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Abstract

The existence of positive radial solutions is investigated for a non-
linear elliptic equation with p-Laplace operator and sign-changing
weight, both in superlinear and sublinear case. We prove the exis-
tence of solutions u which are globally defined and positive outside
of a ball of radius R, satisfy fixed initial conditions u(R) = c > 0,
u′(R) = 0 and tends to zero at infinity. Our method is based on a fixed
point result for boundary value problems on noncompact intervals and
on asymptotic properties of suitable auxiliary half-linear differential
equations. The results are new also for the classical Laplace operator
and may be used for proving the existence of ground state solutions
and decaying solutions with exactly k-zeros which are defined in all
the space. Some examples illustrate our results.
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1 Introduction

Consider the nonlinear elliptic equation with p-Laplace operator

div
(
r(x) |∇u|p−2∇u

)
+ q(x)F (u) = 0, p > 1,

where r and q are smooth functions defined on Rd, d ≥ 2, r is positive, F ∈
C(R). Solutions u, which are positive, minimize certain energy functional,
and satisfy lim|x|→∞ u(x) = 0, are usually called ground state solutions. The
search of radially symmetric ground state solutions outside of a ball of radius
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R, satisfying Neumann boundary conditions, leads to the one-dimensional
problem (

td−1r(t)Φ(u′)
)′

+ td−1q(t)F (u) = 0, t ≥ R,

u′(R) = 0, u(t) > 0 for t ≥ R, lim
t→∞

u(t) = 0,
(NP)

where t = |x|, see for instance [1]. Here and henceforth,

Φ(u) = |u|α−1u = |u|αsgnu, α = p− 1 > 0.

Thus, in this paper we consider the equation

(a(t)Φ(x′))′ + b(t)F (x) = 0, t ∈ [t0,∞), t0 ≥ 0 (1)

with the boundary conditions

x(t0) = c, x′(t0) = 0, x(t) > 0 for t ∈ [t0,∞), lim
t→∞

x(t) = 0, (2)

where c is a positive constant. We always assume that:

(i) a is a positive continuous function on [t0,∞) satisfying

A =

∫ ∞
t0

1

a1/α(t)
dt <∞; (3)

(ii) b is a continuous function on [t0,∞), such that∫ ∞
t0

1

a1/α(t)

(∫ t

t0

b+(s) ds

)1/α

dt =∞, (4)

B− =

∫ ∞
t0

b−(t) dt <∞, (5)

where b+, b− are the positive and the negative part of b, respectively,
i.e. b+(t) = max{b(t), 0}, b−(t) = −min{b(t), 0};

(iii) F is a continuous function on R with F (0) = 0, F is continuously
differentiable on (0, 2c] and F ′(u) ≥ 0 for u ∈ (0, 2c].
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A prototype of (1) is the Emden-Fowler equation(
a(t)Φ(x′)

)′
+ b(t)|x|βsgnx = 0, β > 0. (6)

Concerning the forcing term F , two cases are here considered, according to
the function F (u)/uα is bounded or unbounded in a right neighborhood of
zero, respectively. These cases represent for (6) the superlinear/half-linear
case (β ≥ α) and the sublinear one (0 < β < α), and are very different from
each other. Indeed, consider the particular equation

(t2x′)′ + b0|x|γsgn x = 0 t ∈ [t0,∞, ), t0 > 0, (7)

where b0 is a positive constant. The change of variable

y(t) = tx(t) (8)

transforms (7) into

y′′ +
b0
tγ+1
|y|γ sgn y = 0,

the well-known Emden-Fowler equation, which is oscillatory if and only if γ ∈
(0, 1), see, e.g., [16]. Since the transformation (8) maintains the oscillation,
the BVP (1), (2) is not solvable for (7) in the sublinear case γ < 1. On
the other hand, in the linear case (γ = 1) equation (7) is nonoscillatory if
b0 ≤ 1/4, and any its solution goes to zero as t → ∞. This fact shows that
the solvability of (1), (2) in the sublinear case is a more difficult problem,
and the nonlinearity has to be, roughly speaking, “very close” to the power
function Φ(u).

Notice that, in virtue of (3) and (4), we have∫ ∞
t0

b+(t) dt =∞, (9)

and the function b cannot be identically zero in a neighborhood of infinity.
On the other hand, if b is identically zero on [t0,∞), then the BVP (1), (2)
is not solvable, as a direct computation shows.

It is well-known that the continuability at infinity of solutions of (1) is a
serious matter, see, e.g., [4]. For instance, the Emden-Fowler equation (6),
where α < β and b is allowed to take negative values, has solutions which tend
to infinity in finite time, see [4, 5]. Moreover, again in the superlinear case
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α < β, if b is non-negative with isolated zeros, (6) may have solutions which
change sign infinitely many times in the left neighborhood of some t̄ > t0,
and so these solutions are not continuable to infinity, see [7]. Further, even if
global solutions exist, (i.e., solutions which are defined in the whole half-line
[t0,∞)), their positivity is not guaranteed in general. Indeed, (1) may exhibit
coexistence of nonoscillatory and oscillatory solutions; further, nonoscillatory
solutions may have an arbitrary large number of zeros. On the other hand,
the solutions of the boundary value problem (1),(2) are necessarily defined
and positive on the whole half-line and, for this reason, we call them globally
positive solutions.

Recently, boundary value problems associated to differential equations
with indefinite weight have attracted an increasing interest, both in ODE
and in PDE case, but generally on bounded domains. At our knowledge,
[19] is one of the first works in which indefinite weight is considered; other
significant results in compact intervals can be found, e.g. in [3, 23] and
references therein. The existence of globally positive solutions on a half-
line, satisfying different types of boundary conditions, has been studied, for
instance, in [10, 11, 12, 14, 24]. Observe that, in case of indefinite weight, the
behavior of solutions can be more varied with respect to the case of positive
(negative) weight. For instance, (1) may have nonoscillatory solutions whose
derivative change sign infinitely many times as t→∞, see, e.g., [8].

The existence of radial ground states or nodal solutions for elliptic equa-
tions with the classical Laplacian operator or with the p-Laplacian operator
are problems that have attracted much attention in recent years, especially
in case of positive weight. Among the extensive bibliography in this field, we
refer to [1], [9] and the references therein. Ground state solutions of some
superlinear elliptic equations with classical Laplacian (p = 2) and weight
having one change of sign have been studied in [17, 18], see also references
therein. To our knowledge, the case of indefinite weight has been not treated
till now for the equation under our consideration.

A wide literature is devoted to the study of the asymptotic properties
of solutions for (1), but few results deals with the problem of existence of
positive global solutions in a given unbounded interval, and in particular,
as far as we know, no results are known for the existence of positive global
solutions of a Neumann type problem on a half-line. The problem of the
existence of positive global solutions has been considered, for instance, in
[10, 11, 12, 14, 24], with different initial and/or asymptotic conditions. In
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particular the results here presented extend [14, Theorem 3.2], in which the
existence of decreasing solutions (the so called Kneser solutions) is proved
for (1), but only in case F (u)/uα is bounded. Our results extend also to
the p-Laplacian operator case some results proved for the curvature operator
(see, e.g., [2, Theorem 0.1], [13, Theorem 3.1]). The existence results here
presented are new also if b is nonnegative (case of positive weight). In this
easier case, the main results become more simple, see Corollary 1 and Corol-
lary 2. At our knowledge, apart from the results of the present authors, until
now the only known results for (1) deal with existence of solutions which
are positive for large t, but not with the existence of positive solutions on an
a-priori fixed interval. Thus, from this point of view, our results extend, e.g.,
[22, Theorem 3.2, Theorem 3.7], [21, Theorem 1.2]. Moreover our results are
new also for equations with the classical Sturm-Liouville operator (α = 1).

The problem of the existence of positive global solutions to (1), satisfy-
ing a Neumann type initial condition and zero asymptotic condition, is here
solved by developing a new approach based on a comparison result between
principal and nonprincipal solutions of Sturm majorant and minorant of aux-
iliary half-linear equations. The existence of a solution is then obtained by
a fixed point approach for operators defined on noncompact intervals. One
of the advantages of this approach is that the explicit form of the operator
and its topological properties are not needed.

The paper is organized as follows. Sections 3 and 4 are devoted to
the main results, according to either the boundedness or unboundedness
of F (u)/uα holds in a right neighborhood of zero, respectively. Section 2
contains some preliminaries on properties of half-linear equations and on a
fixed point result that will be used in our main theorems. In Section 5 some
sufficient conditions for the application of the main results are given. These
lead to existence conditions that can be more easily check (see Corollaries 3
and 4); the applicability of the main results to some elliptic problem is also
discussed. Some examples complete this section, illustrating the applicabil-
ity of the main results and the corresponding conditions for (NP). Further,
the methods used in [12, 14] are compared with the new method developed
here, and possible applications of the results to the existence of ground state
solutions and of solution with a prescribed number of zeros, defined on the
whole real line, are explained.
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2 Preliminaries: properties of half-linear equa-

tions and a fixed point result

Consider the half-linear equation

(a(t)Φ(w′))′ + γ(t)Φ(w) = 0, t ≥ t0, (10)

where γ is a continuous function. This equation has many similarities with
the corresponding linear equation

(a(t)w′)′ + γ(t)w = 0, t ≥ t0,

and has been widely studied in the literature, see [15] and references therein.
In particular, the continuability of solutions over [t0,∞) and the uniqueness
with respect to the initial data hold for (10). As concerns the asymptotic
properties, Sturm theory remains to hold for (10). In consequence, all solu-
tions of (10) have the same behavior with respect to the oscillation, and (10)
is said to be nonoscillatory if it has a nonoscillatory solution, or equivalently,
if all its nontrivial solutions are nonoscillatory.

In case of nonoscillation, the notion of principal solution, introduced in
1936 by W. Leighton and M. Morse for the linear case, see [20, Chapter XI.
6.], has been extended to (10) by J.D. Mirzov or A. Elbert and T. Kusano fol-
lowing the Riccati approach, see [15, Section 4.2]. In more details, denote by
Φ∗ the inverse operator of Φ, i.e., Φ∗(u) = |u|1/α sgnu, and let w be a solution
of (10), different from zero in an interval I. Then ξ(t) = a(t)Φ(w′(t))/Φ(w(t))
is a solution of the Riccati type differential equation

ξ′ + γ(t) + α ξ Φ∗
(

ξ

a(t)

)
= 0. (11)

If (10) is nonoscillatory, then among all eventually different from zero solu-
tions of (11), there exists one, say ξ∞, which is continuable to infinity and is
minimal in the sense that any other solution ξ of (11), which is continuable
to infinity, satisfies ξ∞(t) < ξ(t) for t large. Then, by definition, the principal
solution w0 of (10) is a nontrivial solution of the equation

w′ = Φ∗
(ξ∞(t)

a(t)

)
w.
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Notice that for any nontrivial solution w of (10), linearly independent of w0,
it holds

w′0(t)

w0(t)
<
w′(t)

w(t)
(12)

for t large, and w is sometimes called nonprincipal solution to (10).

Jointly with (10), consider the half-linear equation

(a1(t)Φ(z′))′ + γ1(t)Φ(z) = 0, (13)

where a1, γ1 are continuous functions such that

0 < a1(t) ≤ a(t), γ1(t) ≥ γ(t) for t ≥ t0, γ − γ1 6≡ 0. (14)

Equation (13) is called a Sturm majorant of (10), and if (13) is nonoscillatory,
then (10) is nonoscillatory, too.

The next two lemmas state some known comparison results between prin-
cipal solutions of (10) and (13), see [15, Theorems 4.2.2, 4.2.3].

Lemma 1. Assume that (14) holds, (10) is nonoscillatory and its principal
solution w0 has a zero point, and let t1 ≥ t0 be the largest of them. Then any
solution z of the Sturm majorant (13) has a zero in (t1,∞).

Lemma 2. Assume that (14) holds, (13) is nonoscillatory and let w0 and z0
be principal solutions of (10) and (13), respectively, such that w0(t) > 0 and
z0(t) > 0 for t ≥ t0. Then

a1/α(t)
w′0(t)

w0(t)
≤ a

1/α
1 (t)

z′0(t)

z0(t)
, t ≥ t0.

The following comparison results for principal and nonprincipal solutions
are new and play a key role in our approach.

Lemma 3. Assume that (14) holds, (13) is nonoscillatory and has a solution
z satisfying z(t) > 0 on [t0,∞) and z′(t0) < 0. Then (10) is nonoscillatory
and:

(i) the principal solution w0 of (10) is positive on [t0,∞) and w′0(t0) < 0;

(ii) any solution w of (10) satisfying the initial data w(t0) > 0, w′(t0) ≥ 0
is positive on [t0,∞).
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Proof. Claim (i). At first we show that, if a solution z of (13) exists,
which is positive for t ≥ t0 and satisfies z′(t0) < 0, then the same properties
hold for the principal solution z0, i.e., z0(t) > 0 on [t0,∞), z′0(t0) < 0. If
z is principal, the assertion follows. Thus, let z be a nonprincipal solution.
Assume by contradiction that z0 has zero points, and let t1 ≥ t0 be the
largest of them. Then z should have a zero point in (t1,∞) [15, Theorem
4.2.3], which is a contradiction, and z0 > 0 on [t0,∞) follows. Now, since
z0, z are both positive in [t0,∞), inequality (12) holds on [t0,∞). Thus,

z′0(t0)

z0(t0)
<
z′(t0)

z(t0)
< 0

implies z′0(t0) < 0.

In virtue of (14), equation (13) is a Sturm majorant of (10). Thus, equa-
tion (10) is nonoscillatory and the principal solution w0 of (10) is positive on
[t0,∞). Indeed, if w0 has the last zero in [t1,∞), t1 ≥ t0, by Lemma 1 the
principal solution z0 of (13) should have a zero in [t1,∞), a contradiction.
Using Lemma 2 with z0 principal solution of (10), we get w′0(t0) < 0.

Claim (ii). For any solution w of (10) such that w(t0) > 0, w′(t0) ≥ 0,
the Wronskian

W (w,w0)(t) = w′(t)w0(t)− w′0(t)w(t)

is positive at t = t0, i.e.,
W (w,w0)(t0) > 0.

Since, similarly to the linear case, the Wronskian of two solutions of a half-
linear equation is either identically zero or always nonzero (see [15, Lemma
1.3.1]), we obtain that W (w,w0)(t) > 0 for all t ≥ t0. Then we have for
t ≥ t0 (

w(t)

w0(t)

)′
=
W (w,w0)(t)

w0(t)2
> 0,

i.e., w/w0 is increasing on [t0,∞). Since w0(t) > 0 for t ≥ t0 and w(t0)/w0(t0) >
0, then w is positive for t > t0. 2

Lemma 4. Assume that (10) is nonoscillatory and its principal solution is
positive on [t0,∞). Let z0 be the positive principal solution of

(a(t)Φ(z′))′ − γ2(t)Φ(z) = 0, (15)
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where γ2 is a continuous function, γ2(t) ≥ 0, and

γ(t) ≥ −γ2(t) for t ≥ t0. (16)

Then any positive solution w of (10) with the initial condition w(t0) ≥
z0(t0) > 0 satisfies w(t) ≥ z0(t) on [t0,∞).

Proof. Let w0 be the positive principal solution of (10), and let w be
any positive nonprincipal solution such that w0(t0) = w(t0). Since w(t) >
0, w0(t) > 0 on [t0,∞), then (12) holds for all t ≥ t0. By integrating (12) on
[t0,∞) and taking into account that w(t0) = w0(t0), we get w(t) > w0(t) on
(t0,∞). From (16), equation (15) is a Sturm minorant of (10). Then, if z0
is the positive principal solution of (15) satisfying z0(t0) ≤ w0(t0), Lemma 2
gives

w′0(t)

w0(t)
≥ z′0(t)

z0(t)
, t ≥ t0,

and by integration we get w0(t) ≥ z0(t) on [t0,∞). Thus w(t) ≥ w0(t) ≥ z0(t)
for t ≥ t0, and the proof is complete. 2

The following lemma describes the properties of the principal solution for
(10) in case γ is nonpositive.

Lemma 5. Assume that γ(t) ≤ 0 for all t ≥ t0 and∫ ∞
t0

|γ(t)| dt <∞.

Then equation (10) is nonoscillatory and the principal solution w0, with
w0(t0) > 0, is positive decreasing on [t0,∞) with limt→∞w0(t) = 0.

Proof. The proof can be found, for instance, in [15] when γ is not identically
zero in a neighborhood of infinity. If γ(t) = 0 for t large, then the principal
solution is ∫ ∞

t

a−1/a(s)ds

and the assertion follows. 2

To prove our existence results, we will use a fixed point theorem given
in [6, Theorem 1.3] for operators T defined in the Frechét space C(J,Rn)
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of the continuous vectors defined on a (possibly unbounded) real interval J,
endowed with the topology of uniform convergence on compact subsets of J.
In view of this result, no topological properties of the operator T are needed
to be checked, since they are a direct consequence of a-priori bounds.

The fixed point theorem is stated in [6] for boundary value problems on
(non)compact intervals associated to nonlinear systems of the form

ẋ = f(t,x)

where f : J×Rn → Rn is a continuous map. Here we formalize this result for
scalar second order equation in the form that is needed in the sequel. Denote
by C1(J,R) the Frechét space of the continuously differentiable functions
defined on J, with the topology of uniform convergence of functions and
their derivatives on compact intervals contained in J . Recall that a subset
Ω ⊂ C1(J,R) is bounded if and only if there exists a positive continuous
function θ : J → R such that |u(t)|+ |u′(t)| ≤ θ(t) for all t ∈ J and u ∈ Ω.

Theorem 1. ([6, Theorem 1.3]) Let J = [t0,∞). Consider the boundary
value problem

(a(t)Φ(x′))′ + h(t, x) = 0, t ∈ J,
x ∈ S,

(17)

where h is a continuous function on J×R and S is a subset of C1(J,R). Let
g be a continuous function on J × R2 such that

g(t, c, c) = h(t, c) for all (t, c) ∈ J × R,

and assume that there exist a closed convex subset Ω of C1(J,R) and a
bounded closed subset S1 of S ∩ Ω which make the problem

(a(t)Φ(y′))′ + g(t, y, u) = 0, t ∈ J,
y ∈ S1

(18)

uniquely solvable for all u ∈ Ω. Then the BVP (17) has at least a solution
in Ω.

Proof. The equation in (17) can be equivalently written as the system

x′1 =
1

a1/α(t)
Φ∗(x2), x′2 = −h(t, x1),
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and the equation in (18) is equivalent to the system

x′1 =
1

a1/α(t)
Φ∗(x2), x′2 = −g(t, x1, u).

Taking into account that C1(J,R) can be embedded in a closed subset of
C(J,R2) via the map v → (v, v′), the assertion follows immediately from [6,
Theorem 1.3]. 2

3 The case F (u)/uα bounded

In this section we study the existence of solutions for the BVP (1), (2) in
case the nonlinear term F satisfies the condition

lim sup
u→0+

F (u)

uα
<∞. (19)

Denote

M = sup
(0,2c]

F (u)

uα
. (20)

The following existence result holds.

Theorem 2. Assume (19). Let the half-linear equation

(a(t)Φ(z′))′ +Mb+(t)Φ(z) = 0, (21)

be nonoscillatory and have a solution z which is positive for t ≥ t0 and
satisfies z′(t0) < 0. If

B− ≤
(

1

A
log 2

)α
1

M
, (22)

where A,B− are defined in (3),(5), then the BVP (1), (2) has at least one
solution x such that

0 < x(t) ≤ 2c for t ∈ [t0,∞), x′(t) < 0 for large t. (23)

Proof. At first, we consider the auxiliary problem of the existence of a
globally positive solution of the equation (1), satisfying fixed initial data, i.e.
the BVP {

(a(t)Φ(x′))′ + b(t)F (x) = 0, t ∈ [t0,∞)

x ∈ S,
(24)
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where

S = {u ∈ C1[t0,∞) : u(t0) = c, u′(t0) = 0, u(t) > 0 for t ≥ t0}.

The existence of a solution of the BVP (24) will be proved by using Theo-
rem 1.

Consider the half-linear equation

(a(t)Φ(w′))′ −Mb−(t)Φ(w) = 0. (25)

Using (5) and Lemma 5, equation (25) is nonoscillatory and its principal
solution is positive decreasing on [t0,∞), with zero limit. Let w0 be the
principal solution of (25) satisfying w0(t0) = c. Let

Ω =
{
u ∈ C1[1,∞) : u(t0) = c, u′(t0) = 0, w0(t) ≤ u(t) ≤ 2c

}
.

Since w0(t) is positive for t ≥ t0, we have u(t) > 0 and so Ω ⊂ S for any
u ∈ Ω. Hence

S ∩ Ω = Ω.

Let T : Ω→ C1([t0,∞) be the operator which maps every u ∈ Ω into the
unique solution y = T (u) of the Cauchy problem(a(t)Φ(y′))′ + b(t)

F (u(t))

uα(t)
Φ(y) = 0,

y(t0) = c, y′(t0) = 0.
(26)

Let S1 = T (Ω). Then, the problem(a(t)Φ(y′))′ + b(t)
F (u(t))

uα(t)
Φ(y) = 0,

y ∈ S1,
(27)

has a unique solution for any u ∈ Ω.
We show that

S1 ⊂ S ∩ Ω = Ω. (28)

Since Ω is closed, for proving (28), it is sufficient to show that T (Ω) ⊂ Ω.
Any y ∈ T (Ω) satisfies y(t0) = c, y′(t0) = 0. Thus, we only need to show
that w0(t) ≤ y(t) ≤ 2c for all t ≥ t0.
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In virtue of (20), for u ∈ Ω

−Mb−(t) ≤ b(t)
F (u(t))

uα(t)
≤Mb+(t).

Thus, (21) is a Sturm majorant of the equation in (27) and (25) is a Sturm
minorant. Applying Lemma 3 to equation in (27), we get that any solution y,
with initial conditions y(t0) = c, y′(t0) = 0, is positive on [t0,∞). Applying
Lemma 4, we get that y(t) ≥ w0(t) for all t ≥ t0.

To obtain a upper bound for y, we integrate (27) on [t0, t], t > t0. From
(5) and (20), in view of the positivity of y, we have for t ≥ t0

y(t) = c−
∫ t

t0

Φ∗
(

1

a(s)

∫ s

t0

b(r)
F (u(r))

uα(r)
yα(r) dr

)
ds

≤ c+

∫ t

t0

(
1

a(s)

∫ s

t0

b−(r)
F (u(r))

uα(r)
yα(r) dr

)1/α

ds

≤ c+ (MB−)1/α
∫ t

t0

Y (s)

a1/α(s)
ds,

where Y (t) = max[t0,t] y(s). Thus

Y (t) ≤ c+ (MB−)1/α
∫ t

t0

Y (s)

a1/α(s)
ds,

and, using (22), the Gronwall’s lemma gives

y(t) ≤ Y (t) ≤ c exp
(

(MB−)1/αA
)
≤ c exp(ln 2) = 2c,

and so T (Ω) ⊆ Ω. Thus, in order to apply Theorem 1, it remains to prove
that S1 is bounded in C1[t0,∞).

Since T (Ω) ⊆ Ω and Ω is bounded in C[t0,∞), for any u ∈ Ω the functions
T (u(t)) are equibounded on every compact interval K ⊂ [t0,∞). Then, from
(20) and (27), the functions (a(t)Φ(T (u(t))′))′ are equibounded on K. Since
(T (u))′(t0) = 0, the mean value theorem gives the equiboundedness of the
functions a(t)Φ(T (u(t))′) on K, i.e., T (Ω) is bounded in C1[t0,∞). Thus S1

is bounded in C1[t0,∞).
Theorem 1 can therefore be applied to (24), and the existence of a solution

x to (24) follows. Since x ∈ Ω, we have

max
t∈[t0,∞)

x(t) ≤ 2c.
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In order to prove that x is also a solution of problem (1), (2), it remains
to show that limt→∞ x(t) = 0.

Since 0 < x(t) ≤ 2c, x′(t0) = 0, integrating by part on [t0, t], t ≥ t0, the
equality

(a(t)Φ(x′(t)))′

F (x)
+ b(t) = 0

we obtain

a(t)Φ(x′(t))

F (x(t))
+

∫ t

t0

a(s)Φ(x′(s))F ′(x(s))x′(s)

F 2(x(s))
ds = −

∫ t

t0

b(s) ds.

Taking into account that Φ(u)u = |u|α+1 ≥ 0 and F ′(x(t)) ≥ 0, we have

a(t)Φ(x′(t))

F (x(t))
≤ −

∫ t

t0

b(s) ds.

Since assumptions (4), (5) imply
∫∞
t0
b(t) dt = +∞, we get

lim
t→∞

a(t)Φ(x′(t))

F (x(t))
= −∞.

Hence, t1 sufficiently large exists such that x′(t) < 0 for all t > t1.
Assume by contradiction that limt→∞ x(t) > 0. Then there exist two

positive constants c1 < c2 such that c1 ≤ x(t) ≤ c2 for all t ≥ t1. Let

d1 = min
u∈[c1,c2]

F (u), d2 = max
u∈[c1,c2]

F (u).

By integrating the equation in (24) on [t1, t], t ≥ t1 ≥ t0, we obtain

x′(t) = x′(t1)− Φ∗
(

1

a(t)

∫ t

t1

b(s)F (x(s)) ds

)
≤ Φ∗

(
− d1
a(t)

∫ t

t1

b+(s) ds+
d2
a(t)

∫ t

t1

b−(s) ds

)
.

Since
∫∞
t1
b+(t) dt =∞,

∫∞
t1
b−(t) dt <∞, then t2 > t1 exists such that∫ t2

t1

b+(t) dt ≥ d2B−
d1

,
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where B− was defined in (5). We have

x′(t) ≤ Φ∗
(
− d1
a(t)

∫ t2

t1

b+(s) ds− d1
a(t)

∫ t

t2

b+(s) ds+
d2B−
a(t)

)
≤ −

(
d1
a(t)

∫ t

t2

b+(s) ds

)1/α

,

which gives

x(t)− x(t2) ≤ −d1/α1

∫ t

t2

(
1

a(s)

∫ s

t2

b+(r) dr

)1/α

ds,

and, from (4), the above integral is divergent for t → ∞, which implies
limt→∞ x(t) = −∞, a contradiction with the positivity of x. 2

Remark 1. A closer examination of the proof of Theorem 2 shows that if
the BVP (1), (2) has a solution for some fixed c, then it has solution for any
c̄, 0 < c̄ ≤ c. In particular, since M = M(c) in (20) is nondecreasing, then
(22) can be understood as a upper bound for the values c for which (1), (2)
has solution. Notice that, if F (u) = uβ for u ≥ 0, β > α, then M = (2c)β−α

and (22) can be written as

c ≤ 1

2B
1/(β−α)
−

(
log 2

A

)α/(β−α)
,

while, if F (u) = uα for u ≥ 0, then M = 1 for all c > 0 and so, if assumptions
in Theorem 2 are satisfied, then (1), (2) has solution for all c > 0.

In case b ≥ 0, Theorem 2 has a more simple form, since (22) is trivially
satisfied and every solution of (27) is nonincreasing. Thus the following
holds.

Corollary 1. Assume (19) and b(t) ≥ 0 for t ≥ t0. Let the half-linear
equation (21) be nonoscillatory and have a solution z which is positive for
t ≥ t0 and satisfies z′(t0) < 0. Then the BVP (1), (2) has at least one
solution x which is nonincreasing on [t0,∞) and decreasing for t large.

4 The case F (u)/uα unbounded

In this section we consider the case

G(u) =
F (u)

uα
nonincreasing for u ∈ (0, 2c). (29)

15



Clearly, (29) does not require the unboundedness of G in a right neighbor-
hood of zero, even if the unboundedness of G represents the more interesting
situation when (29) is valid. This case, as mentioned in the Introduction,
requires some additional assumptions with respect to the previous one.

Our main result is the following.

Theorem 3. Assume (29). Let θ ∈ L1[t0,∞) be a positive function such
that ∫ ∞

t0

(
1

a(t)

∫ ∞
t

θ(s) ds

)1/α

dt = c, θ(t)G(ϕ(t)) ∈ L1([t0,∞)),

where

ϕ(t) =

∫ ∞
t

(
1

a(s)

∫ ∞
s

θ(r) dr

)1/α

ds. (30)

Assume that the half-linear equation

(a(t)Φ(z′))′ + b+(t)G(ϕ(t))Φ(z) = 0 (31)

is nonoscillatory and has a solution z which is positive for t ≥ t0 and satisfies
z′(t0) < 0.

If

b−(t) ≤ θ(t)

N
, (32)

where

N = max

{
F (2c), Θ

( A

ln 2

)α}
, Θ =

∫ ∞
t0

θ(t)G(ϕ(t)) dt,

then the BVP (1), (2) has at least a solution satisfying (23).

Proof. Similarly to the proof of Theorem 2, at first we prove the existence
of a solution to (24) by using Theorem 1. Let Ω be the set given by

Ω =
{
u ∈ C1[t0,∞) : u(t0) = c, u′(t0) = 0, ϕ(t) ≤ u(t) ≤ 2c

}
,

where ϕ is defined in (30). Since ϕ(t) is positive for t ≥ t0, we have Ω ⊂ S
and u(t) > 0 for any u ∈ Ω. Let T : Ω → C1[t0,∞) be the operator which
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maps every u ∈ Ω into the unique solution y = T (u) of the Cauchy problem
(26), and let S1 = T (Ω). Then the problem

(a(t)Φ(y′))′ + b(t)G(u(t))Φ(y) = 0, (33)

y ∈ S1,

has a unique solution for all u ∈ Ω. In order to apply Theorem 1, we have
to show that S1 ⊂ S ∩ Ω = Ω, and S1 is bounded in C1([t0,∞).

As before, to prove that S1 ⊂ Ω, it is sufficient to show that T (Ω) ⊂ Ω
since Ω is closed. By definition of T , every y ∈ T (Ω) satisfies y(t0) =
c, y′(t0) = 0. Thus we only need to show that ϕ(t) ≤ y(t) ≤ 2c for all t ≥ t0.
In virtue of (29), the inequality b(t)G(u(t)) ≤ b+(t)G(ϕ(t)) holds for u ∈ Ω.
Thus, equation (31) is a Sturm majorant of (33). By applying Lemma 3
to the equation in (33), we get that any solution y with initial conditions
y(t0) = c, y′(t0) = 0, is positive on [t0,∞). Let W (t) = y(t) − ϕ(t). Since
y(t0) = ϕ(t0) = c, then W (t0) = 0. Further, since limt→∞ ϕ(t) = 0, we get
lim inft→∞W (t) ≥ 0. Thus, to prove that W is nonnegative on [t0,∞), it is
sufficient to show that W does not have negative minima. By contradiction,
let T > t0 be a point of negative minimum for W , and let t1 > T be such
that W ′(t1) > 0, W (t) < 0 on [T, t1]. Then, since W ′(T ) = 0, we obtain

0 < a(t1)[Φ(y′(t1))− Φ(ϕ′(t1))]

= −
∫ t1

T

[b(t)G(u(t))Φ(y(t)) + (a(t)Φ(ϕ′(t)))′] dt

≤
∫ t1

T

b−(t)G(u(t))
(
Φ(y(t))− Φ(ϕ(t))

)
dt

−
∫ t1

T

(a(t)Φ(ϕ′(t)))′ − b−(t)G(u(t))Φ(ϕ(t)) dt

≤ −
∫ t1

T

(a(t)Φ(ϕ′(t)))′ − b−(t)G(u(t))Φ(ϕ(t)) dt,

where we used y(t) < ϕ(t) on [T, t1]. Now, we have (a(t)Φ(ϕ′(t)))′ = θ(t). In
view of (32), for every u ∈ Ω we obtain

−θ(t) + b−(t)G(u(t))Φ(ϕ(t)) = −θ(t) + b−(t)F (u(t))
(ϕ(t)

u(t)

)α
≤ −θ(t) +Nb−(t) ≤ 0.
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Thus a(t1)[Φ(y′(t1)) − Φ(ϕ′(t1))] ≤ 0, a contradiction. This fact proves
W (t) = y(t) − ϕ(t) ≥ 0 on [t0,∞). To obtain the upper bound for y,

similarly to the case treated in Theorem 2, we integrate (33) on [t0, t], t ≥ t0.
From (29) and (32), in view of the positivity of y, we have

y(t) ≤ c+

∫ t

t0

(
1

a(s)

∫ s

t0

b−(r)G(u(r))yα(r) dr

)1/α

ds

≤ c+
1

N1/α

∫ t

t0

(
1

a(s)

∫ s

t0

θ(r)G(ϕ(r))yα(r) dr

)1/α

ds

≤ c+
(Θ

N

)1/α ∫ t

t0

Y (s)

a1/α(s)
ds,

where Y (t) = max[t0,t] y(s). Thus the Gronwall’s lemma gives

y(t) ≤ Y (t) ≤ c exp
[(Θ

N

)1/α
A
]
≤ 2c.

The argument for showing that S1 is bounded in C1[t0,∞) is analogous to
the one done in Theorem 2. Thus, Theorem 1 can be applied to (24), and
the existence of the solution y to (24) follows. The monotonicity of y on a

neighborhood of infinity and limt→∞ y(t) = 0 may be proved in the same way
as in Theorem 2. Thus y is also a solution of problem (1), (2) and satisfies
(23). 2

Analogously to Theorem 2, the statement of Theorem 3 is more simple
if b ≥ 0, since (32) is trivially satisfied and every solution of (33) is nonin-
creasing. The following holds.

Corollary 2. Assume (29) and b(t) ≥ 0 for t ≥ t0. Let ϕ, θ be the func-
tions defined in Theorem 3 and assume that the half-linear equation (31) is
nonoscillatory and has a solution z which is positive for t ≥ t0 and satis-
fies z′(t0) < 0. Then the BVP (1), (2) has at least one solution x which is
nonincreasing on [t0,∞) and decreasing for t large.

5 Applications and concluding remarks

In the first part of this section, we give effective criteria for the solvability of
problem (1), (2) together with some examples.
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Theorem 2 [Theorem 3] requires the existence of a positive solution z of
the associated half-linear equation (21), [(31)] which satisfies z′(t0) < 0. To
check this property, we may use Lemma 3 and, as a Sturmian majorant, the
generalized Euler equation

(tnΦ(y′))′ +

(
n− α
α + 1

)α+1

tn−α−1Φ(y) = 0, n > α, t ≥ t0 > 0. (34)

Denote

δ =
n− α
α + 1

.

It is easy to check that y(t) = t−δ is a solution of (34) and satisfies y′(t0) < 0.
We get the following results.

Corollary 3. Let n > α. Assume (19), (22) and

a(t) ≥ tn, Mb+(t) ≤
(
n− α
α + 1

)1+α

tn−α−1 for t ≥ t0 > 0, (35)

where M is given in (20). Then the BVP (1), (2) has at least one solution
satisfying (23).

Proof. In view of (35), equation (34) is a Sturmian majorant of (21). Thus,
by Lemma 3, the principal solution of (21) is positive decreasing on [t0,∞).
Appying Theorem 2, we get the assertion. 2

When (29) holds, using a similar argument to the one given in the proof
of Corollary 3, we obtain from Theorem 3 the following criterion.

Corollary 4. Let n > α. Assume (29) and let θ and ϕ satisfy conditions in
Theorem 3. Let (32) hold and

a(t) ≥ tn, b+(t)G(ϕ(t)) ≤
(
n− α
α + 1

)1+α

tn−α−1 for t ≥ t0 > 0. (36)

Then the BVP (1), (2) has at least one solution satisfying (23).

Corollaries 3 and 4 can be easily interpreted in terms of problem (NP),
since r(t) = a(t)t1−d, q(t) = b(t)t1−d.
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Other applications can be obtained using any half-linear equation having
a positive decreasing solution. For instance, this happens for the classical
Euler equation or the Riemann-Weber equation, for more details see [14].

The next examples illustrate our existence results (Theorem 2 and The-
orem 3). In Examples 1 and 2 the case of weight with indefinite sign is con-
sidered, if G(u) = F (u)/uα is bounded or unbounded near zero, respectively.
In particular, if G(u) is unbounded, as already claimed in the Introduction,
the nonlinearity need to be “close” to the power function with exponent α,
i.e. G(u) for u→ 0+ needs to be an infinite of order less than any power. In
order to simplify the calculations, the case of linear operator (α = 1) is con-
sidered in the both the examples. Finally, Example 3 deals with the simple
case of positive weight and coefficients like power functions, in order to put
in evidence the relations between the coefficients and the applicability of the
result to radial solutions of elliptic equations.

Example 1. Consider the equation for t ≥ 1

(t2x′)′ +
(
λS(t)− µ

t2
s(t)
)
|x|β sgnx = 0, β ≥ 1, (37)

where λ > 0, µ ≥ 0 and

S(t) = max{sin t, 0}, s(t) = −min{sin t, 0} for t ≥ 1. (38)

We look for solutions of (37) satisfying (2), with t0 = 1 and c = 1. Obviously,
(3) and (5) are satisfied. Standard calculations shows that also (4) holds.
Moreover, A = 1, M = 2β−1 and B− < µ. Thus, if µ ≤ 21−β log 2, then (22)
is satisfied. Since (19) holds, we apply Corollary 3. From b+(t) ≤ λ, taking
α = 1, n = 2 and λ ≤ 2−β−1, also the inequality (35) is satisfied. Therefore,
equation (37) has a solution x satisfying the boundary conditions

x(1) = 1, x′(1) = 0, 0 < x(t) ≤ 2 for t ∈ [1,∞), lim
t→∞

x(t) = 0, (39)

if
0 < λ ≤ 2−β−1, 0 ≤ µ ≤ 21−β log 2.

Example 2. Consider the equation for t ≥ 1

(t2x′)′ +

(
λS(t)

log(2et3/2)
− µs(t)

t3/2

)
F (x) = 0, (40)
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where S, s are defined by (38), and F is a continuous function on R such
that F (0) = 0 and

F (u) = u
∣∣∣log

u

2e

∣∣∣ if u ∈ (0, 2].

Clearly, F ∈ C1(0, 2], F ′(u) > 0 in (0, 2) and G(u) = | log u
2e
| is decreasing

in (0, 2). Further, (3) and (5) are satisfied, and some computations show
that (4) holds too. Since (29) is fulfilled, for applying Corollary 4, take
θ(t) = 3t−3/2/4. Thus we obtain ϕ(t) = t−3/2, and inequalities (32), (36) are
satisfied, respectively, if µ ≤ 1/14 and λ ≤ 1/4. Therefore, by Corollary 4,
equation (40) has a solution x satisfying (39) if

0 < λ ≤ 1

4
, 0 ≤ µ ≤ 1

14
.

Example 3. Consider the equation for t ≥ 1

(tnΦ(x′))′ + tγ|x|β sgnx = 0, β ≥ α, (41)

where n, γ ∈ R. Conditions (3), (4) are clearly satisfied if and only if n > α
and γ ≥ n− 1−α. Thus, by applying Corollary 1 and Corollary 3 we obtain
the following results:
Case β > α. If n > α and γ = n− 1−α, then there exists a solution of (41)
satisfying (2) for every c > 0 such that

c ≤ 1

2

(
n− α
α + 1

) α+1
β−α

. (42)

Case β = α. If n ≥ 2α + 1 and γ = n − 1 − α, then there exists a solution
of (41) satisfying (2) for every c > 0.

Clearly, a similar result holds for a wide class of nonlinearity F , for instance:

F (u) = uβ + uσ for u ≥ 0,

with σ > β ≥ α. The details are left to the reader.

Example 3 can be easily written in the notations deriving from the study
of radial solutions of elliptic equations, that is, for problem (NP). For in-
stance, in case of the Neumann problem outside the ball of radius 1 in R3,
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then d − 1 = 2 and (NP) has solution if there exists n > α such that
r(t) = tn−2, q(t) = tn−α−3, F (u) = |x|β sgnx, β > α, and c satisfies (42).
Analogous result can be formulated if α = β.

Concluding remarks.

1. As already claimed, in [14] the existence of positive solutions to (1),
satisfying different initial and terminal conditions, has been proved using a
different approach. Indeed, the solvability of the BVP considered in [14] is
obtained by looking for the principal solution of a suitable auxiliary half-
linear equation. For problem (1), (2), this method cannot be applied, due to
the prescribed initial value of the derivative of the solution. Indeed, solutions
of the half-linear equation in (26), starting at t0 with a zero derivative, may
be nonprincipal solutions. Therefore here we have derived a new approach
that allows us to look for nonprincipal solutions.

2. Theorem 3 does not require that F (u)/uα is unbounded in a neigh-
borhood of zero. Thus, if F (u)/uα is bounded and decreasing in an interval
(0, δ), then both Theorem 2 and Theorem 3 may be applied. Of course, they
may require different sufficient conditions for the existence of a solution to
the BVP (1), (2). Indeed, in this case, equation (21) is a Sturm majorant for
(31), and therefore if the conditions in Theorem 2 are satisfied for (21), then
the conditions in Theorem 3 for (31) are satisfied too. However, assumption
(32) may be stronger than (22), since (32) is a pointwise estimate, while (22)
is an integral one.

3. Our results can be useful to derive the existence of ground state
solutions, or solutions with a prescribed number of sign changes, defined in
all the space. Indeed, if the Neumann problem in a ball{

div (r(x) |∇u|p−2∇u) + q(x)F (u) = 0, |x| ≤ R,
∂u
∂n

= 0 if |x| = R

has a radial positive solution, and an estimate of its sup-norm is known,
then our results assure that this solution can be extended outside the ball
till infinity, it is globally positive and tends to zero. Similarly, if the above
Neumann problem has a radial solution with one (or more) change of sign,
and an estimate of its sup-norm is known, then our results assure that this
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solution can be extended outside the ball till infinity, it has no sign changes
outside the ball and tends to zero.
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[8] Cecchi M., Došlá Z., Marini M., Half-linear differential equations with
oscillating coefficient, Diff. Integr. Equat. 18 (2005), 1243–1256.
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