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Abstract: SIGMA is a regional landslide warning system based on statistical rainfall thresholds
that operates in Emilia Romagna (Italy). In this work, we depict its birth and the continuous
development process, still ongoing, after two decades of operational employ. Indeed, a constant work
was carried out to gather and incorporate in the modeling new data (extended rainfall recordings,
updated landslides inventories, temperature and soil moisture data). The use of these data allowed for
regular updates of the model and some conceptual improvements, which consistently increased the
forecasting effectiveness of the warning system through time. Landslide forecasting at regional scale is
a very complex task, but this paper shows that, as time passes by, the systematic gathering and analysis
of new data and the continuous progresses of research activity, uncertainties can be progressively
reduced. Thus, by the setting up of forward-looking research programs, the performances and the
reliability of regional scale warning systems can be increased with time.
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1. Introduction

Regional scale landslide early warning systems (RSLEWS) are becoming widely used tools to
forecast landslide occurrence and manage the related hazards over wide areas [1–8]. They are mainly
based on rainfall thresholds, which are established by empirical or statistical correlations between
a landslide catalogue and a rainfall database [9]. The need of only these two kinds of input data to
establish the most basic implementation is one of the keys of the success and wide use of this approach.
Moreover, some studies explored the possibility of establishing threshold-based early warning systems
also in case studies characterized by scarcity of data [10,11]. However, it is important to stress that
input data are not superfluous: on the contrary, several studies demonstrated that the quantity and
quality of data are very important and greatly influences the quality of the rainfall thresholds and thus
the capabilities of the related RSLEWS. For instance, Segoni et al. [12] analytically demonstrated that, in
an Italian case study characterized by the presence of thousands of dated landslides, a single regional
threshold can be outperformed by a mosaic of basin-scale thresholds. After a few years, the same group
of authors updated the thresholds using an extended calibration dataset and a quantitative comparison
demonstrated that the calibration against a dataset that was larger (both in terms of number of events
and in terms of temporal extension) led to a consistent change of some of the thresholds and to a
general improvement of their forecasting effectiveness [13]. Similarly, Gariano et al. [14] demonstrated
that a landslide sample decreased by just 1% can cause a significant loss in the forecasting effectiveness
of a rainfall threshold. Another series of works [15,16] clearly points out that the uncertainty associated
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to the threshold parameters definition depends not only from the abundance of the data used in
the calibration, but also from their distribution in the graphic (e.g., representativeness of a wide
range of rainfall durations or rainfall intensities). In other words, an effective threshold should be
calibrated against an abundant dataset in which the experimental data are not clustered and are evenly
distributed in the graphic. Besides landslides, rainfall data quality and quantity are very important as
well to obtain reliable thresholds [17]. Since rain gauges are the most widely used method of rainfall
measurement for threshold definition, the quality of the analysis is guaranteed by a high rain gauge
density or by a high temporal resolution (especially for intensity-duration thresholds [9]). In other
cases, radar rainfall measurements are used instead of (or in conjunction with) rain gauges to obtain
rainfall measurement with higher spatial and temporal resolution and reduced uncertainties [18,19].

These examples show that RSLEWS can be constantly updated and improved as long as new
calibration data (namely, rainfall measurements and new activations of landslides) are gathered and
made available to researchers. The process of amelioration of RSLEWS requires a joint effort between
researchers and local administrations, the latter only rarely understanding that the setting up of a
reliable RSLEWS could be a long-term objective. Indeed, the literature describes cases of RSLEWS that
nowadays exhibit good results that have been obtained after continuous ameliorations fostered by a
long-term collaboration between local authorities (in charge of managing landslide hazard and risk)
and scientists (committed to provide reliable forecasting and managing tools) [1,20–22].

This manuscript describes the Emilia Romagna (Italy) case study, where the long lasting
(about 20 years) collaboration between the Emilia Romagna Agency for Territorial Safety and Civil
Protection and the Earth Science Department of Florence University led to a constant development
and progressive improvement of a RSLEWS to be used as an operational tool to forecast and manage
landslide hazard at regional scale.

This work provides a framework that could be used as a reference for both researchers and
end-users that are starting from the scratch the design of a RSLEWS; moreover, it quantitatively assesses
the improvements led by the progressive major and minor updates to the RSLEWS, demonstrating
that RSLEWSs need to be constantly evaluated, updated and upgraded to maintain and to increase
their forecasting effectiveness.

2. Materials and Methods

2.1. Test Site Description

Emilia Romagna region is located in Northern Italy. The northern and eastern parts of the region
are flat as they are occupied by the alluvial Po Plain, while southern and western parts are mainly hilly
and mountainous as they are occupied by the Apennines mountain chain. Apennines is a fold and
thrust mountain chain and in the study area is mainly composed of turbidites deposits (sandstone and
calacarenites) and politic layers [23]. Several argillaceous formations are present in the region and they
have been extensity affected by large intermittent landslide during the Holocene [24].

This work focuses on the hilly and mountainous part of the region, as it is the only one prone
to land sliding (Figure 1), with a landslide density of about 0.12 landslide/km2. Emilia Romagna is
affected by landslides of different typologies: rotational–translational slides (affecting mainly flysch),
slow earth flows (occurring in clayey lithologies), and complex movements (typically rotational
failures at the head progressively changing into translational movements throughout the body and
toe). Rapid shallow landslides were less frequent in the past, but their triggering became a recurring
phenomenon during recent years [25]. According to the Italian Landslide Database [26], the most
common type of landslides in Emilia Romagna are rotational–translational slides (45.9%), followed by
slow flows (24.9%), complex landslides (22.9%), falls (0.5%) and rapid flows (mainly debris flows,
0.4%), while other types of landslides represent about 0.1% of the overall number.
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Rainfall is the main landslide triggering factor in the study area: short and intense rainfalls are
usually associated with the initiation of shallow landslides, while moderate and very long rainy periods
(up to six months) are responsible for the triggering of deep-seated landslides and earthflows [27,28].

The study area is characterized by a Mediterranean climate, with dry and warm summers
(approximately from May to October) and cold and wet winters (approximately from November to
April); this climate affects seasonal landslide distribution, since they mainly occur during the wet
season, even if landslides sometimes occur during summer rainstorms.

2.2. Administrative Framework

Italian civil protection is a complex system entrusted to all administrative levels of the State: in
short, a “central” national department coordinates a network of regional centers, each one in charge of
forecasting and managing hazards inside its administrative territory, while at the local level the most
important authority of civil protection is the mayor of each municipality. Other bodies (e.g., provinces)
constitute an intermediate level between the municipality and the regions, ensuring an effective
management of complex hazard scenarios.

According to this complex organization, each Italian region has a Functional Center in charge of
meteorological monitoring and forecasting. This activity includes a warning system for the landslide
hazard which covers the whole region and issues, at least daily, a criticality state among four possible
levels (absent, ordinary, medium, and high). The criticality alerts are usually differentiated for
subdivisions of the regional territory (called “alert zones”) and are addressed to the Mayors, which are
in charge of activating all due countermeasures, including information to the citizens.

Concerning Emilia Romagna, one of the main tools used by the regional civil protection to manage
landslide hazard is a RSLEWS named SIGMA, which is based on statistical rainfall thresholds and was
developed starting from the late 1990s.

2.3. Basic Assumptions of the RSLEWS

The above described physical settings and administrative framework deeply influenced the way
the warning system and the core threshold model were conceived and developed.

Rainfall parameters: Since the test site is affected by both rapid shallow landslides and deep-seated
landslides, antecedent rainfall was selected as the rainfall parameter to define the rainfall thresholds.
The basic assumption of the model is that short-term cumulates (e.g., a few days) should identify short
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but exceptionally intense rainfalls that are responsible for shallow landslide triggering, while longer
periods of accumulation should capture mild but exceptionally long rainfalls, which are traditionally
associated to deep seated landslide triggering of reactivations.

Territorial units: Since municipalities are the basic administrative subject to face hazards,
they were considered the basic spatial unit also for the rainfall threshold model. Municipalities were
aggregated into wide territorial units (TU) with homogeneous geomorphological and meteorological
characteristics. Then, TUs were grouped into larger spatial units called Alert Zones, which are the
administrative levels for which warnings need to be issued.

Reference rain gauges: Among all the possible approaches to relate rain gauges and landslides in
rainfall threshold analysis [9], it was decided to use a single reference rain gauge for each TU, to have
a more straightforward comprehension of the model outputs also for personnel and end-users without
advanced skills in scientific fields related to landslides.

Alert levels: The warning system, the decisional algorithm and the thresholds were aimed at
defining four possible states of criticality (absent, ordinary, medium, and high), according to the
regional and national laws.

2.4. Workflow

To define a RSLEWS to be used in landslide hazard management at regional scale, the department
of Civil Protection of Emilia Romagna Region and the Earth Science Department of the University of
Florence have been collaborating since the late 1990s. In a forward-looking perspective, the research
was not conceived as a stand-alone program, but it was set up as a long-term collaboration in which
a general research framework (RF) defines general objectives to be pursued. The general research
framework is valid for five years (after this period, another RF agreement needs to be defined and
signed) and encompasses five broadly defined tasks:

1. Research and development to define and progressively improve the RSLEWS (including the
monitoring algorithm, the triggering thresholds model and the data analysis);

2. Improvement of the correlation between model outputs and criticality levels for civil
protection purposes;

3. Assistance in implementing research outcomes into the informative systems of the regional
Civil Protection;

4. Assistance in defining procedures for the daily employ of SIGMA and for the management of the
forecasted hazard levels;

5. Training the end-users to a correct interpretation of the model outputs for a sound hazard
assessment and management.

Within this framework, every year a yearly research activity plan defines a series of activities
pertaining to one or more of the abovementioned tasks. During the year, the research is accomplished,
a report is produced, the outcomes are quantitatively evaluated and the activities for the next year are
defined on the basis of the obtained results and of the end-user needs.

In this paper, only the activities strictly connected with scientific research (Task 1 and, partially,
Task 2 of the research framework) are accounted for. We do not describe the activities dealing with
the implementation of the new features into the waning system, the training of the personnel and the
definition of civil protection procedures.

Basically, a workflow was established that moves from a continuous collection of new data
(rainfall and landslide data) (Figure 2), encompasses a periodic quantitative validation of the rainfall
threshold model operated at that time in the RSLEWS and an analysis of the errors. The error analysis
fosters a search for possible solutions and a series of tests to quantitatively assess the impact of the
proposed solutions on the forecasting effectiveness of the warning system.
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Figure 2. Collection of landslides data over the years, showing the total number of landslides collected
each year and the number of landslides with good spatial and temporal accuracy that could be used
for SIGMA.

3. Results

3.1. Base Version of the Model

The first steps of the research were influenced by the lack of data. Usually, empirical rainfall
thresholds are established combining a dataset of rainfall data and a dataset of landslides for which
the time of occurrence is known [9,29]. For the Emilia Romagna Region, the historical recordings of a
wide network of rain gauges was available, providing hourly or daily rainfall measurements since the
mid-1950s. Unfortunately, when the research began, the landslide dataset available did not contain the
time of triggering. Therefore, the first prototypal version of the model had to rely only on rainfall data.

The prototypal version of SIGMA was based on rainfall thresholds defined by means of a
statistical analysis performed over the rainfall time series of the reference rain gauges, on the
hypothesis that anomalous or extreme values of accumulated rainfall are responsible for landslide
triggering. The statistical distribution of the rainfall series was analyzed, and multiples of the standard
deviation (σ) were used as thresholds to discriminate between ordinary and extraordinary rainfall
events. The prototypal RSLEWS was based on a decision algorithm that compares measured and
forecasted rainfalls:

• Shallow landslides, triggered by short but exceptionally intense rainfalls: rainfall threshold is
defined by 2σ of the rainfall cumulated in a short period (1–10 days).

• Deep-seated landslides, triggered by mild but exceptionally prolonged rainfalls: 1.5σ of the
rainfall cumulated in long periods (10–365 days).

Further details on this prototypal version of the rainfall threshold model can be found in [28], and
the detailed explanation about how σ curves are built can be found also in [24].

It is important to remark that the objective of this research stage was just to establish the broad
structure of the RSLEWS, postponing a more thorough model tuning in the following years, when
more data of better quality would likely be available. As an example, the exact definition of “high” and
”low” σ values and of “short” and “long” duration has varied through time, as it has been adjusted
during the evolution of the model according to the bigger quantity of data collected in the meanwhile.



Water 2018, 10, 1297 6 of 17

3.2. Model Updates

3.2.1. Optimization of the Decisional Algorithm

Indeed, during the years, as landslides occurred, they were recorded and organized into a
geodatabase and the performance of the prototypal version for SIGMA could be validated. This process
allowed collecting evidence that the prototypal version of the model was producing many errors (both
false alarms and missed alarms). Fortunately, as year by year the amount of calibration and validation
data were increasing, it was possible to define a new decisional algorithm, more complex but with
increased forecasting effectiveness.

During the years, various versions of the decisional algorithm were tested (Table 1),
mainly varying the number of the SIGMA curves and the length of the rainfall accumulation periods
to be used in the decisional algorithm. From time to time, a quantitative validation procedure allowed
identifying the best performing version of the algorithm and evaluating if the amelioration was worth
implementing the changes in the RSLEWS. From Table 1 stands out that the rainfall accumulation
periods were progressively reduced. In particular, the definition of the long-duration period was
initially set to a whole year, with the aim of accounting for the possible influence of the rain fallen,
which could potentially influence the hydrologic response of deep-seated landslides in terrain with very
low hydraulic conductivity. With time, the collection of new data and single case studies [27] suggested
to narrow the time span and to better address an inherent seasonal variability encountered in the
hillslope response to rainfall. Temporal and seasonal variability have been considered using different
time intervals to calculate the cumulative rainfalls. A variable time-window was then successfully
tested and introduced, which considers the rain fallen from the beginning of the rainy season to the day
of interest. Since the dry season is conventionally defined from June to September [24], the maximum
possible length of the long-duration period is 245 days (influence of autumnal rainfall on early spring),
while some tests suggested that the minimum possible length of 60 days (used during the dry season)
was better than 30, 45 or 90 days.

Table 1. Main updates to the decisional algorithm.

Model Version Prototypal SIGMA SIGMA 2006 SIGMA 2010 SIGMA 2012

Reference [28] [30] [24] [31]

Number of different
SIGMA curves used as

thresholds

3 fixed
(1σ, 1.5σ, 2σ)

3 fixed
(1.5σ, 2σ, 3σ)

4 customized for each
TU

4 customized
(according to a larger
calibration dataset)

Definition of
short-duration period 1–10 days 1–5 days 1–3 days 1–3 days

Definition of
long-duration period 5–365 days 6–365 days

4–60 days in the dry
season (or up to 245

days in the wet season)

4–60 days in the dry
season (or up to 245

days in the wet season)

Alert stages 3 3 4 4

3.2.2. Customization and Optimization of the Rainfall Thresholds

After almost a decade, enough data were collected in each TU to allow a most robust calibration
of the rainfall thresholds against a landslide catalogue. Consequently, the decisional algorithm was
customized for each TU comparing rainfall data and landslides: the scheme of the decisional algorithm
remains the same in each TU, but each TU uses different σ values to define the thresholds. The optimal
set of σ values for each TU was empirically defined using a recursive algorithm that selected for each
TU the σ values that minimized the errors committed in a calibration dataset (further details can be
found in [24]).

This process was repeated periodically: at regular intervals, new landslides and rainfall data
were stored into the calibration dataset and used to re-calibrate the SIGMA curves and run a new
optimization procedure. Table 2 shows that this procedure allowed consistently increasing the
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forecasting effectiveness of the model: considering the likelihood ratio as a global performance
indicator [32], it can be seen that a more robust calibration sample increases the forecasting effectiveness
of the model. The increase of the likelihood ratio observed from the first to the second major updates
concerns mainly the sensitivity of the model (i.e., the capability of correctly identifying landslide
occurrences, which increase from 73% to 75%). The statistical significance of the increase in the model
performance needs to be better addressed in future research, however it is worth mentioning that it
was obtained without changing the number of the model parameters: only some configuration of the
system and the dataset size have been changed).

Table 2. Documented increase of the forecasting effectiveness of SIGMA by expanding the
calibration dataset.

Work Phase SIGMA Prototypal Version First Major Update Second Major Update

Reference [28] [24] [31]

Calibration period 2000–2003 (highly incomplete) 2004–2007 2004–2010

Landslides used for
calibration

180 (only pertaining to a
single TU) 888 1652

Performance
indicator Likelihood ratio = 8.38 Likelihood ratio = 16.43 Likelihood ratio = 17.01

3.3. Fine Tuning of the Warning System

3.3.1. Contour Conditions

Territorial units: During the research program, the number of TU increased from the original
number of 19 to the current number of 25 (Figure 3). This allowed to increase the spatial accuracy of the
model, as the average extension of the TUs passed from about 525 km2 to about 400 km2, and some TUs
located in the hilly sectors between the mountains and the alluvial plain were reduced in size to less
than 140 km2 (e.g., TU 10 and 16, Figure 3). Smaller TUs allowed establishing more robust empirical
correlations between rainfall and landslide, as the physiographic and meteorological characteristics of
each TU were made more homogeneous.

TUs boundaries: When an error analysis revealed that some missed alarms were anomalously
clustered in a few municipalities, all municipalities located on the border between two or more
TUs underwent a trial-and-error procedure aimed at identifying in which TUs they would be more
conveniently included to get the highest forecasting effectiveness. This process led to a general
reorganization of the TUs boundaries (Figure 3), with a more uneven subdivision that brought to
consistent ameliorations in many TUs. For example, in TU12 the new configuration increased the
number of correct alarms (from 24 to 26) and reduced the number of missed alarms (from 39 to 35).

TUs delineation and sensitivity to environmental factors: In the literature, some attempts exist
to establish in a given study area some rainfall thresholds differentiated according to environmental
factors. For example, Peruccacci et al. [33] defined some rainfall thresholds differentiated according
to broad lithological typologies. SIGMA did not follow this approach for two main reasons.
First, a preliminary geospatial analysis highlighted that the spatial organization of missed and correctly
predicted landslides does not depend on lithology, land use, and morphometric attributes. This finding
is supported also by other studies: e.g., Berti et al. [34] stated that in Emilia Romagna “historical
landslides are quite evenly distributed and affect all the geological units”. Second, the approach was
discarded for its limitations in the applicability to civil protection procedures: even if a threshold
differentiation based on lithology, land use or other environmental factors is scientifically more
appropriate, it is quite difficult to understand by the broad public and to employ in the operative
management of emergency response by administrators and local authority. The empirical rainfall
threshold approach is based on the idea that environmental factors are intrinsically and implicitly
accounted for in the empirical relationship found between rainfall and landslides. This relationship is
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strengthened when the available dataset is larger and allows optimizing territorial units of smaller areal
extent. Moreover, a more robust approach to account for environmental variables was performed by
coupling rainfall thresholds with susceptibility assessments aimed at spatial forecasting of landslides
(Section 3.4.2).Water 2018, 10, x FOR PEER REVIEW  8 of 17 
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Reference rain gauges: A key point in rainfall threshold definition is the selection of the rain
gauge that measures the triggering rainfall for each landslide. According to the review in [9],
several approaches are used in the literature and the threshold analysis result is very sensitive to
the rain gauge selection method. SIGMA always relied on the “reference rain gauge” approach,
but it was refined during the research program. In the first stages of the research, a reference rain
gauge was chosen considering several factors: presence of a long historical dataset; reliable automatic
recording and transmission of the data; central position in the TU; and elevation representative of
the mean elevation of the TU. In the early 2010s, this configuration was discussed again. For each
TU, all available rain gauges were tested and a performance analysis was used to select the reference
rain gauge providing the best landslide forecasts. This procedure brought also important scientific
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results as it demonstrated that the approach of using the nearest rain gauge (the most used according
to Segoni et al. [9]) did not always produce the best results.

3.3.2. Model Outputs and Event Magnitude

SIGMA forecasted landslides at the TU level, but the civil protection procedures dictate that
warnings should be released at the alert zone level, according to the magnitude of the impact expected.
The passage from TU criticality levels to a single AZ (Alert Zone) criticality level is not a trivial
matter, since during complex rainfall events adjacent TUs may have very different warning levels.
Instead of relying on subjective decisions of the operators in monitoring duties, the high amount
of data collected during the research was used to establish a correlation scheme that automatically
weights and aggregates the TU outputs at the AZ levels providing four alert states defined in terms
of number of expected landslide: absent (0 or 1 landslide), low (2–19 landslides), moderate (20–59
landslides), and high (more than 60 landslides). Of course, the finer-resolution forecasts at the TU level
can be used to better address the countermeasures to be implemented in the territory. Further details
on this procedure can be found in [35].

3.3.3. Rainfall Dataset Length

Every year, the SIGMA curves are updated, adding to the statistical sample the data collected
during the previous year. During the first stages of the research, this procedure brought relevant
modifications of the σ curves. The changes progressively became smaller as time went by. This could
be partially due to the reduction of sample variability with increasing sample size, but it could also
be related to climate change, which in the 1990s led to a marked change in precipitation trends in
the Mediterranean area and in Italy [36,37]: the first updates brought some outliers in the datasets
(in most cases, the rainfall series start from the 1950s) and consistently perturbed the statistical sample.
During the years, the statistical perturbation stabilized.

These outcomes suggested to investigate the impact on SIGMA forecasting effectiveness of the
use of time series of different lengths to derive the σ curves. The details of the test are explained in
detail in [38], here we summarize the main findings: the best model performances are obtained with
the longest possible time series, to the point that when selecting reference rain gauges, the length of the
time series may be more important than the position inside the TU. Actually, this test left the SIGMA
model unchanged but corroborated the robustness of the workflow and the good practice of periodical
updates to the system.

3.4. Conceptual Updates

3.4.1. Snow Melt/Accumulation Processes

Although the fine-tuning and update processes improved the performance of the model,
many errors were still present. However, since the number of errors was reduced, it stood out
that some of the remaining ones were clustered in space and time. More specifically, many missed
alarms were related to some events that took place in high-mountain areas, in a period of null or very
low precipitations. In addition, we recognized some false alarms in mountainous TU, when high
values of rainfall surprisingly did not trigger landslides. Both kinds of errors could not be managed
adjusting the threshold values with the calibration procedure; therefore, we hypothesized the presence
of external factors driving these anomalously clustered errors. After checking the seasonality of the
events and considering a more complete set of weather data, we concluded that these errors were
related to snow-melting and snow accumulation events. In the first case, the terrain received water
from snowmelt, therefore landslides were triggered even with null precipitation. In the second case,
heated rain gauges measured the water equivalent of the fallen snow, but actually a snowpack was
building without any water infiltration into the soil, thus no landslides were triggered despite the high
values recorded by the rain gauges.
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Therefore, a challenging objective of two annual activity plans was the definition of a simple snow
accumulation/melting model (SAMM) to be applied at regional scale in conjunction with SIGMA.
Despite the physics governing snow melt-accumulation processes is very complex, we relied on a
simple correlation scheme derived from the philosophy of statistical rainfall threshold for the initiation
of landslides: as rainfall is used as the only external variable to forecast the occurrence of landslides
with a specific threshold for each TU; similarly we used temperature data to assess the presence of
snow-related phenomena in each TU.

In brief, SAMM is based on two modules modeling snow accumulation and melting. Each module
is composed by two equations: a conservation of mass equation for snowpack thickness and an
empirical equation for snow density. The model depends on 13 empirical parameters, whose optimal
values were defined with an optimization algorithm (simplex flexible) using calibration measures of
recorded snowpack thickness. SAMM uses as input data only temperature and rainfall measurements,
thus being easy to implement and understand. Various tests (cross validation, comparison with
two simpler temperature index models, and simulation of the operational employment) proved that
SIGMA forecasting effectiveness can be improved if SAMM is used to filter the input rainfall data.
Further details can be found in [39].

3.4.2. Coupling with a Susceptibility Map

One of the main and most known drawbacks of RSLEWS based on rainfall thresholds is the poor
spatial resolution. Generally, they can be used only to issue generic warnings for the whole area of
application or for a large subdivision of it. The use of territorial units and the progressive increase
of their number (up to the actual configuration encompassing 25 TUs) can be considered a slight
spatial refinement, but still the system cannot be used for a full spatial forecasting, e.g., to pinpoint on
a map the spatial location of the landslides expected during the next warning. This drawback was
partially overcome by coupling SIGMA with a purposely-developed susceptibility map (Figure 4).
Susceptibility maps are static products describing the spatial probability of landslide occurrence [40],
i.e., they could be used to assess where landslides could occur in an unspecified future. A procedure
based on a hazard matrix was defined to correlate the criticality levels forecasted by SIGMA and the
susceptibility classes provided by the map (further details in [41]). A multi-tier procedure was proposed
that could be used to assist civil protection agencies during alert phase to better define the areas that
could be affected by landslides. The coarser level of alert is the Alert Zone (typically thousands of
square kilometers) and it is connected to the expected magnitude of the event (i.e., number of triggered
landslides). The mid-resolution tier has territorial units as spatial units (typically hundreds of square
kilometers) and it is based on the exceedance of the rainfall thresholds. The fine-resolution tier is
addressed specifically to the municipalities (Figure 4) that are more exposed to landslide hazard
(typically tens of square kilometers) and the finest-resolution tier consists in a dynamic raster map
with 100 m × 100 m pixels highlighting where landslides are more likely to occur during each alert.
A back analysis showed that the proposed approach would have led to define a more accurate location
for 83% of the landslides examined, while 17% occurred in locations that would have been deemed as
stable by our approach.

3.4.3. Soil Moisture

The constant struggle to improve SIGMA effectiveness brought our error analyses to reveal that
most of the false alarms were issued when long-period rainfall accumulation was taken into account.
After years of calibrations and fine-tunings, it stood clear that SIGMA approach allows identifying
landslides with complex hydrologic response at the cost of issuing a not negligible number of false
alarms. A series of tests was therefore performed to check the feasibility of incorporating soil moisture
in the warning system. This represented a major change in the philosophy of the rainfall threshold
model but it was supported by a new perspective brought into landslide studies by novel approaches
focused on hydrologic issues [42,43]. Indeed, in rainfall threshold studies, long-period antecedent
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rainfall has always been used as a proxy of the antecedent soil moisture conditions; therefore, the idea of
incorporating directly soil moisture data into the warning system has a robust background, although it
is quite unexplored in RSLEWS and is limited to few case studies mainly related to remotely sensed
measures (e.g., [7]). In our case study, the major challenge was the application of this theory to a
warning system where a reference rain gauge actually monitors a large territorial unit. Following the
same approach used for temperature data in the snow melting/accumulation module, we considered
soil moisture conditions averaged over each territorial unit and we found an empirical correlation
between soil moisture values and landslide triggering at the TU scale. Segoni et al. [44] described in
detail this approach and demonstrated that it could be easily used to reduce both false alarms and
missed alarms. Unfortunately, this feature has not been implemented yet in SIGMA, because the
real-time use of soil moisture data is not available for the whole study area.Water 2018, 10, x FOR PEER REVIEW  11 of 17 
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3.4.4. Comparison with other Rainfall Threshold Models

The search for conceptual improvements of the rainfall threshold model brought us to
question if SIGMA model would be outperformed by rainfall threshold model of different typology.
Since intensity and duration are since long ago the most used rainfall parameters do define
rainfall thresholds [9,29,45,46], an alert zone was selected to compare SIGMA with a state-of-the-art
intensity-duration model. This test is described in detail in [35]. The main outcomes of the quantitative
comparison of the forecasting effectiveness of two models demonstrate that in the selected alert zone
SIGMA performs better than an intensity-duration (I-D) approach (the likelihood ratio was 89.8 with
SIGMA and 51.3 with the I-D threshold). This result is connected with the quantity and typology
of data and the physical features of the study area and from our perspective were encouraging: the
influence of antecedent rainfall in low permeability terrain and deep-seated landslides led the I-D
threshold to a poor performance and demonstrated the robustness of the SIGMA approach.

3.5. Summary of Main Results

Table 3 summarizes the main results obtained with the workflow explained in the previous
sections. It is worth to notice that while some of the improvements led to effects generalized in the
whole study area, some others address very specific scientific issues and therefore they led to localized
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effects, improving the RSLEWS only in some TUs. In the latter case, the most relevant occurrences are
reported in Table 3.

Table 3. Summary of the main results of the work.

Problem Analysis Implemented Solution Results Reference

Need to establish a
RSLEWS.

At this time, only rainfall
data are available, a

complete catalogue of
dated and geo-registered

landslides is not available.

Rainfall thresholds based
on a statistical analysis of
daily rainfall time series.
Regional agency starts to

organize a database of
landslide occurrences.

A prototypal version of
SIGMA is implemented

and run daily.
[28]

After some years of
monitoring and

validation, SIGMA
effectiveness is
deemed poor.

The decisional algorithm is
too simple. Need to

account for landslides
seasonal variability. Need
to account for thresholds

spatial variability.

The decisional algorithm
is modified and accounts
also for the seasonality.

Thresholds are different
in each TU and

calibrated against well
documented landslide

events. SIGMA is
implemented and

operated daily.

The forecasting
effectiveness improves:

likelihood ratio increases
from 8.38 to 16.43. In the

test period 2004–2007,
false alarms are reduced

from 845 to 562 in the
whole region.

[24]

Errors are present
that cannot be

adjusted with the
calibration
procedure.

Snow melting processes
are involved in some

missed alarms and snow
accumulation processes

are involved in some false
alarms.

Implementation of a
snow

melting—accumulation
module. A daily check

on air temperature turns
it on/off, modifying the
rainfall equivalent before

comparison to
thresholds.

The implemented snow
module reduces errors in
mountainous TUs, e.g.,
in TU 15, the number of
correct alarms increased

from 83 to 105.

[39]

Errors are still
present.

The original
configuration of

the system
(reference rain

gauges, TU
borders) is
discussed.

The number of collected
landslides has greatly

increased and now allows
a thorough calibration and

further tests.
Some contour conditions
were verified and tuned.

New threshold
calibration against a
greater number of

landslides.
Increased TU number.
The effectiveness of all

available rain gauges has
been tested and some
reference rain gauges

were changed.

Performance indicators
increase: the global

likelihood ratio is now
17.01. The higher

number of TUs allows a
finer spatial resolution.

[31]

Need to fulfill the
regional and

national rules.

Alert levels should be
issued at the AZ scale and

should be related to the
expected event magnitude.

SIGMA outputs in each
TU are aggregated at the
alert zone level (with a

weighted mean) to
forecast the number of

expected landslides.

Higher significance of
the 17.01 likelihood ratio,
because now obtaining a

correct prediction is a
harder task.

[31]

SIGMA provide a
coarse spatial

resolution.

Temporal forecasts are
good, but spatial

resolution is poor because
AZs are very wide.

Conversely, susceptibility
maps are static products
providing a fine spatial

prediction.

A susceptibility map is
produced and integrated
with the SIGMA outputs.

A multi-tier approach is
proposed to identify the
spots where the spatial
probability of landslide

triggering is higher
during a forecasted

event.

[41]

In literature
Intensity-Duration
Rainfall thresholds
are the most used

An Alert Zone is selected
to compare SIGMA with a
state-of-the-art I-D model

and check if SIGMA
would be outperformed.

None. SIGMA remains
unchanged.

In the selected test site
SIGMA performs better

than the ID approach
(the likelihood ratio is

16.5 and 6.5,
respectively).

[35]
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Table 3. Cont.

Problem Analysis Implemented Solution Results Reference

Climate
modifications

trends may
influence the

effectiveness of the
model.

An alternate version of the
model, based on shorter
and more recent rainfall
time series, is compared

with the original one.

Future rain gauges
network re-organizations

should maintain the
“oldest” measurement

stations, since long time
series help forecasts.

On average, the original
model performs better (lr

20.74 instead of 20.43).
Rain gauges with very

long time series perform
better, especially in the

western mountain
sectors (TU 14, 17 and 20

have +6 lr).

[38]

Can errors be
reduced further?

Some errors are systematic:
they occur in particular

conditions of soil moisture.

An alternate approach
replacing antecedent

rainfall with averaged
soil moisture values is

tested.

False alarms are reduced
by 15% and missed

alarms are reduced by
22%.

[44]

4. Discussion

The described case study emphasizes that the quantity and quality of the input data are of
paramount importance in establishing an effective model for the landslide triggering modeling and
forecasting. Indeed, the described experience shows that the larger the quantity of rainfall and landslide
data of good quality, the higher the forecasting effectiveness of the model. In many territories around
the world, dozens or hundreds of landslides occur every year; therefore, the absence of landslide
data is a problem that can be overcome on the long run if new occurrences are thoroughly mapped
and catalogued. Meanwhile, prototypal versions of the model can be set up, even if their predictive
capabilities are weak at the beginning: in those cases, the objective of the first steps of the research is
not to achieve a good forecasting effectiveness, but it is defining a conceptual model and building the
architecture of the EWS (Early Warning System). The performances will be enhanced in the future,
when a critical mass of data will be available.

However, the collection of data and the continuous updating and fine-tuning of the threshold
model cannot be regarded as the definitive answer to eliminate all errors and achieve a 100%
perfect forecasting effectiveness. Our experience taught us that this approach allows reducing errors,
but only until a certain point; afterwards, some conceptual improvements are needed. Models are a
simplification of reality and statistical rainfall threshold models are maybe the models of the simplest
kind: when landslide triggering includes more complex phenomena than a straightforward response to
intense precipitation, a more hydrologically-driven approach is necessary to ameliorate the forecasting
effectiveness [42] (e.g., including temperature monitoring to account also for snow-related processes
or encompassing also soil moisture data).

As can be argued from the workflow established in the present case study, an essential stage of
the research is a periodical quantitative validation of the threshold model. A recent review of the
international literature [9] stressed that unfortunately a quantitative and rigorous validation of rainfall
thresholds is seldom proposed; however, our study demonstrates that a validation process is necessary
to reach different objectives:

• Measuring the reliability of a model and assessing if it is ready to be implemented in an
operational EWS;

• Identifying systematic errors (to be successively fixed with model improvements);
• Comparing different versions or different settings of the model in order to select the configuration

that provides the best forecasting effectiveness;

From our case study stood out clearly that a RSLEWS should not be considered as a research
product to be defined once and for all, delivered and used carelessly for an indefinite period of
time. On the contrary, it should be regarded as a dynamic product that changes, adapts to new data,
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new needs and new circumstances and improves through time. The changes progressively occurred to
the decisional algorithm of SIGMA well illustrate the concept of “dynamic” RSLEWS. The time span
considered to cumulate rainfall depths has been gradually adjusted and reduced: the short period of
cumulates were initially conceived as 10-day cumulate. To reduce false alarms, it was subsequently
reduced to five days and, finally, to three days (currently employed configuration). The long period
started with 365 days, then it was reduced to 245 days, subsequently it was split into 60 days for the
dry period and a variable length for the rainy season, while the latest experiments suggested that it
could be completely discarded in favor of soil moisture measures.

Therefore, when stakeholders and researchers plan the definition of a RSLEWS, an extended
long-term research program would be needed to encompass at least also a quantitative validation, an
error analysis and periodic updates and improvements.

5. Conclusions

We described the development process of a regional scale landslide early warning system
operating in Emilia Romagna (Italy), from its birth to the present setting, through over a decade
of operational employment. This case study taught us several lessons that could be conveniently
exploited in other cases of study:

• A prototypal RSLEWS can be implemented even if a complete archive of landslides is not available.
• The setting up of a RSLEWS should be conceived as a long-term objective, to be reached by a joint

effort between researchers and local administrators involved in hazard management.
• The collaboration between these two different sectors should be formalized with long-term

framework programs of applied research, where year by year the research activities are addressed
by operational needs and defined on the basis of short-term objectives.

• The RSLEWS should be constantly validated and an error analysis should be periodically carried
out to find systematic errors and to study possible solutions.

• A quantitative evaluation procedure should be used not only to validate the various versions
of the RSLEWS, but also to: (i) compare the effectiveness of different versions of the model;
and (ii) objectively test and identify the best scientific and operational solutions that deserve to be
implemented in the operational version of the RSLEWS.

• A constant effort to establish a workflow of constantly updated data (rainfall measures, landslide
occurrences, and other potentially useful environmental data) is of paramount importance to
achieve good results.

In our case study, this process has led to an evolution of the warning system and to a tangible
improvement of its forecasting effectiveness. The main upgrades reviewed in this paper concern:
periodic re-calibrations of the thresholds against increased and updated datasets, development of a
computation module accounting for snow melt/accumulation processes, fine tuning of the algorithm,
fine-tuning of the contour conditions of the system (e.g., boundaries of the territorial units and rain
gauges selection), establishment of a correspondence between alert levels and magnitude of the event
(i.e., number of landslides expected), use of soil moisture data, and integration with a landslide
susceptibility map to improve the spatial accuracy of the model.

Landslide forecasting at regional scale is a very complex task, over time, and with the systematic
gathering and analysis of new substantial data and continuous research, uncertainties can be
progressively reduced. Thus, forward-looking research programs can be set up that increase with time
the performance and reliability of regional scale warning systems.
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