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ABSTRACT: We report here the remarkable catalytic efficiency 

observed for two Pd(II) azamacrocyclic complexes supported on 

MWCNTs towards ORR. Beyond a main (>90%) 4 e- process and 

onset potential close to or better than those of commercial Pt-

electrodes, the multi-walled carbon nanotubes (MWCNTs) func-

tionalization strategy, aiming at chemically defined Pd(II)-based 

catalytic centers, allowed the half-cell to exceed PEM fuel cell 

reference/target mass activity efficiency set by US Department of 

Energy (DOE) for 2020 (440 mA/mgPGM at 0.9 V vs Reversible 

Hydrogen Electrode (RHE)). 

Fuel cells are promising candidates for sustainable future energet-

ic technology. Oxygen reduction reaction (ORR) allows to release 

the chemical energy stored in the vector molecule H2 in the form 

of electrical work without producing any waste but innocuous 

H2O molecules. For this reason, oxygen reduction is regarded as a 

highly strategic reaction, upon whose efficiency the near-future 

energy storage and powering technology depend. 

The use of cathode catalyst is mandatory to achieve satisfying 

ORR conversion rate. Although many efforts have been made, 

and several Carbon-based nanomaterials have been assessed, Pt-

based catalysts remains unchallenged as of today in terms of pro-

duced current density (J), low onset potential (Eon) and avoidance 

of production of the reactive H2O2, rather favoring direct conver-

sion to H2O.1 As Pt and the so-called Platinum Group Metals 

(PGM) are rare and expensive –one of the key unsolved issues for 

the widespread use of fuel cells– much research effort has been 

oriented to reduce the required amount of metal to reach the de-

sired performances.2-6 As the useful timespan for the replacement 

of fossil fuels narrows, international protocols and agreements 

with specific objectives and deadlines are stipulated. The upcom-

ing 2020 efficiency goal for fuel cells was expressed in this same 

spirit, i.e. in terms of mass activity, by the US DOE, requiring that 

a threshold current is produced per quantity of PGM under certain 

conditions (440 mA/mgPGM at 0.9 V vs RHE) in acidic media.7 

Herein we report a hydrodynamic study on the half-cell, as it is 

best practice for benchmarking ORR catalysts performances,8,9 

conducted on two novel Pd(II)-based catalysts in alkaline solu-

tions, as Pt-free alkaline fuel cells were recently proved10-12 to be 

efficient in delivering stable performances and power density 

above 1 W cm-2. One of our new catalyst exceeds target mass ac-

tivity value by over 10%, featuring an Eon identical or better than 

that of a Pt electrode (0.91 V vs RHE) and an almost exclusive 

(96.5% at 0.9 V vs RHE) 4 e- process, i.e. promoting selectively 

the direct conversion of O2 to H2O (see Table 1). Such features 

were made possible by the supramolecular architecture of our 

supported catalysts, enabling the homogeneous distribution on 

MWCNTs of the Pd(II) complexes, without disrupting neither the 

nanostructured nature of substrate nor its π-delocalized system. 

The catalysts, MWCNT/HL1-Pd(II) and MWCNT/HL2-Pd(II), 

evaluated in this work (Figure 1) were obtained through a supra-

molecular approach. High purity (99.9% C) graphitized 

MWCNTs were chosen as a substrate, both in view of the useful-

ness of nanostructured carbon in catalysis and for their unspoiled 

electrical properties.13 Their non-covalent functionalization with 

either HL1 or HL2 (Figure 1) by spontaneous chemisorption in 

water according to previously described procedures,14,15 afforded 

the MWCNT/HL1 and MWCNT/HL2 hybrid materials, without 

disrupting the delocalized π electron systems of the CNTs. Ad-

sorption of HL1, HL2 and analogous pyrimidine derivatives on 

graphitic surfaces from aqueous solutions has been previously 

reported to happen mainly through the electron-deficient pyrimi-

dine residue, rather than involving the protonated amine chain, as 

water actively competes for the ammonium groups.14-17 The ad-

sorbed ligands amount is compatible with a single layer coverage 

(cf. SI, page S4), multilayer adsorption is discarded according to 

previously reported ligand adsorption isotherms on MWCNTs, 

showing a simple Langmuir-type adsorption behavior.14 

Table 1. Catalytic performances of our catalysts immobi-

lized in a polymeric film on a glassy carbon electrode. Ac-

tivity of a Pt electrode is reported as reference. 

Catalyst 
Eon

a 

(Vb) 

ne 

at +0.164 Vb 

Mass Activityc 

mA/mgPGM
d

 

  RRDE RDE(K.L.)e  

MWCNT/HL1-
Pd(II) 

0.91 3.64 3.51 R
2
=0.999 173 

MWCNT/HL2-
Pd(II) 

0.95 3.78 3.70 R
2
=0.999 493 

Pt-electrode 0.91  4.10 R
2
=0.999  

a Details on Eon determination are given in the SI (Figure S1) b vs 

RHE; c Calculations provided in Table S1; d at 0.9 V vs. RHE; e 

Koutechy-Levich (K.L.) plots provided in Figure S2. 
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Figure 1. The ligands HL1 and HL2. 

Complexation of Pd(II) to the surface azamacrocyclic functionali-

ties of these materials at pH 5.0 afforded the final catalysts 

MWCNT/HL1-Pd(II) and MWCNT/HL2-Pd(II), possessing a 

homogeneous distribution of discrete Pd(II) ions at the surface. 

Such complexes possess an activated position in the cation’s first 

coordination sphere, consisting in an ancillary chloride ligand, as 

previously reported for analogous systems14 and re-verified in the 

present case through XPS (Figure S3) and SEM-EDS analysis 

(Figure S4). Characterization and stability of the complexes under 

ORR conditions (pH, potential range) are reported in the SI. Pre-

vious reports substantiated the tendency of HL1 to flatten on the 

CNTs surface upon Pd(II) complexation (moving to 

MWCNT/HL1 to MWCNT/HL1-Pd(II) reduces BET surface ar-

ea), while this is not observed for HL2 (moving to MWCNT/HL2 

to MWCNT/HL2-Pd(II) has almost no effect on BET surface ar-

ea). This was ascribed both to the higher loss of degrees of free-

dom required for the folding of the longer spacer arm back on the 

surface and to its increased hydrophilicity due to protonation of 

the extra amino group (pKa = 7.51(6), working pH 5.0).14 

Samples were prepared according to described methodologies.14 

Details of catalyst preparation are given in the SI. The final Pd 

content in the catalysts was assessed as 0.242 mmol Pd/g 

MWCNT/HL1 and 0.258 mmol Pd/g MWCNT/HL2 respectively. 

The electrocatalytic performances of these catalysts towards ORR 

were evaluated in alkaline aqueous solution (0.1 M KOH), by CV. 

Electrochemical measurements were performed using a three-

electrode cell consisting of an Ag/AgCl/sat. KCl reference elec-

trode, a Pt counterelectrode and either a rotating disk electrode 

(RDE) or a rotating ring disk electrode (RRDE). Immobilization 

of the catalysts on the working electrode was achieved by prepar-

ing an ink for each functionalized sample, consisting of the Pd(II)-

functionalized MWCNTs dispersed in a polymeric membrane 

(Nafion®), which was then casted on a rotating glassy carbon 

(GC) electrode. Samples were prepared according to reported pro-

cedures:18 a detailed description is available in the SI. A commer-

cial Metrohm Pt-polycristalline electrode (ø 3 mm) was employed 

to benchmark the performances of our catalysts. 

Figure 2 shows the ORR polarization curves recorded at 1600 rpm 

for each sample at a potential scan rate of 5 mV s-1. Polarization 

curves for the bare GC electrode, as well as for the GC electrode 

functionalized with the same strategy with pristine MWCNTs, 

MWCNT/HL1, MWCNT/HL2 and MWCNT/K2PdCl4 are also 

reported. Relevant data on each electrode performances are given 

in the SI (Table S2). Preparation and characterization of 

MWCNT/K2PdCl4, where Pd species are directly adsorbed on 

MWCNTs due to Cπ-dπ interactions,19 are provided in the SI. 

During the RRDE CV measurements, the Pt ring-electrode was  

 

Figure 2. RRDE disk currents showing the O.R.R. activities of 

the investigated catalysts. Rotation rate: 1600 rpm. Scanning rate: 

5 mVs-1. 

held at a potential of + 0.50 V vs. Ag/AgCl/sat. KCl to ensure the 

complete oxidation of H2O2 eventually produced at the sample-

GC Disk electrode. All electrochemical profiles, background cur-

rents (under N2-saturated conditions) are subtracted from respec-

tive curves to remove capacitive contributions (Figure S5). Cata-

lytic activities, both in terms of Eon and current values, increase 

depending on the catalyst nature in the order: bare GC < pristine 

MWCNTs ≈ MWCNT/HL1≈ MWCNT/HL2 < MWCNT/K2PdCl4 

< MWCNT/HL1-Pd(II) < MWCNT/HL2-Pd(II). This rules out 

significant catalytic properties of the substrate and of CNT-

supported ligands in our case, while it highlights the prominent 

role of Pd(II), and of the ligands in enhancing its catalytic activity. 

Table S2 collects electrochemical parameters for all systems. 

As displayed in Figure 2, Eon values observed for MWCNT/HL1-

Pd(II) and MWCNT/HL2-Pd(II) catalysts are very close to the 

benchmark values determined in the same conditions with a 

commercial Pt working electrode. Data in Table 1 reveal that in 

the case of MWCNT/HL2-Pd(II) the Eon value is even better (i.e. 

more positive) than that observed for the Pt electrode. 

The number of exchanged electrons per O2 molecule is invariably 

very close to 4, signifying an almost exclusive conversion of O2 

into water. Interestingly, very close values are found either by di-

rect evaluation with RRDE or by extrapolation of Rotating Disk 

Electrode polarization curves through the Koutechy-Levich (K.L.) 

equation20-22 (Table 1). For this purpose, ORR polarization curves 

were recorded from 400 to 2000 rpm (step of 400 rpm) with a po-

tential scan rate of 20 mV s-1 (Figure S6). Sample LSV at differ-

ent scan rate (200 mV/s) are reported in Figure S7. Close conver-

gence of RRDE and K.L. extrapolated data for exchanged electron 

number suggests high homogeneity of the electrode surface. SEM 

images of electrode surface are displayed in Figure S8. Measured 

ring and disk currents for MWCNT/HL2 at the suggested poten-

tial of 0.9 V vs RHE demonstrate that in said conditions direct 

conversion to water efficiency increases, reaching 96.5%; full de-

pendence of ne- vs voltage for Pd-containing catalysts is presented 

in Figure S9. 

Mass activity-wise, both catalysts show satisfactory results, with 

MWCNT/HL1-Pd(II) reaching 173 mA/mgPd and 

MWCNT/HL2- Pd(II) scoring 493 mA/mgPd (Table 1) . 

Although other strategies based on Pd-species are reported, in-

volving either metallic thin film electrodes23 or Pd(0) nanoparti-

cles (NPs) immobilized onto heteroatom-doped carbon surfaces,24-

27 this feat of mass activity was only made possible by the careful 



 

design of catalysts to achieve supported discrete ions. As pointed 

out elsewhere,28 single atoms catalysts would be the ultimate way 

to maximize the mass/atom activity of PGM metals. Moving from 

randomly doped systems towards supported discrete macrocyclic 

complexes with a well-defined chemical identity is a mandatory 

step in that direction.  

XPS spectra of the as-prepared catalysts, reported in Figure 3a, 

show that all Pd is present as a Pd(II) complex. Ink preparation 

and subsequent ORR assays do not tamper much the nanostruc-

ture of the catalyst, as proved by the complete preservation of fea-

tures in the C 1s region. Pd does not change its oxidation number 

upon use of the catalysts, i.e. all Pd remains as Pd(II). After use, 

new small peaks appear (Figure 3b), which do not change during 

at least 1000 cycles (Figure S11) and are consistent with for-

mation of either PdO29 or clusters of Pd with surface 

oxy/hydroxyl groups20 (Figure 3), while most of the metal is still 

bound to the ligand, demonstrating that we really are in the pres-

ence of Pd(II)-complexes active sites. Indeed, TEM images (Fig-

ure S10 show the presence of tiny localized traces of NPs, which 

cannot justify the observed activity. Also, the slight shift in B.E. 

of the Pd 3d signals and the lack of the chlorine peak in the used 

catalysts, suggest that the original ancillary chloride ligand was 

shed in favor of a hydroxide anion. Binding and activation (i.e. for 

proton exchange) of such water-related species under the reversi-

ble conditions granted by the strong binding to a tridentate 

azamacrocycle, is probably the key mechanism subtending to the 

observed catalytic activity of these Pd(II) complexes. 

According to the characterization of the as-prepared and after use 

catalysts we cannot detect any major difference between 

MWCNTs/HL1-Pd(II) and MWCNTs/HL2-Pd(II) either in overall 

composition, metal oxidation state or Pd(II) coordination envi-

ronment. For these reasons we are led to think that the longer 

spacer of HL2, protruding from the MWCNTs surface, either pro-

duces a brush-like arrangement of catalytic sites, better suited for 

capturing gaseous reagents from the solution, or that it promotes a 

cooperative mechanism involving two neighboring Pd(II) centers. 

Stability of catalysts has also been addressed. Concerning Pd 

leakage, SEM-EDS analysis of the fresh and after use (1000 cy-

cles) MWCNT/HL2 catalysts show the same % abundance of Pd 

in both samples (Figure S4). The presence of Pd in the electrolyte 

solution was also checked by ICP-MS after 1000 CV scans, re-

vealing no traces of the metal. Preliminary data indicate that our 

most promising catalyst, MWCNT/HL2-Pd(II), is able to maintain 

its performances over time, with no bias observed for produced 

current density or exchanged electron numbers per O2 molecule 

over a 1.5 h test in galvanostatic operating conditions (i.e. simu-

lating a working fuel cell) at -0.80 V vs Ag/AgCl/sat. KCl (Figure 

S12). Moreover, catalytic performances are also maintained over 

1000 CV scans at 200 mV/s (Figure S13). Nevertheless, further 

investigation is needed to evaluate the long-term stability of the 

catalyst for fuel cell applications. 

In conclusion, herein we reported novel Pd(II) catalysts for ORR, 

one of which exhibits a half-cell PGM mass activity exceeding 

state-of-the-art reference goals. Both systems feature Eon values 

comparable or better than that of a commercial Pt electrode and a 

predominating (90% or above, cf. Figure S9) 4 e- process, leading 

to the direct production of H2O. Furthermore, we demonstrated 

that beyond Pd(0) species, also Pd(II) complexes are feasible as 

active sites for ORR catalysts. Granted that working mechanism 

will be the object of upcoming studies, its understanding, together 

with the good stability displayed by the developed catalysts, fore-

shadows their rapid put in practice and evaluation in a complete 

fuel cell. For the reasons above, we strongly believe that these 

findings will prompt further studies and developments towards 

affordable cost-effective solutions for the renewable energetic 

technology of the immediate future.  

Figure 3. High resolution XPS spectra in the Pd 3d region of a) 

the as prepared MWCNT/HL2-Pd(II) catalyst and b) of the 

MWCNT/HL2-Pd(II) GC electrode after use (1 CV from 0.1 V to  

-0.85 V vs Ag/AgCl/sat. KCl). 
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Two new Pd(II) catalysts supported on MWCNTs exhibit  very efficient catalytic activity toward oxy-

gen reduction reactions (ORR) in alkaline solution. Both systems feature Eon values comparable or bet-

ter than that of a commercial Pt electrode and almost quantitative conversion of O2 to H2O (4 e- pro-

cess). One of them gives a half-cell PGM mass activity exceeding state-of-the-art reference goals. 


