
Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

PAVAL: A location-aware virtual personal assistant for retrieving
geolocated points of interest and location-based services
Lorenzo Massai, Paolo Nesi ∗, Gianni Pantaleo
University of Florence, Department of Information Engineering, Distributed Systems and Internet Tech lab DISIT Lab, Italy1

A R T I C L E I N F O

Keywords:
Virtual personal assistants
Location-aware recommender systems
Natural language processing
User-intent detection
Semantic web technologies
Geographic information retrieval
Geoparsing
Geocoding

A B S T R A C T

Today most of the users on the move require contextualized local and georeferenced information. Several
solutions aim to meet these trends, thus assisting users and satisfying their needs and preferences, such as
virtual assistants and Location-Aware Recommender Systems (LARS), both in commercial and research literature.
However, general purpose virtual assistants usually have to manage large domains, dealing with big amounts of
data and online resources, losing focus on more specific requirements and local information. On the other hand,
traditional recommender systems are based on filtering techniques and contextual knowledge, and they usually
do not rely on Natural Language Processing (NLP) features on users’ queries, which are useful to understand and
contextualize users’ necessities on the spot. Therefore, comprehending the actual users’ information needs and
other key information that can be included in the user query, such as geographical references, is a challenging
task which is not yet fully accomplished by current state-of-the-art solutions. In this paper, we propose Paval
(Location-Aware Virtual Personal Assistant 2), a semantic assisting engine for suggesting local points of interest
(POIs) and services by analyzing users’ natural language queries, in order to estimate the information need
and potential geographic references expressed by the users. The system exploits NLP and semantic techniques
providing as output recommendations on local geolocated POIs and services which best match the users’ requests,
retrieved by querying our semantic Km4City Knowledge Base. The proposed system is validated against the most
popular virtual assistants, such as Google Assistant, Apple Siri and Microsoft Cortana, focusing the assessment
on the request of geolocated POIs and services, showing very promising capabilities in successfully estimating
the users’ information needs and multiple geographic references.

1. Introduction

The recent rapid and growing diffusion of mobile devices and ICT
solutions has generated an increasing demand for retrieving specific in-
formation on local services in order to fulfill everyday users’ information
needs. For instance, retrieving information on points of interest (POIs)
like local food and drinking, accommodations, events, shopping spots,
entertainment, commercial and cultural activities, tourism attractions
etc., as well as public administrations and institutional facilities (public
transportation, healthcare etc.) has become a common information
demand, especially on the move. Therefore, users’ needs and require-
ments are increasingly moving towards Location Based Services (LBS),
experiencing a mobile environment which is often characterized by
dynamic and contextual information demands (Kumar, 2011). Quite
recent studies reported that about 25% of Web searches have local
intents (Palacio et al., 2015), and almost 20% of search queries contain

∗ Corresponding author.
E-mail address: paolo.nesi@unifi.it (P. Nesi).

1 http://www.disit.org, http://www.sii-mobility.org, http://www.km4city.org.
2 The name Paval is chosen as a permutation of the initials of ‘‘Location-

aware virtual personal assistant’’.

geospatial and temporal references, in addition to information related
to the search topic (Palacio et al., 2010). These percentages commonly
increase when we consider queries performed on the move.

Virtual Personal Assistants (VPA) are designed with the aim of
simplifying and improving our way to retrieve POIs, web resources
and help managing some daily activities by simply posing natural
language queries to intelligent agents. Examples of interaction with a
personal assistant are, for instance, asking how to find and reach specific
places, search and attend events, manage scheduled activities, receive
suggestions and recommendations, provide decision support, interact
with social media and commercial vendors and services, etc. (Cam-
pagna et al., 2017). In literature, a number of personal assistants and,
more specifically, systems addressing the recommendation of POIs from
Natural Language Processing (NLP) statements and requests have been
produced. Some of them are from the industry such as Google Assistant,
Apple Siri, Microsoft Cortana, IBM Watson (Ferrucci et al., 2010) and

https://doi.org/10.1016/j.engappai.2018.09.013
Received 15 January 2018; Received in revised form 7 June 2018; Accepted 16 September 2018
Available online xxxx
0952-1976/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.engappai.2018.09.013
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2018.09.013&domain=pdf
mailto:paolo.nesi@unifi.it
http://www.disit.org
http://www.sii-mobility.org
http://www.km4city.org
https://doi.org/10.1016/j.engappai.2018.09.013
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Amazon Alexa. Some research efforts have been also made to propose
intelligent agents and assistant solutions for narrower domains, such as
healthcare, education, entertainment and tourism. On the other hand,
though the above-mentioned tools from the industry have access to
huge amounts of data, the capabilities for the interpretation of the
user needs are often limited. Actually, most of these solutions, although
employing NLP and semantic search technologies (Kumar and Reddy,
2017; Nickel et al., 2016) do not provide yet a semantic with a sufficient
degree of expressiveness, supporting queries with limited complexity
and describing only the most common entity types (Uyar and Aliyu,
2015). Therefore, the above-mentioned systems are not always able to
understand the real information need or geographic intent expressed in
natural language queries, unless its meaning is explicit. Therefore, the
answers provided by current state of the art assistants are frequently a
generic resource, such as web pages which are only partially related to
the keywords extracted from the text query, thus not always supplying
geolocated results. Moreover, indexing and dealing with very large
amounts of data (both geographic and descriptive) may also lead to a
loss in precision rate for local resources retrieval (Nesi et al., 2016).

Recommender systems provide custom suggestions based on filtering
techniques on many different domains, topics and items, although they
are typically not designed to directly respond to natural language
queries. Only in recent years traditional recommender systems started
to take into account multiple dimensions, considering spatial dimension
and, specifically, local geographic information as a relevant aspect in the
users’ information needs. Actually, although there already exists a huge
amount of georeferenced data, users are usually interested only in local,
nearby contexts and resources (Rodríguez-Hernández et al., 2015).
The inclusion of the spatial dimension in recommendation systems
allows to obtain more effective suggestions, leading to a quite new
application field called Location-Aware Recommender Systems (LARS).
LARS applications take into account the spatial properties (locations) of
users and/or items.

Geolocated data and geographic entities play an important role
in most of our daily activities. Geographic-aware search is especially
important for location-based services where a user in a mobile environ-
ment might have dynamic and contextual information demands (Kumar,
2011). For this purpose, many solutions for Geographic Information
Retrieval (GIR) have been investigated and proposed. This area of In-
formation Retrieval (IR) deals typically with unstructured textual data,
exploiting NLP and semantic based techniques for geographic entities
extraction (Buscaldi et al., 2006; Nesi et al., 2016), and disambiguation
(Buscaldi and Rosso, 2008). Moreover, in order to go beyond what is
typically covered in current GIR solutions, it is important to extract
explicit geographic information as well as to estimate users’ implicit
geographical needs. Actually, from past research there is the evidence
that only about 50% of queries expressing a geographical intent or
need (i.e., queries where the users expect geolocated results) contains
explicit location names (Welch and Cho, 2008). Besides, among all the
potential named entities or unstructured natural language data which
may contain implicit geographic information, different localization
capabilities can be addressed. For instance, queries containing keywords
like ‘‘restaurant’’ or ‘‘cinema’’ usually imply local, nearby information
needs (so that the users’ contextual information, e.g., the GPS position,
IP location, profile data etc., can be used to better focus on specific local
requirements), while other keywords like ‘‘hotel’’ or ‘‘highway’’ do not
necessary mean a demand for local resources, so that they may contain
an implicit geographic intent with weaker localization capabilities (Yi
et al., 2009).

1.1. Related work

Our review of the state of the art is focused on three distinct and
related research areas: VPA, LARS and GIR, as defined above.

1.1.1. Virtual personal assistants
In current literature, there is still lack of virtual agents and assistants

which fully respond to queries and execute actions and commands in
natural language, whereas an effort to build a comprehensive cross-
domain virtual assistant has been made by Campagna et al. (2017)
with the Almond project, based on Thingpedia, a crowdsourced public
Knowledge Base accessing open APIs, Internet of Things and natural
language interfaces. Personal assistants may provide a wide range
of services and fulfill a high variety of tasks, based on user inputs,
on location and other sensors-based information, as well as on the
ability to access information from online resources (Madhusudhanan
and Subramaniyan, 2016). This approach suggests the development
and implementation of modular architectures for this kind of complex
systems, integrating different aspects and functionalities such as natural
language interfaces for human–computer interaction (Matsuyama et al.,
2016), web based search engines, geographic location-awareness, social
media management, data analytics and statistical frameworks, semantic
technologies (Bellandi et al., 2012), inference and reasoning, decision
support (Heredero et al., 2013) and recommendation features (Tavčar,
2016). The most important IT companies have proposed their own
solutions, such as Google Assistant by Google, Siri by Apple, Cortana
by Microsoft, Watson by IBM and Alexa by Amazon; besides, other
open source solutions exist, like Mycroft and Lucida. These tools usually
index huge amounts of data (both geographic and descriptive) which,
although covering a wide range of domains, may lead to a degradation of
precision rates evaluation for local resources retrieval. Research efforts
have been recently made to propose intelligent agents and assistant
solutions for more restricted and specific domains, such as education
(Harvey et al., 2015), entertainment (Gordon and Breazeal, 2015),
healthcare (Ahamed et al., 2006) and tourism-based services (Tavčar,
2016). In most of the cases, these systems are not able to understand
the meaning of complex phrases, as well as sentences with tacit meaning
underneath, and most of the times they provide general and not always
geolocated resources as results, such as web pages, behaving like tra-
ditional web search engines. To estimate the purpose of a web request,
an intent classification from query log analysis is analyzed by Broder
(2002) and further refined by Rose and Levinson (2004) which have
provided a classification into navigational, informational and transactional
queries. According to Jansen et al. (2008) it is also possible to classify
70%–80% of the queries in one of the above categories, with a high
degree of confidence, considering non-multiple-intent queries only.

1.1.2. Location-aware recommender systems
Traditional recommender systems usually do not implement NLP

features, and they are typically classified into collaborative filtering,
content-based and knowledge-based. Collaborative filtering recommender
systems provide suggestions and predictions of what a user needs
or likes based on the similarity among his/her actions, preferences
and feedback with the ones of other users (Bhagwani et al., 2016).
Content-based recommender systems generate recommendations and
best-matching items based on users’ past experiences and preferences
(Lops et al., 2010), without involving other users’ contextual infor-
mation. Knowledge-based recommender systems produce advices ac-
cording to external knowledge resources, users’ preferences and the
characteristics of the required items or services (Husain and Dih, 2012).
According to the literature review, only in the last few years we are
assisting to an extension of these tools towards LARS, allowing the
production of suggestions which are more focused on meeting users’
local needs, thanks to the implementation of specific location-aware
features (Noguera et al., 2012). LARS approaches also may often be
collaborative, allowing users to submit location-based ratings (Mathur
and Bairagee, 2016). Recommender systems providing location-based
features have been proposed for several specific domains. In the e-
Tourism field Clements et al. (2011) present a solution that suggest
touristic POIs and travel plans on the basis of the users’ visiting history,
exploiting a location similarity model among different locations to plan

71

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

a visit to a new place. It uses a set of geotags to measure similarity among
locations and has been evaluated only at country and city scale. In the
field of e-commerce, Yang et al. (Yang et al., 2008) implemented a LARS
for mobile shopping which provide recommendations of vendors that
are in the user’s neighborhood. CityVoyager (Takeuchi and Sugimoto,
2006) is a recommendation system for local shops based on user’s GPS
location history. The production of suggestions is based on locations
of the shops previously visited by each user. All these systems produce
suggestions taking into account profile information, as well as prefer-
ences, ratings, feedbacks, interactions with other users etc.; however,
this may not always be sufficient to accomplish a generic user’s need at
the moment, which require a deeper investigation that may be provided,
for instance, by NLP based analysis of users’ queries.

1.1.3. Geographic information retrieval
LBS provide relevant information, suggestions and recommendations

according to the user’s current location using geospatial information
(GPS position) and intelligent applications (Husain and Dih, 2012),
relying usually on GIR solutions. Any typical GIR approach has the goal
of identifying and unambiguously associating toponyms extracted from
text with geographic locations, being also capable of dealing with Word
Sense Disambiguation (WSD) (Palacio et al., 2015). One of the main
current gaps in the state of the art which we aim to contribute with the
system proposed in this paper is the ability to reliably understand and
extract geographic references from an unstructured user query (e.g.: the
question ‘‘Where can I find a restaurant near to Baker Street?’’ contains
a geographic reference to the London metropolitan area, in the UK).
Correlated to this issue is the handling of different levels of geographical
intents, often conveyed in the expressiveness of natural language (for
instance, in a query like ‘‘Which is the nearest bus stop to Piazza San
Marco, in the central district of Florence, in Italy?"). Some efforts have
been previously made by Yi et al. (2009), who use language modeling
to determine the implicit locations and geographic references in queries,
considering only geographic granularity at city-level. Moreover, the
GeoCLEF community has proposed, since 2008, a geo-query parsing and
classification forum (Mandl et al., 2008), with the aim of retrieving
explicit geographic references in users’ queries, providing also a clas-
sification of query types in order to better contextualize users’ natural
information needs.

The study of the current state of the art highlights the lack of systems
exploiting a deep and unambiguous understanding of the semantics
of the user’s query, either for simple and complex sentences, more
conveniently without exploiting user profiling (which may present
drawbacks such as the cold start problem, (Hossein et al., 2014)), besides
providing a level of information detail that is sufficiently specific for the
purposes intended in this paper. Also, according to the direction of LARS
systems on meeting users’ local needs, a mechanism should be provided
for reliably retrieving geographic data at multiple levels of geospatial
resolution from the user query.

1.2. Aim of the paper

The system proposed in this paper is Paval (available at https:
//paval.disit.org/Paval/), a location-aware virtual personal assistant
focused on suggesting local POIs and services. Paval is intended to
be used mainly on the move, e.g., while driving or in a situation of
emergency, giving the user the ability to express an actual need neither
knowing what kind of service he/she needs, nor how to reach it (see
Fig. 1a). Paval aims at understanding natural language queries exhibit-
ing a generic everyday information need, with the goal of estimating
the most suitable kind of service to suggest and to recognize potential
geographical references (see Fig. 1b). In order to better contextualize
the suggestion of results, Paval focuses on the users’ specific local needs.
The system provides as output a list of suggested geolocated POIs and/or
services which best match the estimated user’s necessity (see Fig. 1c).
Local POIs and services are retrieved exploiting the Km4City Smart City

Knowledge Base (Bellini et al., 2014). The Km4City semantic RDF repos-
itory has been designed and implemented at DISIT Lab by integrating
open and private data by local Public Administrations of the Florence
Municipality and the Tuscany Area, in Italy, together with several
heterogeneous kinds of historical and real-time data related to Smart
City areas. Some of the areas covered by the Km4City KB are public
and private transports, POIs, commercial activities and services, events,
public administration and healthcare facilities, detailed local toponyms
(streets, roads, squares etc.), as well as several data types provided by
sensors, e.g.: air quality monitoring, traffic density, public parking lots
status, etc. The Km4City Knowledge Base does not index an amount of
data as huge as those handled by some of the major IT companies above
mentioned, anyway it provides a very accurate local data coverage and
expressiveness (Nesi et al., 2016), also thanks to careful reconciliation
and quality improvement on indexed data. The Km4City ontology is
also used in a preliminary phase to the execution of Paval for building
a semi-supervised custom reference corpus constituted by lists of words
semantically related to a subset of the Km4City taxonomy, describing a
wide range of local POIs and services. The obtained corpus represents
a focused-domain semantic resource which is used by the system as a
reference for classifying keywords and keyphrases extracted from the
input textual query, in order to estimate the user information need. In
this sense, our approach is different from other semantic frameworks
based on external knowledge, which rely mainly on reference or training
corpora generated from full dumps of online general-purpose and non-
specialized resources such as Wikipedia or Dbpedia, often dealing with
a high level of noise, unresolved ambiguities etc. The proposed system
aims at going beyond the current state of the art by understanding the
semantic context and latent user intents expressed in the user query, as
well as handling multiple levels of geographic references.

The main aim of the present paper is to answer the questions posed
in Fig. 1b through the Paval engine. To our knowledge, after a review
of the current state of the art, the main original contributions of our
system are the following:

– Understanding the users’ query at level of information needs and
geographic intent, without relying on user profiling.

– Comprehension of multiple levels of geographic intents, estimat-
ing if the input query expresses a user’s need in the neighborhoods
of the user’s position, or instead in proximity of other geolocated
references recognized and extracted by the system from query text.

– Use of a custom reference corpus to classify relevant keywords and
related synsets extracted from natural language queries, following
the semantic hierarchy of the Km4City Knowledge Base, which
includes a taxonomy for classes describing city elements, POIs,
commercial activities and services, attractions etc.

– Word Sense and context disambiguation based on different weight-
ing of relevant keywords (extracted from the input query) with
respect to their Part-Of-Speech (POS), and on a semantic related-
ness score assigned to reference corpus terms on the basis of term
occurrences extracted from descriptive data contained within the
Km4City Knowledge Base.

– Use of the local Km4City Smart City Knowledge Base to retrieve
geolocated items (POIs, services etc.) to be provided as results.

The rest of the paper is organized as follows: Section 2 illustrates
the functional architecture of the proposed system; in Section 3, the
performance analysis is reported together with the validation of the
system and the user front-end for validation; finally, Section 4 reports
conclusions.

2. External knowledge and system architecture

The architecture of the proposed system exploits NLP and semantic
technologies, aiming at understanding the meaning of the user intent,
taking into account the possible presence of multiple geographical
references and thus estimating if the information demand is intended

72

https://paval.disit.org/Paval/
https://paval.disit.org/Paval/
https://paval.disit.org/Paval/

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Fig. 1. Fulfillment of an everyday user’s information need.

in the neighborhoods of the user, or instead in proximity of other
places or geolocated items. Hence, the system input is represented by
the user’s natural language query and, if allowed, by the user’s GPS
position. The input can be specified and submitted to the system through
a web user interface which implements the basic servlet functionalities
and forwards it to the inner processing modules. The detection of geo-
graphical references uses NLP techniques for geographic entity parsing
(geoparsing), while the retrieval of geolocated data, i.e. the association
of a latitude and longitude tuple for each extracted geographic item
(geocoding), is performed by querying the semantic Km4City repository,
exploiting our Km4City Smart City API (Badii et al., 2017). A list of
retrieved POIs and services, which are estimated to best meet and satisfy
the user’s needs, is provided as output.

2.1. External knowledge and resources

The system exploits the following external knowledge and third-
party tools for NLP and semantic expansion-based tasks:

– the Km4City ontology model and data (Bellini et al., 2014) ac-
cessed through the Km4City Smart City API (Badii et al., 2017);

– the GATE framework (Cunningham et al., 2002), in particular the
ANNIE plugin for natural language analysis, mainly POS-tagging
and pattern matching for extracting geographic entities;

– the semantic network Babelnet (Navigli and Ponzetto, 2012) to
provide query expansion in the Service extraction phase;

– Wordnet (Fellbaum, 1998), accessed by the Datamuse API inter-
face (Datamuse API), to generate the lists of semantically related
terms in the Reference Corpus Generation phase;

– Google Geolocation APIs to provide user GPS geolocalization;
– the Yandex online translator APIs (Yandex).

In addition, the Reference Corpus Generation module is designed
and realized (as described in Section 2.1.1) as an original contribution
to produce the Target Expansion lists, a reference corpus which is used
by the Service Extraction module (Section 2.2.1). The generation and
organization of external knowledge and resources employed by Paval
is shown in Fig. 2: in the gray area all the external knowledge and
resources employed by the Paval architecture are represented. The
resources outside the gray area are the static resources generated in
the preprocessing phase (which are made available for research purpose
at: http://www.disit.org/paval/pavalsources.rar). The yellow arrows
denote an API call, while the blue arrows denote the data flow.

2.1.1. Reference corpus generation module (target expansion)
The proposed system firstly involves the creation of a target corpus

which allows to semantically describe and contextualize a wide range
of POIs and service categories. It is to be noticed that this operation is
performed una tantum, as a training step dedicated to the creation of the
semantic resources later used for the estimation of the information need
expressed by the user. The result of this phase is represented by a set of
lists containing keywords that are semantically related to the labels of

the Km4City ontology classes representing the service categories within
which are instantiated local POIs and services, commercial activities,
public administration and healthcare facilities, public transportation
lines and stops, cultural activities, events etc.

The strategy adopted to build the lists is the following: the module
receives as input the label strings of the Km4City classes; each label is
then semantically expanded by querying the Wordnet database through
the Datamuse API with respect to each Wordnet semantic relation
(hyponymy, hyperonymy, synonymy, antonymy, meronymy). The ex-
panded keywords obtained are grouped together in lists. Afterwards,
in order to improve robustness for the resulting expanded datasets,
keywords are lemmatized, and an additional manual annotation is
performed as a quality improvement (e.g., adding semantically relevant
keywords obtained from external resources, such as ad hoc crawled web
sites, which is the case of keywords extracted from restaurant menus
that are added to the Restaurant service category list).

Using such a semi-supervised process, a set of lists is obtained, consti-
tuted by words that are semantically related to the labels of the Km4City
classes describing service categories (a total of 528 classes), preserving
the semantic hierarchy built-in in the Km4City taxonomy (e.g.: the
Km4City WineAndFood class is the parent of several child classes, such
as Restaurant, Bar, SushiBar, TakeAway, etc.; the class Entertainment is
parent of child classes like Cinema, Pool, Discotheque, etc.). Stop words
such as prepositions, conjunctions, articles and punctuation are pruned,
and finally the words contained in each list are weighted by assigning
them a measure of their semantic relatedness respect to the class label.

As a result, a reference corpus composed by 528 documents, corre-
sponding to the names of the categories of the Km4City taxonomy, is
produced and used as target documents where to retrieve the keywords
extracted from the user’s query in the Service extraction phase (see
Section 2.2.1).

2.2. System architecture

The architecture of the system, which is depicted in Fig. 3, articulates
into three main modules (the colors of the inner modules in Fig. 3 recall
the steps of fulfillment of users’ information needs, shown in Fig. 1b):

• The Service extraction (described in Section 2.2.1) module is
devoted to the estimation of the kind of service which best matches
the user’s information need, based on NLP and semantic analysis
of input text. To this goal, this module deals with the extraction
of relevant keywords and POS tags from the user’s queries, their
semantic expansion and their classification against the semantic
resources obtained in the Reference Corpus Generation phase.

• The Location extraction (Section 2.2.2) module is committed
to detect potential multiple geographic references contained into
the user query. If any geographic reference is found, the present
module queries the Km4City repository in order to retrieve the
corresponding latitude and longitude tuple.

73

http://www.disit.org/paval/pavalsources.rar

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Fig. 2. Generation and organization of external knowledge and resources. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

• The Geolocated data retrieval (Section 2.2.3) module is ded-
icated to retrieve the actual local data (POIs, services etc.) to
be provided as final results, by querying the Km4City repository
on the basis of the kind of service and geographical references
estimated by the previous modules. A list of POIs belonging to
the estimated service category is provided, ordered by increasing
distance with respect to the user’s position (if present) or with
respect to any geographic reference (if detected by the system).

2.2.1. Service extraction module
The Service extraction module is instantiated every time a query is

submitted by a user. The working flow of the present module is divided
into three steps:

– The first one is the relevant keywords extraction phase, which
aims at extracting from the user phrase POS-tagged keywords
which convey semantic significance to the phrase itself.

– The second step is the query expansion and disambiguation
phase, in which each keyword extracted in the first step is ex-
panded into a vector of semantically related words called a synset,
and different weights are assigned to words based on their POS.

– The third step is the election of a service as the user need. In
this step, the synsets of keywords provided in the previous step
are classified against the Target Expansion lists produced in the
Reference Corpus Generation module (Section 2.1.1). A majority
voting algorithm is implemented to calculate and provide, for each
list, a score obtained by summing the weights of all the extracted
keywords and their corresponding synset terms which are found
to be present in the list itself. Finally, the service category which
best matches the user’s need is estimated as the label of the list
with the highest score.

The combination of these three phases leads to a hybrid approach
which improves the retrieval based only on query expansion, providing
specific target documents where to retrieve the expanded words. The
problem is thus reduced to a ranking classification method, based on
the weights of all the expanded keywords within the generated lists.
Relevant keywords are extracted from the user query using a GATE
pipeline containing the default tokenizer, a sentence splitter, ruleset
and lexicon, and the ANNIE plugin which allows to define patterns and
rules (through the dedicated Jape library, a Java Annotation Pattern
Engine) to be extracted in the analyzed text. The Treetagger annotation
tool (Schmid, 1994) is also added to the processing pipeline for POS
tagging. Token identification is later used to filter relevant keywords
and to associate different weights to different parts of speech in the
subsequent phase, which is devoted to service category estimation. Stop

words, such as prepositions, conjunctions, articles and punctuation are
filtered out.

In order to enrich the expressiveness and the understanding capabil-
ities of the whole framework, the system performs a semantic expansion
of all the relevant POS-tagged keywords extracted from the input query,
and then the most likely senses are chosen by a weight-based strategy,
as described in the following. Such a query expansion procedure is
performed exploiting the Babelnet semantic network, automatically
expanding each extracted keyword into a distinct synset of semantically
related words. Each term composing the synsets is also associated with
a different weight, giving more relevance to the keywords originally
contained in the query with respect to the other related words, as well
as to verbal tokens.

Disambiguation among phrase senses is entrusted mainly by fol-
lowing a two-phase strategy. The first phase is performed a priori, in
the Reference Corpus Generation phase, by assigning different weights
to terms included in the Target Expansion lists based on a semantic
relatedness score with respect to the label of the list containing them
(Fig. 4).

The semantic score for each word is obtained by extracting the
normalized frequencies of all of the target expansion words from local
services names, descriptions, commercial sectors, etc. from crawled up-
to-date dumps of the Km4City data containing all instances of classes
describing POIs and services (Algorithm 1).

Algorithm 1 returns a list of words related to a Km4City category
label and the corresponding relatedness score. Our reference corpus is
constituted by these lists. A score of the semantic relatedness between a
word and its domain can also be obtained using the Babelnet framework,
not without some issues: one of them is mapping the Babelnet domains
into the Km4City taxonomy; also, the high rate of false negatives which
has been observed in our experiments by employing this solution is
one of the major reasons that led us to a self-designed strategy. To
manage the problem of sense disambiguation of the extracted terms, an
alternative disambiguation method based on the Lesk algorithm (Lesk,
1986) has been also developed using Babelnet domains as senses; since
this solution did not provide significant improvements to the overall
retrieval performance and quality of the system which may justify the
corresponding computational cost, it has not been included in the system
architecture.

The second phase of our sense disambiguation strategy deals with a
POS-based weighting method, consisting in assigning different weights
to extracted keywords based on their POS. Specifically, a double weight
is assigned to keywords originally extracted from the input query (with
respect to the related ones contained in the semantically expanded
synsets) and to verbal tokens. Actually, verbs have been found to be
particularly useful estimating different action intents associated with the

74

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Fig. 3. Paval architecture.

Fig. 4. Example of corpus terms weighting.

expressed information need, thus being also useful to understand and
disambiguate the whole context meaning. In the case of a user phrase
containing polysemic terms, as well as nouns which are related with
more than one service (as a conceptual domain), the role of the verb is
crucial to decide the correct kind of service.

For example, let us define Phrase1: ‘‘I’d like to buy some meat ’’;
this is slightly different with respect to the sentence ‘‘I’d like to eat
some meat ’’, which we refer below as Phrase2. However, in terms of
the service to be retrieved there is a tangible difference, because the
first one most likely expresses the need for data within the Meat and
poultry category, while the second expresses the need for data within

Table 1
Verbal token boost example for service category retrieval.

Restaurant list Meat and poultry list

Word
lemmas

Normalized
weight

Boosted weight
(Verbal Tokens
only)

Word
lemmas

Normalized
weight

Boosted weights
(Verbal Tokens
only)

Buy 0 0 Buy 0.10 0.20
Eat 0.24 0.48 Eat 0.03 0.06
Meat 0.04 0.04 Meat 0.32 0.32

the Restaurant category. To better clarify how the proposed system
can handle these situations, let us consider the Phrase1 and Phrase2
examples. The details shown in Table 1 are an excerpt taken from the
Target Expansion lists obtained in the Reference Corpus Generation
phase for the service categories Restaurant and Meat and poultry and
represent the relevant words lemmas contained in both Phrase1 and
Phrase2 and their corresponding normalized weights (Table 1).

The normalized weight of each word relates to each list obtained
through Algorithm 1: e.g. the word meat is found to have a normalized
weight of 0.04 within the list Restaurant ; we consider this weight as a
score of the semantic relatedness between the word meat respect to the
word restaurant. During the second phase the score of verbs is doubled,
together with the score of the words directly extracted from the user
query.

In this case, if no boosting strategy was applied to verb weights, the
comparison among the classification of terms extracted from Phrase1

75

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

(here considered without query expansion for simplicity, without loss of
generality) and the Restaurant list will yield a weight score sum of 0.04,
while the match with the Meat and poultry list will have a score of 0.42,
thus electing the latter list, as expected. However, considering Phrase2,
the classification of terms extracted from Phrase2 and the Restaurant list
will yield a weighted score sum of 0.28, while the match with the Meat
and poultry list will have a score of 0.35, leading to the election of the
Meat and poultry list, which would not satisfy the user need expressed
by Phrase2. By applying a weight boost to verbal tokens, the outcome
for the first comparison is the same; however, for the latter comparison
it is obtained a score of 0.52 for the Restaurant list, and a score of 0.38
for the Meat and poultry list, leading to the election of the Restaurant
list, which is the expected outcome.

The election of the service is performed by computing the sum of the
weights of all the expanded query terms that are found into the Target
Expansion lists obtained in the Reference Corpus Generation phase
(Section 2.1.1). The list with the highest rank (i.e., with the highest
weights sum) is considered as the elected service category (represented
by the corresponding class in the Km4City Knowledge Base). If more
than one category has the same highest score, each one is likewise
designated for the final output.

The problem of extracting the information need from the user query
and mapping it to a corresponding service thus is treated as a multi-
classification problem, using the service categories labels of the Km4City
Knowledge Base as classes. The elected class labels are later used in
conjunction with the GPS user position (if enabled) or any estimated
geographical reference item (estimated as explained in Section 2.2.2)
to query the Km4City Knowledge Base (see Section 2.2.3) and provide,
as final result, a list of the most relevant (i.e., the nearest) instances
(POIs, commercial activities and services etc.) for each elected service
category.

2.2.2. Location extraction module
In addition to the estimation of the kind of service that can satisfy

the user need, the system also aims at programmatically recognizing
geographic references from the user phrase. This module is dedicated
to extract sequences of words which may potentially represent geo-
graphical locations from the user query (geoparsing phase) and associate
them to a latitude and longitude tuple (geocoding phase). These tasks
are carried out by following a hybrid approach: firstly, the input text
is parsed to detect location candidates. If found, such candidates are
searched in the reference Km4City Knowledge Base (specifically, within
the sub-graph related to toponyms including streets, roads, squares and
other city elements which are detailed at street number resolution), to
check whether there is an exact match or not with an actual location
name. Whenever this strategy is not able to univocally recognize a
geographic location name, more coarse-grained NLP techniques are
applied; for instance, this may be the case of incomplete or misspelled
toponyms, that may include abbreviations and acronyms (which are
frequent, for example, for street names), punctuations etc. Therefore,
this methodology provides a dynamic fine-to-coarse technique which
uses a stronger or weaker match strategy based on the detail of the
detected geographical reference. Once the geoparsing phase is com-
pleted and a location is recognized, the geocoding phase provides the
corresponding geographical coordinates from the Km4City repository.
The module finally outputs the tuple formed by the extracted geographic
location and its corresponding latitude and longitude values.

The initial geoparsing phase is carried out by defining the following
Jape rules, executed in the GATE pipeline and integrated with specifi-
cally designed logic, through which the proposed system is able to detect
and manage multiple geographic user intents at different resolutions
(municipality, district, street and road element, up to street number
resolution):

Fig. 5. Location patterns defined to estimate geographical locations.

• The FindLocation rule seeks for location candidates at higher
spatial resolution (at district or street level), that is a generic
named urban entity or city element, such as a street, a road,
a square etc., looking up for an exact pattern match between
a geolocation candidate, extracted from the input query text,
and a gazetteer of street toponyms extracted from the Km4City
repository (in particular, the regional street graph, that is the
repository sub-graph including the names of all the streets, roads,
squares and road elements in the Tuscany region, detailed at street
number level). Custom rules for the detection of district names
are also defined: in this case, a dedicated gazetteer is created,
containing all districts pertaining to the Florence metropolitan
area and the Tuscany region, each one provided with a manually
assessed punctual latitude and longitude tuple.

• The FindPlace rule seeks location candidates at lower spatial
resolution (at municipality and city fractions level), by looking
for patterns composed by a place preposition (at, in, on etc.) or
direction preposition (to, towards etc.) followed by the name of a
Tuscany municipality, which is obtained looking up a dedicated
gazetteer, extracted from the Km4City repository. A similar strat-
egy is applied to detect fractions names.

If this detection strategy is not able to find any match, due to mis-
spelled location names, or in case they are partially expressed (also with
abbreviations, acronyms etc.) or missing, then the geographic reference
is estimated by applying more coarse-grained rules and patterns. More
specifically, the system aims at associating sequences of words (called
n-grams) of the input text to the names of geolocated entities contained
in the reference Knowledge Base, up to 3-grams. In Fig. 5, all the possible
evolutions of a location pattern from an initial node (>) triggering the
pattern to a final node ([[]]) are depicted.

The possible initial nodes of a location pattern are [streetKind],
[prep] and [KB Pattern matching]. Each sequence, represented by
a path from an initial node to a final node that are connected by arcs,
corresponds to a different kind of location pattern, each of which is listed
in the following:

• The patterns defined in the Jape rules, above described in this
section, are represented in Fig. 5 by the green and the purple
sequences, which may be in sequence or not.

– The [KB Pattern Matching] node does not represent an
actual pattern, rather it expresses the above described Find-
Location rule, which aims at finding exact matches between
candidate geographic items extracted from input query
and the geographic toponyms extracted from the Km4City
Knowledge Base (KB).

– The following pattern is adopted in the above described
FindPlace Jape rule:

[prep] + [municipality],

76

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

where [prep] is a preposition contained in a dedicated
gazetteer and [municipality] is the Tuscany municipalities
gazetteer.

– A similar strategy is applied to detect fractions names, by
using the following pattern:

[prep] + [district]

where [district] is any word which can be recognized by
the Km4City Smart City API as a geographical reference and
[prep] is equivalent to the one in the former case. Examples
for this kind of patterns are: ‘‘Via Dante Alighieri’’, ‘‘in Pisa’’,
‘‘Via Dante Alighieri in Novoli’’.

• The pattern implemented for the two-tokens location detection
applied to bi-grams extracted from input query text (highlighted
in blue in Fig. 5) is the following:

[streetKind] + [word]

where [streetKind] is a word representing the kind of street
(e.g.: via, viale, piazza, vicolo, etc., which are the Italian urban
nomenclatures respectively corresponding to the English terms
road, avenue, square, alley, etc.) contained in a dedicated gazetteer.
The [word] token is a potential geographic reference name. It
is actually estimated by the system to be the name of a location
only if it matches one of the geographic items populating the
Km4City Knowledge Base. To this goal, the Knowledge Base is
queried through the Km4City Smart City API, which also supports
fuzzy retrieval. Examples of sentences following this pattern are:
‘‘Via Alighieri’’, ‘‘Via Dante’’.

• The pattern implemented for the three-tokens location case (high-
lighted in red in Fig. 5) is the following:

[streetKind] + [prep] + [word]

where [streetKind], [prep] and [word] are equivalent to the
ones described in the two-tokens case. An example of a sentence
following this pattern is ‘‘Via degli Alighieri’’.

Adding the n-grams analysis approach for geoparsing permits to im-
prove the geographic reference retrieval, providing a modular technique
and allowing the system to handle different degrees of expressiveness
for geographical references conveyed in the user query. The system
is capable of recognizing region cities, fractions districts, roads, city
elements and toponyms in the Tuscany area, and associating them to
a corresponding geolocation. Moreover, the system can also recognize
partial or misspelled toponyms (for instance, street names expressed
with the surname only, instead of the complete name, which is a
frequent practice in common language).

Once the initial geoparsing phase has recognized one or more ge-
olocated entities, these ones are searched into the Km4City Knowledge
Base through the Smart City API, in order to retrieve and associate a
corresponding latitude and longitude tuple. Depending on whether the
geoparsing process has extracted one or more locations, and depending
also on their spatial resolution, the Km4City Smart City API runs
different SPARQL queries on the Km4City repository. For instance, in
case the user query contains multiple geographic intents, e.g. a street
name (extracted as a high spatial resolution geographic item by the Find-
Location Jape earlier rule) and the pertaining municipality (extracted
as a low spatial resolution geographic item by the FindPlace Jape), the
SPARQL query results are filtered retrieving only the location (a street
in this case) comprehended in the requested municipality. If a single
high-resolution geographic item is extracted in the geoparsing phase,
without a lower-resolution geographic reference, this leads often to have
ambiguities in determining the exact location. When such cases occur,
the system returns the location in the nearest municipality, according to
the user GPS position (if enabled). This is a disambiguation technique
for handling and trying to resolve possible homonymy cases, which are

frequent for names of places belonging to different nearby municipalities
or districts (e.g.: the toponym ‘‘Main Street ’’ is found in more than
7000 cities in the U.S. only, according to a Census Bureau research
(Census Bureau, 1993)). If the output of the geographic coordinates
retrieval is empty, then the extracted location is considered as a false
toponym. This may be the case, for instance, of phrases like ‘‘Via di qui’’,
which contains the Italian street/road nomenclature ‘‘Via’’, which is a
polysemic word meaning also ‘‘away ’’; actually, such a sentence means
‘‘Go away from here’’.

Finally, after the geocoding phase is completed, an array is obtained
containing the estimated service category, any recognized geolocated
entities and their corresponding geographic coordinates. The array fields
are then used as filters to query the Km4City repository, in order to
retrieve actual geolocated POIs and services belonging to the elected
service category, as detailed in the next section.

2.2.3. Geolocated data extraction module
Once the service category, corresponding to the extracted user need,

is elected by the Service Extraction module (Section 2.2.1) and the
latitude/longitude tuple is extracted by the Location Extraction module
(Section 2.2.2) the system can proceed to query the Km4City Knowledge
Base to retrieve and provide, as final results, a list of geolocated POIs,
commercial activities and services belonging to the elected service
category. These items are ordered by increasing distance with respect to
the detected geographic reference (if estimated), or with respect to the
user GPS position (if enabled). This is the case when the system has not
recognized any geographic location in the input query, as well as if it has
detected false toponyms in the geocoding phase. This methodology also
provides a quick toponym disambiguation strategy: in case of multiple
toponyms with the same name, the nearest toponym to the extracted
location is retrieved. Eventually, if either user’s GPS position is not
available nor manually inserted in the input web interface (Section
3.1), the output results are not ordered by geographical position. The
retrieval of the linked open data corresponding to commercial activities
and services is presented in the output web page.

3. Validation

In this section, a quantitative evaluation of Paval capabilities to
correctly retrieve and satisfy a practical user’s information need is
presented. Currently, the system relies on the Km4City repository for
retrieving data, that is a local Knowledge Base covering the Florence
metropolitan area and the Tuscany region, in Italy. However, Paval is
easily adaptable and scalable to different environments and data sets.
A data harvesting step for the validation process has been made on the
territory by requesting users to pose several natural language queries
about any information needs and requirements, oriented to the retrieval
of local geolocated POIs and services. The service is accessible through
a self-designed web user interface (Section 3.1). The collected data is
used to separately evaluate each module of the architecture (Section
3.2) and to validate Paval against the most popular virtual assistants
(Section 3.3).

3.1. Validation user interface

A dedicated front-end has been developed to provide an intuitive
interface for gathering validation data, through which interviewed users
have been able to submit their queries and to visualize the retrieved
POIs (see Section 3.2 for details about the validation methodology used).
The User interface deals with handling users’ queries, sending text and
contextual data (user’s GPS position) to the processing modules and
presenting the result data as output.

The expected user input for the system is a natural language query
supporting the following five languages: Italian, English, French, Ger-
man and Spanish, which can be selected through the relative option
available by the rightmost button on the home page. The search form is

77

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

managed by the web interface available at https://paval.disit.org/Paval.
The user query can be either a sentence or question containing a user-
need for a geolocated POI, activity or service. The input phrase can
also contain multiple geographical references at different level of street,
square, etc., as well as at level of municipality, fraction, or district
in the domain of the above described Km4City Knowledge Base. The
Knowledge Base mostly contains resources which are in Italian language
and thus geographic references included in the user query should most
suitably be in Italian (i.e. ‘‘I’m looking for a bar near piazza del Duomo’’).
Currently, the covered area is the Municipality of Florence and, partly,
the Tuscany Region (which is still under development, in conjunction
with other Italian metropolitan areas). Other input elements can be
collected through the web interface, that is the GPS location of the user
(retrieved by using the Google Geolocalization APIs). The user position
can also be manually specified by the user inserting the geographical
coordinates in the proper input field; if specified, such coordinates are
taken as a reference for the user position (for example if the web browser
or mobile device used cannot retrieve or enable the user GPS location).

The output results are shown in the Query Results web page (Fig. 6),
which is only accessible after a successful outcome of the computation.
Results are ordered by increasing distance with respect to the detected
geographic reference (if expressed by the user in the input query); if no
geographic location is expressed or recognized, the results are ordered
by increasing distance with respect to the user position (if allowed by the
web browser). In this page, some metadata of the retrieved items are also
presented, like service name, address, the type of commercial activity
and a brief description (if present in the repository). To provide a more
intuitive feedback of the retrieved data, the coordinates of the recovered
local activities are used to show them as marks on a geographic map
(Fig. 6). Under the map, the detected geographic reference (if any), its
coordinates and the elected Km4City service categories are recalled. On
the top of the output web page are also found the input text box and the
buttons to submit a new query and to change the query language.

3.2. Validation data and methodology

A dataset of 1264 user queries (in Italian) is collected through the
user interface proposed in Section 3.1. These queries are submitted to
Paval through a specifically designed automatic procedure for query ex-
ecution, and the results are evaluated respect to the aim of the principal
components of the Paval architecture: the service extraction (Section
3.2.1), the location extraction (Section 3.2.2) and the geolocated data
extraction (Section 3.2.3). In this way, we aim at assessing separately the
different modules of the system. The partial validation of each level of
the architecture is provided; the outcome of each level involves the user
experience thus to build a ground truth for each level the validation
queries have been posed to real users and the outcomes have been
stored for comparison with the Paval outcomes. The overall degree of
agreement between the human validators is analyzed through the Fleiss’
kappa (Fleiss, 1971). For each level of the validation a comparison of
the evaluation metrics among the main assisting tools is reported.

3.2.1. Service extraction evaluation
The goal of this section is to evaluate the capabilities of Paval

estimating the user-need and classifying it into the appropriate Km4City
ontology taxonomy label.

The quantitative evaluation for the service estimation level is made
adopting the standard IR metrics of precision and recall. The precision
metric assesses the capabilities of the system to retrieve relevant docu-
ments respect to the user query, while recall measures the capabilities
of the system to retrieve all the relevant documents in the collection.
The F-measure evaluation is also provided, which is expression of the
harmonic mean of precision and recall, respectively. These metrics are
calculated taking into account the number of True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negative (TN) outcomes.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

To provide an association between such metrics and our observations
the below methodology is adopted:

• A reference classification (ground truth) for the service level is
built annotating by 5 human assessors the queries with correct
outcome at level of service, based on their experience. Such
annotation is averaged (Gwet, 2014) by service type and mapped
to the most comparable Km4City ontology category.

• A TP is considered whenever a query effectively expresses a user-
need which can be fulfilled by Paval and the system elected the
correct service; to estimate the fulfillment of the information need
the validators experience stated within the ground truth must be
taken into account. Each query outcome at level of service is thus
compared with the corresponding ground truth and a match is
considered a TP.

• If the information contained in the Paval outcome does not match
with the validators’ expectations of fulfilling the expressed need
contained in the ground truth, a misclassification error (a FP) is
reported; a FP is considered also in the cases of an elected service
while there was none expressed in the ground truth.

• The occurrence of a TN represents the cases of queries which do
not express a user need (the service is not present in the ground
truth) and it is correctly not estimated by the system.

• A FN is found whenever the system is not able to estimate any
service corresponding to the user need, while the human validator
actually expects a not-null or not-empty value.

To evaluate the overall degree of agreement between the validators,
and thus to get an estimation of the legitimacy of using the employed
ground truth, the Fleiss’ kappa is assessed. Using 𝑁 = 1264 queries the
degree of agreement 𝜅 among 𝑛 = 5 validators on 𝑘 = 4 categories of
TP, FP, TN and FN is obtained using the formula:

𝜅 =
P − Pe
1 − Pe

where the means:

P = 1
𝑁

𝑁
∑

𝑖=1

(

𝑃𝑖
)

; Pe =
𝑘
∑

𝑗=1

(

𝑃 2
𝑗

)

are obtained calculating 𝑝𝑗 , that is the proportion of all queries 𝑞1,1,…,
𝑞𝑁,𝑁 which were classified as the jth category, and 𝑃𝑖, that is the extent
to which raters agree for the ith query, as:

𝑝𝑗 =
1
𝑁𝑛

𝑁
∑

𝑖=1
𝑞𝑖,𝑗 , ∀𝑗 ∈ {1,… , 𝑘}

and

𝑃𝑖 =
1

𝑛(𝑛 − 1)

[(𝑘
∑

𝑗=1
𝑞2𝑖,𝑗

)

− 𝑛

]

, ∀𝑖 ∈ {1,… , 𝑁} .

The Fleiss’ kappa is found to be:

𝜅 = 0.81

which is indicative of an adequate inter-rater agreement respect to the
service level.

The evaluation of the service extraction module (Table 2) has
produced the following results:

The stabilization of the assessed measures towards the reported
values varying the number of queries is shown in Fig. 7.

A comparative evaluation at level of service is performed on the vali-
dation queries with respect to Google Assistant, Apple Siri and Microsoft
Cortana, in order to compare the effectiveness of the comprehension of
the user-need by our retrieval method and some state of the art tools. The

78

https://paval.disit.org/Paval

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Fig. 6. Output web page.

Fig. 7. Service level evaluation plot.

Table 2
Service level evaluation.

Precision 0.799
Recall 0.982
F-measure 0.881

same queries are posed to the aforementioned tools and the evaluation
methodology is similar to the one described for assessing our system.

The results of the comparative evaluation at level of service has
produced the results, shown in Table 3.

The low values found for the recall measure can be explained because
the evaluated assistants are general purpose systems (which Paval is
currently not) and the result-set for those assistants is often a set of
websites related only to the syntactic form of queries exhibiting not-
explicit user-intents.

The validation of the Paval service extraction module is publicly
available at: http://www.disit.org/paval/pavalsources.rar.

Table 3
Service level comparison between main personal assistants and Paval.

Personal assistant Precision Recall F-measure

Paval 79.90% 98.20% 88.10%
Google Assistant 77.74% 28.34% 40.75%
Apple Siri 60.07% 64.42% 62.29%
Microsoft Cortana 63.51% 14.43% 22.92%

3.2.2. Location extraction evaluation
The goal of this section is to evaluate the capabilities of Paval

detecting the presence of a geographic reference within the user query
and associating it to a latitude and longitude tuple. Furthermore, if no
geographic reference is contained within the query, the engine should
be able to infer the locality of the request assigning to the query a nearby
latitude and longitude tuple.

The association between the metrics described above and our eval-
uation goal is the following:

79

http://www.disit.org/paval/pavalsources.rar

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Table 4
Location level evaluation.

Precision 0.890
Recall 0.935
F-measure 0.912

Table 5
Service level comparison between main personal assistants and Paval.

Personal assistant Precision Recall F-measure

Paval 89.05% 93.58% 91.26%
Google Assistant 87.98% 33.12% 42.02%
Apple Siri 68.68% 65.84% 64.22%
Microsoft Cortana 72.26% 19.39% 23.63%

• A reference classification (ground truth) for the location level
is built evaluating by 5 human assessors the validation queries
and annotating the correct geographic reference, if expressed
within the query, and the user position if no geographic location
is expressed within the query. Since the user position and the
positions extracted by Paval are in the form of (latitude, longitude)
tuples, all the coordinates have been provided to validators in the
form of street and municipality.

• A TP is considered whenever a query contains an explicit ge-
ographic reference and it is correctly referenced by Paval to a
(latitude, longitude) tuple. A TP is associated to the presence of a
geographic location in the ground truth which is also expressed
within the query.

• A FP is considered whenever a query contains an explicit geo-
graphic reference and it is associated by Paval to a wrong (latitude,
longitude) tuple. The wrong association reflects the presence of a
geographic location in the ground truth which is not the same
expressed within the query (at street and municipality level). A
FP is considered also in the cases when a geographic location is
extracted by the system while there was none within the user
query.

• TNs are considered in those cases when a query do not exhibit
geographic references and Paval does not return any extracted
location (the ground truth contains the user latitude and longitude
as user position); however, in order to provide geolocated results
to better meet the user’s need, the location is set as the user
position gathered by the system, if available.

• A FN is found whenever the system estimates the location user-
need in the vicinity of the user, while there was an explicit
geographic reference expressed in the user query.

The evaluation of the location extraction module produced the results
given in Table 4.

The stabilization of the assessed measures towards the reported
values varying the number of queries is shown in Fig. 8.

To evaluate the capabilities of Paval in extracting the geographic
references from the validation queries a comparative evaluation at this
level is performed with respect to Google Assistant, Apple Siri and
Microsoft Cortana, posing to each assistant the geographic reference
only, whenever contained within the query.

The results of the comparative evaluation at level of service has
produced the results shown in Table 5.

The validation of the Paval location extraction module is publicly
available at: http://www.disit.org/paval/pavalsources.rar. The valida-
tion methodology which we applied so far allows to evaluate the user
query respect to the service category and locality of the retrieved items,
relying only on each item’s belonging to the ontology class matching the
user-need and not on specific data elements, which is the aim of Section
3.2.3.

3.2.3. Geolocated data extraction evaluation
The goal of this section is to evaluate the capabilities of Paval

retrieving a consistent set of local businesses fulfilling the user-need
expressed within a query respect to the levels of service, geographic
location and distance of the local business. At the present level of the
validation the distance of each data element from a geographic reference
which may be expressed in user queries must be considered, together
with the evaluation of the extracted service and of the extracted location
to constitute a measure of the data relevance respect to the user query.
The ranking function of Paval involves the distance: the ordering of the
retrieved items within the result-set depends on the distance from the
geographic references extracted from the user query; the better ranked
results are thus the nearest to such position.

To correctly evaluate the Paval engine capabilities taking into ac-
count the ranking of the results, the metrics assessed in Sections 3.2.1
and 3.2.2 are not fairly comprehensive, thus the software Trec Eval
is employed. Trec Eval is a software used in the context of the Text
REtrieval Conference to provide a collection of metrics to evaluate the
quality of the ranking of the documents retrieved by a search engine
system compared with a ground truth. The two parameter files needed
by the software to evaluate a search engine must contain respectively
the similarity scores and rankings of the data retrieved by the system
under evaluation and the relevance scores of the ground truth (for the
same validation queries). In order to provide the relevance measures
required by Trec Eval, a reference classification for the data level is
built posing a sample of 50 queries from the validation query dataset
to 5 human validators. Then, the validators are requested to compile
a list of local businesses which they considered as relevant, based on
their experience, for each query, ordered by distance. Each element of
the ground truth is chosen by validators according to the fulfillment
of their user-need at levels of service, geographic location and distance
of the local business. Being the data elements ranked by distance from
the extracted location, evaluating the distance is equivalent to evaluate
the ranking. The ranked lists provided by each validator are joined
and for each query a ground truth list is obtained ordering by distance
and trimming at the first 10 data elements. To evaluate the inter-rater
agreement among the validators participating to the data level ground
truth construction, the Fleiss’ kappa defined in Section 3.2.1 is assessed
and is found to be:

𝜅 = 0.68

indicating a lower, though adequate, inter-rater agreement respect to
the service level.

A smaller subset of the validation dataset has been considered for
this validation, since the manual creation of the needed ground truth
has been a quite long and time-consuming process, in order to allow
each validator to carefully annotate several hundreds of real world POI,
local business and city services for all the 50 queries.

The similarity scores required for the output parameter of Trec Eval
have been collected by the user interface (see Fig. 6), through the user
rating element which is present for each ranked data element in the
form of stars from 1 to 5. Such user evaluation is stored and used as a
similarity score for each document retrieved.

Through Trec Eval the DCG (Discounted Cumulative Gain) measure
(Järvelin and Kekäläinen, 2000) has been evaluated. The DCG is gen-
erally used to compare the performance of ranking functions and it is
defined as following:

𝐷𝐶𝐺𝑝 =
𝑝
∑

𝑖=1

(

2𝑟𝑒𝑙𝑖 − 1
log 2(𝑖 + 1)

)

The DCG is an evaluation of multi-grade relevance judgments and
rankings of the results and it is assessed in the present evaluation to
capture the relevance of a result respect to its position within the result-
set. Fig. 9 shows the degradation of relevance respect to the number of
results taking into account each result’s ranking as discount factor.

80

http://www.disit.org/paval/pavalsources.rar

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Fig. 8. Location level evaluation plot.

Fig. 9. Paval DCG evaluation.

Fig. 10. Trec Eval Interpolated precision/recall curve.

81

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Additional metrics are evaluated by Trec Eval, such as the 11-points
interpolated average precision–recall, where precision is measured at
the 11 recall levels of 𝑘 ⋅ 0, 1, where k is integer and 0 ≤ 𝑘 ≤ 10. The
curve is depicted in Fig. 10.

The precision value for a given recall (𝑅𝑒𝑐𝑖) is the mean over all
queries of the maximum precision over the relevant elements found by
the system with a recall equal or superior to 𝑅𝑒𝑐𝑖. Thus, for 𝑅𝑒𝑐𝑖 = 0,
the precision is the mean of the maximum precisions for all the queries.

The validation dataset at level of data is available at: http://www.
disit.org/paval/pavalsources.rar

A comparative evaluation has been made, in this case between Paval
and Google Assistant on the 50 queries subset of the validation dataset.
In order to focus the validation on the capabilities of the assessed sys-
tems to retrieve relevant items (in our case, POIs, local business and city
services) instead of relying on their different knowledge bases, which
could affect the assessment performance, we considered as reference
a portion of the ground truth. Such portion is obtained intersecting,
through an automatic procedure, the instances of Google Assistant and
Paval KB (Km4City), finding a 61.3% overlay.

The result is shown in Fig. 11, representing the precision–recall
curves obtained from the output of the Trec Eval framework for both
the assessed systems.

The Trec Eval performance comparison have been analyzed in two
different configurations, considering a different dimension (defined as N
in the following) for the result set of the two engines: in the former case
(Fig. 11a), we consider the first 10 results for each query (𝑁 = 10); in the
latter (Fig. 11b), we consider the first 5 results (𝑁 = 5). It can be noticed
that, in the second case, the precision of both systems degrades more
rapidly at increasing recall. This may be due since we consider a smaller
result set, thus it may occur that less relevant elements may be retrieved
(assuming the same relevant elements are contained in the ground
truth). Another aspect worth to be noticed is that the precision at 0 recall
(i.e.: the mean of the maximum precisions for all the considered queries)
does not significantly change for Google Assistant (about 70%), while
increases for Paval (from about 73% to about 88%), with decreasing N.
This may show a good capability of Paval in returning relevant elements
in the first positions of its retrieved result list. In both cases (𝑁 = 10
and 𝑁 = 5), Paval shows a higher performance, in terms of interpolated
precision–recall, than Google Assistant.

3.3. English validation

The system can accept as input and process queries in English lan-
guage through the same interface described in Section 3.1 by changing
the language option which can be found on the input web page, there-
fore a quantitative evaluation is performed also for English language.
Since all the interviewed users are Italian, all the collected test queries
are in Italian language; moreover, since our Km4City Knowledge Base is
designed and realized in Italian, in order to assess Paval performances
for English and other supported languages, it would be necessary to
translate all the classes and instances of the Km4City ontology. This
would be a very long and costly process, and furthermore this approach
may result to be significantly language-dependent. In order to provide
support for other languages, the Paval web input interface is provided
with an option which allows users to choose a language among the
supported ones (see Section 3.1). When a language which is different
from Italian is chosen, the Yandex online translation APIs are called
and the input query is translated in Italian before being submitted to
the Paval engine. Therefore, in order to assess Paval performances for
the English language, the collected 1264 Italian queries were translated
in English and then submitted to the Paval engine with the English
language option activated. To assess Paval performances and give a
quantitative measure for the capabilities of Paval annotating the user
query with the correct service in English language, the service level only
is considered. To unbind the English validation queries from potential
automatic translation errors, the English data-set has been evaluated

Table 6
Quality measures comparison between main personal assistants and Paval (English).

Personal assistant Precision Recall F-measure

Paval 74.67% 96.24% 84.57%
Google Assistant 75.24% 48.92% 58.77%
Apple Siri 72.28% 70.65% 71.45%
Microsoft Cortana 66.81% 27.53% 38.36%

Table 7
Classification of the validation queries.

Class Definition of the class Tot.

Type 1 Direct request of a full or partial Km4City service category
label.
i.e. ‘‘I need a restaurant’’, ‘‘Bed and breakfast around me’’

25.60%

Type 2 Direct request of the name of a precise local business
i.e. ‘‘Take me to ‘Da Mario’’’

2.93%

Type 3 Queries not exhibiting the service name as the user need
i.e. ‘‘I want to eat spaghetti’’, ‘‘My stomach hurts’’

74.40%

Type 4 Presence of precise geographical reference
i.e. ‘‘I need a restaurant in via dell’Oriuolo’’, ‘‘Hotels in Piazza del
Carmine’’

35.12%

Type 5 Presence of partial or misspelled geographical reference
i.e. ‘‘Eat in Piazza del Dpomo’’, ‘‘Bar near piazza P. Leopoldo’’

16.32%

Type 6 Presence of multiple geographical references
i.e. ‘‘I want to read a newspaper near via Dante Alighieri in Pisa’’

5.24%

Type 7 Presence of geographical references
i.e. ‘‘Find a place to eat near . . . ’’, ‘‘I want to drink something in
via . . . ’’

59.16%

Type 8 Queries inside Florence municipality
i.e. ‘‘Museums near piazza della Signoria’’

69.71%

Type 9 GPS localization allowed
i.e. Given authorization from the browser: ‘‘I need a restaurant
nearby’’

100%

Type 10 Not transactional queries
i.e. ‘‘When did Garibaldi die?’’, ‘‘Find a video on YouTube’’

2.31%

by a native speaker before being submitted to the system. Following
the same approach used in the validation for the Italian language, the
results show a precision of 74.67%, a recall of 96.24% and an F-measure
of 84.57%, which are comparable with the ones obtained for the Italian
language validation, though showing that Paval performs better respect
to other assistants using Italian language. The study assessed for English
language provided slightly lower measures for the Paval engine, while
showing much better results for the other evaluated engines; this may
be due to the fact that the automatic translation strategy employed may
sometimes provide erroneous translations. The main results of this study
are presented in Table 6.

The results in terms of precision, recall and F-Measure show that
Paval performs mostly better than current state of the art personal
assistants retrieving geolocated POIs and location-based services when
the input is a natural language query. However, it is to be noticed that
the goal of the present work, and thus also of this validation, is to assess
the fulfillment of users’ information needs and requirements oriented to
the retrieval of geolocated POIs and services. In this sense, our system is
focused on a more restricted domain, with respect to the tools presented
in the comparative evaluation; for this reason, also evaluation metrics
used to assess Paval’s performances sound more restrictive, in these
regards, for the other assistants. Actually, the latter have access to far
larger amounts of data, besides including users’ profiles, applications
and social media access and management etc., so that they not always
supply geolocated data as results. Instead, most of the times they provide
generic web search, although in some cases they can perform a wider
range of actions, including managing applications, schedule events,
reminders etc. This can partly explain the large gap that sometimes is
found in the recall rate among Paval and the other assistants, despite
such generic web resources output by the other assistants assessed

82

http://www.disit.org/paval/pavalsources.rar
http://www.disit.org/paval/pavalsources.rar
http://www.disit.org/paval/pavalsources.rar

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Fig. 11. Comparison between Paval and Google assistant for different result set dimensions 𝑁 = 10 (a), 𝑁 = 5 (b).

are considered as TP in the present validation, whenever they contain
information that could satisfy the expressed user’s need through the
suggestion of a geolocated POI or service. We believe that providing
geolocated data, when it is possible, is an added value for accomplishing
user’s practical needs on the spot, or on the move.

3.4. Validation data classification

It is also provided a classification of the types of validation queries
(Table 7), and the cases with the corresponding query ratio (with respect
to the total number of queries) have been identified in Table 7:

It is to be noticed that the sum of the percentages exceeds 100%
because some query types overlap (i.e. a query containing both a service
category label and multiple geographical references is classified either
as Type 1 and Type 6). For further details the complete log table
containing all validation data and evaluation metrics is available at:http:
//www.disit.org/paval/pavalsources.rar .

Based on the above classification, precision, recall and F-Measure
metrics are evaluated for every class, each of which refers to a number
of the validation queries of the same type, with the purpose of highlight-
ing strengths and weaknesses of each evaluated virtual assistant. The
following study is referred to the Italian language validation dataset,
and provided the results shown in Tables 8–10:

The study shown in Tables 8–10 highlights the main weaknesses of
these assistants in understanding the user need in queries which do not
exhibit an intent at level of service category (Type 3) and in queries
exhibiting a partial or misspelled geographic reference (Type 5); in the

range of these categories Paval performs better than the other assistants.
On the other hand, the above assistants provide more accurate answers
than Paval in queries in which occurs the precise name of a local
business (Type 2) and in queries which are not exhibiting a user need for
a commercial activity (Type 10), although such strengths are not always
noticeable by our study because the number of harvested queries of
those kinds is low and, in some cases, such queries also contain the name
of the service category to retrieve. Useful information is represented also
by the main types of commercial activities correctly retrieved by Paval,
which are mainly included within the Wine and Food and the Shopping
and Service commercial sectors (see Fig. 12).

The classification of the kind of queries highlights the need for
including a functionality for the understanding of POIs as geographical
references, currently not recognized by our logic as georeferenced points
(i.e. ‘‘I’m at the city library and I need. . . ’’). This problem could be
resolved by assigning a geographical relevance score to sequences of
bigrams and trigrams constituting the query.

4. Conclusions

In this paper the Paval framework has been presented, designed and
realized as a location-aware virtual personal assistant for suggesting
local POIs and location-based services from users’ natural language
queries. The principal aim of the presented work is to estimate and
accomplish the information need and potential multiple geographic
references expressed by the user query. The Paval system exploits NLP
and semantic technologies, relying also on external knowledge like the

83

http://www.disit.org/paval/pavalsources.rar
http://www.disit.org/paval/pavalsources.rar
http://www.disit.org/paval/pavalsources.rar

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Table 8
Precision evaluation by query type classification.

Virtual assistant Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 10

Paval 93.63% 28.54% 85.72% 78.45% 74.57% 80.12% 81.58% 81.67% 78.84% 32.34%
Google Assistant 87.06% 92.12% 77.34% 87.35% 89.78% 84.64% 79.83% 83.54% 78.42% 100.00%
Apple Siri 70.14% 71.58% 60.23% 60.29% 50.10% 58.67% 56.69% 74.48% 60.01% 85.50%
Microsoft Cortana 78.45% 98.42% 67.56% 73.25% 64.23% 49.74% 74.44% 61.98% 76.40% 100.00%

Table 9
Recall evaluation by Query Type Classification.

Virtual assistant Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 10

Paval 98.80% 97.12% 85.38% 95.10% 94.27% 88.64% 95.12% 99.75% 98.34% 100.00%
Google Assistant 49.74% 100.00% 24.34% 37.63% 37.08% 46.2% 38.78% 23.54% 25.67% 57.67%
Apple Siri 78.47% 88.37% 74.44% 56.85% 75.56% 74.68% 64.74% 58.56% 68.19% 25.00%
Microsoft Cortana 34.56% 84.67% 5.58% 28.00% 19.11% 16.76% 18.98% 10.56% 10.47% 68.87%

Table 10
f-measure evaluation by Query Type Classification.

Virtual assistant Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 10

Paval 96,15% 44,12% 85,55% 85,98% 83,27% 84,16% 87,83% 89,81% 87,52% 48,87%
Google Assistant 63,31% 95,90% 37,03% 52,60% 52,48% 59,77% 52,20% 36,73% 38,68% 73,15%
Apple Siri 74,07% 79,09% 66,59% 58,52% 60,25% 65,71% 60,45% 65,57% 63,84% 38,69%
Microsoft Cortana 47,98% 91,03% 10,31% 40,51% 29,46% 25,07% 30,25% 18,05% 18,42% 81,57%

Fig. 12. Distribution of commercial service categories correctly retrieved by Paval over the 1264 user queries dataset collected for validation.

Km4City Knowledge Base to retrieve geolocated data. The generation
and use of a reference corpus representing the semantic expansion of
the ontology taxonomy labels improves current user-intent estimation
techniques, which rely mainly on query expansion. The user-intent
estimation is also improved proposing a novel term weighting strategy
based on boosting of verbal parts of speech. The geoparsing method
implements a reliable fine-to-coarse strategy based on the level of detail
of the detected geographical reference and allows the detection of mul-
tiple references. The system is not directly relying on data thus resulting
easily scalable and the performance does not degrade with larger inputs.
The proposed system has been validated against the most popular virtual
assistants, such as Google Assistant, Apple Siri and Microsoft Cortana,
focusing the assessment on the request of geolocated POIs and services,
showing very promising capabilities in successfully estimating the users’
information need and multiple geographic references. The evaluation is
performed by using a corpus of requests provided by real users during
the validation. The same requests are posed to all assistants to estimate
precision, recall and F-measure. The used corpus is accessible by other
researchers to be used in the future as a benchmark. As a conclusion, the
adopted corpus is focused on the smart city domain and in this domain
the presented Paval assistant results better ranked with respect to the
general-purpose systems.

Acknowledgments

The authors would like to thank the MIUR Smart City national found-
ing, Italy SCN_00112, the University of Florence, Italy and companies
involved for co-founding in the Sii-Mobility project. Km4City is an open
technology of research of DISIT Lab.

References

Ahamed, S.I., Sharmin, M., Ahmed, S., Haque, M.M., Khan, A.J., 2006. Design and
implementation of a virtual assistant for healthcare professionals using pervasive
computing technologies. E & I Elektrotech. Inform. 123 (4), 112–120.

Amazon Alexa. Available at: https://developer.amazon.com/alexa.
Apple Siri. Available at: https://www.apple.com/ios/siri/.
Badii, C., Bellini, P., Cenni, D., Difino, A., Nesi, P., Paolucci, M., 2017. Analysis and

assessment of a knowledge based smart city architecture providing service APIs.
Future Gener. Comput. Syst. 75, 14–29.

Bellandi, A., Bellini, P., Cappuccio, A., Nesi, P., Pantaleo, G., Rauch, N., 2012. Assisted
knowledge base generation, management and competence retrieval. Int. J. Softw. Eng.
Knowl. Eng. 32 (8), 1007–1038.

Bellini, P., Benigni, M., Billero, R., Rauch, Nadia., 2014. Nadia Rauch Km4City ontology
building vs data harvesting and cleaning for smart-city services. J. Vis. Lang. Comput.
25, 827–839.

Bhagwani, D., Pandey, H., Gupta, N., Sharma, Y., 2016. Geolocation based recommender
system. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (4), 283–287.

Broder, A., 2002. A taxonomy of web search. SIGIR Forum 36 (2), 3–10.

84

http://refhub.elsevier.com/S0952-1976(18)30199-4/b1
http://refhub.elsevier.com/S0952-1976(18)30199-4/b1
http://refhub.elsevier.com/S0952-1976(18)30199-4/b1
http://refhub.elsevier.com/S0952-1976(18)30199-4/b1
http://refhub.elsevier.com/S0952-1976(18)30199-4/b1
https://developer.amazon.com/alexa
https://www.apple.com/ios/siri/%20
http://refhub.elsevier.com/S0952-1976(18)30199-4/b4
http://refhub.elsevier.com/S0952-1976(18)30199-4/b4
http://refhub.elsevier.com/S0952-1976(18)30199-4/b4
http://refhub.elsevier.com/S0952-1976(18)30199-4/b4
http://refhub.elsevier.com/S0952-1976(18)30199-4/b4
http://refhub.elsevier.com/S0952-1976(18)30199-4/b5
http://refhub.elsevier.com/S0952-1976(18)30199-4/b5
http://refhub.elsevier.com/S0952-1976(18)30199-4/b5
http://refhub.elsevier.com/S0952-1976(18)30199-4/b5
http://refhub.elsevier.com/S0952-1976(18)30199-4/b5
http://refhub.elsevier.com/S0952-1976(18)30199-4/b6
http://refhub.elsevier.com/S0952-1976(18)30199-4/b6
http://refhub.elsevier.com/S0952-1976(18)30199-4/b6
http://refhub.elsevier.com/S0952-1976(18)30199-4/b6
http://refhub.elsevier.com/S0952-1976(18)30199-4/b6
http://refhub.elsevier.com/S0952-1976(18)30199-4/b7
http://refhub.elsevier.com/S0952-1976(18)30199-4/b7
http://refhub.elsevier.com/S0952-1976(18)30199-4/b7
http://refhub.elsevier.com/S0952-1976(18)30199-4/b8

L. Massai et al. Engineering Applications of Artificial Intelligence 77 (2019) 70–85

Buscaldi, D., Rosso, P., 2008. A map-based vs. knowledge-based toponym disambiguation.
In: Proc. 5th Int. Workshop on Geographical Information Retrieval, GIR-2008, CIKM-
2008, Napa Valley, USA, October, pp. 19-22.

Buscaldi, D., Rosso, P., Peris, P., 2006. Inferring geographical ontologies from multiple
resources for geographical information retrieval. In: Proc. 3rd Int. Workshop on
Geographical Information Retrieval, GIR-2006, SIGIR, Seattle, WA, USA, August 10,
pp. 52–55.

Campagna, G., Ramesh, R., Xu, S., Fischer, M., Lam, M.S., Almond: The architecture
of an open, crowdsourced, privacy-preserving, programmable virtual assistant, I:n
Proc. of the 26th International Conference on World Wide Web, pp.341-350, Perth,
Australia — April (2017) 03-07. ISBN: 978-1-4503-4913-0. http://dx.doi.org/10.
1145/3038912.3052562.

US Department of Commerce, Bureau of the Census, Geography Division. Census and You.
Washington, DC, 1993. Available online at: http://www.usd116org/profdev/ahtc/
lessons/PlautFel09/scans/2009_07_09/StreetNamesCensus.pdf.

Clements, M., Serdyukov, P., De Vries, A.P., Renders, M.J.T., 2011. Personalised travel
recommendation based on location co-occurrence, CoRR, arXiv:1106.5213.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., 2002. GATE: a framework and
graphical development environment for robust NLP tools and applications. In: Proc. of
the 40th Anniversary Meeting of the Association for Computational Linguistics, ACL
’02.

Datamuse API. Available online at: http://www.datamuse.com/api/.
Fellbaum, C. (Ed.), 1998. WordNet. An Electronic Lexical Database. The MIT Press.
Ferrucci, David, Brown, Eric, Chu-Carroll, Jennifer, Fan, James, Gondek, David, Kalyan-

pur, Aditya A., Lally, Adam, William Murdock, J., Nyberg, Eric, Prager, John,
Schlaefer, Nico, Welty, Chris, 2010. Building Watson: An overview of the Deep QA
project. AI Mag. 31, 59–79.

Fleiss, J.L., 1971. Measuring nominal scale agreement Among many raters. Psychol. Bull.
76 (5), 378–382.

Google Assistant. Available at: https://assistant.google.com/.
Gordon, M., Breazeal, C., 2015. Designing a virtual assistant for in-car child entertainment.

In: Proc. of the 14th Int. Conference on Interaction Design and Children. ACM, pp.
359–362.

Gwet, K.L., 2014. Handbook of Inter-Rater Reliability, LLC Fourth Edition Ed. Advanced
Analytics.

Harvey, P.H., Currie, E., Daryanani, P., Augusto, J.C., 2015. Enhancing student support
with a virtual assistant. In: Proc. Of Int. Conference on E-Learning, E-Education, and
Online Training. Springer, pp. 101–109.

Heredero, G.G., Penmetsa, H., Agrawal, V., Shastri, L., 2013. Activity context-aware
system architecture for intelligent natural speech based interfaces. In: Proc. Of the
Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence, pp. 21–
35.

Hossein, M., Shahraki, N., Bahadorpour, M., 2014. Cold start problem in collaborative
recommender systems: Efficient methods based on ask-to-rate techniques. J. Comput.
Inf. Technol. 22 (2), 105–113.

Husain, W., Dih, L.Y., 2012. A framework of a personalized location-based traveler
recommendation system in mobile application. Int. J. Multimedia Ubiquitous Eng.
7 (3).

Jansen, B.J., Booth, D.L., Spink, A., 2008. Determining the informational, navigational,
and transactional intent of Web queries. Inf. Process. Manage. 44 (3), 1251–1266.

Järvelin, K., Kekäläinen, J., 2000. IR evaluation methods for retrieving highly relevant
documents. In: Proceedings of the 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, pp. 41–48.

Kumar, 2011. Relevance and Ranking in Geographic Information Retrieval.
Kumar, G.K., Reddy, K.P.K., 2017. Cortana (intelligent assistant). Int. J. Sci. Eng. Technol.

Res. (IJSETR) 6 (4), 698–701.
Lesk, Michael, 1986. Automatic sense disambiguation using machine readable dictionar-

ies: How to tell a pine cone from an ice cream cone. In: Proc. of the 5th Annual
International Conference on Systems Documentation, SIGDOC ’86. ACM, New York,
NY, USA, pp. 24–26.

Lops, P., De Gemmis, M., Semeraro, G., 2010. Content-based recommender systems: State
of the art and trends. In: Recommender Systems Handbook. Springer, pp. 73–105.

Lucida Open Source Personal Assistant. Available at: http://lucida.ai/.
Madhusudhanan, R., Subramaniyan, D., 2016. Artificial intelligence – Making an intelli-

gent personal assistant. Int. J. Res. Eng. Technol. 4 (6), 9–14.
Mandl, T., Gey, F., Di Nunzio, G., et al., An evaluation resource for geographic information

retrieval. In: Proc. of the 6th Language Resources and Evaluation Conference. LREC
2008, Marrakech, Morocco, 28-30 May 2008.

Mathur, S., Bairagee, N., 2016. A survey paper on location aware recommender system.
Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (7), 331–335.

Matsuyama, Y., Bhardwaj, A., Zhao, R., Romero, O.J., Akoju, S.A., Cassell, J., Socially-
Aware Animated Intelligent Personal Assistant Agent. In: Proc. of the SIGDIAL 2016
Conference, 224–227, Los Angeles, USA, 13–15 September 2016.

Microsoft Cortana. Available at: https://www.microsoft.com/windows/cortana.
Mycroft Open Source Personal Assistant. Available at: https://mycroft.ai/.
Navigli, R., Ponzetto, S., 2012. Babelnet: The Automatic Construction, Evaluation and

Application of a Wide-Coverage Multilingual Semantic Network. In: Artificial Intelli-
gence, vol. 193, Elsevier, pp. 217–250.

Nesi, P., Pantaleo, G., Tenti, M., 2016. Geographical localization of web domains and
organization addresses recognition by employing natural language processing, pattern
matching and clustering. Eng. Appl. Artif. Intell. 51, 202–211.

Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E., 2016. A review of relational machine
learning for knowledge graphs. Proc. IEEE 104 (1), 11–33.

Noguera, J.M., Barranco, M.J., Segura, R., Martinez, L., 2012. A Location-Aware Tourism
Recommender System Based on Mobile Devices. World Scientic, pp. 34–39, Chapter
7.

Palacio, D., Cabanac, G., Sallaberry, C., Hubert, G., 2010. On the evaluation of geographic
information retrieval systems. Int. J. Digit. Libr. 11 (2), 91–109.

Palacio, D., Derungs, C., Purves, R.S., 2015. Development and evaluation of a geographic
information retrieval system using fine grained toponyms. J. Spat. Inf. Sci. 11, 1–29.

Rodríguez-Hernández, M.C., Ilarri, S., Trillo-Lado, R., Hermoso, R., Location-aware recom-
mendation systems: Where we are and where we recommend to go. In: Proc. Of First
ACM RecSys Workshop on Location-Aware Recommendations, LocalRec’15, Vienna,
Austria, September 19, 2015.

Rose, D.E., Levinson, D., Understanding user goals in web search. In: Proc. of the 13th Int.
conference on World Wide Web (WWW 2004), New York, NY, 17–22 May 2004, pp.
13–19.

Schmid, H., 1994. Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proc. of
the Int. Conference on New Methods in Language Processing, Manchester, UK.

Takeuchi, Y., Sugimoto, M., 2006. CityVoyager: An outdoor recommendation system based
on user location history. In: Ubiquitous Intelligence and Computing. In: Lecture Notes
in Computer Science, vol. 4159, Springer, pp. 625–636.

Tavčar, A., 2016. Recommender system for virtual assistant supported museum tours.
Informatica, Int. J. Comput. Inform. 40, 279–284.

Thingpedia, Thingpedia by Stanford University. Available online at: https://thingpedia.
stanford.edu/.

TREC IR systems evaluation software. [Online] Available at: http://trec.nist.gov/trec_
eval/.

Uyar, A., Aliyu, F.M., 2015. Evaluating search features of google knowledge graph and
bing satori. Online Inform. Rev. 39 (2), 197–213.

Welch, M.J., Cho, J., Automatically identifying localizable queries. In: Proc. Of ACM SIGIR,
pp. 507–514.

Yandex online translator APIs. Available at: https://translate.yandex.com/.
Yang, W.S., Cheng, H.C., Dia, J.B., 2008. A location-aware recommender system for mobile

shopping environments. Expert Syst. Appl. 34 (1), 437–445.
Yi, X., Raghavan, H., Leggetter, C., 2009. Discovering users’ specific geo intention in web

search. In: WWW ’09: Proc. of the 18th Int. Conference on World Wide Web. ACM,
New York, NY, USA, pp. 481–490.

85

http://dx.doi.org/10.1145/3038912.3052562
http://dx.doi.org/10.1145/3038912.3052562
http://dx.doi.org/10.1145/3038912.3052562
http://www.usd116org/profdev/ahtc/lessons/PlautFel09/scans/2009_07_09/StreetNamesCensus.pdf
http://www.usd116org/profdev/ahtc/lessons/PlautFel09/scans/2009_07_09/StreetNamesCensus.pdf
http://www.usd116org/profdev/ahtc/lessons/PlautFel09/scans/2009_07_09/StreetNamesCensus.pdf
http://arxiv.org/abs/1106.5213
http://www.datamuse.com/api/
http://refhub.elsevier.com/S0952-1976(18)30199-4/b16
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b17
http://refhub.elsevier.com/S0952-1976(18)30199-4/b18
http://refhub.elsevier.com/S0952-1976(18)30199-4/b18
http://refhub.elsevier.com/S0952-1976(18)30199-4/b18
https://assistant.google.com/
http://refhub.elsevier.com/S0952-1976(18)30199-4/b20
http://refhub.elsevier.com/S0952-1976(18)30199-4/b20
http://refhub.elsevier.com/S0952-1976(18)30199-4/b20
http://refhub.elsevier.com/S0952-1976(18)30199-4/b20
http://refhub.elsevier.com/S0952-1976(18)30199-4/b20
http://refhub.elsevier.com/S0952-1976(18)30199-4/b21
http://refhub.elsevier.com/S0952-1976(18)30199-4/b21
http://refhub.elsevier.com/S0952-1976(18)30199-4/b21
http://refhub.elsevier.com/S0952-1976(18)30199-4/b22
http://refhub.elsevier.com/S0952-1976(18)30199-4/b22
http://refhub.elsevier.com/S0952-1976(18)30199-4/b22
http://refhub.elsevier.com/S0952-1976(18)30199-4/b22
http://refhub.elsevier.com/S0952-1976(18)30199-4/b22
http://refhub.elsevier.com/S0952-1976(18)30199-4/b24
http://refhub.elsevier.com/S0952-1976(18)30199-4/b24
http://refhub.elsevier.com/S0952-1976(18)30199-4/b24
http://refhub.elsevier.com/S0952-1976(18)30199-4/b24
http://refhub.elsevier.com/S0952-1976(18)30199-4/b24
http://refhub.elsevier.com/S0952-1976(18)30199-4/b25
http://refhub.elsevier.com/S0952-1976(18)30199-4/b25
http://refhub.elsevier.com/S0952-1976(18)30199-4/b25
http://refhub.elsevier.com/S0952-1976(18)30199-4/b25
http://refhub.elsevier.com/S0952-1976(18)30199-4/b25
http://refhub.elsevier.com/S0952-1976(18)30199-4/b26
http://refhub.elsevier.com/S0952-1976(18)30199-4/b26
http://refhub.elsevier.com/S0952-1976(18)30199-4/b26
http://refhub.elsevier.com/S0952-1976(18)30199-4/b27
http://refhub.elsevier.com/S0952-1976(18)30199-4/b27
http://refhub.elsevier.com/S0952-1976(18)30199-4/b27
http://refhub.elsevier.com/S0952-1976(18)30199-4/b27
http://refhub.elsevier.com/S0952-1976(18)30199-4/b27
http://refhub.elsevier.com/S0952-1976(18)30199-4/b28
http://refhub.elsevier.com/S0952-1976(18)30199-4/b29
http://refhub.elsevier.com/S0952-1976(18)30199-4/b29
http://refhub.elsevier.com/S0952-1976(18)30199-4/b29
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b30
http://refhub.elsevier.com/S0952-1976(18)30199-4/b31
http://refhub.elsevier.com/S0952-1976(18)30199-4/b31
http://refhub.elsevier.com/S0952-1976(18)30199-4/b31
http://lucida.ai/
http://refhub.elsevier.com/S0952-1976(18)30199-4/b33
http://refhub.elsevier.com/S0952-1976(18)30199-4/b33
http://refhub.elsevier.com/S0952-1976(18)30199-4/b33
http://refhub.elsevier.com/S0952-1976(18)30199-4/b35
http://refhub.elsevier.com/S0952-1976(18)30199-4/b35
http://refhub.elsevier.com/S0952-1976(18)30199-4/b35
https://www.microsoft.com/windows/cortana
https://mycroft.ai/
http://refhub.elsevier.com/S0952-1976(18)30199-4/b39
http://refhub.elsevier.com/S0952-1976(18)30199-4/b39
http://refhub.elsevier.com/S0952-1976(18)30199-4/b39
http://refhub.elsevier.com/S0952-1976(18)30199-4/b39
http://refhub.elsevier.com/S0952-1976(18)30199-4/b39
http://refhub.elsevier.com/S0952-1976(18)30199-4/b40
http://refhub.elsevier.com/S0952-1976(18)30199-4/b40
http://refhub.elsevier.com/S0952-1976(18)30199-4/b40
http://refhub.elsevier.com/S0952-1976(18)30199-4/b40
http://refhub.elsevier.com/S0952-1976(18)30199-4/b40
http://refhub.elsevier.com/S0952-1976(18)30199-4/b41
http://refhub.elsevier.com/S0952-1976(18)30199-4/b41
http://refhub.elsevier.com/S0952-1976(18)30199-4/b41
http://refhub.elsevier.com/S0952-1976(18)30199-4/b42
http://refhub.elsevier.com/S0952-1976(18)30199-4/b42
http://refhub.elsevier.com/S0952-1976(18)30199-4/b42
http://refhub.elsevier.com/S0952-1976(18)30199-4/b42
http://refhub.elsevier.com/S0952-1976(18)30199-4/b42
http://refhub.elsevier.com/S0952-1976(18)30199-4/b43
http://refhub.elsevier.com/S0952-1976(18)30199-4/b43
http://refhub.elsevier.com/S0952-1976(18)30199-4/b43
http://refhub.elsevier.com/S0952-1976(18)30199-4/b44
http://refhub.elsevier.com/S0952-1976(18)30199-4/b44
http://refhub.elsevier.com/S0952-1976(18)30199-4/b44
http://refhub.elsevier.com/S0952-1976(18)30199-4/b48
http://refhub.elsevier.com/S0952-1976(18)30199-4/b48
http://refhub.elsevier.com/S0952-1976(18)30199-4/b48
http://refhub.elsevier.com/S0952-1976(18)30199-4/b48
http://refhub.elsevier.com/S0952-1976(18)30199-4/b48
http://refhub.elsevier.com/S0952-1976(18)30199-4/b49
http://refhub.elsevier.com/S0952-1976(18)30199-4/b49
http://refhub.elsevier.com/S0952-1976(18)30199-4/b49
https://thingpedia.stanford.edu/
https://thingpedia.stanford.edu/
https://thingpedia.stanford.edu/
http://trec.nist.gov/trec_eval/
http://trec.nist.gov/trec_eval/
http://trec.nist.gov/trec_eval/
http://refhub.elsevier.com/S0952-1976(18)30199-4/b52
http://refhub.elsevier.com/S0952-1976(18)30199-4/b52
http://refhub.elsevier.com/S0952-1976(18)30199-4/b52
https://thingpedia.stanford.edu/
http://refhub.elsevier.com/S0952-1976(18)30199-4/b55
http://refhub.elsevier.com/S0952-1976(18)30199-4/b55
http://refhub.elsevier.com/S0952-1976(18)30199-4/b55
http://refhub.elsevier.com/S0952-1976(18)30199-4/b56
http://refhub.elsevier.com/S0952-1976(18)30199-4/b56
http://refhub.elsevier.com/S0952-1976(18)30199-4/b56
http://refhub.elsevier.com/S0952-1976(18)30199-4/b56
http://refhub.elsevier.com/S0952-1976(18)30199-4/b56

	PAVAL: A location-aware virtual personal assistant for retrieving geolocated points of interest and location-based services
	Introduction
	Related Work
	Virtual personal assistants
	Location-aware recommender systems
	Geographic information retrieval

	Aim of the paper

	External Knowledge and System Architecture
	External knowledge and resources
	Reference corpus generation module (target expansion)

	System architecture
	Service extraction module
	Location extraction module
	Geolocated data extraction module

	Validation
	Validation user interface
	Validation data and methodology
	Service extraction evaluation
	Location extraction evaluation
	Geolocated data extraction evaluation

	English validation
	Validation data classification

	Conclusions
	Acknowledgments
	References

