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Abstract  
Precision forestry is a new approach for more sustainable forest 

management. Modern technologies are important to the development of 

new tools and applications to conduct site-specific management practices. 

3D remote sensing technologies are new tools and have new applications 

useful for improving the data collection, work efficiency and quality of 

forest information that can be used to take better management decisions. 

This thesis is aimed at assessing the use of 3D data to develop new 

tools and procedures useful for forest inventories and for the estimation of 

soil disturbances caused by forest operations. In so doing, this study 

attempts to close the gaps underlined by previous studies.  

The thesis is divided into two main sections. The first one 

comprises the studies I, II, and III related to forest inventory optimization, 

while the second section comprises the studies IV and V related to 

estimation of soil disturbances caused by forest operations.  

Study I demonstrates how a 3D point cloud acquired by a 

Terrestrial Laser Scanner (TLS) and a Hand-Held Mobile Laser Scanner 

(HMLS) can be used to automatically derive forest single tree variables such 

as diameter at breast height (DBH) and tree position (TP). Moreover, the 

study underlines how the integration of TLS with Airborne Laser Scanner 

(ALS) point clouds improves the estimation of tree top height (H) and crown 

base projection (CPA).  

In study II a novel approach is presented for the extraction of 

explanatory variables from unmanned aerial vehicle (UAV) 3D 

photogrammetric data for predicting forest biophysical properties without 

relying on a digital terrain model. This study assesses the use of DTM-

independent variables to predict forest biophysical proprieties using as a 

benchmark two more traditional sets of variables: (i) height and density 

variables from UAV photogrammetric data normalized using a DTM 
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acquired using airborne laser scanning (ALS) (Image-DTMALS variables), and 

(ii) height and density variables extracted from normalized ALS data (ALS 

variables). We obtained comparable results between the models developed 

with DTM-independent models and the ones obtained with the other two 

types of variables (i.e. Image-DTMALS and ALS) to predict: Growing Stock 

Volume (V), Basal Area (G), Number of trees (N), Dominant Height (Hdom) 

and Lory’s height (Hl). 

Study III used the new set of DTM-independent variables 

developed in study II to predict area-based (ABA) forest structure variables 

(e.g. V, G, Mean Diameter (DBHmean), Gini coefficient of DBH (Gini), standard 

deviation of DBH(σdbh), Hdom, Hl and standard deviation of H (σh)) using as 

benchmarks the variables from ALS. The results underline comparable 

results between the two types of metrics in the estimation of forest 

structure variables. Moreover, the models developed with DTM-

independent metrics were used to create two maps of two forest structure 

indices.  

In study IV and V we tested the utility of multi-temporal high 

resolution DTM derived by Personal Laser Scanner (PLS) (IV) and by close 

range photogrammetry (V) to measure and quantify soil disturbances 

caused by forest operation. These studies underline how multi-temporal 

high resolution (DTM) can be used to quantify rut deep, bulges, and soil 

volume changes.   

In conclusion, 3D RS data appears useful in the development of 

new methods to collect and measure forest ecosystem components such as 

vegetation and soils.  

 
Keywords: precision forestry, 3D Remote Sensing data, Airborne Laser 
Scanner, Terrestrial Laser Scanner, Photogrammetry, Portable Laser 
Scanner, Structure from Motion, Forestry, Forestry inventories, forest 
operations, forest management  



 11 

  



 12 

List of papers 
 
Forest inventory applications 
 
Paper I 
Giannetti, F., Puletti, N., Quattrini, V., Bottalico, F., Travaglini D., Corona, P., 
Chirici G. (2017). Integrating terrestrial and airborne laser scanning for the 
assessment of single tree attributes in Mediterranean forest stands. 
Submitted  
 
Paper II 
Giannetti, F., Chirici, G., Gobakken, T., Næsset, E., Travaglini, D., Puliti, S. 
(2017). Development and assessment of DTM-independent variables for 
prediction of forest biophysical properties using UAV photogrammetric 
data. Submitted  
 
Paper III 
Giannetti, F., Puletti, N., Puliti, S., Travaglini, D., Chirici, G. (2017). UAV 
photogrammetric DTM-independent variables can be used to predict forest 
structural indices? A case of study in mixed temperate forests. Manuscript 
 
Soil disturbance applications 
 
Paper IV 
Giannetti, F., Chirici, G., Bottalico, F., Travaglini, D., Marchi, E., Cambi, M. 
(2017). Assessment of soil disturbance caused by forest operations by 
means of Portable Laser Scanner and soil physical parameters Soil Science 
Society of America Journal DOI: 10.2136/sssaj2017.02.0051. Published 
online October 19, 2017 
 
Paper V 
Cambi, M., Giannetti, F., Bottalico, F., Travaglini, D., Nordfjell, T., Chirici, G., 
Marchi, E. (2017). Estimating soil impact in logging skid trails via close-range 
photogrammetry and soil parameters: a case study in central Italy. Accepted 
iForest 
 
 
  



 13 

1. Introduction 
1.1. Precision Forestry 

 
Forests are complex environments characterized by high biological 

and genetic biodiversity (Dinerstein et al., 1995) that provide 

multifunctional services simultaneously to satisfy social, cultural, economic, 

and environmental demands (Chirici et al., 2012; FOREST EUROPE, 2015; 

O’Farrell and Anderson, 2010). Many forest ecosystem components (e.g. 

vegetation, soil, and water) need to be monitored and measured 

simultaneously to quantify the health and the state of forests (FOREST 

EUROPE, 2015) and to create multiple objective management plans 

(Arabatzis, 2010; Fotakis et al., 2012; Ozdemir, 2008). At present, precision 

forestry is a new direction for better forest management (Corona et al., 

2017; Fardusi et al., 2017; Kovácsová and Antalová, 2010). Precision 

forestry’s fundamentals are founded on precision agriculture. Indeed, the 

term “precision” was introduced for the first time in the 1990s in agriculture 

and it was referred to practices and solutions to improve and to optimize 

site-specific management practices considering spatial and temporal 

variability with the aim of increasing productivity and reducing 

environmental risks (Tran and Nguyen, 2006). Precision agriculture was 

defined as “the integration of technology in the collection, interpretation, 

and analysis of data to  support  the  decision-making  system,  in  order  to 

improve the agricultural processes by precisely managing each step to 

ensure maximum agricultural production while maintaining the 

sustainability of natural resources” (Dyck, 2003). Only in the early 2000s in 

the US, was “precision” introduced in forestry to develop sustainable forest 

management (SFM) systems and improve the work efficiency of forest 

operations. Taylor et al. (2002) first defined precision forestry as “planning 

and conducting site-specific forest management activities and operation to 
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improve wood production quality and utilization, reduce waste, and 

increase profits, and maintain the quality of the environment”. Indeed, in 

2014 the Joint Research Centre of the European Commission modified the 

definition of precision, (e.g. agriculture and forests) as the “environment 

friendly system solution that optimizes product quality and quantity while 

minimizing cost, human impact and intervention, and the variation caused 

by unpredictable nature”, placing more importance on the sustainable 

development strategies.  

Several authors underline how modern technologies are important 

to developing precision forestry applications (Fardusi et al., 2017; Kovácsová 

and Antalová, 2010; Taylor et al., 2002). The definition given in 2014 during 

the First International Conference on Precision Forestry underlines how 

“Precision Forestry uses high technology sensing and analytical tools to 

support site-specific, economic, environmental, and sustainable decision-

making for the forestry sector supporting the forestry value chain from bare 

land to the customer buying a sheet of paper or board” (IUFRO, 2015, 

2014). Thanks to modern technologies it is possible to conduct silvicultural 

operations in a cost-effective manner (Fardusi et al., 2017; Kovácsová and 

Antalová, 2010; Talbot et al., 2016; Taylor et al., 2002). Kovácsová and 

Antalová (2010a) in their review describe precision forestry with a diagram 

drawing precision forestry as a chain that uses data, tools, and information 

to take better decisions (Figure 1).  

In this regard, the demands for global-level and small-scale forest 

information have increased (Chirici et al., 2012; Corona et al., 2017; Fardusi 

et al., 2017; Kovácsová and Antalová, 2010). The development of new 

geospatial-information tools and techniques for data collection and analysis 

are therefore considered essential (Fardusi et al., 2017; Talbot et  
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Figure 1: diagram of precision forestry (modified from Kovácsová and P    

Antalová, (2010b)). 

 

al., 2016). Moreover, several authors have reported that new methods and 

tools that permit the integration of spatial and temporal dimensions to 

measure, monitor, and manage forests ecosystem components could be 

useful in the development of decision support systems (Corona et al., 2017; 

Fardusi et al., 2017; Kovácsová and Antalová, 2010). Detailed and 

continuous information is, instead, necessary for supporting and for 

implementing precision forestry practices (Fardusi et al., 2017; Fotakis et 

al., 2012; Holopainen et al., 2014; Kovácsová and Antalová, 2010; Taylor et 

al., 2002) and to develop the multiple objectives of conservation and 

management forest strategies, plans, actions, and decisions (Arabatzis, 

2010; Corona et al., 2017; Fardusi et al., 2017; Holopainen et al., 2014; 

Kurttila, 2001).  
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measure, monitor, and manage 

forests ecosystem components could be useful to develop decision 

support systems (Corona et al., 2017; Fardusi et al., 2017; Kovácsová and 

Antalová, 2010). Detailed and continuous information are, instead, 

necessary for supporting and for implementing precision forestry practices 

(Fardusi et al., 2017; Fotakis et al., 2012; Holopainen et al., 2014; Kovácsová 

and Antalová, 2010; Taylor et al., 2002) to develop multiple objectives 

conservation and management forest strategies, plans, actions, and 

decisions (Arabatzis, 2010; Corona et al., 2017; Fardusi et al., 2017; 

Holopainen et al., 2014; Kurttila, 2001).  

 

1.2. 3D Remote Sensing technologies in precision forestry  
 

Remote Sensing (RS) technologies, providing high-quality 

geospatial information about forests, are considered crucial to improving 

highly repeatable measurements, actions, and processes in precision 

forestry (Dyck, 2003; Holopainen et al., 2014; Kovácsová and Antalová, 

2010). RS technologies have the ability to acquire information of an object 

without physical contact with it. Many authors have already underlined how 

RS technologies are essential to measuring, monitoring, and mapping forest 

ecosystem components (Bottalico et al., 2017; Corona and Fattorini, 2008; 

Koreň et al., 2015; Liang et al., 2016; Maack et al., 2015; Mura et al., 2015; 

Næsset and Økland, 2002; Pierzchała et al., 2014) and for planning forest 

operation activities (Talbot et al., 2016). Across a variety of RS technologies, 

multisource three dimensional (3D) RS data are considered to be a viable 

data source to derive high-quality geospatial information (Bohlin et al., 

2015; Corona et al., 2017; Fardusi et al., 2017; Holopainen et al., 2014; 

Kovácsová and Antalová, 2010; Liang et al., 2016; Lim et al., 2003; Puliti et 

al., 2017b; Ryding et al., 2015). Generally, 3D RS information can be derived 
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with three different approaches: triangulation, interferometry, and 

measuring the time differences between a transmitted and received energy 

pulse. The last two approaches are applicable only when RS active sensors 

are used (e.g. laser scanner or radar) while triangulation can be applied 

from both active or passive sensors on board satellite or aerial platforms.  

3D RS technologies have the ability to derive information about 

distances of objects from the sensor, deriving accurate three-dimensional 

(3D) information for different forest ecosystem components, such as 

vegetation (Dandois and Ellis, 2010; Dash et al., 2016; Puliti et al., 2015; 

Ryding et al., 2015), and soil (Barneveld et al., 2013; Kamphorst et al., 2000; 

Koreň et al., 2015; Pierzchała et al., 2014). Measures can be provided at 

different scales from the millimetre and centimetre range (e.g. soils 

displacement) (Koreň et al., 2015; Pierzchała et al., 2014), to kilometre 

range (e.g. stand volume) (Bottalico et al., 2017; Dandois and Ellis, 2013; 

Fardusi et al., 2017; Næsset and Økland, 2002; Niemi and Vauhkonen, 2016; 

Rahlf et al., 2015; White et al., 2016). 

In the last several years, the development of different sensor 

platforms, instruments and techniques has increased the availability of 3D 

RS data. The sensor platforms can be deployed on satellites, airplanes, 

unmanned aerial vehicles (UAVs), ground-based vehicles, and by ground-

based people (Talbot et al., 2016). The different platforms give the 

possibility of collecting data at different spatial and temporal resolutions 

(Table 1). In forestry, 3D RS data derived from different sensors (i.e. laser 

scanner, radar, and camera) and platforms (i.e. unmanned aerial vehicle 

(UAV), aircraft, and terrestrial) are considered useful for many applications 

such as forest inventories, soils displacement and erosion, and habitat 

characterization (Gobakken et al., 2015; Koreň et al., 2015; Lim et al., 2003; 

Pierzchała et al., 2014; Puliti et al., 2015; Zahawi et al., 2015) 
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Table 1: General characterization of sensor deployment platforms to spatial 
coverage and temporal resolution (adapted from Talbot et al., 
(2016)). 

Sensor 

deployment 

Coverage Spatial 

resolution 

Temporal 

resolution 

Satellite Global/National Low Medium to 

high 

Airplane Regional Medium Low 

UAV Local High High 

Vehicle Site Ultra-high High 

Human Site Ultra-high High 

In the last several decades, active sensors – in particular those 

based on Light Detection and Ranging (LiDAR) –have been the most used in 

forestry applications (Liang et al., 2016; Maltamo et al., 2014; White et al., 

2016). Liang et al. (2016) provide a classification of laser scanning based on 

different platforms used, distinguishing between Airborne Laser Scanning 

(ALS), Terrestrial Laser Scanning (TLS), Mobile Laser Scanners (MLS) and 

Personal Laser Scanning (PLS). Moreover, Bauwens et al. (2016) introduced 

definitions for Hand-Held Mobile Laser Scanning (HMLS).  

ALS is the most-studied 3D remote sensing technology for forestry 

applications (Bottalico et al., 2017; Hansen et al., 2015; Hyyppä et al., 2008; 

Maltamo et al., 2014; McRoberts et al., 2013a; Næsset, 2002, 1997; Næsset 

et al., 2004). Its advantage in mapping forest variables is well documented, 

especially in the context of National Forest Inventory (NFI) (McRoberts et 

al., 2013b; Næsset, 2007; Næsset et al., 2004), local forest inventory 

(Bottalico et al., 2017), biodiversity monitoring (Corona et al., 2011; Lefsky 

et al., 2002; Lim et al., 2003; Mura et al., 2015; Valbuena et al., 2016, 2013; 

Wulder et al., 2008) and for the characterization of wildlife habitats 
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(Sallabanks et al., 2006; Vogeler et al., 2014). ALS has, in fact, the ability to 

collect and capture highly detailed data of large areas, giving information of 

ground elevation and detailed characterization of forests (Holopainen et al., 

2014; Hyyppä et al., 2008). In operational wall-to-wall forest inventories, a 

two-stage procedure using ALS data and field plots, i.e. an area-based 

approach (ABA, Næsset, 2002), has become particularly common, and 

several countries (e.g. Norway, Sweden, and Finland) already use this 

technology in the operational implementations of NFIs.  

New advantages for precision forestry are derived also by the 

development of terrestrial laser scanning technologies that are slowly 

modifying methods for the field assessment of forest attributes (Moskal and 

Zheng, 2011; Hyyppä, et al., 2012; Holopainen et al., 2013; Kankare et al., 

2015) and soil measurements (Koreň et al., 2015). TLS, MLS, PLS, and HMLS 

appear to be suitable for measuring millimetre-level information (e.g. soils) 

(Koreň et al., 2015), stand level information (e.g. an NFI sample plot level of 

200-500 m2) and single trees (Bauwens et al., 2016; Kankare et al., 2015a, 

2014; Liang et al., 2016; Maas et al., 2008; Ryding et al., 2015). However, 

TLS has not yet been accepted as an operational tool in forestry inventories 

mainly because of the difficulties in the automation of point cloud 

processing to automatically derive meaningful variables. Liang et al. (2016) 

underline “how up to now there is a lack of automatic and accurate 

methods to detect tree attributes (e.g. tree species and height) which need 

further studies”. As of 2017, the main research issue needed for terrestrial 

laser scanner applications in forestry is to improve the work efficiency in 

sample plots, most usually of 200-500 m2 in size. These instruments permit, 

in fact, the replacement of manually measured tree attributes with those 

retrieved by TLS data (Bauwens et al., 2016; Maas et al., 2008; Newnham et 

al., 2015; Ryding et al., 2015). TLS was tested in collecting basic tree 
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attributes in sample plots, such as diameter at breast height (DBH), tree 

position, and tree height (Bauwens et al., 2016; Fleck et al., 2011; Kankare 

et al., 2015b; Maas et al., 2008; Ryding et al., 2015). The accuracy of DBH 

estimates based on terrestrial laser scanner pulses was demonstrated to be 

acceptable for most countries and forest types, e.g., to be within 1–2 cm 

RMSE (Liang et al., 2016). However, larger RMSEs were obtained for tree 

heights, e.g. RMSE in the range of 0.8-6.5 m (Fleck et al., 2011; Huang et al., 

2011a; Maas et al., 2008). As reported by Kankare et al. (2015), the forest 

structure has a major impact on the accuracy of forest attribute estimates 

from terrestrial laser scanning since tree tops are usually shadowed by 

other trees (Huang et al., 2011b; Liang and Hyyppä, 2013; Maas et al., 

2008). As reported in the review by Liang et al., (2016) “finding tree tops 

from TLS data in dense sample plots remains a challenge”.  

Moreover, TLS is considered a valued instrument to measure and 

to quantify soil disturbances. From TLS point clouds, it is possible to 

generate high-resolution digital terrain models (DTMs) that provide an 

accurate representation of topographical surfaces (Haubrock et al., 2009; 

Heritage and Large, 2009). Multi-temporal TLS acquisitions allow for the 

accurate measurement of changes and deformation in terrain (Haubrock et 

al., 2009; Heritage and Large, 2009; Milan et al., 2011), thus providing a 

measure of volumetric changes (Koren et al., 2015) and facilitating the 

documentation of terrain conditions (e.g., the development of rills or 

roughness) (Nadal-Romero et al., 2015). 

In the last several years the use of photogrammetry has received 

increasing attention in forestry mapping and monitoring thanks to new 

methods developed for photogrammetric applications, advances in 

computer vision, new image matching algorithms, and increased computing 

power (Baltsavias et al., 2008; Lisein et al., 2013; Puliti et al., 2015; 
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Remondino et al., 2014). These advantage permit the application of 

Structure from Motion (SfM) Photogrammetry (Remondino et al., 2014) 

from optical images for 3D image-based point clouds and Digital Surface 

Model (DSM) derivation. Photogrammetry can be classified on the base of 

platforms used to acquire data in digital aerial photogrammetry (DAP), 

when images are acquired by an aircraft, (Bohlin et al., 2015; Ginzler and 

Hobi, 2015; Gobakken et al., 2015; Järnstedt et al., 2012; Rahlf et al., 2014; 

Vastaranta et al., 2013); Unmanned Aerial vehicle photogrammetry (UAVP), 

when the images are acquired from a UAV (Chianucci et al., 2016; Dandois 

and Ellis, 2013; Nex and Remondino, 2014; Puliti et al., 2017a, 2015; 

Wallace et al., 2016); and close-range terrestrial photogrammetry (CRP), 

when images are acquired from the ground with little distance between 

camera and targets.  

Several authors have already demonstrated that with 

photogrammetry point clouds, acquired from aircraft (i.e. DAP) and UAV 

(i.e. UAVP), normalized with high-resolution DTMs (i.e., by subtracting the 

terrain elevation from the photogrammetric point cloud elevation (Lisein et 

al., 2013)) it is possible to derive explanatory variables that can be used for 

ABA estimations (e.g. photogrammetry based estimation of variables such 

as volume, height, basal area, and number of trees) and produce results 

with accuracies that are comparable with those obtained with traditional 

ALS metrics (Dandois et al., 2015; Hobi and Ginzler, 2012; Järnstedt et al., 

2012; Puliti et al., 2017a, 2017b; Rahlf et al., 2014; White et al., 2013; 

Whitehead et al., 2014; Zahawi et al., 2015). Moreover, Waser et al., (2015) 

have found that photogrammetric data are useful for wall-to-wall forest 

estimations. The attention to photogrammetric 3D data in forest inventory 

is increasing also because of the low cost of the acquisition of this data 

compared to ALS (Waser et al., 2015). However, several authors have 
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mentioned that 3D photogrammetric data in forestry are limited by the 

need for high-resolution DTMs (Bohlin et al., 2012; Järnstedt et al., 2012; 

Lisein et al., 2013; Ota et al., 2015; Vastaranta et al., 2013). 

Photogrammetric data (i.e. image-based point cloud and DSM) are 

also considered useful for quantifying soil disturbances (e.g. soils 

displacement (Pierzchała et al., 2014) and soil erosion (Micheletti et al., 

2015; Nadal-Romero et al., 2015). SfM photogrammetry techniques make 

it possible to generate digital surface models that accurately reproduce 

topographic (Nadal-Romero et al., 2015; Pierzchała et al., 2014; Vericat et 

al., 2014). The use of close-range photogrammetry in mapping soil surface 

structure was demonstrated more than 20 years ago (Warner, 1995), while 

the advent of structure-from-motion (SfM) photogrammetry (James and 

Robson, 2012) has generated an improvement in topographic methods, due 

to its better accessibility to a wider variety of users, low cost, and the 

increased automation of routines and workflow (Fonstad et al., 2013; 

Nadal-Romero et al., 2015). The advantages introduced by SfM in the 

geosciences were demonstrated by James and Robson (2012), and the 

reconstruction of high-resolution surface models (Turner et al., 2012) has 

opened new possibilities in the applications of geoscience analysis (Castillo 

et al., 2015), forestry (Pierzchała et al., 2014; Talbot et al., 2016) and 

agriculture (Nouwakpo and Huang, 2012). 

3D photogrammetric data, ALS, TLS, PLS and HMLS all have the 

ability to automatically measure the surrounding 3D space using millions to 

billions 3D points. The new 3D RS techniques overcome traditional forest 

measuration techniques using simple tools, such as callipers, measuring 

tape, and clinometers, thus improving the work efficiency in forest 

measuration, inventory, and monitoring (lower costs and time) (Henning 

and Radtke, 2008; Liang et al., 2016). 
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2. Background motivation and aims 
 

The increasing availability of 3D RS data has inspired the research 

work of this thesis. This research work addresses the synergetic integration 

of 3D RS data and forest field surveying to develop tools and procedures 

useful for precision forestry. The present thesis is aimed at contributing to 

the gap in research between advances in 3D RS technologies and precision 

forestry application as, for example, (i) exceeding the use of high resolution 

DTMs to estimate forest variables using UAVP; (ii) increasing the accuracy 

of single-trees estimations derived from 3D RS data from different laser 

scanner clouds acquired by different platforms; (iii) and testing the utility of 

3D RS technologies in measuring soil displacement caused by forest 

operations. In particular, attention was focused on developing new tools 

and procedures (i) for operational forest inventories using HMLS, TLS, 

UAVP, and ALS; and (ii) for estimation soil disturbances caused by logging 

operations using PLS and CRP. For this reason, the papers included in the 

thesis are divided into two main categories: (i) forest inventory and (ii) soil 

disturbance.  

The specific objectives of the forest inventory papers are: 

 to assess and compare the precision and accuracy of PLS 

and TLS with and without the integration of ALS to 

measure single trees variables (Paper I); 

 to develop and to assess a new set of explanatory 

variables derived by UAVP data (i.e. DTM-independent 

explanatory variables) without relaying of any DTM for 

ABA estimation of inventory variables (Paper II); 

 to assess the use of DTM-independent explanatory 

variables to predict forest structure indices (Paper III). 
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 The specific objectives of the soils displacement paper 

are: 

 to assess soil compaction, and to determine the extent of 

logging-induced rutting by way of multi-temporal high-

resolution DTM generated by PLS (Paper IV) and CRP data 

(Paper V). 

 
Forest inventory applications 
Paper I - Integrating terrestrial and airborne laser scanning for the 
assessment of single tree attributes in Mediterranean forest stands 

“In this study, our main objective was to assess and compare the 

precision and accuracy of ZEB1 HMLS and FARO® FOCUS 3D TLS to measure 

single tree attributes within a complex mixed Mediterranean forest. In 

particular, we considered the following attributes: tree position (TP), stem 

diameter at breast height (DBH), tree height (TH), crown base height (CBH), 

and the radii of the crown projection area (CPAR). Using conventional field 

survey as a benchmark, the main aim was to compare tree level attributes 

obtained by the automatic elaboration of four different point clouds: (i) 

HMLS; (ii) TLS; (iii) integration of HMLS and ALS (HMLSALS); (iv) integration of 

TLS and ALS (TLSALS). The accuracy of the estimates was evaluated on the 

basis of bias and Root Mean Square Error (RMSE) calculated comparing tree 

level estimations with field reference data.”  

(Giannetti et al., 2017b) 

 

Paper II - Development and assessment of DTM-independent variables for 
prediction of forest biophysical properties using UAV photogrammetric 
data.  
 

“The overall objective of this study was to develop a set of DTM-

independent explanatory variables and assess their usefulness when 

modeling the following forest biophysical forest properties: growing stock 
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volume (V; m3 ha-1), basal area (G; m2 ha-1), number of stems per hectare 

(N; ha-1), Lorey’s height (HLor; m), and dominant height (Hdom; m). The DTM-

independent variables were assessed against two more traditional sets of 

variables: (1) height and density variables from UAV photogrammetric data 

normalized using an ALS DTM (denoted Image-DTMALS variables) and (2) 

height and density variables extracted from normalized ALS data (denoted 

ALS variables). Moreover, to gain further insights in the applicability of the 

approach across different regions and for different forest types, the 

assessment of the DTM-independent variables was performed across two 

different study sites, namely a temperate mixed forest in Italy and a boreal 

forest in Norway”.  

(Giannetti et al., 2017d)  

 

 
Paper III - UAV photogrammetric DTM-independent variables can be used 
to predict forest structural indices? A case of study in mixed temperate 
forests. 
 

“In this contribution we present the area-based (Nasset,2002) 

spatial estimation of the following forest structure complexity indices: basal 

area (G; m2ha-1); mean DBH (DBHmean; cm); standard deviation of DBH 

(DBHσ; cm); DBH Gini coefficient (Gini); standard deviation of H (Hσ h; m); 

dominant height (Hdom) and Lory’s height (Hl) and stem volume (V m3 ha-1). 

Predictors are DTM-independent variables (Giannetti et al., 2017d) from 3D 

UAV photogrammetric imagery. The accuracy of the DTM-independent 

approach was assessed against a more traditional approach based on ALS 

data in two forest districts in Italy”. 

(Giannetti et al., 2017c) 
Soil disturbance applications 
Paper IV - Assessment of soil disturbance caused by forest operations by 
means of Portable Laser Scanner and soil physical parameters.  



 26 

“The objectives of this study were to: (i) assess soil compaction, and 

(ii) determine the extent of logging-induced rutting by way of multi-temporal 

high-resolution DTM generated by PLS data.  

The effects of mechanized logging on soil compaction and rutting 

were investigated along two skid trails, in the Apennine Mountains of central 

Italy. Traditional soil sampling methods, integrated with laser scanning data 

from PLS, taken both before and after logging, were used for this 

investigation. 

The results of this analysis and subsequent discussion account for 

the fact that the number of machine passes and slope differ among the two 

study trails”. 

(Francesca Giannetti et al., 2017a) 

 
Paper V - Estimating soil impact in logging skid trails via close-range 
photogrammetry and soil parameters: a case study in central Italy 

“This study was carried out to investigate the use of SfM 

photogrammetry in association with traditional methods for assessing soil 

disturbance in forest operations. The effects of forest operations on soil were 

considered for two forest machines, forwarders and skidders. The specific 

objectives of the study were:  

(1) to assess soil compaction with traditional techniques; and (2) to 

evaluate multitemporal analysis based on the use of image-based high-

resolution ground surface models generated through the use of SfM 

photogrammetry workflow as an instrument to determine rutting and 

bulges caused by forest operations along all trail surfaces.” 

(Cambi et al., 2017) 
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Abstract 
The development of laser scanning technologies has gradually 

modified methods for forest mensuration and inventory. Airborne laser 

scanning (ALS) has demonstrated to be an unprecedented source of 

information for estimating forest attributes. Terrestrial laser scanning has 

the potential of additionally improving work efficiency in collecting forest 

information in the field, replacing manually measured tree attributes with 

more automatic procedures. The main objective of this study is to assess 

the potential of integrating ALS and terrestrial laser scanning data in a 

complex mixed Mediterranean forest for assessing a set of five single tree 

attributes: tree position (TP), stem diameter at breast height (DBH), tree 

height (TH), crown base height (CBH), and crown projection area radii 
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(CPAR). Four different point clouds were used: from ZEB1, a hand-held 

mobile terrestrial laser scanner (HMLS), and from FARO FOCUS 3D, a static 

terrestrial laser scanner (TLS), both alone or in combination with ALS. The 

precision of single tree predictions, in terms of bias and Root Mean Square 

Error (RMSE), was evaluated against data recorded manually in the field 

with traditional instruments. We found that: i) TLS and HMLS have excellent 

comparable performances for the estimation of TP, DBH and CPAR; ii) TH 

was correctly assessed by TLS, while the accuracy by HMLS was lower; iii) 

CBH was the most difficult attribute to be reliably assessed; iv) the 

integration with ALS increased the performance of the assessment of TH 

and CPAR with both HMLS and TLS. Our results show that the integration of 

both TLS and HMLS with ALS is useful for assessing single tree attributes 

that are related with the top of the forest canopy, while the use of TLS or 

HMLS alone provides accurate estimates for the undercanopy attributes 

(like TP and DBH) in forests with complex structure. 

 

Keywords: remote sensing, proximal sensing, LiDAR, forest inventories, forest 

structure, precision forestry 
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1. Introduction 
Over the last several decades airborne laser scanning (ALS) 

demonstrated to be useful in providing accurate estimations of tree heights 

and forest attributes related to tree spatial arrangement (Hyyppä, et al., 

2012). However, ALS data alone may not completely capture the 

information on the vertical distribution of the canopy because of the 

attenuation of the laser impulses, particularly in complex multi-layered and 

dense forests (Lim et al., 2003). ALS-based estimations rely on the 

acquisition of information in the field from a sample extracted from the 

investigated forest area, usually in circular plots selected in the framework 

of a statistical sampling design (Corona, 2016; Chirici et al., 2016). 

Conventional forest mensuration in sampling plots is based on tree 

measurements carried out by mechanical or optical instruments, such as 

callipers, hypsometers, compass and measuring tapes. The development of 

laser scanning technologies is gradually modifying methods for assessing 

forest attributes in the field (Moskal and Zheng, 2011; Holopainen et al., 

2013; Kankare et al., 2015). These technologies can improve work efficiency 

in forest inventory, potentially replacing manually measured tree attributes 

with more automatic procedures (Henning and Radtke, 2006; Liang et al., 

2016). Hence, static and mobile terrestrial laser scanners are acquiring 

increasing relevance in forestry (Liang et al., 2016a). Forest stand structure, 

especially the vertical distribution of forest vegetation, can be detected 

with high detail by laser scanners, providing single tree estimations better 

than those obtained by remote sensing or traditional field measurements 

(Loudermilk et al., 2009). Furthermore, terrestrial laser scanning data can 

be used to assess single tree attributes which can be hardly measured with 

other methods, such as tree architecture or detailed tree assortments 

(Dassot et al., 2011). 

The use of terrestrial laser scanning for forest and tree 
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mensuration can be classified according to the requested level of 

complexity of the attributes to be produced (Liang et al., 2016). From basic 

attributes such as the stem diameter at breast height (DBH), tree height, 

tree position, and three-dimensional (3D) models of the main stem, up to 

the provisioning of additional structural parameters such as crown width, 

crown projection area, crown height, crown surface area, secondary 

branches, and leaves. 

Static terrestrial laser scanning (TLS) is suitable to measure 

millimetre-level information from a sample plot level to a single tree (Maas 

et al., 2008; Liang et al., 2012, 2014; Lindberg et al., 2012; Kankare et al., 

2013; Kankare et al., 2014). The penetration of the laser pulse through the 

canopy is one of the main cause of measurements uncertainties. For 

instance, tree height underestimation occurs when LiDAR (Light Detection 

and Ranging) point density in the upper canopy is reduced due to the 

occlusion caused by the lower portion of tree canopy and understory 

vegetation (Maas et al., 2008). TLS point density is in fact negatively 

correlated with tree height (Van der Zande et al., 2006). Furthermore, TLS 

accuracy is influenced by other factors such as tree distance from the 

scanner, number of scans, and DBH extraction method (Liang et al., 2016; 

Srinivasan et al., 2014). The hardware costs are still rather high (albeit even 

more decreasing) and the mobility of instruments is relatively low.  

The disadvantages of TLS are partially reduced by mobile laser 

scanning technology, which allows a significant increase in productivity (e.g. 

area covered per hour of survey) and thus in capability of collecting 

inventory data over large areas (Ryding et al., 2015). Distinctively, hand-

held mobile laser scanner (HMLS) has lower hardware costs compared to 

TLS and, using Simultaneous Localization and Mapping (SLAM) methods, the 

reliance on satellite positioning is no more needed (Ryding et al., 2015). At 
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the same time, HMLS is less precise providing less accurate estimation of 

tree position and structure, in particular for smaller trees, than TLS. 

However, when trees with DBH<10 cm are not considered, even better 

results by HMLS, at least in DBH estimations, can be achieved (Bauwens et 

al., 2016; Ryding et al., 2015). 

The integration of TLS and HMLS scans with ALS provides a further 

possible solution to enhance characterization of forest stand overstory and 

understory. In this case, accurate tree heights are measured using ALS 

returns and the tree positions and structure mainly on the basis of TLS or 

HMLS returns, so that integrating terrestrial scans and ALS data results in 

an improvement of measurement accuracy.  

Few studies have focused on the analysis of the benefits resulting 

from TLS and HMLS merging with ALS (e.g. Paris et al., 2015; Yang et al., 

2015; Hauglin et al., 2014), and no studies were carried out under complex 

Mediterranean environments, at least to our knowledge. In this study, our 

main objective was to assess and compare the precision and accuracy of 

ZEB1 HMLS and FARO® FOCUS 3D TLS to measure single tree attributes 

within a complex mixed Mediterranean forest. In particular, we considered 

the following attributes: tree position (TP), stem diameter at breast height 

(DBH), tree height (TH), crown base height (CBH), and the radii of the crown 

projection area (CPAR). Using conventional field survey as a benchmark, the 

main aim was to compare tree level attributes obtained by the automatic 

elaboration of four different point clouds: (i) HMLS; (ii) TLS; (iii) integration 

of HMLS and ALS (HMLSALS); (iv) integration of TLS and ALS (TLSALS). The 

accuracy of the estimates was evaluated on the basis of bias and Root Mean 

Square Error (RMSE) calculated comparing tree level estimations with field 

reference data. 

This research note is organized as follows. First, the study area, 
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field reference data and HMLS TLS, and ALS data are presented. Then, a 

concise description of the approach applied to align the different point 

clouds and the automatic procedure to derive single tree attributes are 

reported. Finally, the results are discussed to highlight pros and cons of 

mobile (HMLS) and statitc (TLS) laser scanning techniques, as well as their 

potential integration with ALS for single tree attributes estimation. 

 

2.  Material  

2.1 Study area and field reference data 
The study area is located in a Mediterranean dense and multi-

layered forest stand close to Firenze (Central Italy), dominated by 

coniferous (Cupressus sempervirens L. and Pinus pinaster Aiton) and 

evergreen broadleaves (Quercus ilex L.), that can be ascribed to the type 9.1 

of the European Forest Types (Barbati et al., 2014). 

The field data were acquired on March the 18th 2016 within one 

circular plot having a radius of 13 m (531 m2). The latitude and longitude of 

the centre of the plot were recorded by a GNSS receiver Trimble Geo 7X, 

that lasted for approximately 1 hour with a 2-sec logging rate. The post-

processed centre coordinates revealed standard deviations for x, y and z of 

0.8 cm, 0.6 cm and 1.8 cm, respectively. 

For all living and dead trees with DBH > 2.5 cm, the following 

attributes were collected: horizontal distance and azimuth from the plot 

centre to compute tree position (TP); tree species, DBH, total tree height 

(TH), and crown base height (CBH). In addition, crown projection area (CPA) 

was calculated using the four crown radii (CPAR) measured in the field at 

each cardinal directions (north, east, south and west). DBH was measured 

with a calliper, TH, CBH, CPAR and horizontal distances were measured with 

a Vertex IV Hypsometer, while the azimuth was collected with a Suunto KB-

14/360 R compass. A total of 56 stems (i.e. 52 living trees and 4 standing 
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dead trees) and 224 CPAR were measured (Figure 1). 

The measured stems had an average DBH of 20.8 cm (standard 

deviation (SD) of 9.6 cm), an average height of 12.5 m (SD of 3.92 m), an 

average CBH of 4.76 m (SD of 3.06 m), and an average CPAR of 1.66 m (SD 

of 1.30 m) (Figure 2).  

These measures, collected by traditional instruments, are here 

assumed as error free and used as reference field data for evaluating the 

estimates produced on the basis of the different laser scans. 

 

Figure 1: Graphical scheme of single tree attributes measured in the field. 
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Figure 2: Summary of the reference field data measured with traditional 

instruments. Above the single tree position, below the boxplot of 

resulting values for DBH, TH, CBH, and CPAR. 

 

2.2 Laser Scanner data collection and pre-processing 

2.2.1. Hand-held Mobile Laser Scanning 
As HMLS we used the ZEB 1, which is a personal laser scanner 

instrument combined with an inertial measurement unit (IMU). The 

reported operative laser range outdoors is 15-20 m around the instrument 

(Bosse et al., 2012). Data acquisition is conducted by a person walking with 
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the instrument through the plot (Bauwens et al., 2016; Ryding et al., 2015). 

Only one walking scan was needed to acquire the field plot. A complete 

description of the instrument can be found in Giannetti et al., (2017), 

Bauwens et al. (2016) and in Ryding et al. (2015). 

Data acquisition was carried out on March the 22th 2016. Six 

spherical targets (each with a diameter of 14 cm) were fixed on the ground 

in different cardinal positions and at different distances from the centre to 

georeference the point cloud in post-processing (Figure 2). The spherical 

targets were measured starting from the plot centre. The azimuth was 

measured using a compass and the horizontal distance to the centre of the 

plot was determined with a VERTEX IV instrument.  

According to Bauwens et al. (2016), a walking fixed path was 

followed by the ZEB1 user to avoid shadow zones; the start and final points 

of the walking scan acquisition were coincident and fixed in the centre of 

the plot to ensure a close loop, as requested when the SLAM algorithm is 

used. In the field, for the operator it was not easy to follow the desired 

theoretical path for the presence of obstacle on the ground. As a 

consequence the real walking path resulted not coincident with the fixed 

one (Figure 3).  

The raw ZEB1 data were processed with the in-house procedure 

GeoSLAM, which uses the SLAM algorithm to locate the scanner in an 

unknown environment position/location and to register the whole 3D point 

clouds using IMU data and feature detection algorithms (Bauwens et al., 

2016).  

The 3D point cloud we obtained was rotated and translated using 

the six spherical targets from the local coordinate system to a geographic 

coordinate system (i.e. WGS84 UTM32N). 
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Figure 3: The HMLS (ZEB1) walking scheme acquisition. 

 

The six spherical targets were automatically detected in the cloud 

using Cloud Compare software (Compare Cloud, 2017) and with the align 

point pairs picking tools implemented in this software the reference 

coordinate system has been assigned. The final RMSE of roto-translation 

was 3.83 cm.  

 

2.2.2. Static Terrestrial Laser Scanning 
As the TLS we used the FARO FOCUS 3D instrument that acquires 

data from eight fixed points through a scan angle of 360°. The instrument 

uses a phase-shift-based technology with a maximum range of 120 m. It is 
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able to record and measure the x, y, z coordinates and the intensity of laser 

returns. A complete description of the instrument can be found in Bauwens 

et al. (2016) and Ryding et al. (2015). 

According to results reported by Trochta et al. (2013), several 

scans are needed in a forest field plot to acquire 50% of the DBH cross-

section and to detect 90% of the trees. Data acquisition was carried out on 

March the 25th 2016. Given the complexity of the forest, eight static scans 

were acquired to avoid shadow zones. We used 12 spherical targets 

mounted on poles to co-register the different scans. One spherical target 

was fixed on the plot centre and the remaining were distributed within the 

plot to ensure the larger scans visibility; in order to obtain a good post-

processing co-registration, scan positions were chosen to ensure as much 

as possible the higher inter-visibility of one scan to each other and the larger 

number of spherical targets (Figure 4). 

The FARO scan system was set to obtain black and white scans (no 

RGB) with an intermediate resolution (i.e. distance between two points at 

10 m equal to 9 mm).  

The different scans were co-registered using Trimble RealWorks 

software (Trimble, 2017) through the automatic detection of the spherical 

targets. All the spherical targets were recognized and the different scans 

were merged together in one point cloud. 

2.2.3. Airborne Laser Scanning 
The ALS survey was carried out in May 2015 with an Eurocopter 

AS350 B3 equipped with a LiDAR RIEGL LMS-Q680i sensor. The flight height 

was 1,100 m a.t.l. Full-waveform LiDAR data was registered and discretized 

to a point density 
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Figure 4: TLS (FARO) scheme acquisition and the location of the twelve 

spherical targets used to align the scans. 

 

of 10 point m-2 georeferenced in WGS84 UTM32N. Common 

procedures for pre-processing ALS data (e.g. outliers and noise cleaning, 

classification of ground/non-ground points and computation of height) 

were done using LAStools software. For more information on this ALS 

acquisition and the pre-processing techniques we refer to Chirici et al. 

(2017). 

 

2.3 Co-registration of point clouds 
To allow the comparison of the two different point clouds (i.e. TLS 

and HMLS) and ease the analysis at single tree level, the TLS point cloud was 
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coregistered to the georeferenced HMLS cloud following the procedure 

described in Bauwens et al. (2016). A rough alignment in Cloud Compare 

(http://cloudcompare.org) software with the align function (Compare 

Cloud, 2017) was done using as corresponding points the trees in the plot 

identified by visual interpretation. The accuracy of the rough alignment 

calculated on the corresponding points was 5 cm. To obtain the best overall 

fit of the two point clouds and to improve the alignment accuracy a Hybrid 

Multi-Station Adjustment (RIEGL LMS, 2017) was also carried out using a 

Digital Terrain Model (DTM) extracted and automatically aligned from the 

point clouds themselves. The achieved accuracy was 2 cm.  

In addition, the two point clouds (i.e. TLS and HMLS) were merged 

with ALS using the reference coordinate system (WGS84 UTM 32 N). The 

accuracy of the merging process was calculated on the basis of differences 

between terrain heights from the DTM based on ALS and the DTM obtained 

by TLS and HMLS with a spatial resolution of 0.5 m. The RMSE between all 

the pixels revealed a mean difference of 2 and 3 cm for TLS and HMLS, 

respectively. As a result of this procedure we obtained four georeferenced 

point clouds, namely TLS, HMLS, TLSALS and HMLSALS, which were used in the 

following analysis. 

 

3. Methods 

 

3.1 Extraction of single tree attributes 
The Computree software (http://computree.onf.fr) was used to 

automatically extract the five considered single tree attributes (TP, DBH, TH, 

CBH, CPAR) from the four point clouds. This approach allows the automatic 

extraction of all the attributes by the algorithms implemented in several 

tools. Simple trees tools (Hackenberg et al., 2015) were used to segment 

the plot point clouds into single trees point clouds, and to extract the single 
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tree attributes related to height (TH and CBH), DBH and TP. The ONF-

ENSAM tools (Othmani et al., 2011) were used to determine the CPA for 

each single tree. The 4 radii (CPAR) of the CPA were derived from the crown 

projection area in a GIS environment. Figure 5 shows the workflow used to 

process the four point clouds. 

 

Figure 5: procedure used to automatically extract the single tree attribute 

from TLS (FARO) and HMLS (ZEB1) point clouds. 

 

3.2 Accuracy assessment 
For each considered single tree attribute we compared the 

estimation obtained by point clouds with the traditional manual field 

measures. To assess the accuracy of the tree level estimations we calculated 

the coefficient of determination (R2). A paired t-test was used (95% critical 

significant level, α=0.05) to test statistical differences. In addition, we 

calculated the RMSE and bias as follows: 
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where n is the number of trees measured in the field, 𝑋𝑜  is the true 

value of the attribute measured in the field; 𝑋𝑆 is the estimated value of the 

attribute for each i-th tree. We used the Euclidean distance from the plot 

centre as 𝑋𝑜  and 𝑋𝑆 to calculate the RMSE and bias for TP. 

4. Results 
The automatic procedure allowed the segmentation of all the 

target trees measured in the field using HMLS, TLS, HMLSALS and TLSALS point 

clouds. The coefficient of determination (R2=0.98 for X coordinate and 

R2=0.99 for Y coordinate) and t-test (p>0.9) revealed a good fit between the 

tree position extracted from the four point clouds and the corresponding 

field reference measures (Figure 6). For TP, bias and RMSE were 

approximately 2.0 cm and 9.3 cm, respectively, independently of the cloud 

used (Table 1). A t-test confirmed that no significant differences (p>0.90) 

exist among the different clouds. 

For the DBH estimations, the coefficient of determination revealed 

a good fit between DBH estimated by HLMS (p>0.90; R2=0.99) and TLS 

(p>0.80; R2=0.99) and the field reference measures (Figure 7). Comparable 

results in terms of bias and RMSE were observed between the two 

instruments. As for TP, the merging of ALS cloud did not increased the 

accuracy of DBH estimations. The results provided by TLSALS and HMLSALS 

were equal with those obtained by TLS and HMLS (R2=1) (Table 1). However, 

using TLS and TLSALS clouds was possible to detect 55 DBHs (DBH>2.5 cm) of 

the 56 trees measured in the field with conventional instruments while with 

HMLS and HMLSALS only 53 DBHs (DBH> 5 cm) were detected 
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Table 1: Summary statistics of single tree attributes detected by each point 

clouds. The * indicate significant differences between the results 

obtained by the point cloud analysis and the measures in the field 

(t-test, p<0.05).  

Attributes Point cloud RMSE 
 

bias 
 

 
Tree position (cm) 
 

HMLS 9.31 2.06 
HMLSALS 9.31 2.06 
TLS 9.32 2.07 
TLSALS 9.32 2.07 

 
Stem diameter at breast 
height (cm) 
 

HMLS 1.28 -0.38 
HMLSALS 1.28 -0.38 
TLS 1.13 -0.41 
TLSALS 1.13 -0.41 

 
Tree height (m) 
 

HMLS 2.15 -4.61* 
HMLSALS 0.94 -0.30 
TLS 0.88 -0.61 
TLSALS 0.43 -0.19 

 
Crown base height (m) 
 

HMLS 1.91 1.67* 
HMLSALS 1.91 1.67* 
TLS 1.95 1.82* 
TLSALS 1.95 1.82* 

 
Crown projection area radii 
(m) 
 

HMLS 0.59  0.25* 
HMLSALS 0.44 0.20 
TLS 0.49 0.24 
TLSALS 0.24 0.18 

 

TH estimated by HMLS registered a large bias (Table 1 and Figure 

8) and significant differences with reference field measures (p<0.05 and R2= 

0.94), while TLS produced more accurate results (p>0.5; R2=0.98) both in 

terms of bias and RMSE (Table 1 and Figure 8).  
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Figure 6: performance of tree position assessment on the basis of HMLS 

(ZEB1) and TLS (FARO) point clouds. Values in meters. The black 

line is the 1:1 line. 

 

 

Figure 7: performance of DBH assessment on the basis of HMLS (ZEB1)  

 

 

RMSE of TH estimation was on average 17.2% (2.15 m) of the truth 
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values when calculated on the basis of the HMLS cloud alone, and 7 % (0.88 

m) when based on the TLS cloud. As expected, the inclusion of the ALS cloud 

contributed in obtaining better results in the estimation of TH, especially 

for HMLSALS for which a consistent decreasing of bias and RMSE (7.4% of the 

truth values) was observed. Concurrently, the coefficient of determination 

(R2=0.97) and t-test (p>0.7) revealed a good fit between TH estimated by 

HMLSALS and the field measures. The same positive effect by ALS integration 

was observed using TLSALS in terms of bias and RMSE (Table 1), which moved 

to 3.4% of the truth value (p>0.8; R2=0.99) (Figure 8). 

We were able to estimate the CBH of all the segmented trees, both 

on the basis of HMLS and TLS clouds, but independently of the considered 

cloud or of the inclusion 

of ALS data, we registered always low accuracies, with R2 equal to 

0.85, consistent bias and relatively high RMSE (Table1). The t-test between 

the CBH values estimated by clouds revealed a significant difference with 

the ones measured in the field (p<0.05), with RMSE equal, on average, to 

40% (1.91 m) and 41% (1.95 m) of the reference values, for HMLS and TLS 

respectively (Table 1). However, no significant differences were found 

(p>0.9, R2=0.99) between the results obtained by HMLS and TLS (Figure 9) 

with a constant underestimation especially for stems with larger CBH.  

The CPAR estimation using HMLS and TLS alone showed significant 

differences with reference field measures (p<0.05; HMLS: R2=0.91; TLS: 

R2=0.93) showing large bias with RMSE values equal, on average, to 36% 

(0.59 m) and 29% (0.88 m) of the reference values, for HMLS and TLS 

respectively (Figure 10). As reported for TH, the inclusion of the ALS cloud 

contributed in obtaining better CPAR estimations (p<0.05; HMLSALS: 

R2=0.95; TLSALS: R2=0.95) showing a decreasing trend of RMSE, equal to 27% 

and 23%, for HMLSALS and TLSALS, respectively, and no significant differences 
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with reference values (p>0.5) (Table 1). The ALS integration contributes to 

obtain a decrease of bias equal to 0.05 m and 0.06 m, for HMLS and TLS 

respectively. 

 

 

Figure 8: performance of tree height assessment on the basis of  HMLS 

(ZEB1) and TLS (FARO) point clouds, both alone and integrated 

with ALS. Values in m. The black line is the 1:1 line.  
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Figure 9: performance of crown base height assessment on the basis of 

HMLS (ZEB1) and TLS (FARO) point clouds, both alone and 

integrated with ALS. Values in m. The black line is the 1:1 line.  

 

Figure 10: performance of crown projection area radii estimation on the 

basis of the HMLS (ZEB1) and TLS (FARO) point clouds, both 

alone and integrated with ALS. Values in m. The black line is 

the 1:1 line. 
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5. Discussion  
We tested the potential of assessing single tree attributes in a 

complex mixed Mediterranean forest addressing two main issues: i) to 

assess and compare the results achieved on the basis of a FARO FOCUS 3D 

vs. a ZEB1 instrument, ii) and to investigate the influence of ALS integration 

on estimation accuracies. The assessment of tree position and DBH was 

satisfying, independently of the instrument used and independently of the 

additional use of ALS data. Using eight FARO TLS scans for DBH estimation, 

we obtained a bias of -0.41 cm and a RMSE of 1.13 cm, very similar to the 

ones reported by Bauwens et al. (2016) using five FARO scans (bias=-0.17 

and RMSE=1.3 cm), while with the ZEB1 HMLS we obtained a bias of -0.38 

cm and a RMSE of 1.28 cm for DBH estimation, similar to what reported by 

Ryding et al. (2015) (bias=0.30 cm and RMSE=2.9 cm), and by Bauwens et 

al. (2016) (bias= -0.08 cm and RMSE=1.11 cm). More in general, our DBH 

estimations by HMLS and TLS point clouds are in the range between 1.5 cm 

and 3.3 cm in terms of RMSE and in the range between -1.5 cm and 1.3 cm 

in terms of bias, confirming previous studies based on different TLS systems 

(Oveland et al., 2017; Hopkinson et al., 2004; Maas et al., 2008; Thies et al., 

2004; Tansey et al., 2009). Differences between the two instruments were 

instead noted in terms of the minimum DBH recorded. On the basis of ZEB1 

HMLS cloud we were not able to segment trees smaller than 10 cm in DBH, 

while with FARO TLS we found a minimum DBH of 2.5 cm (Figure 7). Thus 

confirming the results from Bauwens et al. (2016) and Ryding et al. (2015) 

who extracted single tree DBH and TP from trees with DBH>10 cm. 

As reported from previous studies, terrestrial laser scanning has 

objective limitations for the direct measure of TH especially when the laser 

range similar to tree heights and/or when several vegetation layers occlude 

the laser path (Paris et al., 2015; Kankare et al., 2013; Krooks et al., 2014; 

Liang and Hyyppä, 2013; Maas et al., 2008). In our case study, we were able 
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to obtain good precision using the FARO TLS point cloud (RMSE of 0.88 m 

and bias of -0.61 m, see Table 1), better than the precision of 4.55 m in 

terms of RMSE obtained with Riegl LMS Z420i and FARO LS 800 HE80 

reported by Maas et al. (2008). The results obtained by ZEB1 HMLS were 

less precise because of the limited range of the laser (15-20 m outdoor for 

the manufacturer). Under this point of view the procedure we propose for 

merging the ALS point cloud with the ZEB1 data was successful: RMSE 

moved from 2.15 to 0.94 m (Figure 8) and the bias moved from -4.61 m to 

-0.30 m, in line with the results achieved by Paris et al. (2015), who reported 

a change in RMSE due to ALS inclusion from 3.71 to 1.50 m.  

Estimation of CBH by HMLS and TLS showed a consistent bias with 

high values of relative RMSE (40% for HMLS and 41% for TLS), mainly due 

to the impossibility of recognizing dead branches on the basis of both HMLS 

and TLS clouds. 

As observed for TH, merging HMLS or TLS clouds with ALS data 

contributed to obtain more accurate results for CPAR estimation. In fact, on 

average the RMSE calculated on the base of the reference values decreased 

from 36% to 27% for HMLS and from 29% to 23% for TLS, and bias 

decreased from 0.25 to 0.20 for HMLS and from 0.24 to 0.18 for TLS. The 

positive effects of ALS inclusion were observed especially for larger crown 

radii (Figure 11). Usually the larger crown radii are those of dominant trees 

and we can suppose that both HMLS and TLS cannot accurately detect these 

trees because of the occlusion derived by the presence of dominated trees. 

Similar results are reported by Paris et al. (2015). 
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Figure 11: performance of crown projection area radii assessment on the 

basis of HMLS (ZEB1) and TLS (FARO) point clouds, both alone 

and integrated with ALS. Residuals were calculate subtracting 

from the measured value the one esteemed from the cloud. 

Values in m. The black line is the 0:0 line. 

 

In terms of workload, the acquisition of field data with 

conventional manual measurements required a total of 12 man-hours. The 

eight FARO scans were done in one hour, more than the time reported by 

other studies, such as the 30 minutes in ash and elm woodland reported in 

Ryding et al. (2015). The time needed for the ZEB1 acquisition was only 7 

minutes, which is in line with the results for a mixed forest in Belgium 

(Bauwens et al., 2016) and an ash and elm woodland in the UK (Ryding et 

al., 2015). The workload for coding and optimization of the procedures for 

point clouds segmentation and single tree attributes extraction was instead 
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around 50 man-days. The main problems in this phase were related to the 

high level of intersection between tree crowns and the complexity of the 

vertical structure (dominated trees under dominant trees).  

 

6. Conclusions 
Any rational decision related to the maintenance and 

enhancement of the multiple functions provided by forests needs to be 

based on objective, reliable information (Corona et al., 2002): as such, 

forest monitoring and assessment are rapidly evolving as new information 

needs arise and new techniques and tools become available. However, the 

exploitation of the latter, as well as their implementation within operative 

forest management processes, should be evidence-based (Corona, 2014). 

Under this perspective, the results obtained by this study highlight the 

following main issues: 

 The FARO 3D FOCUS instrument with eight scans in a plot of 

13 m radius was able to produce an excellent point cloud for 

a complete and detailed single tree segmentation. The 

estimations for the four attributes produced on the basis of 

this point cloud had errors in line or smaller than those 

reported in literature, even if the Mediterranean vegetation 

was dense and multi-layered. Under this point of view, this 

study confirms that TLS technique is promising also in such 

complex forest types. 

 Even if the ZEB1 instrument has a limited scanning range, in 

only 7 minute of walking scan we were able to produce a 

point cloud for good estimations of tree positioning and DBH, 

obtaining the same accuracy provided by the FARO scans in 

one hour acquisition. 
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 The integration of ALS and HMLS or TLS data did not 

determined a significant improvement on tree position and 

DBH estimation. 

 The inclusion of ALS data determined a strong increase in the 

accuracy of tree height and crown projection assessment, 

especially with respect to ZEB1.  

These findings cast a promising light on the use of HMLS such as 

the ZEB1, especially in those areas where recent ALS or photogrammetry 

point clouds are available. To increase the accuracy of the estimation based 

on HMLS ways to optimise the walking scan line should be devised, since it 

is rather difficult to understand during the path in the field which areas have 

been already scanned. Especially in complex forest or orographic 

conditions. 

Future research need also to be focused on standardize HMLS and 

TLS clouds segmentations to improve the utility of these instruments in 

complex forests: the complexity of forest stand structure influences a lot 

the time required to automatically analyze the data. For this reason, similar 

experiments should be carried out in different forest conditions. 
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Abstract 
We present a novel approach for extraction of explanatory 

variables from unmanned aerial vehicle (UAV) photogrammetric data for 

prediction of forest biophysical properties without relying on a digital 

terrain model. This DTM-independent approach was developed to avoid the 

need of a detailed DTM which is required when UAV photogrammetric data 

are normalized to obtain relative heights above the terrain, hence 

increasing the potential areas of application of UAVs in forest inventory. The 

approach was tested in two different forest types, namely boreal forests 

and temperate mixed forests. The following five response variables were 

studied: growing stock volume (m3 ha-1), basal area (m2 ha-1), stem number 

(ha-1), Lorey’s height (m), and dominant height (m).  

We compared the predictive accuracy of models using DTM-

independent variables with that of models using two more traditional sets 

of variables, namely (i) height and density variables from UAV 

photogrammetric data normalized using a DTM acquired using airborne 

laser scanning (ALS) (Image-DTMALS variables) and (ii) height and density 

variables extracted from normalized ALS data (ALS variables). Root mean 

square error as percentage of the mean (RMSE%) was used as measure of 
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accuracy in the comparison. Overall, the average RMSE% across all of the 

studied response variables was smaller (19.6%) for the DTM-independent 

variables compared to Image-DTMALS variables (19.7%) and ALS variables 

(21.6%). Interestingly, the DTM-independent variables yielded more 

accurate predictions (RMSE% = 19.1%) compared to ALS variables (RMSE% = 

23.2%) in the study site characterized by larger complexity in terms of forest 

structure and terrain. The generality of the results was confirmed by 

consistency of the results across the two study sites with RMSE% for the 

DTM-independent models in the range 15.9% - 19.2%, 12.8% - 15.9%, 

37.3% - 40.7%, 14.6% - 15.9%, and 10.7% - 13.5% for growing stock volume, 

basal area, stem number, Lorey’s height, and dominant height, respectively. 

Our results demonstrated that UAV photogrammetric data can be 

used effectively for estimating forest variables even when high-resolution 

DTMs are not available.  

Keywords: unmanned aerial vehicle, photogrammetry, digital 

terrain model, airborne laser scanning, forest inventory. 

 

Highlights: 

 A new set of DTM-independent explanatory variables 

were developed 

 DTM-independent explanatory variables were derived 

from UAV photogrammetry data. 

 The DTM-independent variables were regressed with 

forest inventory variables.  

 The results obtained were compared with traditional 

variables: Image-DTMALS and ALS. 

 The accuracy of the predictions between the three set of 

variables was similar. 
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1. Introduction 
During the last two decades, three-dimensional (3D) remotely 

sensed (RS) data have become a fundamental source of information for 

estimating and mapping forest biophysical properties (Maltamo et al., 2014; 

Næsset et al., 2004). Among the multiple techniques to acquire 3D RS data, 

modern digital photogrammetric has received increasing attention in 

recent years. Because of the lower acquisition costs and similar 

performances compared to alternative 3D RS data (e.g. laser scanning data), 

there is an increasing use of photogrammetric data for modeling, 

prediction, mapping, and estimation of forest biophysical properties. More 

recently, great interest in the use of photogrammetric data for forest 

inventory was triggered by the advent of versatile imaging platforms such 

as UAVs and the development of advanced structure from motion (SfM) 

photogrammetry algorithms (Remondino et al., 2014).  

Several studies have demonstrated that photogrammetric data 

generated from UAV imagery are a viable data source for forest inventories 

(Dandois and Ellis, 2013; Lisein et al., 2013; Puliti et al., 2017a, 2015a; 

Wallace et al., 2016). However, limited availability of detailed digital terrain 

models (DTMs) in large parts of the world has been a severe limitation to 

the use of photogrammetric data. A detailed DTM would be needed to 

obtain relative heights above ground by normalization, i.e., by subtracting 

the terrain elevation from the photogrammetric point cloud elevation 

(Lisein et al., 2013). The normalized point clouds are typically used to 

compute explanatory variables to predict forest biophysical properties. 

Because of the difficulty in generating detailed DTMs from 

photogrammetric data in vegetated areas, most studies based on 

photogrammetric data have employed pre-existing DTMs constructed from 

airborne laser scanning (ALS) data. However, ALS data are available only for 

small portions of the world’s forests. The use of photogrammetric data for 
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forest inventory purposes has therefore been limited to mainly managed 

forest in the western world. 

Some studies have attempted to use alternative sources of DTMs. 

Examples include DTMs obtained from UAV photogrammetric data 

(Dandois and Ellis, 2013; Kachamba et al., 2016; Miller et al., 2017; Wallace 

et al., 2016) or from space observations (Kachamba et al., 2016). Dandois & 

Ellis (2013) and Wallace et al. (2016) reported a mean difference (MD) 

between DTMs derived from ALS data and UAV in the range between 0.09 

m and 4.9 m. In addition to the potentially large MD of the DTMs, and 

especially in areas with dense canopy cover, both studies were conducted 

in very small areas (0.15 – 6.25 ha) and the reported findings can therefore 

hardly be generalized to a wider range of forest types. A major limitation in 

the use of DTMs generated from UAV photogrammetric data is the large 

variability of the quality of the DTM depending on canopy cover, leading 

potentially to small precision and also large systematic errors in the 

estimation of forest biophysical properties.  

It is important to note though that even ALS DTMs are affected by 

errors, especially in steep terrain combined with dense forest cover 

(Hodgson et al., 2003; Hodgson and Bresnahan, 2004; Hollaus et al., 2006; 

Hyyppä et al., 2005). For example, Hodgson and Bresnahan (2004) found 

that the observed errors between ground reference elevation and ALS 

derived elevation on 25° slopes may be about twice of those on relatively 

smaller slopes (e.g. 1.5°). Hyyppä et al. (2005) reported a standard deviation 

of up to 0.25 m for slopes <30° and up to 0.45 m for slopes greater than 30° 

while Hollaus et al. (2006) observed a standard error >0.5 m for slopes >60°. 

Furthermore, Hodgson et al. (2003) reported a mean absolute elevation 

error of ALS DTM ranging between 0.58 m and 0.96 m in slopes ranging 

between 0° and 8° in deciduous and mixed forests. As shown by Dandois 
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and Ellis (2013) and Wallace et al. (2016), errors in the DTM propagate into 

errors in the modeled relationships between variables derived from the 

point clouds and the forest biophysical properties. 

A conceptually different approach for the extraction of 

explanatory variables from photogrammetric point clouds, which to the 

very best of the authors’ knowledge is yet unexplored, could be to eliminate 

the need of a DTM by adopting a set of explanatory variables (DTM-

independent variables) from the raw, non-normalized photogrammetric 

point cloud. Such an approach could potentially increase the area of 

application of UAV photogrammetric data to all forests around the world, 

hence release the full potential of this technology. Furthermore, these 

variables could eliminate the negative effects deriving from erroneously 

classified DTMs on the explanatory variables. The DTM-independent 

variables proposed in this study extend beyond the traditionally used height 

and density variables by extracting information not only on the vertical 

structure but also on the horizontal structure and spectral properties of the 

forest canopy. The main hypothesis is that by extracting DTM-independent 

explanatory variables it can be possible to provide explanatory power as by 

using height and density variables from normalized point clouds. 

 

1.1. Objective 
The overall objective of this study was to develop a set of DTM-

independent explanatory variables and assess their usefulness when 

modeling the following forest biophysical forest properties: growing stock 

volume (V; m3 ha-1), basal area (G; m2 ha-1), number of stems per hectare 

(N; ha-1), Lorey’s height (HLor; m), and dominant height (Hdom; m). The DTM-

independent variables were assessed against two more traditional sets of 

variables: (1) height and density variables from UAV photogrammetric data 

normalized using an ALS DTM (denoted Image-DTMALS variables) and (2) 
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height and density variables extracted from normalized ALS data (denoted 

ALS variables). Moreover, to gain further insights in the applicability of the 

approach across different regions and for different forest types, the 

assessment of the DTM-independent variables was performed across two 

different study sites, namely a temperate mixed forest in Italy and a boreal 

forest in Norway.  

2. Materials  

2.1 Study areas 
The study was conducted in two areas, one in central Italy 

(43°43’N, 11°34’E) and one in southeastern Norway (59°30′N, 10°55′E) 

(Figure 1).  

The Italian study area is located in the Biogenetic reserve of 

Vallombrosa, municipality of Reggello (Florence Province) and has an area 

of 115 ha. The area is characterized by steep slopes (mean slope = 37%) and 

large altitude differences (1042 – 1434 m above sea level). The forest is a 

mixed temperate forest dominated by European beech (Fagus sylvatica L.) 

and Silver fir (Abies alba M.). Other tree species include Common ash 

(Fraxinus excelsior L.), Turkey oak (Quercus cerris L.), Downy oak (Quercus 

pubescens L.), European hop-hornbeam (Ostrya carpinifolia Scop.), and 

Douglas fir (Pseudotsuga menziesii (Mirb.) Franco).  

The Norwegian study area is located in Våler municipality and has 

an area of 194 ha. The forest is a boreal forest dominated by Norway spruce 

(Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous trees 

dominated by birch (Betula pubescens Ehrh.). The forest area in Norway is 

characterized by a gentler terrain, with mean slope = 6% and smaller 

differences in altitude (70–129 m above sea level) compared to the Italian 

site. 
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2.2 Field data 
In Italy field measurements consisted in a total of 30 circular fixed-

area sample plots (530 m2) measured in June 2015. The plots were located 

on the basis of a tessellation stratified sampling scheme (Barabesi and 

Franceschi, 2011) based on a hexagonal grid with 1 ha hexagons. 

 

 

Figure 1: on the left, map of Europe with the location of the two study areas: 
(A) mixed temperate forest (Italy) and (B) boreal forest (Norway). 
On the right, the two forest sites are shown; black dots correspond 
to field plots. Slope maps are displayed in the background. 

 

The plot data were collected by measuring the DBH of all trees with a DBH 

≥4 cm. All callipered trees were measured for height using a Vertex 
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hypsometer in both areas. The errors that can be expected in the height 

measurements are in the order of 2%–5% of the tree height (Daamen, 1980; 

Eriksson, 1970). The volume of each tree was predicted using the models 

developed in the framework of the 2nd Italian National Forest Inventory that 

predict the growing stock volume of a tree using tree DBH and tree height 

as independent variables (Tabacchi et al., 2011). In table 1, the field 

reference values of the analyzed biophysical proprieties are summarized. 

The center point positions of the sample plots were measured 

using global navigation satellite system (GNSS) receivers. A Trimble Juno 3 B 

Handheld receiver observing the pseudorange of both Global Positioning 

System (GPS) and Global Navigation Satellite System (GLONASS) was used. 

Data collection for each plot lasted for approximately 50 minutes with a 2-

sec logging rate.  The post-processed center coordinates revealed standard 

deviations for northing and easting ranging between 1.5 m and 3 m. 

In Norway, field measurements consisted in a total of 38 circular 

fixed-area sample plots (400 m2). The plot data were collected by measuring 

the DBH all trees with a DBH ≥4 cm. Sample trees for height measurements 

were selected based on a probability proportional to stem basal area. The 

sample trees height were measured using a Vertex hypsometer. The heights 

were predicted for the trees without height measurements using the 

height-DBH models devised by Fitje and Vestjordet (1977) and Vestjordet 

(1968). Heights were predicted for all trees using models dependent on 

DBH (Fitj and Vestjordet, 1977; Vestjordet, 1968), so that a volume could 

be obtained for each tree using species-specific volume models dependent 

on DBH and height (Braastad, 1966; Brantseg, 1967; Vestjordet, 1967). For 

height sample trees, volume estimates were also obtained using the 

observed height and DBH and the same volume models as indicated above. 

For each height sample tree, a ratio between volume estimate obtained 
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using observed height and volume estimate obtained using predicted 

height was then calculated. Plot- and species-specific mean ratios were 

used to correct the volume estimates to obtain single-tree volume 

estimates on each plot. The center point positions of the sample plots were 

measured using GNSS receivers. A Topcon Legacy-E+ 40 channel dual-

frequency receiver observing the pseudorange and carrier phase of both 

GPS and GLONASS was used.  Data collection lasted for approximately 40-

50 min for each point with a 2-sec logging rate. Back in the office, the 

recorded GNSS data were post-processed with correction data from a base 

station into submeter precision. 

In table 1, the field reference values of the analyzed biophysical 

proprieties are summarized. 

 

Table 1: summary of the field data. 

Biophysical forest 
properties 

Study Area Range Mean 

V (m3 ha−1) 
Italy 154.2–1013.2 602.8 

Norway 136.6–580.9 256.1 

G (m2 ha−1) 
Italy 13.0–99.0 58.9 

Norway 19.6–43.8 29.2 

N (ha−1) 
Italy 546–3449 1257 

Norway 350–3625 1372 

HLor (m) 
Italy 9.2–27.3 19.6 

Norway 6.7–17.1 11.4 

Hdom (m) 
Italy 11.2–39.0 24.8 

Norway 13.1–28.4 19.8 

 

2.3 Remotely sensed data 

2.3.1 UAV photogrammetric data 
In the present study, two SenseFly eBee Ag fixed-wing UAV were 

used for the image acquisition in both study areas. Prior to the UAV 

acquisition, 12 ground control points (GCPs) were marked in each area 

using 50 × 50 cm targets. The GCPs were measured using GNSS 
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measurements performed using a Trimble Geo 7X receiver in Italy and a 

Topcon Legacy-E+ 40 channel receiver in Norway. Data collection lasted for 

approximately 15 min for each GCP with a 2-sec logging rate. The post-

processed GCP coordinates revealed standard deviations for northing, 

easting, and height of 0.8 cm, 0.6 cm, and 1.8 cm, respectively, in Italy and 

0.7 cm, 0.5 cm, and 1.4 cm in Norway. The GCPs were later used to ensure 

accurate geometry and positioning of the photogrammetric point clouds. 

UAV images in Italy were collected in June 2015 under good 

conditions with sunny weather and wind speeds <1 m/s. The flight altitude 

was set to 150 m above ground level and the images were acquired using a  

Canon ELPH 110 HS RGB camera (16.1 MP). The overlap was set to 85% 

longitudinal and 75% lateral. The quality of images acquired in Italy were 

good without any problems related to light and atmospheric conditions, 

saturation, or blurriness.  

UAV images in Norway were collected between November and 

December 2014. The flight altitude was set to 120 m above ground level 

and the images were acquired by Canon S110 near infra-red (NIR) camera 

(12 MP). The overlap was set to 90% longitudinal, 80% lateral, and in 

addition perpendicular flight lines were flown. In this area, several factors 

affected the image quality, such as different light and atmospheric 

conditions in different flights, saturation, blurriness, the presence of snow 

on part of the canopy, and presence of snowflakes and/or fog in parts of 

the images. Table 2 summarizes the flight and image parameters. 

 

 

Table 2: parameters used during the UAV image acquisitions in the two 
study areas.  

 Italy Norway 

Study area  115 ha 194 ha 



 77 

Area covered by flight 198 ha 242 ha 

Number of flights 2 15 

Flight altitude above 
ground level 

150 m 120 m 

Camera  Canon S110 RGB  Canon S110 NIR 

R 660 nm 625 nm 

G 520 nm 550 nm 

B 450 nm - 

NIR - 850 nm 

Forward overlap 80% 90% 

Side overlap 75% 85% 

Number of images acquired 228 3250 

Focal length 4 mm 5 mm 

ISO Sensibility ISO-1000 ISO-1600 

Shutter speed 1/2000 sec 1/2000 sec 

Image dimension 4608 x 3456 4000 x 3000 

Field of view 200 x 150 m 168 × 126 m 

Estimated ground sampling 
distance 

0.050 m 0.042 m 

 

The UAV images were processed using the Agisoft PhotoScan 

(Agisoft LLC, 2017) to create a 3D point cloud. Agisoft Photoscan combines 

SfM and photogrammetric stereo-matching algorithms for 3D 

reconstruction from unordered but overlapping imagery. This software was 

chosen because it was previously found to be suitable for forest inventory 

applications (Dandois and Ellis, 2013; Kachamba et al., 2016; Puliti et al., 

2017a, 2017b, 2015a). For a detailed description of the different processing 

steps and parameters used to generate photogrammetric point clouds from 

UAV imagery, we refer to Puliti et al. (2015).  

The output point clouds had a point density of 44.3 points/m2 in 

Italy and 72.5 points/m2 in Norway. In addition to x, y, and z coordinates for 

each point, intensity (see figure 2), Red (R), Green (G), Blue (B) (in Italy), and 

G, R and Near Infrared (NIR) (in Norway) values were recorded. The intensity 

values were calculated based on proprietary image-matching algorithms 
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implemented in Agisoft Photoscan. According to personal communication 

with Photoscan support (Pasumansky, 2017)) the intensity value is calculate 

according the equation:  

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  0.2 × 𝐵1 + 0.72 × 𝐵2 + 0.07 × 𝐵3    (1) 

where B1, B2 and B3 are the color channels used to generate the 

point, in our case, R, G, B in Italy and G, R, NIR in Norway, respectively. 

2.3.2 Airborne laser scanning data 

The ALS data in Italy were derived from a leaf-on acquisition (10 

points m-2). ALS data were acquired in May 2015 using a RIEGL LMS-Q680i 

sensor. In Norway, the ALS data were acquired from a leaf-on acquisition (2 

points m-2) in November 2015 using a Leica ALS70 HM sensor.  

The ALS data were pre-processed and classified in ground/non-

ground echoes by the contractors GeoCart spa and Terratec As in Italy and 

Norway, respectively. 

In addition, a triangulated irregular network (TIN) surface was 

created by linear interpolation from the ground-classified points (Axelsson, 

2000) to construct high resolution ALS DTMs (DTMALS).  
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Figure 2: example of point cloud with intensity values clipped with a field 
plot in the Italian study area. On the right it is show the planimetric 
view and on the left the vertical view of the plot point cloud.  
 

 

3. Methods 
 

3.1 Extraction of explanatory variables 
Three different sets of explanatory variables were extracted from 

the point clouds associated with each field  plot, namely DTM-independent, 

Image-DTMALS, and ALS variables. While the first one was extracted from 

non-normalized point clouds, the latter two were extracted from 

normalized point clouds using a DTMALS as ground elevation reference and 

were used as benchmark. In the following sections, a detailed description 

of the three sets of variables is provided with particular detail on the 

innovative DTM-independent variables.  
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3.1.1 DTM-independent variables 
A total of 163 DTM-independent explanatory variables were 

computed either directly from the point cloud (n= 148) or at pixel level using 

a rasterized digital surface model (DSM) (n= 15). 

The point cloud DTM-independent variables were computed 

directly from the points’ z, intensity, R, G, B, NIR values. These included 

variables related to the z and intensity distributions and combinations of the 

two. Some variables related to z were computed on the basis of 

standardized z (zst) values. The zst was computed for each point as:  

𝑧𝑠𝑡 =
𝑧𝑖−�̅�𝑝

𝜎 𝑧𝑝
                   (2) 

where zi is the z coordinate of the point, �̅�𝑝 is the average value of 

z in the plot and 𝜎 𝑧𝑝 is the standard deviation of z in the plot.  

Furthermore, spectral variables from the bands available in the 

UAV imagery were extracted as mean and standard deviation for the values 

of each individual band. The description of the point cloud DTM-

independent variables is provided in table 3.  

 

 

Table 3: summary of the point cloud DTM-independent explanatory 
variables.  

Explanatory variables Description 

sd_z z standard deviation 

kur_z z kurtosis (Davies and Goldsmith, 1984; McGaughey, 2014) 

ske_z z skewness (Davies and Goldsmith, 1984; McGaughey, 2014) 

AAD_z z median absolute deviation (McGaughey, 2014) 

range_z Difference between maximum and minimum z values 

entropy  z normalized Shannon diversity index (entropy) (Pretzsch, 2009; 
Shannon, 1948) 

z_d1, z_d2,…, z_d9, 
z_d10 

z density variables defined as tenths of the distance between 
the 100th percentile and the lowest z value. 

zst_sum Sum of zst values 

z_p1, z_p2, ..., z_ p95, 
z_p100 

Percentile of 10, 20, 30, 50, 60, 70, 80, 90, 95, 100 zst 
distribution  

max_i Intensity maximum value 
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min_i Intensity minimum value 

Explanatory variables Description 

avg_i Intensity average value 

sd_i Intensity standard deviation 

kur_i Intensity kurtosis (Davies and Goldsmith, 1984; McGaughey, 
2014) 

ske_i Intensity skewness (Davies and Goldsmith, 1984; McGaughey, 
2014) 

AAD_i Intensity median absolute deviation (McGaughey, 2014) 

range_i Difference between maximum and minimum Intensity values 

entropy_i  Intensity normalized Shannon diversity index (entropy) 
(Pretzsch, 2009; Shannon, 1948) 

i_quart_1; i_quart_2; 
i_quart_3;i_quart_4 

Quartile of 25, 50, 75, 100 intensity distribution 

i_d1, i_d2, i_d3, i_d4 Intensity density calculated for equally intensity layers, defined 
as quarters of the distance between the 100th percentile and 
the lowest intensity value.  

i_1q_p1,……, i_1q_p100 z percentiles of 1st intensity quartiles 

i_1_p50/p25 Ratio between i_1q_p50/i_1q_p25 

i_2q_p1,….., i_2q_p100 z percentiles of 2nd intensity quartiles 

i_2_p50/p25 Ratio between i_2q_p50/i_2q_p25 

i_3q_p1,….., i_3q_p100 z percentiles of 3rd intensity quartiles 

i_3_p50/p25 Ratio between i_3q_p50/i_3q_p25 

i_4q_p1,….., i_4q_p100 z percentiles of 4th intensity quartiles 

i_4_p50/p25 Ratio between i_4q_p50/i_4q_p25 

i_1q_d1,……, i_1q_d10 z density variables of 1st intensity quartiles 

i_2q_d1,….., i_2q_d10 z density variables of 2nd intensity quartiles 

i_3q_d1,…, i_3q_d10 z density variables of 3rd intensity quartiles 

i_4q_d1,…, i_4q_d10 z density variables of 4th intensity quartiles 

mean_R, mean_G, 
mean_B, mean_NIR 

Mean value of R, G, B and NIR bands 

min_R, min_G, min_B, 
min_NIR 

Minimum value of R, G, B and NIR bands 

max_R, max_G, max_B, 
max_NIR 

Maximum value of R, G, B and NIR bands 

sd_R, sd_G, sd_B, 
sd_NIR 

Standard deviation of R, G, B and NIR bands 

 

Furthermore, raster DTM-independent variables were extracted 

from the rasterized DSM. Given the bi-dimensionality of raster data, these 

variables were used to describe horizontal properties of the forest canopy. 

In a first step of the calculation of these variables the photogrammetric 

point cloud was rasterized. In order to avoid data gaps (i.e., pixels where no 

photogrammetric points were available) and in accordance with previous 
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findings by Niemi and Vauhkonen (2016) the resolution of the raster was 

set to 0.5 m x 0.5 m. The height value assigned to these pixels were 

calculated as the maximum z value of the points within the pixel area. 

Additionally, a gaussian smoothing filter of 1 m was applied to the DSM to 

further reduce no-data gaps (Pyysalo and Hyyppä, 2002) and noise in the 

data.  

The raster DTM-independent explanatory variables were 

subdivided into (i) textural variables (Haralick et al., 1973) and (ii) local 

maxima count. Textural variables were computed using the GLCM package 

in R (Zvoleff, 2015) using a window size of 3 pixels × 3 pixels and in all 

directions. The algorithm examines image textures by calculating how often 

pairs of pixels with specific values and in a specified spatial relationship 

occur in an image (Lu and Batistella, 2005). From the GLCM package seven 

raster maps (see figure 3) were produced for each field plot describing the 

following textural variables: mean, variance, homogeneity, contrast, 

dissimilarity, entropy, and second moment (Haralick et al., 1973). These 

raster values were then used to compute plot level average and the 

standard deviation (table 4), resulting in a total of 14 textural variables. 

The number of local maxima (num_max) was computed with a 

search window size of 3 pixels × 3 pixels and the number of local maxima 

was used as a variable (see figure 3). Such a variable was derived to describe 

the number of dominant trees in the plot. The use of local maxima counting 

has been widely documented in single-tree detection approaches (Solberg 

et al., 2006) however its use in the area-based approach is a novelty of the 

current study. A summary of the DTM-independent image explanatory 

variables is provided in table 4, while figure 3 shows the raster DTM-

independent explanatory variables calculate for a single plot in the Italian 

study area.  
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Table 4: summary of the raster DTM-independent explanatory variables.  
Explanatory variables Description 

AVG_mean Average of GLCM mean textural (Haralick et al., 1973) 

SD_mean Standard deviation of GLCM mean textural (Haralick et al., 1973) 

AVG_variance Average of GLCM variance textural (Haralick et al., 1973) 

SD_variance Standard deviation of GLCM variance textural (Haralick et al., 
1973) 

AVG_ homogeneity Average of GLCM homogeneity textural (Haralick et al., 1973) 

SD_ homogeneity Standard deviation of GLCM homogeneity textural (Haralick et al., 
1973) 

AVG_ contrast Average of GLCM contrast textural (Haralick et al., 1973) 

SD_ contrast Standard deviation of GLCM contrast textural (Haralick et al., 
1973) 

AVG_ dissimilarity Average of GLCM dissimilarity textural (Haralick et al., 1973) 

SD_ dissimilarity Standard deviation of GLCM dissimilarity textural (Haralick et al., 
1973) 

AVG_ entropy Average of GLCM entropy textural (Haralick et al., 1973) 

SD_ entropy Standard deviation of GLCM entropy textural (Haralick et al., 
1973) 

AVG_ second moment Average of GLCM second moment textural (Haralick et al., 1973) 

SD_ second moment Standard deviation of GLCM second moment textural (Haralick et 
al., 1973) 

num_max Number of local maxima 

 

3.1.2 Image-DTMALS and ALS variables 
Explanatory variables were extracted from the normalized UAV 

photogrammetric point cloud using the DTMALS (Image-DTMALS variables) 

and from the normalized ALS data (ALS variables). Identical variables were 

derived for the UAV photogrammetric point clouds and the ALS point 

clouds. For each plot, we calculated 28 point cloud variables (Table 5) 

typically used in forest inventories. These included base statistical variables 

(Laes et al., 2011; McGaughey, 2014), height, density variables (Næsset et 

al., 2004). The base statistical variables are: total number of points (tot), 
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sum of the heights (sum), mean height (avg), height standard deviation (sd), 

skewness of height (sk), kurtosis of height (kur), and average square height 

(qav)(Laes et al., 2011; McGaughey, 2014). The  

 

Figure 3: example of raster DTM-independent explanatory variables 
calculated for a field plot in the Italian study area. 

 

height variables are: height percentiles (p10, …, p100) calculate 

between the 100th percentile and a minimum threshold of 1.3 m.The 

density variables were calculated for equally spaced vertical layers, defined 

as tenths of the distance between the 95th percentile and the lowest canopy 

height (i.e. 1.3 m). The densities were computed as the proportion of points 
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above the 1st,…,9th (d0,…,d9) spaced vertical layer to the total number of 

points.  

 

 

 

 

Table 5: Image-DTMALS and ALS explanatory variables 
Explanatory 
variable 

Description 

tot Total number of points 
sum Sum of height 
avg Average height 

sd Height standard deviation 

sk Skewness of height (Davies and Goldsmith, 1984; McGaughey, 2014) 

kur Kurtosis of height (Davies and Goldsmith, 1984; McGaughey, 2014) 

qav Average of the square height (McGaughey, 2014) 

 p1, p2, ..., p95, 
p100 

Percentile of 10, 20, 30, 50, 60, 70, 80, 90, 95, 100 of height 
distribution 

d0, d1,….,d8,d9 Proportion of points above 1.3 m and the 1st,…,9th spaced vertical 
layer to the total number of points  

 

3.2 Regression models 
Multivariate linear regression models were fitted using the forest 

biophysical properties of interest as response variables and separately the 

three different sets of remote sensed variables as explanatory variables, 

namely (i) DTM-independent variables, (ii) Image-DTMALS variables, and (iii) 

ALS variables.  

A stepwise algorithm was used for variable selection. To avoid poor 

performance of stepwise variable selection when explanatory variables are 

highly correlated (Harrell, 2001; p. 64–65), correlation analyses were 

performed using Pearson’s product moment correlation (r) matrix. In case 

of two variables with r > 0.85, only the ones with the lower correlation with 

other variables were considered as candidate variables in the subsequent 

modeling. The stepwise algorithm was set to find models with one to five 
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explenatory variables that produced the greatest Adj. R2 by searching for 

the best combination among the variables that were not mutually 

correlated. The sum of squared errors of the models with one to five 

predictor variables were compared using an F-test to keep the most 

statistically significant model with the fewest number of predictor variables. 

The explanatory variables with a significance value of partial F statistic >0.05 

(Næsset, 2002) were removed.  

Furthermore, the assumptions of linearity, homoscedasticity, and 

independence of the residuals of the models were assessed by a 

Kolmogorov-Smirnof test (George, 1983), a Breusch-Pagan test (Breusch 

and Pagan, 1979), and Durbin-Watson test (Durbin and Watson, 1950), 

respectively. 

 

3.3 Accuracy assessment 

The performance of the different sets of explanatory variables (i.e., 

DTM-independent, Image-DTMALS, and ALS) in the two different study sites 

(i.e., Italy and Norway) was evaluated using leave-one-out cross validation 

(LOOCV) by means of adjusted R2 (Adj. R2), mean difference (MD), root 

mean square error (RMSE), relative mean difference (MD%), and relative 

root mean square error (RMSE%),The MD and RMSE were calculated as: 

𝑀𝐷 =
∑ (�̂�𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
                                 (3) 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                         (4) 

where �̂�𝑖 and 𝑦𝑖 are the predicted and ground reference values for 

the i-th sample plot, and n is the number of plots. The MD% and relative 

RMSE% were calculated as the percentage of the average ground reference 

value of the modeled forest biophysical proprieties. 
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Furthermore, for the sake of comparison between the three 

different sets of variables, the average RMSE% (RMSE̅̅ ̅̅ ̅̅ ̅%) was computed as 

the average between the RMSE% obtained for all of the studied forest 

biophysical properties in both study areas. 

4. Results 

4.1 Variable selection 

4.1.1 DTM-independent 
The results of the variable selection for the DTM-independent 

variables are reported in table 6. The number of explanatory variables 

selected with the stepwise algorithm ranged between three and four and 

the absolute value of the Pearson correlation coefficient ranged between 

0.01 and 0.71 with an average of  0.3 (Table 6).  

When considering both study areas and all models, the point cloud 

variables were selected 74% of the times while the raster variables were 

selected 26% of the times. When analyzing the different sub-categories of 

variables, the intensity variables were the most selected (21 % of the times) 

followed by the intensity-z variables (19% of the times), the R, G, B and NIR 

variables (17% of the times), the z variables (14% of the times), the textural 

variables (14% of the times), the local maxima variable (12% of the times), 

and the z_st variables (2% of the times).  

When looking at single variables, the most frequently selected 

variable was num_max (five times) as it was selected in both study areas for 

the  G model and for the V, HLor , and Hdom models in Italy. The textural 

AVG_homogeneity was the second most selected variable (four times) and 

was used to model V, G, and Hdom in Italy and N in Norway.  

With respect to each individual study area, the raster variables 

were the most frequently selected in Italy (52% of the times) while the point 

cloud variables were most frequently selected in Norway (86% of the 

times). In Italy, the most selected variables were num_max (21% of the 
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times) and AVG_homogeneity (16% of the times), followed by the sub-

category of intensity variables (21% of the times). In Norway, the most 

selected variables were R, G, B, and NIR (26% of the times), follow by the 

sub-category of z and intensity variables (both selected 23% of the times). 

In Italy, the combination of num_max and AVG_homogeneity was 

used to model three different forest biophysical variables, i.e., V, G, and 

Hdom, and in addition, also i_4q_p95 was selected in the models for V and 

Hdom. In Norway, the combination of i_min and max_G was selected to 

model both the height forest variables (HLor and Hdom).  

4.1.2 Image-DTMALS and ALS variables 
The results of the variable selection for the Image-DTMALS variables 

and ALS variables are reported in tables 7 and 8, respectively. The number 

of explanatory variables selected with the stepwise algorithm ranged 

between one and three for the Image-DTMALS and one and two for ALS. The 

absolute values of the Pearson correlation coefficients were in the ranges 

0.02–0.95 (average = 0.47) and 0.02–0.90 (average = 0.63) for Image-

DTMALS and ALS, respectively (Table 7 and Table 8).  

When Image-DTMALS variables were used to model forest 

biophysical properties, the base statistical variables were selected 61% of 

the times followed by height percentiles (22% of the times) and densities 

variables (16% of the times). The most selected variable was avg, selected 

four times, to model G in both study areas and in Norway also for N and 

HLor. The density variables were selected only in Italy while the percentiles 

were selected three times in Italy and two times in Norway. 

The most selected ALS variables were the percentiles (selected 

66% of the times) followed by base statistical variables (33% of the times) 

while the densities variables were never selected. The most selected 

variable was p50, which was selected two times in Italy to model V and Hdom 

and one time in Norway to model G. 
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Table 6: summary of the variables selected by the stepwise algorithm from 

the models using DTM-independent variables. The Pearson 
correlation coefficient between the biophysical variables and the 
selected DTM-explanatory variables (point cloud and DSM) is 
reported. Results of the LOOCV are reported in terms RMSE. 

 

 
Table 7: summary of the variables selected by the stepwise algorithm from 

the models using Image-DTMALS variables. The Pearson correlation 
coefficient between the biophysical variables and the selected 
DTM-explanatory variables (point cloud and DSM) is reported. 
Results of the LOOCV are reported in terms RMSE 

 Biophysical forest proprieties 
 V (m3ha-1) G (m2ha-1) N (ha-1) HLor (m) HDom (m) 
DTM-independent variables ITA NOR ITA NOR ITA NOR ITA NOR ITA NOR 

Point 
cloud  

z  entropy_z          -0.23 
z_sd   0.19   -0.57     
z_d4        -0.10   
z_d9  0.13         
z_d6    -0.01       
z_d7           

zst zst_sum     -0.42      
intensity i_min    -0.59    -0.57  -0.71 

 i_ske       0.41    
 i_renge           
 i_quart_1 -0.18    0.52      
 i_quart_2        -0.49   
 i_quart_4      0.42     
 i_d2     -0.31      

intensity-z i_1_p50/p25        0.42   
 i_1q_d5  -0.06         
 i_2q_d7  -0.30         
 i_4q_p95 -0.30        -0.29  
 i_1q_d5    -0.19       
 i_1q_d8           
 i_2q_d10       -0.15    
 i_4q_d10   -0.40        

R, G, B, NIR max_G        -0.39  0.14 
mean_G  -0.57         
min_B       0.15    
max_NIR  0.40        -0.32 
sd_NIR    0.63       

 DSM Local Max num_max -0.46  -0.31 0.25   -0.35  0.36  
Textural 
metrics 

AVG_homogeneity -0.10     -0.07 -0.20  -0.20  
AVG_dissimilarity          0.07 
SD_dissimilarity         -0.18  

Results RMSE 96.
2 

49.3 7.6 4.6 469 559 3.1 1.6 3.4 2.1 

 



 90 

 
 

Table 8:  summary of the variables selected by the stepwise algorithm from 
the models using ALS variables. The Pearson correlation coefficient 
between the biophysical variables and the selected DTM-
explanatory variables (point cloud and DSM) is reported. Results of 
the LOOCV are reported in terms RMSE 

 

 
4.2 Accuracy assessment 
The fitted models using DTM-independent variables showed a 

rather good fit with an Adj. R2 ranging between 0.51 and 0.79. Similar 

ranges in Adj. R2 were found for models using Image-DTMALS (0.31–0.91) or 

ALS variables (0.24–0.91) (Figure 4). Among the three sets of variables, the 

DTM-independent variables resulted in consistently larger Adj. R2 for G 

    Biophysical forest proprieties 

  V (m3ha-1) G (m2ha-1) N (ha-1) HLor (m) Hdom (m) 
Image-DTMALS variables ITA NOR ITA NOR ITA NOR ITA NOR ITA NOR 

Base 
statistical avg   -0.16 0.71  -0.33  0.73   
 sum     -0.50      
 sd   -0.24      0.21  
 ske -0.16      -0.25    
 qav  0.91         
Percentiles p10        -0.02   
 p40   0.64        
 p50           
 p60       0.85    
 p90          0.95 
 p95 0.84          
 p100         0.67  
Densities d5     0.13      
 d7         0.36  
 d10 -0.26          
Results RMSE 94.2 41.8 6.4 4.8 547 653 2.8 1.7 3.1 1.0 

 

    Biophysical forest proprieties 

  V (m3ha-1) G (m2ha-1) N (ha-1) HLor (m) Hdom (m) 
ALS variables ITA NOR ITA NOR ITA NOR ITA NOR ITA NOR 

Base 
statistical avg      -0.46  0.82   
 kur         0.23  
 qav  0.74         
Percentiles p10   0.74   -0.02     
 p25           
 p50 0.90   0.70     0.81  
 p75       0.86    
 p90          0.77 

 p95     

-
0.51      

Results RMSE 101.0 46.0 9.4 4.48 679 628 3.01 1.52 3.5 1.0 
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(Italy = 0.76; Norway = 0.57) and N (Italy = 0.60; Norway = 0.51) across study 

sites (see figure 4). For the other studied forest biophysical properties, 

Image-DTMALS and ALS models yielded similar or better model fit compared 

to DTM-independent variables. 

The LOOCV of the selected models revealed that the differences in 

predictive accuracy in terms of RMSE% (see Figure 4) between DTM-

independent and ALS models considering both study areas were limited to 

-0.7% – 1.3%,  -3.6% – -0.7%,  and 0.56% – 1.2% for V, G, and HLor, 

respectively. A similar trend was observed when comparing the predictive 

accuracy of models using DTM-independent against Image-DTMALS for V, G, 

and HLor. Furthermore, the results showed that when DTM-independent 

variables were used rather Image-DTMALS and ALS, N was predicted with 

smaller RMSE% consistently across study sites with reductions in RMSE% 

compared to ALS in the range of 5.1% – 16.8%. For Hdom, the results were 

not consistent between study sites as the RMSE% found for DTM-

independent models was similar to what found for ALS in Italy, while it was 

5.5% larger than ALS in Norway. The RMSE̅̅ ̅̅ ̅̅ ̅% found using DTM-independent 

variables, was slightly smaller (19.6%) compared to the ones found when 

using Image-DTMALS (19.7%) and ALS (21.6%). In Italy, the DTM-

independent (RMSE̅̅ ̅̅ ̅̅ ̅% = 19.1%) and Image-DTMALS (RMSE̅̅ ̅̅ ̅̅ ̅% = 19.4%) revealed 

a slight increase in predictive accuracy compared to ALS (RMSE̅̅ ̅̅ ̅̅ ̅% = 23.2%), 

while in Norway, ALS variables resulted in the slightly smaller RMSE̅̅ ̅̅ ̅̅ ̅% 

(19.8%) compared to DTM-independent (20.2%) and Image-DTMALS 

variables (20.7%).  
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Figure 4: Bar plots of Adj. R2 and RMSE% for the two different study areas, 
for each of the forest biophysical properties, and the different sets 
of variables. 
 

The LOOCV of all the selected models revealed small MD values, 

which in all cases had an absolute value ≤ 1.5% of the mean field reference 

value. Furthermore, the MD values were never statistically significant with 

p-values for the two-sided t-test always ≥ 0.90.  

The analysis of the residuals revealed no violation of the 

assumptions of linearity, normality of the residuals, homoscedasticity, and 

independence for any of the models. The NCV test, the Kolmogorov-
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Smirnov and the Durbin-Watson test always resulted in p-values > 0.05. The 

visual analysis of the scatterplot of the field reference against the LOOCV 

predicted values (see Figure 5) confirmed the results of the previously 

mentioned tests. Furthermore, it was possible to observe that the effect of 

under-prediction of large values was reduced when adopting DTM-

independent variables, especially in the case of V and N. 

 

5. Discussion 
The current study introduced a new set of DTM-independent 

explanatory variables computed from raw,  non-normalized UAV 

photogrammetric data and assessed their use in modeling of biophysical 

forest properties across two different forest types, namely mixed 

temperate forests in Italy and boreal forests in Norway. The novelty of these 

DTM-independent variables is that they allow the use of UAV 

photogrammetric data without the need of any terrain information. To the 

authors’ knowledge, the present study is the first to utilize raw 

photogrammetric data to model forest biophysical properties without 

relying on any DTM for normalization. Thus, the current discussion is mainly 

focused on the assessing the proposed DTM-independent variables in 

relation to benchmark methods that are already widely applied (i.e., Image-

DTMALS and ALS). 

 

 



 94 

 

Figure 5: Scatterplot of field reference versus predicted values from the 
LOOCV for the models with different types of explanatory 
variables: DTM-independent, Image-DTMALS, and ALS. Black dots 
represent the observations from the Italian area while the blue 
crosses represent the Norwegian observations. The black line is 
the 1:1 line.  
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5.1. DTM-independent variables 

A large number of DTM-independent explanatory variables were 

extracted from the raw UAV photogrammetric data. The number of DTM-

independent variables selected in the models was generally larger (3–5) 

than for Image-DTMALS (1–3) and ALS (1–2). As shown by the smaller 

average Pearson’s correlation coefficient found between DTM-

independent variables (0.30) compared to Image-DTMALS (0.47) and ALS 

(0.63), DTM-independent variables were individually less correlated with 

the studied biophysical forest properties. Nevertheless, the multiple 

sources of information (z, intensity, spectral, textural, and local maxima) 

used for the extraction of the DTM-independent resulted in less inter-

correlated explanatory variables compared to solely using height 

percentiles and density variables. In addition to the description of the 

vertical structure of the canopy provided by height and density variables, 

DTM-independent variables include also information regarding the 

horizontal structure and spectral properties of the forest. Thus, the 

extraction of a large number (i.e., 163) of fairly uncorrelated DTM-

independent variables enabled an explanatory power (average Adj. R2 = 

0.65) compared to traditional explanatory variables from Image-DTMALS 

(average Adj. R2 = 0.67) and ALS (average Adj. R2 = 0.62).  

The analysis of the single DTM-independent variables selected in 

the models demonstrated the relevance of intensity and intensity-z 

variables. These variables were the most frequently selected in the  models 

using DTM-independent variables across the study sites and they made a 

significant contributions to the models’ predictive ability (p<0.01). To the 

authors’ knowledge, this study is the first to use the intensity values from 

photogrammetric point clouds and to highlight its importance in modelling 

forest biophysical properties. It is however important to note that the 
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intensity values are limited to data processed by SfM photogrammetry 

software that incorporate intensity pattern matching algorithms such as 

Agisoft Photoscan (Agisoft LLC, 2017) or SURE (Rothermel and Wenzel, 

2012). Furthermore, the computation of intensity values may vary 

substantially between different software packages. Due to the lack of 

empirical experience in the use of intensity data further studies should 

investigate the signal obtained from these data more in depth.  

The R, G, B and NIR variables were selected one time in Italy to 

predict HLor and six times in Norway for all forest biophysical variables 

except for N. These spectral variables improved the predictive accuracy of 

the models (p<0.01) especially in boreal forest site, for which large 

correlations with the studied biophysical proprieties were observed (-0.57≤ 

r ≤-0.32 and 0.25≤ r ≤0.63).  

The present study confirms the findings by Bohlin et al. (2012) and 

Niemi and Vauhkonen (2016) by demonstrating that textural variables 

extracted from 3D remote sensing data are useful in modelling forest 

biophysical properties (p<0.01) even when calculated from a raster DSM 

and not from a CHM. The texture variables were selected at least one times 

for all the biophysical forest proprieties consistently across the two study 

sites, except for G. This result is in line with what Niemi and Vauhkonen 

(2016) reported. They observed a smaller RMSE% for V when using CHM 

textures and ALS variables (32.6%) compared to only using ALS variables 

(44.4%). As pointed out by Gómez et al. (2011) and Ozdemir (2008), the 

resolution of the raster data from which textural information is extracted 

has a crucial role on the scale of the observed textural variable. In regard to 

the raster resolution suitable for providing valuable textural information for 

modelling forest biophysical properties, Niemi and Vauhkonen (2016) 

demonstrated a loss of textural information when increasing the resolution 
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beyond 0.5–1 m. Given these requirements in resolution of the 3D data 

input for extracting textural variables, UAV photogrammetric data is very 

well suited to provide fine-scale textural information due to the very high 

resolution of the achievable point clouds (approximately 44–72 points m-2 

in the current study).  

Furthermore, the number of local maxima, which this study 

pioneered as an explanatory variable in an area-based approach, emerged 

as the most correlated variable with the studied biophysical parameters in 

mixed temperate forest (0.24≤r ≤-0.46), except for N. In both forest types, 

num_max was selected to model G and in both cases the correlation was of 

similar magnitude (Italy: r =-0.30; Norway: r=0.25).  

The new explanatory variables are quite easy to compute also in 

large areas, with number of local maxima as an exception. At large scales, 

the derivation of this latter is computational demanding due to the high 

DSM resolution (0.5 m), the proposed window size (3 pixels x 3 pixels), and 

algorithm complexity. 

 

5.2. Accuracy of DTM-independent models 

The models fitted using the DTM-independent variables showed 

similar model fit and predictive accuracy compared to Image-DTMALS and 

ALS in both forest areas and for the variables V, G, HLor and Hdom. With 

respect to V, the present study showed smaller RMSE% values for the Italian 

study site when using ALS variables (16.0%) compared to previous study 

using ALS in Italy using field plots ranging in size between 314 and 1256 m2 

(Barbati et al., 2009; Bottalico et al., 2017; Corona and Fattorini, 2008; 

Tonolli et al., 2011), for which RMSE% values typically have ranged between 

16.7% and 30%. In Norway, the ALS RMSE% value for V (17.9%) was in line 

with previous findings under boreal conditions in the Nordic countries 
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(Næsset, 2007) where values in the range 15.0-25.0% can be expected at 

plot level (Næsset, 2004). The models using DTM-independent revealed an 

RMSE% value for V (19.2%) of similar magnitude compared to a previous 

study by Gobakken et al. (2014) using normalized digital aerial 

photogrammetry (DAP; photogrammetric data large format airborne 

photogrammetric cameras) (18.7%) but 4.7% larger than reported by Puliti 

et al. (2015) using the same data but a different approach in variables 

extraction and selection. The comparison of the predictive accuracy 

reported in the current study for G using DTM-independent models with 

previous experiences in Italian conditions revealed smaller RMSE% (12.8%) 

compared to what Bottalico et al. (2017) reported by using ALS data 

(20.8%–27.6%). For Norway, the RMSE% found in the current study for G 

(15.9%) was consistent with figures reported by Gobakken et al. (2014) and 

Puliti et al. (2015) in the same study area using either Image-DTMALS 

(15.38%), DAP (16.3%), or ALS data (13.1%). For the N model the DTM-

independent variables resulted consistently in better performances in 

terms model fit and predictive accuracy compared to the alternative 

variables (i.e., Image-DTMALS and ALS). The reported RMSE% values for N 

using DTM-independent variables were smaller (37.3%) compared to the 

ones obtained in mixed forests by Bottalico et al. (2017) using normalized 

ALS data (47.8%). The RMSE% for N in the Norwegian site was in line (40.7%) 

with what Puliti et al. (2015) reported but larger than reported by Gobakken 

et al. (2015) who in similar conditions reported  RMSE% values of 37.5% and 

31.0% using DAP and ALS, respectively. Furthermore, the present study 

revealed that the use of DTM-variables in boreal conditions resulted in an 

increase in RMSE% of 5.4% compared to use of ALS variables to model height 

forest properties (HLor and Hdom). Such difference was somewhat expected 

as normalized ALS data directly describe tree height. On the other hand, it 
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was encouraging to see the small differences between the predictive 

accuracy for HLor and Hdom when using DTM-independent models against 

ALS variables in temperate mixed forests. The RMSE% values for HLor when 

using DTM-independent variables in mixed temperate (15.9%) and boreal 

forests (14.6%) were larger than previous studies using ALS (7.0%-8.96%) 

(Bottalico et al., 2017; Gobakken et al., 2015; White et al., 2015), DAP (8.6%)  

(Gobakken et al., 2015), and UAV Image-DTMALS (8.5%) (Ullah et al., 2017). 

In regard to Hdom models using DTM-independent variables, this study 

found larger RMSE% values than previously reported when using ALS (7.4%-

8.2%) (Bottalico et al., 2017; Gobakken et al., 2015), DAP and Image-DTMALS 

(3.5%-8.5%) (Lisein et al., 2013; Puliti et al. 2015). 

One important aspect worthwhile discussing was highlighted by 

the visual comparison of the LOOCV residuals for the V (see Figure 5), where 

the three largest field reference observations (i.e. V ranging between 850 

and 1256 m3 ha-1) in the Italian study area were subject to under-prediction 

when using Image-DTMALS and ALS variables. Under-prediction of large 

values has often been reported in the literature (Hansen et al., 2015; Tonolli 

et al., 2011), especially in heterogeneous forests and forests with large 

timber volumes (Hansen et al., 2015). In the current study, we observed 

that the adoption of DTM-independent variables led to a decrease in the 

under-prediction of these large values (see Figure 5). It is relevant to 

mention that the plots corresponding to these extreme observations were 

characterized by dense crown cover (> 80%) and steep terrain. The 

combination of these two factors resulted in a reduced density of ALS 

ground returns (0.2 point m2) compared to the rest of the plots (≥ 1 point 

m2). As demonstrated in previous studies (Hodgson et al., 2003; Hodgson 

and Bresnahan, 2004; Hollaus et al., 2006; Hyyppä et al., 2005), significant 

errors in the DTM (i.e., up to 0.98 m) can be expected under such 
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conditions. In fact, explanatory variables, derived by point cloud normalized 

with DTM affected by small errors, can produce larger errors in the 

prediction of biophysical proprieties (Dandois and Ellis, 2013). In this regard, 

DTM-independent variables may contribute to circumvent some of the 

detrimental effects of DTM errors on the explanatory variables typically 

used to model biophysical forest properties. This finding may even indicate 

that extraction of DTM-independent variables may be beneficial also in 

cases where traditional Image-DTMALS or ALS forest inventories are carried 

out. This could in fact allow to benefit from the high correlation of the 

conventional height and density variables from normalized point clouds 

while possibly reducing the under-prediction of highly timbered forests by 

including DTM-independent variables free from DTM errors.  

The DTM-independent variables produced, also, benefit for N 

models in both study area. In fact, the largest field reference observations 

(i.e. ranging between 2.200 and 3625 ha-1) showed larger under-prediction 

using Image-DTMALS and ALS comparing to the use of DTM-independent 

variables (see Figure 5).  

Overall, the comparison of our results with the available literature 

revealed that the results obtained by using the proposed DTM-independent 

approach were consistent with results for all the biophysical forest 

proprieties under study. What was most surprising was that the DTM-

independent variables extracted from UAV photogrammetric data were 

able to perform as well as data from state-of-the-art technology such as ALS 

even under more complex forest structures like the highly timbered mixed 

forests in the Italian study area characterized by large canopy cover and on 

steep slopes. Further research should address the use of DTM variables in 

even more complex forest types such as tropical forest, where the use of 
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UAV photogrammetry can be most effective (Paneque-Gálvez et al., 2014; 

Puliti et al., 2017a). 

 

5.3. General considerations 

Several authors have mentioned the need for high-resolution 

DTMs as the main limitation of the use of 3D photogrammetric data in 

forest inventories (Bohlin et al., 2012; Järnstedt et al., 2012; Lisein et al., 

2013; Nurminen et al., 2013; Ota et al., 2015; White et al., 2013). 

Nevertheless, the current study demonstrated that photogrammetric data 

may be used even in the absence of any terrain information.  

One of the strengths of this study was the consistency of the 

results across two different forest types, slopes, imaging sensors, seasons, 

and specifications for UAV data acquisition. Despite the differences in image 

acquisition parameters (e.g. focal length, flying height, camera resolution, 

image overlap) which may have affected the results of this study, our results 

suggest that DTM-independent variables might be consistent also across 

UAV acquisition campaigns.  

Furthermore, adoption of DTM-independent variables eliminates 

the processing steps required for DTM generation and point cloud 

normalization, hence increases the cost-efficiency of an inventory. On the 

other hand, some of the proposed variables (e.g. textural and local maxima) 

may be computationally intensive when applied on a large scale, thus 

reducing the cost-efficiency.  

 

6. Conclusions 
Overall, the results were encouraging for further research and 

three main conclusions can be drawn from the study: 
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(i) UAV photogrammetric data can be used to model forest 

biophysical properties even when no terrain information is 

available by adopting the proposed DTM-independent explanatory 

variables; 

(ii) The prediction accuracy when using models based on DTM-

independent variables was similar to that of Image-DTMALS and 

ALS; 

(iii) The DTM-independent variables performed well even in complex 

forest structures such as the temperate mixed forest in Italy and 

under steep terrain conditions.  
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skogsproduktion: Stockholm, Sweden, (in Swedish). 

Fardusi, M.J., Chianucci, F., Barbati, A., 2017. Concept to Practices of 
Geospatial Information Tools to Assist Forest Management and 
Planning under Precision Forestry Framework : a review 41, 3–14. 

Fitj, A., Vestjordet, E., 1977. Stand height curves and new tariff tables for 
Norway spruce. Rep Norw For Res Inst. 34:23– 62. Norwegian with 
English summary. 

Fitje, A., Vestjordet, E., 1977. Spruce, Stand height curves and new tariff 
tables for Norway. Commun. Nor. For. Res. Inst. 34, 23–62. 

Fleck, S., Mölder, I., Jacob, M., Gebauer, T., Jungkunst, H.F., Leuschner, C., 
2011. Comparison of conventional eight-point crown projections with 



 106 

LIDAR-based virtual crown projections in a temperate old-growth 
forest. Annals of Forest Science 68, 1173–1185. doi:10.1007/s13595-
011-0067-1 

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E., 
2013. Topographic structure from motion: A new development in 
photogrammetric measurement. Earth Surface Processes and 
Landforms 38, 421–430. doi:10.1002/esp.3366 

FOREST EUROPE, 2015. State of Europe’s Forests 2015., Ministerial 
Conference on the Protection of Forests in Europe, FOREST EUROPE 
Liaison Unit Madrid. 

Fotakis, D.G., Sidiropoulos, E., Myronidis, D., Ioannou, K., 2012. Spatial 
genetic algorithm for multi-objective forest planning. Forest Policy 
and Economics 21, 12–19. doi:10.1016/j.forpol.2012.04.002 

George, M., 1983. Kendall, Maurice George 1938. 
Giannetti, F., Chirici, G., Travaglini, D., Bottalico, F., Marchi, E., Cambi, M., 

2017. Assessment of Soil Disturbance Caused by Forest Operations by 
Means of Portable Laser Scanner and Soil Physical Parameters 1–23. 
doi:10.2136/sssaj2017.02.0051 

Ginzler, C., Hobi, M., 2015. Countrywide Stereo-Image Matching for 
Updating Digital Surface Models in the Framework of the Swiss 
National Forest Inventory. Remote Sensing 7, 4343–4370. 
doi:10.3390/rs70404343 

Gobakken, T., Bollandsås, O.M., Næsset, E., 2015. Comparing biophysical 
forest characteristics estimated from photogrammetric matching of 
aerial images and airborne laser scanning data. Scandinavian Journal 
of Forest Research 30, 73–86. doi:10.1080/02827581.2014.961954 

Gómez, C., Wulder, M.A., Montes, F., Delgado, J.A., 2011. Forest structural 
diversity characterization in Mediterranean pines of central Spain 
with quickbird-2 imagery and canonical correlation analysis. Canadian 
Journal of Remote Sensing 37, 628–642. doi:10.5589/m12-005 

Hansen, E.H., Gobakken, T., Bollandsås, O.M., Zahabu, E., Næsset, E., 2015. 
Modeling aboveground biomass in dense tropical submontane 
rainforest using airborne laser scanner data. Remote Sensing 7, 788–
807. doi:10.3390/rs70100788 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for 
Image Classification. 

Harrell, F.E., 2001. Regression Modeling Strategies with Applications to 
Linear Models, Logistic Regression, and Survival Analysis. 

Henning, J.G., Radtke, P.J., 2008. Multiview range-image registration for 
forested scenes using explicitly-matched tie points estimated from 
natural surfaces. ISPRS Journal of Photogrammetry and Remote 
Sensing 63, 68–83. doi:10.1016/j.isprsjprs.2007.07.006 



 107 

Hobi, M.L., Ginzler, C., 2012. Accuracy assessment of digital surface models 
based on WorldView-2 and ADS80 stereo remote sensing data. 
Sensors (Basel, Switzerland) 12, 6347–68. doi:10.3390/s120506347 

Hodgson, M.E., Bresnahan, P., 2004. Accuracy of Airborne Lidar-Derived 
Elevation. Photogrammetric Engineering & Remote Sensing 70. 

Hodgson, M.E., Jensen, J.R., Schmidt, L., Schill, S., Davis, B., 2003. An 
evaluation of LIDAR- and IFSAR-derived digital elevation models in 
leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote 
Sensing of Environment 84, 295–308. doi:10.1016/S0034-
4257(02)00114-1 

Hollaus, M., Wagner, W., Eberhöfer, C., Karel, W., 2006. Accuracy of large-
scale canopy heights derived from LiDAR data under operational 
constraints in a complex alpine environment. ISPRS Journal of 
Photogrammetry and Remote Sensing 60, 323–338. 
doi:10.1016/j.isprsjprs.2006.05.002 

Holopainen, M., Vastaranta, M., Hyyppä, J., 2014. Outlook for the next 
generation’s precision forestry in Finland. Forests 5, 1682–1694. 
doi:10.3390/f5071682 

Huang, H., Li, Z., Gong, P., Cheng, X., Clinton, N., Cao, C., Ni, W., Wang, L., 
2011a. Automated methods for measuring DBH and tree heights with 
a commercial scanning lidar. Photogrammetric Engineering and 
Remote Sensing 77, 219–227. doi:10.14358/PERS.77.3.219 

Huang, H., Li, Z., Gong, P., Cheng, X., Clinton, N., Cao, C., Ni, W., Wang, L., 
2011b. Automated methods for measuring DBH and tree heights with 
a commercial scanning lidar. Photogrammetric Engineering and 
Remote Sensing 77, 219–227. doi:10.14358/PERS.77.3.219 

Hyyppä, H., Yu, X., Hyyppä, J., Kaartinen, H., Kaasalainen, S., Honkavaara, E., 
Rönnholm, P., 2005. Factors affecting the quality of DTM generation 
in forested areas. International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences 36 (Part 3, 97–102. 
doi:10.3390/s120506347 

Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., Maltamo, M., 2008. 
Review of methods of small footprint airborne laser scanning for 
extracting forest inventory data in boreal forests. International 
Journal of Remote Sensing 29, 1339–1366. 
doi:10.1080/01431160701736489 

IUFRO, 2015. Collection of definition or related elements Precision Forestry. 
SILVAOC Terminology Prokect. 

IUFRO, 2014. Precision Forestry: The anchor of your value chain. In: First 
Announcement, Precision Forestry Sym- posium. Stellenbosch, South 
Africa. 

James, M.R., Robson, S., 2012. Straightforward reconstruction of 3D 



 108 

surfaces and topography with a camera: Accuracy and geoscience 
application. Journal of Geophysical Research: Earth Surface 117, 1–
17. doi:10.1029/2011JF002289 

Järnstedt, J., Pekkarinen, A., Tuominen, S., Ginzler, C., Holopainen, M., 
Viitala, R., 2012. Forest variable estimation using a high-resolution 
digital surface model. ISPRS Journal of Photogrammetry and Remote 
Sensing 74, 78–84. doi:10.1016/j.isprsjprs.2012.08.006 

Joint Research Centre, 2014. Precision agricolture: an opportunity for EU-
farmers- potential support with the CAP 2014-2020. Policy 
Department B, European Union 56 p. 

Kachamba, D., Ørka, H., Gobakken, T., Eid, T., Mwase, W., 2016. Biomass 
Estimation Using 3D Data from Unmanned Aerial Vehicle Imagery in 
a Tropical Woodland. Remote Sensing 2016, Vol. 8, Page 968 8, 968. 
doi:10.3390/RS8110968 

Kamphorst, E.C., Jetten, V., Guerif, J., Pitkanen, J., Iversen, B. V, Douglas, 
J.T., Paz, A., 2000. Predicting Depressional Storage from Soil Surface 
Roughness. Soil Sci Soc Am J 64, 1749–1758. 
doi:10.2136/sssaj2000.6451749x 

Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., 
Vaaja, M., Hyyppä, H., Alho, P., 2013. Individual tree biomass 
estimation using terrestrial laser scanning. ISPRS Journal of 
Photogrammetry and Remote Sensing 75, 64–75. 
doi:10.1016/j.isprsjprs.2012.10.003 

Kankare, V., Joensuu, M., Vauhkonen, J., Holopainen, M., Tanhuanpää, T., 
Vastaranta, M., Hyyppä, J., Hyyppä, H., Alho, P., Rikala, J., Sipi, M., 
2014. Estimation of the timber quality of scots pine with terrestrial 
laser scanning. Forests 5, 1879–1895. doi:10.3390/f5081879 

Kankare, V., Liang, X., Vastaranta, M., Yu, X., Holopainen, M., Hyyppä, J., 
2015a. Diameter distribution estimation with laser scanning based 
multisource single tree inventory. ISPRS Journal of Photogrammetry 
and Remote Sensing 108, 161–171. 
doi:10.1016/j.isprsjprs.2015.07.007 

Kankare, V., Liang, X., Vastaranta, M., Yu, X., Holopainen, M., Hyyppä, J., 
2015b. Diameter distribution estimation with laser scanning based 
multisource single tree inventory. ISPRS Journal of Photogrammetry 
and Remote Sensing 108, 161–171. 
doi:10.1016/j.isprsjprs.2015.07.007 

Koreň, M., Slančík, M., Suchomel, J., Dubina, J., 2015. Use of terrestrial laser 
scanning to evaluate the spatial distribution of soil disturbance by 
skidding operations. IForest 8, 386–393. doi:10.3832/ifor1165-007 

Kovácsová, P., Antalová, M., 2010. Precision Forestry – Definition and 
Technologies. Šumarski List 143, 603–611. 



 109 

Krooks, A., Kaasalainen, S., Kankare, V., Joensuu, M., Raumonen, P., 
Kaasalainen, M., 2014. Tree structure vs. height from terrestrial laser 
scanning and quantitative structure models. Silva Fennica 48, 1–11. 
doi:10.14214/sf.1125 

Kurttila, M., 2001. The spatial structure of forests in the optimization 
calculations of forest planning - A landscape ecological perspective. 
Forest Ecology and Management 142, 129–142. doi:10.1016/S0378-
1127(00)00343-1 

Laes, C.D., Reutebuch, S.E., Mcgaughey, R.J., Mitchell, B., 2011. Guidelines 
to estimate forest inventory parameters from lidar and field plot data 
1–22. 

Lefsky, M., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar Remote 
Sensing for Ecosystem Studies. Bioscience 52, 19–30. 
doi:10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 

Liang, X., Hyyppä, J., 2013. Automatic stem mapping by merging several 
terrestrial laser scans at the feature and decision levels. Sensors 
(Switzerland) 13, 1614–1634. doi:10.3390/s130201614 

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., 
Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., Vastaranta, M., 
2016a. Terrestrial laser scanning in forest inventories. ISPRS Journal 
of Photogrammetry and Remote Sensing 115, 63–77. 
doi:10.1016/j.isprsjprs.2016.01.006 

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., 
Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., Vastaranta, M., 
2016b. Terrestrial laser scanning in forest inventories. ISPRS Journal 
of Photogrammetry and Remote Sensing 115, 63–77. 
doi:10.1016/j.isprsjprs.2016.01.006 

Liang, X., Wang, Y., Jaakkola, A., Kukko, A., Kaartinen, H., Hyyppä, J., 
Honkavaara, E., Liu, J., 2015. Forest data collection using terrestrial 
image-based point clouds from a handheld camera compared to 
terrestrial and personal laser scanning. IEEE Transactions on 
Geoscience and Remote Sensing 53, 5117–5132. 
doi:10.1109/TGRS.2015.2417316 

Lim, K.P.., Treitz, P.., Wulder, M.A.., St-Onge, B.A.., Flood, M., 2003. LiDAR 
remote sensing of forest structure. Progress in Physical Geography 
27, 88–106. 

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., 2013. A 
photogrammetric workflow for the creation of a forest canopy height 
model from small unmanned aerial system imagery. Forests 4, 922–
944. doi:10.3390/f4040922 

Lu, D., Batistella, M., 2005. Exploring TM image texture and its relationships 
with biomass estimation in Rondônia, Brazilian Amazon. Acta 



 110 

Amazonica 35, 249–257. doi:10.1590/S0044-59672005000200015 
Maas, H.-G., Bienert, A., Scheller, S., Keane, E., 2008. Automatic forest 

inventory parameter determination from terrestrial laser scanner 
data. International Journal of Remote Sensing 29, 1579–1593. 
doi:10.1080/01431160701736406 

Maltamo, M., Næsset, E., Vauhkonen, J., 2014. Forestry Applications of 
Airborne Laser Scanning: Concepts and Case Studies, Forestry 
Applications of Airborne Laser Scanning: Concepts and Case Studies. 
doi:10.1007/978-94-017-8663-8 

McGaughey, R.J., 2014. FUSION/LDV: Software for LIDAR Data Analysis and 
Visualization 154. 

McRoberts, R.E., Næsset, E., Gobakken, T., 2013a. Inference for lidar-
assisted estimation of forest growing stock volume. Remote Sensing 
of Environment 128, 268–275. doi:10.1016/j.rse.2012.10.007 

McRoberts, R.E., Næsset, E., Gobakken, T., 2013b. Inference for lidar-
assisted estimation of forest growing stock volume. Remote Sensing 
of Environment 128, 268–275. doi:10.1016/j.rse.2012.10.007 

Micheletti, N., Chandler, J.H., Lane, S.N., 2015. Investigating the 
geomorphological potential of freely available and accessible 
structure-from-motion photogrammetry using a smartphone. Earth 
Surface Processes and Landforms 40, 473–486. 
doi:10.1002/esp.3648 

Miller, E., Dandois, J., Detto, M., Hall, J., 2017. Drones as a Tool for 
Monoculture Plantation Assessment in the Steepland Tropics. Forests 
8, 168. doi:10.3390/f8050168 

Mura, M., McRoberts, R.E., Chirici, G., Marchetti, M., 2015. Estimating and 
mapping forest structural diversity using airborne laser scanning data. 
Remote Sensing of Environment 170, 133–142. 
doi:10.1016/j.rse.2015.09.016 

Nadal-Romero, E., Revuelto, J., Errea, P., López-Moreno, J.I., 2015. The 
application of terrestrial laser scanner and photogrammetry in 
measuring erosion and deposition processes in humid badlands in the 
Central Spanish Pyrenees. SOIL Discussions 2, 337–369. 
doi:10.5194/soild-2-337-2015 

Næsset, E., 2007. Airborne laser scanning as a method in operational forest 
inventory: Status of accuracy assessments accomplished in 
Scandinavia. Scandinavian Journal of Forest Research 22, 433–422. 

Næsset, E., 2004. Practical large-scale forest stand inventory using small-
footprint airborne scanning laser. Scandinavian Journal of Forest 
Research 19, 164–179. 

Næsset, E., 2002. Predicting forest stand characteristics with airborne 
scanning laser using a practical two-stage procedure and field data. 



 111 

Remote Sensing of Environment 80, 88–99. doi:10.1016/S0034-
4257(01)00290-5 

Næsset, E., 1997. Estimating timber volume of forest stands using airborne 
laser scanner data. Remote Sensing of Environment 61, 246–253. 
doi:10.1016/S0034-4257(97)00041-2 

Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, 
M., Nilsson, M., Olsson, H., Persson, Å., Söderman, U., 2004. Laser 
scanning of forest resources: the nordic experience. Scandinavian 
Journal of Forest Research 19, 482–499. 
doi:10.1080/02827580410019553 

Næsset, E., Økland, T., 2002. Estimating tree height and tree crown 
properties using airborne scanning laser in a boreal nature reserve. 
Remote Sensing of Environment 79, 105–115. doi:10.1016/S0034-
4257(01)00243-7 

Newnham, G.J., Armston, J.D., Calders, K., Disney, M.I., Lovell, J.L., Schaaf, 
C.B., Strahler, A.H., Danson, F.M., 2015. Terrestrial Laser Scanning for 
Plot-Scale Forest Measurement. Current Forestry Reports 1, 239–
251. doi:10.1007/s40725-015-0025-5 

Nex, F., Remondino, F., 2014. UAV for 3D mapping applications: A review. 
Applied Geomatics 6, 1–15. doi:10.1007/s12518-013-0120-x 

Niemi, M., Vauhkonen, J., 2016. Extracting Canopy Surface Texture from 
Airborne Laser Scanning Data for the Supervised and Unsupervised 
Prediction of Area-Based Forest Characteristics. Remote Sensing 8, 
582. doi:10.3390/rs8070582 

Nouwakpo, S.K., Huang, C., 2012. A Simplified Close-Range 
Photogrammetric Technique for Soil Erosion Assessment. Soil Science 
Society of America Journal 76, 70. doi:10.2136/sssaj2011.0148 

Nurminen, K., Karjalainen, M., Yu, X., Hyyppä, J., Honkavaara, E., 2013. 
Performance of dense digital surface models based on image 
matching in the estimation of plot-level forest variables. ISPRS Journal 
of Photogrammetry and Remote Sensing 83, 104–115. 
doi:10.1016/j.isprsjprs.2013.06.005 

O’Farrell, P.J., Anderson, P.M.L., 2010. Sustainable multifunctional 
landscapes: A review to implementation. Current Opinion in 
Environmental Sustainability 2, 59–65. 
doi:10.1016/j.cosust.2010.02.005 

Ota, T., Ogawa, M., Shimizu, K., Kajisa, T., Mizoue, N., Yoshida, S., Takao, G., 
Hirata, Y., Furuya, N., Sano, T., Sokh, H., Ma, V., Ito, E., Toriyama, J., 
Monda, Y., Saito, H., Kiyono, Y., Chann, S., Ket, N., 2015. Aboveground 
biomass estimation using structure from motion approach with aerial 
photographs in a seasonal tropical forest. Forests 6, 3882–3898. 
doi:10.3390/f6113882 



 112 

Ozdemir, I., 2008. Estimating stem volume by tree crown area and tree 
shadow area extracted from pansharpened Quickbird imagery in 
open Crimean juniper forests. International Journal of Remote 
Sensing 29, 5643–5655. doi:10.1080/01431160802082155 

Paneque-Gálvez, J., McCall, M.K., Napoletano, B.M., Wich, S.A., Koh, L.P., 
2014. Small drones for community-based forest monitoring: An 
assessment of their feasibility and potential in tropical areas. Forests 
5, 1481–1507. doi:10.3390/f5061481 

Pasumansky, A., 2017. Personal comunication 15 March 2017. Agisoft 
Technical Support. 

Pierzchała, M., Talbot, B., Astrup, R., 2014. Estimating soil displacement 
from timber extraction trails in steep terrain: Application of an 
unmanned aircraft for 3D modelling. Forests 5, 1212–1223. 
doi:10.3390/f5061212 

Pretzsch, H., 2009. Forest Dynamics, Growth and Yield. 
doi:http://doi.org/10.1007/978-3-540-88307-4 

Puliti, S., Ene, L.T., Gobakken, T., Næsset, E., 2017a. Use of partial-coverage 
UAV data in sampling for large scale forest inventories. Remote 
Sensing of Environment 194, 115–126. 
doi:10.1016/j.rse.2017.03.019 

Puliti, S., Gobakken, T., Ørka, H.O., Næsset, E., 2017b. Assessing 3D point 
clouds from aerial photographs for species-specific forest inventories. 
Scandinavian Journal of Forest Research 32:1, 68–79. 
doi:10.1080/02827581.2016.1186727 

Puliti, S., Olerka, H., Gobakken, T., Næsset, E., 2015a. Inventory of Small 
Forest Areas Using an Unmanned Aerial System. Remote Sensing 7, 
9632–9654. doi:10.3390/rs70809632 

Pyysalo, U., Hyyppae, H., 2002. Reconstructing Tree Crowns from Laser 
Scanner Data for Feature Extraction. ISPRS Commission III, 
Symposium 2002 September 9 - 13, 2002, Graz, Austria B-218 ff (4 
pages). 

Rahlf, J., Breidenbach, J., Solberg, S., Astrup, R., 2015. Forest parameter 
prediction using an image-based point cloud: A comparison of semi-
ITC with ABA. Forests 6, 4059–4071. doi:10.3390/f6114059 

Rahlf, J., Breidenbach, J., Solberg, S., Næsset, E., Astrup, R., 2014. 
Comparison of four types of 3D data for timber volume estimation. 
Remote Sensing of Environment 155, 325–333. 
doi:10.1016/j.rse.2014.08.036 

Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex, F., 2014. State of 
the art in high density image matching. The Photogrammetric Record 
29, 144–166. doi:10.1111/phor.12063 

RIEGL LMS, 2017. RiSCAN PRO Version 2.0. Software Description and User’s 



 113 

Instructions. Available online: http://www.riegl.com/ (accessed on 26 
June 2017). 

Rothermel, M., Wenzel, K., 2012. SURE - Photogrammetric Surface 
Reconstruction from Imagery. Proceedings LC3D Workshop 1–21. 

Ryding, J., Williams, E., Smith, M.J., Eichhorn, M.P., 2015. Assessing 
handheld mobile laser scanners for forest surveys. Remote Sensing 7, 
1095–1111. doi:10.3390/rs70101095 

Sallabanks, R., Haufler, J., Mehl, C., 2006. Influence of Forest Vegetation 
Structure on Avian Community Composition in West-Central Idaho. 
Wildlife Society Bulletin 34, 1079–1093. 

Shannon, C.E., 1948. A mathematical theory of communication. The Bell 
System Technical Journal 27, 379–423. doi:10.1145/584091.584093 

Solberg, S., Naesset, E., Bollandsas, O.M., 2006. Single Tree Segmentation 
Using Airborne Laser Scanner Data in a Structurally Heterogeneous 
Spruce Forest. Photogrammetric Engineering & Remote Sensing 72, 
1369–1378. doi:0099-1112/06/7212–1369 

Tabacchi, G., Di Cosmo, L., Gasparini, P., Morelli, S., 2011. Stima del volume 
e della fitomassa delle principali specie forestali italiene, Equazioni di 
previsione, tavole del volume e tavole della fitomassa arborea epigea. 

Talbot, B., Pierzchała, M., Astrup, R., 2016. Applications of Remote and 
Proximal Sensing for Improved Precision in Forest Operations 327–
336. 

Taylor, S.E., McDonald, T.P., Veal, M.W., Corley, F.W., Grift, T.E., 2002. 
Precision Forestry: Operational tactics for today and tomorrow. 25th 
Annual Meeting of the Council of Forest Engineers 6. 

Tonolli, S., Dalponte, M., Vescovo, L., Rodeghiero, M., Bruzzone, L., Gianelle, 
D., 2011. Mapping and modeling forest tree volume using forest 
inventory and airborne laser scanning. European Journal of Forest 
Research 130, 569–577. doi:10.1007/s10342-010-0445-5 

Tran, D.., Nguyen, N.V., 2006. The concept and implementation of precision 
farming and reice integrated crop management systems for 
sustainable production in the twenty-first century. International Rice 
Commission Newsletter 55, 103–113. 

Trimble, 2017. Trimble RealWorks® 8.0 User Guide. 
Turner, D., Lucieer, A., Watson, C., 2012. An automated technique for 

generating georectified mosaics from ultra-high resolution 
Unmanned Aerial Vehicle (UAV) imagery, based on Structure from 
Motion (SFM) point clouds. Remote Sensing 4, 1392–1410. 
doi:10.3390/rs4051392 

Ullah, S., Adler, P., Dees, M., Datta, P., Weinacker, H., Koch, B., 2017. 
Comparing image-based point clouds and airborne laser scanning 
data for estimating forest heights. iForest - Biogeosciences and 



 114 

Forestry 10, e1–e8. doi:10.3832/ifor2077-009 
Valbuena, R., Eerik??inen, K., Packalen, P., Maltamo, M., 2016. Gini 

coefficient predictions from airborne lidar remote sensing display the 
effect of management intensity on forest structure. Ecological 
Indicators 60, 574–585. doi:10.1016/j.ecolind.2015.08.001 

Valbuena, R., Packalen, P., Mehtätalo, L., García-Abril, A., Maltamo, M., 
2013. Characterizing forest structural types and shelterwood 
dynamics from Lorenz-based indicators predicted by airborne laser 
scanning. Canadian Journal of Forest Research 43, 1063–1074. 
doi:10.1139/cjfr-2013-0147 

Vastaranta, M., Wulder, M.A., White, J.C., Pekkarinen, A., Tuominen, S., 
Ginzler, C., Kankare, V., Holopainen, M., Hyyppä, J., Hyyppä, H., 2013. 
Airborne laser scanning and digital stereo imagery measures of forest 
structure: comparative results and implications to forest mapping and 
inventory update. Canadian Journal of Remote Sensing 39, 382–395. 
doi:10.5589/m13-046 

Vericat, D., Smith, M.W., Brasington, J., 2014. Patterns of topographic 
change in sub-humid badlands determined by high resolution multi-
temporal topographic surveys. Catena 120, 164–176. 
doi:10.1016/j.catena.2014.04.012 

Vestjordet, E., 1968. Merchantable volume of Norway spruce and Scots 
pine based on relative height and diameter at breast height or 2.5 m 
above stump level., in: Medd. Det Nor. Skogforsøksves, 25. (in 
Norwegian). pp. 411–459. 

Vestjordet, E., 1967. Functions and tables for volume of standing trees. 
Norway spruce. Meddelelser fra Det Norske Skogforsøksvesen. 1967. 
Functions and tables for volume Summary., standing trees. Norway 
spruce. Meddelelser fra Det Norske Skogforsøksvesen. 22:539–574. 
Norwegian with English. 

Vogeler, J.C., Hudak, A.T., Vierling, L.A., Evans, J., Green, P., Vierling, K.T., 
2014. Terrain and vegetation structural influences on local avian 
species richness in two mixed-conifer forests. Remote Sensing of 
Environment 147, 13–22. doi:10.1016/j.rse.2014.02.006 

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., Vopěnka, P., 2016. 
Assessment of forest structure using two UAV techniques: A 
comparison of airborne laser scanning and structure from motion 
(SfM) point clouds. Forests 7, 1–16. doi:10.3390/f7030062 

Warner, W.S., 1995. Mapping a three-dimensional soil surface with hand-
held 35 Mm photography. Soil and Tillage Research 34, 187–197. 

Waser, L.T., Fischer, C., Wang, Z., Ginzler, C., 2015. Wall-to-wall forest 
mapping based on digital surface models from image-based point 
clouds and a NFI forest definition. Forests 6, 4510–4528. 



 115 

doi:10.3390/f6124386 
White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., Tompalski, 

P., 2016. Remote Sensing Technologies for Enhancing Forest 
Inventories: A Review. Canadian Journal of Remote Sensing 42, 619–
641. doi:10.1080/07038992.2016.1207484 

White, J.C., Stepper, C., Tompalski, P., Coops, N.C., Wulder, M.A., 2015. 
Comparing ALS and image-based point cloud metrics and modelled 
forest inventory attributes in a complex coastal forest environment. 
Forests 6, 3704–3732. doi:10.3390/f6103704 

White, J.C., Wulder, M.A., Vastaranta, M., Coops, N.C., Pitt, D., Woods, M., 
2013. The utility of image-based point clouds for forest inventory: A 
comparison with airborne laser scanning. Forests 4, 518–536. 
doi:10.3390/f4030518 

Whitehead, K., Hugenholtz, C.H., Myshak, S., Brown, O., LeClair, A., 
Tamminga, A., Barchyn, T.E., Moorman, B., Eaton, B., 2014. Remote 
sensing of the environment with small unmanned aircraft systems 
(UASs), part 1: a review of progress and challenges. Journal of 
Unmanned Vehicle Systems 2, 86–102. doi:10.1139/juvs-2014-0007 

Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.., 2008. The role 
of LiDAR in sustainable forest management. The Forestry Chronicle 
84, 807–826. 

Zahawi, R.A., Dandois, J.P., Holl, K.D., Nadwodny, D., Reid, J.L., Ellis, E.C., 
2015. Using lightweight unmanned aerial vehicles to monitor tropical 
forest recovery. Biological Conservation 186, 287–295. 
doi:10.1016/j.biocon.2015.03.031 

Zvoleff, A., 2015. Package “Glcm”, 1.2. Available online http://cran.r-
project.org/web/packages/glcm/glcm.pdf (accessed on 11 April 
2017). 

 
 
 
  



 116 

Paper III – UAV photogrammetric DTM-independent variables can be used to 
predict forest structural indices? A case of study in mixed temperate forests 
 
Francesca Giannettia*, Nicola Pulettib, Stefano Pulitic,Davide Travaglinia*, 

Gherardo Chiricia 

*Corresponding author Francesca Giannetti francesca.giannetti@unifi.it 

a Università degli Studi di Firenze, Department of Agricultural, Food and 

Forestry Systems, Via San Bonaventura, 13-50145, Firenze, Italy 

b Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria 

(CREA), Forestry Research Centre, Arezzo, Italy. 

 c Department of Ecology and Natural Resource Management, Norwegian 

University of Life Sciences 

 Ecological Indicators 

 

Abstract 
In the EU 2020 biodiversity strategy, maintaining and enhancing 

forest biodiversity is essential. Forest managers and technicians should 

include biodiversity monitoring as a support for forest management and 

conservation issues, through the adoption of forest biodiversity indices.  

In the last years, the increasing availability of aerial digital and 

multispectral imagery from Unmanned Aerial Vehicles (UAV) and the 

advancements in Structure from Motion (SfM) photogrammetry have 

increased the availability of 3 dimensional (3D) data for forest applications.  

The present study investigates the potential of a new type of SfM 

photogrammetry which does not require the availability of high resolution 

DTM developed from expensive Airborne Laser Scanning (ALS) surveys. We 
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used DTM-independent variables calculated on the basis of 3D UAV 

photogrammetric for the spatial prediction of eight forest structure indices 

which are commonly used for forest biodiversity monitoring: basal area; 

mean Diameter at Breast Height (DBH); standard deviation of DBH; DBH Gini 

coefficient; standard deviation of tree heights; dominant tree height ; Lory’s 

height, and growing stock volume. The experiment was carried out with 80 

field surveys acquired in two study areas with mixed temperate forests in 

Italy. The accuracy of UAV DTM-independent predictions was compared 

with a benchmark approach based on explanatory variables calculated from 

traditional ALS data. 

The two approaches, in terms of Root Mean Square Error, 

produced similar predictions. On a total of 16 tests (8 variables in two study 

areas), in 9 cases DTM-independent estimations were more accurate than 

those from ALS. 

Finally DTM-independent variables were used to construct maps 

of the forest structure indices in the two test areas to demonstrate the 

possible operational use of the approach for depicting the spatial pattern 

of forest biodiversity. 

 

Keyword: Forest inventory, structure from motion, photogrammetry, 

airborne laser scanner, biodiversity, precision forestry, forest structure. 
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1. Introduction 
New methods and tools for the integration of spatial and temporal 

dimensions in forest ecosystems monitoring are needed to support 

sustainable forest management in taking into consideration the wide array 

of ecosystems services provided by forests (Fotakis et al., 2012; Myronidis 

and Arabatizis, 2009; Fotakis, 2015). The protection of forest biodiversity  is 

an increasingly important issue at European level (European Environmental 

Agency, 2012; Fotakis et al., 2012; Arabatzis, 2010; Kurttila, 2001; European 

Union, 2011).  In fact the European Union (2011), in the 2020 strategy for 

EU biodiversity, indicate how it is essential to increase the contribution of 

forestry in maintaining and enhancing biodiversity. Moreover it is reported 

that by 2020 forest management plans, or equivalent instruments, in line 

with Sustainable Forest Management (SFM), need to provide “a measurable 

improvement in the conservation status of forest ecosystems and species 

and in the provision of related ecosystem services as compared to the EU 

2010 Baseline”(European Union, 2011). 

As a consequence forest managers should include biodiversity 

monitoring in the phase of information acquisition to support forest 

management choices (Arabatzis, 2010; Ozdemir, 2008; Ozdemir and 

Karnieli, 2011; Seitz et al., 2008; Baskent et al., 2008); for such a purpose an 

objective and statistically rigorous systems of forest biodiversity indicators 

is urgently needed. 

Frequently forest biodiversity is described and measured through 

indicators based on species compositions  (Winter et al., 2008; Zellweger et 

al., 2013), or structural diversity (McElhinny et al., 2005; Mura et al., 2015). 

Alpha or beta biodiversity indicators based on species composition are well 

known and established in vegetation science and conservation biology 

(Noss, 1990).  Forest structure indicators are related to the spatial 

arrangement of the different components of the forest ecosystem, such as 



 119 

tree heights at different canopy levels, trees spacing  and trees dimension 

(McElhinny et al., 2005). Forest structure is considered one of the most 

important indicator of forest health (Franklin, 1988; Hunter, 1999; Kolb et 

al., 1994; Zellweger et al., 2013) and a good predictor of habitat quality for 

several animal communities (Halaj et al., 2000; McElhinny et al., 2005; 

McGraw, 1994; Müller et al., 2010, Salter et al., 1985; Shine et al., 2002; 

Welsh and Lind, 1996). Several authors reported that maintaining and 

improving the complexity of forest structure is crucial to contrast the loss 

of biodiversity (Kolb et al., 1994; Zellweger et al., 2013; Winter et al., 2008; 

Chirici et al., 2011; Chirici et al., 2012; Bottalico et al., 2017).  

The most common structure diversity indices are based on simple 

information collected in plots measured in the field in the framework of 

forest inventories such as: tree diameters at breast height (DBH) and tree 

heights (H) (Staudhammer and LeMay, 2001; McElhinny et al., 2005¸Müller 

and Vierling, 2014; Pommerening, 2002). 

Data from active or passive remote sensing (RS) can be used as 

predictors for deriving wall-to-wall spatial estimation of the variables 

measured forest inventory plots (Mura et al., 2015; Fotakis et al., 2015; 

Valbuena et al., 2016; Brosofske et al., 2014; Corona, 2010) including forest 

biodiversity indicators (Valbuena et al., 2016; Bottalico et al., 2017; Mura et 

al., 2015). In the context of precision forestry (Taylor et al., 2002), in order 

to planning and conducting site-specific forest management activities, the 

demands for global-level and small-scale forest information have increased. 

Maps that describe the forest environment under different points of view, 

for instance through multiple biodiversity indicators, are  considered crucial 

to support forest management activities (Corona et al., 2017; Fardusi et al., 

2017). Several technics can be used for predicting forest biodiversity 

indicators with RS. 
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Some authors have reported that textural metrics (Haralick et al., 

1973) derived by high resolution satellite and aerial images, are useful to 

predict forest structure indices and forest cover changes (Bruniquel-Pinel 

and Gastellu-Etchegorry, 1998; Gómez et al., 2012; Ozdemir and Karnieli, 

2011). For example,  St-Onge and Cavayas (1995) yielded to relatively 

accurate estimates of crown diameter, stand density and percent cover 

using MEIS-II image with a resolution of 36 cm. Bruniquel-Pinel and 

Gastellu-Etchegorry, (1998) demonstrated the utility of textural metrics to 

predict tree position, Leaf Area Index and crown cover  from high spatial 

resolution airborne images acquired by RAMI pushbroom instruments. 

Moreover, Ozdemir and Karnieli, (2011), demonstrated that Basal Area (G), 

Standard Deviation of Diameters at Breast Heights (σdbh), and Gini 

Coefficient (GC), can be predicted and mapped with a reasonable accuracy 

using the texture features extracted from the spectral bands of WorldView-

2 image. Gómez et al., (2012) founded that texture variables derived from 

imagery captured with QuickBird-2 in a Mediterranean pines forest are also 

useful to map forest structural diversity indices such as DBH, H, and crown 

diameters. 

Other authors have found that the use metrics calculated from  

Airborne Laser Scanner (ALS) can produce accurate results in predicting 

forest structure indices  (Evans et al., 2009, Lefsky et al., 2002, Lim et al., 

2003, Zimble et al., 2003, Valbuena et al., 2013, 2014, 2016, Mura et al., 

2015, 2016; Bottalico et al., 2017, Teobaldelli et al., 2017). Lefsky et al., 

(2002) and Lim et al., (2003) showed in their review the potential of using 

ALS returns to estimate canopy structure and function, and to predict forest 

stands variables such as H, biomass and volume. Zimble et al., (2003) 

showed that ALS-derived tree heights could be useful in the detection of 

differences in the continuous, nonthematic nature of vertical forest 
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structure with acceptable accuracies. Moreover, Evans et al., (2009) 

underline how ALS returns can be useful to develop different types of 

metrics for a better comprehension of forest structure and spatial 

dynamics. Moreover, other authors have found that these ALS metrics can 

be used as predictors to spatial estimate structure indices (e.g. DBH, H, 

Growing Stock Volume, σdbh, GC, Lorenz curve) in different forest types in 

boreal (Valbuena et al., 2016), Mediterranean (Bottalico et al., 2017; 

Teobaldelli et al., 2017), and temperate biomes (Mura et al., 2015). 

Niemi and Vauhkonen, (2016) and Ozdemir and Donoghue, (2013) 

reported that the combination of traditionally ALS metrics and textural 

variables computed on ALS high resolution raster grid Canopy Height Model 

(CHM) (i.e. pixel size 0.5 m), are useful to improve the estimation accuracy 

of traditionally forest variables (i.e. stem volume, basal area) as well as for 

forest structure indicators (i.e. mean diameter, tree height diversity and 

tree DBH diversity). 

New methods in computer vision and stereo-matching algorithms 

have increased the number of predictors that can be calculated from 3D 

photogrammetric data (Bohlin et al., 2012; Gobakken et al., 2015; Puliti et 

al., 2015). The increasing attention to 3D photogrammetry is due, also, to 

the recent advancements in RS using lightweight unmanned aerial vehicles 

systems (UAV) equipment with digital cameras. In fact, UAV can provide at 

forest management scale an alternative low cost option to acquire multi-

temporal RS data (Lisein et al., 2013; Puliti et al., 2015; Wallace et al., 2016; 

Zahawi et al., 2015). Recently, Giannetti et al., (in review) have developed a 

new set of DTM-independent explanatory variables to predict traditional 

forest inventory variables (e.g. stem volume, basal area, stem number, 

Lorey’s height and dominant height) from UAV photogrammetric data (i.e. 

image based point cloud and digital surface model (DSM)).  
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However, to our knowledge, the potential of UAV 

photogrammetric DTM-independent explanatory variables have never 

been investigated to predict structural complexity indices.  

 

1.1 Objective  
In this contribution we present the area-based (Nasset,2002) 

spatial estimation of the following forest structure complexity indices: basal 

area (G; m2ha-1); mean DBH (DBHmean; cm); standard deviation of DBH 

(DBHσ; cm); DBH Gini coefficient (Gini); standard deviation of H (Hσ h; m); 

dominant height (Hdom) and Lory’s height (Hl) and stem volume (V m3 ha-1). 

Predictors are DTM-independent variables (Giannetti et al., 2017) from 3D 

UAV photogrammetric imagery. The accuracy of the DTM-independent 

approach was assessed against a more traditional approach based on ALS 

data in two forest districts in Italy.  

 

2. Materials 

2.1. Study area 
The experiment was carried out in two study areas located in 

central Italy, in the Apennine mountains of Tuscany Region, and in the 

metropolitan area of Florence (Figure 1).  

The first study area (115 ha) is located in the Nature State Reserve 

of Vallombrosa where biodiversity conservation is the main target of forest 

management. The Vallombrosa Reserve was not actually managed since 

1970 when it was leaved more or less undisturbed to natural evolution. 
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Figure 1: study areas with forest types and location of the field plots. 
 

The Reserve is included in the Site of Community Importance (SCI) 

“Vallombrosa and S. Antonio Forest” (IT5140012) under the Natura 2000 

Network (Habitats Directive 92/43/EC), two priority habitats (9210* and 

9220*) are included in the SCI. 

The study area is characterized by high slope (mean slope=41 %) 

and high altitude difference (1080-1432 m a.s.l.), it is dominated by beech 

(Fagus sylvatica L.) whit other broadleaves (Common ash (Fraxinus excelsior 

L.), oaks (Quercus cerris L., Quercus pubescens L.), European hop-hornbeam 

(Ostrya carpinifolia Scop.), common holly, (Ilex aquifolium L.), sycamore 

(Acer pseudoplatanus. L.) and ilex (Ilex aquifolium L)) and plantations 

dominated by Silver Fir (Abies alba M.) whit other conifers (.Pseudotsuga 

menziesii Franco, Pinus Nigra J.F. Arnold, Chamaecyparis, Spach ) (Figure 1). 
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The beech forests are even-aged (155-230 year) and mostly 

derived by coppice converted to high-forest woodland.  

All the conifers plantations are even-age. Silver Fir plantations 

derived by the traditional management systems carried out in Vallomborsa 

by local monks for wood production with a traditional rotation period of 80 

years. More details about the management history of Vallombrosa Reserve 

can be found in Bottalico et al., (2014). Duglas fir and Chamecyparis are 

experimental plantations started in 1926 and 1922 respectively. The Black 

Pine plantations were carried out in the framework of a reforestation 

project in low fertility areas for protection of mountain steep zones. The 

mixed broadleaves forests are mostly coppice forests that were used in the 

past for firewood production.  

The second study area has (290 ha), is located in the District of 

Rincine (Florence), and it is a public property of the Tuscany Region. The 

area is located at an altitude ranging between 1200 and 2300 m a.s.l.. Forest 

habitats are characterized by oaks (Quercus cerris L., Quercus pubescens L.) 

mixed whit other broadleaves (Ostrya Carpinifolia Scop; Carpinus betulus L.; 

Fraxinus ornus, L.; Prunus avium L.; Ulmus), beech (Fagus sylvatica L.) and 

chestnut (Castanea Sativa Mill.), and conifer plantations dominated by  

Pinus Nigra J.F.Arnold and Pseudotsuga menziesii Franco with several other 

non-indigenous species (Cedrus libani, A.Rich., Cupressus Arizzonica, 

Chamaecyparis, Spach) (Figure 1).  

Conifers plantations are even-age experimental plantations 

started between 1965 and 1975 for pulpwood production. The broadleaves 

forests are mostly management as coppice for firewood production. The 

Rincine forest management follows the criteria of Sustainable Forest 

Management certified by both Forest Stewardship Council (FSC) and by the 

Programme for the Endorsement of Forest Certification schemes (PEFC) 

https://en.wikipedia.org/wiki/High_forest_(woodland)
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systems. Rincine disctrict is also a Model Forest (International Model Forest 

Network (IMFN), 2008). In particular, the objective of the Model Forest is 

to support the sustainable management of natural resources through a 

participatory, landscape-level approach that reflects environmental and 

socio-economic issues from the perspectives of local needs and global 

concerns (IMFN, 2008).  

2.2. Field data 

2.2.1 Local forest inventory 
In each study area, a local forest inventory was carried out (Figure 

1).  

In Vallombrosa field measurements were conducted in a total of 

30 circular fixed-area sample plots having 13 m radius (each plot covers 530 

m2). Field work was carried out in June 2015. Field plots were selected using 

a tessellation stratified sampling scheme  (Barabesi and Franceschi, 2011) 

based on a hexagonal grid with hexagons of 1 ha. 

Rincine field measurements were carried out in 50 square fixed-

area plots. Each plot having a size of 530 m2. Field work was carried out 

between June and September 2016. Field plots were selected using the 

one-per-stratum stratified sampling scheme (Bruss et al., 1999; Barabesi et 

al., 2012) based on a 23 x 23 m grid. To do this, the study area was 

partitioned into 50 strata (i.e., polygons based on equal-size strata obtained 

by means of clusters) and one sample plot was independently and uniformly 

selected in each stratum. 

The fact that the field plots were extracted on the basis of different 

sampling schemes is not relevant for the purposes of this study since it is 

developed in model-based framework. 

In both study areas, the coordinates of plot centers were recorded 

using a Global Navigation Satellite Systems (GNSS) receiver Trimble Juno 3 

B Handheld with 2–5 m positional accuracy in post-processing. In each plot 
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the Diameters at Breast Heights (DBH) and top height of all trees (H) with a 

DBH ≥ 2.5 cm were registered using a caliper and a Haglof Vertex IV device. 

Field work was carried out in June 2015 in Vallombrosa and between June 

and October 2016 in Rincine.  

2.2.2 Forest structural complexity indices 
Field data were used to calculate a set of seven structural 

complexity indices  based on tree DBH and height. The indices considered 

in this work were selected after a literature review of possible biodiversity 

drivers (Bottalico et al., 2017; McElhinny et al., 2005; Meng et al., 2016; 

Mura et al., 2015; Ozdemir and Karnieli, 2011; Valbuena et al., 2016; Ziegler, 

2000).  

In more details we calculated the following indices: four DBH 

related indices (basal area, mean DBH, standard deviation of DBH and Gini 

coefficient); one tree height related index (standard deviation of H) and 

three indices that combine DBH and H (Lory’s height, dominant height, 

growing stock volume). In the next paragraphs the indices chosen in this 

study are briefly presented on the basis of the literature review (Table 1). 

 

2.2.2.1 Horizontal structural complexity indices 

Basal Area (G) is an historical forest inventory variable that 

describes the amount of an area occupied by tree stems. G is directly 

related to growing stock volume and biomass which are important variables 

supporting traditional forest management approaches oriented to a 

sustainable wood production as well as for biodiversity conservations 

proposes (McElhinny et al., 2005). 

Mean DBH (DBHmean) is considered an important indicator to 

describe successional stages and for assessing the type of forest 

management and the level of naturalness of forest habitat (McElhinny et 

al., 2005; Uuttera et al., 1998; Ziegler, 2000). In fact, generally the DBHmean 
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is related to forest stand age (McElhinny et al., 2005; Ziegler, 2000). DBHmean 

is calculate as 

DBHmean = √
4𝐺

𝜋𝑛
 

where G is the total basal area and n is the number of trees in the 

stand.  

The standard deviation of DBH (DBHσ) is a measure of the 

variability in tree size. It is considered an important indicator of micro-

habitat diversity in forest stands (McElhinny et al., 2005; Mura et al., 2015; 

Ozdemir and Karnieli, 2011). Generally, the high degree of biodiversity is 

associated to high variation in stem diameters that is related to the 

presence of different succession stages in a given forest stand (Esseen et al, 

1992; Bradsbaw and Lindén, 1997).  DBHσ is calculate as 

DBHσ = √∑ (𝐷𝐵𝐻𝑖 − 𝐷𝐵𝐻)𝑛
𝑖=1

2

𝑛 − 1
 

Where i is the tree index, n is the number of trees in the plot and 

𝐷𝐵𝐻̅̅ ̅̅ ̅̅  is the mean plot-level diameter and DBHi is the diameter of the of i-th 

tree. 

Gini coefficient (Gini) is also used for measuring tree size diversity 

in a forest stand (Lexerød and Eid, 2006; Valbuena et al., 2016). 

Theoretically, the minimum value of this coefficient is zero when all trees 

have equal size, while the maximum value is 1 when all trees except one 

have a value of zero (Meng et al., 2016; Ozdemir and Karnieli, 2011; 

Valbuena et al., 2016). The index describes tree size inequality for each field 

plot (Valbuena et al., 2016). Gini coefficient is calculated as  

Gini =
∑ (2𝑡 − 𝑛 − 1)𝐺𝑡

𝑛
𝑡=1

∑ 𝐺𝑡(𝑛 − 1)𝑛
𝑡=1
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where Gt is the basal area for tree in rank t (m2ha-1) and t is the 

rank of a tree in order from 1,….,n (Meng et al., 2016). 

 

2.2.2.2 Vertical structural complexity indices 

The standard deviation of H (Hσ), describes the variation of the 

trees along the vertical stratum. High variations in tree height are, usually, 

linked with a variety of tree ages and species in a stand, and can be used as 

indicator of micro-habitats diversity for wildlife (Bottalico et al., 2017; 

McElhinny et al., 2005; Mura et al., 2015; Zenner, 2005).  

Hσ = √∑ (𝐻𝑖 − 𝐻)𝑛
𝑖=1

2

𝑛 − 1
 

Where i is the tree index, n is the number of trees in the plot and 

�̅� is mean plot-level height and Hi is the height of the i-th tree. 

 

2.2.2.3 Combined structural complexity indices 

The dominant height (Hdom) is an indicator of forest site 

productivity (Skovsgaard and Vanclay, 2008) and it is calculated as the mean 

height of the 100 largest trees in terms of DBH per hectares.  

The Lory’s height (Hl) weights the contribution of trees to the stand 

height by their basal area. Thus, Lorey's mean height is calculated as:  

Hl =
∑ 𝐺𝑖 ∗ 𝐻𝑖

𝑛
𝑖=1

𝐺
 

Where i-th is the tree index, G is the total basal area in the plot and 

Gi is the basal area of the i-th tree in the plot and Hi is the height of the i-th 

tree in the plot.   

The plot level growing stock volume was calculated on the basis of 

the equations developed by Tabacchi et al., (2011) in the framework of the 

2nd Italian National Forest Inventory based on tree DBH and height.  



 129 

 

Table 1: forest structural indices statistical summary from field reference 
data. 

Structural index 
and Forest 
biophysical 
proprieties 
 

Study area Minimum Average Maximum 

G [m2ha-1] Vallombrosa 13.0 58.9 99 
 Rincine 10.2 47.8 69.1 
DBHmean[cm] Vallombrosa 14.4 27.9 37.2 
 Rincine 9.6 27.2 46.8 
DBHσ [cm] Vallombrosa 7.5 12.1 22.2 
 Rincine 3.4 7.5 15.1 
Gini [0,1] Vallombrosa 0.29 0.46 0.76 
 Rincine 0.11 0.33 0.71 
Hdom [m] Vallombrosa 11.2 24.8 39.0 
 Rincine 12.7 25.1 38.4 
Hl [m] Vallombrosa 6.7 17.1 11.4 
 Rincine 9.68 21.3 35.6 
Hσ[m] Vallombrosa 2.9 7.1 14.7 
 Rincine 1.2 3.7 6.7 
V [m3ha-1] Vallombrosa 154.2 602.8 1013.2 
 Rincine 79.1 495.8 1052.9 

 

2.3 Remotely sensed data 
 

2.3.1 UAV Photogrammetric Data 
To acquire aerial images a SenseFly eBee Ag fixed wing UAV 

equipped with a SONY WX 18.MP RGB camera was used. The UAV flight over 

Vallombrosa in June 2015 and over Rincine in July 2016, both in leaf-on 

conditions. In each area, UAV acquisition was completed in one working 

day.  

Before UAV acquisitions, 12 ground control points (GCPs) were 

placed on the ground in each study area. We used 50 × 50 cm targets with 

a black and white checkerboard pattern to ensure the largest contrast in 
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the images. The targets were fixed to the ground in open areas and their 

coordinates were recorded with a Trimble Geo 7X receiver; data collection 

lasted for approximately 15 min for each target with a 2-sec logging rate. 

The recorded coordinates were post-processed with correction data from 

the nearest ground base station using Pathfinder software. In the two study 

areas, the post-processed GCP coordinates revealed standard deviations for 

northing, easting, and height of 0.7 cm, 0.5 cm, and 1.4 cm, respectively. 

The flight parameters were the same in the two study areas: flight 

altitude was 145 m above ground level, the overlap was 85% longitudinal 

and 75% lateral. The total flight time was 69 minutes in Vallombrosa (169 

ha, 1.6 ha/minute) divided into two flights, and 82 minutes in Rincine (290 

ha, 3.5 ha/minute) divided into four flights. Flight line spacing was 40 m and 

the distance between two adjacent photos was 35.7 m. The focal length of 

the camera was set to 4 mm and the ISO sensibility was ISO-100 with a 

shutter speed of 1/2000 sec. A total of 228 images were acquired in 

Vallombrosa and 506 in Rincine with a field of view of 200x150 m. 

After visual inspection, the quality of the images acquired in the 

two study areas was considered good, without any problem related to light 

and atmospheric conditions, saturation, or blurriness. 

Three-dimensional data were extracted from the UAV images 

using the Agisoft PhotoScan Pro software (Agisoft LLC, 2017).  

This software uses Structure from Motion Algorithms and stereo-

matching algorithms for image alignment and multi-view stereo 

reconstruction and it is able to fully automate the photogrammetric 

workflow to process aerial images and producing 3D and 2D models, which 

can be exported as georeferenced image based points cloud, Digital Surface 

Models (DSM) and orthophotos (Agisoft LLC, 2017). This software has been 

already used for forest analysis (Giannetti et al., 2017; Kachamba et al., 
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2016; Lisein et al., 2013; Puliti et al., 2017, 2015; Wallace et al., 2016). In 

the two study areas, the UAV images were processed as follows: (a) image 

alignment; (b) mesh building; (c) guided marker positioning and 

optimization of camera alignment (georeferencing of created scene), (d) 

dense cloud building and (e) raster grid DSM generation with a resolution 

of 0.5m x 0.5m. We refer to Puliti et al. (2015) for a detailed description of 

processing parameters used in Agisoft Photoscan and to Giannetti et al. 

(submitted) for a detailed description of parameters associated to 3D UAV 

photogrammetric point-cloud generation. From the SfM photogrammetric 

work flow we obtained point clouds having a density of 44.25 point m-2 in 

Vallombrosa and 48.36 point m-2 in Rincine. 

2.3.2 ALS data 
In the two study areas the ALS survey was carried out in May 2015 under 

leaf-on condition using an Eurocopter AS350 B3 equipped with a LiDAR 

RIEGL LMS-Q680i sensor. The flight height was 1,100 m a.s.l. Full-waveform 

LiDAR data was registered and discretized to a point density of 10 pts/m2. 

Common procedures for pre-processing ALS data (e.g. outliers and noise 

removal, classification of ground/non-ground, and computation of height 

on the ground) were carried out with the LAStools software (Isenburg, 

2017) in order to obtain ALS normalized point clouds. More detailes can be 

found in Chirici et al. (2017). 

3. Methods 
 

3.1 Explanatory variables 
To predict forest structure indices, we used a set of 

photogrammetric DTM-independent predictors variables recently 
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proposed by Giannetti et al. (2017 submitted) computed just from UAV 

photogrammetric image base point clouds and DSM. For comparison we 

calculated more traditionally variables derived from ALS normalized echoes, 

too.  

Both DTM-independent and ALS variables were calculated for each 

one of the field plots available in the two study areas.  

 

3.1.1 DTM-independent variables from UAV photogrammetric data 
 

DTM-independent predictors variables were calculate in accord 

with Giannetti et al., (2017 submitted) on the basis of the non-normalized 

UAV photogrammetric point cloud and raster grid DSM having a resolution 

of 0.5x0.5 m.  

A total of 163 DTM-independent variables were computed. In 

details, 148 were point cloud variables and 15 were DSM variables.  

The point cloud variables were computed on the base of z, z 

standard, intensity, RGB value and combined z and intensity (Giannetti et 

al., submitted). 

The DSM variables were calculated on the basis of average and 

standard deviation statistics of Grey-level co-occurrence matrix textural of 

mean, variance, homogeneity, contrast, dissimilarity, entropy and second 

moment (Haralick et al., 1973). In addition, from DSM also the number of 

local maxima was extracted with a search window of 3x3 pixel, or 1.5x1.5m. 

A detailed description of the DTM-independent variables used in the 

current study can be found in Giannetti et al. (submitted). The DTM-

independent variables were computed using the R-CRAN package lidR 

(Roussel, 2017).  

A summary of DTM-independent variables is provided in table 2 

and 3. 
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Table 2: Point clouds DTM-independents variables (Giannetti et al., 2017, in 
review). 

Explanatory variables Description 

sd_z z standard deviation 

kur_z z kurtosis (Davies and Goldsmith, 1984; McGaughey, 2014) 

ske_z z skewness (Davies and Goldsmith, 1984; McGaughey, 2014) 

AAD_z z median absolute deviation (McGaughey, 2014) 

range_z Difference between maximum and minimum z values 

entropy  z normalized Shannon diversity index (entropy) (Pretzsch, 2009; 
Shannon, 1948) 

z_d1, z_d2,…, z_d9, 
z_d10 

z density variables defined as tenths of the distance between 
the 100th percentile and the lowest z value. 

zst_sum Sum of zst values 

z_p1, z_p2, ..., z_ p95, 
z_p100 

Percentile of 10, 20, 30, 50, 60, 70, 80, 90, 95, 100 zst 
distribution  

max_i Intensity maximum value 

min_i Intensity minimum value 

avg_i Intensity average value 

sd_i Intensity standard deviation 

kur_i Intensity kurtosis (Davies and Goldsmith, 1984; McGaughey, 
2014) 

ske_i Intensity skewness (Davies and Goldsmith, 1984; McGaughey, 
2014) 

AAD_i Intensity median absolute deviation (McGaughey, 2014) 

range_i Difference between maximum and minimum Intensity values 

entropy_i  Intensity normalized Shannon diversity index (entropy) 
(Pretzsch, 2009; Shannon, 1948) 

i_quart_1; i_quart_2; 
i_quart_3;i_quart_4 

Quartile of 25, 50, 75, 100 intensity distribution 

i_d1, i_d2, i_d3, i_d4 Intensity density calculated for equally intensity layers, defined 
as quarters of the distance between the 100th percentile and 
the lowest intensity value.  

i_1q_p1,……, i_1q_p100 z percentiles of 1st intensity quartiles 

Explanatory variables Description 

i_1_p50/p25 Ratio between i_1q_p50/i_1q_p25 

i_2q_p1,….., i_2q_p100 z percentiles of 2nd intensity quartiles 

i_2_p50/p25 Ratio between i_2q_p50/i_2q_p25 

i_3q_p1,….., i_3q_p100 z percentiles of 3rd intensity quartiles 

i_3_p50/p25 Ratio between i_3q_p50/i_3q_p25 

i_4q_p1,….., i_4q_p100 z percentiles of 4th intensity quartiles 

i_4_p50/p25 Ratio between i_4q_p50/i_4q_p25 

i_1q_d1,……, i_1q_d10 z density variables of 1st intensity quartiles 

i_2q_d1,….., i_2q_d10 z density variables of 2nd intensity quartiles 

i_3q_d1,…, i_3q_d10 z density variables of 3rd intensity quartiles 

i_4q_d1,…, i_4q_d10 z density variables of 4th intensity quartiles 

mean_R, mean_G, 
mean_B, mean_NIR 

Mean value of R, G, B and NIR bands 
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min_R, min_G, min_B, 
min_NIR 

Minimum value of R, G, B and NIR bands 

max_R, max_G, max_B, 
max_NIR 

Maximum value of R, G, B and NIR bands 

sd_R, sd_G, sd_B, 
sd_NIR 

Standard deviation of R, G, B and NIR bands 

 
Table 3: DSM DTM-independent variables (Giannetti et al., 2017, in rewiev). 

Explanatory variables Description 

AVG_mean Average of GLCM mean textural (Haralick et al., 1973) 

SD_mean Standard deviation of GLCM mean textural (Haralick et al., 1973) 

AVG_variance Average of GLCM variance textural (Haralick et al., 1973) 

SD_variance Standard deviation of GLCM variance textural (Haralick et al., 
1973) 

AVG_ homogeneity Average of GLCM homogeneity textural (Haralick et al., 1973) 

SD_ homogeneity Standard deviation of GLCM homogeneity textural (Haralick et al., 
1973) 

AVG_ contrast Average of GLCM contrast textural (Haralick et al., 1973) 

SD_ contrast Standard deviation of GLCM contrast textural (Haralick et al., 
1973) 

AVG_ dissimilarity Average of GLCM dissimilarity textural (Haralick et al., 1973) 

SD_ dissimilarity Standard deviation of GLCM dissimilarity textural (Haralick et al., 
1973) 

AVG_ entropy Average of GLCM entropy textural (Haralick et al., 1973) 

SD_ entropy Standard deviation of GLCM entropy textural (Haralick et al., 
1973) 

AVG_ second moment Average of GLCM second moment textural (Haralick et al., 1973) 

SD_ second moment Standard deviation of GLCM second moment textural (Haralick et 
al., 1973) 

num_max Number of local maxima 

 

 

3.1.2 ALS echoes variables  
We calculated 32 echo-based predictors variables on the basis of  

DTM normalized ALS data.   

The variables we used are those most typically used for forest 

estimations (Leas et al., 2011) and included three types of predictors: 

statistical (McGaughey, 2010), height, and density (Naesset et al., 2004).  

The variables were computed using the R-CRAN package lidR 

(Roussel, 2017).  
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A summary of ALS explanatory variables is provided in Table 4. 

Table 4: ALS echoes variables. 
DTM dependent 
metrics 

Descriptive feature 

tot Total Number of point 
min Minimum 

max Maximum 

avg Average 

range Range 

sd Standard deviation 

var Variance 

cv Coefficient of variation 

iq Interquantile distance 

sk Skewness (Davies and Goldsmith, 1984; McGaughey, 2010) 

ku Kurtosis (Davies and Goldsmith, 1984; McGaughey, 2010) 

aad Average absolute deviation (McGaughey, 2010) 

 p1, p2, ..., p95, 
p100 

percentile of 10, 20, 30, 50, 60, 70, 80, 90, 95, 100 h distribution 

p99/p25 Ratio of percentiles 
p99/p50 Ratio of percentiles 
p99/p75 Ratio of percentiles 
d1, d2,….,d9,d10 proportion of points above the 1st,…,10th fraction to the total 

number of points (cutoff=1.30) 

 

3.2 Model development 
 

Multiple linear regression models were used because of their 

simplicity and efficiency to characterize the relationship between forest 

attributes and predictors variables from RS (Bottalico et al., 2017; Giannetti 

et al., 2017; Mura et al., 2015; Puliti et al., 2015).  

It is important to note that our aim was to compare the 

performance of UAV DTM-independent variables versus traditionally ALS 

echoes variables for predicting forest structural diversity indicators. Not to 

obtain the best absolute predictions that can be probably reached with 

more advanced non-parametric methods such as K-nearest neighbors 

(Chirici et al., 2016) or Random Forest (Yu et al., 2011). 
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To fit the models we used each forest structure indices as response 

variables and as independent variables the two set of RS predictors 

variables from RS: DTM-independent and ALS echoes. 

First of all, a correlation analyses between the metrics was carried 

out to check for the mutually correlated variables using Person’s product 

moment correlation (r) matrix. In case of two metrics with r>0.85 only the 

one that is at least less correlated with other metrics were used in the 

models as independent variables. 

The best combination of explanatory variables was selected using 

a subset regression procedure using a branch-and-bound algorithm 

(Clausen, 1999). The algorithm was addressed to optimize the Adjusted R2 

(Adj. R2) for each possible predictors combination. The algorithm was set to 

find at least five explanatory variables that maximized the Adj. R2, searching 

for one-variable model, two-variables model until five-variables models. 

This configuration was chased because models that have many predictors 

usually have a great R2 but might suffer of overfitting.  We chosed the 

simplest models (those with the smallest number of predictors) because 

such models are easier to understand and to be evaluated in replicated and 

cross-validation studies. 

The accuracy of the predictions was calculated at plot level on the 

basis of a Leave-One-Out cross validation approach (LOO). The LOO was 

carried out by leaving out each ith plot iteratively, the model was fitted 

using the remaining plots.  

The selected models were evaluate using the LOO procedure by 

means of Adj. R2, root mean square error (RMSE), relative root mean square 

error (RMSE%), mean difference (MD) and relative mean difference (MD%) 

and were calculate as: 
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𝑀𝐷 =
∑ (�̂�𝑖 − 𝑦𝑖)𝑛

𝑖=1

𝑛
 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

Where,  �̂�𝑖  is the predicted value for the i-th plot, 𝑦𝑖  is the 

observed value for the i-th plot, n is the number of plots. The relative RMSE 

(RMSE%) was calculated as the percentage of RMSE on the average 

measured value of the variable in the plot.  

 

3.3 Spatial predictions 
 

We used DTM-independent models, developed as reported in the 

section 3.2. to create spatial predictions (maps) of the selected diversity 

indices in the two areas.  

The gridded maps are calculated for 23 m x 23 m pixels that mimic 

the plot area in both the study areas.  

 

4. Results 
 

4.1. Regression Models 
Individual models were developed for each of the different set of 

predictors (UAV DTM-independent vs  ALS echoes), for each response 

variable (the eight indices G, DBHmean, DBHσ, Gini, Hσ, Hdom, Hl and V) and in 

both the study areas. The number of explanatory variables selected by the 

branch-and-bound algorithm ranged between 1 and 5 for both DTM-

independent (Table 3) and ALS models (Table 4). DTM-independent models 

reveled a better fit in Vallombrosa with Adj. R2 ranging between 0.58 and 

0.79, compared to Rincine where it ranged between 0.38 and 0.65. 
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In Vallombrosa the DTM-independent variables resulted in 

consistently larger Adj. R2 for G, DBHmean, Gini, Hσ , while ALS variables 

resulted higher Adj. R2 for Hl, while comparable results between the two set 

of predictors were observed for V, Hdom, and DBHσ (Table 4 and Table 5).  In 

Rincine, among the two sets of variables, DTM-independent variables 

produced more accurate results with higher Adj. R2 for DBHσ while ALS 

resulted in higher Adj. R2 for G, Hdom, and Hl. In Rincine comparable results 

between the two set of variables were observed for GC, Hσ, and V (Table 5 

and 6). The LOO of the selected models revealed that the differences in 

predictive accuracy in terms of RMSE% between DTM-independent and ALS 

models in Vallombrosa ranged between -4.65% and 3.79%  while in Rincine 

ranged between -3.51% and 7.02% (Figure 2). 

In all the selected models MD values were relatively small, never 

higher than 1.3% of the mean reference value measured in the field whit 

the two-side t-test that revealed MD values as never statistically significant 

(p-values≥ 0.82).  

The analysis of the residuals revealed no violation of the 

assumptions of linearity, normality of the residuals, homoscedasticity, and 

independence for any of the models. The NCV test, the Kolmogorov 

Smirnov and the Durbin-Watson tests always resulted in p-values > 0.05. 

The assumption are confirmed, also, by the visual analysis of the scatterplot 

of the field reference against the LOOCV predicted values (Figure 3). 

 

Table 5: variables selections and model accuracies, in terms of RMSE, 
RMSE% and Adj.R2, for the multiple regression models using as 
predictors the UAV DTM-independent variables. 

 
Structur
al index 

Study 
Area 

DTM-independent variables RMS
E 

RMS
E% 

Adj. 
R2 

G 
[m2ha-1] 

Vallombr
osa 

zsd+i_4q_d10+num_max 7.5 12.8 0.76 

Rincine AAD_B+P99P75 12.9 26.7 0.40 
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DBHmean 
[cm] 

Vallombr
osa 

I_4q_d10+d10+AVG_homogeneity+AVG_m
ean+num_max 

4.2 15.1 0.66 

Rincine I_2q_d5+I_1q_p2 5.3 19.7 0.71 
DBHσ  
[cm] 

Vallombr
osa 

z_st_p10+I_2q_p100+p100+SD_entropy+A
VG_homogeneity 

2.8 23.2 0.61 

Rincine entropy_B+SD_dissimilarity+SD_homogenei
ty+AVG_dissimilarity+all 

1.7 23.2 0.50 

Gini 
[0,1] 

Vallombr
osa 

I_2q_d10+AVG_contrast+i_4_p75_p25+i_3
_p75_p25+i_1_p75_p25 

0.09 19.1 0.58 

Rincine VCI_R+mean_G+SD_homogeneity+d8 0.07 23.3 0.65 
Hdom 
[m] 

Vallombr
osa 

I_2q_d10+AVG_homogeneity+i_d2+i_mean
+i_3_p75_p25 

2.4 33.7 0.40 

Rincine AAD+mean_R+SD_mean+d7+qav+d3 1.0 29.0 0.38 
Hl 

[m] 
Vallombr
osa 

I_4q_p95+num_max+AVG_homogeneity+A
VG_dissimilarity 

3.3 13.5 0.70 

Rincine AVG_entropy+SD_entropy+p7+AVG_contra
st 

4.0 15.0 0.60 

Hσ 
[m] 

Vallombr
osa 

I_ske+i2q_d10+min_B+num_max+ 
AVG_homogeneity 

3.1 15.9 0.64 

Rincine SD_homogeneity+p7 3.7 16.9 0.65 
V 

[m3ha-

1] 

Vallombr
osa 

I_quant_1+i_1q_d5+num_max+ 
AVG_homogeneity 

96.1 15.9 0.79 

Rincine I_1q_p5 122.
2 

24.3 0.78 

 
 
 
 
 
 
 
 
 
 
Table 6: variables selections and model accuracies, in terms of RMSE, 

RMSE% and Adj.R2, for the multiple regression models using as 
predictors the ALS variables. 

Structural 
index 

Study Area ALS variables RMSE RMSE% Adj. 
R2 

G  
[m2ha-1] 

Vallombrosa p10 9.40 16.39 0.54 

Rincine d7+d8+d9+CV  9.84 20.58 0.69 
DBHmean 

[cm] 
Vallombrosa p99  5.01 18.18 0.39 

Rincine p9+all  4.84 17.80 0.72 
DBH   
[cm] 

Vallombrosa std+kur+b30+b80  2.76 22.83 0.61 

Rincine p9+d1+CV+AAD+avg  2.01 26.72 0.42 

Gini  
[0,1] 

Vallombrosa d2  0.11 23.79 0.25 

Rincine d1+d6+CV  0.073 22.55 0.71 
Hdom  
[m] 

Vallombrosa p10+d6  2.13 29.97 0.56 

Rincine d3+d2+d1+CV  1.04 28.56 0.33 
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Hl  
[m] 

Vallombrosa p5  3.49 14.08 0.71 

Rincine p95  2.44 9.71 0.87 

Hσ  
[m] 

Vallombrosa p75  3.01 15.34 0.73 

Rincine p95  2.11 9.90 0.91 
V  

[m3ha-1] 
Vallombrosa p5  100.81 16.72 0.79 

Rincine p5  122.29 24.66 0.76 

 
 

 
Figure 2: study areas reporting the forest types and the simple plots. 
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Figure 3:  Scatterplot of measured versus predicted values for the models 
using UAV DTM-independent variables (light blue background) and 
ALS echoes variables (light green blackground). Black dots 
represent Vallombrosa while blue crosses are for Rincine.  
 
 

4.2 Maps 
To give an example of the possible application of DTM-

independent variables to produce maps to support forest management and 

biodiversity monitoring we applied the models from Table 3 to create 

spatially continuous estimations of the 8 indicators in the two study areas 

(Figure 4). These mapped indices are widly used in forest management for 

ecological propose and biodiversity monitoring (McElhinny et al., 2005). 

 



 142 

 

Figure 4: maps and histograms of the eight structure indices calculate on 
the basis of models based on UAV DTM-independent variables for 
the two study areas: on the left Vallombrosa on the right Rincine. 
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5. Discussion  
The current study assesses the use of DTM-independent 

explanatory variables (Giannetti et al., in review) calculate from 3D UAV 

photogrammetric data to model and map eight forest structure 

complexity indices (G, DBHmean, DBHσ, Gini, Hσ, Hdom Hl,  and V) in two mixed 

temperate forests characterized by different types of management 

systems. The Vallombrosa forest which is mainly left to natural evolution 

and the Rincine district that is actively managed with a sustainable forest 

management approach.  To the authors’ knowledge, the present study is 

the first one where DTM-independent variables from UAV 

photogrammetric data are used to model forest structure indices and the 

first where DTM-independent models are used to create spatial 

predictions of the feature variables.  

The current discussion is focused on comparing the accuracy 

derived by DTM-independent models in relation to the benchmark method 

based on ALS data and on comparing the results obtained by previous 

research in modelling forest structure indices using different types of 

predictors.  

Among the two types of forests, DTM-independent models 

produced comparable results in terms of Adj. R2 (i.e. Vallombrosa: 0.40 ≤ 

Adj. R2 ≤ 0.79; Rincine: 0.38 ≤ Adj. R2 ≤ 0.78), but in terms of RMSEs% more 

accurate results were observed in Vallombrosa (12.81% ≤ RMSE% ≤ 23.29%) 

comparing to those retrieved in Rincine (15.06% ≤ RMSE% ≤ 29.00%) (Figure 

3).  

In both the areas DTM-independent models produced accurate 

results in modelling the growing stock volume (Table 3 and Figure 3), even 

if the models based on ALS achieved slighter better results (Table 4 and 

Figure 3). In terms of RMSE%, the accuracy of DTM-independent models for 

both study areas (i.e. Vallombrosa= 15.95% and Rincine=24.34%) is in the 
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range of previously reported studies based on ALS variables for which 

RMSE% typically ranged between 16.7% and 30% (Barbati et al., 2009; 

Bottalico et al., 2017; Corona and Fattorini, 2008; Tonolli et al., 2011). 

Among the two types of forests, DTM-independent models 

produced more accurate results in terms of RMSE% and Adj. R2 for G, 

DBHmean, Gini, and Hdom in Vallombrosa and for σdbh in Rincine comparing to 

the ones obtained by ALS. 

Moreover, the accuracy obtained in the current study using DTM-

independent models, in both study areas, was higher or comparable for G, 

DBHmean DBHσ, Hσ, and Hdom with those obtained with ALS variables by 

Bottalico et al., (2017) in a Mediterranean forest and those obtained by 

Mura et al., (2015) in a temperate forest. For Gini structure indices, the 

accuracy of DTM-independent models in terms of RMSE% (Table 3 and 4) is 

in line with the ones obtained by Valbuena et al., (2016), with ALS variables, 

in two boreal forests: one unmanaged for conservation purpose (i.e. 

RMSE%= 20.24%), and one used for maximizing commercial economic 

returns (i.e. RMSE%= 18.78%). For Gini structure indices, with DTM-

independent predictors we obtained better results in Vallombrosa 

compared to those from Rincine in contrast with the finding of Valbuena et 

al., (2016). Moreover, we found that the Gini DTM-independent model in 

Vallombrosa produced an RMSE% that is 4.65% points lower than those 

obtained by ALS model, while comparable results between DTM-

independent and ALS models were observed in Rincine.  

For the indices related to tree height (i.e. Hdom, Hl, and σh) ALS 

produced always better results comparing to those obtained by DTM-

independent models. These results were expected because normalized ALS 

metrics are directly related with tree heights.  
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We found that the DTM-independent models produced consistent 

results in monitoring forest structure variables across two different types of 

management systems also if the variations in forest management lead to 

some differences in the structural properties of forests (Lilja and 

Kuuluvainen, 2005; Uuttera et al., 1998).  

Adopting the conservative and simple modelling approach based 

on multiple linear regressions with the lower number of predictors we 

observed comparable results with the one obtained with more complex 

exponential and power models (Valbuena et al., 2016; González-Ferreiro et 

al., 2012). It seems that DTM-independent variables are good predictors for 

forest structure modelling. The DTM-independent models were also useful 

to create maps of forest structure indices that can be used for forest 

management propose. The maps were derived using DTM-independent 

models of the eight forest structure indices considered in this study in both 

the study areas.  

Comparing the maps of DBHσ, and Hσ indices across the two study 

areas (Figure 4), it is possible to note that the variability in vertical and 

horizontal stratum is higher in Vallombrosa than Rincine. These results 

could be expected because of the different forest management regimes 

adopted in the two study areas. As reported by Lexerød and Eid, (2006) if 

tree size diversity in low, almost all trees became mature for productive 

purpose at the same time, while large tree size diversity ensure a wide 

range of habitats providing a high level of biodiversity. The maps developed 

in this study allowed a comprehensive spatially analysis of the structure 

variability between two temperate mixed forests. Moreover, these indices 

are often adopted for forest biodiversity monitoring and several authors 

have underlined how these types of maps are useful to take better decision 

in the framework of sustainable forest management, forest certification 
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purposes and for precision forestry (Corona et al., 2017; Valbuena et al., 

2016). Moreover, UAV photogrammetric data are less expensive than ALS 

data and thus they can be more frequently acquired for multitemporal 

forest ecosystem trend analysis. 

 

6. Conclusion 
Several conclusions can draft from this study: 

 UAV DTM-independent variables are good predictors for 

modelling forest structure indices confirming the results obtained 

by Giannetti et al., (submitted) for growing stock volume 

modelling. 

 UAV DTM-independent models can be used to create maps with 

spatial predictions of forest structure indices useful for supporting 

forest management and precision forestry. 

 UAV DTM-independent maps can be useful to compare the 

variability different between different forests. 
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Abstract 
Forest operations can cause compaction and rutting, resulting in soil 

degradation processes. Soil damage is usually assessed through costly and 

time-consuming manual field measurements. The aim of this study is to 

investigate the impact of logging operations on soil using traditional ground 

surveys integrated with laser scanning data acquired by a terrestrial 

portable laser scanner (PLS). This approach provides an alternative to soil 

rut manual measurements. Two skid trails, that differed by the numbers of 

machine passes and slope were sampled. Data collection was performed 

before and after forest operations. The specific objectives were to: (i) assess 

soil compaction, and (ii) determine rutting by way of multi-temporal high-

resolution digital terrain models (DTM) generated by PLS data. This is the 

first study to assess changes in soil volume via the PLS. Significant logging 

impacts were detected using both investigation methods (i.e., physical 

parameters from traditional surveys and rutting from multi-temporal spatial 

analysis based on DTM). The PLS method provides a very high sampling 
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density of the soil surface, permitting detailed spatial analysis of terrain 

changes. Moreover, the pre-processing cost for PLS-generated DTM is low 

in comparison to the time needed for traditional survey based on manual 

field measurements. PLS may be a useful instrument for soil sampling in 

forest monitoring applications. 

 

Keywords: Forest logging; soil disturbance; soil compaction and rutting, 

terrestrial portable laser scanning; precision forestry 

 

Abbreviations: BD, soil bulk density; DTM, digital terrain model; PLS, 

portable laser scanner; PR, soil penetration resistance; TLS, terrestrial laser 

scanning.  

Core Ideas  
• Forest operations may cause severe soil disturbances.  

• Soil impacts are usually assessed by time consuming methods.  

• Our study investigated the use of a portable laser scanner to assess 

forest soil disturbance.  
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1. Introduction 
Starting in the 1950s, numerous studies have investigated the 

impact of mechanized forest operations on soil and possible ways to 

mitigate these impacts or promote post-logging soil recovery (Steinbrenner 

and Gessel, 1955; Greacen and Sands, 1980; Johnson and Beschta, 1980; 

Adams and Froehlich, 1981; Jakobsen and Greacen, 1985; Wronski and 

Murphy, 1994). In recent decades, the use of heavy machinery in forest 

management has increased significantly (Cambi et al., 2015a). Forest 

operations (e.g., skidding, forwarding and cable yarding) can have a 

detrimental impact on forest soil, tree regeneration and residual stand 

structure (Marchi et al., 2014). Consequently, quantifying soil damage 

caused by forest operations is important for forest management and 

monitoring purposes (Cambi et al., 2017). The most common and obvious 

effects of mechanized forest operations on soil include compaction and 

rutting (Kozlowski, 1999; Cambi et al., 2015a). These effects are the result 

of vertical and horizontal soil displacement associated with shearing 

stresses and soil compression in moist or wet soils (Horn et al., 2007). One 

of the first visible indicators of soil having been harmed by the movement 

of vehicle is the excessive deformation of trafficked areas (i.e., rutting) 

(Najafi et al., 2009). 

Rutting occurs when the ground pressure from tires or tracks 

exceeds the bearing capacity of the soil, thus causing soil compaction. Over 

time, this compaction develops into a shearing rut due to wheel slippage 

and soil displacement (Eliasson, 2005). Rutting has several documented 

negative environmental effects, such as physical root damage and reduced 

soil porosity (Pierzchala et al., 2015). Several studies have analyzed the 

interactions between rutting and soil displacement with others factors. For 

example, Najafi et al. (2009) and Naghdi et al. (2010) studied the 

relationship between soil type and soil displacement, arguing that soil 
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displacement caused by vehicle traffic is greater in clay loam soils. Raper 

(2005) and Cambi et al. (2015b) assert that soil rutting is a function of the 

moisture content of the soil at the time of logging.  

Research on the effects of rutting due to logging operations has 

traditionally required the manual measurement of crosssectional and 

longitudinal profiles of skid trails with soil deformation and/or displacement 

measured by means of the vertical distance between a reference level and 

the terrain at regular spatial intervals (Bagheri et al., 2013; Koren et al., 

2015). The resolution of measurements can be improved by using a 

specially designed profile meter (Najafi et al., 2009). However, because 

traditional soil surveys for disturbance assessment are costly and time 

consuming, there is increased interest in the use of terrestrial laser scanning 

(TLS), also known as ground-based light detection and ranging (LiDAR) 

(López-Saez et al., 2011; Lucía et al., 2011; Vericat et al., 2014; Castillo et 

al., 2015; Koren et al., 2015; Liang et al., 2016).  

TLS is a non-intrusive, high-precision tool designed to collect 

information on the three-dimensional (3-D) spatial characteristics of any 

object (Nadal-Romero et al., 2015; Liang et al., 2016). Based on LiDAR 

technology (Liang et al., 2016), TLS provides an accurate measurement of 

the distance between the device and objects in the surrounding 

environment. The acquisition process returns a dense 3-D point cloud 

indicative of LiDAR pulses being reflected off surrounding environmental 

surfaces (Nadal-Romero et al., 2015; Hayakawa et al., 2016). From these 

point clouds, it is possible to generate highresolution digital terrain model 

(DTM) that provides an accurate representation of topographical surfaces 

(Haubrock et al., 2009; Heritage and Large, 2009). Multi-temporal TLS 

acquisitions allow for the accurate measurement of changes and 

deformation in terrain (Haubrock et al., 2009; Heritage and Large, 2009; 
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Milan et al., 2011), thus providing a measure of volumetric changes (Koren 

et al., 2015) and facilitating the documentation of surface conditions (e.g., 

the development of rills, roughness, etc.) (Nadal-Romero et al., 2015).  

The time needed for TLS acquisition is relatively short and the 

precision is sufficient for detailed soil disturbance studies in highly active 

areas, including landslide monitoring, soil profile extraction (Teza et al., 

2008; Dunning et al., 2010) and soil erosion monitoring (Lucía et al., 2011; 

LópezSaez et al., 2011; Vericat et al., 2014; Castillo et al., 2015). While 

traditional TLS instruments operate from a fixed point in space for each 

acquisition, newer kinematic systems can operate while moving (Liang et 

al., 2016). Mobile laser scanning systems, for example, can be installed in 

cross-country vehicles, such as an all-terrain vehicle (Hyyppä, 2011; Hyyppä 

et al., 2013; Liang et al., 2016). A portable laser scanner (PLS), on the other 

hand, is miniaturized system that can be worn or held by the operator while 

walking during acquisition (Liang et al., 2016; Ryding et al., 2015). 

Several studies have evaluated the use of terrain modelling, using 

data acquired by traditional TLS systems, to support forest operatios and to 

quantify soil damage caused by logging operations (Dunning et al., 2010; 

Pirotti et al., 2012; Korean et al., 2015). However, the use of PLS data to 

quantify soil displacement and rutting following forest operations has been 

never tested.  

The objectives of this study were to: (i) assess soil compactions, 

and (ii) determinate the extent of logging-included rutting by way of multi-

temporal high resolution DTM generated by PLS data.  

The effects of mechanized logging on soil compaction and rutting 

were investigated along two skid trails, in the Apennine Mountains of 

central Italy. Traditional soil sampling methods, integrated with laser 

scanning data from PLS, taken both before and after logging, were used for 
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this investigation. The results of this analysis and subsequent discussion 

account for fact that the number of machine passes and slope differ among 

the two study trails. 

 

2. Materials and methods 

2.1 Study area and experimental trails 

This study was performed in the Vallombrosa Forest, located in the 

Apennine Mountains of Florence, Italy (43°47¢07˝ N; 11°31¢32˝ E). The 

climate is temperate-humid with a rainfall pattern typical of the 

Mediterranean. The mean annual temperature is 9.7°C and the total annual 

rainfall is 1337 mm, with an average of 71.2 mm in the summer months ( 

June–August) (Bottalico et al., 2014). Soil in the Vallombrosa Forest 

developed on sedimentary rocks comprised of sand stone with thin layers 

of siltstones and rarely marl. Umbrept and Umbric Dytrochrept soils, based 

on IUSS Working Group (2014), dominate the study area.  

The study area is an elevation of about 1000 m asl and is home to 

a pure even-aged stand of silver fir (Abies alba Mill.) growing in clay loam 

soil. The stand was completely destroyed by a windstorm on March 2015 

(Chirici et al., 2017). Forest operations were performed in June 2016 to 

remove fallen trees from the forest floor using two types of forest vehicles 

and two trails. Both skid trails were used by heavy forest vehicles to reach 

larger windthrow areas (i.e., the vehicles left the trail to venture further into 

the forest to arrive at the cutting areas). The following data were collected 

from each trail, herein referred to as Trail 1 and Trail 2 (Figure 1), before 

and after vehicle trafficking: (i) soil core samples to assess soil compaction, 

and (ii) laser scanning data to assess soil displacement, with special 

attention to damage by rutting. Table 1 shows the main characteristics of 

the experimental trails. 
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Table 1: Characteristics of the trails and number of passes of forest vehicles 
in each trail. The number of passes are referred to single passes. 

Skid 

Trail 

Total 

length 

(m) 

Maximum 

slope (%) 

Forest vehicle Number 

of passes 

of forest 

veichle 

Total 

number of 

passes  

1 116 3 Harvester 15 
34 

Forwarder 19 

2 90 37 Forwarder  37 

 

 

Figure 1: study area with location of the trails and the eight spherical 
targets; six of which were used post-scanning as control points for 
point cloud co-registration, while the remaining two were used to 
assess errors in scan alignment 

 

2.2 Forest vehicles 

Two forest vehicles were used in this study. The first vehicle was 

an 8-wheel forwarder, John Deere 1110 D, with an empty mass of 17.5 t 

(121 kW engine power), equipped with Nokian Forest Rider tires inflated to 
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550 kPa, used for timber extraction. The forwarder features a patented 

balanced bogie system for reduced ground impact and a smooth ride, even 

when fully loaded. The second vehicle, was a John Deere 1470 E harvester, 

with an empty mass of 20.7 t (180 kW engine power), used for cutting trees 

and processing. The number of forest vehicle passes for each trail is shown 

in Table 1. Additional information on each of the forest vehicles can be 

found in Table 2. Ground contact pressure was estimated by means of the 

ratio between the empty or loaded mass of each vehicle and the contact 

area of the wheels with the ground. The contact area between the tire and 

the ground was determined by pulling a rope tightly around the portion of 

the tire on the ground, assuming a circular contact patch (Neri et al., 2007). 

 

Table 2: Main characteristics of the two forest vehicles used to produce 
forest trail traffic 

 

 
 

2.3 Data 

2.3.1 Soil samples 
Soil sampling was performed to determine the physical 

parameters of soil before and after logging. Sampling was performed on the 

first part of each skid trail (i.e., first 30 m from the forest road) due to the 

uniformity of the soil layer in these areas. The sampling scheme is shown in 

Figure 2. After trafficking, 14 soil samples were collected from each trail, 

with 7 samples taken per right and left track. Another 14 samples were 

Characteristic Forwarder 1110 D Harvester 1470 E 

Front Rear Front Rear 

Empty Loaded Empty Loaded Empt
y 

Loade
d 

Empt
y 

Loade
d 

Mass (kg) 10500 10483 7000 13896.6 20700 

Wheels (n) 4 4 4 4 4 2 

Tires 700/50x26.
5  

700/50x26.
5  

700/50x26.
5  

700/50x26.
5  

26.5-20 34-16 

Equipment Chains Chains Bogie 
tracks 

Bogie 
tracks 

Bogie tracks Chains 

Ground pressure data 
(kPa) 

142 260 62 113 56 116 
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collected from beside each trail. Each soil sample was georeferenced on a 

local coordinate system with a total station Topcon OS series 103. Before 

trafficking, the same number of samples were collected from the same area 

and used for control purposes. Notwithstanding, although we tried to 

anticipate the position of tracks generated by the wheels of each vehicle, 

the position of pre-trafficking samples did not correspond with the actual 

post-trafficking position of the tracks. All soil samples were collected from 

the top mineral soil layer (max. 10ccm depth) using a rigid metallic cylinder 

(8.5 cm height and 5.0 cm inner diameter) after litter removal. Close to each 

sampling point, penetration resistance was measured using an Eijkelkamp 

TONS/FT2 penetrometer at a depth of about 4 cm. Soil samples were taken 

in June 2016; during the experiment, soil moisture (determined on a 

weight/weight basis on oven dried soil) was approximately 22%. 

 

Figure 2: Soil sampling scheme of a trail; Values are in cm. 
 

2.3.2 Laser scanning data collection and pre-processing 
Portable laser scanning data were used to estimate the size and 

volume of ruts and bulges. In each trail, eight spherical targets (diameter = 

0.14 m), mounted on a 1.40-m tall pole (Figure 3), were positioned outside 

the trail before the scan, where they remained throughout the duration of 

the study. Six of these targets were used after the scan as control points for 

point cloud co-registration, while the remaining two targets were used to 
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assess for possible errors in scan alignment. Laser scanning data were 

collected using a ZEB 1 lightweight portable 3-D laser scanner (GeoSLAM 

Ltd.). The main characteristics of the ZEB 1, according to the manufacturer, 

are shown in Table 3, while additional information can be found in Ryding 

et al. (2015).  

Table 3: Characteristics of the ZEB 1 portable laser scanner. 

Characteristic Description 

Data acquisition speed: 43200 points/sec 

3D measurement accuracy: +/- 0.1% (typically) 

Maximum range: up to 30 m (15 m outdoors) 

Laser safety class: class 1 Eye Safe 

Angular field of view: +270 x ~ 100 degrees 

Weight of scanner head: 665 g 

Dimensions of scanner head: 60 x 60 x 360 mm 

 

The scan was performed in each trail with the user slowly walking 

along the trail (approximately 30 cm s–1). The user walked in straight lines 

along the center line with the instrument remaining at breast height (1.4 m) 

throughout. The laser scanning data were collected both before and after 

logging operation using a closed loop, starting and ending at the same point 

(Ryding et al., 2015). Before all scanning operations, logging residues, such 

as branches or logs were removed from the ground suface. 

Raw data, registered by ZEB1, was pre-processed to obtained point 

clouds for the two trails. This procedure uses simultaneous localization and 

mapping (SLAM) algorithms that combine measurement data from the laser 

with positional data from the on-board Inertial measurement unit (IMU) to 

perform cloud-to-cloud registration, using feature recognition to 

automatically align the scan data (Bosse et al., 2012). Pre-processing was 
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performed on-line using the GeoSLAM servers. Table  4 shows the time 

needed for data pre-processing, and its cost. The 3-D point cloud data were 

generated in ‘.las’ and ‘.ply’ file formats, which are compatible with a variety 

of software. The post-logging 3-D point cloud were then “cleaned” to 

remove any non-soil objects, such as rocks, stumps and logs. Six spherical 

targets were identified in the point clouds by visual interpretation and used 

as control points to co-register the point clouds taken before and after 

logging. Point cloud co-registration was performed using the ‘Point pair 

based’ alignment tool, available in CloudCompare (version 2.6+) software. 

This tool aligns two-point clouds using the ‘4 points Congruent Sets For 

Robust Registration’ algorithm (Aiger et al., 2008). The pre-logging scan for 

each trail was used as reference model for co-registration. In addition, the 

root mean square error (RMSE) for vertical and horizontal displacement was 

assessed using two independent spherical targets to yield statistics on the 

uncertainty in the alignment. 
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Figure 3: Example of spherical target in the study area (left), and spherical 
target visible in point cloud produced by a portable laser scanner 
(right). 

 
Table 4: Details of scans acquisition and data pre-processing. 

Trail Scan date 
Acquisition time 

min 
Processing time 

min 
Credit 

Trail 1 01.06.2016 
(Before logging) 

7’ 7’ 53 

Trail 1 15.06.2016 
(After logging) 

8’ 8’ 57 

Trail 2 15.06.2016 
(Before logging) 

7’ 7’ 46 

Trail 2 20.06.2016 
(After logging) 

8’ 8’ 49 
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2.4 Data analysis 

2.4.1 Soil physical parameters 
Bulk density was computed for each soil sample using the method 

described in Picchio et al. (2012). Statistical analysis were used to test the 

influence of forest operations on soil bulk density (BD) and penetration 

resistance (PR). The data were checked for normality using the 

Kolmogorov–Smirnov test, and homogeneity of variance using the Levene 

test. Differences in physical parameters (BD and PR) of the soil in both the 

study trails and control area were assessed using one-way ANOVA. Post-hoc 

testing was performed using the Tukey’s HSD test. 

2.4.2 Portable laser scanner  
Points produced during each scan were classified as being either ground or 

non-ground on the basis of the adaptive triangulated irregular network 

algorithm (Axelsson, 2000). Ground points were rasterized using the 

rasterize tools present in CloudCompare to create high-resolution (pixel = 1 

cm) DTMs for Trail 1 and Trail 2. For each raster cell, the point with the 

lowest elevation was found and its z coordinates recorded. The DTM before 

(DTM1) and after (DTM2) logging operations were compared using map 

algebra tools and differences in terrain elevation were computed as Δ21 = 

DTM2 − DTM1. Based on this, we calculated for each trail: (i) the volume of 

ruts (VL, m3), where Δ21 < 0 (soil volume loss); (ii) the volume of bulges (VG, 

m3), where Δ21 > 0 (soil volume gain); and (iii) the total change of soil volume 

VT = VL + VG (m3). Because Trail 1 and Trail 2 had different sizes, the intensity 

of the total change of soil volume IT (m3 m-2) was estimated to compare the 

trails, as proposed by Koren et al. (2015): 

𝐼𝑇 =
𝑉𝑇

𝑆
        

     [1] 
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where S is the area of the section considered. The intensity of soil volume 

loss IL(m3 m-2) and the intensity of soil volume gain IG (m3 m-2) were 

computed as well: 

𝐼𝐿 =
𝑉𝐿

𝑆𝐿
        

     [2] 

 

𝐼𝐺 =
𝑉𝐺

𝑆𝐺
        

     [3] 

where 𝑆𝐿  is the area of the trail with Δ21<0 and 𝑆𝐺  is the area with Δ21>0.  

 

 2.4.3 Portable laser scanner and soils physical 
parameters 

To assess the relationship between rut depth and both BD and PR, a 

correlation analysis was performed. The geographic position of each soil 

sample was used to determine mean rut depth using the mean value of the 

Δ21 pixels (i.e., surface 19.63 cm2). Regression analyses were performed 

between mean rut depth and both BD and PR. To assess the relationship 

between BD and PR and mean rut depth the coefficient of determination 

(R2) was taken into account 

 

3. Results 

3.1 Soil compaction 

The control BD values were 0.78 and 0.79 g cm-3 for Trail 1 and Trail 2, 

respectively (Table 5). After logging operations, BD within ruts increased 

about 134% in Trail 1 and 135% in Trail 2. BD beside ruts increased 

approximately 73% in Trail 1 and 123% in Trail 2. The value of PR increased 

approximately 47% within ruts and 33% beside ruts in Trail 1, and about 

49% within ruts and 32% beside ruts in Trail 2. The results for all parameters 
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are shown in Table 6. A significant statistical differences was recorded for 

BD before and after logging, both within and beside trails. A significant 

statistical differences was also recorded for PR in all trails. 

 

Table 5: Bulk density (BD) and penetration resistance (PR) (mean ± standard 
deviation) measured for both forest skid trails receiving vehicular 
traffic. † Values within rows followed by the same letter weree 
not significantly differenct by Tukey’s HSD test (p<0.05).  

Trails 
 

Parameters 
 

Control 
 

Within  
ruts 

Beside 
 ruts 

1 BD (g/cm3) 0.78 ± 0.07 a† 1.83 ± 0.06 b 1.35 ± 0.04 c 

PR (MPa) 0.36 ± 0.04 a 0.53 ± 0.03 b 0.48 ± 0.02 c 

2 BD (g/cm3) 0.79 ± 0.06 a 1.86 ± 0.07 b 1.76 ± 0.08 c 

PR (MPa) 0.37 ± 0.03 a 0.55 ± 0.04 b 0.49 ± 0.02 c 

 

3.2 Portable laser scanner 

The ZEB 1 was used to scan a total area of 1047 m2 and 589 m2 in Trail 1 

and Trail 2, respectively. The RMSE for horizontal and vertical displacement 

assessed with two independent spherical targets was 0.46 and 0.93ccm, 

respectively. These values represent the level of uncertainty in the ZEB 1 

analysis of the soil. In Trail 1, the deepest rut in the terrain due to logging 

was 39 cm, while the biggest bulge was 44 cm (Figure 4). In Trail 2, the 

deepest rut reached a depth of 60 cm; the biggest bulge to register was 

similarly 59 cm (Figure 5). Table 6 shows the volume of soil displacement 

and intensity of the total change in soil volume computed from multi-

temporal analysis of DTMs. Figure 4 shows the spatial distribution of soil 

disturbance in Trail 1 after 34 forest vehicle passes. The deepest ruts were 

detected in the initial part of the skid trail (Figure 4: section A of the trail), 

which coincides with a soil sampling site. The largest 

The values of the coefficient of determination (R2=0.76 for Trail 1 and 

R2=0.67 for Trail 2; p-level <0.05) revealed a good relationship between BD 
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and mean rut depth in both trails (Figure 6); the higher the rut depth the 

higher the BD. On the contrary, the relationships between PR and mean rut 

deep were not significant (R2<0.4, p-level >0.05). 

soil bulges (>35 cm) were observed in the remaining part of the skid trail 

(Figure 4: section B of the trail). Figure 5 shows the spatial distribution of 

soil disturbances in Trail 2 after 37 forest vehicle passes. Changes in the 

order of −42 to 20 cm were frequently detected almost everywhere close 

to the skid trail for Trail 2. Ruts reached an average depth of 42 cm in Trail 

2, which was deeper than Trail 1 (i.e., 24 cm). 

Moreover, the maximum rut depth in Trail 2 was 60 cm, probably due to 

the effect of terrain slope, which was higher in Trail 2 (37%) than in Trail 1 

(3%). 

 

Table 6: Volume and intensity of soil displacement in Trail 1 and Trail 2. 

Parameter Trail 1 Trail 2 

 Area (m2) 1047 589 

Slope (%) 3 37 

Average rut depth (cm) 24 42 

Average rut heights (cm) 27 28 

Ruts volume (VD) (m3) 5.49 5.90 

Bulges volume (VR) (m3) 3.53 3.64 

Total change of volume (VT = VD + VR) (m3) 
 

9.02 9.54 

Intensity of total change of volume (IT) (m3 m-2) 0.0086 0.0161 

Intensity of volume reduction (ID) (m3 m-2) 0.0052 0.0100 

Intensity of volume rise (IR) (m3 m-2) 0.0034 0.0062 
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Figure 4: Spatial distribution of soil displacement (Δ21, change in digital 
terrain elevation) (left), and a histogram of soil surface variation 
and longitudinal profile for Trail 1 (right); Values are in cm. 

 

 

Figure 5: Spatial distribution of soil displacement (Δ21, change in digital 
terrain elevation) (left), and a histogram of soil surface variation 
and longitudinal profile for Trail 2 (right); Values are in cm. 
 

3.3. Portable laser scanner and soil physical parameters 

The values of the coefficient of determination (R2 = 0.76 for Trail 
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1 and R2 = 0.67 for Trail 2; p < 0.05) revealed a good relationship between 

BD and mean rut depth in both trails (Figure 6); the higher the rut depth 

the higher the BD. On the contrary, the relationships between PR and 

mean rut deep were not significant (R2 < 0.4; p > 0.05) 

 

 

Figure 6: Correlation analysis between mean rut depth derived by the 
change in digital terrain elevation and soil bulk density. Black dots 
are Trail 1 data and blue crosses are Trail 2 data. The lines 
represent the linear regression model between mean rut depth 
and bulk density 

 

4. Discussion 
This pilot study investigated the effects of logging traffic on forest 

soil, using PLS to assess soil compaction and rutting along two skid trails 

with different slope gradients. The study focused solely on the effects of 
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machine trafficking on the selected trails, ignoring the impact on soil 

throughout the remainder of the harvesting area. Our results, therefore, do 

not consider soil disturbances within the harvesting area, which according 

to the literature may vary widely, from 10 to 70% in relation to the system 

used for harvesting, logging methods and operator skills (Spinelli et al., 

2010; Marchi et al., 2014). As reported in other studies, logging operations 

increased BD and PR (McNabb et al., 2001; Picchio et al., 2012; Marchi et 

al., 2014; Cambi et al., 2015b) and formed deep ruts (Koren et al., 2015) 

along the study trails. Similar to results reported by Koren et al. (2015), most 

of the changes detected in our study were caused by soil compaction and 

displacement due to logging trafficking. A relationship between BD and 

mean rut depth was also observed. High BD values were measured in 

deeper ruts. Lower BD values and mean rut depth were observed in Trail 1, 

while higher values were observed in Trail 2. Most of the changes in the 

volume of soil were due to rut formation as a result of soil compaction and 

displacement caused by forest vehicles, as reported elsewhere (Eliasson 

2005; Eliasson and Wästerlund 2007). The observed increase in PR is an 

indicator of soil deterioration (Panayiotopoulos et al., 1994; Coelho et al., 

2000) similar to other studies of machinery-induced effects (Cambi et al., 

2015b). In this study PR was investigated only in the top soil layer and an 

increase was observed on both trails. In our study, increased skid trail slope 

resulted in higher IL and IG (i.e., IL and IG were 92 and 82% higher in Trail 2 

than in Trail 1). The longitudinal slope can play an important role in the 

amount of soil displaced (Solgi, 2007). Indeed, we found that rut volumes 

were greater along the steeper skid trail (Trail 2), similar to other studies 

that document the effect of slope on rutting during logging ( Jourgholami 

et al., 2014). There was a higher level of soil mixing along section B of Trail 

1, likely due to the presence of tree stumps that made the area less uniform. 
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As the vehicles turned into the cutting area (Section B), the heavy forestry 

vehicles slowed down, thus contributing to the creation of shallow ruts and 

soil accumulation outside the skid trail, as observed by Koren et al. (2015). 

Our study represents the first documented attempt to assess changes in soil 

volume using data from the PLS. Multi-temporal very high-resolution DTMs 

were successfully used to measure topographic change, suggesting that use 

of a PLS has potential to provide rapid and precise analysis of terrain 

variations due to forestry operations. 

The walking method and the subsequent GeoSLAM reconstruction 

process created a complete point cloud of the investigation area 

(approximately 1636 m2) in roughly 30 min. Data collection and pre-

processing by use of the PLS was simpler and probably faster than 

traditional TLS systems, which require multiple acquisitions from different 

points to provide an obstruction and shadow-free scan (Ehbrecht et al., 

2016). Data from a PLS can be collected by a single operator, compared with 

at least two persons needed for field measurements required by laser 

scanner ( Jester and Klik, 2005). However, it is worth noting that the 

operator must be careful not to alter terrain features during a PLS survey. 

In conclusion, pre-processing may be more cost effective when compared 

with the time needed for both traditional surveys based on manual field 

measurements and TLS. One limitation of both the PLS and TLS approaches 

is that data post-processing must be done afterward (i.e., not directly in the 

field), while manual measurement data can be used almost immediately. 

One further disadvantage of laser scanning is that spatial reference points 

have to be allotted manually on the ground before scanning (Haas et al., 

2016). With regard to the traditional manual survey, Haas et al. (2016) 

noted that the yardstick must be absolutely perpendicular when collecting 

data if the measurement values are to be acceptable and error free. Even 
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miniscule lateral variations from the perpendicular line can lead to distinct 

errors, which might occur frequently in the transition area of tire tread 

imprints. Moreover, in the traditional method, the accuracy of the 

estimation of the rut volume is only approximate because it is based on 

manual data collected from a limited number of crosssectional and 

longitudinal profiles of forest trails (Koren et al., 2015). Compared with 

manual measurement, the PLS provides a much higher sampling density of 

the soil surface allowing more detailed spatial analysis of terrain changes 

(Haubrock et al., 2009; Koren et al., 2015). Unlike other methods, the PLS 

also provides estimates of the volumes transferred from ruts to bulges, and 

volume loss due to compaction. Additional detailed studies may help 

develop a relationship between the volume lost by compaction and other 

soil compaction parameters.  

5. Conclusions 
Rutting, soil displacement and compaction are problems 

associated with land use management. In particular, logging operations 

frequently disturb soil, which may result in soil erosion on steep terrain. Rut 

depth is often the only variable forest managers consider when assessing 

soil damage from harvesting operations, yet its measurement require 

costly, time-consuming field work. In this study, we investigated soil 

compaction and assessed logging-induced rutting using a PLS, a hand-held 

terrestrial laser scanning system that acquires data while the operator 

traverses the study area on foot. Scanner data were used to produce 

multitemporal high-resolution DTM, before and after logging, thus creating 

high resolution assessment of soil disturbance. Our results show that the 

PLS can produce a fast, precise and accurate measurement of the impact of 

forest operations on soil. In addition, we found a good relationship between 

rut depth estimated with a PLS and traditional BD measurements. In 

conclusion, we demonstrated for the first time that PLS technology can be 
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used to assess soil disturbance caused by forest harvesting machinery. 

Further studies are needed to compare the PLS against traditional soil 

disturbance and compaction measurements to determine the utility of 

using a PLS for soil sampling and monitoring in forest environments. In 

particular, development of geostatistical models that map soil variables 

(e.g., BD, PR, soil porosity) based on relation between soil samples and PLS 

data should benefit sustainable forest management and forest operation 

planning. 

  



 176 

References 
Adams, P., Froehlich, H., 1981. Compaction of Forest Soils. PNW 217. A Pacific 

Northwest Extension Publication. Oregon, Washington, Idaho, USA, p. 
16. 

Aiger, D., Mitra N.J., Cohen-Or D. 2008. Four-points congruent sets for robust 
surface registration. ACM Transactions on Graphics (Proc. SIGGRAPH) 
27: 1–10. doi:10.1145/1360612.1360684 

Axelsson, P. 2000. DEM generation from laser scanner data using adaptive TIN 
models. ISPRS. 33: 111–118 (B4/1; Part 4). 

Bagheri, I., Naghdi, R., Jalali, A.M. 2013. Evaluation of factors affecting soil 
erosion along skid trails (case study; Shafarood Forest, Northern Iran). 
CJES. 11: 151–160. 

Bosse, M., Zlot, R., Flick, P. 2012. Zebedee: Design of a Spring-Mounted 3-D 
Range Sensor with Application to Mobile Mapping. IEEE. 28, 5 doi: 
10.1109/TRO.2012.2200990. 

Bottalico, F., Travaglini, D., Fiorentini, S., Lisa, C., Nocentini, S. 2014. Stand 
dynamics and natural regeneration in silver fir (Abies alba Mill.) 
plantations after traditional rotation age. iForest. 7: 313–323. doi: 
10.3832/ifor0985-007 

Cambi, M., Certini, G., Neri, F., Marchi, E. 2015a. The impact of heavy traffic 
on forest soils: a review. For. Ecol. Manag. 338: 124–138. doi: 
10.1016/j.foreco.2014.11.022 

Cambi, M., Fabiano, F., Foderi, C., Laschi, A., Picchio, R. 2015b. Impact of 
wheeled and tracked tractors on soil physical properties. iForest. 9. 89–
94. doi: 10.3832/ifor1382-008 

Cambi, M., Hoshika, Y., Mariotti, B., Paoletti, E., Picchio, R., Venanzi, R., Marchi, 
E. 2017. Compaction by a forest machine affects soil quality and Quercus 
robur L. seedling performance in an experimental field. For. Ecol. 
Manag. 384: 406–414. 

Castillo, C., James, M.R., Redel-Macías, M.D., Pérez, R., and Gómez, J.A. 2015. 
The SF3M approach to 3-D photo-reconstruction for non-expert users: 
application to a gully network, SOIL Discuss. 2: 371–399. 
doi:10.5194/soild-2-371-2015. doi: 10.5194/soild-2-371-2015 

Chirici, G., Bottalico, F., Giannetti, F., Rossi, P., Del Perugia, B., Travaglini, D., 
Nocentini, S., Ruedlinger, E.H.K., Marchi, E., Foderi, F., Fioravanti, M., 
Fattorini, L., Guariglia, A., Ciancio, O., McRoberts, L.R., Naesset, E., 
Corona, P., Gozzini, B., 2017. Assessing forest windthrow damages using 
single-date, post-event airborne laser scanning data. Forestry. 
Submitted. 

Coelho, M.B., Mateos, L., Villalobos, F.J. 2000. Influence of a compacted loam 
subsoil layer on growth and yield of irrigated cotton in Southern Spain. 
Soil Till. Res. 57: 129–142. doi: 10.1016/S0167-1987(00)00153-7 

http://doi.org/10.1016/S0167-1987(00)00153-7


 177 

Dunning, S.A., Rosser, N.J., Massey, C.I. 2010. The integration of terrestrial 
laser scanning and numerical modelling in landslide investigations. Q. J. 
Eng. Geol. Hydrogeol. 43 (2): 233–247. doi: 10.1144/1470-9236/08-069 

Ehbrecht, M., Schall, P., Juchheim, J., Ammer, C., Seidel, D. 2016. Effective 
number of layers: A new measure for quantifying three-dimensional 
stand structure based on sampling with terrestrial LiDAR. For. Ecol. 
Manag. 380: 212–223. doi: 10.1016/j.foreco.2016.09.003 

Eliasson, L. 2005. Effects of forwarder tyre pressure on rut formation and soil 
compaction. Silva Fenn. 39 549–557. 
http://www.metla.fi/silvafennica/full/sf39/sf394549.pdf 

Eliasson, L., Wästerlund, I. 2007. Effects of slash reinforcement of strip roads 
on rutting and soil compaction on a moist fine-grained soil. For. Ecol. 
Manag. 252 (1–3): 118–123. 

Greacen, E.L., Sands, R. 1980. Compaction of forest soils. A review. Aust. J. Soil 
Res. 18, 163–189. doi:10.1071/SR9800163 

Haas, J., Hagge Ellhöft, K., Schack-Kirchner, H., Lang, F. 2016. Using 
photogrammetry to assess rutting caused by a forwarder—A 
comparison of different tires and bogie tracks. Soil Till. Res. 163: 14–20. 
doi: 10.1016/j.still.2016.04.008 

Hayakawa, Y.S., Kusumoto, S., Matta, N. 2016. Application of terrestrial laser 
scanning for detection of ground surface deformation in small mud 
volcano (Murono, Japan). Earth, Planets Space. 68:114. doi: 
10.1186/s40623-016-0495-0 

Haubrock, S.N., Kuhnert, M., Chabrillat, S., Güntner, A., Kaufmann, H. 2009. 
Spatiotemporal variations of soil surface roughness from in-situ laser 
scanning. Catena. 79 (2): 128–139. doi: 
doi.org/10.1016/j.catena.2009.06.005 

Heritage, G.L., Large, A.R.G. 2009. Laser scanning for the environmental 
sciences. Wiley-Blackwell, New York. 

Hyyppä, J. 2011. Utilizing Individual Tree Information in Laser Assisted Forest 
Inventory. 

Hyyppä, J., Jaakkola, A., Chen, Y., Kukko, A. 2013. Unconventional LIDAR 
mapping from air, terrestrial and mobile. In: Photogrammetric Week 
2013, Stuttgart, Germany, pp. 205–214. http://www.ifp.uni-
stuttgart.de/publications/phowo13/180Hyyppae.pdf 

Horn, R., Vossbrink, J., Peth, S., Becker, S. 2007. Impact of modern forest 
vehicles on soil physical properties. For. Ecol. Manag. 248 (1–2): 56–63. 
doi: 10.1016/j.foreco.2007.02.037 

Jourgholami, M., Soltanpour, S., Etehadi Abari, M., Zenner, E.K. 2014. 
Influence of slope on physical soil disturbance due to farm tractor 
forwarding in a Hyrcanian forest of northern Iran. iForest. 7: 342–348. 
doi: 10.3832/ifor1141-007 

http://doi.org/10.1016/j.foreco.2016.09.003
http://www.metla.fi/silvafennica/full/sf39/sf394549.pdf
http://www.ifp.uni-stuttgart.de/publications/phowo13/180Hyyppae.pdf
http://www.ifp.uni-stuttgart.de/publications/phowo13/180Hyyppae.pdf
http://doi.org/10.1016/j.foreco.2007.02.037


 178 

Koren, M., Slančík, M., Suchomel, J., Dubina, J. 2015. Use of terrestrial laser 
scanning to evaluate the spatial distribution of soil disturbance by 
skidding operations. iForest. 8: 386–393. doi:10.3832/ifor1165-007 

Kozlowski, T.T. 1999. Soil compaction and growth of woody plants. 
Scandinavian J. For. Res. 14: 596–619. 

Jakobsen, B.F., Greacen, E.L., 1985. Compaction of sandy forest soils by 
forwarder operations. Soil Till. Res. 5, 55–70. doi.org/10.1016/S0167-
1987(85)80016-7 

Jester, W., Klik, A. 2005. Soil surface roughness measurement - methods, 
applicability, and surface representation. Catena. 64: 174–192. doi: 
10.1016/j.catena.2005.08.005. 

Johnson, M.G., Beschta, R.L., 1980. Logging, infiltration capacity, and surface 
erodibility in western Oregon. J. Forest. 78, 334–337. 

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu X., 
Kaartinen, H., Jaakkola, A., Guan, F. 2016. Terrestrial laser scanning in 
forest inventories. ISPRS J. Photogramm. Remote Sens. 115: 63–77. 
doi.org/10.1016/j.isprsjprs.2016.01.006 

Liang, X., Wang, Y., Jaakkola, A., Kukko, A., Kaartinen, H., Hyyppa J., 
Honkavaara, E., Liu, J. 2015. Forest data collection using terrestrial 
image-based point clouds from a handheld camera compared to 
terrestrial and personal laser scanning. IEEE Trans. Geosci. Remote Sens. 
53: 5117–5132. doi: 10.1109/TGRS.2015.2417316 

López-Saez, J., Corona, C., Stoffel, M., Rovéra, G., Astrade, L., and Berger, F. 
2011. Mapping of erosion rates in marly badlands based on a coupling 
of anatomical changes in exposed roots with slope maps derived from 
LiDAR data, Earth Surf. Process. Landf., 36: 1162–1171. doi: 
10.1002/esp.2141 

Lotfalian, M., Parsakhoo, A. 2009. Investigation of forest soil disturbance 
caused by rubber-tired skidder traffic. International Journal of Natural 
and Engineering Sciences. 3 (1): 79–82. 

Lucía, A., Martín-Duque, J.F., Benjamin Laronne, J., and SanzSantos, M.A. 
2011. Geomorphic dynamics of gullies developed in Sandy slopes of 
Central Spain. Landform Analysis. 17: 91–97. 
http://geoinfo.amu.edu.pl/sgp/LA/LA17/LA17_091-097.pdf 

Marchi, E., Picchio, R., Spinelli, R., Verani, S., Venanzi, R., Certini, G. 2014. 
Environmental impact assessment of different logging methods in pine 
forests thinning. Ecol. Eng. 70: 429–436. doi: 
doi.org/10.1016/j.ecoleng.2014.06.019 

Milan, D.J., Heritage, G.L., Large, A.R.G., Fuller, I.C. 2011. Filtering spatial error 
from DEMs: implications for morphological change estimation. 
Geomorphology. 125:160–171. doi: 10.1016/j.geomorph.2010.09.012 

McNabb, D.H., Startsev, A.D., Nguyen, H. 2001. Soil wetness and traffic level 

http://www.sisef.it/iforest/contents/?id=ifor1165-007
https://doi.org/10.1109/TGRS.2015.2417316
http://geoinfo.amu.edu.pl/sgp/LA/LA17/LA17_091-097.pdf


 179 

effects on bulk density and air-filled porosity of compacted boreal forest 
soils. SSSAJ. 65: 1238–1247. doi: 10.2136/sssaj2001.6541238x 

Nadal-Romero, E., Revuelto, J., Errea, P., López-Moreno, J.I. 2015. The 
application of terrestrial laser scanner and SfM photogrammetry in 
measuring erosion and deposition processes in two opposite slopes in a 
humid badlands area (central Spanish Pyrenees). SOIL. 1: 561–573. 
doi:10.5194/soil-1-561-2015. doi:10.5194/soil-1-561-2015 

Naghdi, R., Bagheri, I., Basiri, R. 2010. Soil disturbances due to machinery 
traffic on steep skid trail in the north mountainous forest of Iran. J. For. 
Res. 21: 497–502. 

Najafi, A., Solgi, A., Sadeghi, S.H. 2009. Soil disturbance following four-wheel 
rubber skidder logging on the steep trail in the north mountainous 
forest of Iran. Soil. Till. Res. 103: 165–169. 
doi:10.1016/j.still.2008.10.003 

Neri, F., Spinelli, R., Lyons, J. 2007. Ground pressure forwarder trials: assess 
benefits in reducing wheel rutting. In proceedings of the 
Austro2007/FORMEC´07 conference: “Meeting the Needs of 
Tomorrows´ Forests. New Developments in Forest Engineering”, 
October 7 – 11, 2007, Vienna and Heiligenkreuz, Austria. 

Panayiotopoulos, K.P., Papadopoulou, C.P., Hatjiioannidou, A. 1994. 
Compaction and penetration resistance indicates soil deterioration 
because it means reduced workability and more difficult soil exploration 
by roots. Soil. Till. Res. 31: 323–337. doi: 10.1016/0167-1987(94)90039-
6 

Picchio, R., Neri, F., Petrini, E., Verani, S., Marchi, E., Certini, G. 2012. 
Machinery–induced soil compaction in thinning two pine stands in 
central Italy. For. Ecol. Manag. 285: 38–43. 
doi.org/10.1016/j.foreco.2012.08.008 

Pierzchala, M., Talbot, B., Astrup, R. 2015. Measuring wheel ruts with close-
range photogrammetry. Forestry. 0: 1–9. 

Pirotti, F., Grigolato, S., Lingua, E., Sitzia, T., Tarolli, P. 2012. Laser Scanner 
Applications in Forest and Environmental Sciences. Italian Journal of 
Remote Sensing. 44 (1): 109–123. 

Pirotti, F., Travaglini, D., Giannetti, F., Kutchartt, E., Bottalico, F., Chirici, G. 
2016. Kernel feature cross-correlation for unsupervised quantification 
of damage from windthrow in forests. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 
Volume XLI-B7, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, 
Czech Republic: 17–22. doi: 10.5194/isprs-archives-XLI-B7-17-2016. 

Raper, R.L. 2005. Agricultural traffic impacts on soil. J. Terramechanics. 42: 
259–280. doi.org/10.1016/j.jterra.2004.10.010 

Ryding, J., Williams, E., Smith, M.J., Eichhorn, M.P. 2015.Assessing handheld 



 180 

mobile laser scanners for forest surveys. Remote Sensing, 7 (1): 1095-
1111. doi: 10.3390/rs70101095 

Solgi, A. 2007. Forest soil disturbance caused by HSM904 wheeled skidder. 
[M.Sc. Thesis.] Noor, Tarbiat Modares University: 82. 

Spinelli, R., Magagnotti, N., Nati, C. 2010. Benchmarking the impact of 
traditional small-scale logging systems used in Mediterranean forestry. 
For. Ecol. Manag. 260: 1997–2001. 
doi.org/10.1016/j.foreco.2010.08.048 

Steinbrenner, C.E., Gessel, S.P. 1955. The effect of tractor logging on physical 
properties of some forest soils in Southwestern Washington. Soil Sci. 
Soc. Am. J. 19, 372–376. 
doi:10.2136/sssaj1955.03615995001900030030x 

Teza, G., Pesci, A., Genevois, R., Galgaro, A. 2008. Characterization of landslide 
ground surface kinematics from terrestrial laser scanning and strain field 
computation. Geomorphology. 97 (3–4): 424–437. 
doi:10.1016/j.geomorph.2007.09.003 

Vericat, D., Smith, M.W., and Brasington, J. 2014. Patterns of topographic 
change in sub-humid badlands determined by high resolution multi-
temporal topographic surveys, Catena. 120: 164–176. doi: 
10.1016/j.catena.2014.04.012 

Wronski, E.B., Murphy, G. 1994. Responses of forest crops to soil compaction. 
In: Soane, B. D. and van Ouwerkerk, C. Soil compaction in crop 
production. Elsevier, Amsterdam: 662 pp. 
  



 181 

Paper V - Estimating machine impact on strip roads via close-range 
photogrammetry and soil parameters: a case study in central Italy.  

 
Martina Cambia, Francesca Giannettia*, Francesca Bottalicoa, Davide 

Travaglinia, Tomas Nordfjellb, Gherardo Chiricia, Enrico Marchia. 
a Dipartimento di Gestione dei Sistemi Agrari, Alimentari e Forestali 

(GESAAF), Università di Firenze. v. S. Bonaventura 13, I-50145 Firenze 

(Italy) 

b Department of Forest Biomaterials and Technology, Swedish University 

of Agricultural Sciences, Skogsmarksgränd, Umeå (Sweden) 

Corresponding authors: Francesca Giannetti (francesca.giannetti@unifi.it) 

Accepted iForest   

Abstract 
Several studies have been carried out to investigate the effects of logging 

vehicle traffic on forest soil, with the objective to ascertain site impacts (soil 

compaction and rutting). Most of these studies have been based on field 

measurements and/or soil sampling, involving time consuming methods 

and punctual surveys. The objective of this study was to measure soil 

disturbances with application of two methods: via new, image-based 

models derived by a structure-from-motion (SfM) photogrammetry 

approach, and traditional soil sampling (bulk density and shear strength). 

The comparison of image-based models derived by SfM photogrammetry 

was used to highlight the differences in the shape and distribution of the 

disturbances along ST and FT. The study was carried out in the Vallombrosa 

forest (central Italy). Two trails were selected in the logging area, one 

trafficked by a forwarder (FT) and one trafficked by a skidder (ST). Data 

collection was conducted before, during and after timber extraction. 

Results showed that the physical parameters of soil significantly changed 

due to both FT and ST forest vehicle traffic. This study proved that the use 
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of SfM photogrammetry may be very useful for improving assessment of 

the impact of forest operations on soil. Machine passes increased bulk 

density (111 and 31% for FT and ST, respectively), penetration resistance 

(29 and 24% for FT and ST, respectively) and shear resistance (14 and 6 % 

for FT and ST, respectively), whereas porosity decreased (46 and 9 % for FT 

and ST, respectively). Changes in the physical parameters of soil were 

significantly lower for ST. After logging, FT clearly showed ruts and bulges, 

whereas in ST, ruts and bulges were not visible but soil displacement in the 

direction of extraction was evident and measurable. The results obtained 

by SfM photogrammetry may revealed information not available via 

traditional methods, thus improving impact assessment. 

 

Keywords: Forest operation, soil impacts, soil displacement, close range 

photogrammetry, Digital Terrain Model 
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1. Introduction 
Forest operations are acknowledged to be sources of soil 

disturbance and erosion, and have been a matter of much research since 

the 1950s (Cambi et al. 2015). In particular, machine trafficking causes soil 

compaction (Jamshidi et al. 2008) and rutting, and is one of the major 

sources of human-induced forest soil degradation (Gomez et al. 2002, 

Bagheri et al. 2013). The pressure exerted by loaded vehicles passing 

through is a major factor causing compaction and rut formation (McNabb 

et al. 2001, Alakukku et al. 2003, Nugent et al. 2003, Eliasson 2005). In the 

last decades, the weights of forestry machines have increased, thus raising 

new concern over forest soil degradation (Sheridan 2003). Skid trails are 

forest areas prone to soil compaction and rutting because they have a road 

bed that is not naturally compacted and do not have constructed drainage, 

leading to a reduction in soil porosity, water infiltration and gas exchange, 

as well as increasing soil erosion, water logging and mudflows (Jansson & 

Johansson 1998, Grace et al. 2006, Cristopher & Visser 2007). 

Most studies concerning soil degradation due to forest operations 

have examined the physical parameters of soil, such as bulk density, total 

porosity, macro and micro porosity, shear and penetration resistances, and 

infiltration capacity (Alakukku et al. 2003, Ampoorter et al. 2007, Jourgulami 

et al. 2014, Marchi et al. 2014). The physical parameters of soil are usually 

determined by means of soil sample collection and analysis, or measured 

using specific instruments, such as penetrometers and scissometers 

(Picchio et al. 2012, Venanzi et al. 2016), or by means of manual 

measurements of cross-sectional and longitudinal profiles on skid trails 

(Koren et al. 2015). Although these methods have been improved over time 

(Jourgulami et al. 2014), they are time consuming and costly. Moreover, 

these methods may affect the study area when repeated measurement 
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methods are applied. 

Recently, the field methods used for analysis of geomorphological 

processes and quantification of soil impacts have seen a change, passing 

from traditional methods (Lotfalian et al. 2009, Bagheri et al. 2013, Koren 

et al. 2015) to the use of remote sensing and proximal sensing techniques 

(D’Oleire-Oltmanns et al. 2012; Talbot et al., 2017) in order to analyse the 

spatial distribution of soil disturbances (Koren et al. 2015; Giannetti et al., 

2017). In recent decades, techniques allowing rapid acquisition of high-

density topographic data have proliferated (Nadal-Romero et al. 2015). 

These techniques include terrestrial laser scanners (TLS; Vericat et al. 2014, 

Castillo et al. 2015) and photogrammetry techniques (Castillo et al. 2015, 

Kaiser et al. 2014, Marra et al., submitted), which are used, for example, for 

the analysis of soil erosion (Micheletti et al. 2015, Nadal-Romero et al. 

2015). These techniques make it possible to generate digital elevation 

models that accurately reproduce topographic surfaces (Vericat et al. 2014, 

Pierzchala et al. 2014b, Nadal-Romero et al. 2015). Various techniques have 

been proposed to measure soil surface microtopography (Heng et al. 2010), 

and their relative strengths and weaknesses have been discussed in recent 

comparative studies (Jester & Klik 2005, Aguilar et al. 2009). Although the 

use of close-range photogrammetry in mapping soil surface structure was 

demonstrated more than 20 years ago (Warner 1995), the advent of 

structure-from-motion (SfM) photogrammetry (James and Robson, 2012, 

Marra et al., submitted) has generated an improvement in topographic 

methods, due to its better accessibility to a wider variety of users, low cost, 

and increased automatization of routines and workflow (Fonstad et al. 

2013, Nadal-Romero et al. 2015). The advantages introduced by SfM in the 

geosciences were demonstrated by James and Robson (2012), and the 

reconstruction of high-resolution surface models (Turner et al. 2012) has 
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opened new possibilities in the applications of geoscience analysis (Castillo 

et al. 2015), forestry (Pierzchała et al. 2014a, Pierzchała et al. 2014b, 

Pierzchała et al. 2016) and agriculture (Nouwakpo & Huang 2012). 

The objective of this study was to investigate the usefulness of SfM 

photogrammetry in association with traditional methods for assessing soil 

disturbance in forest operations. The effects of forest operations on soil 

were considered for two types of forest machines, forwarder and skidder. 

The specific objectives of the study were:  

(1) to evaluate multitemporal analysis based on the use of image-

based high-resolution ground surface models generated through the use of 

SfM photogrammetry workflow as an instrument to determine rutting and 

bulges caused by forest operations along all trail surfaces; (2) to assess soil 

compaction with traditional techniques. 

 

2. Materials and Methods 

2.1 Study area 

The study was conducted in central Italy, in the Biogenetic reserve of 

Vallombrosa, which is in the municipality of Reggello (Florence Province) 

and extends for 5.78 ha. The area is characterised by moderate steep 

terrain (mean slope = 30%) and is between 920 m and 980 m a.s.l. The forest 

is characterised by an even-age silver fir (Abies alba Mil.) plantation that 

was completely destroyed by a windstorm on the 5th of March, 2015 (Pirotti 

et al. 2016, Chirici et al., 2017). The climate is temperate-humid with 

Mediterranean-type rainfall with a summer minimum and a mean annual 

temperature of 9.7°C. From 2009-2013, the mean annual precipitation was 

1337 mm, with an average of 71.2 mm in June-August (Bottalico et al. 

2014). Soil developed on sedimentary rocks of the boulder formation of 

Chianti, which are comprised of sandstone with thin layers of siltstone and 
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rarely marl. Soil can be classified as Umbrepts and Umbric Dytrochrepts, 

based on the USDA Soil Taxonomy (1990). This study was carried out during 

salvage harvesting of damaged trees. 

 

2.2 Forest machines 

Two forestry machines were used in our study. The first was a forwarder 

John Deere JD1110 D with an empty mass of 17.5 tons (121 kW), which was 

equipped with 8-wheel Nokian Forest Rider 700/50 x 26.5 tires inflated at 

51 kPa. The second machine was a skidder John Deere 548H with an empty 

mass of 11 tons (96 kW), equipped with 4-wheel Nokian Forest Rider 622/32 

x 24.5 tires with chains, inflated to 68 kPa.  

 

2.3 Experimental design 

Before logging, two 25 x 3.5 m plots were randomly selected in the study 

area along the trails designed for timber extraction: one plot in the trail 

designated to be trafficked by the forwarder (forwarder trail, FT) and one 

in the trail to be trafficked by the skidder (skidder trail, ST). The mean slopes 

of the FT and ST plots were 25% and 20%, respectively. 

Data collection was carried out at three time points: before forest 

logging (Time 1), considered as control data; seven working days after the 

beginning of logging (Time 2); and 13 working days after the beginning of 

logging (Time 3, i.e. the day after the end of wood extraction). The collected 

data were compared, taking into account the difference between: (i) 

periods 1 and 2 (Δ12); (ii) periods 2 and 3 (Δ23); and (iii) periods 1 and 3 (Δ13). 

The forwarder transported logs up to 6 m in length and the skidder 

transported whole un-delimbed trees. Extraction was carried out in uphill 

direction for both machines. 



 187 

2.4. Data collection 

2.4.1. Photogrammetry data 

2.4.1.1. Image acquisition 

Pictures in FT and ST plots were collected using a consumer reflex 

camera (Table 1) mounted on a tripod 1.90 m in height. The image points 

were located at the corner of a rectangular network (Figure 1), and the 

images were acquired in nadir angle with an overlap and a side lap of 95% 

every 30 centimetre. The area covered by the images was greater than that 

of the plots, for a total of ∼180 m2, in order to have a robust model of the 

trails. A total of 350 images were acquired for each trail in each period. The 

image acquisition was done in 20 minutes for each trial in each period 

 

Table 1: Details for camera and sensors used in the current study. 

Camera model Nikon D90 

Image resolution (pixel) 4288*2848 

Focal length (mm) 22  

Pixel size (mm) 1*1 

 

2.4.1.2. Ground control points 

Ground control points (GCPs) were identified for image 

geolocation. Two types were measured in each trial: (i) six GCPs to 

georeference each model and (ii) four permanent GCPs outside the trails 

that were used to co-register the three models obtained (Figure 1). The X, 

Y and Z coordinates of each GCP were measured with a total station Leica 

TCA1800. The GCPs were translocated into the geographic coordinates 

system (UTM32N-WGS84) using the coordinates of one fixed control point 

measured by a GPS receiver (Trimble JUNO SERIES 3B). The permanent 

GCPs were represented in the field by a survey geodetic marker and were 

protected from the passage of forest machines. 
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Figure 1: schema of image acquisition and location of ground control points 
(GCPs). Images were acquired in the intersection of the line 
acquisition (i.e. every 30 cm).  
 

2.4.1.3. Photogrammetry process  

The SfM technique was applied to obtain a 3D georeferenced point 

cloud from which a digital surface model (DSM) was derived. Data were 

processed using the Agisoft PhotoScan® Structure for Motion (SfM) 

photogrammetric software package (http://www.agisoft. com/), which has 

previously been successfully considered in different analyses (Verhoeven et 

al. 2012, Javernick et al. 2014, Woodget et al. 2014, Puliti et al. 2015). The 

workflow was comprised of the following steps: (i) image import, (ii) image 

alignment, (iii) georeferencing, (iv) optimisation of image alignment, (v) 

creation of the point cloud and (vi) generation of the DSM. After the 
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alignment, all photos were oriented, and the raw point cloud was 

georeferenced. The GCPs were then used to optimise the alignment of 

camera positions and the orientation of the data, which allowed for better 

accuracy and reconstruction results. Based on the estimated camera 

positions and GCPs, Agisoft PhotoScan® calculated depth information for 

each image, to be combined into a single dense point cloud dataset. The 

georeferentiation errors calculated by PhotoScan® along the x, y and z 

coordinates for each 3D point cloud models obtained via the structure-

from-motion methodology (i.e. FT1, FT2, FT3, SK1, SK2, SK3) for X, Y and Z 

coordinate was under centimetric (i.e. < 1 cm) 

 

2.4.1.4. Co-registration of model and difference 

calculation 

The three-dense point clouds obtained by SfM workflow (FT1, FT2, 

FT3 and SK1, SK2, SK3) were co-registered using the four permanent GCPs 

outside the trail area by means of a point-based alignment in 

CloudCompare V2 software. This tool coarsely aligns two-point clouds using 

the “4 points Congruent Sets For Robust Registration” algorithm (Aiger et 

al. 2008). After the co-registration process, the point clouds were rasterised 

with rasterisation tools present in CloudCompare to create very high-

resolution digital terrain models (DTMs) of each period for FT (FT-DTM1, FT-

DTM2, FT-DTM3) and SK (SK-DTM1, SK-DTM2, SK-DTM3), with pixels of 0.1 

x 0.1 cm. For each raster cell, the average elevation of the points in the pixel 

area was found and recorded in the cell. 

The digital terrain models before logging (DTM1), half-way through 

logging operations (DTM2) and after logging operations (DTM3) were 

compared using map algebra tools, and differences in terrain elevation (Δz) 

after forest operations were computed as Δ12 = DTM1 – DTM2, Δ23 = DTM2 

– DTM3 and Δ13 = DTM1 – DTM3. Pixels with Δ < 0 were considered to be in 
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ruts and pixels with Δ > 0 were considered to be in bulges along the surface 

of the two trails. The average, minimum and standard deviation were 

computed for Δ < 0 pixels, whereas the average, maximum and standard 

deviation were computed for Δ > 0 pixels for Δ12, Δ23 and Δ13.  

 

2.4.2. Physical parameters 

Thirty soil samples were collected at Times 1, 2 and 3, for a total of 

90 (30 × 3) samples. These samples were collected (Figure 2) from the top 

soil layer using a rigid metallic cylinder (8.5-cm height and 5.0-cm inner 

diameter) after litter removal and were used for determining bulk density. 

Penetration and shear resistance were measured in triplicate close to each 

sampling point, using an Eijkelkamp TONS/FT2 penetrometer and a 

GEONOR 72412 scissometer, respectively. Soil samples were taken where 

the wheels of the two machines had passed (Figure 1). 

All soil samples were weighed in the laboratory before (“moist 

weight”) and after oven drying at 105°C to a constant weight (“dry weight”). 

Bulk density was determined as the ratio between soil sample dry weight 

and volume. Soil porosity (PO) was determined via the following equation 

(1): 

 

PO = ((Dp−BD)/Dp*100    (1) 

 

where Dp is the particle density measured by a pycnometer 

(Multipycnometer, Quantachrome, Boynton Beach, FL, USA) on the same 

soil samples used to determine the bulk density (BD). 
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Figure 2:  Sampling scheme of soil physical parameters data collection in left 
and right track caused by a forwarder or skidder. 
 

2.5 Statistical analysis 

Statistical analyses were carried out using the software package 

STATISTICA® ver. 7.1 (StatSoft, Tulsa, OK, USA). All data were checked for 

normality (Kolmogorov-Smirnov test) and homogeneity of variance 

(Levene’s test) before the analysis. MANOVA analysis and a post hoc Tukey’s 

HSD test were applied to physical parameters to assess the statistical 

differences among times (1–2, 2–3 and 1–3) and between machines (FT and 

ST). 

A T-test was applied to the values of changes in ground surface 

level (Δ < 0 = ruts/soil removal and Δ > 0 = bulges/soil increase) between Δ12 

and Δ23 in order to assess statistically significant differences between both 

times (2 and 3) and machines (FT and ST).  
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3. Results  
The high-resolution surface models were derived by SfM workflow 

(Figs. 3 and 4; changes in soil surface level after logging are indicated in 

different colours). 

Significant differences (p < 0.05) between FT and ST were found 

when comparing ruts/soil removal and bulges/soil increases at both time 

intervals Δ12 and Δ23 (Table 2). Specifically, significant differences in bulge 

height/soil increase were recorded between vehicles at both time intervals 

(times Δ12 and Δ23), whereas rut depth/soil removal showed significant 

differences only in the first period (Δ12). FT treatment showed greater rut 

depth and bulge height than did ST (Table 2). For both FT and ST, the 

greatest variation in ground surface was recorded in the first period (Δ12). 

The effects on soil produced by the skidder and forwarder also differed in 

terms of disturbance type and shape. On FT, the two ruts caused by 

forwarder passes were clearly visible along the trail and were associated 

with bulges at both sides of the ruts, but soil displacement along the trail 

was not detectable (Figure 3). On the contrary, on ST, ruts (wheel tracks) 

were not visible, but soil displacement was clearly detectable along the trail 

(Figure 4). On ST, the comparison between time 1 (control) and 2 (seven 

days of logging) showed soil displacement in the same direction as that of 

timber extraction. In the second part of logging, from time 2 to 3, soil was 

further displaced due to the increasing number of passes. Specifically, on 

ST, a certain quantity of soil was removed at the beginning of the steeper 

part of the trail and replaced in the flat area at the end of the plot in the 

skidding direction (Figure 4). 
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Figure 3: effects on soil produced by forwarder passes between times 1 and 
2 (Δ12), times 2 and 3 (Δ23), and between times 1 and 3 (Δ13). 
 
 
 

 

Figure 4: effects on soil produced by skidder passes between times 1 and 2 
(Δ12), times 2 and 3 (Δ23), and between times 1 and 3 (Δ13). 

 

On FT, soil moisture, bulk density, porosity, and shear and 

penetration resistance were significantly higher after logging operations (at 

times 2 and 3) in comparison with control (time 1). The same parameters 

did not show significant differences between times 2 and 3, thus suggesting 

that most of the compaction was reached within the first several logging 

days. Similar results were obtained on ST, except that soil moisture did not 

show differences between times 1 and 2 (Table 3). 
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Table 2: Quantification of the ground surface variation produced by 
forwarder trails (FT) and skidder trails (ST) after different time 
periods, calculated considering all Δ < 0 pixels as rutting and all Δ > 
0 pixels as bulges. Upper-case letters represent significant 
differences between FT and ST at the same period, whereas lower-
case letters represent significant differences between different 
periods for the same vehicle (T-test, * p < 0.05, **p<0.001). 

 
Table 3: Results of MANOVA (mean ± standard deviation) to evaluate 

differences in soil parameters between trails used by different 
logging vehicles (Wilks test’s F = 42.33, p < 0.001). Different lower-
case letters show statistically significant differences between times 
1, 2 and 3 (Tukey’s HSD tests, p < 0.05, N = 90). Different upper-
case letters show statistically significant differences between FT 
and ST at the same time (Tukey’s HSD tests, p < 0.05, N = 60). FT = 
forwarder trail, ST = skidder trail. 

 
 
 

4. Discussion 
At present, the physical parameters of soil are generally assumed 

to be the most useful for the assessment of impacts on soil due to vehicle 

traffic (Cambi et al. 2015). This is why we used bulk density, penetration 

  Ground Surface Variation 
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l Rut depth/soil removal 
Δ < 0 

Bulge/soil increase 
Δ > 0 

  

Minimum  average ± sd Maximum average ± sd 
(cm) (cm) (cm) (cm) 

FT Δ12 -36.5 -17.9 ± 12.1a* A* 13.5 9.5 ± 2.5 a * A* 

FT Δ23 -12.3 -4.7 ± 03.6b* A 5.3 3.7 ±2.1 b * A* 

FT Δ13 -39.5 -12.3 ± 8.2 15.6 9.8 ± 2.6 

ST Δ12 -21.4 -8.9 ± 2.9 a ** B* 5.0 4.1 ± 1.0 a* B* 

ST Δ23 -10.7 -4.8 ± 2.5b ** A 1.4 1.1 ± 00.8 b* B* 

ST Δ13 -15.6 -6.1 ± 5.3 3.5 2.2 ± 1.6 

 

T
ra

il 

T
im

e
 Soil moisture Bulk density Porosity Shear resistance Penetration 

resistance 

(%) (g cm-3) (%) (kPa) (MPa) 

FT 1 19.38 ± 4.86 a A 0.81 ± 0.07 a A 66.28 ± 6.55 a A 68.02 ± 2.54 a A 0.35 ± 0.43 a A 

2 11.09 ± 1.55 b A 1.69 ± 0.24 b A 35.89 ± 9.45 b A 77.81 ± 7.92 b A 0.46 ± 0.34 b A 

3 11.13 ± 1.56 b A 1.71 ± 0.25 b A 35.88 ± 9.44 b A 77.80 ± 7.93 b A 0.45 ± 0.35 b A 

ST 1 19.37 ± 4.86 a A 0.82 ± 0.07 a A 66.26 ± 6.55 a A 68.04 ± 2.54 a A 0.33 ± 0.43 a A 

2 19.24 ± 4.70 a B 1.06 ± 0.16 b B 61.03 ± 6.59 b B 72.40 ± 8.20 b B 0.42 ± 0.47 b B 

3 19.26 ± 4.72 a B 1.07 ± 0.18 b B 60.54 ± 6.62 b B 72.33 ± 8.23 b B 0.41 ± 0.51 b B 
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resistance, shear resistance and soil porosity for measuring soil compaction. 

In agreement with the results of previous studies (Wang 1997, Williamson 

& Neilsen 2000, Wallbrink et al. 2002, Han et al. 2009), our findings showed 

that the investigated physical parameters of soil were significantly affected 

mainly by the first vehicle passes (comparison between Time 1 and 2). 

Further machine passes slightly increased or did not affect the physical 

parameters. 

Similar results concerning the impact of forwarder extraction on 

soil were recorded for the same parameters during timber extraction in the 

Italian Alps by Cambi et al. (2016). Other studies, however, have found 

opposing results. Gondard at al. (2003), when assessing the impacts of 

clear-cutting in Aleppo pine (Pinus halepensis) forests in southern France 

using both forwarders and skidders, observed deep disturbance (i.e. 

“topsoil removed, subsoil exposed’’ according with McMahon’s (1995) 

methods and classification) only when a skidder was used and did not find 

ruts. Similar results were reported by Deconchat (2001) in mixed oak 

coppices (Quercus rubber, Q. petraea and Q. pubescens) in southern France 

under an Oceanic climate. In this study the observed greater soil 

disturbance due to skidders than forwarders, even though skidders were 

responsible for less than 1% of ruts. In analysing these results, it should be 

considered that both studies were based on methods developed for 

assessing the soil’s surface disturbance by means of the simple observation 

of soil conditions after logging; in other words, methods that cannot 

immediately detect less visible effects, such as soil compaction (Spinelli et 

al. 2010). Moreover, it should be considered that the first study was carried 

out under dry soil conditions, conditions under which soil is highly resistant 

to compaction, when only the scratching action of dragged logs may have 

any effect.  
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Nevertheless, even though our results highlighted a greater 

compaction caused by forwarders than skidders, it is not possible to draw 

any general conclusions about differences between the two machines. In 

fact, in our study it was not possible to collect data about the machine 

passes, or the wood volumes that had been transported over each trial 

area. Without, this information any general conclusion could be misleading. 

Compaction also depends on machine size, weight and the 

pressure exerted on soil (Jansson & Johansson 1998, McNabb et al. 2001, 

Bygdén et al. 2004, Eliasson 2005, Marchi et al. 2014). To measure rutting, 

manual measurements of cross-sectional and longitudinal profiles are 

commonly applied (Koren et al. 2015). These methods are used for 

determining the rut depth at intervals along the trail and, together with rut 

width measurements, may be used to form a rough estimate of the volume 

of soil displaced. Our study indicated that the use of SfM photogrammetry 

may be very useful for the precise measurement of rutting and soil 

displacement. Analysing the differences in ground surface shape through 

the use of image-based models derived by SfM may offer detailed 

information about changes in the characteristics of ruts along the trail and 

may highlight soil displacement in all directions (e.g. from the tracks to the 

trail’s centre and sides, along the trail). In our study, the results showed that 

in the first time interval, the FT caused deeper ruts and higher bulges than 

did the ST (Table 3). In the digital terrain model for FT obtained via SfM 

photogrammetry, ruts were clearly identifiable, whereas soil displacement 

along the trail was not detectable. In contrast, ruts were not visible on ST, 

but soil displacement along the trail was clearly detectable. These 

difference between FT and ST were likely due to the different types of 

timber extraction. In fact, rutting is caused by machine wheels both in FT 

and ST, but in ST, the passing of the top end of the dragged logs (Wood et 
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al. 2003) may change the impacts on soil in two ways: i) the top ends of the 

dragged logs reshape the ground after the skidder passes, hiding the rut left 

by the wheels; ii) the top ends of the dragged logs displace a certain 

quantity of soil in the dragging direction during each extraction trip. The 

latter effect may be particularly intense close to slope changes, because the 

heads of the logs scratch and displace the soil (Williamson & Neilsen 2000, 

Heninger et al. 2002, Horn et al. 2007, Agherkakli et al. 2010). Soil 

compaction and soil crumbling and displacement may result in increased 

water runoff and soil erosion (Williamson & Neilsen 2000, Cambi et al. 2015, 

Venanzi et al. 2016), with a consequent loss of fertile soil (Venanzi et al. 

2016).  

Forest soil is extremely fragile in physical terms and the 

improvement of methods for investigating the effects of soil disturbance is 

very important (Picchio et al. 2012). With the use of image-based models 

derived from SfM photogrammetry, the quantification of soil displacement 

is highly improved in comparison to traditional sampling methods. The use 

of image-based models allows a new approach to the quantification of soil 

disturbance, improving analysis concerning soil displacement due to 

logging, comparable with results obtained by point cloud derived by TLS 

(Koren et al. 2015). The use of a consumer reflex camera in conjunction with 

the use of SfM software, however, can produce accuracy models at low 

cost, with respect to the use of TLS. The use of this methodology (Pierzchala 

et al. 2014a, Koren et al. 2015) can produce information along the entire 

trail, not only at the sampling points, and this information is very important 

for forest managers, allowing the monitoring of soil ecosystems after forest 

operations and the planning of soil recovery practices (Pinard et al., 2000). 

 

5. Conclusions 
This study was conducted with the overall objective of describing 
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the effects of logging on the depth of ruts, through manual measurements 

in the field and photogrammetry analysis and on the physical properties of 

soil. Our findings highlighted how the use of both, image-based models 

derived via SfM photogrammetry and manual sampling may be very useful 

for improving the assessment of the impacts of forest operations on soil. 

Both methods showed significant impacts on soil caused by two different 

forest machines. 

Image-based models turned out to be useful for determining the 

distribution and types of disturbances, while the physical parameters of 

soils investigated in this study may be useful in determining local changes 

in soil characteristics. Our results showed that the image-based models 

derived via SfM photogrammetric workflow can be useful tools with which 

to evaluate soil displacement caused by forest machines, improving 

monitoring and management of impacts upon soil and giving continuous 

soil displacement measures along the entire trail surface.  
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