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Abstract
The first objective of this study was to evaluate the use of lyophilised biomass of the cyanobacterium Arthrospira platensis F&M-
C256 as the sole substrate for lactic acid fermentation by the probiotic bacterium Lactobacillus plantarumATCC 8014. After 48 h of
fermentation, the bacterial concentration was 10.6 log CFU mL−1 and lactic acid concentration reached 3.7 g L−1. Lyophilised A.
platensis F&M-C256 biomass was shown to be a suitable substrate for L. plantarumATCC 8014 growth. The second objective of the
study was to investigate whether lactic acid fermentation could enhance in vitro digestibility and antioxidant activity of A. platensis
biomass. Digestibility increased by 4.4%, however it was not statistically significant, while the antioxidant activity and total phenolic
content did increase significantly after fermentation, by 79% and 320% respectively. This study highlights the potential ofA. platensis
F&M-C256 biomass as a substrate for the production of probiotic-based products.
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Introduction

Lactic acid-fermented products frommilk (yogurt and cheese)
are widely consumed, but the demand for dairy-free alterna-
tives is rapidly rising because of the increasing incidence of
lactose intolerance and veganism, and as a response to the
request for higher nutritional quality and fortified food prod-
ucts (Kandylis et al. 2016; Panghal et al. 2018). In this respect,
lactic acid fermentation is considered a valuable technology to
enhance shelf life, safety, sensory and nutritional properties of
vegetables and fruits (Di Cagno et al. 2013).

Somealgae represent a suitable substrate for theproductionof
fermented foods due to their availability and high nutritional val-
ue (Gupta and Abu-Ghannam 2011; Gupta et al. 2011; Uchida
andMiyoshi 2013).Manyanddiverse fermentedproducts (pow-
ders, beverages, delicacies) from seaweeds, microalgae (mainly

Chlorella and Dunaliella) and spirulina (different Arthrospira
species), usuallymixedwith plant-derived substrates and obtain-
ed through different fermentative processes (by lactic acid bacte-
ria or yeasts or amixture of thesemicroorganisms), are available
in themarket and easily found on e-commerce platforms.

In comparison to the numerous studies on algae fermentation
(Gupta et al. 2011; Nguyen et al. 2012; Talukder et al. 2012;
Uchida and Miyoshi 2013), those on cyanobacteria are limited
and focus particularly on Arthrospira spp. Bhowmik et al.
(2009) added spirulina biomass to cultures of different
Lactobacillus and Streptococcus strains and performed 10h
fermentations, observing an increase in the bacterial number
with increasing biomass concentrations. Parada et al. (1998)
added the filtrate from A. platensis cultures to various lactic acid
bacteria cultures, which were allowed to ferment for 24 h. The
filtrates increased growth of all the bacterial strains. De Caire et
al. (2000) added spirulina biomass at different concentrations to
milk and then fermented the suspension with a blend of lactic
acid bacteria. The presence of spirulina biomass favoured the
growth of the bacteria. Several authors (Varga et al. 2002;
Guldas and Irkin 2010; Beheshtipour et al. 2012, 2013;
Mazinani et al. 2016) have tested the effect of spirulina biomass
addition to yogurt, cheese, and fermented milk, with positive
results, among which included an increase in the number of
lactic acid bacteria and improvement of the nutritional quality
of the fermented product during storage. However, to the best of
our knowledge, the suitability of spirulina biomass as the sole
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substrate to obtain lactic acid-fermented products has not been
investigated.

Arthrospira, besides accumulating, like all cyanobacteria,
glycogen as primary energy and carbon reserve, contains high
levels of proteins (up to 70% dry mass) of high value due to the
presence of all the essential amino acids (Becker 2007).
Arthrospira also contains high levels of vitamins, minerals (par-
ticularly iron), essential fatty acids (particularly γ-linolenic acid),
carotenoids and chlorophyll (Ghaeni et al. 2014), and a number
of unexplored bioactive compounds (Kulshreshtha et al. 2008;
Tredici et al. 2009; Chacón-Lee and González-Mariño 2010;
Soheili and Khosravi-Darani 2011). Arthrospira has po-
tent antioxidant activity due to the presence of polyphe-
nols and phycocyanin (Liu et al. 2011) and also shows in-
teresting lipid-lowering effects (Colla et al. 2008; Bigagli et al.
2017). Arthrospira nutritional properties could be improved
through lactic acid fermentation, which could increase digest-
ibility of the biomass and availability of nutritious substances,
besides providing probiotic bacteria.

Probiotic microorganisms are Blive microbial food supple-
ments which beneficially affect the host animal by improving
its microbial balance^ (Fuller 1992). Lactobacillus plantarum
has been proposed as probiotic, and several studies have
been performed that show its capacity to resist transit
through the gastric tract, ability to colonise the host gut,
safety and potential health benefits such as cholesterol
reduction (de Vries et al. 2006; Georgieva et al. 2009;
Karczewski et al. 2010).

A prebiotic is defined as Ba substrate that is selectively
utilized by host microorganisms conferring a health benefit^
(Gibson et al. 2017). Polysaccharides from algae, for example
β-glucans from C. vulgaris, and spirulina biomass are already
recognised and accepted as dietary prebiotics (Jiménez-Escrig
et al. 2013; de Jesus Raposo et al. 2016).

This study was designed to investigate the suitability of A.
platensis F&M-C256 biomass as the sole substrate for L.
plantarum ATCC 8014 growth and fermentation and to eval-
uate the fermented product in terms of probiotic bacteria con-
tent, in vitro digestibility and antioxidant capacity, which are
parameters of great importance for the development of func-
tional foods.

Materials and methods

A. platensis F&M-C256 biomass production

Biomass of Arthropira platensis F&M-C256 was produced at
Archimede Ricerche S.r.l. (Imperia, Italy). The cyanobacteri-
um was cultivated in Zarrouk medium (Zarrouk 1966) in
GWP®-I photobioreactors (Chini Zittelli et al. 2013) in
semi-batch mode and harvested by filtration. The biomass
was washed with tap water to remove excess bicarbonate, then

frozen, lyophilised, powdered and stored at − 20 °C until use.
In the literature, Arthrospira platensis is often incorrectly re-
ported as Spirulina platensis (Tomaselli et al. 1996). To avoid
confusion with the true Spirulina genus, in the present work,
we have always adopted the correct denomination A.
platensis.

Bacterial inoculum preparation

Lactobacillus plantarum ATCC 8014 (LAB 8014) was pur-
chased from Cruinn Diagnostics Ltd. (Dublin, Ireland). The
culture was maintained at − 80 °C in a Thermo Scientific
Revco Elite PLUS Freezer ULT2586-10-A (USA) in 20%
glycerol stocks. For the preparation of the inoculum, 25 mL
of autoclaved MRS broth (Scharlau Chemie, Spain) was in-
oculated with 1 mL of thawed LAB 8014 stock culture and
incubated at 37 °C for 24 h in an orbital shaker (Gallenkamp,
Weiss Technik, UK). This inoculum was then diluted (1:100)
to obtain a working culture containing 6–7 log CFU mL−1 as
determined by plate counts.

Fermentation

The suitability of lyophilised A. platensis F&M-C256 biomass
as substrate for LAB 8014 growth and fermentation was tested
according to Gupta et al. (2011). Under sterile conditions, 5 g
of lyophilised (8% water content) A. platensis F&M-C256
biomass was introduced in a 100mL Erlenmeyer flask,
40 mL of sterile deionised water was added and the suspen-
sion was inoculated with 2 mL of a LAB 8014 culture.
Deionised water was then added to reach a final volume of
50 mL. The initial A. platensis biomass concentration in the
inoculated suspension was thus 92 g dry weight L−1. Three
replicates were prepared. The flasks were incubated at 37 °C
and 100 rpm in an orbital shaker (Innova 42, Mason
Technology, Ireland). Samples were taken at 0, 24, 48, and
72 h for microbiological and chemical analyses. A period of
72 h was considered sufficient to observe and evaluate the
main fermentation parameters (Gupta et al. 2011). The pH
was measured at 0 and 72 h. To evaluate in vitro digestibility,
antioxidant capacity and total phenolic content, aliquots
(15 mL) were taken at time 0 and after 72 h of incubation
and lyophilised before analysis. Phenolics were evaluated also
after 24 and 48 h of incubation.

To exclude that the indigenous microbiota of A. platensis
F&M-C256 biomass may have significantly contributed to the
bacterial number increase during fermentation, 5 g of
lyophilised A. platensis F&M-C256 biomass was intro-
duced in 100mL Erlenmeyer flasks with 50 mL of
deionised water without LAB 8014 inoculation, the
flasks were incubated as for the inoculated tests and
samples were taken at 0, 24, 48 and 72 h for bacterial
growth determination by plate count.
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Analytical methods

Microbiological analyses

Viable LAB 8014 cell counts in the A. platensis broth (log
CFU mL−1) were performed at the start and after 24, 48 and
72 h by plating on MRS agar (Scharlau Chemie, Spain). The
fermentation broth was serially diluted (1:10) in Maximal
Recovery Diluent (Sigma–Aldrich, Ireland) before plating.
The plates were incubated at 37 °C for 36–48 h. The average
weight of a L. plantarum cell was determined by growing
LAB 8014 cultures (1 mL of thawed stock culture) in
100 mL of MRS broth incubated at 37 °C for 48 h. The cell
number was determined by total counts with an Improved
Neubauer counting chamber for bacteria, and the biomass
dry weight was determined following the method reported
by Guccione et al. (2014) using membranes with 0.22 μm
porosity (Millipore, USA). The average weight of LAB
8014 cells was then calculated by dividing the biomass dry
weight by the cell number.

Lactic acid determination

Samples were collected from the fermented broths at the start
and after 24, 48 and 72 h, diluted 1:10 with water and centri-
fuged at 16,211×g for 15 min at 4 °C. The cell-free supernatant
was used to quantify the lactic acid content. Analyses were
carried out with a high-performance liquid chromatography
(HPLC) system (Waters Alliance, e2695 Separation module,
Waters Corporation, USA) equipped with an auto sampler
and dual pump controller. The detection system consisted of a
Waters-2996 UV detector (210 nm) and a differential refrac-
tometer (Waters-410) connected in series. The column (Rezex
ROA-Organic acid 5 H+ (8%) 350.0 mm × 7.8 mm;
Phenomenex, UK) was maintained at a temperature of 65 °C
and was preceded by a guard column (50.0 mm× 7.8 mm;
Phenomenex). An isocratic programme was used with a flow
rate of 0.9 mL min−1 with a mobile phase of ammonium phos-
phate monobasic (0.05 M) (Sigma–Aldrich) adjusted to pH 2.4
with concentrated phosphoric acid (Sigma–Aldrich). An injec-
tion volume of 20 μL was used. Each sample was injected
twice. Samples and mobile phases were pre-filtered using
0.22 μm filters (Millipore). Data acquisition and integration
were performed using Empower 4.0 software (Waters
Corporation). Sodium lactate standards (Sigma-Aldrich) were
used to identify and quantify lactic acid in the samples.

In vitro digestibility

The in vitro digestibility was evaluated by the method of
Boisen and Fernández (1997), modified by Niccolai et al. as
reported in Batista et al. (2017), on lyophilised fermentation
broth at time 0 and after 72 h of fermentation. The method

reproduces the chemical-enzymatic digestion (by gastric and
pancreatic juices) that occurs in the proximal tract of the
monogastric digestive system. After 72 h of fermentation,
broth samples were collected, frozen, lyophilised and pow-
dered (particle size ≤ 1 mm) before analysis. One-gram sam-
ples were weighed and transferred to 250mL conical flasks.
The analysis comprised two steps of enzymatic digestion: the
first performed with porcine pepsin (Applichem, Germany)
and the second with porcine pancreatin (Applichem) (Batista
et al. 2017).

DPPH assay

To evaluate the radical scavenging capacity of the fermenta-
tion broth at time 0 and 72 h, the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) radical scavenging assay was carried
out according to Rajauria et al. (2013). Briefly, the assay was
performed in 96-well microtiter plates (Greiner Bio-One
International GmbH, Germany) with 100 μL of DPPH radical
solution (165 μM, in methanol, Sigma-Aldrich) and 100 μL
of sample (0.2 g of lyophilised broth extracted for 30 min in
5 mL of a 1:5 methanol/water solution). The reaction mixtures
were incubated in darkness at 30 °C for 30 min. The absor-
bances were measured at 517 nm using a UV-Vis spectropho-
tometric plate reader (BioTek USA).

Total phenolic content determination

The total phenolic content assay was carried out according to
Ganesan et al. (2008) using the Folin Ciocalteu assay.
Samples of 0.1 g of lyophilised fermentation broth at time 0
and 72 h were dissolved in 10 mL of deionised water. To
100 μL aliquots of each sample, 2 mL of 2% sodium carbon-
ate (Sigma-Aldrich) in water was added. After 2 min, 100 μL
of 50% Folin Ciocalteu reagent (Sigma-Aldrich) was added.
The reaction mixture was incubated in darkness at 25 °C for
30 min. The absorbance of each sample was measured at
720 nm using a UV-Vis spectrophotometric microplate reader.
Results were expressed in gallic acid equivalents (mg GAE
g−1) through a calibration curve of gallic acid (0 to
500 μg mL−1) (Sigma-Aldrich).

Statistical analysis

All analyses were conducted in triplicate on three fermentation
broths. The results were expressed as mean ± SD (standard
deviation). All statistical analyses were carried out using
Statgraphics Centurion XV (StatPoint Technologies Inc.,
USA). Statistical differences between different broths were de-
termined using ANOVA followed by multiple range tests to
determine the least significant difference (LSD). Differences
were considered statistically significant when P < 0.05.
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Results and discussion

Suitability of A. platensis F&M-C256 biomass for L.
plantarum ATCC 8014 growth and lactic acid
fermentation

Lactobacillus plantarum ATCC 8014 was cultivated for 72 h
in a broth containing lyophilised biomass of A. platensis
F&M-C256 (92 g dry weight L−1) as the sole component.
The growth curve of LAB 8014, expressed as log CFU per
mL of fermentation broth, is shown in Fig. 1. Immediately
after inoculation (time zero), an average bacterial concentra-
tion of 5.3 ± 0.05 log CFU mL−1 was measured. The maximal
bacterial concentration (10.6 ± 0.2 log CFU mL−1) was
reached after 48 h of fermentation (Fig. 1). This corresponds
to 11.6 ± 0.2 log CFU per gram of Arthrospira dry biomass
initially added. Considering the average weight of a LAB
8014 cell determined in this study (0.48 ± 0.07 pg), we can
assume that after 48 h of fermentation, a concentration of 19.7
± 7.6 g of bacterial biomass per litre of broth was reached.
Thus, the yield of probiotic bacterial biomass from A.
platensis F&M-C256 biomass was higher than 20% (21 ±
8.3%). These data indicate that A. platensis F&M-C256 is a
suitable substrate for L. plantarum growth.

Several authors (Gardner et al. 2001; Bergqvist et al. 2005;
Yoon et al. 2006) have measured the growth of lactic acid
bacteria on conventional organic matrices such as beet, onion,
carrot and cabbage. From these studies, the maximum concen-
trations reached by various species of Lactobacillus varied in
the range of 9–10 log CFU mL−1. These concentrations were
reached after 24 h in carrot juice (Bergqvist et al. 2005), 48 h
in cabbage juice (Yoon et al. 2006) and after 72 h in a vege-
table mixture (Gardner et al. 2001). It is worth mentioning that
in the above studies, Lactobacillus initial concentration was
always higher than in the present study. The autochthonous
microbial population of raw vegetables and fruits fluctuates

between 5 and 7 log CFU g−1, of which lactic acid bacteria
represent a minor part (2–4 log CFU g−1) (Di Cagno et al.
2013). In the present study, with the sole lyophilised A.
platensis F&M-C256 biomass suspended in water and with-
out inoculum, bacterial concentrations of 2.3 and 6.9 log CFU
g−1 were detected at the start and at the end (72 h) of the
fermentation, respectively. This indicates that the indigenous
microbiota of A. platensis F&M-C256 biomass did not signif-
icantly affect bacterial number enumeration and the values
found by plate count in the inoculated broth were essentially
due to LAB 8014. In accordance with the results obtained in
the present study, Bhowmik et al. (2009) found that the addi-
tion of A. platensis (up to 10 g L−1) to different Lactobacillus
cultures promoted growth up to a maximum of 9 log CFU
mL−1 after 10 h, starting from a concentration of 2–3 log
CFU mL−1. The positive effects of A. platensis on the growth
of lactic acid bacteria can be attributed to the highly accessible
and nutritious substances it contains, which stimulate bacterial
metabolism (Beheshtipour et al. 2013). These substances in-
clude exopolysaccharides, free amino acids and essential vi-
tamins and minerals (Parada et al. 1998). To observe a positive
health effect of probiotic consumption, a minimum level of
live microorganisms is required (Vanderhoof and Young
1998). This level, depending upon the strain used and the
desired health effect, is usually between 8 and 10 log CFU
per day for 1 to 2 weeks (Vanderhoof and Young 1998).
Nobaek et al. (2000) found that patients with irritable bowel
syndrome (IBS) had an imbalance in their normal colonic
flora and exhibited a continuous improvement in overall gas-
trointestinal function during 12 months following assumption
of 400 mL per day of a fermented drink containing 7.7 log
CFU mL−1 of L. plantarum. Considering the high concentra-
tion of LAB 8014 cells (10.6 log CFU mL−1) in the A.
platensis F&M-C256 fermented broth, we can conclude that
this cyanobacterium is promising for the development of
fermented foods rich in probiotics.

Lactic acid concentration in the broth during the fermenta-
tion process is reported in Fig. 1. Most of lactic acid accumu-
lation (2.93 ± 0.02 g L−1) occurred in the first 24 h of fermen-
tation and the maximum concentration was reached after 48 h
(3.67 ± 0.18 g L−1) with a conversion yield of about 40 mg of
lactic acid per gram of dry A. platensis biomass. A decrease of
pH to values of about 5 was also observed. Considering that L.
plantarum has a facultative heterofermentative metabolism,
the excretion of acetic acid (not analysed in this study), in
addition to lactic acid, might have contributed to pH decrease
during fermentation.

Common cereal grains have been studied for their ability to
support fermentation by lactic acid bacteria. For example,
Tanaka et al. (2006) found that the homofermentative L.
delbrueckii IFO 3202 was able to produce 28 g L−1 lactic acid
from 100 g L−1 of rice bran when coupled with enzymatic
hydrolysis. Although a similar concentration of substrate

Fig. 1 Growth curve (circles) of and lactic acid production (squares) by
LAB 8014 in a broth containing A. platensis F&M-C256 biomass as the
sole substrate. The amount of biomass at the start of the experiment (time
0) was 92 g (dry weight) L−1. Values are expressed as means ± SD
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(92 g L−1 of A. platensis F&M-C256 biomass) was used in the
present study, a maximum lactic acid concentration of less
than 4 g L−1 was obtained. The greater yield of lactic acid
with rice bran may be explained by the quick release of sugars
following enzyme addition, but also by the higher carbohy-
drate content and different carbohydrate profile of rice bran
(11.3% cellulose + hemicellulose and 46.7% starch + dextrin),
probably more suitable to sustain Lactobacillus lactic acid
fermentation, compared to A. platensis F&M-C256 biomass
(13.4% total carbohydrates). Uchida and Miyoshi (2013) re-
ported a lactic acid production in the range of 1.5–5.4 g L−1

from microalgae such as Chlorella, Tetraselmis and
Nannochloropsis. Hwang et al. (2012) investigated the lactic
acid fermentation of anUlva (Enteromorpha) prolifera hydro-
lysate using different Lactobacillus strains. Similar to the pres-
ent study, the lactic acid produced over 24 h of incubation by
L. rhamnosuswas 4.3 g L−1, and a similar production (around
4 g L−1) was observed also for L. salivarius. Fermentation of
Irish brown seaweeds (Gupta et al. 2011, 2012) led to a lactic
acid production comparable to that found in the present study
with A. platensis F&M-C256 biomass. It is to note that A.
platensis, like some micro- and macroalgae, favours more
growth of lactic acid bacteria than lactic acid production.

In vitro digestibility of fermented A. platensis
F&M-C256 biomass

When the potential application of new matrices for the produc-
tion of foods is proposed, the digestibility is a parameter which
needs to be considered. A two-step (first with pepsin then with
pancreatin) digestion protocol was used in this study to assess
the in vitro digestibility of the unfermented and fermented
(72 h) A. platensis F&M-C256 biomass. Fermentation did not
improve digestibility significantly (P > 0.05), however there
was an increase of 4.4% (Table 1).

Arthrospira platensis cell wall structure is typical of Gram-
negative bacteria with a thin peptidoglycan layer (Tomaselli
1997). The easily breakable cell ofA. platensis favours the access
of the digestive enzymes to the intracellular content, and for this
reason, chemical or physical processing steps are in general not
required to improve spirulina biomass digestibility (Becker 2007,
2013). Mišurcovà et al. (2010) evaluated the in vitro digestibility
of A. platensis and Spirulina Pacifica® produced by Cyanotech

Corp. (USA), finding a higher digestibility value both for A.
platensis (94.3%) and Spirulina Pacifica® (85.6%) compared to
that obtained in the present study for A. platensis F&M-C256
biomass (about 75%). It is, however, worth pointing out that at
the end of the fermentation, a large fraction of the solid residue in
the broth was composed of bacterial cells, which have low di-
gestibility (Alfano et al. 2015).

Antioxidant capacity and phenolic content
of fermented A. platensis F&M-C256 biomass

Arthrospira has in vitro and in vivo antioxidant, radical scav-
enging and anti-inflammatory activities, principally due to the
presence of phycocyanin and polyphenols (Bhat and
Madyastha 2000; Abd El-Baki et al. 2009; Liu et al. 2016).

The DPPH radical scavenging capacity of fermented (72 h)
and unfermented (0 h) A. platensis F&M-C256 broths is
shown in Table 1. Fermentation brought to an increase of
about 80% in DPPH inhibition. Similar to the results obtained
in the present study, Liu et al. (2011) reported an increase of
DPPH radical scavenging capacity after fermentation of A.
platensis biomass in milk.

Phenolic compounds are considered major contributors to
antioxidant capacity (Abd El-Baki et al. 2009). Total phenolic
content of Arthrospira spp. varies from 4.5 to about 50 mg
GAE g−1 depending on strain and culture conditions (Abd El-
Baki et al. 2009; Liu et al. 2011; Kepekçi and Saygideger
2012). Liu et al. (2011) found that milk with added A. platensis
biomass reached 33.6 mg GAE g−1 after 48 h of fermentation
and hypothesised that lactic acid fermentation helps the release
of polyphenols from spirulina. In the present study, the total
phenolic content of the fermentation broth increased from 4.5
at the start to 18.9 mgGAE g−1 after 2 days of fermentation and
then decreased to 10.9 mg GAE g−1 after 72 h (Fig. 2). The
presence of phenolics could be one of the main reasons for the

Table 1 In vitro digestibility (% dry matter) and DPPH radical
scavenging capacity (%) of lyophilised fermentation broth at the start
and at the end of fermentation. Values are expressed as mean ± SD.
Different letters denote a significant difference (P < 0.05)

Fermentation times (h) In vitro
digestibility (%)

DPPH radical
scavenging capacity (%)

0 74.3 ± 0.9a 20.5 ± 1.7a

72 77.6 ± 3.6a 36.6 ± 1.2b

Fig. 2 Total phenolic content, expressed as mg of gallic acid equivalent
(GAE) per g of dry fermentation broth initially containing 92 g (dry
weight) L−1 of A. platensis F&M-C256 biomass. Values are expressed
as means ± SD
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antioxidant activity of the fermentedA. platensis broth, possibly
together with phycocyanin (not addressed in this study). Further
studies are necessary to fully clear this point.

Many studies report that L. plantarum strains present anti-
oxidant activity (Li et al. 2012; Kachouri et al. 2015). Suzuki
et al . (2013) identif ied two compounds, L-3-(4-
hydroxyphenyl) lactic acid and L-indole-3-lactic acid, as pos-
sible cause of DPPH radical scavenging capacity of L.
plantarum cultures. It is worth noting that in this work, the
broth after 72-h fermentation contained a high concentration
of LAB 8014 that could be responsible, together with pheno-
lics and phycocyanin released from A. platensis F&M-C256,
for the increase in radical scavenging capacity.

Conclusions

In conclusion, this study shows that A. platensis F&M-C256 is
a suitable substrate for L. plantarumATCC 8014 growth. At the
end of the fermentation, L. plantarumATCC 8014 cells consti-
tute more than 20% of the broth dry weight. While no signifi-
cant enhancement in digestibility of A. platensis biomass was
observed following lactic acid fermentation, antioxidant activ-
ity was strongly increased (by about 80%). Fermentation by
lactic acid bacteria is an appropriate technology to obtain inno-
vative functional products from A. platensis, which can provide
to the consumer, besides the highly nutritional properties of
spirulina further increased by fermentation, a significant
amount of probiotic Lactobacillus cells, thus conferring addi-
tional favourable properties to the final product.
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