of the vector (31) can then be computed as

|
r (n)| =
√

s2 + cos4n θ |�
r (0)|2 + cos2n θ s �r
(0)
3 , (32)

r
(n)
3 − r

(0)
3 = (cos2n θ − 1) �r

(0)
3 . (33)

By the same token we can now compute the lo-
cal output states of the environmental subsystems ρ̂

(n)
b =

TrA[Û (ρ̂ (n−1)
A ⊗ η̂

(β )
b )Û †], which via Eq. (A4) provide a lower

bound to �S
(n)
A . Following the same derivation given above

the Bloch vector of such state can be expressed as


s (n) = sin2 θ 
r (n−1) + cos2 θ 
s
= 
s + sin2 θ cos2(n−1) θ�
r (0), (34)

where the last identity follows from (31). The length of such
vector is hence

|
s (n)| = (
s2 + sin4 θ cos4(n−1) θ |�
r (0)|2

+ sin2 θ cos2(n−1) θ s �r
(0)
3

)1/2
, (35)

yielding

�S
(loc)
B =

n∑
k=1

H2

(
1 + |
s (k)|

2

)
− nH2

(
1 + s

2

)
(36)

for the quantity (A4) of the Appendix that defines the local
version (20) of the extrinsic bound.

Expressions (27), (28), and (36) are used for the plots of
Figs. 1 and 2. The evaluation of �S

(n)
B instead requires a

complete diagonalization of the many-body quantum state of
the environment B.

IV. CORRELATIONS DECAY

This section focuses on the factorization property (23). As
a preliminary observation we notice that, irrespective of the
values of θ and β, Eq. (23) is trivially verified when the input
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state of A is already at thermal equilibrium, i.e., ρ̂
(0)
A = η̂

(β )
A .

Indeed, under this condition, for all n one has:

ρ̂
(n)
AB = η̂

(β )
A ⊗ (

η̂
(β )
b

)⊗N
, (37)

due to the fact that, given Ŝ the swap operator acting on the
Hilbert space H⊗2, the state η̂ ⊗ η̂ commutes with it (i.e.,
[Ŝ, η̂ ⊗ η̂] = 0), and hence with eiθŜ, thus leading to eiθŜ(η̂ ⊗
η̂)e−iθŜ = η̂ ⊗ η̂. Also, Eq. (23) can be easily shown to hold
for arbitrary inputs, in the case where the bath temperature
is zero (β → ∞) and the local Hamiltonians of the model
have a nondegenerate ground state |0〉. In this case in fact the
Gibbs states η̂

(β )
b correspond to the pure vectors |0〉b, while

(16) yields

lim
n→∞ ρ̂

(n)
A = |0〉A〈0|, (38)

which can only be fulfilled by having a joint state ρ̂
(n)
AB that

asymptotically approaches a state of the form |0〉A〈0| ⊗ �̂B.
In Sec. IV A we shall prove that (23) holds for the CM

model as long as the strength of the partial swapping is suf-
ficiently large. Instead in Sec. IV B the factorization property
(23) is shown to hold for a slight modification of the scheme
where we do alternate sequences of collisions with a full
dephasing process on A.

A. Factorization proof for the strong-collisions regime

Consider now the nontrivial case where ρ̂
(0)
A = η̂

(β )
A and

β is finite. In order to prove the identity (23) we notice that
Eq. (14) which defines the joint state of AB after n collisions
implies the following recursive formula ρ̂

(n)
AB = Un[ρ̂ (n−1)

AB ]. We
now express such state as the sum of two terms

ρ̂
(n)
AB = R̂

(n)
AB + T̂

(n)
AB , (39)

with R̂
(n)
AB representing the contribution where A factorizes

from B and is in η̂
(β )
A (i.e., R̂

(n)
AB = η̂

(β )
A ⊗ R̂

(n)
B ), while T̂

(n)
AB

contains all the remaining ones. An explicit derivation of
such decomposition can be formally derived via the following
construction: for n = 0, using the fact that ρ̂

(0)
A = η̂

(β )
A we set

R̂
(0)
AB = 0 and T̂

(0)
AB = ρ̂

(0)
AB. Then for n = 1 we use Eq. (17) and

the properties of the swap operator to write

R̂
(1)
AB = sin2 θ

(
Ŝ1ρ̂

(0)
ABŜ1

)
= sin2 θ

(
η̂

(β )
A ⊗ ρ̂

(0)
b1

⊗ [
η̂

(β )
b

]⊗N−1)
, (40)

T̂
(1)

AB = cos2 θ ρ̂
(0)
AB + i sin θ cos θ

[
Ŝ1, ρ̂

(0)
AB

]
, (41)

where [· · · , · · · ] stands for the commutator. For higher values
of n we can derive a recursive formula connecting R̂

(n+1)
AB ,

T̂
(n+1)

AB to R̂
(n)
AB, T̂

(n)
AB , by noticing that

Un+1
[
R̂

(n)
AB

] = R̂
(n)
AB, (42)

which follows once more from the fact that states η̂ ⊗ η̂ are
invariant under partial swaps (see argument at the beginning
of the section). Therefore, the only part of Un+1[T̂ (n)

AB ] that
contributes to R̂

(n+1)
AB is the one which has Ŝn+1 either only

on the right and or only on the left. Accordingly, we have

R̂
(n+1)
AB = R̂

(n)
AB + sin2 θ Ŝn+1 T̂

(n)
AB Ŝn+1, (43)

T̂
(n+1)

AB = cos2 θT̂
(n)

AB + i sin θ cos θ
[
Ŝn+1, T̂

(n)
AB

]
. (44)

Exploiting the subadditivity of the norm we then get∥∥T̂
(n+1)

AB

∥∥ � | cos2 θ |∥∥T̂
(n)

AB

∥∥ + | sin θ cos θ |∥∥[
Ŝn+1, T̂

(n)
AB

]∥∥
� (| cos2 θ | + 2| sin θ cos θ |) ∥∥T̂

(n)
AB

∥∥, (45)

where in the second line we used the fact that Ŝn+1 is unitary
to claim that ‖Ŝn+1T̂

(n)
AB ‖ = ‖T̂ (n)

AB ‖ (the above results being
true in any operator norm). Iterating this we can then write∥∥T̂

(n+1)
AB

∥∥ � (| cos2 θ | + 2| sin θ cos θ |)n+1
∥∥ρ̂

(0)
AB

∥∥, (46)

where we used the fact that T̂
(0)

AB = ρ̂
(0)
AB. Now we observe

that, for

|θ | > arctan 2, (47)

we have | cos2 θ | + 2| sin θ cos θ | < 1 and hence from (46)

lim
n→∞

∥∥T̂
(n)

AB

∥∥ = 0, (48)

implying that in the large n limit T̂
(n)

AB approaches zero allow-
ing us to identify ρ̂

(n)
AB with R̂

(n)
AB as required by Eq. (23).

B. Asymptotic factorization for CM with a little
help from full dephasing on A

Here we show that the asymptotic factorization prop-
erty (23) can be proven under a slight modification of the CM
where, instead of letting A and B evolve under a sequence of
collisional events as in (14) every k � 1 collisions we force A
to undergo full dephasing transformation DA, which destroys
all its off-diagonal elements with respect to the local energy
eigenbasis {|j 〉A}, i.e.,

DA[|j 〉A〈j ′|] = δj,j ′ |j 〉A〈j |, (49)

with δj,j ′ the Kronecker delta. For the sake of simplicity we
present this argument for the special case of A being a qubit,
but the same can be generalized to arbitrary dimensions. Also
we stress that, as long as the property (16) is verified together
with the assumption that the state of η̂

(β )
A will not evolve

during a collisional event, the derivation we present below
does not rely on the specific form of the unitaries given in
Eq. (17).

Let us hence divide the subsystems of B into groups of k

elements: the set B1, containing the first k subenvironments,
the set B2 containing the second k subenvironments, and so
on and so forth. Take then the joint state of A and B1 after the
first k unitary collisions have been performed, and expand it
with respect to the local energy basis of A, i.e.,

ρ̂
(k)
AB1

= Uk ◦ · · · ◦ U2 ◦ U1
[
ρ̂

(0)
A ⊗ (

η̂
(β )
b

)⊗k]
=

∑
j,j ′

|j 〉A〈j ′| ⊗ �̂
(j,j ′ )
B1

(
ρ

(0)
A

)
, (50)

with �̂
(j,j ′ )
B1

(ρ (0)
A ) := A〈j ′|ρ̂ (k)

AB|j 〉A being operators of B1

which inherit a linear dependence upon the input state ρ̂
(0)
A
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of A. Taking the partial trace with respect to B1 this yields the
density operator

ρ̂
(k)
A =

∑
j,j ′

M
(k)
j,j ′

(
ρ

(0)
A

)|j 〉A〈j ′| (51)

with matrix coefficients

M
(k)
j,j ′

(
ρ

(0)
A

)
:= TrB1

[
�̂

(j,j ′ )
B1

(
ρ

(0)
A

)]
. (52)

From (16) we know that for large k should approach the
stationary configuration η̂

(β )
A , which by construction, is diag-

onal with respect to the basis {|j 〉A} with eigenvalues equal
to η

(β )
j = e−βh̄Ej /Z(β ). Accordingly, for any given positive

ε < 1, we can choose k sufficiently large to guarantee that the
following inequalities hold:

∣∣M (k)
j,j

(
ρ

(0)
A

) − η
(β )
j

∣∣ < ε, (53)

∣∣M (k)
j,j ′

(
ρ

(0)
A

)∣∣ < ε, ∀j = j ′. (54)

If we next apply the full dephasing (49) to the state (50)
we get

ρ̂
(k)
AB → |0〉A〈0| ⊗ �̂

(0,0)
B1

(
ρ

(0)
A

) + |1〉A〈1| ⊗ �̂
(1,1)
B1

(
ρ

(0)
A

)
,

(55)

where, for the first time, we explicitly used the fact that
system A is a qubit. Summing and subtracting the term
η

(β )
0

η
(β )
1

�̂
(1,1)
B1

(ρ (0)
A ) and using the definition of η̂

(β )
A the RHS of this

expression can thus be rewritten as

|0〉A〈0| ⊗ �̂
(k)
B1

(
ρ

(0)
A

) + η̂
(β )
A ⊗ �̂B1

(
ρ

(0)
A

)
, (56)

with �̂B1 (ρ (0)
A ) := �̂

(1,1)
B1

(ρ (0)
A )/η(β )

1 and with

�̂
(k)
B1

(
ρ

(0)
A

)
:= �̂

(0,0)
B1

(
ρ

(0)
A

) − η
(β )
0

η
(β )
1

�̂
(1,1)
B1

(
ρ

(0)
A

)
, (57)

an operator whose trace norm ‖�̂(k)
B1

(ρ (0)
A )‖1, for sufficiently

large k, can be forced to be strictly smaller than one thanks

to (53). Indeed summing and subtracting
M

(k)
0,0 (ρ (0)

A )

M
(k)
1,1 (ρ (0)

A )
�̂

(1,1)
B1

(ρ (0)
A )

to �̂
(k)
B1

(ρ (0)
A ) and using the triangular inequality of the trace

norm we can write ‖�̂(k)
B1

(ρ (0)
A )‖1 � α(k) + β (k) with

α(k) := M
(k)
0,0

(
ρ

(0)
A

)∥∥∥∥ �̂
(0,0)
B1

(
ρ

(0)
A

)
M

(k)
0,0

(
ρ

(0)
A

) − �̂
(1,1)
B1

(
ρ

(0)
A

)
M

(k)
1,1

(
ρ

(0)
A

)
∥∥∥∥

1

,

β (k) :=
∣∣∣M (k)

0,0

(
ρ

(0)
A

) − η
(β )
0

η
(β )
1

M
(k)
1,1

(
ρ

(0)
A

)∣∣∣
∥∥∥∥ �̂

(1,1)
B1

(
ρ

(0)
A

)
M

(k)
1,1

(
ρ

(0)
A

)
∥∥∥∥

1

.

The thesis then follows by noticing that, for sufficiently large
k, we can ensure that α(k) is a quantity smaller than 1 with
β (k) being arbitrarily small. Regarding α(k) this can be shown
by exploiting the fact that in the limit of high k, M

(k)
0,0(ρ (0)

A )

approaches η
(β )
0 , which for β > 0 is always strictly smaller

than one, while, since
�̂

(0,0)
B1

(ρ (0)
A )

M
(k)
0,0 (ρ (0)

A )
and

�̂
(1,1)
B1

(ρ (0)
A )

M
(k)
1,1 (ρ (0)

A )
are properly

normalized density matrices the norm of their difference is
certainly smaller than or equal to one. Regarding β (k) instead

we can use (53) to show that |M (k)
0,0(ρ (0)

A ) − η
(β )
0

η
(β )
1

M
(k)
1,1(ρ (0)

A )|

approach zero for large values of k, while ‖ �̂
(1,1)
B1

(ρ (0)
A )

M
(k)
1,1 (ρ (0)

A )
‖

1
= 1

because it is the trace norm of a properly normalized state.
Equation (55) represents the state of the AB1 after k unitary

collisions and a single dephasing event DA. We now repeat
the full procedure introducing the second k subsystems of
B, i.e., the elements of the subset B2. We notice the part of
the state (55) which has A already in η̂

(β )
A does not evolve.

The only element that undergoes modification is the first
component of the state. Iterating the above procedure we
hence arrive at

|0〉A〈0| ⊗ �̂
(k)
B1

(
ρ

(0)
A

) ⊗ �̂
(k)
B2

(|0〉A) + η̂
(β )
A ⊗ �̂B1B2

(
ρ

(0)
A

)
,

with �̂
(k)
B2

(|0〉A) as in (57) for ρ
(0)
A = |0〉A〈0| and �̂B1B2 (ρ (0)

A )
a proper operator of B1B2. By the same token after q of such
steps we get

|0〉A〈0| ⊗ �̂
(k)
B1

(
ρ

(0)
A

) ⊗q

�=2

(
�̂

(k)
B�

(|0〉A)
)

+ η̂
(β )
A ⊗ �̂B1B2···Bq

(
ρ

(0)
A

)
.

Notice that the first contribution has a trace norm which
is equal to ‖|0〉A〈0|1 ⊗ �̂

(k)
B1

(ρ (0)
A ) ⊗q

�=2 (�̂(k)
B�

(|0〉A))‖1 =
‖�̂(k)

B1
(ρ (0)

A )‖ ‖�̂(k)
B�

(|0〉A)‖q−1
1 and hence is exponentially de-

creasing in q. Accordingly we can claim that for large q the
state of AB will be determined by the second contribution
which explicitly factorizes as in Eq. (23).

V. CONCLUSIONS

The scheme of Ref. [13] is arguably the simplest thermal-
ization model one can analyze which, within the assumptions
of the CM approach, appears to be consistent both thermo-
dynamically and from the point of view of open quantum
dynamics. Our analysis clarifies that in this context the Clau-
sius inequality is always outperformed by the extrinsic bound
that relates �SA to the entropy increment of the thermal
environment B.

Most interesting, in the limit of infinitely many collisions,
the latter turns out to be asymptotically optimal, indicating
that the model induces a complete factorization of A from
B. To our understanding, this progressive factorization arises
as the result of the balance of two competing effects that
take place at each swapping collision: on one hand, every
interaction with a new ancilla tends, in principle, to establish
new correlations between the environment and the system.
On the other hand, this same interaction tends to reduce the
correlations the system established with the previous ancillas,
by transforming them into intraenvironment correlations via
partial replacement of the system degree of freedom with
those of the new ancilla due to the action of the swap gate.
As a matter of fact the first mechanism becomes more and
more feeble approaching the fixed point of the evolution.

We have shown that such asymptotic factorization holds
true at least when the strength of the collision is sufficient
large: also in view of our numerical analysis, we suspect
however that this result should be fairly general and we plan
to further investigate it in the future.
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APPENDIX: EXPLICIT DERIVATION OF THE ENTROPIC
BOUNDS FOR THE CM

The global form (18) of the Clausius inequality is obtained
by applying the relative-entropy monotonicity argument to
the states ρ̂

(n)
A and η̂

(β )
A . The incremental version of this

follows instead by using the same procedure by comparing
the entropies of ρ̂

(n)
A and ρ̂

(n−1)
A via Eq. (15), obtaining the

inequality

dS
(n)
A � βdQ

(n)
A , (A1)

with dS
(n)
A := S(ρ̂ (n)

A ) − S(ρ̂ (n−1)
A ) and dQ

(n)
A := Tr[ĤA

(ρ̂ (n)
A − ρ̂

(n−1)
A )].

The extrinsic bound (19) is obtained by invoking the
subadditivity of the von Neumann entropy of the density
matrix (14): here �S

(n)
B represents the global entropy gain

of the multipartite bath B, which properly accounts for all
possible correlations between its constituents b1, b2, . . . , bN .
Writing it explicitly results in the following expression:

�S
(n)
A � −�S

(n)
B = nS

(
η̂

(β )
b

) − S
(
ρ̂

(n)
B

)
, (A2)

where we used the fact that at the beginning of the A–B
interactions the bath is described by the factorized state where
all its constituents are initialized into the same Gibbs state
η̂

(β )
b . An incremental version of this inequality instead follows

by using the same technique applied to the state (15), i.e.,

dS
(n)
A � −dS

(n)
b = S

(
η̂

(β )
b

) − S
(
ρ̂

(n)
b

)
. (A3)

Here dS
(n)
b represents the local entropy variation of the

nth environmental subsystem bn after its collision with
A (by construction such system evolves from η̂

(β )
b to

ρ̂
(n)
b := TrA[Û (ρ̂ (n−1)

A ⊗ η̂
(β )
b )Û †]). It is worth stressing that, at

variance with the intrinsic bound where Eq. (18) can be seen
as a consequence of Eq. (A1) via direct summation of the
latter over all collisions, Eq. (A3) results in a weaker bound
for the global entropy production of A than Eq. (19). Indeed
by summing over the first n collisions Eq. (A3) yields the
inequality (20) with

�S
(n,loc)
B :=

n∑
k=1

S
(
ρ̂

(k)
b

) − nS
(
η̂

(β )
b

)
, (A4)

the bound being outperformed by (A2) due to entropy sub-
additivity, i.e.,

∑n
k=1 S(ρ̂ (k)

b ) � S(ρ̂ (n)
B ), the ρ̂

(k)
b being the

reduced density matrix of the kth ancillary system of ρ̂
(n)
B .

As a matter of fact, Eq. (A4) is exactly the bound one would
get from (A2) when removing all the intraparticle correlations
between the subenvironment elements, i.e., by replacing ρ̂

(n)
b

with the product state formed by the reduced density matrices
of its constituents ρ̂

(n)
b → ρ̂

(n)
b2

⊗ ρ̂
(n)
b1

⊗ · · · ρ̂ (n)
bn

. As explicitly
noted in Ref. [31] this procedure will not affect the dynamics
of A (and hence its entropy increase), yet at the level of the
extrinsic lower bound gives worse performances than the one
presented in Eq. (A2).

Finally we notice that a formal rewriting of the identity (12)
for the CM reads as

β�Q
(n)
A + �S

(n)
B = −S

(
ρ̂

(n)
B

∥∥ρ̂
(0)
B

)
, (A5)

which implies −�S
(n)
B � β�Q

(n)
A and which can be directly

proven by direct evaluation of the various terms by enforc-
ing the local energy conservation identity �Q

(n)
A = −�Q

(n)
B

discussed in the main text. A similar identity holds for the
incremental entropy variations, i.e.,

βdQ
(n)
A + dS

(n)
b = −S

(
ρ̂

(n)
b

∥∥η̂
(β )
b

)
, (A6)

which upon summation over the collision index n yields the
inequality

−�S
(n,loc)
B � β�Q

(n)
A , (A7)

anticipated in Eq. (21) of the main text.
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