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Abstract 
When changes are made in a landscape, changes are made to the microclimate. When 

farmers plant trees in or around their field, and when communities dig bunds to 

improve water retention, they change the local climate around them. In the current 

global climate debate, adaptation and mitigation are dominant concepts, while no 

attention has been paid to local solutions that can enhance local climatic resilience of 

landscapes. In arid to semi-arid areas of the world, measures such as Landscape 

Restoration and Water Harvesting (LRWH) are implemented to revert land 

degradation and increase soil moisture, reducing runoff losses. The present work aims 

to analyse to what extent storing soil moisture, with adequate land and water 

management practices, can reduce temperatures in the hot months after the rainy 

season, as a consequence of Soil Moisture-Temperature Coupling. Since it is 

demonstrated how soil moisture deficit can enhance heatwaves in diverse regions of 

the world, it is hypothesized that increasing soil moisture availability, during the dry 

and hot periods, can mitigate hot temperatures. The analysis has been carried out for 

Enabered catchment, in Tigray Region, Ethiopia, where the rainy season runs from 

June to August. Here, large scale LRWH implementation ended in 2008. An analysis 

based on remote sensing data has been carried out to evaluate (1) to what extent 

LRWH implementation can enhance soil moisture conservation at catchment scale; 

(2) to what extent LRWH implementation can mitigate temperatures in the dry season 

at catchment scale; and (3) if SMTC were evident. Results showed an increased 

capacity of the catchment to retain soil moisture produced in the rainy season until 

September (P < 0.01) and October (P < 0.1) and reduced temperatures for September 

(P < 0.1), October (P < 0.01) and November (P < 0.05), with decreases of Land 

Surface Temperatures up to 1.74 °C. A simple, parsimonious linear regression model 

demonstrated that SMTC is evident at catchment scale and that the implementation 

of LRWH measures provided a climate mitigation effect in the watershed. The 

present work can reinforce the call for an increased adoption of water harvesting, land 

restoration and green water management, to increase the resilience of agricultural 

ecosystem located in arid and semi-arid areas, that represent a key element to achieve 

global food security. 

 

 

Keywords: Climate feedbacks, Soil Moisture Temperature Coupling, Transitional 

soil moisture and evapotranspiration regime, Landsat, MODIS, ERA-INTERIM, 

CHIRPS, Ethiopia, Tigray Region. 
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1 Introduction 

1.1 Societal relevance 
Humankind is part of the biosphere. People, communities, economies, societies and 

cultures shape and are shaped by the Earth as a living system, at local and global 

scale, being an embedded element of the Planet (Folke et al., 2016). 

Social-Ecological System (SES) approach describes humankind as an embedded 

element of the biosphere (Berkes and Folke, 2000). Societies rely on Ecosystem 

Services (ES) and can be sustained only by a sustainable and resilient provision of 

ES from the biosphere (Biggs et al., 2015). 

Agricultural ecosystems are the most relevant interface between humans and the 

biosphere (Díaz et al., 2015), and represent the most important solution space for 

pursuing environmental sustainability and food security (DeClerck et al., 2016). At 

the same time, they are one of the major driving forces shaping the Anthropocene, 

and a major contributor for breaching the so-called “Planetary  Boundaries”, as they 

are responsible of greenhouse gas emissions, freshwater consumption, loss of 

biodiversity and alteration of Nitrogen and Phosphorous cycles (Rockström et al., 

2009). Agricultural yield has been too often quantified as the sole outcome of these 

systems. In this view, no importance has been given to ES provision service that, 

however, are vital for the sustainability and the resilience of agricultural ecosystems 

themselves. Indeed, most of the increase in yields has been obtained by replacing the 

supporting function of ES with external inputs, that have driven most of agriculture’s 

negative externalities (DeClerck et al., 2016; Duru et al., 2015). 

Agricultural ecosystems offer a myriad of possibilities for the implementation of new 

practices and management techniques, by using a landscape approach (DeClerck et 

al., 2016; Garbach et al., 2017; Gordon et al., 2010). Supporting ES provision in 

Agricultural Landscapes (AL) will maximise their stability and reduce the need 

external inputs, enhancing their sustainability and resilience (Power, 2010).  

Among these services, AL can support a wide range of provisioning, regulating, 

supporting and cultural services (Table 1 - Power, 2010; Stavi et al., 2016). 

A sound Biosphere Stewardship (Folke et al., 2016) is required to maintain AL in the 

condition of providing ES in a sustainable and resilient way. In this framework 

Climate Change, regardless if induced by anthropic activities or not, is representing 

one of the major forces driving the alteration of the biosphere.  
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Table 1 – ES of Agricultural Landscapes according to Duru et al. (2015) and Stavi et al. (2016) 

Provisioning services • Food 

• Animal feed 

• Fibre 

• Freshwater 

Regulating services • Flood control 

• Disease control 

• Climate regulation 

Supporting services • Soil formation 

• Water and nutrient cycling 

• Oxygen production 

• Provision of Habitat 

Cultural services • Spiritual 

• Recreational 

• Aesthetic 

 

In the global climate discourse, adaptation and mitigation are the two the dominant 

concepts in pursuing AL resilience (Ismangil et al., 2016; O’Neill et al., 2014; Wise 

et al., 2014). A third way of coping with Climate Change is going largely unattended: 

the possibility of managing microclimates (Brown, 2011; Chen et al., 1999).  

When a landscape is modified, its microclimate is modified. When farmers plant trees 

around their fields, or when communities dig water conservation trenches, they 

modified the microclimate of the AL around them. 

Microclimate is “the suite of climatic conditions measured in localised areas near the 

earth’s surface” (Chen et al., 1999:288). At spatial scale, the term microclimate is 

often applied to phenomena occurring with a range up to 100 m, followed by meso-

climatic effects, up to 100 km (Foken, 2008). 

Experiences of microclimatic modifications through landscape planning and natural 

resources management strategies have been carried out for urban landscapes and built 

environment (Brown, 2011; Evans and De Schiller, 1996; Lin et al., 2018; Tsitoura 

et al., 2016), and a wide body of knowledge has been produced on microclimatic 

interactions at forestry level (Chen et al., 1999; De Frenne et al., 2013; Moore et al., 

2005). 

Microclimate plays a fundamental role in AL (Foken, 2008; Gliessman, 2015) and 

the management of microclimatic interactions can represent a proactive way of 

achieving resilience, especially in arid and degraded regions. 

Different studies about microclimatic management in AL, scattered around the world 

and across disciplines, show the potential of appropriate landscape management 

techniques. Mulching, for instance, can represent a suitable measure for microclimate 
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control, affecting soil temperature, soil moisture, soil physical and chemical 

properties, soil microbial activities, aerial physical properties, the mechanical impact 

of rain and weed growth (Stigter, 1984). Trees in AL can provide a considerable 

shading effect, with positive feedbacks on temperature, evapotranspiration and soil 

water  availability, but they can have also a negative feedback when, in driest periods, 

they can compete with cultivations for the few water available in the soil (Kuyah et 

al., 2016). Evidences are also offered by paleo agronomic studies, concerning the role 

of water in the soil or in AL. Lhomme and Vacher (2003) demonstrated the 

effectiveness of climate mitigation effect of ancient pre-Columbian water 

management structures, the so-called Waru Waru (Suka Kollus in Bolivia). These 

were canals around the fields located in flood-prone plains of the Andean region 

(Lombardo et al., 2011). The study of Lhomme and Vacher demonstrated that the 

diurnal temperature range in the area comprehended between canals ranged between 

11.5 and 18 °C, while in the open pampa plains it goes from 10.7 to 20 °C. The 

presence of standing water provided a thermal regulation effect that attenuates 

temperature extremes. 

1.1.1 Microclimate in Agricultural Landscapes: an operative framework 
Microclimatic conditions are defined by soil humidity, soil temperature, air 

temperature, air moisture, wind direction and speed, solar radiation (Chen et al., 1999; 

Gliessman, 2015), and their mutual interplay. 

Soil moisture is one of the most important microclimate determinants. Water in the 

soil increase soil heat capacity (Seneviratne et al., 2010), allowing a more balanced 

soil temperature, and affects vegetation growth. Different patterns of soil moisture 

can also affect major climatic phenomena, such as heat waves generation (Alexander, 

2011; Herold et al., 2016) and local rainfall (Mohamed et al., 2005; Seneviratne et 

al., 2010). 

Soil temperature has a direct effect on plant growth: warm soil temperature positively 

affects seed germination and micro-organisms development, guaranteeing soil 

fertilization. Extremely high soil temperatures can stall biological soil activities 

(FAO, 2016). Low soil temperatures can inhibit basic AL ecologic functions, such as 

plant water uptake and nitrification (Gliessman, 2015). 

Air temperature affects crop behaviour in different growth stages. In general, for all 

crops, development is hindered over a certain temperature limit. Also photosynthesis 

can be inhibited over high temperature thresholds. Elevated air temperature can also 

determine a faster spreading of diseases, by affecting plant resistance. 

Air humidity can slow down transpiration from plant because of air saturation. In 

conjunction with wind, air humidity can represent an additional water supply to 

vegetation in the form of dew (Tomaszkiewicz et al., 2017) or fog (Correggiari et al., 

2017; Klemm et al., 2012). These effects can be triggered by inserting in the 
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landscape structural elements for fog and dew collection (such as trees or artificial 

meshes) and are most effective in arid areas, where due to microclimate effects (such 

as oceanic evaporation) large air moisture masses move over arid zones. 

Wind has a cooling effect by removing the boundary layer around plants. In addition 

to it, it can have a regulating role on CO2 levels and on excess humidity in the 

surrounding of crop (Gliessman, 2015; Ismangil et al., 2016). However, excessive 

wind can dry the soil due to the effect on evapotranspiration, while high wind 

velocities can hinder crops development. 

Solar radiation has multiple effects in influencing soil and air temperature and as 

driver of evapotranspiration from vegetation and evaporation from soil. At the scale 

of AL, the effect of solar radiation can be managed by shading options (such as 

vegetation cover or mulching) and by altering the colour of surfaces. 

Considering the nature of microclimate elements in AL, modification to microclimate 

can be induced by the morphology of the landscape, by altering the water retention 

pattern with water harvesting and soil and water conservation, by the pattern of land 

use and the vegetation, by soil properties and at by the macro – climatic variables. 

An operative framework for the evaluation of microclimatic dynamics, considering 

what described above, is shown in figure 1. 

 

 
Figure 1 – Operative framework for microclimate management in Agricultural Landscapes, based on 

Ismangil et al. (2016) 
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Three clusters of possible interventions can be considered for a proactive 

management of microclimate in AL (Ismangil et al., 2016): 

1. Water Buffering: water buffering refers to the whole set of landscape 

technologies that can contribute to store soil moisture within an AL. Soil 

moisture is a key determinant of microclimate and, especially in arid areas, 

may contribute to mitigate climate extremes. Water harvesting namely the 

collection of rainwater and surface runoff (Rockström et al., 2002), represent 

the main agricultural technique for enhancing water buffering. Different 

effects can be obtained, depending on the storage volume in which rainwater 

is stored, as shown in Table 2. 

2. Re-greening: Vegetation is a powerful tool to manage microclimate in AL. 

Trees can shade crops, lowering radiation input, air and soil temperature, and 

thus reducing evapotranspiration, maintaining soil moisture. In addition to 

this, trees can act as windbreaks, contributing to crop yields (Gliessman, 

2015). 

3. Land Use Planning: at a larger scale, land use planning represents the main 

tool for microclimate management (Brown, 2011). Different land use 

patterns show different microclimatic characteristics, such as green areas in 

built environments (Zareie et al., 2016). Modifying the structural pattern of 

the landscape at meso scale can represent a powerful tool of microclimate 

management (Chen et al., 1999). 
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Table 2 - Effects of different types of water buffering techniques on microclimate components (Ismangil et al., 2016) 

Water 

buffering 

Techniques in use Soil moisture Soil 

temperature 

Air humidity Air 

temperature  

Wind direction 

and speed 

Open storage Surface ponds and 

micro-dams 

Limited 

Fringe effects 

dependent on 

seepage 

Not significant Significant  

More rainfall, 

higher air humidity 

and more dew 

Significant 

Cooling effect 

of surface 

evaporation 

Limited  

Causing local 

difference in 

temperature and 

hence air pressure 

Soil moisture Eyebrows, stone bunds, 

flood water spreaders, 

terraces, gully plugging 

and fog collection 

Direct  

Significant 

impact on soil 

moisture 

Significant 

Soil temperature 

more balanced 

Significant  

More dew and 

white frost, 

increased air 

humidity closer to 

the ground   

Limited 

Some cooling 

effect 

Not significant 

Shallow 

groundwater 

Infiltration trenches, 

infiltration ponds and 

wells 

Delayed  

Contribute to 

soil moisture 

later in the 

season 

Delayed 

Moderation 

effect on soil 

temperature 

Not significant Not significant None 
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1.2 Scientific relevance 
While there is consensus in considering microclimate management as a relevant ES 

in AL, there are still few experiences of direct monitoring, especially in arid areas.  

Most of the research is undertaken in the framework of the built environment (Brown, 

2011; Evans and De Schiller, 1996; Lin et al., 2018), or in forest areas (Anderson et 

al., 2007; Chen et al., 1999; De Frenne et al., 2013; Moore et al., 2005).  

In addition to this, a more scholarly knowledge is required to collect information, 

organising experiences and implement new instruments for microclimate research 

(Brown, 2011). 

To organize and frame diverse experiences, a framework involving main 

microclimatic components and possible drivers of microclimate management has 

been shown in Figure 1, and suitable clusters of microclimate management tools have 

been presented in Section 1.1.1. 

Different research perspectives are then presented in Table 3 including microclimate 

measuring, remote sensing analysis, and small-scale and cross-scale modelling. Last, 

but not least, investigation with participatory techniques can enhance and inform 

microclimate research. 

 

Table 3 - Examples of different approaches to research on microclimate 

Microclimate measuring J Chen et al. (1999); Lhomme and Vacher 

(2003); Lin et al. (2018) 

Remote sensing analysis Zareie et al. (2016); Carlson and Traci 

Arthur (2000) 

Small-scale modelling McCaskill et al. (2016); Shashua-Bar et al. 

(2010) 

Cross-scale modelling Keys et al. (2017, 2016); Mohamed et al. 

(2005) 

Participatory analysis Ismangil et al. (2016); Stigter et al. (2005); 

Tsirogiannis et al. (2015); Valdivia et al. 

(2010) 

 

Knowledge on microclimate science is wide, but fragmented. In addition to this, even 

if microclimatic effects at crop level are widely known (Foken, 2008; Gliessman, 

2015) few studies have been carried out to demonstrate the action of AL in affecting 

and modifying microclimate. 

In particular, landscape approach has been applied to the study of microclimate in 

urban areas (cities) and in forests, while no attention has been paid to AL. 
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1.2.1  Framework of the thesis 

The thesis focuses on an advancement of the knowledge on micro- to meso-climatic 

effects induced in AL by Landscape Restoration and Water Harvesting (LRWH) 

interventions, investigating if, and how much, they can affect local climate. 

When considering the introduced framework, the present work will seek to assess 

how these land and water management techniques can increase the water retention 

pattern, and thus their potential of mitigating high temperatures in arid climates, as a 

consequence of Soil Moisture-Temperature Coupling (SMTC) (Schwingshackl et al., 

2017). 

Within the framework, LRWH will be considered as a merge of Water Buffering and 

Re-Greening cluster of intervention, the latter excluding extensive reforestation. This 

necessity is given by the practical impossibility of finding localities where only Water 

Buffering interventions have been realised, totally excluding planting of grass and 

trees in key areas. 

The thesis adopts a catchment scale as reference spatial scale for the definition of an 

AL. This choice is determined by the hydro-climatic topic of the study, and by the 

common characteristic of LRWH projects to be realised at catchment scale. 

Considering an ES-based approach, the work examines the relevance of climate 

regulation ES in AL, and how well-developed LRWH implementation can enhance 

this latter regulating service. 

Remote sensing data have been utilised for testing the research hypothesis of a 

climate mitigation phenomena triggered by LRWH, and to determine how and which 

increase in soil moisture can determine a decrease in soil and air temperature. Google 

Earth Engine (Gorelick et al., 2017), Python, Matlab and Excel have been utilised for 

data collection and analysis. 

1.3 Objectives of the dissertation and research questions 
The present PhD dissertation aims to answer the following research questions: 

1. To what extent can LRWH enhance soil moisture retention at landscape 

(catchment) level? 

2. To what extent can LRWH modify temperature patterns at landscape 

(catchment) level? 

3. (a) What is the micro-climate effect of modified soil moisture on temperature 

given by LRWH? 

(b) What is most suitable remote sensing methodology to monitor SMTC at 

landscape (catchment) level? 
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2 Literature review 
Earth climate is influenced by a large set of surface variables, including geographical 

position, orography and land cover change. Soil moisture, in particular, can influence 

near surface air-temperature, formation of precipitation, and the carbon cycle 

(Schwingshackl et al., 2017, and cited literature). 

The effect of soil moisture on heat waves has been largely discussed and documented 

(Hauser et al., 2016; Hirschi et al., 2010; Miralles et al., 2014), attributing the 

occurrence of large heat events to soil moisture deficit, evidenced for example by 

precipitation deficits (Hirschi et al., 2010; Mueller and Seneviratne, 2012). 

For instance, Mueller and Seneviratne (2012) showed how hot days tends to be 

induced by antecedent precipitation deficit in large areas of the world, firstly 

evidencing that SMTC effects are geographically widespread, larger than how was 

assumed before their work. 

The effect has been also studied for regional cases: one of the most recent work of 

Hauser et al. (2016) discusses the generation of the 2010 mega heatwave occurred in 

Russia, driven by both climate change impacts and soil moisture deficit. The authors 

provided a set of simulation showing that the effect of soil moisture deficit of 2010 

alone can be expected to generate an exceptional dry summer, even considering the 

1960 climatic conditions. 

Soil moisture, in fact, exerts a control on water and energy fluxes, affecting near-

surface air temperature SMTC. 

 
Figure 2 - Overview of SMTC. (+) symbol denotes a positive coupling, (-) symbol denotes a negative 

coupling [figure taken from Schwingshackl et al (2017)] 

SMTC acts as follows (Figure 2): if soil moisture decreases, the soil to atmosphere 

latent heat flux (LH) decreases, since less water is available for evapotranspiration. 

According to the energy balance equation of land surface (1, and reorganised in 2), 

this decrease causes an increase of the fraction of net incoming radiation (Rnet) that 
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goes in sensible heat flux (SH) and ground heat flux (G), causing an increase of near-

air surface temperature, related to the higher transfer of heat in the atmosphere. 

𝐿𝐻 + 𝑆𝐻 + 𝐺 = 𝑅𝑛𝑒𝑡 (1) 

𝐿𝐻

𝑅𝑛𝑒𝑡
+
𝑆𝐻

𝑅𝑛𝑒𝑡
= 1 −

𝐺

𝑅𝑛𝑒𝑡
 (2) 

A negative coupling is thus evident between soil moisture and temperature, since 

increases of soil moisture can lead to decreases of temperature, while decreases in 

soil moisture can lead to increases in temperature (Schwingshackl et al., 2017; 

Seneviratne et al., 2010). 

The nature of SMTC is also dependant by soil moisture regime, with reference to 

evapotranspiration, namely soil moisture and evapotranspiration regime. The 

classical hydrological framework, introduced by Budyko (Budyko, 1974, 1956), and 

utilised in recent works (e.g. Schwingshackl et al., 2017; Seneviratne et al., 2010) 

describes the soil moisture regime as a fraction of Evaporative Fraction (EF), namely 

the fraction of Rnet that contributes for LH, expressed as: 

𝐸𝐹 =
𝐿𝐻

𝑅𝑛𝑒𝑡
 (3) 

 
Figure 3 – Framework for the dependence of EF by soil moisture content and definition of different 

soil moisture and evapotranspiration regime [figure taken from Seneviratne et al.,(2010)] 

The framework (Figure 3) defines three main soil moisture and evapotranspiration 

regimes, as a function of soil moisture content (θ), defined as volumetric soil 

moisture: 

𝜃 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑉

𝑉
 (4) 

Where the unit of θ is [m3
water/m3

soil], and the definition is given for a soil volume V. 
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• The Dry regime is characterized by θ < θwilt, namely lower than the soil 

moisture at the wilting point, where low or no evapotranspiration occurs. The 

regime is typical of deserts and hyper arid locations. 

• The Transitional regime, identified by the interval θwilt < θ < θcrit, where θcrit 

is the critical soil moisture value over which evapotranspiration is no longer 

limited by θ (Seneviratne et al., 2010 and cited literature). θcrit can vary 

between the 50% and the 80% of θ at field capacity (Shuttleworth, 1993), and 

it is dependent on location (Schwingshackl et al., 2017). Regions that exhibit 

a transitional regime are characterised by a strong SMTC, including Sahelian 

areas and Mediterranean climates. 

• The Wet regime, for θ > θcrit, where soil moisture does not represent a limiting 

factor for evapotranspiration, while this latter is mostly controlled by the 

available energy. This regime is mostly evident in tropical areas and high 

latitudes. 

The framework can be expressed according to the following function (Schwingshackl 

et al., 2017): 

𝐸𝐹(𝜃) =

{
 

 
0, 𝑖𝑓 θ <  θwilt 

𝐸𝐹𝑚𝑎𝑥 ∙
θ − θwilt 

θcrit − θwilt
𝐸𝐹𝑚𝑎𝑥 ,   𝑖𝑓 θ >  θcrit

, 𝑖𝑓 θwilt < θ <  θcrit (5) 

Strong SMTC is thus expected in areas characterised by a transitional regime. 

The paper of Schwingshackl et al. (2017) represents a first quantification of the 

phenomenon of SMTC, both in terms of variations of strength of the coupling and 

spatiotemporal distribution of soil moisture and evapotranspiration regimes, at a 

global scale. 

The work combines the analyses of temperature, soil moisture and EF values. Since 

EF and soil moisture data at global level are available only for a limited time, the 

analysis includes the use of reanalysis- and model- based values, to obtain data for a 

time series going from 1980 to 2009. Authors, thus, considered values obtained from 

ERA-Interim/Land (Balsamo et al., 2015), MERRA-2 (Gelaro et al., 2017) and a 

combined reanalysis dataset. 

The study of the EF-θ relationship has been based on how analysed data fitted the 

framework for soil moisture and evapotranspiration regime, and results evidenced 

that a fraction ranging from the 30% and 60% of global land surface is in the 

transitional regime for at least half of the year. In these regions, changes in soil 

moisture can have an impact on near-surface air temperature (T). Global distribution 

of the occurrence of transitional regime is shown in Figure 4 (the figure refers to the 

previously mentioned combined dataset, details on the spatial and temporal 
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distribution for ERA-Interim/Land and MERRA-2 are available in Schwingshackl et 

al. (2017) supplementary material – figures S1 and S2). 

 
Figure 4 - Share of single soil moisture and evapotranspiration regimes for the Combined dataset used 

by Schwingshackl et al. (2017). Share of (a) dry regime, (b) wet regime, (c) transitional regime, (d) 

passage between dry and transitional regime, (e) passage between transitional and wet regime and (f) 

passage between all three regimes. Taken from Schwingshackl et al. (2017) – supplementary materials, 

figure S1. 

The framework adopted in the work for the analysis of SMTC is based on the 

following equation: 

𝜕𝑇

𝜕𝜃
=
𝜕𝑇

𝜕𝐸𝐹

𝜕𝐸𝐹

𝜕𝜃
 (6) 

Where the slope ∂EF/∂θ is obtained from a best fitting of the values calculated from 

the data, while ∂T/∂EF slopes have been calculated using temperature anomalies 

(Schwingshackl et al., 2017). The work concludes that impacts on T ranging from 1.1 

to 1.3 K can be induced by typical soil moisture variations, while a change in soil 

moisture over the full range of transitional regime can impact T up to 6-7 K. Results 
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in terms of ∂T/∂θ are variable, but they show consistent negative values in the area 

characterised by transitional regime, as in Figure 5. 

 
Figure 5 – Annual means and standard deviations for ∂T/∂θ, Taken from Schwingshackl et al. (2017) – 

supplementary materials, figure S7. 

Hirschi et al. (2014) evaluated SMTC by considering the ratio between the Number 

of Hot Days (NHD) and the antecedent soil moisture status, for each given location. 

In their global-scale analysis, the first one was evaluated as the NHD for the hottest 

month for each location, while the second one was evaluated in the three months 

before the hottest one, with two alternative techniques: as an anomaly of soil moisture 

content, evaluated with remote sensing analysis of soil moisture, and as 3-months 

Standardised Precipitation Index (SPI). Their results evidenced stronger SMTC for 

the NHD-SPI analysis rather than the NHD-remote sensed one. According to the 

authors, this effect is linked with a decoupling effect between surface soil moisture 

and root-zone soil moisture: while, during dry periods, surface soil is completely dry, 

root zone can still store residual moisture been effective as a source of LH. In this 

way, pronounced dry anomalies (the ones that dry up to the root-zone) results 
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underestimated, leading to an apparently weaker coupling (Figure 6). Given this, 

author suggests including techniques capable of evaluating also root-zone soil 

moisture dynamics for a proper evaluation of SMTC. 

 
Figure 6 – Schematic representation of surface and root-zone moisture decoupling. Taken from 

Hirschi et al. (2014) 

2.1 Landscape Restoration and Water Harvesting (LRWH) 
In arid and semi-arid regions, increasing soil water availability and retaining soil 

quality is vital to increase food production and meeting global needs (Rockstrom and 

Falkenmark, 2015; Wolka et al., 2018). 

As discussed by different scholars, practitioners, regional and international 

institutions, water harvesting, namely the process of concentrating precipitation 

through runoff and storing it for beneficial use (Critchley et al., 1991), represent a 

key to cope with water scarcity for both sustaining agricultural production (Motsi et 

al., 2004; Rockström et al., 2002; Wolka et al., 2018) and restore degraded landscapes 

(García-ávalos et al., 2018; Hishe et al., 2017; Li et al., 2014; Oweis, 2016). 

Ouessar et al. (2012) define water harvesting as: “The collective term for a wide 

variety of low-cost interventions which are primarily or secondarily intended to 

collect natural water resources which otherwise would have escaped from human 

reach, and buffer them through storage and/or recharge on or below the soil surface. 

The effect is increased retention of water in the landscape, enabling management and 

use of water for multiple purposes. Water harvesting technologies can operate either 

as independent units, or require embedding in a larger system of environmental 

management interventions, or require specific natural conditions”. 

A schematic representation of a water harvesting system can be based on four 

elements: a catchment, or collection, area; a runoff conveyance system; a storage 

component and an application area. The components can be adjacent to each other, 

or they can be connected by a conveyance system. Storage and application areas may 

also be overlapped, typically where water is concentrated in the soil for direct use by 

plants. Rain is harvested in the form of runoff in the catchment area. The catchment 

may range from few square meters to several square kilometres, varying from a 
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rooftop, a paved road, to compacted surfaces, rocky areas or open rangelands, 

cultivated or uncultivated land and natural slopes. The conveyance system transports 

the collected runoff to the area of application. It can consist of gutters, pipes (in case 

of rooftop water harvesting) or overland, rill, gully or channel flow. The flow can 

either be diverted on cultivated fields or into storage structures. According to Oweis 

(2016) water harvesting techniques include only those ones that involve the 

transformation of rainfall in runoff, or the direct harvesting of runoff. Structures such 

as terraces are then not considered as water harvesting, since allow soil moisture 

storage after rainfall infiltration, but not runoff. Similarly, structures like Qanats, that 

harvest groundwater cannot be considered as water harvesting structures. 

The storage component is used to store harvested runoff until it is used by people, 

animals or plants. Water can be stored in the soil as soil moisture, above ground level 

(jars, ponds or reservoirs), underground (cisterns), or as groundwater (Oweis et al., 

2012). The application area, or target, is where the harvested water is used, either for 

domestic consumption (drinking and other household uses), for livestock 

consumption, or agricultural use (including supplementary irrigation) (Mekdaschi 

Studer and Liniger, 2013). If runoff is directly diverted to fields, the application area 

is the same of the storage area, as plants can directly uptake the accumulated water in 

the soil.  

Starting from this framework, water harvesting structures can be classified as a 

function of the catchment type and size, and of the method of water storage. The 

classification of water harvesting based on catchment type (Table 4) considers four 

groups: floodwater harvesting, macro catchment water harvesting, micro catchment 

water harvesting, and rooftop water harvesting (Mekdaschi Studer and Liniger, 2013)  
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Table 4 - Overview of water harvesting systems, modified from Mekdaschi Studer and Liniger (2013) 

 Floodwater 

harvesting  

Macro 

catchment water 

harvesting  

Micro 

catchment 

water 

harvesting  

Rooftop water 

harvesting  

Catchment : 

application 

area ratio 

100:1 to 

10,000:1 

10:1 to 100:1 1:1 to 10:1  - 

Catchment 

area 

2 to 50 km2 0.1 to 200 ha 10 to 1000 m2 -  

Catchment 

type 

Ephemeral river 

catchment 

Hillsides, 

pasture land, 

forests or roads 

and settlements 

Generally bare, 

with sealed, 

crusted and 

compacted soils 

Rooftop 

Source type Temporary 

channel flow 

Overland flow 

or rill flow 

Sheet and rill 

flow 

Sheet flow 

 

A large body of literature shows how water harvesting technique can improve soil 

moisture, with direct measurements (Oweis, 2017; Previati et al., 2010; Rango and 

Havstad, 2009; Suleman et al., 1995; Tubeileh et al., 2016). 

Different water harvesting techniques can increase soil moisture at different levels. 

Singh (2009), for instance, demonstrated how box trenches and V-ditches can 

increase surface soil water, while contour trenches can facilitate deep soil water 

storage. Similarly, Al-Seekh and Mohammad (2009) showed how the implementation 

of water harvesting structures, as Jessour, and stone terraces can produce a shift in 

water partitioning, allowing a reduction of surface runoff (and soil erosion) and an 

increase of soil moisture, measured at 30 cm below terrain surface. If purposely 

implemented, water harvesting structures can also be used to increase the inflow 

towards aquifer, as shown for the Ethiopian aquifer of Mendae Plain by Walraevens 

et al. (2015), where infiltration occurring in water harvesting ponds and trenches is 

responsible for 30-50 % of the aquifer recharge, with peaks in driest years. 

If we consider LRWH approaches, namely approaches integrating water harvesting 

and a different mix of measures for ecological land restoration, such as reforestation 

and/or terracing, effects on soil moisture are also evident. Tianjiao et al.( 2018) 

showed how a LRWH approach integrating water harvesting techniques (level 

ditches, fish-scale pits) with terraces and tree planting can increase soil moisture. 

Their study, realised in the arid Loess Plateau (China) shows how water harvesting 

and terraces are more effective in increasing the soil moisture for the first 80 cm of 

soil, while tree plantation affects soil moisture in soil layer located between 80 and 
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180 cm under from the surface. Terraces, as a soil conservation measures, are also 

widely recognised as a mean for increasing soil moisture in arid areas (Wei et al., 

2016, and cited literature). 

In Tigray region, northern Ethiopia, soil moisture is the main limiting factor to 

agricultural development (Gebreegziabher et al., 2009). The region is characterized 

by arid to semi-arid climate, while large-scale deforestation and agriculture have been 

practiced for 2500 years (Nyssen et al., 2000). Given this, Tigray has been targeted 

with a large scale effort in developing LRWH measures since 1970s (Gebremeskel et 

al., 2017; Nyssen et al., 2014; Woldearegay et al., 2018), including ponds, trenches, 

check dams (Grum et al., 2017), contour measures (Gebreegziabher et al., 2009), 

reforestation (Gebremeskel et al., 2017) and terraces (Amsalu and de Graaff, 2007; 

Nyssen et al., 2007) (from Figure 7 to Figure 9). 

Historically, indigenous land and water management practices in the region have been 

dated since 400 BCE (Ciampalini et al., 2012). Driven by early World Food Program 

aids, massive implementation started in 1970s. After that, the Tigray People’s 

Liberation Front started to implement those techniques in liberated areas, and also the 

new government, active since 1991, continued the adoption of land restoration 

measures (Gebremeskel et al., 2017).  

 

 
Figure 7 - Bench terraces system in Endemehoni Wereda, Tigray, photo of the author 
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Figure 8 - Percolation pond in Ofla Wereda, Tigray, photo of the author 

 

 
Figure 9 - trenches, Ofla Wereda, Tigray, photo of the author 

 

The recent study of Nyssen et al. (2014) considered an integrated comparison of 

historical images for analysing the latest 145 years of landscape evolution in Tigray 

region. Results highlights how the minimum woody vegetation cover of the region 

was reached in 1930s., and historical series show how the implementation of LRWH, 
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also defined as Soil and Water Conservation (SWC), has reversed this trend (Figure 

10). 

 

 
Figure 10 – Trends of rainfall, environmental and anthropic parameters for the latest 145 years in 

Tigray region. Taken from Nyssen et al. (2014) – Graphical abstract. 

Despite some pitfalls of the approach, linked with the mismanagement of fertilisers, 

low survival of planted trees and low income obtained from exclosures, the SWC 

implementation in Tigray represents a successful case, achieving environmental, 

agricultural and economic improvements (Gebremeskel et al., 2017). In achieving 

these results, an important step has been represented by the shift to a catchment 

approach (Gebremeskel et al., 2017), introduced in Gira Kahsu, southern Tigray, 

since the mid-1980s (Asfaha et al., 2016). The comprehensive study of Asfaha et al. 

(2016), showed how the catchment level LRWH approach led to a stabilisation in 30 

watersheds of northern Ethiopia, reversing the degradation trends and contributing to 

local resilience. 

In the framework of the analysis of positive effects of LRWH at catchment level, the 

present PhD dissertation aims at analysing and discussing the possibility of an 

additional hydro-climatic effect, induced by local SMTC dynamics, given by the 

increased soil moisture availability at catchment scale. Considering the spatialization 

of coupling effects as presented by (Schwingshackl et al., 2017), northern Ethiopia 

fully lies in the area characterised by a transitional soil moisture and 

evapotranspiration regime, and changes in SMTC could be expected. Results can be 

meaningful for the discussion of ES provided by LRWH and may encourage its 

adoption in other arid and semi-arid areas of the world. 

The analysis has been carried out for Enabered catchment, in Adwa Wereda 

(Haregeweyn et al., 2012), where LRWH techniques have been recently 

implemented, allowing a full detection of their impacts, comparing the situation 

before, during and after their implementation. 
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3 Materials and Methods 

3.1 Study Area 
The study area of Enabered catchment is located in Adwa woreda. The catchment is 

between 38°53’ to 38°57’E and 14°08’ to 14°11’N, elevations range from 1,850 to 

2,540 m above sea level (Figure 11). 

The wereda of Adwa has a tropical summer-rain climate influenced by the Inter 

Tropical Convergence Zone, and it is characterised by high spatial and temporal 

rainfall variability. The average annual precipitation and daily temperature for the 

period between 1998 and 2008 were 742 mm and 19.8 °C, respectively. Around the 

85 % of the annual rain falls in the rainy season, ranging from June to September, 

with a monthly precipitation concentration index (Oliver, 1980) equal to 26.5, that 

indicates an high rainfall variability between months. 

According to local elderly residents, around 30–40 years ago the catchment was 

covered by different vegetation types. After that, however, the area has been 

deforested, given the demand for cultivated land, construction material and firewood, 

triggered by the increase of population (Haregeweyn et al., 2012). 

To revert the degradation trends in the area, LRWH interventions have been 

implemented between 2004 and 2008, including soil bunds, trenches, terraces, check 

dams, reforestation and regreening. For the particular case of Enabered catchment, 

Haregeweyn et al. (2012) reported the full list of the techniques implemented in the 

area, retrieved thanks to their cooperation with the Bureau of Agriculture and Rural 

Development. The full list is showed in Table 5. The study showed also that, as a 

consequence of the LRWH implementation, runoff decrease by 27% and soil loss by 

89 %, while a large number of gully areas were reclaimed and used for agricultural 

purposes. 
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Figure 11 - Enabered watershed location: (a) Tigray region in Ethiopia; (b) Location of Adwa Wereda 

in Tigray region; (c) Location of Enabered watershed in Adwa wereda; (d) Enabered wtareshed 
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Table 5 – List of LRWH techniques implemented in Enabered watershed from 2004 to 2008. Taken 

from Bureau of Agriculture and Rural Development (2008) as cited in Haregeweyn et al. (2012) 

Type of LRWH unit 

Extent of LRWH 

Total 
Hillside Gully 

Cultivated 

and grazing 

land 

Physical measures   ha 1,108 8 1,036 2,152 

Stone-faced bunds with 

trench 

km 135 
  

135 

Stone and soil bunds km 472 
 

205 677 

Deep trenches   km 1,592 
  

1,592 

Trenches    km 
  

555 555 

Loose-stone check dams  m3 38,999 23,150 
 

62,149 

Gabion check dams  m3 
 

20,231 
 

20,231 

Retention walls   km 
 

0.5 
 

0.5 

Sediment storage dams  m3 
 

498 
 

498 

Microbasins    no. 50,629 
  

50,629 

Gully reshaping   m3 
 

90,788 
 

90,788 

Pond construction   no. 
  

10 10 

Bund stabilization   km 
  

516 516 

Biological measures   ha 1,201 28 635 1,931 

Exclosures    ha 601 
  

601 

Grass/split planting   ha 
 

8 
 

8 

Grass sowing   ha 545 5 308 850 

Enrichment plantations   ha 55 8 
 

63 

Fruit trees   ha 
 

2 7 9 

Forage trees   ha 
 

8 320 400 

 

3.2 Research Framework 
The framework adopted in this study is based on the approach developed by 

Schwingshackl et al. (2017) described by equation (6). More in detail, the analysis 

aims to evaluate the value of SMTC comparing the inter-annual variations of the 

average soil moisture and near-surface temperature in the target catchment. 

The approach is conceived to test the hypothesis of an increased level of soil moisture, 

and a coupled decrease of near surface air temperature, after the implementation of 

LRWH interventions. The first analysis is functional to answer to research question 

1, while the second one will be functional to answer to research question 2. 
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By analysing the variation of T as a function of θ, the thesis will aim also to test the 

occurrence of SMTC phenomena in the watershed, by analysing the value of ∂T/∂θ, 

answering question 3a. 

3.2.1 Evaluation of soil moisture conservation at catchment scale 
To evaluate the degree to which Enabered catchment is capable to retain soil moisture 

after the rainy season, a normalised Water Conservation Index (WCI) has been 

defined, starting from the definition of the Normalised Difference Infrared Index 

(NDII) defined by (Hardisky et al., 1983). 

The NDII is calculated as: 

𝑁𝐷𝐼𝐼 =
𝜌0.85 − 𝜌1.65
𝜌0.85 + 𝜌1.65

 (7) 

Where: 

• 𝜌0.85 is the reflectance at a wavelength of 0.85 μm 

• 𝜌1.65 is the reflectance at a wavelength of 1.65 μm 

NDII is a simple parameter that can be derived from freely available satellite data 

(e.g. MODIS or Landsat). It was found to have a good accordance with the root-zone 

soil moisture at a catchment scale. In particular, an average R2 equals to 0.87 was 

found for values of NDII and root-zone soil moisture during the dry season 

(Sriwongsitanon et al., 2016), by using 8-days NDII composites scenes obtained from 

MODIS sensor. 

Considering that the analysis should be carried out to evaluate soil moisture 

conservation in the dry season, and that, according to Hirschi et al. (2014), SMTC 

dynamics are more evident when considering root-zone soil moisture, the parameter 

appears adequate as a proxy of θ for the present study. 

NDII data were obtained from the ‘Landsat 7 Collection 1 Tier 1 8-Day NDWI 

Composite’ available on Google Earth Engine (Gorelick et al., 2017). Despite the 

data source name, Landsat 7 NDWI data is calculated as: 

𝑁𝐷𝐼𝐼 =
𝜌𝐵4 − 𝜌𝐵5
𝜌𝐵4 + 𝜌𝐵5

 (8) 

Where 

• 𝜌𝐵4 is the reflectance in Landsat 7 ETM+ sensor Band 4 

• 𝜌𝐵5 is the reflectance in Landsat 7 ETM+ sensor Band 5 

Considering the wavelength range of ETM+ sensor (Table 6) it can be observed how 

the released data corresponds to NDII. 
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Table 6 – Landsat 7 ETM+ sensor wavelength and resolution. * ETM+ Band 6 is acquired at 60-meter 

resolution, but products are resampled to 30-meter pixels. 

Bands Wavelength Resolution 

(μm) (m) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared 

(SWIR) 1 

1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave Infrared 

(SWIR) 2 

2.09-2.35 30 

Band 8 - Panchromatic 0.52-0.90 15 

 

Landsat Tier-1 scenes, used for the analysis, are the ones characterised by the highest 

quality. The processing level of Tier 1 includes the Level-1 Precision Terrain (L1TP), 

including the LEDAPS algorithm (Masek et al., 2013). Tier 1 data is distributed with 

a georegistration precision characterised by a <=12 m RMSE at ground level. 

The calculation of NDII time series has been carried out in Google Earth Engine 

platform. For each Landsat 8-days composite, the catchment value has been 

calculated as an average of the values of the pixels overlapping the catchment area, 

weighted by the percent of a pixel area that is effectively fully within the catchment 

edges. 

For each year, WCI has been then defined as a fraction of the average monthly NDII 

after the rainy season, considering separately September, October and November, and 

the rainfall of the rainy season, running from June to August. 

𝑊𝐶𝐼𝑖(𝑦) = 1000
𝑁𝐷𝐼𝐼𝑖(𝑦)

𝑅𝑟𝑠(𝑦)
 (9) 

Where: 

• WCIi(y) is the WCI for the i-th month of the year y (considering the months 

after the rainy season, we obtain i =9,10,11); 

• 1000 is a scale factor, inserted to obtain values close to the unit; 

• Rrs (y) is the rainfall occurring in the rainy season in the catchment in the year 

y, calculated as a sum of monthly values taken by CHIRPS dataset (Funk et 

al., 2015); 

• NDIIi (y) is the Normalised Difference Infrared Index for the i-th month of 

the year y, calculated as an average of the value of NDII from Landsat 7 

scenes available in the given month. 



Evidences of climate mitigation from LRWH 35 

 

The index has been calculated diving NDII values by the rainy season rainfall amount 

to evaluate an information independent from the inter-annual rainfall variability. The 

choice of CHIRPS dataset is based on the work of Gebremicael et al.(2018), that 

indicates CHIRPS as a suitable database for hydrological modelling in the Tekeze-

Atbara river basin. The dataset was extracted by the Google Earth Engine platform. 

With the presented methodology, we obtained three time series of WCI, respectively 

for the months of September (WCI9), October (WCI10) and November (WCI11), 

ranging from 2000 to 2017. 

3.2.2 Evaluation of temperature 

The evaluation of the evolution of near-surface air temperature for Enabered 

watershed was carried out by considering the average of Land Surface Temperature 

(LST) in the catchment as a proxy, given the lack of available data for a sufficiently 

long time series. 

MODIS MYD11A2.006 Aqua Land Surface Temperature and Emissivity 8-Day 

Global at 1 km were used for the analysis (NASA LP DAAC, 2018). 

Average LSTs, for different months after the rainy season, were calculated as LSTi(y) 

being the average LST for the i-th month of the year y. Considering the months after 

the rainy season, we obtain i =9,10,11,12); 

To establish a temperature parameter independent by the macroclimatic forcing from 

the atmosphere outside the planetary boundary layer, LSTi(y) was normalised by a 

homologous average value, calculated as average of the temperature at 850 hPa at 

12:00 a.m. (T850). This latter parameter was obtained from ERA-INTERIM climatic 

reanalysis dataset (Balsamo et al., 2015). The average value of T850 was calculated as 

T850,i(y), being is the average T850 for the i-th month of the year y. Considering the 

months after the rainy season, we obtain i =9,10,11,12). 

Considering those two parameters, time series of a normalised temperature index (t) 

were obtained by normalising LST (in °C) by T850 (in °C) with the following formula: 

𝑡𝑖(𝑦) =
𝐿𝑆𝑇𝑖(𝑦)

𝑇850,𝑖(𝑦)
⁄  (12) 

For the temperature analysis, MODIS MYD11A2.006 were obtained from Google 

Earth Engine dataset, while ERA-INTERIM data were downloaded through an 

ECMWF Web-API python script and elaborated with Matlab. 

Time series for September (t9), October (t10), November (t11), and September-

December (t12) averages were calculated from 2002 to 2017, forced by MODIS data 

availability. In the framework of t analysis, the month of December was considered 

in order to detect possible lag effects of SMTC. 
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4 Results 

4.1 Water Conservation Index (WCI) 
WCI analysis has been carried by comparing the temporal evolution of WCI9, WCI10 

and WCI11 time series with the implementation record of LRWH measures in the 

catchment. The evolution of NDII and rainfall data is shown in Figure 12. The results 

of the analysis of WCI are shown in Figure 13. 

The approach followed by the dissertation defined water conservation as a fraction of 

NDII, as a proxy of soil moisture content in the root zone, and rainfall available during 

the rainy season, considered as the total amount of rainwater that can potentially be 

harvested in the catchment with LRWH interventions 

 
Figure 12 – Time series of average NDII and CHIRPS values for Enabered catchment. NDII series are 

dated for the day of 8-days Landsat 7 composite scenes interval, CHIRPS data are based on the 

pentadecadal interval of the data. 

 
Figure 13 – Time series of WCI for the months of September (WCI9), October (WCI10) and November 

(WCI11) 
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All WCI time series show an increase in time. Considering the chronology of LRWH 

implementation in the watershed, time series of WCI have been analysed considering 

2000-2008 as period ‘before full implementation’ and 2009 – 2017 as period ‘after 

full implementation’. 

For each month considered for the analysis, WCI after the implementation is higher. 

Differences between the two periods have been statistically evaluated with the 

Student’s t-test on means difference. For WCI9, an increase of 38 % is evidenced, 

with strong statistical significance (P < 0.01). For WCI10 and WCI11 the statistical 

significance is lower, with P-values of 0.083 and 0.218 respectively, correspondent 

to a probability of 91 % and 78 % that the observed differences are not casual. The 

increase of WCI10 is equal to 65 %, while the increase of WCI11 shows a value of 

181 %. This latter one is, however, driven by the low values of NDII for November 

(Table 7 and Figure 14). 

 
Table 7 – Values of WCI averages and standard deviations for the periods 2000-2008 (before full 

LRWH implementation) and 2009 – 2017 (after full LRWH implementation), with statistical Student’s t 

test on means difference results. 

 
September October November 

WCI  Average 2000-2008 0.235 (0.028) 0.134 (0.049) 0.016 (0.044) 

WCI Average 2009-2017 0.325 (0.038) 0.221 (0.095) 0.045 (0.034) 

WCI Difference before and after full 

implementation 

0.090 0.087 0.029 

WCI Difference before and after full 

implementation (%) 

38% 65% 181% 

P- value, test on differences 0.00047 0.08330 0.21833 

Statistical signifiance > 99% 91% 78% 
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Figure 14 - Values of WCI averages for the periods 2000-2008 (before full LRWH implementation) 

and 2009 – 2017 (after full LRWH implementation) 

It can be concluded that LRWH produced an increase of water conservation at 

catchment scale, for Enabered catchment. Results show that the effect of LRWH can 

be considered significant for September (P<0.01) and October (P<0.1), the latter with 

higher positive variations. It should be noticed how these two months are the ones 

when rain-fed agriculture suffers most of moisture deficiency in Tigray region 

(Gebreegziabher et al., 2009). Differences of WCI in November are also evident, but 

with low absolute value and low statistical significance (P>0.2). 

Scripts for data download are reported in Annex A. 

4.2 Normalised temperature index (t) 
The analysis of LST and t shows always lower values for the period 2009-2017, 

considered representative for the situation after LRWH full implementation (Figure 

15, Figure 18 and Table 8). Coherently with the study area seasonality, average LST 

increases from September to December. However, year 2009 showed extreme high 

temperatures, especially during September. 

This behaviour can be related to the extreme dry year occurred in 2009 as reported 

by Winkler et al., 2017. The work explains also the other peak of LST occurring in 

October 2011. Moreover, a visual comparison of rainfall, T850, and the Surface Solar 

Radiation Downwards in September was conducted to evidence possible extremely 

hot years. The analysis showed that September 2009 was among the driest months, 

being characterised by the second highest temperature and by the highest downwards 

radiation energy (Figure 16 and Figure 17). The surface solar radiation downwards 

data were obtained by the ERA-INTERIM reanalysis dataset. 
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Given the extreme climatic conditions for 2009, we considered two different intervals 

for the period after LRWH full implementation: (1) 2009 – 2017; (2) 2010 – 2017, to 

evidence possible bias induced by 2009 extreme climatic conditions. 

 
Figure 15 – Time series of LST for Enabered catchment 
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Table 8 – Absolute values of LST for periods 2002-2008, 2009-2017 and 2010-2017, and differences 

(all values in °C) 

Month September October November December 

Average LST (2002-2008) 28.13 33.24 35.45 35.68 

Average LST (2009-2017) 27.48 31.94 34.10 34.89 

Average LST (2010-2017) 26.89 31.49 33.73 34.85 

Difference LST (2002-

2008) – LST (2009-2017) 
0.65 1.30 1.35 0.80 

Difference LST (2002-

2008) – LST (2010-2017) 
1.24 1.74 1.72 0.84 

 

 
Figure 16 - T850 – Rainfall scatter plot in September. Year 2009 is evidenced by a dark circle 
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Figure 17 – Surface solar radiation downwards – Rainfall scatter plot in September. Year 2009 is 

evidenced by a dark circle 

 
Figure 18  - Time series of t for Enabered catchment 

The statistical analysis carried out on t value is reported in Table 9, Table 10, Figure 

19 and Figure 20. In both cases, whether if 2009 is considered or not, t12 differences 

are not statistically relevant (with P > 0.1). We conclude that a lag effect is not 

statistically evident, even if further investigation can be suggested. For the other 

months, the results are as follows: 
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• September: Considering 2009 within the analysis, LST is lowered by 

0.65 °C and t is lowered by 0.060 (P < 0.1) after LRWH implementation. 

Without considering 2009 LST is lowered by 1.24 °C and t is lowered by 

0.077 (P < 0.05). 

• October: Considering 2009 within the analysis, LST is lowered by 1.30 °C 

and t is lowered by 0.080 (P < 0.01) after LRWH implementation. Without 

considering 2009 LST is lowered by 1.74 °C and t is lowered by 0.099 (P < 

0.01). 

• November: Considering 2009 within the analysis, LST is lowered by 1.35 °C 

and t is lowered by 0.076 (P < 0.05) after LRWH implementation. Without 

considering 2009 LST is lowered by 1.72 °C and t is lowered by 0.087 (P < 

0.05). 

Average LST are lowered, and t are lowered with statistical significance. The extreme 

hot and dry conditions of 2009 affect the analysis for September. This effect is visible 

also for October and November, but with lower intensity. Differences in LST and t 

are less evident for September, while they are very similar for October and 

November. 

Coding used for the analysis is reported in Annex A.2 

 

Table 9 – Values and standard deviation of t for periods 2002-2008, 2009-2017, differences and 

values of Student’s t test on means 

Month September October November December 

Average t (2002-2008) 
1.132 

(0.057) 

1.254 

(0.017) 

1.357 

(0.055) 

1.387 

(0.036) 

Average t (2009-2017) 
1.072 

(0.068) 

1.174 

(0.066) 

1.281 

(0.065) 

1.357 

(0.039) 

p-value 0.083 0.008 0.030 0.266 

Difference t (2002-2008) 

– t (2009-2017) 
0.06 0.08 0.076 0.03 

 
5% 6% 6% 2% 
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Table 10 - Values and standard deviation of t for periods 2002-2008, 2010-2017, differences and 

values of Student’s t test on means 

Month September October November December 

Average t (2002-2008) 
1.132 

(0.057) 

1.254 

(0.017) 

1.357 

(0.055) 

1.387 

(0.036) 

Average t (2010-2017) 
1.054 

(0.046) 

1.155 

(0.038) 

1.270 

(0.062) 

1.355 

(0.042) 

p-value 0.012 0.000 0.016 0.152 

Difference t (2002-2008) 

– t (2010-2017) 
0.077 0.099 0.087 0.032 

 
7% 8% 6% 2% 

 

 
Figure 19 - Values of t averages for the periods 2000-2008 (before full LRWH implementation) and 

2009 – 2017 (after full LRWH implementation, interval (1)) 
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Figure 20 - Values of t averages for the periods 2000-2008 (before full LRWH implementation) and 

2010 – 2017 (after full LRWH implementation, interval (2)) 

4.3 Soil Moisture – Temperature Coupling (SMTC) at 

catchment scale 
To evaluate the occurrence of SMTC dynamics, WCI and t time series analysis were 

compared. Starting from the visual inspection of WCI- t scatter plots, t was modelled 

as a linear function of WCI. The analysis was conducted considering 2009 (Figure 

21, Table 11 and Table 12) and without 2009 (Figure 22, Table 13 and Table 14). 

Results shows the expected negative SMTC in all cases analysed. For all the cases 

involving the temperatures of September (9) and October (10), namely Figure 21.a, 

21.b, 21.c, 22.a, 22.b and 22.c, there is a clear separation between the catchment status 

before full LRWH implementation and after, since the catchment wetter and cooler, 

except for 2009. For the case of 2009, it can be concluded that the excessive heat 

induced by El Nino Southern Oscillation (Winkler et al., 2017), could not be buffered 

by the available soil moisture. 

Following the approach introduced by Schwingshackl et al. (2017), the strength of 

the coupling is evaluated as ∂t/∂WCI, and R2 parameter has been utilised for 

investigate how the model fits the data. To detect possible lag effects, two version of 

the linear model have been investigated: (i) ti = f(WCIi-1) (with lag of one month); (ii) 

ti = f(WCIi) (without lag).  

The WCI-t couples show the highest SMTC is the one characterised by the relation 

t10 = f (WCI9). This latter one explains the coupling of the root zone soil moisture 

conserved at catchment scale in September and the catchment average temperature in 
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October. This dynamic can be explained considering that the soil moisture available 

in September is depleted as evapotranspiration from September to October, having a 

major impact on October temperatures. 

Considering 2009, the coupling strength is the maximum analysed, ∂t/∂WCI = -0.75, 

correspondent to an average decrease in LST of 1.30 °C, with an R2 of 0.5653. 

Without considering 2009, the coupling strength is the maximum analysed, ∂t/∂WCI 

= -0.6932, correspondent to an average decrease in LST of 1.74 °C, with an R2 of 

0.6065. 

Since the overall approach allows to interpret coherently the anomaly of 2009, we 

conclude to define the first version of the model as the most adequate one. 
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Figure 21 – Distribution of (WCI,t) values for each year considered in the analysis and linear 

regression model of SMTC: (a) WCI9 - tt ; (b) WCI9 – t10 ; (c) WCI10 – t10 ; (d) WCI10 – t11 ; (e) WCI11 – 

t11 
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Figure 22 – Distribution of (WCI,t) values for each year considered in the analysis and linear 

regression model of SMTC without 2009 anomalous year: (a) WCI9 - tt ; (b) WCI9 – t10 ; (c) WCI10 – 

t10 ; (d) WCI10 – t11 ; (e) WCI11 – t11 
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Table 11 - Values of R2 for SMTC linear coupling model 

 
t9 t10 t11 

WCI9 0.2745 0.5653 
 

WCI10 

 
0.4657 0.1211 

WCI11 

  
0.2717 

 

Table 12 - Values of ∂t/∂WCI for SMTC linear coupling model 

 
t9 t10 t11 

WCI9 -0.558 -0.7500  

WCI10  -0.4324 -0.2342 

WCI11   -0.7698 

 

Table 13 - Values of R2 for SMTC linear coupling model, without 2009 anomalous year 

 
t9 t10 t11 

WCI9 0.2638 0.6065  

WCI10  0.3761 0.1011 

WCI11   0.2542 

 

Table 14 - Values of ∂t/∂WCI for SMTC linear coupling model, without 2009 anomalous year 

 
t9 t10 t11 

WCI9 -0.4958 -0.6932  

WCI10  -0.3761 -0.2183 

WCI11   -0.7398 
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5 Discussion 
The present PhD dissertation aimed to test the hypothesis of the occurrence of SMTC 

(Hirschi et al., 2014; Schwingshackl et al., 2017) at catchment scale, and to verify if 

the implementation of LRWH interventions can shift a watershed in a ‘cooler’ 

situation, as a consequence of the increased soil moisture. 

According to Schwingshackl et al. (2017), this effect is more evident where climatic 

conditions determines a Transitional soil moisture and evapotranspiration regime 

(Budyko, 1974, 1956), where evapotranspiration, is limited by available soil 

moisture. 

These conditions typically occur in arid to semi-arid regions of the world 

(Schwingshackl et al., 2017), where also land degradation and desertification 

phenomena are occurring as a consequence of increased pressure on natural 

resources. 

On the other hand, these regions can represent a critical hotspot to meet global food 

needs, if land and water resources will be properly managed (Rockstrom and 

Falkenmark, 2015). In particular, with regards to water, water harvesting, defined as 

the collection and concentration of rainwater and runoff for productive purposes and 

for ecosystem restoration, will be a key element (Jägermeyr et al., 2016; Rockström 

et al., 2002; Rockstrom and Falkenmark, 2015), both for increasing agricultural 

production and to restore degraded ecosystems (García-ávalos et al., 2018; Oweis, 

2016; Rango and Havstad, 2009). 

Water harvesting, integrated with other measures aiming to conserve soil moisture 

and revert desertification, such as reforestation, gully rehabilitation and terracing, can 

then produce a set of ES at a catchment scale. 

Given the increase of soil moisture availability in arid areas that can be obtained 

through LRWH (see, for example, Previati et al., 2010; Tubeileh et al., 2016), we 

aimed to test if this increase can generate an additional regulating ES of climate 

mitigation, as a decrease of temperature values in hot months. If this hypothesis is 

confirmed, the study can add elements to the call for increasing water harvesting, and 

landscape restoration in arid areas (Rockstrom and Falkenmark, 2015). 

The analysis was carried out for Enabered watershed in Tigray region, Ethiopia. The 

case study was selected for multiple advantages: the location in an area characterised 

by transitional soil moisture and evapotranspiration regime (Schwingshackl et al., 

2017), and the presence of a detailed record of LRWH interventions. These ones were 

implemented recently (from 2004 to 2008) (Haregeweyn et al., 2012), allowing an 

analysis of the catchment before and after the implementation. 

The analysis was concentrated after the rainy season, in the most critical period for 

crop growth in the area (Gebreegziabher et al., 2009). It followed three successive 

steps: an evaluation of possible soil moisture increases at catchment scale (par. 4.1); 
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an evaluation of possible temperature decreases at catchment scale (par. 4.2); and a 

comparison of the two time series to assess the degree of SMTC and, if SMTC can 

generate a cooling effect at catchment scale, as a consequence of LRWH 

implementation (par. 4.3). To define a suitable timescale for the analysis, we defined 

the period before 2008 as “before full LRWH implementation” and the period running 

from 2009 to 2017 as “after full LRWH implementation”. Implications of this choice 

will be discussed afterwards. 

The analysis of the soil moisture status of the watershed has been carried out by the 

means of a synthetic indicator, namely the Water Conservation Index (WCI), defined 

in equation (9) as the fraction of NDII and the precipitation of the rainy season. The 

use of an index, normalised by the rainfall value of the rainy season, allows to assess 

how much moisture the catchment can retain for a given rainfall amount. The index 

was defined for three successive months: September, October and November. 

Results highlighted a clear increase of the WCI of the watershed after LRWH full 

implementation for all the months considered, even if the data of November show 

low statistical significance. 

The result offers a direct information supporting other studies that assess how water 

harvesting, SWC and more in general LRWH techniques can increase soil moisture 

at catchment scale, by measuring or modelling the runoff reductions and the increase 

of crop yields at catchment scale in Ethiopia (Grum et al., 2017; Sultan et al., 2018; 

Wolka et al., 2018). It also confirms the more general observations about the change 

in water partitioning that can be induced by these measures (Rockstrom and 

Falkenmark, 2015; UNEP, 2009). 

However, in this framework, it should be observed how any reduction in runoff 

should be carefully assessed. Since this kind of analysis are often limited at catchment 

scale, there is always the possibility that limiting runoff and conserving soil moisture, 

may limit downstream water availability (Dile et al., 2016). In this sense, a careful 

monitoring of upstream-downstream dynamics when implementing large scale 

LRWH should be always considered, in particular where seasonal water scarcity is 

not only given by the concentration of rainfall during few months, with heavy rains 

that generate high runoff amounts that should be managed, but by an overall low 

precipitation. In this latter case, conserving soil moisture may lead to imbalances in 

water allocation. 

To evaluate the evolution of temperatures at the scale of Enabered catchment, the 

normalised t parameter was used, as a function of LST, considered as a proxy of near-

surface air temperature. The proposed approach follows the procedures developed for 

similar analysis in urban areas (Cheng et al., 2008; Di Leo et al., 2016; Zareie et al., 

2016), that adopted LST as an indicator of temperature decreases and increases. The 

analysis showed good accordance with the hypothesis of a general colder status of 
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the watershed after LRWH implementation, with the exception for the year 2009, in 

particular for the months of September and October. 

Literature shows how 2009 has been one of the hottest and driest years for East Africa 

(Winkler et al., 2017). The anomaly is also confirmed by the degree of climate forcing 

induced by Surface Solar Radiation Downwards retrieved from ERA-INTERIM 

dataset, that shows how September 2009 was characterised by the highest incoming 

radiation energy, and by the highest temperature forcing from macroclimatic 

variations (evaluated with T850) parameter. 

Considering the occurrence of an extreme hot year after LRWH full implementation, 

it can be observed that the effect of the lowering of dry season temperatures induced 

by SMTC did not occurred in 2009. This may be explained by hypothesizing that, 

despite the coupling dynamics, the soil moisture available at catchment scale in 

September 2009 was not sufficient to provide enough LH. The low level of the WCI 

for October 2009 (Figure 13) seems to indicate an almost complete depletion of soil 

moisture at catchment scale, that can confirm this explanation, but further analysis is 

recommended before drafting conclusions on these dynamics. 

However, it should be observed that, even if LRWH interventions contributed to 

lower the average temperatures at the watershed scale, their influence can be limited 

in the case of extreme events. This is somehow similar to the role of water harvesting 

as a mean to deal with water scarcity: it is proven to be more effective in bridging 

short dry spells of 5 to 15 days, that however represent the first source of crop failure, 

rather than allowing to buffer prolonged droughts (Rockström et al., 2002). 

In absolute terms, LRWH interventions determined an average decrease of LST of 

1.30° C in October, that jumps to 1.74 °C, excluding the year 2009.  

Since studies analysing heat mitigation induced by soil moisture status at catchment 

scale are currently lacking, results were compared with the magnitude of temperature 

differences retrieved within similar analysis developed for urban areas. Zareie et al. 

(2016) measured an increase of 1.45 °C given by the decrease of green areas in the 

Iranian city of Yazd, while Di Leo et al. (2016) measured a difference ranging from 

0.31 to 1.74 °C between the greener and more vegetated outskirts and the centre of 

the Burkinabe city of Bobo-Dioulasso. Cheng et al. (2008) found higher variations, 

determining that an increase up to 3.1 °C may be expected if paddy fields in Taiwan 

will be converted to other type of land uses. This latter analysis, however, entailed 

the removal of open waters areas, similarly to the study of Mohamed et al. (2005), 

developed at regional scale, that predicted an increase of temperatures of 4 – 6 °C in 

the case of complete drainage of Sudd Swamp, in river Nile watershed. 

It can be concluded that, in absolute terms, temperature variations induced by LRWH 

at catchment scale, in a region where the transitional soil moisture and 

evapotranspiration regime occur, are similar to the ones that can be induced in urban 
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areas by the conversion of large green zones (including the so-called green and even 

blue infrastructures) to paved surfaces and built environment. 

The analysis of SMTC has been realised by comparing the time series of t and WCI, 

by considering the occurrence of two possible relationships: (i) ti = f(WCIi-1) 

(temperature influenced by soil moisture, with lag of one month); (ii) ti = f(WCIi) 

(without lag). 

In the building of this simple, conceptual, model we adopted the general framework 

of Schwingshackl et al. (2017), that evaluates SMTC strength as ∂T/∂θ. In the original 

work, Schwingshackl et al. calculated ∂T/∂θ with equation (6), as a product of ∂EF/∂θ 

and ∂T/∂EF. For the present work, it was chosen to evaluate directly ∂T/∂θ: T and θ 

were evaluated by the mean of proxy variables (t and WCI respectively) measured by 

satellite remote sensing. without calculating EF. To obtain a simple and parsimonious 

framework, it was chosen to not consider EF. Most of the remote sensing approaches 

to evaluate EF, in fact, are already strongly dependent on LST values (de Tomás et 

al., 2014; Nutini et al., 2014; Peng and Loew, 2014). 

After a general analysis of possible coupling dynamics (Figure 21 and Figure 22), it 

was concluded that, considering a simple linear dependence, t values of October are 

correlated to the WCI values of September (Figure 21.b), with an R2 of 0.56.  

Moreover, considering that the hydro-climatic status of the watershed as defined by 

a couple of (WCI, t) values, results clearly show that the points representing the 

watershed status before full LRWH implementation are clustered in the ‘hot and dry’ 

part of the scatter plot WCI-t (upper left), while the points representing the watershed 

status after full LRWH implementation are clustered in a ‘wetter and cooler’ part 

(lower right). Since 2009 is coherently shown close to the ‘hot and dry’ cluster, it was 

decided to maintain this year for the model evaluation statistics, given that the 

considered framework seemed to represent well the occurrence of extremely hot and 

dry years, even after LRWH implementation. 

It can be affirmed that, for the pilot case of Enabered catchment, SMTC dynamics are 

evident, since the soil moisture status of the watershed during the month after the 

rainy season (September) has an influence on temperatures in October. This 1-month 

lag can be well explained if one considers that the soil moisture available in 

September is converted in LH between September and October, and that a higher soil 

moisture content in September can then induce lower temperature in October, at a 

catchment scale. Moreover, lag-effects can be expected when analysing SMTC 

dynamics, and most of the latest literature shows lag times of up to three months 

(Hirschi et al., 2014; Schwingshackl et al., 2017). 
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5.1 Main limitations of the analysis 
The main limitations of the proposed analysis are represented by (1) the division of 

the time series analysed in two distinct intervals (‘before full LRWH implementation’ 

and ‘after full LRWH implementation’) and (2) the proxy-based approach. 

LRWH in the catchment was implemented between 2004 and 2008 (Haregeweyn et 

al., 2012). 01/01/2009 was selected as the date after which the catchment has been 

considered with LRWH interventions fully implemented. This may seem not in line 

with a hypothesis of a gradual implementation of LRWH between 2004 and 2008, 

since some structures could be already in place years before 2008. However, since 

the analysed time series show a clear change in the hydro-climatic status of the 

watershed after 2008, it can be hypothesized that some interventions have had an 

actual effect in some years after the implementation, and that most of the 

infrastructures were built in the latest years of the period 2004-2008, while in the 

earlier years site selection, design and work planning took place. 

On the other hand, there may be the possibility that LRWH implementation continued 

after 2008. Within the scope of the analysis, this can be considered a minor issue 

(since the major intervention on Enabered catchment was conducted between 2004 

and 2008) but it can represent a question mark in case of further analysis and/or 

modelling, aiming to check the relationship between LRWH intensification and 

SMTC are carried out. 

With regards to the proxy approach, it is evident how the study has been based on the 

evaluation of NDII as a proxy for θ and of LST as a proxy of T. The main difficulty 

that induced the author to base the present research on indicators for soil moisture 

and temperature was represented by the need to analyse long and consistent time 

series for a catchment in semi-arid climate, where LRWH were implemented just 

recently. Most of these catchments are often ungauged, with not precise records with 

regards to LRWH implementation dates. As discussed earlier, Enabered catchment, 

represented a fruitful case study, even if long time series of more adequate variables 

(such as near-surface air temperature, in more than one point) were lacking. LST, in 

line with other works developed in urban areas, seemed to be an adequate parameter 

for long term temperature monitoring. 

In addition, it should be observed that, with regards to soil moisture, remote sensing 

datasets for θ are often based on > 1 km cell size, making impossible a detailed local-

scale analysis. Soil moisture values were substituted with NDII, and this latter 

parameter seemed to be adequate, considering its good accordance with root-zone 

soil moisture during dry periods (Sriwongsitanon et al., 2016). Moreover, it was 

demonstrated how SMTC is mostly determined by soil moisture stored in the root 

zone (Hirschi et al., 2014). 
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6 Conclusions 
The present PhD dissertation aimed to evaluate the occurrence of SMTC dynamics 

(Schwingshackl et al., 2017; Seneviratne et al., 2010), at a catchment scale, for a 

transitional soil moisture and evapotranspiration regime (Budyko, 1974, 1956). 

In particular, we focused on Enabered catchment, Tigray region, Ethiopia, where a 

set of LRWH measures aimed to reduce runoff and conserve and store soil moisture 

at catchment level. These measures were implemented during a limited timespan 

(2004-2008) allowing a detailed analysis of the hydro-climatic status of the watershed 

before and after the implementation. 

Previous analysis on SMTC focused on the observation on how soil moisture deficit 

can generate and enhance heatwaves (Alexander, 2011; Hauser et al., 2016; Mueller 

and Seneviratne, 2012). The present work, on the other hand, proposed a pro-active 

approach, to analyse to what extent storing soil moisture, with adequate land and 

water management practices, can reduce temperatures in the hot months after the 

rainy season. The presented study analyses SMTC for September, October and 

November, that, in Ethiopia, are the most critical ones for crop growth, and thus for 

food security (Gebreegziabher et al., 2009). The rainy season for the considered area 

ends in August. 

The dissertation has been structured to answer to three research questions: 

 

1. To what extent can LRWH enhance soil moisture retention at landscape 

(catchment) level? 

Soil moisture retention at catchment scale has been evaluated by the means of WCI 

parameter, calculated as shown in equation (9). Results showed that an increase of 

WCI is visible after the full LRWH implementation, namely after 2008. The effect 

has been evaluated as difference of WCI for September, October and November. It 

can be concluded that LRWH enhance the soil moisture retention capacity at 

catchment scale for September (P < 0.01) and October (P < 0.1). Effects in November 

are not evident for this scale of analysis. This result represents a direct confirmation, 

obtained through remote sensing analysis, of other, numerous, studies that analyzed 

soil moisture increase indirectly, by measuring or modelling the runoff reductions 

and the increase of crop yields at catchment scale in Ethiopia (Grum et al., 2017; 

Sultan et al., 2018; Wolka et al., 2018). It also confirms the more general observations 

about the change in water partitioning that can be induced by these measures at a 

catchment scale (Rockstrom and Falkenmark, 2015; UNEP, 2009) 

 

2. To what extent can LRWH modify temperature patterns at landscape 

(catchment) level? 
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Changes in temperature were analyzed with a temperature parameter t, calculated as 

a fraction of LST and T850 to eliminate the dependence of the value from macro 

climatic forcing. 

Results showed that, after LRWH full implementation, temperature decreased in 

September (P<0.1), October (P<0.01) and November (P<0.05). The analysis has also 

taken into account the exceptional year of 2009, where higher surface solar radiation 

input, probably induced by El Nino Oscillation (Winkler et al., 2017), causing 

extremely high temperatures. By removing 2009 from the analysis, the study shows 

an average decrease in LST of 1.74 °C. The variation, in absolute terms, is similar to 

the ones that can be induced in urban areas by the conversion of large areas of paved 

surfaces and built environment into green infrastructures and vegetated areas (Di Leo 

et al., 2016; Zareie et al., 2016). 

3. (a) What is the micro-climate effect of modified soil moisture on 

temperature given by LRWH? 

These effects have been evaluated in the framework of SMTC analysis at the 

catchment scale. By the mean of a simple, parsimonious linear model, based on the 

framework of Schwingshackl et al. (2017) the analysis demonstrates that SMTC is 

evident at catchment scale and that the implementation of LRWH measures provided 

a climate mitigation effect in the watershed. WCI values of September evidence a 

negative linear correlation to t values of October (R2 = 0.59). The 1-month lag can be 

well justified by considering the framework for the modelling of SMTC presented by 

Schwingshackl et al. (2017) (Figure 2 and equations (1) and (2)). Soil moisture 

available in September is converted in LH between September and October, and that 

a higher soil moisture content in September can then induce lower temperature in 

October, at a catchment scale. 

Moreover we analysed the hydro-climatic status of the watershed as defined by a 

couple of (WCI, t) values. Results clearly shows that the points representing the 

watershed status before full LRWH implementation are clustered in the ‘hot and dry’ 

part of the WCI-t scatter plot (upper left), while the points representing the watershed 

status after full LRWH, are located in the ‘cool and wet’ part of it, clearly indicating 

a separation between the Enabered catchment status before and after LRWN 

measures implementation.  

(b) What is most suitable remote sensing methodology to monitor SMTC 

at landscape (catchment) level? 

 

Considering the framework of the present dissertation, it has been found that an 

approach based on simple parameters, such as LST and NDII can evidence dynamics 

of SMTC at a catchment scale. In particular, NDII appears to be particularly indicated 
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for its good accordance with root-zone soil moisture (Sriwongsitanon et al., 2016), as 

a determinant of SMTC (Hirschi et al., 2014). Additional datasets, such as CHIRPS 

(Funk et al., 2015) and ERA-INTERIM (Balsamo et al., 2015), that are based on 

remote sensing observations, may support similar analysis, considering that they can 

provide information related to macro-climate parameters that can be use as a 

benchmark of micro-climate variations induced by LWRH. 

The use of simple proxy parameter can be recommended to analyse the evidence of 

similar dynamics in other regions of the world. The opinion of the author is that, for 

analyzing more in detail the evolution of such dynamics, more advanced remote 

sensing datasets will be needed (such as the recent Sentinel-2 imagery, but available 

only from 2015), together with downscaling of global (Schwingshackl et al., 2017) 

or regional (Mohamed et al., 2005) size modelling tools. In addition, investments in 

long-term experiments for the analysis of SMTC at catchment scale may be 

considered if further studies will confirm this initial one. 

 

~ 

 

Within the general framework described in the introduction, this PhD dissertation 

aimed to demonstrate that careful and wise land and water management can also 

support unexpected Ecosystem Services such as climate mitigation. Results make 

evident the occurrence of climate mitigation given by the increase of soil moisture 

availability in a restored catchment in the semi-arid Tigray region of Ethiopia, as a 

direct effect of Soil Moisture Temperature Coupling. The author hopes that the results 

of the present work may reinforce the call for an increased adoption of water 

harvesting (Rockstrom and Falkenmark, 2015), land restoration and green water 

management (Keys and Falkenmark, 2018), to increase the resilience of agricultural 

ecosystem located in arid and semi-arid areas, that represents a key element to achieve 

global food security. 
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Annex A – Codes used in the thesis 

Annex A.1 Code for WCI data download 
 

Language type Javascript 

Platform Google Earth Engine code editor 

 

 

var enab = 

ee.FeatureCollection("users/giuliocst/PhD_thesis/Enabered_cat

chment_ok"), 

    l7_ndwi_8 = 

ee.ImageCollection("LANDSAT/LE07/C01/T1_8DAY_NDWI"), 

    chirps10 = ee.ImageCollection("UCSB-CHG/CHIRPS/PENTAD"); 

 

Map.addLayer(enab, {color: 'FF0000'}, 'colored'); 

Map.centerObject(enab, 14); 

 

var f_ndwi = ee.ImageCollection( 

l7_ndwi_8.filterDate('2000-01-01', '2017-12-31') 

); 

 

var f_chirps = ee.ImageCollection( 

chirps10.filterDate('2000-01-01', '2017-12-31') 

); 

 

  print(ui.Chart.image.series({ 

  imageCollection:f_ndwi, 

  region: enab, 

  reducer: ee.Reducer.mean(), 

  scale: 30 

}).setOptions({title: 'Landsat-7 NDWI Time Series'})); 

 

  print(ui.Chart.image.series({ 

  imageCollection:f_chirps, 

  region: enab, 

  reducer: ee.Reducer.mean(), 

}).setOptions({title: 'CHIRPS decadal data'})); 
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Annex B.1 Code for LST and t data download 
 

Language type Javascript 

Platform Google Earth Engine code editor 

 

 

var enab = 

ee.FeatureCollection("users/giuliocst/PhD_thesis/Enabered_cat

chment_ok"), 

    modis_t_1330_8d = 

ee.ImageCollection("MODIS/006/MYD11A2"); 

 

  print(ui.Chart.image.series({ 

  imageCollection:modis_t_1330_8d.select('LST_Day_1km'), 

  region: enab, 

  reducer: ee.Reducer.mean(), 

}).setOptions({title: 'MODIS Aqua LST at 13:30 (8 Days 

composite)'})); 

 

 

 
Language type Python 

Platform Idle -to download T850 (and T500) data from ECMWF Web-API 

 

 

#!/usr/bin/env python 

from ecmwfapi import ECMWFDataServer 

server = ECMWFDataServer() 

server.retrieve({ 

    "class": "ei", 

    "dataset": "interim", 

    "date": "2000-01-01/to/2017-12-31", 

    "expver": "1", 

    "grid": "0.75/0.75", 

    "levelist": "500/850", 

    "levtype": "pl", 

    "param": "130.128", 

    "step": "0", 

    "stream": "oper", 

    "time": "00:00:00/06:00:00/12:00:00/18:00:00", 

    "type": "an", 

    "target": "output", 

    "area":"14.2/38.90/14.16/38.95", 

    "format":"netcdf", 

}) 

 

 
Language type Python 
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Platform Idle -to download  surface solar radiation downwards data from ECMWF 

Web-API 

 

 

#!/usr/bin/env python 

from ecmwfapi import ECMWFDataServer 

server = ECMWFDataServer() 

server.retrieve({ 

    "class": "ei", 

    "dataset": "interim", 

    "date": "2000-01-01/to/2017-12-31", 

    "expver": "1", 

    "grid": "0.75/0.75", 

    "levtype": "sfc", 

    "param": "169.128", 

    "step": "12", 

    "stream": "oper", 

    "time": "00:00:00/12:00:00", 

    "type": "fc", 

    "target": "output.nc", 

    "area":"14.2/38.90/14.16/38.95", 

    "format":"netcdf", 

}) 
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