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Abstract

Introduction

The objective of our present study is to evaluate the impact of different PEEP levels on cere-

bral hemodynamic, gas exchanges and respiratory system mechanics in paediatric patients

with post-traumatic brain swelling treated with decompressive craniectomy (DC).

Materials and methods

A prospective physiologic study was carried out on 14 paediatric patients presenting with

severe traumatic brain swelling treated with DC. Transcranial Doppler ultrasonography was

performed on the middle cerebral artery bilaterally after DC. After assessment at ZEEP,

intracranial pressure (ICP), cerebral perfusion pressure (CPP), mean arterial pressure

(MAP), central venous pressure (CVP) and gas exchanges were recorded at PEEP 4 and

PEEP 8.

Results

From ZEEP to PEEP 8, the compliance of respiratory system indexed to the weight of the

patient significantly increased (P = 0.02) without ICP modifications. No significant variation

of the MAP, CPP, Vmed, the total resistance of respiratory system and ohmic resistance of

the respiratory system indexed to the weight of the patients was observed. CVP significantly

increased between ZEEP and PEEP 8 (P = 0.005), and between PEEP 4 and PEEP 8 (P =

0.05).

Conclusions

PEEP values up to 8 cmH20 seem to be safe in paediatric patients with a severe post-trau-

matic brain swelling treated with DC.
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Introduction

Traumatic Brain Injury (TBI) is a leading cause of death and disability in children [1,2]. The

mechanism of injury in TBI comprises of primary and secondary injuries. The former is the

direct consequence of the initial physical insult. Management of severe TBI in critical children

secondary brain injury could improve outcome [3]. Although the skull is a rigidly fixed volume

compartment, the brain, blood and cerebrospinal fluid (CSF) are relatively incompressible [4]. A

steep rise of pressure can affect cerebral blood flow, while secondary insults can arise from sys-

temic factors, hypoxemia and hypotension [5]. The initial mixed metabolic acidosis plus respira-

tory acidosis and Glasgow Coma Scale Score (GCS) are significant predictors of mortality [6].

Current Brain Trauma recommendations are based on early correction of hypoxemia and

avoidance of hypocarbia after severe paediatric TBI [7]. Recruitment manoeuvres with high

sustained airway pressures, followed by appropriate positive end-expiratory pressure (PEEP)

could be necessary to maintain the recruited alveoli open. High intrathoracic pressure

decreases the preload, resulting in diminished cardiac output. Moreover, the impedance of

venous blood flow may elevate Intracranial Pressure (ICP) [8]. Increased ICP and brain swell-

ing are the main cause of death in patients with severe TBI. The appropriate treatment of these

patients and the balance of benefits and risks represent a complex issue in critical care.

The aim of medical and surgical therapy is to reduce the ICP after TBI: when other treat-

ments have failed, decompressive craniectomy (DC) could allow a rapid decrease of ICP. This

procedure allows the relieve intractable intracranial hypertension and/or to prevent or reverse

cerebral herniation [9]. The clinical effectiveness of DC in reducing ICP in patients with TBI is

under evaluation in current randomized clinical trials, but it has been demonstrated in pub-

lished clinical investigations [10–13] and in a recent meta-analysis [14]. Although there are a

large number of experimental and clinical studies controversy regarding the management of

intracranial hypertension and cerebral oedema when a high airway pressure is used [8,15]. there

is no evidence regarding the effect of PEEP on cerebral hemodynamic post-DC. Literature

involving adult patients suggest to consider decompressive craniectomy, evaluating the PEEP

effects on the basis of its influence in reducing the effect of Starling’s resistor significantly [16].

In paediatric populations this effect is uncertain, and the use of PEEP in this situation remains

controversial. To the best of our knowledge, no authors have demonstrated the impact of differ-

ent PEEP levels on cerebral hemodynamic, gas exchanges, and respiratory system mechanics in

paediatric patients with a severe post-traumatic brain swelling treated with DC.

Materials and methods

The present is a single centre observational study. The Institutional Review Board approved

the protocol and written informed consent was obtained from parents. Data were collected

prospectively on 14 paediatric patients admitted to paediatric intensive care unit (PICU) of

Catholic University Medical School, Rome, Italy, between May 2012 and December 2013. Par-

ticipants were consecutive emergency department patients after diagnosis of severe post-trau-

matic brain swelling treated by DC in accordance with a standardised protocol. Inclusion

criteria were: age between 4 and 16 years, TBI, DC, and the need for postoperative mechanical

ventilation. Exclusion criteria were: age younger than 4 years and older than 16 years, cerebral

infectious disease, hemodynamic instability requiring inotropic support, and cerebral disease

requiring neurosurgery.

Patient management

During the study period, patients were resuscitated according to institutional practice, which

is consistent with the 2012 TBI Guidelines [7,17]. General approach to severe paediatric TBI
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management includes: sedation and analgesia with midazolam (continuous infusion of 3 to 5

mcg/kg/min) and remifentanil (continuous infusion 0.25 to 0.75 mcg/kg/min); mechanical

ventilation was set to provide Volume Control mode (Servo 300; Siemens, Solna, Sweden) and

with a fraction of inspired oxygen (FiO2) 0.3, a square wave, an inspiratory-expiratory ratio of

1:2, a targeted tidal volume of 7–8 mL/kg and a frequency set to keep the partial pressure of

carbon dioxide (PaCO2) at 32 to 36 mmHg; intracranial pressure (ICP) monitoring via intra-

parenchymal catheter or ventriculostomy, care aimed at maintaining ICP at<20 mmHg, cere-

bral perfusion pressure (CPP) at> 40 mmHg, PaCO2 at 35–40 mmHg, SaO2 at>90%; core

body temperature maintained between 35 and 37.5˚C with antipyretics, cooling/warming

blankets, or intravascular cooling devices if needed.

The zero hydrostatic references were chosen at the mid-chest for CVP and mean arterial

pressure (MAP), and at the external auditory meatus, corresponding to the foramen of Mon-

roe, for ICP and CPP measurements. The head of the bed was kept at 30 degrees for all chil-

dren. The middle cerebral artery (MCA) mean velocity (Vmed) of the most affected side was

determined by Transcranial Doppler ultrasonography (TCD, Multidop X-4, DWL), using a

hand-held probe. During the study period, patients with a CPP value below 50 mmHg, and/or

an ICP value over 20 mmHg were excluded. When the absence of spontaneous inspiratory

efforts was confirmed, the respiratory mechanics were measured at zero end-expiratory pres-

sure (ZEEP). The end-inspiratory occlusion of 3 seconds was obtained by pressing the end-

inspiratory hold knob on the ventilator. The ohmic resistance of the respiratory system (RRS

min), the total resistance of the respiratory system (RRS max), and the compliance of the respira-

tory system (Crs) were determined. The RRSmin is defined as Pmax—P1/flow (Pmax is the peak

airway pressure at the end of inspiration; P1 is the pressure value at the rapid initial drop after

an occlusion manoeuvre). The RRSmax is defined as (Pmax—P2)/flow (where P2 is the pressure

value when a plateau is reached after an occlusion manoeuvre longer than 2 s), after subtrac-

tion of the value of endotracheal tube resistance. The Crs was calculated as TV expired/P2—

PEEP. Respiratory mechanics data were indexed to the weight of the patients expressed in kg.

The following parameters were recorded after 20 minutes: MAP, CVP, ICP, CPP, Vmed, and

arterial blood gases. After the ZEEP assessment, the increments of PEEP at four and 8 cm H2O

were applied while the ventilator setting remained unchanged. At each PEEP level, all above-

mentioned parameters were recorded (Kleistek ICUlab, Bari, Italy).

Statistical analysis

Categorical data are presented as percentages, while continuous data as median [25th-75th

percentiles]. Considering the pair, not-normal distributed data, the parameters observed at

ZEEP for each variable have been compared to those observed at PEEP 4 and PEEP 8 through

Friedman test. For those parameters statistically different at Friedman test, a post-hoc analysis

with Wilcoxon sign rank test for paired data has been performed between couples of sub-

groups. A p value of<0.05 was considered statistically significant at Friedman test. Meanwhile

p-value adjustment for multiple comparisons (Bonferroni-corrected alphas, 0.05/3 = 0.02) has

been considered for post-hoc analysis. Data were analysed using STATA 9.1 software (STATA

Corp, 4905, Lakeway Drive College Station, 77845, Texas, US).

Results

Fourteen patients were enrolled between May 2012 and December 2013. All patients had a TBI

with a severe post-traumatic brain swelling treated with DC (S1 Table). During the study,

PaCO2 and PaO2/FiO2 ratio remained unchanged over the study period. No patient dropped

out at any stage of the study. In the whole population, the application of PEEP (from ZEEP to
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PEEP 8) significantly increased CrsI (p = 0.02) without ICP modifications (S2 Table). No sig-

nificant variation was observed for MAP, CPP, Vmed, RRSmaxI, and RRSminI (S1 Fig). CVP

significantly increased between ZEEP and PEEP 8 (p = 0.005), and between PEEP 4 and PEEP

8 (p = 0.05) (S2 Table). The median CPP values, calculated as the difference between MAP and

CVP, were 69.2 [64.3–73.7]mmHg, 69 [64.9–77.8] mmHg, 67.2 [58.1–72.9] respectively for

ZEEP, PEEP 4 and PEEP 8. In patients with reduced CrsI, the application of PEEP did not sig-

nificantly increased CrsI values up to normal value. In patients with normal CrsI, PEEP-

induced a significant increase in CrsI between ZEEP to PEEP 4 and ZEEP to PEEP 8 (P = 0.02)

(S3 Table).

Discussion

The study suggests the impact of different PEEP levels on cerebral hemodynamic, gas

exchanges, respiratory system mechanics in paediatric patients with a severe post-traumatic

brain swelling treated with DC. PEEP-induced only modest increases in CVP. The application

of different PEEP levels, from ZEEP to PEEP 8, induced a modest variation of CrsI associated

with modest increases in CVP without ICP variations but also without effect on gas exchanges,

respiratory system mechanics, and intracranial hemodynamics.

In a previous studyon children with cerebral neoplasmwe demonstrated that PEEP provides

changes in cerebral hemodynamics similar to those described for adults. In particular, PEEP-

induced only modest increases in CVP (approximately 1 mm Hg from PEEP 4 to PEEP 8) small

ICP rises but also without significant effect on gas exchanges, respiratory system mechanics,

and intracranial hemodynamics [18]. a closed skull model, downstream pressure for cerebral

perfusion is either ICP or CVP, whichever is the higher. However, with increasing PEEP, we

found that CVP calibrated to the level of the heart rises from five to 8 mmHg. In our study, CPP

calculated as difference between MAP and ICP resulted 70.3 [60; 72.67], 70.83[67.67; 76.33],

and 67.5 [61;74]; respectively for ZEEP, PEEP 4 and PEEP 8. Furthermore, the CPP values, cal-

culated as the difference between MAP and CVP but also MAP and CVP, were 69.2 [64.3–73.7]

mmHg, 69 [64.9–77.8] mmHg, 67.2 [58.1–72.9], respectively for ZEEP, PEEP 4 and PEEP 8.

Although, statistical analysis has not been performed, at this level of PEEP the CPP values

calculated as CVP-ICP and MAP-CVP are similar.

However, the interactions between the respiratory system and intracranial hemodynamic

in brain-injured patients are more complex, and the ventilatory management is challenging.

Children with severe TBI could present initial mixed metabolic acidosis plus respiratory acido-

sis [6], and it is advocated the early correction of hypoxemia avoiding hypocarbia. In this sce-

nario, the use of PEEP could improve oxygenation, but it could affect intracranial pressure.

Evidence in the literature demonstrates that, with close monitoring of cerebral and systemic

haemodynamics, PEEP can be safely applied and titrated to an optimal level in the manage-

ment of acute respiratory distress syndrome (ARDS) following traumatic brain injury [19].

High PEEP levels increased brain tissue oxygen pressure and oxygen saturation, without an

increase in intracranial pressure or decrease in cerebral perfusion pressure. High PEEP levels

can be used as a safe alternative to improve brain oxygenation in patients with severe traumatic

brain injury and acute respiratory distress syndrome [20]. However, several studies demon-

strate that after TBI, cerebral autoregulation is impaired with a severe risk of hypoperfusion.

Paediatric patients have small cisterns, cortical sulci are tight and have small ventricles in pro-

portion to the total intracranial volume. The infant’s brain has a reduced intracranial compli-

ance [21]. For this reason, children often develop brain swelling defined as a reduction of

cerebrospinal spaces, spaces, particularly the basal cisterns on CT scan [16]. DC could be used

to treat intracranial pressure preventing or treating herniation [9].

Impact of positive end expiratory pressure on cerebral hemodynamic
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There is no evidence regarding the effect of PEEP on cerebral hemodynamic post-DC.

In patients with normal compliance, PEEP application may raise right atrium pressure

increasing internal jugular vein pressure [22]. On the contrary, in patients with low CrsI, this

effect is prevented by “stiff lung phenomenon”[16,23]. Infants have high cardiovascular toler-

ance to the application of high airway pressures. The volume-pressure relationship of the chest

wall is much steeper in the infant. For this reason, relatively large changes in intrathoracic

pressure cause small variations in chest wall pressure with a limited effect on pleural pressure

[24].

In adult patients, authors suggest that any factor likely to reduce the effect of Starling’s resis-

tor significantly, such as decompressive craniectomy, should be considered in the evaluation

of PEEP and any effect on the intracranial system [16].

In paediatric patients with decompressive craniectomy, it is uncertain if a small increase in

CVP could increase the jugular bulb pressure (Pj) and if a Starling resistor effect acting

between dural sinuses and cerebral veins may have dampened it. In addition, when the head is

kept at 30 degrees, the vertebral venous plexus may exert cerebral venous drainage better than

the jugular veins [18].

This study has several limitations. First, we assumed that the pressure measured at each

point might be the same, but it may not be the same in an open skull. Secondly, we did not per-

form measurements of cardiac output after PEEP applications. Thirdly, we did not perform

retrograde cannulation of the internal jugular vein. Thus, we have not prediction of venous

drainage impairment. Fourthly, we did not perform the PEEP assessment in children with an

increase in ICP or a decrease in CPP.

Fifthly, the sample size was small, and further studies involve large and better-defined pop-

ulation should be performed to confirm our data.

Conclusion

In conclusion, in the child aged 4–16 years, post-decompressive craniectomy, who has a stable

measured ICP (i.e., <20 mm Hg) and stable measured CPP (i.e., >50 mm Hg), the addition of

PEEP up to 8 cm H2O does not result in a change in the measurements of ICP or CPP.

Probably, our results could suggest the use of PEEP (up to 8 cm H2O) to restore lung

recruitment and improve oxygenation in paediatric patients with severe head injuries.
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S1 Fig. CrsI, gas exchanges, MAP, CVP, CPP and Vmed at ZEEP (in white), PEEP4 (in

light gray) and PEEP8 (in dark gray). � Statistical significance respect to ZEEP.

† Statistical significance between PEEP4 and PEEP 8.

(JPG)

S1 Table. Demographic, clinical, and imaging characteristics of patients with severe brain

injury who underwent decompressive craniectomy. BA: Bicycle Accident; GCS: Glascow

Coma Score; MVA: Motor Vehicle Accident; PA: Pedestrian Accident; ST: Sport Trauma.
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S2 Table. Respiratory mechanics data, MAP, CVP, arterial blood gases, ICP, CPP and

Vmed at different PEEP level. � Statistical significance respect to ZEEP.

† Statistical significance between PEEP4 and PEEP 8.
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