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Abstract. Small Darrieus Vertical-Axis Wind Turbines (VAWTs) are presently seen as a 

relevant research topic for the wind energy community, since they are thought to perform 

better than horizontal-axis rotors in the complex and highly-turbulent flow typical of the urban 

environment. Indeed, a preliminary wind tunnel test campaign on a H-Darrieus VAWT showed 

a significant increase of the performance for high turbulence levels. The present study analyses 

in detail the near wake of the turbine in the same turbulent conditions, enabling a better insight 

on the reasons of this power increase, and on the means to take advantage of it. Near-wake 

measurements are also benchmarked with a CFD simulation of the entire wake, in order to 

match the experimental wake measurements with the detachment of flow structures observed in 

CFD simulations. By doing so, a deeper and useful insight on the reasons why VAWTs 

perform better in turbulent environments is gained. 

Nomenclature 

At = Turbine frontal area (m2) 

b = Grid bar width (m) 

c = Turbine blade chord (m) 

CP = Power coefficient (-) 

Iu = Intensity of turbulence in wind direction (-) 

Iper = Periodic unsteadiness (-) 

Lux = Integral length scale of turbulence in wind direction (m) 

M = Grid mesh size (m) 

U = Wind speed (m/s) 

R = Rotor radius (m) 

P = Turbine mechanical power (W) 

Re = Reynolds number (-) 

x = Longitudinal distance from the rotor axis (m) 

y = Transversal distance from the rotor axis (m) 

y+ = Dimensionless wall distance (-) 

λ = Tip-speed ratio (-) 

http://creativecommons.org/licenses/by/3.0
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ω = Turbine rotational speed (rad/s) 

Ω* = Dimensionless Vorticity 

CFD = Computational Fluid Dynamics 

HAWTs = Horizontal-Axis Wind Turbines 

rms = Root mean square 

VAWTs = Vertical-Axis Wind Turbines 

sf = Optimal smooth flow conditions 

1.  Introduction 

Even though the majority of studies in wind energy are presently being devoted at designing larger and 

larger rotors (e.g. [1]), there is also a significant interest arising on very small rotors for decentralized 

power production in the urban environment [2]. In doing so, however, new focus must be put on a 

better understanding of the physics of wind turbines under the complex inflow conditions (especially 

in terms of flow misalignment and turbulence levels) that are typical of similar installations [3]. 

Among other technologies, small Vertical-Axis Wind Turbines (VAWTs) are considered probably the 

most promising solution for the urban environment [4]. Despite their lower peak performance, some 

specific features like omnidirectionality, lower noise emissions and pleasant aesthetic appearance [5] 

have made them a valuable alternative to conventional Horizontal-Axis Wind Turbines (HAWTs) in 

urban applications [6-7]. Among the variety of VAWT designs, H-Darrieus turbines have especially 

attracted the attention of researchers, due to their higher efficiency and simple geometry [8]. 

The real suitability of wind turbines for use in the urban environment is, however, not 

straightforward. Most of the urban wind installations in fact fail to reach the expected energy yield [9, 

10], resulting in still or underperforming turbines that also give bad press for the technology. The main 

issue that urban wind turbines face is that the wind conditions in the cities canopy layer are very 

complex. The wind typically has low intensity, high variability, high levels of turbulence, inclined and 

even reversed flows [11-13]. A careful analysis of these conditions is therefore mandatory for this 

technology to reach maturity and economic viability within an acceptable time horizon. 

High turbulence is probably the most characteristic feature of urban flows. The study of its effect 

on VAWTs is up to now generally limited to on-field data by monitoring the performance of the 

installed turbines and the on-site wind turbulence measured by a meteorological station. Similar 

studies offer often unreliable and contradictory conclusions, as the effect of turbulence is said to be 

positive [14, 15], negative [16, 17] or velocity-dependent [18]. The impossibility to control all external 

conditions and influences in a real urban environment suggests that laboratory measurements might be 

necessary in order to obtain precise and repeatable turbine power rates and wake characteristics. 

However, replicating inside the wind tunnel the urban flow characteristics is not an easy task. In fact, 

most of the experimental facilities are designed for aeronautical purposes and have a very low 

background turbulence intensity (Iu < 1%). Conversely, the turbulence intensity inside the cities is 

often higher than 10% [13], and also the typical integral length scales of this turbulence are large 

compared with middle-sized wind tunnels, since values of Lux in the order of 1 m may affect the 

turbine [19]. Several campaigns have analyzed VAWT performance inside the wind tunnel [20, 21], 

but only few of them addressed the topic of turbulence [22, 23], with not enough data available to 

support solid conclusions. 

Starting from this background, an experimental set-up has been developed in the last few months at 

the Vrije Universiteit Brussel to evaluate the effect of turbulence on a H-Darrieus turbine performance 

in the wind tunnel [24]. A careful optimization of passive turbulence generating grids was carried out 

to allow setting the desired values of Iu and Lux in the wind tunnel test section. The results showed a 

considerable boost in the performance of the turbine under highly turbulent flows [25]. 

The scope of the present study is to expand the knowledge on the effect of turbulence on a Darrieus 

VAWT, with special focus on the near wake of the turbine, which was recently shown to be of 

particular interest to understand the origin of flow macro-structures related with the blade-flow mutual 

interaction [26]. Regarding the effect of turbulence on the wake, a previous study [27] on a 5-bladed 

rotor detected large asymmetries and differences in the wake from smooth to turbulent flow. With the 
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same set-up as used in [24-25], a small two-bladed H-Darrieus rotor was exposed to different 

turbulence conditions, and the near-wake characteristics were measured in order to study the reasons 

of its performance increase. In addition, since direct spatially-resolved and comprehensive maps of the 

flow field (e.g. with particle image velocimetry) were not available, dedicated numerical simulations 

using computational fluid dynamics (CFD) were also carried out. This kind of simulations, if the 

proper levels of spatial and temporal refinement are provided [28], recently showed to be able to 

accurately reproduce the aerodynamics of Darrieus blades [29]. The computed flow fields allowed the 

identification of the main aerodynamic phenomena and flow macro-structures, whose traces were 

registered in the wake.  

2.  Methodology 

2.1.  Experimental tests 

2.1.1.  Facility  

CRIACIV is an Inter-University Research Centre focused on the field of Building Aerodynamics and 

Wind Engineering, grouping eight Italian Universities. The Wind Engineering Laboratory is located in 

Prato, close to Florence, and it hosts an open-circuit boundary layer wind tunnel (Figure 1). The tunnel 

has a total length of about 22 m, including a nozzle at the inlet with a contraction ratio of 4.2 after the 

honeycomb and a T-diffuser at the outlet. The rectangular test section is 2.42 m wide and 1.60 m high. 

Air is aspired through a motor with a nominal power of 156 kW and the flow speed can be varied 

continuously up to ∼ 30 m/s adjusting, by means of an inverter, the rotational speed of the fan and the 

pitch angle of its ten blades. In absence of turbulence generating devices, the free-stream turbulence 

intensity is around 0.7%. 

2.1.2.  Turbulence grids 

To increase the level of free stream turbulence, squared-mesh wooden grids were placed in the 

boundary layer development zone of the wind tunnel (visible in Figure 1). Such grids are usually 

employed for studies on bluff bodies, but were here chosen for their simplicity and capability to 

provide a quasi-isotropic turbulence. Two grids were built to enable different combinations of Iu and 

Lux. The design of the grids (described in Table 1) was done following the empirical relations found in 

literature [30-32], which describe the decay of turbulence downstream of the grid (Equations 1 and 2). 
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Figure 1. View of the CRIACIV wind tunnel with turbulence grid 2 installed. 
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Table 1. Comparison of the turbulence grids used for the present tests. 

Grid Mesh size - M Bar size - b Iu range Lux range 

1 10 cm 2.5 cm 2 – 5 % 5 – 7 cm 

2 33 cm 7 cm 5 – 12 % 9 – 18 cm 

2.1.3.  Measurement system 

The mean flow speed was monitored with a Pitot tube connected to a sensor Setra AccuSense model 

ASL. The free stream wind speed was set placing the Pitot tube in the test section, before the turbine 

was switched on. The spectral properties of the induced turbulence were determined through 

measurements with a Dantec single-component hot-wire probe 55P11 connected to a Dantec CTA 

56C01 module and a 56C17 bridge. The spatial homogeneity of the flow at the position of the model 

was verified before the tests. The longitudinal integral length scale Lux was calculated according to 

Taylor’s frozen-eddy hypothesis as in [33], and the results were confirmed by fitting a von Kármán 

spectrum to the measured spectrum [34]. The turbulence intensity was calculated as usual by using the 

root mean square (rms) and the incoming longitudinal flow speed (Equation 3). 

 
streamfree

rms
u

U

U
I

_

=  (3) 

Near wake measurements on the VAWT model tested within the CRIACIV wind tunnel test-

section were performed by horizontally mounting a traversing system at a distance x = 1.5R 

downstream the rotor, at its half height. Such test rig is composed by a stiff aluminium arm mounted 

on an endless-screw activated with a stepper motor controlled through an Arduino-based algorithm. 

Three probes were mounted on the rigid fork connected to the moving aluminum arm, one central 

Pitot tube, to measure the mean punctual flow speed, and two hot-wire probes for measuring the 

fluctuating component of longitudinal wind speed. In this way, an adequately refined wake profile has 

been obtained for each tested configuration. The test rig and the probes are visible in Figure 2. 

2.1.4.  Turbine model 

The rotor is a two-blade H-type Darrieus turbine with two NACA0018 blades with a 5 cm chord (c) 

and two inclined struts per blade (Figure 2). Due to the small size of the rotor, angular speeds (and 

thus centrifugal loads) were high in order to achieve the suitable Reynolds numbers on the blades. 

 

 

Figure 2. Turbine prototype and measurement rig with the probe behind it. 
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To ensure proper mechanical properties, the rotors were manufactured using carbon-epoxy composite. 

The VAWT rotor was connected via a torque sensor and a drive belt (with gear ratio 100/28) to a 

brushed-DC motor. This motor was used to drive the VAWT rotor during start-up, while it acted as a 

generator in normal operation. The electrical output of the motor was fed to a circuit of variable 

resistance for angular speed control. A torque sensor was used to measure the mechanical torque and 

angular speed (and thus mechanical power) of the VAWT. The torque sensor, drive belt, DC motor, 

and measurement equipment were housed inside an aluminium frame. The torque sensor was a Lorenz 

Messtechnik DR-3000 sensor with an accuracy of ±2·10-3 Nm. It was fitted between two torsionally-

stiff couplings to allow for possible misalignments. 

2.1.5.  Experimental test conditions 

Experiments were carried out in four different turbulence conditions to discriminate the effect of Iu and 

Lux (Table 2). The incoming wind speed was set at U = 9 m/s during all tests, as it was the best 

operational point for the VAWT prototype, resulting in a mean chord-based Reynolds of around 105. 

Table 2. Description of the different tests conditions in which the experiments were performed. 

Condition Grid  grid distance x mean Iu mean Lux 

Smooth flow none  - 0.7 % - 

Low Iu 2 7.6 m 5.4 % 18 cm 

High Iu 2 3.75 m 9.2 % 15 cm 

Low Iu, low Lux 1 2.1 m 4.6 % 4 cm 

 

The turbine performance was monitored by measuring its power coefficient CP (Equation 4) and 

tip-speed ratio λ (Equation 5). The near wake was characterized by the longitudinal wind speed deficit 

and the turbulence intensity Iu. Blockage may have an influence in the measurements and wake shape 

[35]; based on the solid blockage around only 10% and on the fact that all the measurements were 

taken with the same blockage conditions, no corrections were applied in this sense. 
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2.2.  Numerical analysis 

Detailed unsteady Reynolds-Averaged Navier-Stokes (U-RANS) CFD simulations were carried out 

based on a consolidated numerical approach developed by some of the authors [36]. The 2D U-RANS 

approach might appear not entirely appropriate for this kind of analyses, since 2D models are deemed 

to predict vortices more coherent and less prone to breakdowns with respect to real 3D flow structures. 

Moreover, it could be argued that a RANS approach is not suitable to properly capture the effect of 

turbulence on the blade-flow interaction. This is indeed partially true, even if it should be remembered 

that the main scope of CFD simulations in the present work was to correlate the shape of the wake 

with the main aerodynamic phenomena taking place past rotating blades, while the study on the effect 

of turbulence was entirely assigned to experiments. Anyhow, the sound agreement found with respect 

to wind tunnel data in recent parallel studies [26, 29], and also during the present analysis, 

corroborated the suitability of this approach for a first - and computationally affordable - assessment 

of the wake characteristics and of the overall turbine performance. 

In the simulations, carried out with the commercial software ANSYS® FLUENT®, the k-ω SST 

model was adopted for turbulence closure, according to the prescription of [36], and coupled with the 

Enhanced Wall Treatment embedded in the FLUENT® code for the computation of the boundary layer 
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in the near-wall regions. The coupled algorithm was chosen for pressure-velocity coupling, and the 2nd 

order upwind scheme was adopted for both RANS and turbulence equations. Inlet air conditions were 

the same as monitored during the experimental tests. The global convergence of each simulation was 

monitored by considering the difference between the mean values of the torque coefficient over two 

subsequent revolutions: according to [36], the periodicity error threshold was set to 0.1%. To simulate 

the rotation of the turbine, the sliding mesh technique was employed, i.e. the computed domain was 

split into a circular zone containing the turbine, rotating with the same angular velocity of the rotor, 

and an outer rectangular fixed zone, determining the overall domain extent. According to [28], the 

dimensions of the latter were not the ones of the wind tunnel, but they adopted the settings of [36], in 

order to avoid numerical blockage effects. The mesh was of unstructured and hybrid type, with 

triangular elements in the core flow region, and an O-grid made of quads in the boundary layer. The 

expansion ratio for the growth of elements starting from the surface was kept below 1.1 to achieve 

good mesh quality, ensuring a y+ constantly < 1. The airfoil surface was discretized with 1400 nodes. 

The mesh characteristics (visual details are reported in Figure 3 and Figure 4) fully accomplished the 

criteria based on dimensionless thresholds proposed in [28]. Based on the same criteria, in order to 

limit the Courant Number in proximity of the blades, an angular timestep of 0.25° was used for the tip-

speed ratios in the left-hand side of the curve, increasing to 0.40° in the right-hand side. With the 

described settings, the calculation time to achieve a complete revolution of the rotor is around 20 

hours in a 16 CPUs (2.8 MHz each) calculation center. The required number of revolutions to achieve 

a periodic solution was variable between 15 and 25 revolutions. 

 

 

 

 

Figure 3. Visualization of the 

computational mesh of the turbine. 

 Figure 4. Detailed view of the mesh 

refinement near the airfoil.  

3.  Results 

3.1.  VAWT power curves under turbulent conditions 

Figure 5 presents the power curves around the maximum efficiency obtained with the VAWT model 

in the turbulence conditions presented in Table 2. The results are also compared with the values 

coming from CFD simulations described in subsection 2.2. The values were normalized by the 

maximum CP obtained under smooth flow conditions due to confidentiality reasons. 

Upon examination of the experimental data, it is apparent that the increased Iu provided a notable 

increase of the turbine performance, up to +20% for the high turbulence case. On the other hand, the 

effect of Lux was not so evident, as the two curves at Iu ≈ 5% showed similar CP values even when the 

Lux levels were very different. It is worth noticing that the error bars are larger in the high turbulence 

case, because  the wind speed profile is not completely uniform when the turbine is so close to the 

grid, and therefore the uncertainty in the wind speed is higher [24, 25]. As the computational cost of 

simulated CP-λ points was very high, only 4 points of the curve were obtained, but it is apparent how 

the agreement with experimental data was considerably good. The following subsections will try to 

address the  relation between this performance increase and the characteristics of the near wake. 
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Figure 5. Power curves obtained with the VAWT under different turbulence conditions and in the 

numerical simulation, normalized with the optimum CP in smooth flow. 

3.2.  Velocity deficit in the near wake of the VAWT 

Figure 6 presents the axial wind speed profile at midplane downstream of the VAWT, taken at the 

optimal λ. The arrow shows the turbine sense of rotation. The effect of turbulence is not so evident in 

the wake shape; it seems to result only in a reduced speed deficit. Just behind the shaft, while the wind 

speed in smooth flow drops to the 20% of the free stream, in the high turbulence case the wind speed 

only drops to 30% of it. This would seem in conflict with the higher energy extraction made by the 

rotor, but can be easily explained if one considers that the turbulent flow is thought to promote a faster 

dissipation of the wake itself due to the more intense mixing with the surrounding wind stream. As in 

previous analyses, there is no evident effect of the free stream Lux. The measurement uncertainty, 

considering random and propagation errors, is about 4% of the free stream windspeed. 

In Figure 7 the experimental values are also compared to CFD simulation results. Good agreement 

is apparent both for the basic shape and for the acceleration of the flow around the turbine. However, 

the experimental wake is shifted to the right, maybe due to asymmetries of the incoming flow, and the 

maximum wind speed drop behind the shaft is underpredicted by the CFD simulation. Still, these 

results are in agreement with the findings of [29]. 

 

 

 
Figure 6. Normalized wind speed in the wake of 

the VAWT under different turbulence 

conditions. 

 Figure 7. Comparison of the experimental and 

numerical wake wind speed, with experiments 

from Tescione et al. [37]. 
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The wake shape was also compared with data from the most similar experiment found in literature. 

Tescione et al. [37] performed PIV measurements at 1.5R downstream of a 2-blade NACA0018 H-

Darrieus at similar Reynolds numbers but higher λ (4.5 versus the present value of 3.05). This 

difference might explain the more pronounced wake shape for low λ, also observed in other studies 

[26]. The radial extension of the wake and the velocity levels downstream of the turbine are anyhow in 

fair agreement. 

3.3.  Turbulence intensity and periodic unsteadiness in the VAWT wake 

Figure 8 describes the turbulence intensity measured in the wake for low, medium and high levels of 

turbulence, compared to numerical simulations. As one may notice, the shape of the turbulence 

distribution is correctly predicted by the numerical calculations, with one large peak at -R, a lower one 

at +1.4R (edges of the wake), and a third one representing the wake of the shaft. The reasons of these 

turbulence intensity peaks are readily noticeable by analyzing the computed flow field, reported in 

Figure 10 and Figure 11 in terms of axial wind speed and dimensionless vorticity Ω* (defined in 

Equation 6), respectively. 

 
cU

dy

dU

dx

dU
xy



−

=*  (6) 

 

 

 
Figure 8. Turbulence intensity measured in the 

near wake, for three values of turbulence, 

compared with the numerical prediction. 

 

 Figure 9. Wake periodic unsteadiness calculated 

from the experimental data at different Iu, 

compared with numerical simulations. 

 

 

 
Figure 10. Instantaneous contour plots of 

dimensionless velocity, with the position of the 

traverse. 

 Figure 11. Instantaneous contour plots of 

dimensionless vorticity, with the position of the 

traverse. 
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Upon examination of the contour plots, it is apparent that the peaks in the turbulence intensity are 

related with the passage of high vorticity zones. These are in turn generated by: 1) the vortex shedding 

of the central tower (central peak); 2) the shed vorticity coming from the flow reattachment on the 

airfoil near the end of the downwind part of the revolution (peak at positive y/R); 3) the passage of the 

macro vortices that are detached from the airfoils as soon as they undergo deep stall conditions in the 

upwind region (higher peak at negative y/R). These latter ones are predominant and have a strong 

influence on the flow surrounding the blades in the first part of the downwind region. Based on these 

insights, it can be hypothesized that the main reason why macro-turbulence has a positive impact on 

the performance of a H-Darrieus VAWT is the improvement of the boundary layer stability on the 

airfoils, leading to a delayed onset of stall conditions (in terms of azimuthal position along the 

revolution) and then to different shed vorticity downstream. In particular, the increase of the 

turbulence intensity in the wake is less intense for the high-turbulence case in comparison to the mean 

turbulence levels, even if experiments clearly highlighted that, when increasing the free stream 

turbulence, the graph is basically shifted upwards (the free stream turbulence is not modelled 

numerically). Another remarkable feature that can be extracted from Figure 8 is that the wake of the 

shaft dims as Iu increases. In fact, for high turbulence the shaft is nearly “invisible”, as the central peak 

is at the same level of the incoming free stream. This fact, which was predicted numerically in [38], 

can be another factor responsible for the increase of CP. Measurement uncertainties for Iu values are of 

the order of 3·10-3. To complete the analysis, the concept of periodic unsteadiness (Iper), originally 

described in [26], was used. The Iper tries to identify those flow structures that are mostly periodic 

during the revolution, i.e. directly correlated to specific positions of the blade. It is defined as the root 

mean square of the phase-resolved velocity, which is calculated as the ensemble average among values 

acquired at the same phase for all the different revolutions (purged by the time-mean value). Figure 9 

shows the difficulty of phase-resolving experimental data where ω was not perfectly constant, but two 

regions of high periodic unsteadiness are clearly identifiable (for all levels of turbulence) between 1R 

and 1.5R at both sides of the wake. The numerical simulations show good agreement with the 

experimental data, and for high λ higher values appear towards the external boundaries of the wake 

[26], not due to vortices but to residual oscillations in the shear layer between the turbine wake and the 

undisturbed flow. The variability of Iper for increased levels of turbulence further corroborates the 

hypothesis that the oncoming turbulence strongly impacts on the location of stall on the airfoils, and 

then on the vortical structures that are detached from the airfoils and convected downstream. 

4.  Conclusions 

 

The increasing number of installations in high-turbulence locations (as urban environments) urges 

the development of tailored experimental and CFD methods to optimize Darrieus VAWTs for 

complex inflows. In this study, turbulent grids allowed the authors to model nearly-urban wind 

conditions in the wind tunnel, with the additional possibility of isolating the effect of three flow 

parameters (U, Iu and Lux). Experimental measurements showed that the turbulence intensity Iu has a 

large influence on the studied 2-blade turbine performance, increasing its power by 20% from smooth 

flow to Iu = 9.4 %. Conversely, integral length scales of this turbulence did not show to have relevant 

influence on the turbine power curves.  The study of the near wake (1.5R downstream the turbine) in 

turbulent conditions tried to find an explanation for this performance rise, and to increase the 

understanding of the inner flow physics. Wind speed measurements showed faster wake recovery for 

turbulent flows, as the wind speed drop was 10% lower than in smooth flow. The shape of the wake in 

that position did not show large differences from smooth to turbulent flows. Upon examination of the 

turbulence intensity profiles in the wake, it was also noticed that the effect of the shaft wake is 

minimized by the turbulence increase, probably reducing the detriment of the turbine performance 

related to it. Moreover, the results of dedicated unsteady CFD simulations highlighted that the peaks in 

the turbulence intensity are directly related with the alternate passage of high vorticity zones. These 

are in turn generated by: 1) the vortex shedding of the central tower (central peak); 2) the passage of 
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macro vortices that are detached from the airfoils as soon as they undergo deep stall conditions (higher 

peak at negative y/R); 3) the shed vorticity coming from the flow reattachment on the airfoils as soon 

as the incidence angle starts decreasing again in the downwind region (peak at positive y/R). 

To conclude, the present study confirmed that VAWTs tend to perform better in turbulent flows, both 

for turbine production and wake recovery. These experiments, combined with the additional 

information coming from U-RANS CFD simulations, provide innovative and valuable data to 

understand their operation. Future work will be devoted to testing the rotor at other Reynolds numbers 

and tip-speed ratios in order to increase the knowledge on how the flow interacts with the blades; more 

wake distances will also studied in order to acquire useful information of practical use in designing 

VAWT array configurations for urban roofs. 
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