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Abstract. In this paper a mechanical model of masonry arches strengthened with fibre-

reinforced composite materials and the relevant numerical procedure for the analysis are 

proposed. The arch is modelled by using an assemblage of rigid blocks that are connected 

together and, also to the supporting structures, by mortar joints. The presence of the 

reinforcement, usually a sheet placed at the intrados or the extrados, prevents the occurrence of 

cracks that could activate possible collapse mechanisms, due to tensile failure of the mortar 

joints. Therefore, in a reinforced arch failure generally occurs in a different way from the URM 

arch. The numerical procedure proposed checks, as a function of an external incremental load, 

the inner stress state in the arch, in the reinforcement and in the adhesive layer. In so doing, it 

then provides a prediction of failure modes. Results obtained from experimental tests, carried 

out on four in-scale models performed in a laboratory, have been compared with those 

provided by the numerical procedure, implemented in ArchiVAULT, a software developed by 

the author. In this regard, the numerical procedure is an extension of previous works. Although 

additional experimental investigations are necessary, these former results confirm that the 

proposed numerical procedure is promising. 

1.  Introduction 

In recent years innovative materials and techniques [1-6] for strengthening and repairing architectural 

and monumental heritage constructions [7,8], as well as ruins in the archaeological sites [9], have been 

widely used. In particular, masonry arches and vaults have been successfully strengthened using 

composite materials applied at the intrados or the extrados. For the analysis of these structures, the 

author has recently presented new numerical tools [10-15]. 

The intervention of strengthening or consolidation made using composite materials is more targeted 

and less invasive in comparison to the traditional technologies and materials employed in the recent 

past. Among the advantages of using these materials, it is worth mentioning the following FRP 

properties: lightness, high resistance, high elastic modulus and stiffness, reduced costs due to the ease 

of transport and assembly, minimal invasiveness, rapid installment in the structure, reversibility of the 

intervention. 

Composite materials and masonry are very compatible [16] (such as in the case of concrete 

reinforced by steel) and each of these two materials offers particular performance and strengths in the 

structure: the masonry supports compressive forces, while tensile forces, which cannot be supported 

by the masonry, are diverted to the fibers, which are designed specifically to perform this function. 

The reinforced masonry is, in turn, configured as an innovative material, thus its design must consider 
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all possible failure modes, that may occur, which are different from the standard masonry failure ones. 

More specifically, the following five states should be verified: 

 Equilibrium of the structure, 

 Compressive force in the masonry, 

 Shear force in the mortar joints, 

 Adhesion between the reinforcement and the structure, 

 Tensile force in the reinforcements. 

According to the limit analysis laws, the following five limits correspond to the above mentioned 

states and, in order to guarantee safety, they must not be exceeded: 

 Collapse mechanism or tensile cracks, 

 Crushing of the masonry, 

 Sliding of one brick upon another in correspondence of the mortar joints, 

 Delamination, often a “rip-off failure”, that is a failure of the union between masonry and the 

reinforcement, on the side of masonry (removal of part of the brick), 

 FRP rupture. 

According to the strength hierarchy criterion, the design of the reinforcement should be aimed at 

predicting, choosing and preferring one particular failure mode over the others. Consequently, one can 

select which type of composite and adhesive is better to use, the cross section of the reinforcement and 

its placement on the substrate, always relying on the tensile strength of the fibers and compressive 

strength of the masonry. For the assessment of the behaviour of a masonry arch reinforced with FRP 

materials, the few numerical procedures available in the literature take into account only some failure 

modes [17,18]. Therefore, a targeted mechanical model and numerical procedure are herein proposed. 

The tool discussed below is an extension of previous works [19,20] that, in the current formulation, 

allows one to detect the most probable failure mode of a reinforced arch. 

2.  Mechanical model 

The mechanical model of a masonry arch (figure 1) is assumed to be composed of a finite number of 

rigid-blocks assembled by elastic mortar joints. In the mortar joints, all the elasticity (i.e.: 

deformability) of the arch is concentrated. Mortar joints are modeled, in a discrete way, by a device 

composed of four links orthogonal to the mid-surface of the joint, plus an additional link arranged 

along that surface. 

 

 

Figure 1. Mechanical model of the reinforced arch: mortar, adhesive and FRP links. 

 

In order to consider the main aspects of the relationship between structure and reinforcement, the 

latter is assumed to be composed of “frp-type” elements equal to the number of masonry blocks, with 

their weight, although negligible, linked together and to the structure. The FRP elements are placed at 

the intrados or extrados of the arch and are also assumed to be rigid. 
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The interface which connects fiber with the structure is modeled by a device composed of one set 

of links, capable of transmitting compressive forces and low tensile forces (type 1 links) and an 

additional link, capable of transmitting the shear force (type 2 link). 

The joint linking one reinforcement element with the next one is composed of one link, capable of 

transmitting only a tensile force (type 3 link). In type 3 links all the elasticity of the reinforcement is 

assumed to be concentrated. The first and the last links simulate “external constraints”, that is “links 

with the first structural element unreinforced”; therefore, they represent the so-called “anchorage 

length”. 

Type 1 links measure the peeling forces, and they are the tensile forces responsible for the 

delamination failure which is due to the typical curvilinear shape of the arch (in the case of 

reinforcements placed at the intrados). However, the reinforcement detachment can also be provoked 

by the loss of adhesion, which is checked through type 2 links. Indeed, type 3 links, provide, interface 

by interface, the local tensile force in the reinforcement, and give information about the possibility of 

its rupture if it exceeds the FRP tensile strength. 

3.  Numerical procedure 

The numerical procedure for the analysis of a reinforced rigid-block arch, modeled in the discrete way 

described above, is based on the formulation of the set of the equilibrium equations and the elastic-

kinematic equations, which are expressed in matrix form in equation (1): 

    {
        
 ̃      

     (1) 

where {F} is the vector of the dead loads acting on the structure, {F’} is the vector of the additional 

loads that are increased by the incremental load factor α, {X} is the vector of the unknown forces in 

the links of the joints, [A] is the equilibrium matrix whose coefficients are a function of the block 

shape and the slope of the joints, [ ̃  is the kinematic matrix, {x} is the vector of the displacements of 

the block centers of mass and [K] is the matrix whose coefficients are populated by the deformability 

of mortar, adhesive and FRP links. Vector {Δ}, the “impressed distortion vector”, is the key to 

checking the possible aforementioned failure modes, which are caused by the failure of some joint 

links. 

In the hypothesis that for dead loads F and very low additional forces αF’ (i.e.: low values of α) the 

masonry arch and the reinforcement are undamaged, the solution of equation 1 is provided by the 

linear elastic solution in equation (2): 

          ̃      ̃               (2) 

Equation (2) is obtained from equation (1) assuming vector {Δ}={0}. 

During the analysis the value of α is increased step by step and, in correspondence to each value, 

the five limit states, listed in the introduction section, can no longer be verified. These limits are 

expressed by inequalities in equation (3), that are constraints on equation (1): 

   

{
 
 
 

 
 
          

   
                          

  
   

   ∑     
   

                           
   

    
   

          adhesive             

|  
   

|        adhesive tangent       

  
   

       FRP       

   (3) 

According to the five inequalities in equation (3), to predict the failure modes the algorithm 

introduces a distortion coefficient [21] in the link whose force, at the current step of the analysis, does 

not respect the corresponding inequality. The distortion provokes the failure of that link. In detail, the 
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distortions act on tense mortar axial links (provoking tensile cracks), on mortar axial links that are 

compressed more than their compression strength limit expressed by M
(-)

 in equation (3) (provoking 

the crushing of masonry), on the mortar tangential links whose shear force exceeds the friction force 

expressed by the second of equation (3) according to the Coulomb’s friction criterion [22,23] (sliding 

of blocks occurrence), on the “adhesive links” type 1 stretched more than the limit G(+) (delamination 

occurrence), and on “FRP links” type 3 stretched more than the FRP strength L (FRP rupture 

occurrence). In this framework, the term “adhesive links” is only symbolic and should be properly 

considered as “masonry links”: in fact, it has been demonstrated that delamination does not occur in 

the adhesive layer but, rather, inside the masonry, with its consequent ripping [24-28]. Therefore, it is 

more convenient and correct to consider the rupture limit tension G(+) of such links by referring to the 

brick rupture limit tension rather than to the adhesive one, which is much higher. 

The insertion of a distortion coefficient in a link provokes a modification of the inner stress state 

and therefore, the static solution vector must be recomputed. The solution vector that also takes into 

account the effect of the distortion is provided in equation (4): 

        (      ̃(     ̃)
  

 )      (4) 

At the end of the iterative nonlinear analysis, the load-bearing capacity of the reinforced arch, as 

well as its failure mode, are assessed, providing information on the intermediate failures in 

correspondence to each value of the incremental loads. In such a way the numerical procedure 

provides guidance on the more targeted strengthening intervention of an existing masonry arch as a 

function of the expected serviceability loads. 

4.  Numerical and experimental results 

To assess the reliability of the numerical procedure proposed above, four models of masonry arches 

reinforced with carbon FRP composites in scale 1:2 have been performed at the Official Laboratory 

for Testing of Materials and Structures of the Department of Architecture at the University of Florence 

(Italy). Experimental results have been compared with the results provided by the numerical procedure. 

Such models reproduced a segmental arch with a 150 cm spam, an internal radius corresponding to 

86.5 cm, with fixed imposts and inclined by 30° and a square cross section corresponding to 10 x 10 

cm. 

 

 

Figure 2. Construction phases: (a) macro-block; (b) assemblage of macro-blocks on the centering; and 

(c) curing under a layer of wet paper. 

 

Each arch has been built for subsequent phases. First, some “macro-blocks” of 6 bricks have been 

bonded, following the intrados curve of the arch to be built (figure 2(a)). After 28 days of curing, they 

have been positioned on the centering and bonded together so as to obtain the whole arch (figure 2(b)). 

Finally, the arch has been covered with a layer of wet paper and left to cure for 10 days in order to 

avoid the occurrence of micro-cracks due to drying and shrinkage (figure 2(c)). 

The right and left impost sections have not been laid directly on the testing machine but on bricks 

adequately shaped and placed in such a way as to simulate the heads of two fixed pillars (figure 3(a)). 
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The experimental trial was conducted by simulating an increasing point force at the keystone using 

a hydraulic jack which impressed an increasing vertical displacement. In correspondence to a load of 

1980 N the first crack at the keystone appeared and then, later, at the haunches at a load of 2630 N. In 

correspondence to a load of 4320 N the delamination process began, and, starting from the keystone 

sections, this process involved little by little, the sections near the left haunch removing part of the 

masonry (figure 3(b)). 

 

 

Figure 3. (a) Geometry of arch models performed in a laboratory; and (b) Experimental trial. 

 

In the numerical model the action of the hydraulic jack at the keystone of the arch was simulated 

inputting two equal point forces at the centre of gravity of both the keystone blocks. During the 

analysis, these forces were increased little by little. 

The numerical model showed (figure 4), step by step, the misshaping delamination process which 

also occurred experimentally. It highlighted a peak load of the same level as well as the cracking 

pattern that occurred experimentally, which highlighted both mortar joint failure due to tensile forces 

and the position of the reinforcement detached in many intrados interfaces. 

 

 

Figure 4. Delamination process computed by the software ArchiVAULT. 
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5.  Conclusions 

Failure modes of an arch reinforced with FRP materials are different from the typical failure modes of 

an URM one. For this reason, a nonlinear numerical procedure for the analysis of failure modes, that is 

an extension of that presented in a previous work, has been described in more detail in this paper and 

also implemented in the software ArchiVAULT, in such a way as to provide a user-friendly design tool 

for engineers. 

In order to provide prediction of failure modes, five limit states have been considered in the 

proposed procedure. Since the discrete model has been assumed for interpreting the mechanical 

behaviour of the arch, such limit states are checked in correspondence to the mortar, adhesive and FRP 

joints. 

According to the strength hierarchy criterion, this tool is aimed at providing guidance on a targeted 

design of the reinforcement system in order to avoid irreversible failure modes, such as masonry 

crushing, and phenomena that could lead to instant collapse, such as the FRP rupture. 

Even if additional investigations should be performed on a higher number of experimental models, 

the comparison between numerical results and the results of the in laboratory experimental arches 

seems to confirm the reliability of the procedure proposed. 
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