
1

IoT Security via Address Shuffling: the Easy Way
Francesca Nizzi, Student Member, IEEE, Tommaso Pecorella, Senior Member, IEEE,

Flavio Esposito, Member, IEEE, Laura Pierucci, Senior Member, IEEE, and Romano Fantacci, Fellow, IEEE

Abstract—Securing Internet of Things (IoT) devices and pro-
tecting their applications from privacy leaks is a challenge,
due to their weak (computational and storage) capabilities, and
their proximity with sensitive data. Considering the resource-
constrains of such devices, their long lifetime, and the intermittent
connections, classical security approaches are often too difficult
or impractical to apply. Moving Target Defense is an established
technique whose goal is to lower the attack surface to malicious
users by constantly modifying device footprint. Changing the
address to an IoT device without privacy leaks is, however, a non-
trivial task. In this paper, we propose a novel method to perform
a network-wide (IP and MAC) address shuffling procedure,
called Address Shuffling Algorithm with HMAC (AShA), which
is simple to implement, and whose network overhead is minimal.
To demonstrate its effectiveness, we analyze our approach via
theoretical analysis and simulations. Our analysis shows how
AShA parameters can be adapted to various network sizes
while our simulations results show how AShA can be used to
successfully perform a global collision-free address renewal on
networks of more than 2000 nodes using 16-bit addresses.

Index Terms—Internet of Things, Address shuffling, Moving
Target Defense, Security.

I. INTRODUCTION

Despite the rapid increase of both Internet of Things (IoT)
and Wireless Sensor Network (WSN) markets [1], security
and privacy concerns could severely impact their massive de-
ployments and applications. Smart cities [2], smart campuses,
disaster response [3], industrial, smart home and healthcare,
are merely a few examples of sectors that could benefit
from, and be impacted by, a lack of private and secure IoT
communication. Being small, low-power, Internet-connected,
and capable of observing or modifying the physical world, IoT
devices are a honeypot for attackers [4]. As a consequence, se-
curing IoT devices is (arguably) more important than securing
‘classic’ Internet hosts. A lack of IoT security can result in a
range of consequences, from privacy losses to physical harm
to the users [5], [6]. Another peculiarity of the IoT devices
is the need to be both energy and bandwidth efficient. This
requirement comes from the need to prolong the node life
(most devices are battery-operated) and to allow ultra-dense
node deployments.

To avoid unnecessary data transmission, payloads are often
compressed, and IoT protocols have shorter headers com-
pared to the Internet counterparts. For example, the IPv6

F. Nizzi, T. Pecorella, L. Pierucci, and R. Fantacci are with the Dpt. of
Information Engineering, University of Florence, Via di S. Marta, 3 - 50139
Florence, Italy, e-mail: name.surname@unifi.it

F. Esposito is with the Computer Science Department, Saint Louis Univer-
sity, MO, 63103 USA, e-mail: flavio.esposito@slu.edu

Copyright (c) 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

header is often compressed using RObust Header Compression
(ROHC) [7] or IPv6 over Low power Wireless Personal Area
Network (6LoWPAN) [8]. Header compression, along with
IPv6 Stateless Address Autoconfiguration (SLAAC) [9], is
however a serious privacy threat: an attacker may discover
the IP address of the nodes by merely analyzing their Medium
Access Control (MAC) address, opening its way to analysis of
node capabilities and vulnerabilities. Moreover, passive attack-
ers can infer network topologies and learn what are the nodes
functionalities even without compromising any system (e.g.,
they could infer which nodes are responsible for perimeter
surveillance planning for another attack) [10].

To reduce the attack surface within IoT network and system
security, a viable technique is to introduce randomness in the
network behavior. The efforts of some attackers are diminished
or even vanished without the ability to gather or predict enough
information before the network parameters change. Examples
of security techniques that leverage randomness to secure a
communication are encryption key refresh and application-
level behavior variations. Random (application) protocol be-
havior can be implemented, for example, by modifying the
periodicity of a node data report, or by adding random data
to regular packet payloads. Despite being a valuable defense
mechanism approach, randomizing the application behavior
alone is insufficient to prevent routing or other types of attacks
generated by guessing the physical node placement in the
network: an attacker can still use the MAC addresses to learn
the network topology. To add a MAC-level randomness, a
system could periodically change the MAC address of each
node. This technique alone has, however, various drawbacks.
In particular, the signaling overhead required to coordinate
the address change is significant. While in wired network the
overhead may not be a concern, when devices are constrained
by bandwidth and power, such overhead may severely impact
the IoT system performance. It is hence important to devise
(MAC) address renewal methods with minimal impact on the
network signaling overhead.

To this aim, in this paper we present an a novel address
shuffling technique that we call AShA, as in Address Shuffling
Algorithm. AShA is energy-efficient, has minimal impact on
the network overhead, and it is easy to implement. The key
novelty behind AShA is a cryptographic hash that enables
a controlled and collision-free address shuffling. Only the
legitimate nodes and the network controller are able to predict
the address renew outcomes, and from the point of view of
the attacker, the addresses follow a random pattern over time.

We evaluate the efficiency of our proposed method with re-
spect to the number of nodes in the network both theoretically
and through simulations. Our results show that, for typical
network sizes (i.e., less than 700 nodes for each Personal

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301576787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Area Network (PAN)), the address renew procedure does not
add any overhead, while for larger PANs (i.e., up to 2300
nodes) the overhead is tunable, and it depends on network
management decisions.

The rest of the paper is structured as follows. In Sec-
tion II we detail the considered scenarios and threat models,
while Section III presents related solutions on privacy and
6LoWPAN available in literature. Section IV describes the
proposed method used to change addresses, along with our
theoretical analysis. In section V we show a practical use-
case of AShA when applied to an Institute of Electrical and
Electronic Engineers (IEEE) 802.15.4 network. Finally, in
Section VI, we show how analytical and simulations results
match and we draw guidelines for a general use of the
proposed method. In Section VII we illustrate the conclusions
and we remark the main benefits of the proposed system.

II. THREAT MODEL AND MOTIVATING SCENARIOS

In this section we describe our attacker models and later on
we motivate our low-overhead randomized addressing scheme
with a few scenarios and applications.

Debates regarding what are the major security threats in
Ad-Hoc Networks with an Internet Protocol (IP) address auto-
configuration have been floated before (see, e.g., [11]). We
have identified four major security threats:

1) Address Spoofing Attack. An attacker may spoof IP
addresses and inject (replayed or forged) packets.

2) False Address Conflict Attack. An attacker may leverage
address collision prevention mechanisms to perform a
denial of service.

3) Address Exhaustion Attack. An attacker may exhaust the
space of available IP addressing by declaring usage of
a large number of them, preventing new devices to to
join the network for lack of available IP addresses.

4) Negative Reply Attack. An attacker may continually
transmits a (false) deny message when a new node
tries to obtain a new address. In this case, the attacker
maliciously acts as a Network Coordinator.

Beside address spoofing, all attacks are based on vulnerabil-
ities of the link-local protocols, and in particular, Duplicate
Address Detection (DAD) and Neighbor Discovery Protocol
(NDP). Message encryption and validation at layer 2 is nor-
mally used to mitigate such attacks.
Preserving Privacy in Internet of Medical Things. Preserv-
ing privacy of medical records is often a law requirement [12].
Aside from the potential benefits of protecting electronic
medical records, which include lab tests, images, diagnoses,
prescriptions and medical histories, recently body area net-
works have been used for therapeutics monitoring, for example
of pacemakers. With such technology, healthcare providers
may instantly access patient histories that are relevant to
future care and patients can take ownership of their medical
records. In general, medical record as well as IoT devices offer
the potential for greater privacy and better access to patient
data when they are needed. Attackers may, however, leverage
these information for data leaks or even to hijack pacemakers

or other body area devices via address spoofing or address
exhaustion attacks1.
Preserving Privacy in Edge Computing. Edge computing
is a paradigm based on outsourcing computational tasks from
a distributed set of end-hosts, or viceversa, edge nodes can
be used to release pressure from data centers [13]. In edge
computing, privacy preservation is more challenging since
end-nodes may collect sensitive information such as identity or
locations of end users (that may contain sensitive information
otherwise stored at the network core). Moreover, since edge
end-hosts are scattered in large areas, centralized control is
becoming difficult. A poorly secured distributed edge com-
puting network can be the entry point for intruders. Once
inside the network, the intruder can mine, steal, damage or leak
users or machine sensitive data. Location privacy is arguably
one of the most important models for privacy, since pieces
of hardware can be linked to owners (data). Since in edge
computing, offloaded tasks may include location, trajectory
and even mobility habits, such information revealed to an
adversary may be part of a weaponization phase and may
hence lead to subsequent more severe attacks.
Securing Industrial Control Systems and Smart Grids. The
integration of IoT into industrial systems has been fostered
to catalyze the potential automation of tasks such as man-
ufacturing or product tracking. These systems often rely on
strict timings and precise execution, requiring close monitoring
to function safely and effectively. Control systems like these
have long been used, but recently, several sensors have been
attached to the Internet for remote maintenance shifting to
IoT architectures. An example of that are power grids, that
are quickly becoming smart grids, using automated metering
infrastructure to remotely sample usage data from residential
meters. A simple address spoofing attack may potentially jeop-
ardize an entire production chain with costly consequences. As
shown in [14] smart meters readings can disclose information
about the time that the house is empty (i.e., it is safe to break
in) or even the TV programs that a user prefers to watch.
Protecting Injured or Lost People in a Disaster Scenario.
During or after a disaster scenario, such as hurricane Katrina,
mobile ad-hoc networks are established by first responders
to cope with the lack of (disruptive) network infrastructure;
attackers may intercept network traffic among first responders
to arrive first on victims and identify subjects for human or
organ traffic; these attacks may be delivered for example, via
a False Address Conflict Attack.

III. RELATED WORK

In literature, several solutions for IP address auto-
configuration have been proposed. The authors in [15] classify
these solutions in three major groups: stateful, stateless and
hybrid. In stateful address auto-configuration approaches, all
nodes consult a logically centralized node or a set of dis-
tributed agents to obtain a valid IP address. The Dynamic
Host Configuration Protocol (DHCP) protocol [16] is part of
this family. In stateless address auto-configuration approaches,

1https://www.theguardian.com/technology/2017/aug/31/
hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

every joining node self-assigns an address; such address may
be chosen at random or with a predetermined algorithm.
Stateless address auto-configuration approaches lead to ad-
dresses conflicts, that are resolved with overhead, delays
or with a centralized coordinator and, as consequence, they
scale poorly. Without a coordinator, two nodes may end up
choosing the same address. To avoid such address uniqueness
issue, the DAD [17] algorithm is used. Every node, after
selecting an address, performs DAD to detect any collision.
SLAAC [9] is part of this family. Our solution enables to
auto-configure addresses without the need of explicit address
duplicate checking, as this function is already fulfilled by
the network coordinator. However, unlike DHCP, our method
does not require any message exchange between the node
coordinator and the nodes, with the exception of a network-
wide address renew message broadcasted from the network
coordinator to all the nodes.

It may be unsuitable to use the DHCP protocol in an ad-
hoc network, due to the limited device’s energy, its (possible)
mobility, and the insufficiently resilient infrastructure (a dedi-
cated server may become unavailable). Existing works have
proposed two approaches in response to the drawbacks of
DHCP: either an adjustment of DHCP to enable a dynamic
IP address allocation, or the use of a coordinator that assigns
addresses. For example, in [18], authors assign an IP address
to the mobile devices using an Ad-Hoc DHCP scheme, while
in [19] a central node (called ZigBee Coordinator) is respon-
sible for assigning addresses.

In [20], the authors propose a dynamic host configuration
to assign the IP addresses based on a distributed agreement
problem: when a new node joins the network, a selected node
proposes a candidate IP address: if such proposal reaches
consensus, the proposed address is assigned to the new node,
otherwise another address is proposed (a given number of
times).

The Internet-Draft on Ad Hoc Address Auto-
configuration [21] proposes a stateless approach to auto-
configure IP addresses that are unique in the network. A
DAD-like protocol is used to check the proposed address
uniqueness before the auto-assignment. Briefly, a node
chooses two addresses: a temporary used as IP sender address
only, and a proposed sent to the other nodes to check if it
is unique in the network. If no answer is received within a
given interval, the node assigns the proposed address to itself.
Obviously, if an answer is received, the node changes the
proposed address and tries again.

In [22], an hybrid scheme is used: the auto-configuration
is performed by the device but, to maintain the information
in the network and to detect duplicate addresses, an elected
coordinator (called Address Authority) is used.

These solutions focus only on the IP address auto-
configuration and do no consider several critical points, such
as the static nature of MAC address/Interface Identifier (IID).
In [23], the author studies some problems arising from a static
IID. The author suggests that not only the IP address must
be periodically changed, but also the layer 2 address (MAC
address) must be changed as well.

The authors in [24] provided a method based on an exten-

sion of IPv6 over Low power Wireless Personal Area Network
- Neighbor Discovery (6LoWPAN-ND) to change both L2
and L3 addresses, while maintaining the header compression
(as well as all other functionalities of the 6LoWPAN) and a
small routing table. The technique presented in this paper, with
respect to [24], maintains all the original benefits, reducing the
network overhead to zero for small to medium size networks.
Moreover, the active sessions and routing path management
during the address renew are greatly simplified.

IV. PROPOSED METHOD

Existing address shuffling techniques are based on complex
protocols [25], [26]. All of them assume that a central entity (a
coordinator) knows about all the devices associated to the net-
work, and it can manage reliably the association/disassociation
of each node in the network. This assumption is usually true
for all the practical IoT networks. In this paper we will assume
that the association/disassociation phases are managed at MAC
level.

As seen in Section III, the coordinator usually (re)assigns
the node addresses and ensures a lack of address collision.
A simple way to re-assign an address to a node is to let the
coordinator choose it randomly, avoiding address collisions.
However, the coordinator must send a unicast message to
every device in the network, incurring in huge signaling
costs. Another solution is to let each node choose its new
address randomly, and to let the coordinator the duty to
correct collisions. To do so, however, the coordinator is
required to send a unicast message to inform every device
in the network about its correction decision. This solution is
costly (the signaling cost is very high), and, especially when
applied to medium or large networks, often requires extensive
convergence time. An alternative is to let the node itself
choose the address randomly, using a DAD (or an equivalent
protocol); this solution is complex, also requires extensive
signaling, and may have similar execution times. Moreover,
in a multi-hop ad-hoc networks, multicast messages might not
be supported, requiring a fallback to even less efficient unicast
communication.

We propose a novel algorithm for address auto-configuration
in which each node autonomously calculates the new address,
and such address is known to the network coordinator in
advance. The coordinator will only signal to all nodes that the
address needs to be changed, while avoiding potential con-
flicts. The idea is to allow each node to choose autonomously
a new (MAC-IPv6) address (pair), guaranteeing at the same
time that each new address is unique in the network. In our
proposed scheme, the PAN coordinator role is to choose a set
of parameters that, once spread to the nodes, will trigger a
collision-free address renew.

The goals of an optimal ad-hoc network addresses auto-
configuration algorithm are: dynamic address configuration,
uniqueness, robustness and scalability [27]. With such auto-
configuration algorithm, a node is able to obtain dynamically
a unique IP address without static or manual configuration;
moreover, the algorithm must be able to adapt as the network
conditions evolve and without performance degradation as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

the number of devices grows. We show how our proposed
algorithm meets all the above requirements.

A. AShA

In this section we present the details of our approach, named
Address Shuffling Algorithm with HMAC (AShA).

AShA is based on a clever use of hash functions, and in par-
ticular Keyed-Hash Message Authentication Code (HMAC).
We begin by recalling the definition of HMAC, and then we
describe how it is used within our address shuffling technique.
Eq. 1 describes the HMAC function as defined in [28]:

HMAC(K,m) = H
(
(K ′⊕opad) ‖ H((K ′⊕ipad) ‖ m)

)
(1)

where:
• H(·) is a cryptographic hash function that operates on

blocks of B bytes iteratively,
• m is the message to be hashed,
• K is an arbitrary secret key.
• K ′ is a B-bytes key derived from K,
• ipad is the byte 0x36 repeated B times,
• opad is the byte 0x5C repeated B times.
The properties of the HMAC function greatly depends on

the hash function being used. However, we can expect that the
hash function fulfills the three hash functions properties, i.e.,
pre-image resistance, second pre-image resistance, and colli-
sion resistance. An interesting consequence of the collision
resistance is that the hash function should be able to map the
domain in the whole codomain, that is, all output bits are used.

Thanks to the hash properties, it is possible to derive a
pseudo-random (IPv6, MAC or both) address of node i from
two parameters:

ADDRi(K) = HMAC(K, IDi) (2)

where ADDRi is the new address of node i, IDi is an identifier
for node i (e.g., its serial number), and K is a secret key. Note
that it is possible (and advisable) to have a per-node key Ki.
Without loss of generality, in the rest of the paper we will
assume a shared key K for all the nodes of the network.

This method can be used by the nodes to self-assign a
pseudo-random MAC/IPv6 address. As shown by the Birthday
paradox, address collisions are improbable, but still possible,
and the collision probability is given by [29]:

P (n, d) = 1− d!

(d− n)!dn
≈ 1− exp

(
−n(n− 1)

2d

)
(3)

where d is the hash function image size (i.e., the address
length) and n is the number of nodes. As a consequence,
an address collision resolution mechanism is needed (see
also [10]).

As an example, in Fig. 1 the birthday paradox effects
for a 16-bit number (216 available addresses) are shown. In
other terms, using a simple HMAC (or any random generated
number) to decide a new address would lead to higher collision
probability with a network of merely 200 nodes.

This mechanism is impractical for periodic address changes
since the node identifier and the key are constant. Even though
a key renewal mechanism is in place, the key validity time

100 200 300 400 500 600 700 800 900 1000
Number of devices

0

5

10

15

20

25

30

35

Nu
m
be

r o
f a

dd
re
ss
 c
ol
lis
io
n

Experimental data
Expected number of collisions

Fig. 1. Birthday Paradox with 216 MAC-16 addresses.

should be considerably longer than the address renewal time,
simply because the key renewal protocols generates significant
overhead, which is against our design goals.

To allow a periodic and overhead controlled address change,
the HMAC function must be changed by adding one more
parameter, which can be set by the network coordinator
requesting the address change action. By carefully choosing
the new parameter value, the network coordinator can also
avoid address collisions, as we demonstrate in Sec. VI. In the
proposed system, a new address is created from a triplet:

ADDRi(K, r) = HMAC (K, (IDi ‖ r)) (4)

where r is an address refresh index (named in the following
METAindex) managed by the network coordinator. With this
method, the secret key can be updated independently from
the address refresh procedure, and the network coordinator
can control the address collisions by not using the values
of r that would cause one, i.e., the coordinator changes r
when a collision is detected. The secret K should be changed
periodically in order to prevent possible attacks. As a matter
of fact, it should be avoided to use more than once the same
METAindex r without changing the secret key K. Toward
this end, the coordinator must use a suitable key distribution
protocol to refresh K.

B. The AShA algorithm

Our proposed algorithm, called AShA, is previously run by
the network coordinator and, at a later time, by the devices.
The key K and the node ID are known by the device, while
the METAindex parameter (r) is provided by the network
coordinator. As a consequence, any node can calculate its
MAC and IPv6 address independently.

When an address shuffling is required, for example as part
of a moving target defense strategy, the network coordinator
sets r to a particular value and evaluates, for a given K, all
new addresses of the devices associated to its network. If a
collision is found, the coordinator changes the METAindex
and re-calculates all addresses. The loop ends when the
network coordinator does not find collisions and subsequently,
a multicast message with the r value to be used is sent to all
devices. Algorithm 1 shows the pseudo-code of the network
coordinator AShA algorithm. Parameters (K, r) are omitted
for brevity.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Algorithm 1 network coordinator AShA
1: Init: r ← METAindexCur + 1
2: while r ≤ METAindexmax do
3: for all nodes do
4: ADDRi ← HMAC (K, (IDi ‖ r))
5: end for
6: Collisions← False
7: if ∃ i, j ∈ nodes : ADDRi = ADDRj then
8: Collisions← True
9: end if

10: if Collisions = False then
11: METAindexCur ← r
12: Send r
13: Break
14: else
15: r ← r + 1
16: end if
17: end while
18: if r = METAindexmax then
19: Generate and distribute new key
20: r ← 0
21: Go to 2
22: end if

When the devices in the network receive the address change
multicast message, with the new r value, they automatically
evaluate their new MAC and IPv6 addresses.

This preventive control of the address collisions by the
network coordinator, in addition to enable a simultaneous
addresses shuffling in the network, avoids the use of onerous
collision detection mechanism (e.g., DAD) used in IP net-
works. When the address reconfiguration is performed, the
node is sure that its new (IPv6 and MAC) address does not
collide with any other address in the network.

Moreover, AShA is able to mitigate all the security threats
presented in Sec. II. In particular, address spoofing is automat-
ically resolved once the network addresses are shuffled, false
address conflict is not anymore possible because addresses
are handled by the coordinator, and address exhaustion can
be mitigated by jointly using address shuffling and per-device
authentication. Negative reply attack is mitigated by AShA for
the nodes already in the network, while for new nodes trying to
join the network it is necessary to use MAC-level encryption.

C. Theoretical Analysis

In this section we analyze the AShA mathematical proper-
ties, and how to leverage the METAindex to further obfuscate
the network.

Since AShA is based on a HMAC function, we expect that
the probability of not having any collision in the network is
based on the number of the nodes in the network. Once all
the range of METAindexes has been used, it is necessary to
renew the secret key K.

In order to avoid a frequent key renew process, it is advis-
able to be able to have a large enough pool of METAindexes
to choose from. However, an attacker could discover the ap-
proximate network size by checking how many METAindexes

are skipped and/or by counting the number of unicast address
change messages. This potential information leakage could be
used to perform further attacks, and it should be prevented.

An easy, and yet very effective way to further obfuscate the
network operations is to split the METAindex in two parts: the
Primary Index and the Secondary Index. The Primary Index
is used to trigger the address change procedure, while the
Secondary Index is used to find the right METAindex that
does not generate a collision. In other terms, for each address
shuffling the Primary Index is incremented, and the Secondary
Index can be chosen randomly among the numbers that does
not generate a collision. In this way, an attacker will not be
able to analyze the AShA procedure to infer the network size.

The Primary Index and Secondary Index effects on AShA
can be analyzed mathematically. Eq. (3) shows the classical
Collision Probability formula. It can be demonstrated that,
if the hash function follows the necessary hash properties
(i.e., pre-image resistance, second pre-image resistance, and
collision resistance), then eq. (3) can be applied also to the
AShA case.

We define PH(n, d) as the probability that Primary Index
r does not generate a collision using HMAC (K, (IDi ‖ r)),
and P̂H(n, d, k) as the probability that exist at least one
Secondary Index r′ such as a Primary Index r does not
generate a collision using HMAC (K, (IDi ‖ r ‖ r′)), where
n is the number of addresses generated, d the length of the
address being generated, and k is the length of r′ (Secondary
Index).

It is possible to show that:

PH(n, d) =
d!

(d− n)!dn
≈ exp

(
−n(n− 1)

2d

)
(5)

P̂H(n, d, k) = 1−
(
1− PH(n, d)

)k
(6)

The effect of the two Indexes is shown in Fig. 2, where
is clear how the introduction of a Secondary Index obfuscates
the AShA dependency on the network size. It must be stressed
that, thanks to the Secondary Index, a Primary Index can be
used multiple times, while without the Secondary Index, each
Primary Index can be used only once before renewing the key
K.

The overall algorithm complexity for each secret key is
O(n × 2k) where n is the number of devices, k is the
METAindex size in bits, O(n) is complexity of the hash
and the collision search, and O(2k) is the complexity of the
while loop. However, this value is spread among multiple
METAindexes. The complexity needed to find a new viable
METAindex depends on eq. (5).

V. USE CASE: APPLYING ASHA TO LR-WPAN

A Low-Power and Lossy Network (LLN) is a type of
network characterized by low energy consumptions, low bit-
rate, and highly unreliable communication links. A Low-Rate
Wireless Personal Area Network (LR-WPAN) is a special kind
of LLN, and it is often based on IEEE 802.15.4 [30] physical
and MAC layers. Its typical protocol suite is shown in Fig. 3.
In this section, we discuss how we may apply our address
shuffling proposal to LR-WPAN.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

100 200 300 400 500 600 700 800 900 1000
Number of devices

100

101

102

103

104

105
Nu

m
be

r o
f a

va
ila
bl
e
Pr
im

ar
y
In
de

xe
s

1-byte Primary Index
2-byte Primary Index
1-byte Primary and Secondary Indexes

Fig. 2. Effects of Primary and Secondary Indexes on AShA.

IEEE	802.15.4MAC	/	PHY

6LoWPANAdapta;on

IPv6	+	RPLNetwork	/	Rou;ng

Applica;on	and	Transport	layersUpper	layers

Fig. 3. LR-WPAN reference layers used in the AShA use-case.

Multi-hop WSNs are often organized in tree-like structures
as, for example, in IEEE 802.15.4 Cluster-Tree PAN, RPL,
etc. In such network topologies there are a root node, which
corresponds to the PAN coordinator, all the other nodes com-
municate with the root by using multi-hop communications.
A node, except for the root, has one (or more) parent(s). If a
parent node is reconfiguring, it blocks the communications of
all the nodes using that node as a parent. As a consequence,
there is a delay in the reconfiguration process and a possible
energy waste.

The address reconfiguration approach suggested in [24]
is to start the reconfiguration from the tree leafs. However,
this solution requires an exact topology knowledge and an
additional coordination among the nodes.

Our solution completely eliminates the need for a complex
exchange of messages with the network coordinator: they can
switch to the new address autonomously as soon as they
receive the address renew message.

A. Involved technologies

In the following subsection we outline the main protocols
used in our scenario.

1) IEEE 802.15.4: The IEEE 802.15.4 network can have
different configurations, i.e., tree, multi-tree, and mesh. In
all of them, a PAN coordinator is responsible for starting
and maintaining the network, manage the node associations,
and forward the PAN traffic to the Internet. Each network
interface can use two different address types: Long (64 bits)
and Short (16 bits). The Long address is globally unique, and
it is assigned to the device by the manufacturer. The Short
address (henceforth called MAC-16) is unique in the PAN, and
it is assigned to the device by the PAN Coordinator during

the association phase. A device can use either the Long or
the Short address within the PAN, but Long addresses are
discouraged due to their excessive length.

Theoretically, the available MAC-16 address space is 216.
However, the following addresses are reserved [31]:

• FF:FE - Temporary address for devices associated to
PAN but without a short address;

• FF:FF - Device not yet associated to PAN / Broadcast
MAC-16 address;

• 80:00 - 9F:FF - Multicast MAC-16 addresses.

As a consequence, only 216 − 2 − 213 = 57342 addresses
are available. To keep existing connections alive, it is useful
to split the address space into two sets: one used before the
addressing renew, and one after. In this manner, the PAN
coordinator can keep forwarding, for a given period of time,
the packets to the nodes that have active connections, even
when their actual address is changed. Upon an address change,
applications will have to re-negotiate a new connection with
their endpoints.

For the sake of simplicity, we can use the Least Significant
Bit (LSB) for this purpose but any bit is a good choice. We
must note that this bit does not add anything to the security or
secrecy of the network, as it is fairly easy for an attacker to
discover the used bit by controlling the network address pattern
before and after an addressing renewal operation. Summariz-
ing, each node can choose one of the 28671 available addresses
at each change of address.

Each node knows its own MAC-64, which is globally
unique by definition. Moreover, we assume that all the nodes
share with the PAN coordinator a Secret key. The Secret key
could be installed during the network setup by using a secure
network parameters installation method (see for example [32]).
Key derivation and management are standard procedure and
hence are out of the scope of this paper. However, a good
approach could be to use the HKDF Scheme [33], [34].

2) 6LoWPAN and the neighbor discovery optimization: As
mentioned in [35], the use of IPv6 technology can provide
several benefits: from use of diagnostic and management IP-
network tools, to the possibility to directly connect with other
IP-based networks without using third-party components such
as proxies or gateways. One of the main problems of using
IPv6 as network protocol for LR-WPANs is the maximum
physical layer packet size: in IEEE 802.15.4 this value is set
to 127 bytes, that is, below the minimum IPv6 packet size
(1280 bytes). Therefore, an adaptation layer between MAC
and network layer is required.

6LoWPAN [31] mainly deals with packets compression,
fragmentation and reassembly. The compression is performed
by removing any fields in the IP, UDP, and ICMP protocols
that can be obtained (or calculated) from the context, i.e.,
the MAC-layer header. A key factor of 6LoWPAN header
compression is its efficiency with respect to the Internet
Protocol version 6 (IPv6) address used. If the IPv6 address is
based on the MAC address, then the compression is extremely
efficient. Otherwise, its effectiveness is greatly reduced. As a
consequence, it is mandatory to keep the two addresses paired
and synchronized.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Root

Node

Node Node Node Node

Node

DODAG	Informa2on	Obj.
DODAG	Adver2sement	Obj.

Fig. 4. Upward and Downward routes construction process. DIO messages
are multicast while DAO messages are unicast.

For what concerns the Neighbor Discovery (ND) opti-
mization, 6LoWPAN-ND [36] defines, among other things,
optimized methods to adapt IPv6 ND [37] to the LR-WPAN
context. In particular, the address collision detection task is
assigned to the 6LoWPAN Border Router (6LBR). All nodes
register to the 6LBR, and all ND and DAD checks (usually
via multicast messages) are performed through unicast queries
to the 6LBR. Even though not explicitly required by the
standard, the 6LBR and the PAN coordinator functions are
usually implemented within the same node.

3) LLN routing and RPL: LLNs topology is usually mesh-
based. Moreover, thanks to the unreliable links and the long
sleeping periods of the nodes, standard mesh routing protocols
are not suitable. The Routing Protocol for Low-Power and
Lossy Networks (RPL) [38] is a routing protocol specifically
developed for a LLN. It is based on the construction and
maintenance of a Destination-Oriented Directed Acyclic Graph
(DODAG): a Directed Acyclic Graph (DAG) originating from
a root node.

RPL defines three values to build and maintain a topology:
• RPL Instance ID: identifies a set of one or more

DODAGs. At most, a node can be part of one DODAG in
a RPL Instance but can belong to multiple RPL Instances.

• DODAG ID: is the identifier of a DODAG root and
corresponds to a routable IPv6 address. The set of (RPL
Instance ID, DODAG ID) identifies a single DODAG in
the network.

• DODAG Version Number: is a value that, when changed
by the root, triggers a complete DODAG refresh.

Thus, a DODAG is uniquely identified by the tuple {RPL
Instance ID, DODAG ID, DODAG Version Number}.

RPL defines two types of routes: Upward (from the nodes
to the root), and Downward (from the root to the nodes),
as shown in Fig. 4. DODAG construction, maintenance,
and Upward routes management are performed through DIO
messages. This type of message is periodically sent by the
DODAG root and by all the Full-Function Device (FFD) nodes
in the network. Although DIO messages are sent using mul-
ticast, internal RPL mechanisms ensure that all nodes in the
network will receive and process them correctly. Downward
routes are propagated through DAO messages, sent by each
node to the root, via any intermediate node. Upward route is
mandatory while Downward route is optional, therefore DIO
messages are always sent.

We will take advantage of the DODAG Version Number
to implement the AShA algorithm in a LR-WPAN: when a
DODAG Version Number changes, any node in the network is

forced to use the new value. As a consequence, we can use
the DODAG Version Number as a reliable mean to spread the
address renew data and to trigger an address shuffling.

B. AShA implementation on LR-WPAN

The birthday paradox must be carefully evaluated when
using AShA to calculate short (MAC-16) and IPv6 addresses.
In general, for HMAC, the first collision is expected after eval-
uating approximately

√
π
2 2

n u 1.25 · 2n
2 hashes, with n being

the hash length. As an example, random or pseudo-random
address generation makes sense in case of IPv6 addresses,
where the full host part (64 bits) is used: the probability of
having a collision becomes non-negligible only with 5.38×109
addresses actively used in the network. However, when the
IPv6 is derived from the MAC-16 address as required by
6LoWPAN header compression, collisions are likely to happen
even in relatively small networks, i.e., around 300 nodes.

To avoid address collisions, the network coordinator has
to avoid all values of the parameter r that will lead to such
collisions. The DODAG Version Number can be used for
this purpose, since it is not mandatory to use consecutive
numbers when increasing the DODAG Versions. Using the
DODAG Version Number has, however, some notable draw-
backs, mainly due to the length of this field: only 8 bits.
Moreover, the address must not fall in the reserved group of
addresses group, and (at least) one bit have to be reserved
to recognize the address before and after an address change.
As a consequence, the number of available address space is
reduced, leading to a higher collision probability.

The reserved address problem is easily solved by letting
nodes with a reserved address perform a new AShA evaluation
with an extended METAindex, e.g., by having an internal
counter concatenated to the METAindex such as

r = counter ‖METAindex; (7)

the counter is increased by 1 until a non-reserved address is
found.

Nevertheless, the number of available DODAG Version
Numbers is very limited, and with a large number of nodes in
the network, a collision could be so frequent to leave only a
few available DODAG Version Numbers to be used.

In order to solve this problem, we propose to use the
DODAG Version Number as the Primary Index, due to the
RPL internal mechanisms ensuring its network-wide spread,
and a separate Secondary Index, to be carried either in the
unused bits parts of the DIO messages (8 bits) or as a separate
RPL Option Header. In the second case it is possible to use a
larger Secondary Index. It should be noted that a typical DIO
message is quite short (up to 56 bytes, when the 802.15.4
security is used). As a consequence, there is enough space in
a single 802.15.4 message to carry the Secondary Index. As a
matter of fact, we would suggest to use an Option Header for
all but the simplest networks because 1) it does not require a
non-standard implementation, and 2) it allows to choose the
Secondary Index length dynamically.

Due to the fact that upward routes are mandatory, we
use DIO messages to trigger AShA algorithm. Note that,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

DODAG Root PAN Coordinator NodeA NodeB NodeC

ChangeAddr (r, newadr)

Optional Unicast (newadr)

UpdateAddr (newadr)

Multicast (r)

UpdateAddr (r)

Fig. 5. Message sequence diagram for AShA address renew procedure.

in the extreme case of a shortage of viable alternatives, the
Network Coordinator can always fallback to unicast messages
to resolve collisions. Fig. 5 shows the worst-case sequence
diagram of AShA algorithm: the DODAG Root evaluates the
collisions, chooses the appropriate new values for Secondary
Index and DODAG Version Number, and (eventually) sends a
unicast address change message to some nodes. As shown
in the figure, the DODAG Root also cooperates with the
PAN Coordinator to update its association tables and allows a
smooth address transition.

The network downtime during an address reconfiguration is
null for a Secondary Index change, because the routing tables
can be updated on-the-fly. Moreover, the old addresses can be
still used, thanks to the bit used to indicate the ‘old’ and ‘new’
address set (before and after the shuffling). For a Primary
Index change, the network downtime is equivalent to the
one normally experienced in an RPL network for a DODAG
Version change, and it is usually limited to a few seconds.
However, the DODAG Version is periodically increased by
RPL to ensure an optimal routing topology, and AShA does
not add any further network downtime to this procedure. As
a consequence, we can conclude that AShA does not add any
downtime to the network.

VI. SIMULATION RESULTS

To assess the validity of the proposed method, we proto-
typed an AShA server in Python. With a simulation campaign
we evaluated the number of collisions in a DODAG Version
Number sequence, i.e., how many DODAG Version Numbers
are available depending on the number of nodes in the net-
work. As outlined in the previous section, it is always possible
to use unicast messages to resolve the collisions. However,
avoiding unicast messages has a number of advantages: no
overhead (address renew command is included in RPL DIO
messages), less attack footprint (the attacker can not intercept
the unicast message), the address change is faster, and no extra
energy consumption is needed.

For the sake of simplicity, in the simulations we disabled
the reserved addresses checks, and the full 16 bits range has
been used.

Fig. 6 shows the comparison between using only the
DODAG Version Number (8 bits) or also the Secondary
Index (8 + 8 bits). Using only the DODAG Version Number,
collisions happens already with 100 nodes, requiring either to
avoid the use of some DODAG Version Numbers or to use

100 200 300 400 500 600 700 800 900 1000
Number of devices

0

50

100

150

200

250

Av
ai

la
bl

e
Pr

im
ar

y
In

de
xe

s

No Secondary Index Experiment
1-byte Secondary Index Experiment
No Secondary Index Analysis
1-byte Secondary Index Analysis

Fig. 6. Available DODAG version number with the Primary Index and
Primary & Secondary Indexes.

TABLE I
DODAG VERSION NUMBERS VS THE NUMBER OF NODES

Number of nodes
Available DODAGs r = 8 r = 16

2/3 (171) 220 880
1/2 (128) 290 900
1/3 (85) 380 930

unicast messages to resolve the collisions. On the contrary,
the Secondary Index allows a broader range of possibilities,
making it possible to use all the DODAG Version Numbers
up to with 700 nodes.

It is evident the perfect agreement between the experimental
data and the one foreseen by eq. 5 and 6.

Table I reports the maximum allowed number of nodes in
order to have at least one third, half, and two third of the
DODAG Version Numbers available.

Fig. 7 shows the average number of collisions when only the
Primary Index is used. As noted before, in case of collisions
it is possible to use unicast messages to resolve collisions, but
this solution is not energy efficient (it requires extra signaling),
and requires extra reconfiguration time.

Fig. 8 reports the number of available Secondary Indexes if
we just use 1-byte Secondary Index size. It is evident that the
curve follows the same distribution shown in eq. (5). This is
easily explained by considering that, for each Secondary Index,
the Primary Index becomes a constant. As a consequence, they
can be switched in the formulas.

Fig. 9 shows the effect of increasing the Secondary Index
length. Although increasing the size of the Secondary Index

100 200 300 400 500 600 700 800 900 1000
Number of devices

2

4

6

8

10

12

14

16

Av
er
ag

e
nu

m
be

r o
f c

ol
lid

in
g
de

vi
ce
s

Fig. 7. Number of colliding nodes using only the Primary Index.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

100 200 300 400 500 600 700 800 900 1000
Number of devices

0

50

100

150

200

250
Av

ai
la
bl
e
Se

co
nd

ar
y
In
de

xe
s

Experimental
Analysis

Fig. 8. Average number of available Secondary Indexes (1 bytes case).

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
Number of devices

0

50

100

150

200

250

Nu
m
be

r o
f a

va
ila
bl
e
Pr
im

ar
y
In
de

xe
s

Primary Only
1-byte Secondary
2-byte Secondary
3-byte Secondary
4-byte Secondary
5-byte Secondary
6-byte Secondary
7-byte Secondary

Fig. 9. Average number of available Primary Indexes varying the Secondary
Index length.

allows a larger network size, the benefits becomes progres-
sively smaller, and the computational costs for the Network
Coordinator becomes larger.

Although it is possible to use any Secondary Index size, it
is advisable to choose its correct size according to the actual
number of nodes in the network, mainly to conserve energy
and storage space.

Our suggestion is to choose a Secondary Index size that,
according to the network size, guarantees an almost complete
availability of Primary Indexes (see Fig. 9). Toward this end, it
is possible to dynamically adjust the Secondary Index length,
varying it according to the number of nodes in the network.
In this way, it is possible to keep a minimal overhead while
maintaining a high Primary Index availability.

VII. CONCLUSION

In this paper we presented Address Shuffling Algorithm
with HMAC (AShA), a novel method allowing a fast, secure,
and collision-free address renew in any (IPv6) network. We
analyzed its features and limitations throughout an analytical
formulation and with simulations, and we have shown how
there is a match between our analysis and our simulation
results. Our mathematical analysis can be used to predict
AShA performances, thus serving as a guideline within the
network security planning phase. With respect to the previous
work, AShA has the benefits of eliminating any possible
information leakage, such as the number of nodes in the
network.

We argue that AShA is an excellent tool to provide the
(network) confusion necessary in Moving Target Defense

strategies, especially in Internet of Things scenarios, where
energy efficiency is a strict requirement. AShA address renew
messages can be piggybacked in normal routing maintenance
(or any network management) semi-periodic message, reduc-
ing the network overhead to practically zero.

ACKNOWLEDGMENT

This work has been supported by the project “GAUChO - A
Green Adaptive Fog Computing and Networking Architecture”
funded by Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) - Progetti di Ricerca di Rilevante Interesse
Nazionale (PRIN) Bando 2015 - grant 2015YPXH4W_004, by
“ImpresaR&S 4.0” partially founded by POR FESR Toscana
2014-2020 asse 1 azione 1.1.5, and by NSF Award CNS-
1647084.

REFERENCES

[1] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs,
J. Bughin, and D. Aharon, “The Internet of Things:
mapping the value beyond the hype,” McKinsey Global
Institute, Tech. Rep., June 2015. [Online]. Available: https:
//www.mckinsey.com/business-functions/digital-mckinsey/our-insights/
the-internet-of-things-the-value-of-digitizing-the-physical-world

[2] P. Datta and B. Sharma, “A survey on IoT architectures, protocols,
security and smart city based applications,” in 2017 8th International
Conference on Computing, Communication and Networking Technolo-
gies (ICCCNT), July 2017, pp. 1–5.

[3] D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh,
and Z. Oraibi, “Agra: Ai-augmented geographic routing approach
for IoT-based incident-supporting applications,” Future Generation
Computer Systems, 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X17303965

[4] T. Borgohain, U. Kumar, and S. Sanyal, “Survey of security and
privacy issues of Internet of Things,” CoRR, vol. abs/1501.02211, 2015.
[Online]. Available: http://arxiv.org/abs/1501.02211

[5] G. Pulkkis, J. Karlsson, M. Westerlund, and J. Tana, “Secure and
reliable Internet of Things systems for healthcare,” in 2017 IEEE
5th International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2017, pp. 169–176.

[6] T. Pecorella, L. Pierucci, and F. Nizzi, ““network sentiment”
framework to improve security and privacy for smart home,”
Future Internet, vol. 10, no. 12, 2018. [Online]. Available: http:
//www.mdpi.com/1999-5903/10/12/125

[7] K. Sandlund, G. Pelletier, and L.-E. Jonsson, “The RObust Header
Compression (ROHC) Framework,” RFC 5795 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–41, Mar. 2010. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5795.txt

[8] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” RFC 6282 (Proposed Standard), RFC
Editor, Fremont, CA, USA, pp. 1–24, Sep. 2011, updated by RFC
8066. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6282.txt

[9] R. Housley and B. Aboba, “Guidance for Authentication, Authorization,
and Accounting (AAA) Key Management,” RFC 4962 (Best Current
Practice), RFC Editor, Fremont, CA, USA, pp. 1–23, Jul. 2007.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4962.txt

[10] D. Thaler, “Privacy Considerations for IPv6 Adaptation-
Layer Mechanisms,” RFC 8065 (Informational), RFC Editor,
Fremont, CA, USA, pp. 1–10, Feb. 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8065.txt

[11] P. Wang, D. S. Reeves, and P. Ning, “Secure address auto-configuration
for mobile ad hoc networks,” in Mobile and Ubiquitous Systems:
Networking and Services, 2005. MobiQuitous 2005. The Second Annual
International Conference on. IEEE, 2005, pp. 519–521.

[12] Centers for Medicare & Medicaid Services, “The Health Insurance
Portability and Accountability Act of 1996 (HIPAA),” Online at
http://www.cms.hhs.gov/hipaa/, 1996.

[13] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys, vol. pp, 2018. [Online]. Available:
http://arxiv.org/abs/1806.06191

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

[14] Y. Hong, W. M. Liu, and L. Wang, “Privacy preserving smart meter
streaming against information leakage of appliance status,” IEEE Trans-
actions on Information Forensics and Security, vol. 12, no. 9, pp. 2227–
2241, Sept 2017.

[15] F. Ye and R. Pan, “A survey of addressing algorithms for wireless
sensor networks,” in Wireless Communications, Networking and Mobile
Computing, 2009. WiCom ’09. 5th International Conference on, Sept
2009, pp. 1–7.

[16] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131 (Draft
Standard), RFC Editor, Fremont, CA, USA, pp. 1–45, Mar. 1997,
updated by RFCs 3396, 4361, 5494, 6842. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2131.txt

[17] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration,” RFC 4862 (Draft Standard), RFC Editor, Fremont,
CA, USA, pp. 1–30, Sep. 2007, updated by RFC 7527. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4862.txt

[18] E. Ancillotti, R. Bruno, M. Conti, and A. Pinizzotto, “Dynamic address
autoconfiguration in hybrid ad hoc networks,” Pervasive and Mobile
Computing, vol. 5, no. 4, pp. 300–317, 2009.

[19] L. H. Yen and W. T. Tsai, “Flexible address configurations for tree-
based ZigBee/IEEE 802.15.4 wireless networks,” in 22nd International
Conference on Advanced Information Networking and Applications
(aina 2008), March 2008, pp. 395–402.

[20] S. Nesargi and R. Prakash, “MANETconf: configuration of hosts in a
Mobile Ad Hoc Network,” in INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, 2002, pp. 1059–1068 vol.2.

[21] C. E. Perkins, J. T. Malinen, R. Wakikawa, E. M. Belding-Royer, and
Y. Sun, “Ad hoc address autoconfiguration,” draft-ietf-manet-autoconf-
01.txt, 2001.

[22] Y. Sun and E. M. Belding-Royer, “Dynamic address configuration in
mobile ad hoc networks,” University of California, Tech. Rep., 2003.

[23] D. Thaler, “Enabling Security/Privacy Addressing On 6LoWPAN
Technologies,” draft-thaler-6lo-privacy-addrs-00, Internet Engineering
Task Force, Aug. 2015. [Online]. Available: https://tools.ietf.org/pdf/
draft-thaler-6lo-privacy-addrs-00.pdf

[24] L. Brilli, T. Pecorella, L. Pierucci, and R. Fantacci, “A novel 6LoWPAN-
ND extension to enhance privacy in IEEE 802.15.4 networks,” in
Globecom 2016. IEEE, 345 E 47TH ST, NEW YORK, NY 10017
USA, Dec. 2016, pp. 1–5.

[25] C. Lei, H. Zhang, J. Tan, Y. Zhang, and X. Liu, “Moving
target defense techniques: A survey,” Security and Communication
Networks, vol. 2018, pp. 1–25, 2018. [Online]. Available: https:
//doi.org/10.1155/2018/3759626

[26] MTD ’18: Proceedings of the 2018 Workshop on Moving Target
Defense. New York, NY, USA: ACM, 2018. [Online]. Available:
http://csis.gmu.edu/MTD-2018/

[27] Y. Sun and E. M. Belding-Royer, “A study of dynamic addressing
techniques in mobile ad hoc networks,” Wireless Communications and
Mobile Computing, vol. 4, no. 3, pp. 315–329, 2004.

[28] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104 (Informational), RFC Editor,
Fremont, CA, USA, pp. 1–11, Feb. 1997, updated by RFC 6151.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2104.txt

[29] N. Moore, “Optimistic Duplicate Address Detection (DAD) for IPv6,”
RFC 4429 (Proposed Standard), RFC Editor, Fremont, CA, USA,
pp. 1–17, Apr. 2006, updated by RFC 7527. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4429.txt

[30] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[31] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed
Standard), RFC Editor, Fremont, CA, USA, pp. 1–30, Sep. 2007,
updated by RFCs 6282, 6775, 8025, 8066. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4944.txt

[32] T. Pecorella, L. Brilli, and L. Mucchi, “The Role of Physical Layer
Security in IoT: A Novel Perspective,” Information, vol. 7, no. 3, p. 49,
Aug. 2016. [Online]. Available: http://www.mdpi.com/2078-2489/7/3/49

[33] H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF
scheme,” in Advances in Cryptology – CRYPTO 2010, T. Rabin, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 631–648.

[34] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF),” RFC 5869 (Informational), RFC Editor,
Fremont, CA, USA, pp. 1–14, May 2010. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5869.txt

[35] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs):

Overview, Assumptions, Problem Statement, and Goals,” RFC 4919
(Informational), RFC Editor, Fremont, CA, USA, pp. 1–12, Aug. 2007.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4919.txt

[36] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor
Discovery Optimization for IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs),” RFC 6775 (Proposed Standard), RFC
Editor, Fremont, CA, USA, pp. 1–55, Nov. 2012. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6775.txt

[37] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861 (Draft Standard),
RFC Editor, Fremont, CA, USA, pp. 1–97, Sep. 2007, updated
by RFCs 5942, 6980, 7048, 7527, 7559, 8028. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4861.txt

[38] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–157, Mar. 2012. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6550.txt

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2019.2892003

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

