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Introduction

Phase slips, i.e. phase fluctuations of the superfluid order parameter, are the primary excita-

tions of one-dimensional superfluids and superconductors, in the presence of an obstacle for the

superflow and supercurrent [1, 2, 3, 4, 5, 6, 7]. These excitations are particularly abundant in

one-dimensional systems because of their fragility and vulnerability to the presence of pertur-

bations and fluctuations compared to higher dimensional systems. The phenomenon of phase

slips has been originally studied in the field of superconductors, and only recently it has been

investigated also in the field of ultracold quantum gases, which are offering an unprecedented

opportunity of exploring important quantum phenomena. They are, in fact, very versatile and

powerful tools and good candidates to be suitable quantum simulators of several phenomena

concerning condensed matter, superfluidity and superconductivity, thanks to the control and

manipulation of key properties such as dimensionality and interactions that can be changed by

using optical lattices and Feshbach resonances [8].

The first theoretical proposal for the phase slips phenomenon was made by Little in 1967

[1] in order to describe the finite resistance of thin wires below the critical temperature for

superconductivity. He supposed that each segment of a thin wire has a finite probability to

become, for a very short time, a normal conductor. Due to these fluctuations, which are

originated by thermal effects, the persistent current is disrupted and a non-zero resistance

in the wire arises. In this situation, the excitations are known as thermally activated phase

slips (TAPS). However, the resistance may remain finite also at zero temperature, due to the

presence of quantum phase slips (QPS), which may occur via quantum tunnelling events.

Phase slips, both thermal and quantum, have been deeply investigated, both from a theo-

retical and experimental point of view, in different condensed-matter systems. In particular,

they have been observed in superconducting nanowires [11, 9, 10, 12, 13, 14] and Josephson

junction arrays [15].

The phenomenon of phase slips became of interest also in the field of superfluids based

on ultracold quantum gases. This kind of systems, in fact, gives the possibility to investigate

1
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aspects of phase slips that are not accessible in other systems, thanks to their extreme tunability.

For example, by tuning the interactions among the particles of the Bose-Einstein condensate

(BEC) thanks to Feshbach resonances [16, 17], it is possible to understand if the interactions

can modify the nucleation rate of phase slips or if they can influence the generation of quantum

phase slips rather than the nucleation of thermally activated ones. In condensed-matter physics,

in fact, tuning the interactions between the Cooper pairs is difficult to achieve. Moreover, it is

possible to study the phenomenon of phase slips also in one dimensional system with different

geometry. Recently, both theory and experiments investigated the phase slips mechanisms not

only in a one-dimensional superfluids [5] but also in a ring geometry [7].

In the case of ultracold quantum gases the presence of phase slips induces a finite dissipa-

tion, which is the analogous of the resistance in condensed matter systems. So, the goal in

the presence of BEC is to study the dissipation induced by phase slips as a function of the

interaction, temperature and velocity. Despite several theoretical models concerning the phe-

nomenon of phase slips in ultracold quantum gases have been made, an experimental exhaustive

picture of QPS in ultracold superfluids has not been obtained until few years ago. The first

signatures of QPS obtained so far are the observation of a regime of temperature-independent

dissipation for a Bose-Einstein condensate in a 3D optical lattice in the group of Brian DeMarco

[18], and our recent observation of velocity-dependent dissipation in one dimensional lattices

(1D) [19, 20, 21]. Theoretical studies that attempt to reproduce the experiments are underway

[22, 23].

As in the case of condensed matter systems, also in the presence of ultracold quantum gases

there are experimental obstacles, which make the observation of the phase slips difficult. For

example, the occurrence of the Mott insulating phase [24] prevents the observation of phase

slips in the strongly interacting regime. In fact, when the system is a Mott insulator the

superfluidity of the system, which is the key ingredient to study how fluctuations affect the

transport properties of the superfluid, is lost. Moreover, it is also difficult to explore a wide

range of currents, i.e. superfluid velocities, due to the occurrence of two different dissipation

phenomena: the Landau instability and dynamical instability. The first phenomenon is related

to the Landau’s criterion of the superfluidity [25, 26], i.e. if the system flows slower than a

critical velocity vc, which correspond to the sound velocity, no excitations can be created and

the system does not dissipate. As soon as the system exceeds the critical velocity, phonons will

be emitted, inducing thus a energy lost for the superfluid. The latter phenomenon is related to

the divergence of the phase slips nucleation rate: if the system velocity is larger than a critical

velocity for the dynamical instability, the system enters a dynamically unstable regime driven
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by a divergence of the phase slip rate and strongly dissipates.

In order to observe the presence of QPS and to study how this kind of fluctuations modifies

the behaviour of our system, we performed transport measurements by using a trap oscillation

technique in the presence of a 1D optical lattice, and we studied the time evolution of the quasi-

momentum of the system. We observe two different behaviours depending on the momentum

reached during the oscillation. For momenta smaller than the critical momentum for the dy-

namical instability we observe that our system oscillates with a damping due to the presence of

phase slips. For large momenta we observe instead an overdamped motion, which we attribute

to the occurrence of the dynamical instability that can be described in term of a divergence of

the phase-slips rate at the critical velocity for the dynamical instability. In the first part of my

theses, I will show the experimental results regarding this two different phenomena, obtained

by exciting the sloshing motion of the system for different values of interactions, velocities and

temperature. In the second part of my thesis, I will focus the attention on transport mea-

surements performed at constant velocity. By employing this new experimental technique, we

can overcome some experimental limits occurring when we excite the sloshing motion of the

system, and we can investigate the system dissipation in the regime of low velocity and strong

interactions. In both cases of weak and deep 1D optical lattice, we observe a finite dissipation,

not only in the superfluid regime, but also in the Mott insulating one. We attribute this dissi-

pation when the system is in the Mott insulating regime to the nucleation of phase slips of the

residual superfluid phase, which is due to the fact that we have an inhomogeneous system.

The presentation of the thesis is organized as follows. In the first chapter I will introduce the

main instruments related to the physics of BECs. I will discuss the Bose Einstein condensation

theoretical model and I will focus the attention on the experimental techniques employed to

independently control interactions and dimensionality, i.e. Feshbach resonances and optical

lattices. In the end of this chapter I will talk about the physics of a particle in an optical

lattice.

In the second chapter, I will focus the attention on one-dimensional systems. Initially I

will describe the importance and the basic features of one-dimensional systems. Then I will

introduce the theoretical frameworks of a one dimensional systems in the presence of an optical

lattice, i.e. the Bose Hubbard model and the Sine Gordon ones. I will show that depending

on the competition between the interaction energy and the tunnelling one, the systems may

behave as an insulator rather than a superfluid.

The third chapter concerns the phenomenon of phase slips in 1D systems. First I will

introduce the phenomenon in superconductors and I will show both the theoretical and the
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experimental results regarding thermally activated phase slips and quantum ones. Then I will

briefly discuss the first experimental signatures of QPS in superfluids and I will focus the

attention on the theoretical model of phase slips in 1D atomic superfluids.

The last chapter is the core of my theses, and it is dedicated to our experimental results

regarding the observation of phase slips (both quantum and thermal). In the first part I will

briefly describe how we realize the 1D superfluids by starting from a three-dimensional 39K

BEC. Then, I will initially focus the attention on the transport measurements performed by

using the trap oscillation technique, and subsequently I will describe the transport measure-

ments performed at constant velocity.



Chapter 1

Bose-Einstein Condensate

Bose-Einstein Condensates (BECs) are extremely versatile and powerful tools which can be

employed in order to investigate quantum problems related to different branches of physics.

The phenomenon of BEC occurs when a high fraction of bosonic particles in thermal equi-

librium occupies the same single particle ground state. In this situation, they are observable

macroscopic objects behaving according to the laws of quantum mechanics.

The phenomenon of BEC was predicted in 1924 by Bose and Einstein [27, 28] and it was

experimentally observed for the first time in 1995, almost simultaneously in three different

groups [29, 30, 31] which employed Alkali atoms.

In order to better understand the Bose Einstein condensation, let us consider a gas of N

bosons in the continuum confined in a 3-dimensional box with volume V , which in thermal

equilibrium are characterized by a density n = d−1/3, being d the mean distance between

Figure 1.1: Phase transition to the BEC. (a) When T ≫ Tc, the distance between the particles, d , is
large than the De Broglie wavelength λDB and the particles obey to the Boltzmann statistics. (b) By
decreasing the temperature the quantum nature of the particles must be taken into account and they
must be described by using a wave function. (c) At T ≃ Tc the wave functions start overlapping and a
macroscopic number of particles occupy the lowest-energy quantum state giving rise to the BEC. (d)
At T = 0, all particles are in the same quantum state, giving rise at a pure BEC without any thermal
component

5
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the particles, and by a thermal velocity v. At high temperature, they can be considered as

distinguishable point-like particles, obeying to the Boltzmann statistics (Fig.1.1a). Decreasing

the temperature, the quantum nature of the particles must be taken into account and they

must be described by using a wave function, which is symmetric under interchange of any pair

of particle, due to the bosonic nature of the particles (Fig.1.1b). In this situation, the spatial

extension of a particle can be suitably described in terms of its De Broglie wavelength

λDB =

√

2π~2

mkBT
(1.1)

where m is the particle mass, T the temperature and ~ and kB are, respectively, the Planck

and the Boltzmann constants. Decreasing the temperature below a critical temperature Tc,

the De Broglie wavelength becomes of the order of the mean distance between the particles,

i.e.
(

V
N

)1/3 ≈ λDB, the wave functions start overlapping, the particles cannot be considered

distinguishable any longer and a phase transition occurs. In particular, a macroscopic number of

particles occupies the lowest-energy quantum state , giving rise to the BEC (Fig.1.1c). Ideally,

at T = 0, all particles are in the same quantum state, giving rise at a pure BEC without any

thermal component (Fig.1.1d). At the phase transition, n and T are related via

nλ3
DB = 2.612, (1.2)

where nλ3
DB is the phase-space density, which is defined as the number of atoms in a box

with a volume equal to λ3
DB. In this way, depending on the value of the phase-space density, it is

possible to know if the system behaves according to the laws of quantum or classical mechanics.

For example, a system of 87Rb at T = 300 K and P = 1 Atm, behaves according to the laws

of classical mechanics, due to the fact that the phase-space density nλ3
DB ≈ 10−8 is eight order

of magnitude smaller than the phase-space density at the phase transition. In order to reach

the BEC phase, one can act on the phase-space density either by increasing the density or

decreasing the temperature. However, by increasing the density, the probability of three-body

recombination increases as well and this results in an increase of atoms losses. In fact, when

three atoms are close to each other, two of them may form a dimer, which is usually in an

excited vibrational state, whereas the third atom carries away the released energy. Due to the

fact that this energy is much larger than the typical depth of the trap confining the atoms, the

three atoms are lost and the system is subject to heating.

In addition, not only the increase of the density but also the decrease of the temperature

gives rise to a problem. By decreasing the temperature, in fact, all the known interacting

systems undergo a phase transition to the solid phase, with the exception of the helium. Both
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problems can be solved by employing dilute gases which are defined as systems with a density

many thousand times more dilute than air, where the mean interparticle distance is much

greater than the scattering length a for s-wave collisions, i.e.

n ≪ 1

a3
. (1.3)

In this condition, the probability for three-body collisions to occur is severely reduced and

at the same time the samples can be cooled down to very low temperatures (of the order of 1µK

or less) due to the fact that the still probable two-body collisions keep the gas in a metastable

state, avoiding the transition to the solid phase.

1.1 Non-interacting particles: ideal BEC

Let’s consider an ideal system of non interacting bosons at the thermodynamic equilibrium. As

it is well known, the mean occupation number of bosons in the single-particle state ν is given

by the Bose-Einstein distribution [27, 28, 32]

f̄(ǫν) =
1

e(ǫν−µ)/kBT − 1
(1.4)

where T is the temperature, ǫν is the energy of the νth single particle energy state and µ

is the chemical potential. The latter depends on the total number of particles N and on the

temperature T via the normalization condition, which imposes that the total number of particles

must be equal to the sum of the occupancies of the individual levels. At high temperature, the

chemical potential is much smaller than the ground state energy ǫmin, due to the fact that the

mean occupation number of the single-particle state is less than unity, and the Bose statistics eq.

1.4 reduces to the Maxwell-Boltzmann statistics. By decreasing the temperature, the chemical

potential increases as well as the mean occupation numbers. However, µ cannot exceed the

ground state energy, due to the fact that if µ > ǫmin, f̄(ǫν) becomes negative and loses its

physical meaning. Consequently, µ must be always lower than ǫmin and the mean occupation

number of any excited single-particle state is superiorly limited by the value 1
e(ǫν−ǫmin)/kBT−1

.

In general, at a fixed temperature T , the constant total number of particles Ntot is given

via Ntot = Nexc + N0 where Nexc is the number of particles in the excited state and N0 is the

number of particles remaining in the ground state. If the number of particles in the ground

state is arbitrarily large, the system has a BEC and this happens when the chemical potential

approaches the ground state energy. The highest temperature at which the ground state is

macroscopically occupied is known as Bose Einstein transition temperature Tc and it is defined
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via

Nexct(Tc, µ = ǫmin) = Ntot (1.5)

More in detail, at the transition Next is given by the equation

Nexct(Tc, µ = 0) = Ntot =

∞
∫

0

dǫg(ǫ)
1

e(ǫ)/kBTc − 1
(1.6)

where the ground state energy ǫmin = 01. In the Eq. 1.6 g(ǫ) is the density of the state,

defined as g(ǫ) = dG(ǫ)
dǫ

where G(ǫ) is the total number of states with energy less than ǫ.

Depending on the system boundary condition, the density of the states depends differently on

the energy. In particular, in the ideal situation of a non-interacting d-dimensional system in

thermal equilibrium and at zero temperature, the density of state depends on the energy via

g(ǫ) ∝ ǫd/2−1, which implies that in a two-dimensional system the density of the states does

not depend on the energy. Instead, in the situation of non-interacting identical bosons in a d-

dimensional harmonic confining potential V (r) = 1
2
m

d
∑

i=1

ω2
i x

2
i
2 with frequency ωi, the density of

states depends on the energy via g(ǫ) = ǫd−1

(d−1)
∏

i
~ωi

. As a consequence, the critical temperature

behaves differently depending on the system dimensionality. In general it can be written as

kTc =
N

1/α
tot

[CαΓ(α)ζ(α)]1/α
. (1.7)

Here Γ(α) and ζ(α) are, respectively, the gamma and the Riemann zeta functions and both

depend on the index α which is related to the system dimensionality: in the presence of a

d-dimensional system α = d/2, whereas in the presence of a d-dimensional harmonic confining

potential α = d (Tab. 1.1).

Also the constant Cα depends on the index α and behaves differently in the two considered

cases. In caseof a box of volume V

Cα =
V mα

21/2π2~3
, (1.8)

whereas in the case of a harmonic potential

1This assumption is valid also in the presence of an harmonic potential if the number of particles is large
enough to neglect the zero-point energy.

2The case of N particles in an harmonic potential is of interest due to the fact that, from an experimental
point of view, the BEC is always realized in an external confining potential
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Cα =
1

(α− 1)
∏

i

~ωi
. (1.9)

In 3-dimension, in both cases, the temperature at which the transition occurs is finite. In

the first case it is related to the number of particles Ntot via

kBTC ≈ 3.31
~
2

m

(

N

V

)2/3

(1.10)

whereas in the latter case

kBTC ≈ 0.94~ω̄N1/3 (1.11)

where ω̄ = (ω1ω2ω3)
1/3 is the geometric mean of the three oscillator frequencies. Let’s focus

our attention on the low dimensional cases. For a α ≤ 1, the zeta Riemann function diverges and

this implies that for a uniform gas in one or two dimensions and for a one dimensional harmonic

potential, the condensation can occur only at TC = 0. Differently, for a two dimensional

harmonic potential, ζ(2) is finite, and consequently the system undergoes the transition to the

BEC phase at finite temperature. The one-dimensional systems will be treated in more detail

in Chapter 2.

From the transition temperature it is possible to obtain the number of particles in the

excited state and, consequently, the number of particles in the ground state via

N0(T ) = Ntot −Nexc(T ). (1.12)

By considering only the three-dimensional cases, in the presence of a uniform gas, the number

of particles in the condensate phase depends on T/Tc via

N0 = N

[

1−
(

T

Tc

)3/2]

(1.13)

α Γ(α) ζ(α)
1 1 ∞
1.5 0.886 2.612
2 1 1.645
2.5 1.329 1.341
3 2 1.202
3.5 3.323 1.127
4 6 1.082

Table 1.1: Gamma and Riemann zeta functions for different values of the α parameter.
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Figure 1.2: Condensate fraction in the presence of a 3D box (red dotted line) and in the presence of
an harmonic potential (black continue line). Adapted from [33]

whereas in the presence of an harmonic potential

N0 = N

[

1−
(

T

Tc

)3]

(1.14)

1.2 Interacting particles

So far we have considered the ideal case of a system of non interacting particles. In this section,

instead, we will address the case of interacting particles, and we will derive the wave equation

describing the behaviour of this kind of systems which is called Gross-Pitaevskii equation [32].

As it was shown before, in a dilute gas, it is possible to neglect the three-body collisions and to

consider the binary collisions as the only relevant. In general, in this systems, the interactions

are very small for typical interparticle separation, but they become important if two atoms

are close together. If the two particles have small total energy in the centre-of-mass frame,

the interaction is dominated by the s-wave contribution and the collision properties can be

described in terms of the scattering length a, which is the only relevant parameter [32].

In this situation, the binary collisions can be written in terms of a contact pseudopotential

as

U(r − r’) = gδ(r− r’) (1.15)

where (r− r’) is the distance between the two atoms, and g
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g =
4π~2

m
a (1.16)

is the constant coupling. This quantity depends on the atom mass m and on the scattering

length a, which can assume both positive that negative values: in the first case the interaction

among bosons is attractive, whereas in the latter the particles repel each others.

In second quantization, the many-body Hamiltonian operator describing a system of N inter-

acting bosons, where the interaction is described by using the pseudopotential in the Eq.1.15,

in an external potential Vext, is given by

Ĥ =

∫

drΨ̂(r)†
[

− ~
2

2m
∇2 + V (r)

]

Ψ̂(r) +
g

2

∫

drΨ̂(r)†Ψ̂(r)†Ψ̂(r)Ψ̂(r). (1.17)

Here Ψ̂(r) is the field operator, and its evolution is determined by the Heisenberg equation

i~
∂

∂t
Ψ̂(r, t) =

[

Ψ̂(r), Ĥ
]

(1.18)

which can be written as

i~
∂

∂t
Ψ̂(r, t) =

[

− ~
2

2m
∇2 + V (r) + gΨ̂(r, t)†Ψ̂(r, t)

]

Ψ̂(r, t) (1.19)

by using the commutation rules. In a semiclassical theory, the field operator can be written as

Ψ̂ = 〈Ψ̂〉+ δΨ̂ (1.20)

where φ = 〈Ψ̂〉 is the expectation value on the quantum state of the system and δΨ̂ are the

quantum fluctuations.3 The expectation value φ = 〈Ψ̂〉 is the order parameter related to the

phenomenon of Bose-Einstein condensation and correspond to the BEC wave function. The

order parameter describes the degree of symmetry of the system and assumes a different value

depending on whether the system is in an ordered or in a disordered phase. In particular,

for T < TC , i.e. when the system is in the ordered BEC phase, it has a finite value whereas

it becomes zero for T > TC , as a result of a spontaneous symmetry breaking. The quantum

fluctuations δΨ̂ correspond to the non condensed particles and, by using a mean field approach,

they can be neglected at very low temperature (T ≈ 0), when a macroscopic number of particles

occupies the ground state. By putting the Eq. 1.20 in the Eq.1.19, we find the Gross-Pitaevskii

equation

3For definition, 〈δΨ̂〉 = 0



12 CHAPTER 1. BOSE-EINSTEIN CONDENSATE

i~
∂

∂t
φ(r, t) =

[

− ~
2

2m
∇2 + V (r) + g|φ(r, t)|2

]

φ(r, t) (1.21)

This equation, due to the interaction term, is a non linear Schrödinger equation and it

describes the time evolution of the BEC wavefunction which is connected to the BEC density

distribution via

ρ(r, t) = |φ(r, t)|2 (1.22)

The Gross-Pitaevskii equation 1.21 can be also obtained by minimizing the energy functional

E[φ] =

∫

φ(r, t)

[

− ~
2

2m
∇2 + V (r)φ(r, t)

]

φ(r, t) +
g

2
|φ(r, t)|4, (1.23)

where the first term is the kinetic energy, the second one is the potential energy and the

last one is the interaction term, respect to infinitesimal variations of φ.

The ground state of the system, i.e. the stationary solution of the Gross-Pitaebskii equation

1.21, can be obtained by substituting the ansatz wavefunction

φ(r, t) = φ(r)e−iµt/~, (1.24)

where µ is the chemical potential, in the Eq. 1.21. In this way, we found the time-

independent Gross-Pitaewskii equation

[−~
2

2m
∇2 + V (r) + g|φ(r)|2

]

φ(r) = µφ(r) (1.25)

which is a Schrödinger-like equation, where the potential acting on a atom at the position r

is given by the sum of an external potential V and an effective mean potential generated by

the remaining bosons at that point. In the equation the eigenvalue is the chemical potential

µ, which it is different from the case of a linear Schrödinger equation where the eigenvalue is

the energy. In fact, if for non-interacting particles all in the same state the chemical potential

is equal to the energy per particle, in the interacting case it is not.

Let’s consider the Gross-Pitaevskii equation in the presence of an external harmonic poten-

tial V (x1, x2, x3) = m
2

3
∑

i=1

ω2
i x

2
i . In the case of N non interacting particles, the wave function

of the system is given by the normalized product of the ground state wave functions of the

single-particle harmonic oscillator, i.e.

φ0(r) =
1

π3/2a
3/2
ho

e
1
2

3∑

i=1

x2i
a2
ho (1.26)
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Figure 1.3: BEC density distribution for different values of positive scattering length (repulsive
interaction). In the non interacting case the density distribution is a Gaussian (dotted line) whereas,
by increasing the interaction it takes the form of an inverted parabola with a broadening which depends
on the interactions strength. Adapted from [34]

with aho =
√

~/mωho the harmonic oscillator length, and the BEC density distribution has

the form

n0(r) = N |φ0(r)|2. (1.27)

In the limit of strong interactions, i.e. Na ≫ aho, the interaction energy term in the time-

independent Gross-Pitaevskii equation is the dominant one and the kinetic energy term can be

neglected (Thomas− Fermi Approximation). In this situation, the equation takes the form

[

V (r) +
4π~a

m
|φ(r)|

]

φ(r) = µφ(r) (1.28)

and it can be analytically solved. In this situation the solution is

n0(r) =

{ 1
g
[µ− V (r)] µ > V (r)

0 µ < V (r)
(1.29)

which implies that for an harmonic potential the density distribution assumes the shape of

an inverted parabola
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n0(r) = −µ

g

(

1−
3

∑

i=1

x2
i

Ri

)

(1.30)

where Ri =
√

2µ
mω2

i
is the Thomas-Fermi radius in the ith direction.

In Fig.1.3 is shown how the repulsive interaction between atoms modifies the density dis-

tribution: it has not the form of the gaussian wavefunction of the harmonic oscillator ground

state anymore, as in the case of non interacting particles, but it is a broader inverted parabola

with a broadening depending on the interactions strength.

1.3 Feshbach resonances

How it was introduced in the previous section, the effective interaction among the particles

in a dilute bosonic gas at low temperatures can be described in terms of a single parameter,

i.e. the scattering length a. This quantity can assume both positive and negative value and

the interaction between two particles is, respectively, attractive or repulsive. Anyway, there

is the possibility to change the scattering length value, and switching from a regime to an

other, by using Feshbach resonances. This property was studied for the first time in 1958 by

Feshbach in the field of nuclear physics [17], and it is important also in the field of cold atoms

[16, 35, 36]. In fact, thanks to the presence of these resonances, it is possible to tune the

interparticle interaction by simply changing a magnetic field acting on the atoms.

Let us talk about Feshbach resonances more in details and let us consider two diatomic

molecular potential curves, the ground state Vbg and the excited state Vexc, which correspond

to two different spin configurations4 (Fig.1.4). At large interparticle distances, i.e. for R → ∞,

the potential Vbg correspond to the energy of two free atoms and it is used as reference energy

(V∞ = 0). When two atoms collide, with a small energy E, the potential curve Vbg correspond

to the accessible channel for collisional processes and it is called “open channel”. The other

channel, which is known as “closed channel”, it is not accessible, but it may have a bound

molecular state close to 0. If the two atoms have the possibility to make a temporary transition

to this the bound state, then their scattering cross section can extremely increase.

Let us suppose that the magnetic moment of the atoms in the two channels is different. In

this case, it is possible to change the energy difference between the two state by simply varying

a magnetic field B thanks to the fact that the two potential curves have a different response

4In general, a molecule has more than two potential curves, each of which corresponds to an hyperfine or
Zeeman level. For simplicity the description considers one excited state and it describes appropriately the case
of a single resonance.
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Figure 1.4: Model of the Feshbach resonance. The atoms in the open channel Vbg(R) collide with a
small energy E. If the collisional energy approaches the energy of the molecular bound state in the
closed channel Vext(R) (at the Feshbach resonance) the scattering cross section increases. By tuning a
magnetic field, it is possible to the energy level of the closed channel, with respect to the open one.
Adapted from [36]

to the application of the field due to the Zeeman effect. In particular, by tuning the magnetic

field, it is possible to change the energy level of the closed channel, with respect to the open

one. At the (Feshbach) resonance, the energy of the two colliding atoms E approaches the

energy of the molecular bound state, by causing the increase of the scattering cross section.

The scattering length depends on the magnetic field B via

a(B) = abg

(

1− ∆

B − B0

)

(1.31)

where B0 is resonance center, ∆ the resonance width and abg the background scattering

length, i.e. the scattering length far from the resonance.

It is important to note that if the resonance is a general phenomenon, the parameters

B0, ∆ and abg depend on the atomic specie. Let us consider the specific case of the 39K,i.e.

the atom that we employ in the experiments. It has a background scattering length negative

(abg = −44a0, with a0 the Bohr radius), corresponding to an attractive interaction, which would

provoke the BEC collapse. However, it has also a wide Feshbach resonance and it is possible
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Figure 1.5: Scattering length a, in unit of Bohr radius, as a function of the magnetic field B for 39K
atoms. The Feshbach resonance occurs at B0 ∼ 400G. Bzc and ∆ are zero-crossing magnetic field and
the resonance width respectively.

to tune the value of the scattering length until it reaches positive value. Fig.1.5 shows a plot

of the scattering length a as a function of the magnetic field B of the 39K in the substate

|F = 1, mF = 1〉. In this situation B0 ≃ 402G and ∆ ≃ −52G. As it is shown in Fig 1.5, the

scattering length vanishes at a certain value of the magnetic field. It is known as zero-crossing

magnetic field Bzc = B0 +∆ and it is related to the scattering length via

a(B) =
abg
∆

(B − Bzc) (1.32)

if B → Bzc. It is important to not that by tuning the value of
abg
∆

we control the interaction

around the vanishing interaction point. In particular, by decreasing the ratio we improve the

accuracy for tuning the interaction. In the case of 39K atoms, the sensitivity around Bzc = 350G

is da/dB ≃ 0.56a0/G and this implies that if the stability of the magnetic field is for example

1G, the interactions of the BEC can be nulled with an uncertainty of about half a Bohr radius.
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1.4 Optical dipole potentials: red detuned trap

Another important feature of the Bose-Einstein condensates is the possibility to easily manip-

ulate and trap the atoms by using laser light. In order to understand how it is possible, let us

focus on the interaction between the atoms and a monochromatic electron magnetic radiation.

The presence of an electric field

E(r, t) = êẼ(r)e−iωt + h.c. (1.33)

induces on the atoms a dipole momentum, which oscillates at the same driving frequency ω

of the electric field E

p(r, t) = êp̃(r)e−iωt + h.c. (1.34)

Both in the electric field equation that in the dipole momentum one, ê is the unit polarization

vector and Ẽ and p̃ are, respectively, the amplitude of the electric field and of the dipole

momentum, which are related via p̃ = αẼ, with α = α(ω) the complex polarizability.

Due to the interaction between E and p, a conservative dipole potential

Udip = −1

2
〈pE〉 (1.35)

is present.

It is possible to demonstrate [37] that if the diving frequency ω is far from the atomic

resonance frequency ω0, which is the case of main practical interest, the dipole potential Udip

takes the simple form

Udip =
3πc2

2ω3
0

(

Γ

∆

)

I(r) (1.36)

where ∆ = ω − ω0 is the detuning,

Γ =
3πc2

2~ω3
0

(

Γ

∆

)2

I(r) (1.37)

is the scattering rate due to the far-detuned photon absorption and subsequent spontaneous

reemission by the atoms and I(r) = 2ǫ0c|Ẽ|2 is the field intensity. In order to reduce the value

of the scattering rate in the experiments, large detuning and high intensities are used, due to

the fact that Udip ∝
(

Γ
∆

)

, whereas Γ =

(

Γ
∆

)2

The detuning ∆ can assume both positive that negative value. In the first case, which is
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known as “blue detuning”, the dipole potential is positive, the interaction is repulsive and the

light intensity maxima correspond to the potential maxima. In the latter case, which is known

as “red detuning”, the light intensity maxima correspond to the potential minima and the

interaction attracts atoms into the light field. In this pictures we can talk about blue-detuned

traps and red-detuned traps. We focus our attention on the latter case.

In the experiment, red detuned gaussian laser beams are employed in order to produced

optical trap. The spatial intensity distribution of a gaussian beam, which propagates along the

z direction is given by

I(r, z) =
2P

πw2(z)
e
−2 r2

w2(z) (1.38)

where r is the radial coordinate and P the power of the beam. w(z) is the radial distance where

the maximum intensity is reduced of a factor e−2 and it depends on the coordinate z via

w(z) = w0 =

√

1 + (
z

zR
)2 (1.39)

where w0 is the waist of the beam, i.e. the minimum radius, and zR = πω2
0/λ is the Rayleigh

length. Both w0 and zR give an estimation of the divergence of the Gaussian beam, and in

particular large values of w0 and zR implicate a collimated beam.

From the beam intensity profile it is possible to obtain the dipole potential via Eq.1.36.

Under the assumption that the atom thermal energy kBT is lower than the potential depth

Vtrap = V (r = 0, z = 0) (which can vary from few kHz to 1MHz), it is correct to assume that

the dimensions of the gas are smaller than the divergence length scale. In this situation the

optical potential can be approximated with a harmonic oscillator with a cylindrical symmetry

Figure 1.6: Blue- detuned and red-detuned traps. (a) In Blue-detuned traps the atoms are repelled
from the blue detuned dipol light field. (b) In red-detuned traps the atoms are attracted into the light
field. Adapted from [38].
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Vdip ≈ −Vtrap

[

1− 2

(

r

w0

)2

−
(

z

zR

)2]

(1.40)

whose oscillation frequencies are

ωr =

(

4Vtrap

mw2
0

)1/2

(1.41)

and

ωz =

(

2Vtrap

mz2R

)1/2

. (1.42)

It is important to know that the Rayleigh length zR is πw0/λ larger than the minimum

waist w0 and consequently the force acting on the atoms along the longitudinal direction is

lower than that acting along the radial direction. This implies that it is essential to use more

than one single laser beam to tightly confine the atoms along all of the spatial directions.

1.5 Optical lattices

By using laser light it is possible to realize optical lattices, which are the perfectly periodic

potential for neutral atoms. As the optical trap, they can be employed to trap and to manipulate

the atoms.

Optical which are realized by superimposing two counter propagating laser beams. The

interference of the two laser beams produces a standing wave with a period equal to λ/2, where

it is possible to trap the atoms. In order to have a standing wave with a larger period, the angle

between the two beams must be smaller than 180. In the presence of Gaussian laser beams,

the potential trap is

V (r, z) ≈ −V0e
−2r2/w2(z)sin2(kz) (1.43)

where k = 2π/λ is the lattice wave vector and V0 is the potential depth which can be written

in term of the recoil energy Er =
~
2k2

2m
as

s =
V0

Er

. (1.44)

It is important to note that if all of the parameters of the two laser beams are the same, V0 is four

times larger than Vtrap. This is the simplest case of 1D optical lattice, but it is also possible

to realize 2D or 3D optical lattices by superimposing, respectively, two or three orthogonal

standing waves, in order to avoid the interference term. In this situation, the potential depth
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Figure 1.7: Optical lattices scheme. (a)In the 2D case, a matrix of 1D tubes is created by super-
imposing two orthogonal standing waves. (b) A 3D optical lattice is created by superimposing three
orthogonal standing waves. Adapted from [38].

in the center is, respectively, the sum of the two or three standing waves. Obviously, if the

beams are not exactly orthogonal, the interference term is finite and the potential changes in

time depending on the time phase.

In the 2D case, the atoms are trapped to an array of tightly confining 1D potential tubes

(Fig. 1.7(a)), whereas in the 3D one, the optical lattice can be approximated by a 3D simple

cubic array of tightly confining harmonic-oscillator potentials at each lattice site (Fig. 1.7(b)).

Due to the fact that optical lattices are easily controllable and manipulable, they are con-

sidered a powerful tool that has a relevant role in the field of ultracold quantum gases. In

particular, the ensemble of optical lattices, which are perfect lattices without defects or lattice

vibrations, and BEC gives rise to a quantum simulator, which can be used to study various

phenomena concerning several branches of the physics.

1.5.1 Bloch Theorem

Let us now focus the attention on a particle in the presence of an optical lattice, which we

consider one-dimensional for simplicity. The evolution of the system is due to the Hamiltonian

H =
p2

2m
+ Vlatt (1.45)

which contains the kinetic energy of the particle, Ek =
p2

2m
, and another term related to the

presence of the optical lattice which satisfies the condition Vlatt(x) = Vlatt(x + d), with d the

lattice periodicity.

In this situation, the static Schrödinger equation takes the form

HΨ =

(

− ~
2

2m

∂2

∂x2
+ Vlatt

)

Ψ = EΨ (1.46)
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whose solution, according to the Bloch theory [39], is a periodic plane wave,

Ψn,q = un,q(x)e
iqx (1.47)

where the periodic term un,q(x) = un,q(x+ d) has the same lattice periodicity d.

As a consequence of the system periodicity, the eigenfunctions Ψn,q of the Schrödinger

equation and the eigenvalues En,q are characterized by two quantum numbers q and n. The

first one is called “quasi-momentum” and it is related to the translational symmetry of the

optical lattice.

It is important to note that the periodicity of the optical lattice is reflected also in the

reciprocal lattice, whose periodicity si G = 2π/d, and consequently

En,q(x) = En,q+G(x) (1.48)

Ψn,q(x) = Ψn,q+G(x) (1.49)

As a consequence of the reciprocal lattice periodicity, only the first Brillouin zone, i.e. the

elementary cell of the reciprocal lattice which ranges from q = −G/2 and q = G/2, is relevant.

The second quantum number, n, is called “band index”: for a given quasimomentum q, there

are several solution En(q) (which are continuous function of q) identified by the index n. This

solution are called “energy bands” and they are separated by forbidden zones, called energy

gaps. The energy bands behaves differently depending on the optical lattice depth. In the case

of weak optical lattice, i.e. s ≤ 5, the energy bands depends strongly on the quasimomentum

q and they takes the form

E(q̃)

ER
= q̃2 ∓

√

4q̃ +
s2

16
(1.50)

where q̃ = q/π/d − 1 and the minus sign is referred to the lower energy band whereas the

plus sign is referred to the first excited band. (Fig.1.8 (a-c) Under the assumption of weak

optical lattice, the only bound states belong to the first two energy band and this is due to

the fact that the gap energy between the nth band and the n + 1th once scales as V n+1
0 . The

particles in the other excited state, instead, behaves as free particles. We observe the energy

gap at the end of the Brillouin zone, where q = π/d, and its value is ∆Egap =
sER

2
.

For deep optical lattices, i.e. for s ≥ 5, we are in the “tight-binding regime” and the energy

bands depend slightly on the quasimomentum as
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Figure 1.8: Energy of the Bloch state as function of the quasimomentum q for different values of
lattice depth in the first Brillouin zone. (a-c) in the presence of a weak optical lattice , i.e. for
V0 < 5Er, the lowest band strongly depends on the quasimomentum, whereas in the presence of a
deep optical lattice (d-h), it becomes almost flat. Adapted from [38].

E(q)

ER

=
√
s− 2J cos qd (1.51)

where J is the tunneling energy, which represents the probability for an atom to hop from

one lattice site to the neighbour one(Fig.1.8 (d-h)). In this situation it is convenient to write

the nth eigenfunction as a superposition of many wavefunctions maximally localized on the

potential minima

Ψn,q(x) =

j=∞
∑

j=−∞
eixjqwn(x− xj) (1.52)

where wn,j(x) are the Wannier functions (Fig.1.9), which can be approximated with a Gaus-



1.5. OPTICAL LATTICES 23

Figure 1.9: Wannier functions (red) for two different value of lattice height s: (a) s = 3 and (b)
s = 10. For s = 3 the sidelobes are visible, whereas in the other case they become very small
corresponding to a tunneling probability decreases. Figure adapted from [38].

sian at the xth
j lattice site.

1.5.2 Semi-Classical Dynamics

Let us now considerer the dynamics of a particle subjected to an external force Fext. If the

external force varies slowly over the dimensions of the Bloch wave packet and it is weak enough

not to provoke interband transition, we can use the semiclassical model. From a classical point

of view, the behaviour of a particle subjected to an external force Fext, which is related to a

potential gradient, is setted by the Hamilton equation

ẋ =
∂H

∂p
(1.53)

ṗ = −∂H

∂q
. (1.54)

By assuming the analogy between the quasimomentum q and the momentum p, the semi-

classical equation of a wave packet in the first energy band can be written as

ẋ = v(0) =
1

~

dE

dq
, (1.55)

i.e. the Bloch velocity vn(q) = 1
h
∂En(q)

∂q
expressed in terms of the average position of the

wave packet x, and

~q̇ = −dV (x)

dx
. (1.56)
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According to the semiclassical model, if the external force does not cause an interband

transition, it leaves the energy spectrum, due to the periodic potential, unchanged and only

the position and the quasimomentum of the particle are changed.

By comparing Eq.1.56, which is related to the particle acceleration, with the second Newton

law mẍ = −dV (x)/dx, it is possible to introduce a new mass,

1

m∗ =
1

~2

d2

dq2
E0

q . (1.57)

It is called the effective mass and it depends on the band curvature. Eventually, it may

become negative near the Brillouin zones boundaries, meaning that the external forces induce

the particle to accelerate in the opposite direction.

In the tight binding limit, by considering the behaviour of the energy spectrum in the Eq.

1.51, the effective mass has the form

m∗ = m

(

ER

J

)

1

π2 cos(qd)
(1.58)

In particular, it depends on the energy band curvature and it tends to the real mass m in

the case of a free particle parabolic spectrum. The effective mass is an useful tool in order

to describe the dynamical behaviour of a particle in a periodic potential. The interest in this

concept is due to the fact that it is possible to use the classical mechanics to describe the

particle behaviour only if the mass of the particle is substituted with the effective mass which

takes into account the forces due to the presence of the periodic potential.



Chapter 2

Physics of 1D BEC

2.1 1D Quasi-condensate

As it was shown in Section 1.1, an important feature of one-dimensional systems is that in 1D

it is not possible to define a finite critical temperature Tc below which the ground state of the

system is macroscopically occupied and the transition to the BEC phase doesn’t occurs [32].

In fact for one-dimensional systems the critical temperature for Bose-Einstein condensation is

the absolute zero, and so no BEC can exist at a finite temperature. Anyway, a degeneracy

temperature below which the quantum nature of particles cannot be ignored can be defined

and it takes the form

TD =
~
2

mkB
n2
1D (2.1)

where n1D = N/L is the 1D density, with L the system length. Below this temperature, the

thermal De Broglie wavelength is comparable to the interparticle separation, the wavefunctions

of the particles are overlapped, but they do not share the same single-particle ground state.

For T < TD the system is in a new phase of matter, i.e. the quasi-condensate phase, which is

characterized by correlation properties different from those on 3D systems.

From a theoretical point of view, the correlation function between two wavefunctions sepa-

rated by at distance r is defined as

ρ(r) = 〈Ψ(r)†Ψ(0)〉 . (2.2)

For a pure 3D BEC with density of atoms in the ground state n0, the condition for Bose-

Einstein condensation is

25
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lim
|r|→∞

ρ(r) = n0 (2.3)

that is the correlation function is finite even at infinite distances. In fact the 3D BEC

is a macroscopic coherent object whose phase Φ(r) is well defined in the entire system. For

temperature above the critical temperature, the correlation function decays exponentially, as in

the classical systems. For a 1D system the situation is a bit different, due to the fact that the

strong phase fluctuations can destroy the long-range order of the system. As a matter of the

fact, the mean square fluctuations of the phase for 1D systems are expected to linearly diverge

at large distances

lim
|r|→∞

〈∆Φ(r)2〉 = lim
|r|→∞

mkBT

n1D~
2
|r| → ∞, (2.4)

whereas the correlation function decays exponentially

ρ(r)n1De
|r|
2ξ (2.5)

where ξ is the correlation length

ξ =
n1D~

2

mkB

1

T
(2.6)

describing the distance over which the system is coherent. It is important to note that the

correlation length increases as the temperature decreases. As a consequence, lowering the

temperature, the gas behaves more and more like a true condensate. As it was introduced

above, in 1D there is no condensation due to the fact the correlation function approaches zero

at large distances. Anyway, if the correlation length is sufficiently large compared to the system

size L, i.e. ξ ≪ L, the phase coherence is preserved throughout the system, which thus behaves

as a real condensate. In the intermediate case, i.e. ξ > n1D, the correlation function is zero

only for some particles, whereas is finite for the others. As a consequence, the gas is locally

coherent and the correlation is broken on the entire length scale. This phase is called ”quasi-

condensate” phase and the system has intermediate properties between a real condensate and a

normal system. In term of degeneracy temperature, the condition required to observed a quasi

condensate phase is

T

TD
=

L/N

ξ
< 1 (2.7)

In Fig. 2.1 the conditions for the different regimes are shown.
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Figure 2.1: Different regimes of a 1D system of N bosons. For T > TD, ξ < L/N and the system
is the normal phase. For TD/N < T < TD, ξ > L/N and the system has intermediate properties
between a real BEC and a normal system and it is in the “Quasi-Bec” phase. For T < TD/N the
system is a real BEC. Figure adapted from [40].

2.2 Experimental 1D system

In general, a system can be considered 1D both from a thermodynamic point of view that

a collisional one. In the first case, the particles are free to move along one direction (axial)

but their movement is frozen along the others two directions (radial). This means that the

energy difference between the ground state and the first excited state in the radial direction,

Erad = ~ωr where ωr is the radial frequency ωr, is larger than the thermal energy kBT i.e.,

Erad ≫ kBT (Fig.2.2).

In our experiments we employ optical lattices in order to freeze the particles movements

along the radial direction. In particular, the transverse trapping energy ~ωr = h × 40 kHz is

much larger than all other energy scales, realizing effectively one-dimensional systems. Under

the condition of a 1D system (along z) , the wavefunction takes the form

Ψ(r, z) = Ψ(z)φ(r) (2.8)

i.e. it can be factorized into a radial part, i.e. φ(r) ∝ e−r2/2ar with ar the harmonic oscillator

length if we consider an harmonic confining potential, and an axial one, whose form depends

on the specific potential along z. The simplest case is an axial confinement due to an optical

harmonic trap, with frequency ωz = 2π × 150 Hz in our experiments.

A system can be considered 1D also from a collisional point of view and this happens if

the dimensions of the confining direction are smaller than the 3D scattering length. Anyway,

in the experiment ar ≈ 70nm, if ωr = 2π × 50 kHz, whereas a = 100a0 ≈ 5nm and, in first

approximation, the collisional properties of the 1D system are 3D. In this picture, we can
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Figure 2.2: In 1D the particles are free to move along one direction (axial) but their movement is
frozen along the others two directions (radial). Due to the strong transverse harmonic confinement,
i.e. ~ωr is larger than all other energy scales, only the radial ground state is occupied. In the axial
direction, also the excited states can be occupied. Occupied levels are represented in red, empty levels
in gray. [40]

introduce a new constant coupling

g1D =
2~

m

a

a2r
=

2~

ma1D
(2.9)

with a1D = a2r
a
is the 1D scattering length under the condition ar ≫ a. If this condition is

not satisfy, as near the Feshbach resonance, the 1D scattering length takes the form

a1D =
a2r
2a

(

a− C
a

ar

)

(2.10)

with C = 1.0326 [41]. This formula works for any value of a/ar.

2.3 Momentum distribution and correlation

In our experimental system, the experimental observable employed to study the correlation

properties of our system is the momentum distribution ρ(p), which is related to the spatially
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Figure 2.3: (a) On the left, TOF image of the momentum distributionρ(p) for an insulator atomic
sample in a 1D lattice along the z direction. On the right, the image has been integrated along
the horizontal direction. A large width δp of the momentum distribution is an evidence of loss of
phase coherence of the sample. (b) On the left, TOF image of the momentum distributionρ(p) for
an superfluid atomic sample in a 1D lattice along the z direction. On the right, the image has been
integrated along the horizontal direction and it has been fitted with 3 Lorentian functions. It is
important to note the sharp width δp of the momentum distribution which is an evidence of the phase
coherence of the sample.

averaged correlation function g(x) =
∫

ρ(x′, x+ x′)dx′ via the Wiener-Khinchin theorem

g(x) = F−1[ρ(p)] (2.11)

i.e. the correlation function is the inverse Fourier transform of the momentum distribution.

In the experiment, ρ(p) is obtained performing time of flight (tof) absorption imaging, i.e.

by releasing the atomic cloud from the optical potentials and letting it free to expand before

acquiring the image. If the expansion time is sufficient large and the interaction can be neglected

the image reproduces the density distribution ntof ∼ ρ(p).

Due to the fact that the correlation function decays exponentially on the length scale ξ,

ρ(p) is a Lorentzian function

ρ(p) ∝ 1

p2 + δp2
(2.12)
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whose half width at half maximum δp is related to ξ via

δp =
0.63~

ξ
(2.13)

The behaviour of δp gives information related to the system nature. A large width of

the momentum distribution is an evidence of loss of phase coherence of the sample. In this

situation the correlation function decays on a length scale ξ lower than the lattice spacing d.

Consequently when the system is in an insulating phase, we observe a large δp (Fig.2.3a). If

the system is in the superfluid phase, the momentum distribution has a sharp δp (Fig.2.3b),

which is an useful tool to obtain information about the temperature of the sample. In fact, as

the coherence length ξ, also the momentum distribution δp depends on temperature, and, in

particular, an increase of the temperature provokes an increase of δp.

2.4 Theoretical model for 1D systems

2.4.1 Luttinger Liquid

One-dimensional interacting fluids, both bosonic and fermionic, belong to a universality class

known as “Luttinger liquid” [42]. This kind of systems are characterized by low energy exci-

tations, which are collective modes with a linear dispersion relation. A simple explanation of

the collective behaviour is the following: due to the interactions among the particles and the

strong confinement in the radial direction, if a particle moves in the only allowed direction, it

pushes the neighbour one, which in turn moves the next one and so on, turning into a collective

motion the movement of a individual particle. Thanks to the presence of this collective modes,

it is possible to use the bosonization technique [43, 44], which is efficient both for bosons and

fermions, to study the one-dimensional systems. In this construction, the one-dimensional fluids

are described in terms of a field operator Φ̂l(z) which is a continuous function of the position z.

In 1D, the field operator is well defined, unlike that in 3D, due to the fact that in the first case

there is a unique way to enumerate the particles, by starting from z = −∞ and proceeding to

the right direction. In the case of bosons, a suitable definition of the field operator is [43]

Φ̂l(z) = 2πn1Dz − 2φ(z) (2.14)

where n1D = N/L is the mean density of the system and φ̂(z) is a slowly varying quantum

field related to a perfect crystalline 1D structure. In terms of this field, the density operator

ρ̂(z) takes the form
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ρ̂(z) = (n1D − 1

π
∂zφ̂(z))

∑

m

αme
2im(πn1Dz−φ̂(z)) (2.15)

where m is an integer number and αm is a non-universal coefficient which depends on the

system details. In this situation, the single particle creation operator Ψ̂†(z) can be written as

Ψ̂†(z) =
√

ρ̂(z)eiθ̂(z) (2.16)

where θ̂(z) is an operator which depends on the system details. In the case of a BEC, it is

the superfluid phase. In general, the evolution of a system of N interacting boson in an optical

lattice Vlatt(r), subjected to an external potential Vext(r) is driven by the Hamiltonian Ĥ , which

in second quantization takes the form

Ĥ =

∫

drΨ̂†
(−~

2

2m
∇2 + Vext(r) + Vlatt(r)

)

Ψ̂ +
g

2

∫

drΨ̂†Ψ̂†Ψ̂Ψ̂ (2.17)

A representation of the Hamiltonian for the 1D interacting bosons, can be obtained by

putting the field operator 2.16 into the Hamiltonian 2.17. Under the assumptions that Vext(r) =

Vlatt(r) = 0, it takes the form of a quadratic Hamiltonian

ĤLL =
~

2π

∫

dz[vsK(∂z θ̂(z))
2 +

vs
K

(∂zφ̂(z))
2] (2.18)

where vs and K are the “Luttinger parameters”. The two parameters are linked to each

other via

vsK =
π~n1D

m
(2.19)

vs
K

=
U

π~
(2.20)

where U is the interaction energy. Both parameters characterized entirely a 1D system.

In particular vs is the sound velocity of the system excitations which are sound-like density-

waves with a linear dispersion relation ω ∼ vk, whereas the parameter K is an adimensional

quantity, related do correlation at long distances, whose value is between 1 and ∞. If K = ∞
the bosons are non interacting. On the contrary, if 1 < K < ∞, the boson are interacting

and the correlation function decays as the Luttinger parameter K increases as (2K)−1. In

the limit case of K = 1 the system is strongly interacting and it behaves as spinless fermions

(Tonks-Girardeau gas [45]): in order to minimize their mutual repulsion, the particles tend to

occupy a fixed position and the wavefunctions of the particles cannot overlap. This behaviour
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is similar to the fermions one which cannot stay in the same place in order to satisfy the Pauli

exclusion principle. Obviously, the particles are bosons, and the system wavefunction is always

symmetric under the exchange of two particles.

2.4.2 Lieb-Liniger Model

As we shown in section 1.2, in the presence of a system ofN interacting bosons strongly confined

in the radial directions, only the binary collisions among the particles play a relevant role which

can be written in terms of the contact pseudopotential

U = g1Dδ(zi − zj) (2.21)

where g1D is the one-dimensional constant coupling (Eq. 2.9). In this scenario, under

the assumption that the external potential Vext(z) = 0 , the Hamiltonian driving the system

evolution takes the form

Ĥ =
N
∑

i=1

− ~

2m

∂2

∂z2i
+ g

N
∑

i<j=1

δ(zi − zj) (2.22)

This model, introduced by Lieb and Liniger in 1963 [46, 47], is the simplest non-trivial

model of interacting bosons in the continuum and it can be solved by using the using the

Bethe ansatz. It is useful to describe the system by using an adimensional parameter, known

as “Lieb-Liniger parameter”

γ =
mg1D
~2n1D

, (2.23)

which represents the ratio between the interaction energy, Eint ≈ g1Dn1D, and the kinetic energy

required to take a particle at a distance d = n−1
1D, Ecin ≈ ~

2n2
1D/m. It is important to note

that the Lieb-Liniger parameter increases as the mean density decreases. Therefore, in one-

dimension, the interaction energy increases with respect to the kinetic energy when the density

decreases, unlike that in three dimension. The Luttinger parameters which was introduced in

the previous section, can be written in term of the Lieb-Liniger parameter. In particular if

γ ≪ 1

vs = vF

√
γ

π

(

1−
√
γ

2π

)1/2

(2.24)
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K =
π√
γ

(

1−
√
γ

2π

)−1/2

(2.25)

and the system is in the bosonic limit, whereas if γ ≫ 1 (in the presence of low density or

strong interaction)

vs = vF

(

1− 4

γ

)

(2.26)

K =

(

1 +
4

γ

)

. (2.27)

and the system is a Tonks-Girardeau gas.

2.4.3 Bose-Hubbard Model

In order to describe the system of N interacting boson in a deep optical lattices Vlatt(r) (s > 5)

subjected to an external potential Vext(r) , it is useful to use the Bose-Hubbard model.

The system evolution is driven by the Hamiltonian Ĥ , which in second quantization takes

the form

Ĥ =

∫

drΨ̂†
(−~

2

2m
∇2 + Vext(r) + Vlatt(r)

)

Ψ̂ +
g

2

∫

drΨ̂†Ψ̂†Ψ̂Ψ̂ (2.28)

In the tight binding regime, the field operator Ψ can be written as a combination of Wannier

functions of the lowest Bloch energy band

Ψ̂(r) ≈
∑

i

wi(r)b̂i, (2.29)

Figure 2.4: Homogeneous Bose-Hubbard model (ǫi = const). J is the tunneling energy and U the
on-site interaction energy. Adding a particle into a populated neighbour site costs the energy U due
to the repulsive interaction between two atoms sharing the same site.
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where b̂i is the annihilation operator of the ith site, and the Hamiltonian takes the form

Ĥ = −J
∑

i

(b̂†i b̂i+1 + h.c) +
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

(ǫi − µ)n̂i (2.30)

where b̂i is the creation operator of the ith site, n̂i = b̂†i b̂i is the number operator related

to the site occupancy and µ is the chemical potential. This Hamiltonian is known as Bose-

Hubbard Hamiltonian

Let’s focus the attention on the single terms of the Hamiltonian (Fig.2.4). The first one is the

kinetic energy of the system, which is proportional to the tunneling energy

J = −
∫

drw ∗ (r− ri)

[−~
2

2m
∇2 + Vlatt(r)

]

w(r− ri+1) (2.31)

The tunneling energy J is related to the superposition of the Wannier functions localized

to the ith and the (i + 1)th sites, and it represents the probability for an atom to hop from

one lattice site to another. By solving the Eq.2.31, it is possible to find a relation between the

tunneling energy J in and the lattice parameter s, i.e.

J

Er
= 1.43s0.98e−2.07

√
s (2.32)

which implies that by tuning the intensity of the laser employed to realize the lattice it is

possible to change the tunneling energy. The second term of the Hamiltonian is proportional

to the interaction energy

U = g

∫

dr|Ψ(r)|4. (2.33)

which quantifies the energy cost to put two particle in the same lattice site. It depends on the

coupling parameter g, which must be substituted by g1D in the presence of 1D lattice, and it

can be tuned by using the Feshbach resonance. Note that this is the only term which takes

into account the interaction among particles: interactions among atoms in different sites are

neglected. The last term takes into account the presence of an external potential. In fact, in

the experiment with ultracold quantum gases an external trap potential is usually present and

it provokes an energy offset ǫi in the ith site. If we have an harmonic trap, the energy offset is

ǫi =
α

2

∑

i

(i− i0)
2 (2.34)

where α is the harmonic trap strength and i0 is the trap center. If one assumes that the trap

potential varies smoothly across the lattice, ǫi can be considered as a constant.
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2.4.4 Superfluid and Mott Insulator

Let’s consider the Bose Hubbard Hamiltonian, by neglecting the last term due to the presence

of an external potential. In this situation the two relevant energy scale are the tunneling energy

J and the interaction one U . Depending on the interaction among particles, the system can

undergo a phase transition from a conductive phase to an insulator one induced by interac-

tions, which suppress the tunneling from site to site. In order to treat this phenomenon more

in detail, let’s consider the two different cases, U ≪ J and U ≫ J .

If the interaction among the particles is negligible compared to the tunneling energy, U ≪ J ,

all of the particles are free to move across the lattice and they occupies the Bloch ground state.

In this situation, they are delocalized throughout the lattice and the system is said to be in

a superfluid phase. By assuming that the Bloch ground energy state of a single delocalized

particle is a superposition of the wavefunctions localized on each lattice site,
∑

i b
†
i |0〉, the

system ground state of N identical bosons is the product of N identical Bloch waves

|ΨSF 〉 ∝
(

∑

i

b†i

)N

|0〉 . (2.35)

In this regime, in agreement with the Heisenberg uncertainty principle, the number of

particles per site is not determined but it follows a Poissonian distribution, while for each

site the phase is perfectly defined, giving rise to narrow peaks in the multiple matter wave

interference. If the interactions among the particles are strong enough to overcome the kinetic

energy, U ≫ J , for the bosons is energetically convenient to stay apart and localize at each

lattice site, instead of flowing through the lattice. In fact an atom jumping from a site to a

neighbour one would cause an energy cost for the system equal to U . As a consequence, the

system is in an insulating phase, the Mott insulator, whose ground state is given by the product

of the single-site Fock states

|ΨMI〉 ∝
∏

i

(b†i )
N |0〉 . (2.36)

In this situation, the particle number per site is perfectly determined, but there is no

phase correlation between wavefunction localized at each site. As a result, no macroscopic

phase coherence holds. In order to have a pure Mott insulator, each lattice site must to be

occupied by an integer number of atoms. On the contrary, the superfluid phase coexists with

the insulating one.

The value at which the quantum transition from the superfluid phase to the insulating one
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occurs, i.e. (J/U)c, depends on the chemical potential µ and on the site filling n as it shown in

Fig. 2.5.

Figure 2.5: Phase diagram of the SF to MI transition in a homogeneous case as a function of µ
and J , both normalized to U . The MI zones are characterized by an integer number of particles for
each lattice site, whereas in the superfluid phase it is possible to introduce only a mean filling. Note
that a larger average occupancy n̄ implies a larger interaction energy to enter in the Mott phase and
consequently a smaller critical value (J/U)c. Red line: The decrease of the chemical potential µ/U at
constant J/U along the trap implies a succession of MI zones and SF ones. Adapted from [38].

In the MI phase the site filling is well defined and it is an integer number, whereas in the

superfluid phase only an average filling can be introduced, due to the fact that the number of

particles for each lattice site is not determined. Note that a larger average occupancy n̄ implies

a larger interaction energy to enter in the Mott phase and consequently a smaller critical value

(J/U)c.

So far we have considered the homogeneous case. Anyway, in the experiments, it is difficult to

have an homogeneous system, due to the presence of an external trapping potential. In fact, if

the trap potential does not varies smoothly across the lattice, the last term in the BH hamil-

tonian cannot be neglected anymore, and the system has some regions with a commensurate

filling and some with an incommensurate one. In this situation, the system can be thought to

be characterized by a local chemical potential which slowly varies from site to site and reaches

its maximum at the center of the harmonic potential. The variation of the chemical potential
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provokes a change also in the local filling and in particular an increase of µ implies an increase

of the local filling. For a given value J/U < (J/U)c, the atoms alternate different phases de-

pending on their position across the lattice and we observe a shell structure where shells of the

Mott insulator are interchanged by shells of superfluid (Fig.2.6). In the limit case of J = 0,

only the MI phase survives and the density profile of the trapped atoms shows the so called

wedding-cake shape: all sites are filled with an integer number of particles and the central sites

have the largest filling.

Figure 2.6: In an inhomogeneous system, for a given value J/U < (J/U)c, the atoms alternate
different phases depending on their position across the lattice and we observe a shell structure where
shells of the Mott insulator are interchanged by shells of superfluid [38]

The Mott insulator phase was observed for the first time in an atomic systems in 2002

by Greiner et al.[24]. They increased the ratio U/J by increasing the lattice height s and

they observed an loss of phase coherence in the momentum distribution, which confirmed the

transition from a superfluid phase to an insulating one (Fig.2.7).

In the same experiments, they also verify the presence of the Mott insulator by probing the

excitation spectrum. The superfluid phase and the insulating one, in fact, are characterized

by a different spectra, which are related to their different conductivity properties. When the
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Figure 2.7: Momentum distribution for different value of 3D lattice height s. By increasing s (from
(a) to (h)) the system undergoes a phase transition from the superfluid coherent phase to the Mott
insulator incoherent phase. Adapted from [38].

system is in the superfluid phase, due to gapless energy spectrum, any amount of energy can

be transfer in the system and the atoms are able to move from one lattice site to another

one. Conversely, in the MI phase the atoms are not free to move due to discontinuous energy

spectrum with a gap of the order of on site interaction energy U . A simple explanation for the

origin of this gap is the following. The lowest lying excitation in a system with an atom in each

lattice site is the creation of a particle-hole pair, where an atom in a lattice site is added into

a neighbour one holding an other atom. The energy of this configuration, where two atoms

are in the same lattice site, is raised by an amount U in energy above the configuration with a

single atom in each lattice site, due to the on-site interaction energy U 1. Consequently, in an

homogeneous system, removing an atom from a site and adding it to a neighbouring one with

the same occupancy has an energy cost equal to the on-site interaction energy U . Anyway, as it

was introduced above, we may have an inhomogeneous system which has different lattice sites

with different occupancy. In this situation it is possible to add an atom to a neighbouring site

with different occupancy by paying an energy cost equal to 2U .

2.5 Sine-Gordon Model

In the case of a weak optical lattice, the system dynamics is well described by the Sine-Gordon

model, which consider the optical potential Vlatt(z) = V0 cos(Gz) as a perturbation [44]. The

total Hamiltonian driving the system evolution can be obtained by starting from the general

1This explanation is valid also if the number of atoms in each lattice site is n



2.5. SINE-GORDON MODEL 39

Hamiltonian (Eq.2.17) where a perturbation potential is added and where the expression in eq.

2.15 for the density it is used. In this situation, the Sine-Gordon Hamiltonian takes the form

ĤsG = ĤLL +
g1D
π

∫

dxcos(2pφ̂(x) + δx) (2.37)

where δ = nG−2pπn1D measures the system degree of incommensurability and in particular

δ = 0 corresponds to a commensurate number of bosons for each lattice. In the δ, p is an integer

number and the case p = 1 correspond to an integer number of bosons for each lattice site,

whereas higher values of p correspond to a one boson every p lattice sites. In the presence of

an integer filling, it is possible to recover the quantum transition from the superfluid phase

to the Mott insulator one also by starting from the Sine-Gordon Hamiltonian. By using the

renormalization group (RG) approach on the Sine-Gordon Hamiltonian, we find that the phase

transition occurs at a universal value of the Luttinger parameter Kc = 2/p2: for K > Kc the

system is in a superfluid phase and the optical lattice behaves as a negligible perturbation,

whereas in the opposite case the system is in the Mott insulating phase.
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Chapter 3

Phase Slips in one dimensional systems

3.1 Phase slips in superconductors

The intriguing phenomenon of superconductivity was observed for the first time by the dutch

physicist Heike Kamerlingh Onnes in 1911 [48]. By studying the behaviour of the resistance

of solid mercury at cryogenic temperatures, he found that below a critical temperature TC ,

the resistance of mercury abruptly disappeared. In subsequent decades, the phenomenon of

superconductivity was observed in several other materials and, since its discovery, it has been

widely studied both from a theoretical point of view and an experimental one. Thanks to the

advent of modern technology, such as lithographic techniques and thin film deposition, it has

been possible to realize new experimental systems and answer to new theoretical questions. One

of these questions is if it is possible to observe the phenomenon of superconductivity in one-

dimensional (1D) systems. Obviously, the answer to this question has, important implications

both in fundamental physics and practical applications. From a theoretical point of view, in

a 1D system it is not possible to observe the phenomenon of superconductivity, due to the

presence of thermally activated phase slips (TAPS) [1], which give rise to a finite resistance

also for temperatures below TC .

The first theoretical proposal for TAPS was made by Little in 1967 to understand the

mechanism of the supercurrent decay in a ring made of a thin wire [1]. His starting point was

that strong enough thermal fluctuations can provoke deviations from their equilibrium values of

both modulus and phase of the complex order parameter |Ψ(x)|eiφ(x) describing the superfluid

state (Fig. 3.1a). Due to thermal fluctuation, the modulus of the order parameter in a point of

the wire is suppressed and at the same time a 2πn phase jump is observed, with n an integer

number (Fig. 3.1 b). After the formation of phase slips, the modulus returns to its initial value

and the system gets back to its initial state with an accumulated phase shift of 2πn (Fig.3.1c).

41
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Due to the rareness of the phase slip events, it is possible to considerer only the cases n = ±1.

Figure 3.1: Cartoon of a phase slip event. (a) Before a phase slip event, the complex order parameter
|Ψ(x)|eiφ(x) is characterized by a modulus |Ψ(x)| (dotted blue line) and a phase φ(x) (solid red line).
(b) During a phase slip event, the modulus of the order parameter is suppressed and the phase makes
a 2π phase jump. (c) After a phase slips event, the modulus is restored but both the phase gradient
and the velocity v(x) are reduced. Adapted from [49].

Following a phase slip event, a finite voltage V appears across the wire due to the Josephson

relation between V and φ̇, i.e. V = ~φ̇
2e . If there is not a bias current, there are the same

numbers of positive (n = 1) and negative (n = −1) phase slips and consequently the net voltage

is zero. Instead, in the presence of a bias current I ∝ |Ψ(x)|∇φ, the system is more inclined

to create positive phase slips, since the work performed by the current is positive for positive

phase slips, and the system is subject to a finite voltage and, at the same time, to a finite

resistance R = V/I.

The first quantitative theoretical model to estimate the resistance was developed by Langer

and Ambegaokar [2] and it was modified by McCumber and Halperin [3], few years later. Their

model was based on the idea that phase slips occur when the order parameter passes, via

thermal activation, over the free energy barrier ∆F separating states whose value of ∆φ differ

by 2π. They estimated the free energy barrier height by using the mean-field Ginzburg-Landau

equation, and they found that in a narrow superconducting channel, the free energy barrier

depends on the condensation energy density Hc and on the volume Aξ(T ), where A is the wire’s

cross section area and ξ(T ) the Ginzburg-Landau coherence length, via

∆F =
8
√
2

3

Hc(T )
2

8π
(Aξ(T )) (3.1)

The rate of thermal activated phase slips is given by an Arrhenius type equation via

Ω(T )e−∆F/kBT where

Ω(T ) = (
L

ξ(T )
)(
∆F

kBT
)1/2(τGL)

−1 (3.2)
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is the attempt frequency. Here L is the wire’s length and τGL = π~
8kB(Tc−T )

is the relaxation

time of the time-dependent Gitzburg-Landau theory. By considering a narrow superconducting

channels with a finite current I, the voltage due to the presence of TAPS is

V =
~Ω(T )

e
e
− ∆F

kBT sinh(
I

I0
) (3.3)

where I0 = 4ekBT/h. In the limit of low current, i.e. I ≪ I0, the resistance is

RLAMH = V/I ≃ Rq

(

~Ω(T )

kBT

)

e
− ∆F

kBT (3.4)

where Rq =
h

(2e)2
.

The first measurement of a finite voltage for temperatures lower than TC was performed

by Lukens et al. [50] in 1970 by studying the voltage behaviour as a function of the current

in a one dimensional single-crystal tin whiskers (Fig. 3.2). They found that the voltage as a

function of the current near the transition behaved consistently with the Langer-Ambegaokar

model, i.e. V ∝ sinh(I/I0), confirming the presence of thermally activated phase slips.

As the temperature decreases, due to the increase of the height of the free energy barrier

∆F , the probability of TAPS becomes very small and phase slips cannot occur due to thermal

activation. Anyway, it has been suggested that at very low temperatures, phase slips should

be induced by quantum fluctuation of the order parameter [51, 52]. The first heuristic model

for quantum phase slips (QPS) in thin superconducting wires was proposed by Giordano [4] in

1988, in order to explain the discrepancy between the measured resistance of a narrow In strip

as a function of the temperature and the LAMH model, in the case of very low temperature

(Fig. 3.3).

He started by considering the motion of a damped particle moving in a tilted washboard

potential and assuming that it can be considered as a harmonic oscillator in a well, with a

natural frequency ω0. In this situation, the tunneling rate has the form

ΓMQT = B

√

V0ω0

~
e

−aV0
~ω0 (3.5)

where a and B are constant and V0 is the barrier height which coincides with the free energy

barrier ∆F in the case of a thin superconducting wires. Since the natural frequency ω0 can be

identified with the inverse of the Gitzburg-Landau relaxation time τGL, the tunneling rate has

the form

ΓMQT = B

√

∆F

~τGL
e

−a∆FτGL
~ (3.6)
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Figure 3.2: Voltage as a function of the current at fixed temperature. The data points (solid circles)
are fitted by using the function V = sinh(I/I0) (solid line). Adapted from [50]

and the resistance due to the presence of quantum phase slips becomes

RMQT = B
L

ξ
Rq

√

∆F

~τGL
e−

a∆FτGL
~ (3.7)

Consequently, in the case of thin superconducting wires, the total resistance has the form

R = RLAHM +RMQT . (3.8)

As the collective state of a large number of electrons is involved, these phase slips are an

example of macroscopic quantum tunneling, experimentally observed in Josephson junctions

[53, 54, 55, 56] and superconducting loops [57]. It is interesting to note that the resistance

RMQT has the same form of RLAHM , i.e. depends on the same manner on ∆F , but the temper-

ature in the activation exponent is substituted by τGL ∝ ∆T . Since τ−1
GL can become larger than

kBT/~, it is possible to find a range of temperatures where the phenomenon of macroscopic
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Figure 3.3: Resistance, normalized by the normal state value, as a function of the temperature, for
three different values of the sample diameters. The solid curves are fits realized by using Eq. 3.4 which
consider the presence of thermally activated phase slips , whereas the dotted curves are fits realized
by using Eq.3.8 which consider also the presence of quantum phase slips. Adapted from [4]

quantum tunneling dominates on the thermal activation of phase slips.

Since their first observation, phase slips (both thermal and quantum) have been the objects

of interest by the scientific community. They have been studied in different condensed-matter

systems, such as superconducting nanowires [58, 59, 11, 60, 61, 62] and Josephson junction

arrays [15], where the phase slips nucleation rate is controlled by tuning the temperature or the

current. The phase slips phenomenon is interesting not only from a theoretical point of view but

also from an experimental one. Since the last few years, theoretical proposal of devices based on

the phenomenon of quantum phase slips have been made and it would be interesting to realize

them experimentally. For example, it would be interesting to realize the quantum phase slip

junction [63], or the superconducting phase slips oscillator [64] or topologically-protected qubits

[63, 65] or a quantum standard for the electrical current [15]. These are just a few examples

of possible applications of the phase slips. Additional applications will certainly be possible in

the future, but a greater understanding of the phenomenon is needed in order to realize devices

based on phase slips. Thanks to the easy control and manipulation of their key properties, the

ultracold quantum gases are a good candidate to better understand this phenomenon.
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3.2 Quantum phase slips in superfluids

The nucleation of phase slips is remarkably important also in the field of Becs, due to the

fact that they can be subject to the presence of fluctuations which provoke the destruction of

superfluidity. The phenomenon of phase slips in the field of BECs is interesting due to the

fact that this system might in principle be employed to study aspects of phase slips that are

not accessible in other systems, thanks to the control on key properties such as dimensionality,

interaction and disorder.

The interplay between the superfluidity and the increase of thermal and quantum fluctuation

has been studied extensively both theoretically [5, 6, 7] and experimentally [18, 19, 66, 67, 68]

but an exhaustive experimental picture of quantum phase slips (QPS) in ultracold superfluids

has not been obtained yet. The first signatures of QPS was observed in the group of Brian

DeMarco in 2008 [18]. They employed a Rb BEC in a 3D optical lattice and they studied the

phenomenon of quantum phase slips by performing transport measurements. They observed a

regime of temperature-independent dissipation (Fig.3.4) which is consistent with the presence

of quantum phase slips. Moreover, they also observed a motion-induced features reminiscent

of vortices and vortex rings associated with phase slips in time-of-flight imaging.

The phenomenon of QPS has been also observed in our group by employing 1D atomic

superfluid flowing along a periodic potential [19]. In particular, by performing transport mea-

surements, we studied the phase slips nucleation rate for different value of velocity, interaction

and temperature. We observe a crossover between a regime of temperature-dependent dissipa-

tion at small velocity and interaction which suggests a thermal activation of phase slips and a

second regime of velocity-dependent dissipation at larger velocity and interaction which sug-

gests a quantum activation of phase slips. We will discuss the experiments more in detail in

chapter 4. The theoretical model for the phenomenon of QPS in 1D superfluids in a periodic

potential will be shown in the following subsection.

3.2.1 Quantum phase slips in one-dimensional superfluids in a peri-

odic potential: theorethical model in the Bose-Hubbard regime.

Superfluidity in ultracold bosonic gases presents many similarities with superconductivity and,

as a superconductor, the superfluid state can be described by a complex order parameter

|Ψ(x)|eiφ(x). The superfluid state is a metastable state, and it corresponds to a local minimum

of the Ginzburg-Landau free energy potential [69]. In fact, the absolute minimum, coincides

with the state characterized by no flow. After a phase slip event, i.e. after a local fluctuation
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Figure 3.4: Damping rate γ as a function of temperature in the Bose-Hubbard regime (s = 6 ).
Each data point is extracted from the time evolution of the center of mass velocity. The error bars
are the uncertainty in the fit of the center of mass velocity. The data points are fitted (solid line)) by
assuming the presence of quantum phase slips. The red data point at highest temperature is excluded
from the fit and it is due to the presence of a thermal activated phase slips. Adapted from [18]

in Ψ(x) corresponding to the suppression of its modulus and a simultaneous phase jump of 2π,

the superfluid state can decay into another metastable state with lower velocity, due to the

fact that the system velocity and the system phase are related via v = ~

m
∇φ. As in the case of

superconductor, three main processes may activate a phase slip, depending on the temperature

regime (Fig.3.5). If the temperature is much higher than the free-energy barrier between two

metastable states, T ≫ δF/kB, the order parameter may overcome the barrier via thermal

fluctuations, causing the formation of thermally activated phase slips (TAPS) with a nucleation

rate following the Arrhenius law Γ ∝ ve−δF/kBT as predicted in the LAMH theory [2, 3]. When

T ≤ δF/kB, the probability of TAPS becomes small and phase slips occur mainly via quantum

tunneling through the free-energy barrier. As in the case of superconductors, one can find a

characteristic temperature below which the QPS nucleation rate is temperature-independent

[4, 49]. This is not a quantum phase transition, but a crossover, with an intermediate regime

of thermally-assisted QPS (TAQPS).

In order to obtain the theoretical model of the quantum phase slips nucleation rate in one-

dimensional superfluids in a periodic potential [5, 22], we need to start from the Bose-Hubbard

Hamiltonian

H =
∑

〈jk〉
−J(a†jak + a†kaj) +

∑

j

U

2
a†jaj(a

†
jaj − 1) (3.9)
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Figure 3.5: Cartoon of the phase slips activation mechanisms. a) At low temperatures, phase slips
are activated by quantum tunneling; b) by increasing the temperature, the quantum phase slips are
assisted by the temperature. c) At large temperatures, phase slips are activated only by thermal
fluctuations.

where a†j and aj are the boson creation and annihilation operators at the lattice site j, 〈jk〉
indicates pairs of nearest neighbours, J is the single-particle hopping amplitude and U is the

on-site repulsive interaction energy. This Hamiltonian can be mapped into the O(2) quantum

rotor model

H =
∑

〈jk〉
−2Jn cos (φk − φj) +

∑

j

U

2
n2
j (3.10)

where, n us the average number of bosons per site, φj and nj are the conjugate phase and

the number of particles on the site j. The importance of the quantum rotor model is due to

the fact that it is possible to apply the instanton techniques on this model and by using the

celebrated instanton formula [70, 71]

Γ ∝ e−S (3.11)

it is possible to analytically predict the quantum phase slips nucleation rate Γ. Here S is the

action for the bounce solution (instanton) of the classical equations of motion. For momentum

lower than the critical velocity for breaking superfluidity in a periodic potential, vc, the quantum

phase slips nucleation rate depends on the quasi-momentum via

Γ ∝ vα (3.12)

where the parameter α depends on the interaction [22]. As it has discussed before, there is not a
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quantum phase transition from TAPS and QPS regime, but there is a crossover, characterized

by a crossover temperature T ∗, where quantum phase slips are assisted by the temperature

(TAQPS). In this situation, the nucleation rate of TAQPS depends also on the temperature T

via

Γ ∝ vT α(γ)−1. (3.13)

Obviously, the specific form of δF and T ∗ depends on the specific type of obstacle experi-

enced by the superflow, e.g. disorder [72], isolated defects [6] or periodic potentials [5]. In the

case of ultracold quantum gases, the most controllable obstacles are optical lattices and in this

situation the free energy barrier is

δF ≃ Ej, (3.14)

with Ej = ~vs/
√
2d is the Josephson plasma energy and vs the sound velocity, and the crossover

temperature is

T ∗ ≃ Ej

kb

v

vc
. (3.15)

The presence of phase slips strongly modifies the transport properties of a system, especially

in 1D where the effect of thermal and quantum phase slips is significant. Experiments performed

to study the transport properties of trapped gases in the presence of an obstacle, such as random

[73, 74], single barrier [75], or periodic potentials [66, 76, 77, 78, 79], have shown that dipole

oscillations, induced for example by a sudden displacement of a parabolic trap, are strongly

damped, even if the system is in the superfluid state. Theory provides a direct relation between

the damping rate G of the dipole oscillations and the phase slips nucleation rate

G(v) ∝ Γ(v)

v
(3.16)

by using both qualitative consideration on energy loss during the damping, which will be shown

in the following, and exact numerical simulations with time-evolving block decimation method

at zero temperature [22].

The energy loss during the damping can be written in two different ways. The first one

considers the energy loss due to the loss of potential energy in the first half period, which can

be written as

Eloss =
1

2
Mω2(A2

0 − A2
1), (3.17)
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Figure 3.6: a)Cartoon of the time evolution of the center of mass position xcm. A0 and A1 are the
oscillation amplitude at t = 0 and after half period t1 and G is the oscillation damping. b) Cartoon of
the time evolution of the center of mass velocity vcm. vmax is the maximum velocity reached during
the first oscillation.

where ω is the oscillation frequency, M the total mass and A0 and A1 are the oscillation

amplitude respectively at t = 0 and after half period, at t1 = π/ω. If one assumes the

underdamped regime, i.e. δ = 1− A1/A0 ≪ 1 or Gt1 ≪ 1, the energy loss can be written as

Eloss =≃ M(ωA0)
2δ ≃ Mv2maxGt1, (3.18)

where δ ≃ Gt1, due to the fact that A1 ≃ A0e
−Gt1 ≃ A0(1 − Gt1), and vmax ≃ ωA0 is the

maximum velocity reached during the first oscillation. The second way considers the energy

loss due to the Joule heat, which can be written as

Eloss = Pt1 (3.19)

where P is the power of the system, which can be written in terms of the resistance of the

system R and in terms of the particle current I as P = RI2. If one takes into account the

presence of phase slips as the source of the resistance, R assumes the form R = 2π~Γ
I

[2], with

I ≃ n1Dvmax. Under these assumptions, the energy loss can be written as

Eloss ≃ 2π~n1DvmaxΓt1. (3.20)

Equating the two different ways in which the energy loss can be written, a relation between

the damping rate and the phase slips nucleation rate can be found

G ≃ 2π~n1D

Nm

Γ

vmax
. (3.21)
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Figure 3.7: a) Scheme of the Damping rate G parameter dependence. G is velocity-dependent in
the QPS regime, it is temperature dependent in the TAQPS regime and it is defined by an Arrhenius
type equation in the TAPS regime. b) Damping rate G as a function of the velocity in the presence
of quantum phase slips (pure and thermally assisted). Adapted by [22].

Consequently, as the phase slips nucleation rate Γ, aslo the damping rate G behaves differ-

ently in the case of thermal or quantum fluctuations, as it is shown in Fig.3.7.

In the presence of TAPS, the damping rate G is defined by an Arrhenius type equation

G ∝ e
−δF
kBT (3.22)

and it shows a dependence on the temperature in the exponent, whereas in the case of QPS

it is temperature-independent and it depends on the velocity via

G ∝ vα−1 (3.23)

and it is temperature independent. In the intermediate case of QPS assisted by the temper-

ature, the damping rate G behaves differently from the QPS case: it is velocity independent

and it depends only on the temperature via

G ∝ T α−1. (3.24)

Another simple way to derive the relation between the damping rate G and the nucleation

rate Γ is the following. The deceleration at the first maximum in the oscillation can be written

in terms of the damping rate G as dv/dt = −Gv. In terms of individual phase slips, instead,

this can be written as δv/δt, where δv = −h/mL is the deceleration following a phase slip of

2π in a chain of length L and δt−1 = Γ. By equalling the two expressions we obtain again the

relation G = h
mL

Γ
v
.
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Chapter 4

Exploring quantum phase slips in 1D

bosonic systems

4.1 Experimental procedure

The goal of my thesis is to study the transport properties of 1D bosonic superfluids in an

optical lattice, by focusing on how interaction and temperature affect the system behaviour.

In our experiments we employ 39K atoms which have a negative background scattering length,

i.e. abg = −44a0, and a broad Feshbach resonance[80], which gives us the possibility to tune

the interactions among the particles, as shown in sec. 1.3. The production of a 39K BEC is

not trivial: due to the level structure of this atom and its collisional properties in the absence

of a magnetic field, it is difficult to cool by evaporative cooling down to the temperature

necessary for the condensation [81]. As a consequence, we use sympathetic cooling with the
87Rb atoms in order to obtain the BEC. In particular, we initially trap the atoms in a magnetic

optical trap where we perform the laser cooling in order to reach samples temperature (both

Rb and K) of the order of hundreds of microkelvin. Than, the atoms are trapped in a magnetic

trap where an evaporative cooling of Rb is performed, in order to obtain the temperature of

few microkelvin. Finally, the atoms are transferred in an optical trap, where we can use the

Feshbach resonance, and they can reach the right temperature for the condensation (few tens of

nK) after an additional evaporative cooling for the rubidium atoms and a sympathetic cooling

for the potassium atoms. In the following I will explain briefly the steps performed to achieve

the condensation. More details can be found in the previous thesis of my group [82, 84, 83].

� Laser cooling in a MOT: The first step to obtain the 39K BEC is to cool the atoms

thanks to the laser cooling and to trap them into a magnetic optical trap (MOT).

53
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Figure 4.1: a)The hyperfine structure for the 39K. The case of 87Rb is analogous. b) Zeeman shift
of the ground state levels. The red dots indicate the low-field seeking levels. Adapted from [40]

Fig. 4.1a shows the level structure for K; the case of 87Rb is analogous. In our experiments

we use the optical transitions from the level F = 2 to the level F ′ = 3, both for potassium

and rubidium atoms. Due to the selection rules, some atoms may decay into the level with

F = 1, which is not coupled with the laser light. As a consequence, we use a repumping

beam to transfer the atoms from F = 1 to F = 2. In our setup there are two MOTs, in

order to trap and cool a large number of atoms. A first chamber where the first MOT

is loaded, is connected with the solid heated samples of potassium and rubidium atoms;

here the pressure is about to 10−9 Torr. The atoms are then pushed into the second cell,

by means of a push beam, where the pressure is lower than that in the first one (10−12

Torr) and the atoms are recaptured in the second MOT.

At the end of the cooling phase the atoms of K and Rb are cooled at a temperature

T ≃ 100µK and the densities are about 1010cm−3. However, the temperature is not low

enough to obtain the condensate. The range of temperatures that can be reached by

employing the laser cooling is in fact lower bounded, due to the fact that, by means of

this technique, the already slowed atoms reabsorb the diffused photons from other atoms

during the slowdown.

� Evaporative cooling in a magnetic trap: In order to lower even more the temper-

ature, the atoms are trapped into a magnetic trap and cooled via evaporative cooling.

At the end of the second MOT phase, the atoms are equally distributed on all Zeeman

levels with F = 2, but not all the Zeeman levels can be trapped in a magnetic trap (Fig.

4.1 b). As a consequence we perform an optical pumping to the level |F = 2, mf = 2〉,
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which is a low-field seeking state, and then we load the K and Rb mixture in a pure

magnetic trap with a QUIC configuration. The evaporative cooling is forced by removing

selectively the hottest atoms of Rb with a microwave transition into the high-field seek-

ing state |F = 1, mF = 1〉. In fact, in this level, the atoms are no longer trappable and

hence they are lost (Fig. 4.1 b). Rb is cooled down via evaporative cooling to T ≃ 1µK,

while K is sympathetically cooled via K-Rb collisions, without relevant atom losses. It

is important to know that after the forced and selective evaporation of Rb atoms on the

microwave transition, some Rb atoms survive in the state |F = 2, mF = 1〉 and they can-

not be cooled. As a consequence, it is necessary to use another frequency to eliminate

these atoms in order to reach the temperatures necessary to have a condensate.

� Optical trapping and evaporation in the optical trap: In order to further cool down

the potassium atoms and to reach the condensation temperature, we transfer K and Rb

atoms into a dipole trap, which is realized with two crossed laser beams at a wavelength

λ = 1064 nm, which provide an average trap frequency of about 50 Hz. When the atoms

are trapped into the dipole trap, they are transferred from the state with |F = 2, mf = 2〉
into the ground state with |F = 1, mf = 1〉. In this state K atoms are characterized by

an intraspecies Feshbach resonance at B0 ≃ 400 G and interspecies Feshbach resonance

with Rb and K atoms at B0 ≃ 315 G (4.2). The remaining Rb atoms into the level

|F = 2, mf = 2〉 are removed by using resonant light pulse. The optical evaporation of

the atoms is performed in two step, by exponentially lowering the intensity of the two

trap beams. During the first part, a homogeneous magnetic field is turned on at the value

B = 316 G, in order to increase the collisions between Rb and K atoms and to obtain

a more efficient thermalization between the two species. The shape of the evaporation

ramps has been chosen in order to obtain evaporation mostly on the vertical direction.

In this way we lose mainly the heavier rubidium atoms. In the second part, the intensity

of the two trap beams is lowered again until it reaches a vertical depth that allows the

formation of a pure K condensate. In this situation, the heavy rubidium atoms cannot

be trapped anymore and they are completely lost. In this phase, the magnetic field is

increased to the value B = 395 G, in order to increase the K scattering length and the

intraspecies collisions. At the end of the evaporation we have a 39K condensate, which is

characterized by a number of atoms of N and a temperature T .
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Figure 4.2: Heteronuclear (blue line) and homonuclear (black line) scattering lengths as a function
of the magnetic field. At B = 316 G the 39K atoms have a interspecies Feshbach resonance with the
87Rb atoms whereas at B = 395 G the 39 K atoms have a intraspecies Feshbach resonance.Adapted
from [40].

4.2 Realization of 1D systems

We realize the 1D systems by splitting the 3D Bose-Einstein condensate with Ntot ≃ 30000

atoms by using a strong horizontal 2D optical lattice (with depth 20 ER). More in detail, the

2D lattice is ramped up in a fixed time (t = 400 ms) such that an array of independent potential

tubes direct along the vertical z axis is created, as it is shown in Fig. 4.3. In our conditions,

few hundred subsystems are created and each subsystem contains an average of 30-40 atoms.

The radial trapping energy ~ω⊥ = h × 40 kHz is much larger than all other energy scales,

realizing effectively 1D system. Along the longitudinal direction z, a 1D optical lattice with a

lattice spacing d = 532 nm is then added. The potential depth V0 can be tuned in the range

from s = V0/ER = 1 to s = 5, where ER = ~
2k2/2m is the recoil energy, with k = π/d the

lattice wave vector. Along the z direction a harmonic potential (ωz = 2π × 150 Hz), required

from an experimental point of view to realize the 1D systems, is also present.

Due to the presence of the harmonic trap during the loading of the 2D lattice, the atoms

prefer to stay into the center of the trap rather than being distributed in an isotropic way,

making our system inhomogeneous. As a consequence, when we split the 3D BEC into a

matrix of 1D systems, we obtain that the most populated tubes are those at the centre of the

external optical trap.

At the same time, the gaussian laser beams that we employ to realize the 2D optical lattice
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Figure 4.3: The 1D systems are realized by splitting the 3D BEC into few hundreds of tubes by
using 2D deep optical lattices in the horizontal plane. Along the z direction a 1D optical lattice and
a harmonic potential trap are present. Figure adapted from [85]

induce an inhomogeneity not on the full system scale as the harmonic trapping potential, but

in each 1D tube: in each 1D system, in fact, the density of bosons is greater in the centre

of the tubes due to the fact that in the presence of the external harmonic confinement, the

energy levels of the system are modified. In particular, if the interaction energy Eint between

the atoms is lower than the trapping energy, the particles prefer to share the same lattice site

rather than occupies different sites. As a consequence, due to the fact that the energy of the

external lattice site due to the harmonic trap is higher respect the energy of the central sites,

the more favourable energetic configuration is that where the atoms occupies the central sites

of the lattice.

In order to change the interparticle interaction, we tune the 1D scattering length a1D by

using a magnetic field, as it was shown in sec 2.2. The value of the scattering length aload

when the lattices are loaded determines the size of the condensate, therefore also the number

of populated tubes and the number of atoms in each tube. In particular, in the tube (i,j) the

number of atoms is given by

Ni,j = N0,0

[

1− 2πN0,0(i
2 + j2)

5Ntot

]3/2

. (4.1)
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This expression is obtained by integrating the Thomas-Fermi profile of the interacting sam-

ple along the tubes.

The atom number in the central tube N0,0 = 5Ntotd
2/2πRxRy depends on the Thomas-Fermi

radii Rx and Ry along the horizontal directions, and on the spacing of the tubes d = λ/2 [86].

From the atom number for each tube it is possible to obtain the mean atomic density in each 1D

system. The density distribution in individual tubes is expected to vary from Thomas-Fermi

to Tonks, depending on the atom number and interaction strength [87]. To calculate the mean

site occupation for each tube, we choose the distribution that gives the largest density at the

center of the tube [87]. Then, we estimate the mean site occupation n̄ by averaging overall the

tubes. In particular, once that ωz and Ntot are known, we are able to tune the mean filling n̄

by tuning the scattering length aload during the loading of the 2D optical lattice. In the last

part of the loading procedure, the scattering length is set with a slow ramp to its final value

ameas and kept there for the rest of the experiment. This value of a determines the interaction

energy among the particles.

Figure 4.4: (a) Cartoon of the first technique. By suddenly displacing the harmonic trap center at
t = 0, we excite an oscillation of the 1D systems. The momentum distributions are equispaced in
time (2 ms). The dashed line shows the trajectory of p and the grey area exhibits the increase of δp.
(b) Cartoon of the second technique. By moving the harmonic trap center at constant velocity, the
system dissipates and δp increases linearly. The momentum distributions are equispaced in time (6
ms). The dashed line shows the trajectory of p and the grey area exhibits the increase of δp.
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4.3 Exciting the 1D motion

As it was introduced it sec 2.3, the experimental observable is the momentum distribution

ρ(p), which is obtained performing time-of-flight absorption imaging, i.e. by releasing the

atomic cloud from all potentials and letting it free to expand before the image acquisition. By

fitting ρ(p) with a Lorentzian function, we are able to measure the quasimomentum p, which

we identify with the averaged momentum acquired by the atoms, and the half-width-at-half-

maximum δp.

In order to probe the transport properties of our systems we perform transport measurements,

by employing two different procedures. The first procedure consists in suddenly displacing the

center of the trap by abruptly switching off the magnetic field gradient which compensate for

gravity. The atoms are no longer in the minimum of the potential and start to oscillate in the

new potential configuration. After a variable evolution time, we record ρ(p) and we study the

time evolution of p, which is affected by the presence of dissipation (Fig. 4.4a). By tuning

the magnetic field gradient, we change the trap displacement and we excite oscillations with

different amplitude.

The second procedure consists in displacing the center of the trap at constant velocity by

linearly changing the magnetic field gradient. After a variable time in the trap, we record

ρ(p) (Fig. 4.4b). In this kind of measurements, we investigate the time evolution of δp, whose

increase is related to the dissipation. The energy dissipated during the harmonic potential

movement is in fact converted into momentum spread. In fig. 4.5 a scheme of the magnetic

field gradient behaviour for both procedures is shown.

Both procedure can be better understood by considering the analogous in the electric circuits

physics. The first procedure is analogous to excite an oscillation into an RLC circuit. Initially,

the electric circuit is at the equilibrium and there is not charge transport into the circuit.

Subsequently, a current start to flow with a sinusoidal behaviour when the capacitor is charged

and / or a current is induced in the inductor: this correspond to the sudden shift of the

harmonic trap. As in the case of our system, also in the case of a RLC circuit, if there is a finite

resistance, the current does not keep oscillating forever, but the oscillation amplitude slowly

diminishes with time and eventually the motion stops altogether. In the second procedure we

instead impose a constant velocity. This is analogous to imposing a continuous current into a

circuit. In both of the system we observe a Joule heating.
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4.4 Dissipation in the presence of oscillations

Dissipation in the presence of oscillations: evidence of quantum phase slips

In this section we will focus the attention on the experiments with an oscillating system. As

it was explained in the previous section, the oscillations are induced by suddenly shifting the

center of the harmonic trap. By working in the semiclassical framework, the oscillating motion

of the system in the trap in the presence of an optical lattice can be obtained by solving the

system of equations







ṗ = −kez − βż

ṗ = m∗(p)z̈

The first equation describes a damped oscillation along the z direction; it contains the coef-

ficients ke and β which are the elastic constant and the viscous friction coefficient, respectively.

The first term, ke, is related to the axial trapping frequency ωz via ωz =
√

ke/m, whereas the

second coefficient, β, is related to the damping rate G via G = β/2m. The damping rate G is

a parameter of interest, which gives informations about the dissipation in the system.

The second equation takes into account the presence of an optical lattice in the effective

mass m∗ term, which is related to the curvature of the energy band of the lattice, as it was

shown in sec. 1.5.2.
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Figure 4.5: Scheme of the magnetic field gradient behaviour for both experimental procedures
employed to perform transport measurements. In the first procedure (solid black line) we abruptly
switch off the magnetic field gradient which compensate the gravity in order to excite the system
oscillation. In the second one (red dashed line) we change linearly the magnetic field gradient in order
to perform measurements at constant velocity.
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In the presence of an optical lattice, both the oscillation frequency and the damping

depends on the effective mass m∗. In particular, the oscillation frequency takes the form

ω′ =
√
ω∗2 − 4πG∗2, where ω∗ = ωz

√

m
m∗ is the oscillation frequency in the absence of any

dissipative effect, and G∗ = G m
m∗ is the damping rate in the presence of the lattice.

In the presence of a finite damping rate G∗, the time evolution of p can be approximated

with a damped oscillation function of the form

p = m∗ṽe−Gt sin(ω′t+ ϕ) (4.2)

with amplitude p0(t) = m∗ṽ = m∗ω∗2∆z/ω′ and frequency ω′ =
√
ω∗2 − 4π2G2. Here ∆z is

the trap displacement.

It is important to know that the system behaves according to the eq. 4.2 only if the

maximum momentum reached during the oscillation is smaller than the critical momentum for

the dynamical instability pc. If p < pc we observe a damping in the oscillations which is due to

the presence of phase slips.

For momenta larger than pc the system behaves differently from the previous case and the

system does not oscillate anymore. We observe, instead, an overdamped motion, which we

attribute to the occurrence of the dynamical instability that can be described in term of a

divergence of the phase-slips rate at the critical velocity vc of the superfluid.

In the subsection 4.4.1 we will treat the phenomenon of the dynamical instability, whereas

we will focus on the phenomenon of phase slips in the subsection 4.4.2.

4.4.1 Dynamical instability

A time evolution of the momentum distribution peak p for s = 2 and for a = 8.4a0 is shown in

Fig. 4.6 a. In this picture, we observe an initial increase of p up to a certain critical value pc,

which is followed by a subsequent decrease. More in detail, for p < pc, the oscillation is weakly

damped and the data points can be fitted by using the damped oscillation equation shown in

the previous section (Eq.4.2). This behaviour is consistent with the presence of phase slips, as

we will see more in details in the next subsection. For p > pc, instead, the system enters into a

dynamically unstable regime driven by a divergence of the phase slip rate, and the oscillation is

strongly damped. In order to estimate the critical momentum pc, which separates the weakly

dissipated regime from the strongly unstable one, we plot the difference between the fit of the

weakly damped oscillation and the experimental data, as shown in Fig. 4.6 b. In fact, the critical

momentum pc for the occurrence of the dynamical instability is identified as the value where the

experimental data points deviate with respect to the theoretical curve. The interception of the
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two linear fits identifies the time at witch the system enters the unstable regime, corresponding

to the critical momentum pc. We also observe the presence of two different regimes into time

evolution of the momentum distribution width δp: initially δp is almost constant, whereas it

abruptly starts increasing when the system enters into the unstable regime (Fig. 4.6 c)

Thus behaviour can be explained in terms of the phenomenon of the dynamical instability.

An intuitive explanation of this instability in the absence of interaction can be given in term

of the effective mass m∗.

As it was discussed in section 1.5.2, it is possible to describe the system dynamics in the

presence of an optical lattice by using the semi-classical model, provided that the mass of the

system is replaced with the effective mass m∗, which takes into account the presence of the

lattice. The effective mass is not constant, but it depends on the quasimomentum p of the

system, and, in particular, it can become negative at a certain value of the quasimomentum.

The critical value corresponds to one-quarter of the reciprocal lattice constant, i.e. π/2 at zero

interactions, only for a lattice strengths in the tight-binding regime (s ≥ 5).

When the effective mass of the system changes its sign, the BEC behaves as if it was subject

to a negative scattering length and, due to a such attractive interaction, the BEC collapses [88].

Another interpretation of this mechanism can be given in term of divergence of the phase

slips rate. When the system enters into the dynamical unstable regime, it is observed a rapid

growth of excitations (phase slips), which provoke a strongly dissipation and the system stops

oscillating. In this situation, the phase coherence of the system is broken due to the fact that

the tunnelling is not fast enough to lock the phases of adjacent sites, which start to run inde-

pendently. As a consequence, the system enters into an insulating incoherent regime.

So far we have considered the case of U = 0. For non-negligible interaction the situation

changes, and the critical momentum is not equal to π/2 (i.e. the theoretical value in the tight

binding regime). As it was shown in subsection 2.4.4, when the interaction among the particles

is strong enough to overcame the kinetic energy, the system undergoes a phase transition from

the SF to the MI regime, and this happens even for very small velocity. In this scenario, we thus

expect that the critical velocity decreases as the interactions increase, i.e. pc < π/2, vanishing

at the SF-MI transition [89].

As it is shown in Fig 4.7, we have excited the sloshing motion of the system for different

values of interactions and lattice depth. By increasing the scattering length, we observe that

the damping rate at short times increases, as the phase slips nucleation rate increases (Fig.

4.7 a), while pc decreases (Fig. 4.7 b). However, as it is show in Fig. 4.7 b, by increasing

the interactions, the measured pc reaches a finite constant value, but it does not vanish. The
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Figure 4.6: (a) Time evolution of the momentum distribution peak p at s = 2 for a = 8.4a0. The
solid line is the damped oscillation fitting the data for p < pc before the dynamical instability sets
in. The blue circle marks the critical momentum pc. The error bars comprise the imaging resolution
and the statistical uncertainties. (b) Difference between the fit to the initial damped motion and the
experimental data (dots). The continuous line is the fit to estimate the critical momentum. (c) Time
evolution of the momentum width. The blue arrow marks the time t corresponding to the critical
momentum pc.
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onset of this plateau can be interpreted as the critical scattering length ac to enter the Mott

regime for the commensurate regions of the system. As it was introduced in sec. 4.2, the

presence of a trap during the loading of the 2D lattice makes the 1D systems inhomogeneous

and some tubes contain commensurate regions, as well as incommensurate regions where the

critical density is always lower than unity. The transport along the tubes with a commensurate

regions is globally suppressed driving the system into an effective insulating regime, i.e. within

in each tube a part of the atoms reaches the localization condition n = 1 stopping also the

remaining adjacent parts with different occupation. The fraction of tubes that does not reach

the critical density n = 1 keeps instead moving also for a > ac, originating the observed plateau

for pc. We estimate that about one quarter of the atoms resides in tubes where the occupation

is always n < 1. For a given lattice depth when increasing the scattering length in the Mott

phase, a > ac, this fraction of delocalized atoms remains constant because in the tubes where

the Mott domains form, the density is fixed.

This interpretation seems confirmed by the observed increase of the plateau for decreasing

lattice depth (Fig. 4.7 b). In fact, the increase of the interaction strength that is necessary

to reach the insulating regime, produces an overall decrease of the density of the 1D systems,

hence an increase of the fraction of tubes that does not reach the critical density for the Mott

insulator transition. For each set of measurements with a given value of s, we determine the
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Figure 4.7: (a) Time evolution of the momentum distribution peak p at s = 2 for different values
of scattering length. The solid lines are the theoretical damped oscillation fitting the data for p < pc
before the dynamical instability sets in. The green circles mark the critical momentum pc. The
error bars comprise the imaging resolution and the statistical uncertainties. (b) Critical momentum
pc versus scattering length for two lattice depth: s = 4 (red squares) and s = 2 (black circles). A
piecewise fit (solid lines) determines the critical values for the SF-MI transition (empty circles) for n
= 1: respectively ac/a0 = 122(8) (γc = 1.08(7)) and ac/a0 = 214(6) (γc = 1.88(5)).
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critical value of the scattering length, ac, by using a piecewise fit [90]. More in detail, we use

a second-order polynomial fit, which is justified by the phase-slip based model [5, 90]. As it is

shown in Fig.4.7 b, as the lattice depth decreases, the critical scattering length increases. This

behaviour is in agreement with the numerical results with Monte Carlo simulation [90].

In conclusion, by studying the critical quasimomentum behaviour as a function of the in-

teractions, the onset of the Mott regime can be easily detected from a vanishing pc, and this

kind of measurements can be performed both in the presence of a shallow lattice [90] and a

deep one [68].

4.4.2 Observation of velocity-dependent quantum phase slips

For momenta lower than the critical one, far from the dynamical instability, the system never

enters in the unstable regime, but it keeps oscillating with a dissipation due to phase slips

nucleation. As it was shown in sec. 3.2.1, the damping rate G is related to the phase slips

nucleation rate Γ via G ≃ h
mL

Γ
v
. As a consequence, in order to understand the phase slips

phenomenon, we studied the behaviour of G for different values of velocity, interaction and

temperature.

Despite the first theoretical model regarding the damping behavior of dipole oscillations of
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Figure 4.8: (a) Time evolution of the quasi-momentum p and (b) of the momentum distribution
width δp for the interaction strength γ = 1.22, the temperature T = 22(4) nK and two maximum
velocities: v = 1.4(4) mm/s (blue filled circles) and v = 2.2(4) mm/s (red open circles), respectively
corresponding to trap displacements ∆z = 1.5 µ and ∆z = 4 µm. The lines in panel (a) are fits
to measure the damping rate, which is G = 28(9) Hz and G = 84(6) Hz for the blue and red data,
respectively. The lines in panel (b) are fits to measure the time constant τ , which is τ = 10(7) ms
and τ = 7(1) ms for the blue and red data, respectively.
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one-dimensional ultracold gases due to the presence of phase slips [22] was performed in the

Bose-Hubbard regime, we have decided to study this phenomenon in the presence of a weak

optical lattice (V = 1ER). The reason is that we want to perform measurements far from the

dynamical instability, which occurs for velocity larger than a critical velocity, and to increase

the range of velocities investigated. In the previous chapter we have shown the behaviour of

the critical velocity for the dynamical instability for different values of interaction and lattice

depth. We have observed that, for a fixed interaction value, the critical velocity decreases as

the lattice depth increases (Fig. 4.7). As a consequence, by increasing the lattice depth, we

decrease the range of velocities that we can investigate far from the phenomenon dynamical

instability. In the presence of an optical lattice with depth s = 1, the critical velocity varies in

the range [0.74,0.56] ~k, depending on the interaction value.

The idea is that a weak lattice in the Sine-Gordon limit shifts the critical velocity towards

the band edge, thus enlarging the range of accessible v for studying the phase-slips phenomenon.

In the weak interaction limit, in fact, the critical velocity is defined as the point in which the

curvature of the Bloch band is zero, so that the critical velocity tends to the Bragg velocity for

vanishing lattice strengths.

The damping rate is measured by fitting the time evolution of p with the model presented

previously, as shown in Fig. 4.8. We observe that, at the same interaction γ = 1.22, the

damping rate G is different for two different value of velocity, which we identify in this kind of

measurements with the velocity reached during the first oscillation as in the theoretical model

[22], suggesting the presence of phase slips with a nucleation rate that depends on the velocity.

In fact, a small velocity v (blue filled circles) typically leads to a very weakly damped oscillation.

In this case, δp is almost constant showing that the system is just slighting dissipating and that

its coherence properties are almost preserved. Instead, at high velocity (red open circles), the

oscillation is strongly damped and δp greatly increases during the evolution, showing a strong

effect of excitations.

We fit the growth of δp with an inverted exponential,

δp(t) = δp(0) + p∞[1− exp(−t/τ)], (4.3)

where τ is the constant time and p∞ is the relative saturation value. We found that the damping

rate G is directly related to τ via 2τ ≃ 1/G, and this can be interpreted considering that the

mechanical energy dissipated in the oscillation is converted into momentum spread.

We have repeated this type of measurement for a wide range of velocities, interaction

strengths and temperatures. The temperature is estimated from the momentum distribution at
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Figure 4.9: (a) Damping rate G is plotted versus the maximum velocity v normalized to the critical
velocity vc, for three interaction strengths and constant temperature: γ = 0.13 and T = 37(7) nK
(black circles), γ = 0.19 and T = 39(7) nK (orange triangles) and γ = 0.64 and T = 34(5) nK (blue
squares). (b) G versus v/vc for two different temperatures and approximately constant interaction
energy: T = 34(5) nK and γ = 0.64 (blue squares) and T = 43(5) nK and γ = 0.70 (red stars). The
lines are fits to measure the crossover velocity v∗ .

t = 0 and the mean atom number per site n̄ via the established relation kBT = ~n̄δp0/0.64m
∗d

[91, 92], where m∗ is the effective mass which takes into account the presence of an optical

lattice. In our measurements the temperature T changes from 20 to 35 nK and the interaction

strength γ changes form 0.13 to 1.22. Some measurements of the evolution of G with velocity

and interaction at the same temperature are shown in fig 4.9. Each data set is rescaled to the

corresponding critical velocity vc for dynamical instability, which is measured according to the

technique introduced in the previous subsection.

In Fig.4.9 a, two different dataset at the same temperature and different interaction are

reported. For strong interaction (orange, blue), we observe a clear crossover from a regime of

constant G to a regime where G grows with the velocity.

We fit the data by using a piece-wise linear function and we determine the crossover velocity

v∗, which we define as the minimum velocity required to enter the velocity-dependent regime.

The crossover velocity seems to depend on the interaction and in particular it apparently

decreases for increasing interaction.

By repeating the same measurements for different values of temperature and at the same

interaction, we observe a similar behaviour similar to the one introduced earlier (Fig. 4.9 b).

Also in this case, in fact, we observe a crossover from a regime where G is velocity independent
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Figure 4.10: Crossover velocity as a function of the temperature normalized to the Josephson plasma
energy. The crossover velocity increases as the temperature rises. The individual datapoints have been
taken for different temperatures and interaction energies: a) γ = 1.22 and T = 22(2) nK, b) γ = 0.64
and T = 34(5) nK, c) γ = 0.37 and T = 30(5) nK, d) γ = 0.70 and T = 43(5) nK, e) γ = 0.19 and T
= 39(7) nK.

to a regime where G grows with velocity.

Moreover, as shown in Fig. 4.9 b , in the regime where G does not depend on the velocity, i.e.

for v ≪ v∗, the damping rate G is strongly affected by temperature and we observe a monotonic

increase of G with T (as shown in the inset in Fig. 4.9 b). In this regime the dependence on

interaction (Fig. 4.9a) is weaker. On the contrary, in the v-dependent regime, interaction

effects are apparently dominant (Fig. 4.9 a), whereas we cannot measure a clear dependence

on T (Fig. 4.9 b). As a consequence of the combination of these effects, the crossover velocity

increases as the temperature increases. The behaviour of the crossover velocity as a function

of the temperature normalized to the Josephson plasma energy is shown in fig.4.10.

These observations appear consistent with the predicted crossover from a regime where the

nucleation of phase slips is due to thermal effect to a regime of quantum phase slips. We do not

control this crossover by changing the temperature T , but by varying the crossover temperature

T ∗ ∝ Ej/kBv/vc (4.4)

by tuning velocity and interaction strength. For T ∗ ≪ T , i.e. at small velocity and small

interaction, G depends only on T and it is velocity-independent, suggesting a thermal acti-

vation of phase slips. For T ∗ ≫ T , i.e. at large velocity and large interaction, the system
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Figure 4.11: Crossover velocity v∗/vc versus kBT/Ej . The individual datapoints have been taken
for different temperatures and interaction energies: a) γ = 1.22 and T = 22(2) nK, b) γ = 0.64 and
T = 34(5) nK, c) γ = 0.37 and T = 30(5) nK, d) γ = 0.70 and T = 43(5) nK, e) γ = 0.19 and T =
39(7) nK. The dashed line apparently separates the thermal and the quantum regimes for phase slips.

enters in a regime where G is linearly dependent on the velocity and temperature independent,

suggesting a quantum activation of phase slips. A further indication that our measurements

are in agreement with the crossover from thermal assisted to quantum phase slips is the lin-

ear scaling of the crossover velocity normalized to the critical velocity v∗/vc as a function of

temperature normalized to the Josephson energy kBT/Ej. As shown in fig. 4.11, despite the

individual datapoints have been measured for scattered values of γ and T , they show a clear

linear scaling, which is consistent with the theoretical prediction

kBT
∗

Ej
∝ v

vc
. (4.5)

From the fit we get the relation for the crossover velocity T ∗ as a function of v, Ej and vc

kBT
∗ = 4.9(14)Ej

v

vc
− 0.4(4)Ej. (4.6)

Unfortunately, the agreement with the theory is only qualitative since we cannot reproduce

the theoretical exponent α. In our experiments we observe a damping rate that is proportional

to T α−1 in the case of thermally activated phase slips and to vα in the quantum phase slips

one, but our experimental exponents α are interaction independent and they are of the order
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of unity [19], as it is shown in fig.4.12.
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Figure 4.12: Experimental (red circles) and theoretical (black triangles) exponents α as a function
of the interaction γ. Our exponents are about constant (and of the order of the unit) and they do not
depend on the interaction. On the contrary, the theoretical exponents depend on the interaction and
they can be an order of magnitude larger than the experimental exponents.

On the contrary, according to the theoretical model [22], the theoretical exponents depend

on the interaction. By using the relation between the Luttinger parameter K and the Lieb-

Liniger parameter γ in the limit of no lattice potential (s = 0) and for small interactions

(γ < 10)

K ∼ π
√

γ − γ3/2/(2π) (4.7)

we estimate the theoretical exponents and we find that they varies from about 13 to 4.5 in

the same range of interaction strengths, i.e. they can be an order of magnitude larger than

the measured exponents [22]. Possible reasons for the disagreement are the range of velocities

explored, much larger than in the theory , and the lattice strength (s = 1), much lower than in

the theory [22]. More in detail, the power-law behavior I showed above is valid only for very

low velocities (p < hk/10), while in the experimental range (hk/10 < p < hk/2) a different,

exponential behavior has been predicted [22, 5]. On the experimental side, the limited range

of accessible velocities, which is limited by the finite T on the low-v side, does not allow us to

distinguish a power law from an exponential.
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4.4.3 Comparison between our experimental results and the theo-

retical model of thermally activated phase slips of one-dimensional

Bose gases in the Sine Gordon limit.

Recently M.Kunimi and I. Danshita from the Yukawa Institute for Theoretical Physics, have

performed a theoretical study of thermally activated phase slips of one-dimensional Bose gases

in a shallow optical lattice, motivated by our experimental results.

They find, at low velocity and weak interaction, damping rates comparable with our experi-

mental values, by assuming the presence of thermal activated phase slips rather than thermally

assisted quantum phase slip [23]. In the following I will briefly show a summary of the methods

that they have used and a comparison between their theoretical and our experimental results.

Under the mean-field approximation, they initially consider a ring shape system with an

optical lattice and they estimate the energy barrier between the stable and the unstable solu-

tions of the stationary Gross-Pitaevskii equation, the frequency of the unstable mode and the

curvature of the energy landscape around the stationary solutions. By employing the Kramers

formula, they use the previous results to calculate the behaviour of nucleation rate of TAPS as

a function of the filling factor n = n1Dd and the velocity. Finally, they estimate the damping

rate G by using the local density approximation, in order to taking into account the inhomo-

geneity of the system, due to the presence of an harmonic trap, and the temporal change of

the velocity. More in detail, to include these effects, they substitute the power P in the eq.

3.19 with the power per unit length P̃ = P̃ [n(x, t), v(t;G)] = 2π~Γ̃[n(x, t), v(t;G)]n(x, t)v(t;G)

at time t. Here, Γ̃ = Γ/L is the nucleation rate per unit length. The spatial and temporal

dependences of the power and the nucleation rate is originated by the local particle density

n(t, x) = nTF (x− xcm(t)), which depends on the 1D Thomas-Fermi density profile nTF and on

the position of the center of mass during the damped oscillation xcm(t), and by the velocity

v(t;G) = e−Gtvmaxsin(ωLt).

In this scenario, the energy loss in eq. 3.19 can be substituted by

Eloss =

t1
∫

0

dt

∫

dxP̃ = P̃ [n(x, t), v(t;G)] (4.8)

which is obtained by integrating the power P̃ [n(x, t), v(t;G)]. By equaling Eq. 4.8 and

Eq. 3.17, with A1 ≃ A0e
−Gt1 , they obtained a relation between the damping rate G and the

nucleation rate Γ
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N

2
mv2max(1− e−2Gt1) =

t1
∫

0

dt

∫

dxP̃ = P̃ [n(x, t), v(t;G)]. (4.9)

Once known the filling factor and as the nucleation rate Γ depends on the velocity, one can

estimate the damping rate G for thermal activated phase slips by solving Eq. 4.9.

It is important to note that in order to estimate G, they used the peak density, i.e. the

density of the central tube, for sake of simplicity. From an experimental point of view, we use

instead the mean density due to the fact that when we record the images of the momentum

distribution, we obtain information on the mean properties of all subsystems. As a consequence,

the theoretical G gives only a bound of the damping rate, which is a lower bound due to the

fact that G decreases as the number of particles increases.

Figs. 4.13 and 4.14 show the comparisons between the theoretical behaviour of the damping

rate G as a function of the velocity v normalized to the critical velocity vc, and the experimental

one for different values of interactions, temperature and atom numbers. As it is shown in figs.

4.13 (a,b,d,e) and in figs 4.14 (a,b,d,e) the theoretical G is comparable with our experimental

values in the regime of low velocity, where the Kramers formula is efficient, and in the regime of

Figure 4.13: Theoretical amping rates for (a) (γ, T ) = (0.13,37 nK), (b) (γ, T ) = (0.19,39 nK), (c)
(γ, T ) = (0.37,30 nK), (d) (γ, T ) = (0.64,34 nK), (e) (γ, T ) = (0.70,43 nK), and (f) (γ, T ) = (1.22,22
nK). The black points represent our experimental data. The thick lines represent the region in which
the system at the trap center satisfies EB > 2kBT . Adapted from [23]
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Figure 4.14: Damping rates for (a) (γ,N) = (0.13,42), (b) (γN) = (0.19,51), (c) (γN) = (0.37,44),
(d) (γN) = (0.64,52), (e) (γN) = (0.70,45), and (f) (γN) = (1.22,42). The black points represent
our experimental data. The thick lines represent the region in which the system at the trap center
satisfies EB > 2kBT . Adapted from [23]

Figure 4.15: Theoretical (red dots) and experimental (blue x) damping rate as a function of tem-
perature for (γ,N) = (0.67,49). The error bars in the theoretical data points are estimated by the
value of G at the lower and upper bounds of the experimental temperature, whereas the error bars in
the experimental data points represent the statistical uncertainties. Adapted from [23]
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weak interaction, where the GP mean-field theory is valid. This agreement suggests a thermal

nature of the phase slips and in particular for low velocity and weak interaction the damping in

the system oscillations seems be due to thermally activated phase slips, rather than thermally

assisted quantum phase slips.

In figs.4.13 (c,f) and figs. 4.14 (c,f), we see that our experimental data are not in agreement

with the theoretical model and in particular they are not included into the region between the

upper and lower theoretical curves. The disagreement in figs. 4.13 f and 4.14 f is probably

due to the fact that the interaction γ = 1.22 is too large to use the GP mean-field theory,

whereas the disagreement in figs. 4.13 c and 4.14 c is not clear. As shown in fig. 4.15, the

experimental values of G for different temperatures are in good agreement with the theoretical

values and this can be considered a further indication that in the regime of weak interaction

and low velocity the nature of phase slips is purely thermal. Nevertheless, it is still missing a

comparison for large velocity and large interaction regime, where the experiment observed a

damping rate G which depends on the velocity but not on the temperature. This behaviour is

compatible with a quantum activation of phase slips.

In conclusion, our results provide for the first time the experimental evidence of quantum

phase slips in one-dimensional superfluids, and consists also in the first observation of the

crossover from a regime of phase slips due to thermal fluctuation to a phase slips due to quantum

fluctuations. Moreover, in the regime of low velocities and low interactions, our measurements

are in agreement with the theoretical model for thermally activated phase slips. However, the

quantitative comparison between theory and experiment in the QPS regime is still missing.

One important feature of our setup is that the quantum regime can be reached at constant

temperature, by tuning the velocity or the interaction. This offers the possibility to control the

quantum phase slips nucleation rate and opens new perspectives for the study of QPS-related

phenomena in ultracold quantum gases.

4.5 Dissipation at constant velocity

Dissipation at constant velocity: exploring the strongly interacting regime

In this section I will describe a second series of experiments, where we have investigated the

dissipation during a shift of the trap at constant velocity. By employing this new experimental

technique, we have the advantage of being able to study the phase-slips dissipation rate at

interaction strengths larger than those investigated for oscillating systems.

As it was shown in the previous section, the range of velocity that can be investigated by
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performing oscillation measurements is limited by the phenomenon of dynamical instability.

In particular, the critical velocity vc for this phenomenon limits above this range of velocity,

which decreases when the interaction increases as the critical velocity vc. As a consequence,

experimental measurements at lower velocity are required. Nevertheless, in the oscillation

measurements, the range of velocity is also limited below due to an experimental limit that

is related to the finite temperature of the system. In fact, if the velocities are too small, the

thermal effect provokes a finite damping which prevent the observation of a complete oscillation

and thus the measurement of the dissipation rate.

Instead, by shifting the trap at constant velocity we can extend the range of the velocities

investigated and, at the same time, also the range of interactions. The idea is the following:

by imposing the trap displacement at constant velocity, we are able not only to reach velocity

lower than those achieved in the case of an oscillating system, but we are also able to approach

velocity close to the critical velocity without ever reaching it. This is an important difference

respect tp the measurements performed with an oscillating system: here in fact the dynamical

instability occurs when the maximum velocity is close to the critical velocity, regardless of

whether the mean velocity of the system is lower than the critical one. Due to the fact that in

this kind of measurements we can impose the system velocity, we can perform measurements at

velocity chosen appropriately. As it was shown previously, in fact, by increasing the interactions

we decrease the critical velocity. As a consequence, we perform measurements at low velocity

in order to stay far from the dynamical instability also in the presence of a strongly interacting

system. In particular, while in the measurements shown in subsection 4.4.2 we have reached

the lowest maximum velocity of 1.2 mm/s and the highest interaction γ = 1.22, by shifting the

center of the trap at constant velocity we can reach a velocity of 0.4 mm/s and an interaction

γ = 8.4.

In the measurements performed by shifting the trap at constant velocity, the experimental

observable is the momentum spread. In particular we measure the dissipation rate from the

increase of the momentum spread, due to the fact that the energy dissipated during the system

dynamics is converted into momentum spread.

In this kind of measurements we expect that a superfluid should follow the trap displacement

and dissipate due to the presence of phase slips, resulting in an increase of δp. A Mott insulator

should not instead follow the trap displacement and should not dissipate, unless a trap shift

large enough to break the insulator is applied[24], as it will be explained more in detail in the

following subsection.

For a superfluid, the dissipation rate R is related to the nucleation rate of phase slips Γ and

to the system velocity v via a relation of the form R ∝ vΓ.
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This result can be obtained as follows. As it was shown in section 3.2.1, for a 1D system

of length L the rate of change of velocity due to the presence of phase slips is related to the

dissipation rate Γ via the relation

dv

dt
=

−hΓ

mL
. (4.10)

Therefore, for N particles, the rate of change of kinetic energy due to phase slips is

dEk

dt
= Nmv

dv

dt
= −NhvΓ/L. (4.11)

From this relation one obtains the energy dissipation rate

−dEk

dt
= hρvΓ (4.12)

where ρ = N/L. By assuming the variation of the kinetic energy as an effective temperature,

and using the known relation between T and δp, [91, 92], we estimate a linear increase in time

of the momentum spread δp = δp0 +Rt, with a rate

R ≃ 4vm∗Γ. (4.13)

4.5.1 Shallow lattice

The first measurements that we have performed with this technique are in the presence of a

shallow lattice with s = 1, across the SF-MI transition, for a trap velocity of 0.8 mm/s. In

fig.4.16 the time evolution of δp for different values of scattering length is reported. We observe

that δp increases linearly with time, as expected. In particular, when the system is in the

superfluid phase, for γ < γc , δp is almost constant, showing that the system is just slightly

dissipating due to phase slips, and that its coherence properties are almost preserved. By

increasing the interaction, the system undergoes a phase transition to the insulator phase and

we observe that δp greatly increases during the evolution. It is important to remember that

the critical interaction for the transition from the superfluid phase to the insulating ones, γc, is

estimated independently by measuring the critical scattering length with the technique shown

in sec. 4.4.1 and by using the relation Eq. 2.23 between γ and g1D.

With a linear fit of the data we find the dissipation rate R, which increases by increasing the

interaction as shown in Fig. 4.16 b. In particular, the dissipation rate shows a roughly linear

dependence on the interaction, except for the point at very low interaction (γ = 0.038(4)). In

order to have an indication about the nature of the phase slips on the basis of the diagram in
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fig. 4.11, we estimate T , Ej and vc when the system is in the superfluid regime. We find a

temperature T = 27±5 nK except for the data set at γ = 0.038(4) which is at T = 60±10 nK.

The higher temperature for the data set at the lowest interaction is probably due to the fact

that when we use a slow ramp to set aload to the final value ameas, we are not really adiabatic and

the system heats up. We find that the point at high temperature is in the T -dependent region

suggesting that its dissipation may be due to the presence of thermally activated phase slips. By

increasing the interaction, we find that the point at γ = 1.8 is close to the crossover between the

T -dependent region and the v-dependent one whereas the last point in the superfluid regime (γ

= 3.2) is in the v-dependent region, suggesting that the dissipation may be due to the presence

of quantum phase slips. Surprisingly, we observe a finite dissipation also when the system is

in the insulating regime, as shown in fig. 4.16. This dissipation may be due to two different

phenomena. The first phenomenon is related to the coexistence of a superfluid and a Mott

insulating phase, due to the inhomogeneity of our system. As it was described in sec. 4.2,

the presence of an harmonic trap, when splitting the BEC in an array of 1D tubes, makes our

system inhomogeneous and in particular we observe that de population decreases from the tubes

in the center of the array to the ones in the tails. As a consequence, we may have some tubes

reaching a commensurate filling and other ones where there are not commensurate regions. By

increasing the interaction, the transport along individual tubes reaching a commensurate filling
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Figure 4.16: (a) Time evolution of the momentum width δp for s = 1 at various interaction strengths:
γ = 0.038(4) (black circles), γ = 3.25(4) (cyan diamonds), γ = 5.55(4) (blue squares) and γ = 8.40(8)
(red stars). Trap velocity v = 0.8 mm/s (i.e. ∆z = 24µm and t = 30 ms). Solid lines are linear
fits to extract the dissipation rate R. (b) Dissipation rate versus the interaction strength for s =
1. Inset: critical momentum versus scattering length. The piecewise fit (solid line) determines the
experimental critical value for the SF-MI transition (empty circle) ac/a0 = 392(12). The grey zone
indicates the superfluid regime, whereas the white zone the Mott insulator regime. The solid arrow
marks the experimental interaction value for the SF-MI transition (γc = 3.44(16)).
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is globally suppressed and the system does not behave as a superfluid anymore, whereas tubes

with no commensurate regions keep moving and dissipate due to the presence of phase slips.

The second phenomenon is the excitation of the gapped Mott phase. Let us analyse it more

in detail. Experimentally, when we move the harmonic trap, we apply a potential gradient

∇V (δz), whose form can be obtained by starting from the total potential energy of the system

V (z) = 1
2
mω2z2 +∇V (z)z. By putting V ′(z) = 0, we find that the potential gradient has the

form

∇V (δz) = mω2δz. (4.14)

By tilting the optical lattice, we change the energy difference between neighbouring lattice

sites, i.e ∇V d. If this energy difference equals the on-site interaction energy U in the Bose-

Hubbard limit (Fig. 4.17 a), we can excite the Mott insulator and lead it to the breakdown

(Fig. 4.17 b), as already exploited in the first exploration of the Mott phase with ultracold

atoms in 2002 [24].

For shallow lattices in the Sine Gordon regime a quantitative description of the phenomenon

is more complex, since the tunnelling is not limited to the neighbouring sites and the Mott gap

is small [76]. In our case the maximum gradient ∇V (∆z) is of the order of h×2.2(3) kHz/µm

which is probably large enough to excite the Mott insulator. For s = 1, in fact, the tunnelling is

not negligible up to the third neighbouring site and we expect that the Mott gap is smaller than

h×0.4 kHz [76]. This suggests that the excitation of the Mott insulator in our system is highly

probable. In the absence of a quantitative modelling it is not possible to discriminate which

Figure 4.17: Sketch of the excitation of MI.(a) The MI is a gapped insulator and removing an atom
from a site and adding it to a neighbouring one with the same filling, has an energy cost equal to the
on-site interaction energy U . (b) If the energy acquired during the harmonic potential displacement,
∇V d, is equal to the MI energy gap U , it become possible to excite the insulator at no energy cost.
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one of the two effects dominates the observed dissipation. Further measurements, in a different

regimes, are required in order to understand which effect provokes the observed dissipation also

when the system is in the insulating phase. As a consequence, we decided to repeat this kind

of measurements in the Bose-Hubbard regime. In this situation, in fact, the Mott insulator

gap is well defined and we can compare it with the energy acquired during the harmonic trap

displacement.

4.5.2 Deep lattice

We have repeated this type of experiments at constant velocity in the presence of a deeper

lattice with s= 5. In this case we expect a clearer distinction between the Mott insulator and

superfluid fractions of the system, since in the Bose-Hubbard limit the Mott gap is larger and

the tunnelling is essentially only to the neighbouring sites.

In fig. 4.18 a the time evolution of δp, for a trap velocity of 0.4 mm/s and for different

values of scattering length, is shown. Also in this case we observe a linear scaling of δp with

time, in both superfluid and Mott insulator regimes. We now calculate that the Mott gap U/h
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Figure 4.18: (a) Time evolution of δp for s = 5 and different interaction strengths: U/J = 1.9(1)
(blue triangles), U/J = 4.9(3) (red circles) and U/J = 12.3(7) (black squares)). The data set at
U/J = 4.9(3) is shifted by 0.1 ~k and the data set at U/J = 12.3(7) is shifted by 0.2 ~k. Trap
velocity v = 0.4 mm/s (i.e. ∆z = 10µm and t = 25 ms). The solid lines are linear fits to extract the
dissipation rate R. The data set at U/J = 4.9(3) show an activation mechanism, i.e. for t > t∗ ≃ 20
ms the time evolution of δp can be fitted with a linear function with a larger slope (dashed line).
(b) Dissipation rate R versus the interaction strength for s = 5. Inset: critical momentum versus
scattering length. The piecewise fit (solid line) determines the experimental critical value for the SF-
MI transition (empty circle) ac/a0 = 85(15). The grey zone indicates the superfluid regime, whereas
the white zone the Mott insulator regime. With the solid arrow we mark the experimental interaction
value for the SF-MI transition (γc = 4.5(3)).
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varies from 2.2(2) to 4.2(3) kHz, while the maximum energy shift V ′(∆z)d, which is calculated

by using Eq.4.14, is just h×0.46(6) kHz, therefore an order of magnitude smaller. This excludes

that the observed dissipation is due to the excitation of the Mott insulator. Consequently, the

increase of δp may be due only to the excitation of the superfluid fraction that, as already

discussed, coexists with the Mott phase due to the inhomogeneity of our system.

In fig.4.18 b the behaviour of the damping rate R, as a function of the interaction strength,

is reported. When the system is in the superfluid regime, R increases with the interaction

strength, as in the case of shallow lattices. For larger interactions we observe instead a satu-

ration or even a decrease of R for increasing interaction strength. This behavior confirms the

expectation of a freezing of the tubes where MI is forming and a residual transport on the ones

never reaching commensurate density. We note that the data set near the SF-MI transition (fig.

4.18 a with a/a0 = 94) behaves differently from the other data sets, as it shows an apparent

activation mechanism at long times, hence at large energy shifts. This suggests that the Mott

insulator might be excited for interaction strengths close to the SF-MI transition, since the

gap is not yet fully developed. At larger interaction strengths we do not observe such increase

at long times, confirming that the observed dissipation is entirely due to the superfluid tubes.

Since the fraction of superfluid/insulating tubes is independent of the interaction strength, due

to the fact that we split the BEC in the array at fixed scattering length, the decrease of R for

increasing interaction indicates a decrease of the dissipation rate in the superfluid for increasing

correlations.

The measurements performed at constant velocity open the way for a deeper understanding

of the effect of phase slips also in the strongly interacting regime. It would be interesting to

study the dissipation rate behaviour by employing systems where the presence of the Mott

insulator can be excluded a priori. This condition can be reached, for example, by reducing

the maximum occupation at the center of the trap below unity or by realizing an homogeneous

system with a square-well trap, but both cases are not trivial from an experimental point of

view. Once that the Mott phase is excluded, it would be possible to study how the phase-slip

rate evolves for increasing interactions in the strongly correlated regime and in the presence of

different kind of obstacles, such as isolated impurities or disordered potential.



Conclusions

The goal of this thesis is to investigate the phenomenon of phase slips in one dimensional

Bose-Einstein condensates by probing the system superfluidity in the presence of an obstacle

in different ranges of velocities, interactions and temperature.

The system we use is a one-dimensional Bose-Einstein condensate of 39K atoms, in the

presence of a 1D optical lattice along the axis of the system, which acts as an obstacle. The

BEC, being a superfluid, should flow without dissipation, even in the presence of an obstacle.

Anyway, by performing transport measurements, I observe a finite dissipation. I focused my

attention on the dissipation phenomena that cause the superfluity breakage.

In the first part of my work, I focused my attention on the system dissipation and I in-

vestigated the system oscillation for different values of velocity. More in detail, I tuned the

system velocity in a range between vC/5 and vC , where vC is the critical velocity the dynamical

instability.

Depending on the velocity, the systems behaves differently: close to the occurrence of the

dynamical instability, we observed an overdamped motion, which is a consequence of the diver-

gence of phase slips.

For velocity smaller than vc, instead, we observed how phase slips act on our system: in this

situation, we observed that our system oscillates with a damping due to the presence of phase

slips. We measured the damping rate G due to the presence of phase slips for different values of

interaction, velocity and temperature, far from the dynamical instability. In this situation the

system never enters in the unstable regime but keeps oscillating with a finite dissipation. The

damping rate G, which is related to the phase slips nucleation rate, according to the theory

should behave differently depending on the nature of phase slips: in the presence of phase slips

due to thermal fluctuation, the damping rate depends on the temperature, whereas it depends

on velocity if phase slips are due to quantum fluctuations. This change of behaviour seems

consistent with the predicted crossover from phase slips due to thermal fluctuations to the

phase slips due to purely quantum fluctuations and provides the first experimental evidence of

81
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quantum phase slips in a 1D atomic superfluid.

In the second part of experiments, we employed a different method to study the dissipa-

tion, by performing transport measurements at constant velocity, also for velocities lower than

vC/5, both in the regime of shallow lattices and a deep one. When the system is in the su-

perfluid phase, the system dissipation is related to the presence of phase slips, both thermal

and quantum depending on the interaction value. Surprisingly, we observed a finite dissipation

also when the system is in the insulating phase. In this case it should not dissipate. This

dissipation may be due to two different phenomena. The first one is related to the coexistence

of a superfluid and a Mott insulating phase, due to the inhomogeneity of our system, whereas

the second phenomenon is related to the excitation of the gapped Mott phase. In the presence

of a weak optical lattice, it is difficult to discriminate which one of the two effects dominate

the observed dissipation. As a consequence, we have repeated the same measurements in the

presence of a deep lattice and also in this case we observed a dissipation both in the superfluid

phase and in the insulating phase. As in the case of a weak optical lattice, when the system

is in the superfluid phase, the system dissipation is related to the presence of phase slips. By

comparing the gap of the Mott insulator and the energy acquired during the harmonic potential

trap displacement, we found that the MI gap was an order of magnitude larger than the energy

due to the trap shift. As a consequence, we excluded that the finite damping was due to the

excitation of MI, and it seems due to the dissipation of the superfluid phase coexistent with

the insulating ones.

Our results open the way for a deeper understanding of the intriguing phenomenon of phase

slips, which is still an open topic. Since the last few years, theoretical proposal of devices based

on the phenomenon of quantum phase slips have been made and it would be interesting to

realize them experimentally. One of the proposed device is the quantum phase slip junction,

which can be considered the dual of the Josephson junction [63]. The interest on this device

is due to the fact that it may be employed to investigate the open topic of coherent quantum

phase slips or can be used as resonators or as fundamental current standards. Moreover it

could be also possible to realize experimentally a superconducting phase slips oscillator[64],

which could be employed not only to study the phenomenon of coherent phase slips but also to

obtain a few-photon non linearities, which is an important phenomenon in different branches

of physics. Therefore, it is important to have a more comprehensive view of this phenomenon

in order to realize devices based on phase slips. As a consequence, it would be also interesting

to understand how the presence of different obstacles affects the nucleation of phase slips.

As shown in the thesis, it would be useful to employ the Bose Einstein condensate as
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quantum simulator in order to answer some of the open questions about the phenomenon of

phase slips. For example, it would be interesting to excited the dipole oscillations in our system

in the presence of individual defects or controlled disorder. Moreover, further studies of the

system dissipation during a shift of the harmonic potential trapping the atoms at constant

velocity, in the absence of the Mott insulator may give information about the phase slips

phenomenon in the very strongly interacting regime.
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Appendix A

Disordered systems

So far I have shown how the interplay of interaction and temperature strongly affects the trans-

port properties of a 1D bosonic superfluid in an optical lattice. The next step is to understand

if also the presence of disorder may affect the transport properties. Actually, originally in

three-dimensional systems and then in lower dimensional systems, it has been observed that

the presence of the disorder modifies the transport properties,and lot of theoretical and exper-

imental investigations have been performed in order to better understand this phenomenon.

The main motivation to study the effect of disorder is due to the fact that it is widespread in

nature. In fact, any physical structure is disordered, if observed on small enough length scales

(e.g. crystal imperfections). Thanks to the fact that BECs have key properties which can be

easily controlled, we can use this kind of platform also to study how the disorder affects the

properties of 1D systems.

Originally the case of a 3D system of interacting bosons in a clean optical lattice in the pres-

ence of an external potential has been consider. As we have seen in sec. 2.4.3, this system

can be described by the Bose-Hubbard Hamiltonian (Eq.2.30). In the presence of a disordered

potential, we can still describe the system behaviour by using the Bose Hubbard model, but we

need to add another term in the Hamiltonian that takes into account the presence of disorder.

In this situation, the Hamiltonian takes the form

ĤDBH = −J
∑

〈i,i′〉
a†iai′ +∆

∑

i

ein̂i +
U

2

∑

i

n̂i(n̂i − 1). (A.1)

Here ǫi is the on-site energy given by an external potential. It depends on the disorder

strength ∆ via ǫi = ∆ei, where ei is a number in the interval [-1,1] and its distribution across

the lattice depends on the details of disorder.

The presence of the disorder influences the nature of the system. A system of non-interacting
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Figure A.1: Sketch of absorption energy spectrum for strongly interacting particles system in a
disordered optical lattice. The peak at hν ∼ U is due to the Mott insulator whereas the peak at low
frequency hν ∼ ∆ is due to the BG. Adapted from [97]

particles in a disordered potential can be described by the Hamiltonian in Eq. A.1, where the

interaction term U is equal to zero. In this situation, if the disorder amplitude ∆ exceeds a

critical value of the order of tunnelling energy J , non-interacting particle can be localized due to

the presence of disorder, which tends to break the coherence of the system. This phenomenon

is known as Anderson localization and was predicted by Anderson in 1958 [93]. In particular,

for strong enough disorder, only the lowest energy levels are populated and the wavefunction

is exponentially localized. The first observation of Anderson localization in ultracold quantum

gases has been achieved in 2008 in two experiments. Despite two different disordered potential

have been employed (speckle in one experiment [94], quasi-periodic potential in the other [95]),

both experiments have shown a suppression of the transport of matter due to the presence of

disorder and the exponential shape of the tails of the atomic spatial distribution.

The next question is how the interactions among particles and disorder influence each other.

Interactions among particles play a crucial role in a disordered system. In particular, for

bosonic particles, the interactions mask the effect of disorder and tend to restore the coherence.

For finite interaction strengths, smaller than the disorder energy, the many-body states are

substantially deformed and start to occupy more than one single particle state. In this situation

the interaction tends to create islands of superfluid that are not connected together so the

coherence across the entire system is not yet restored. This regime is known as Bose glass [96].

When interaction strength becomes comparable with the disorder energy the coherence across

the entire system is restored and the system goes in the superfluid phase.

In the Bose glass phase, the system behaves differently from the Mott insulator one if
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we measure the energy absorbed by the system, due to the gapless nature of the Bose glass

excitations [98]. A sketch of the excitation spectrum is reported in Fig. A.1 for U ≫ ∆.

Two different excitation peaks may arise by measuring the energy absorbed by the system, one

centred at the energy hν ∼ U and the other one at hν ∼ ∆. Such a spectrum is due to the

fact that in a disordered inhomogeneous system, the commensurate regions of the system form

a MI with an energy gap of the order of U, while the regions with incommensurate filling form

a Bose glass that fills the low-energy gap.

The first observation of the Bose glass in 1D systems has been achieved in 2014 by the

group of Giovanni Modugno in one experiment with bosonic ultracold atoms in the presence

of a quasi-periodic optical lattice [86]. They studied the whole ∆ − U diagram, in order to

understand the interplay between the interactions and disorder from weak to strong interaction.

By studying coherence and transport properties of the system, they traced out a draft of the

complete diagram showing an incoherent regime extending from weak to strong interactions

and surrounding a region of higher coherence similar to a SF . Then, in order to distinguish the

Mott insulator phase from the Bose glass one, they performed a lattice modulation spectroscopy

[77] and measured the excitation spectra.

The experimental procedure they used is the following. After loading the 1D quasi-condensate

in the quasi-periodic lattice the main lattice is modulated in amplitude for a time t (which is

chosen as long as possible, as allowed by the system background heating), in order to have the

maximum sensitivity at low frequencies. The depth of the main lattice thus becomes

V (t) = V0(1 + A sin (2πνt) (A.2)

where A is the modulation amplitude, which is kept constant and ν is the modulation

frequency, which is tuned to scan the excitation spectrum. After the excitation, the lattice

potentials are exponentially ramped down and the system thermalizes via atom-atom collisions.

The amount of energy E(ν) absorbed by the atoms as a function of ν is obtained looking at

the increase of the system temperature which can be estimated by measuring the reduction of

the BEC fraction (Fig. A.2) or the increase of system δp.

As it is shown in Fig. A.2a, in the non-disordered case, the predicted Mott insulator response

of a strongly interacting system is observable. At low frequency, for hν < U , there is not energy

absorption whereas a first excitation peak appears at the Mott-gap hν ∼ U . This peak is due to

excitations within individual MI domains with commensurate filling. In fig A.2a another peak

at hν ∼ 2U is shown. This is due to the particles hopping between a lattice site with filling n

and another site with filling n + 1 and it is a consequence of the system inhomogeneity. By
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Figure A.2: Excitation spectrum for the U = 26 J and ∆ = 0 and for U = 26 J and ∆ = 6.5 J
realized by measuring the variation of the condensed fraction. In the absence of the disorder, only the
peaks at hν = U and at hν = 2U are present. In the presence of disorder, another peak appears. The
red arrow is at hν ∼ ∆. Adapted from [86]

introducing a finite disorder ∆, an extra excitation peak appears (Fig. A.2 b) in the excitation

spectra for hν ∼ ∆. This peak is consistent with the presence of a Bose glass. It is however not

easy to study the Bose glass properties due to the coexistence of Bose glass and Mott insulator

in the same system.

During my Ph.D I started to study and characterize the Bose glass phase in the absence

of a Mott insulator. To remove the Mott insulator contribution to the excitation spectra we

tune the atoms number density in order to have 1D systems with n̄ < 1. In this situation,

also for strong interaction, only the Bose glass insulator is present. The idea is to characterize

the Bose-glass excitation spectra for different value of disorder, temperature and interaction.

During the last months I performed preliminary measurements in this regime by using the

experimental technique which I described above. In order to reach the atoms number density

n < 1 we decompress the optical dipole trap during the optical lattices. The main lattice is

modulated in amplitude for a time t=200 ms with a modulation amplitude A = 0.01. Due

to the fact that the condensate fraction is too small in this measurements, we extracted the

absorbed energy by measuring the increase of δp . As it is shown in fig.A.3, we see an increase

δp (which has the features of a excitation “peak”) at hν ∼ 1.5 kHz close to the theoretical value

hν ∼ 1.26 kHz. Unfortunately, the peak is not clear yet. Further measurements are required to

find the experimental condition to see a distinct Bose-glass excitation spectrum. Once that the

Bose glass phase is isolated, it would be interesting to study this insulating phase for different
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value of interaction, disorder and temperature in order to understand the interplay of all energy

scales.

The study of the Bose glass phase may give us the possibility to better understand the

phenomenon of many body localization [86, 99, 100, 101], i.e. localization of disorder interact-

ing system for finite temperature and interactions, due to the fact that our system is in the
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Figure A.3: Excitation spectrum for ∆ = 1.26 kHz realized by measuring the increase of δp along
the vertical and horizontal directions. The red arrows mark the energy value hν ∼ ∆
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same regime of many body localization. Consequently, it will be interesting to study the pos-

sible relation of this persisting insulating behaviour at finite T with the proposed many-body

localization[100].



Appendix B

Landau instability

In the presence of an obstacle, we may observe another dissipation mechanism, different from

the phenomenon of quantum phase slips or the phenomenon of dynamical instability. This

phenomenon is known as energetic (or Landau) instability and it is related to the Landau’s

criterion for the superfluidity. According to this criterion, a system can flow without viscosity

in the presence of an obstacle only if its velocity v is lower than the critical velocity

vL = min
p

ǫ(p)

p
(B.1)

where ǫ(p) is the dispersion law (energy vs momentum) of the system. In this scenario, due

to the fact that the presence of an obstacle does not perturb the system and does not transfer

energy to collective excitations of the condensate, the system behaves as a superfluid.

In the opposite case, when the velocity is larger than vL, for the system is more convenient

to create elementary excitations rather than behave as a superfluid.

In the case of a uniform, weakly interacting BEC, the elementary excitation are described

according to the Bogoliubov model [102] and the dispersion law of this excitations consists of

two terms and takes the form

ǫ(p) =

√

gn

m
p2 +

(

p2

2m

)2

(B.2)

where g is the interaction coupling and n is the density. More in detail, the first term under

the square root takes into account the effects of interactions, whereas the second one represent

the free particles contribution. In the limit of small momenta, i.e. for p ≪
√

gn
m
m, the second

term in eq. B.2 can be neglected and the excitations dispersion law is linear in p and takes the

form

91
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ǫ(p) =

√

gn

m
p = vsp (B.3)

which is a phonon-like form where vs =
√

gn
m

is the sound velocity. The Bogoliubov excitations

are therefore plane waves which propagate in the Bose Einstein condensate with a frequency

ωk = vsp. In the other limit, i.e. for p ≫ vsm, it is possible to neglect the first term and to

obtain the free particle dispersion law

ǫ(p) =
p2

2m
. (B.4)

In this scenario, a weakly interacting Bose Einstein condensate satisfies the Landau’s criterion

for the superfluidity only if the system velocity is lower than the sound velocity vs, which then

coincides with the critical velocity vL for the Landau instability. As it is shown in Eq. B.3, the

sound velocity depends on the interaction g, and in particular it decreases as the interactions

decrease until it vanishes at zero interactions. In the presence of an optical lattice, the sound

velocity is modified since it depends on the effective mass m∗ rather than the inertial mass of

the system m.

Figure B.1: Damped oscillations in 1D systems for two interaction values, a = 93.7a0 (black squares)
and a = 6.4a0 (blue circles). The red solid lines are the fit realized by using Eq. 4.2. By increasing the
interaction, we increase the sound velocity vs and we observe a decrease in the oscillation damping.
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From an experimental point of view, we have performed transport measurements in the

absence of an optical lattice for different value of interactions, in order to observe how our

system behave in the presence of phenomenon of the Landau instability. The goal of these

measurements is to relate the dissipation due to this dissipation mechanism and the interaction

energy in order to undestrand if the dissipation observed in the measurements reported in sec.

4.4 are due to the phenomenon of Landau instability rather than the QPS phenomenon.

More in detail, we excite the sloshing motion of the system by using the technique introduced

in sec. 2.2, and we study the time evolution of the quantimomentum p0 for different values

of interaction at the same velocity v = (1.64 ± 0.16) mm/s. As it is shown in fig. B.1, we

observe a damped oscillation, whose damping rate can be estimated by using eq.4.2 in sec.4.4.

The measurements in fig. B.1 suggest a damping rate G which depends on the interaction, and

in particular, it seems to decrease as the interaction increases. In fig. B.2 a, the behaviour

of the damping rate G as a function of the interaction is shown. As mentioned previously, by

increasing the interaction, the damping rate decreases. This behaviour seems consistent with

the observations of the Landau instability: in the presence of an obstacle, the BEC behaves

as a superfluid only if its velocity is lower than vS. In our experiment, the obstacle is not an

optical lattice, but an imperfection in our 2D lattice. Let us analyze it.

As it was shown in eq.B.3, the sound velocity depends on the interaction via the interaction

Figure B.2: (a) Damping rate G as a function of the scattering length a. The damping rate decreases
as the interaction increases. (b) Calculated sound velocity vs as a function of the scattering length a.
The dashed line shows the maximum system velocity vBEC = (1.64±0.16) mm/s. For large scattering
lengths G is small due to the fact that vBEC < vs. For small interactions values, where vBEC > vs, G
is large due to the occurrence of the Landau instability.
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coupling g. In particular, by increasing the interaction we increase the sound velocity (Fig

B.2 b). As a consequence, we increase the range of velocities where the system behaves as a

superfluid. For very low interaction (a < 10a0) the sound velocity is smaller than the system

velocity. For the BEC is easy to overcome the critical limit and we observe a larger damping

rate. In this situation, the system prefers to emit phonons and dissipate rather than behave

as a superfluid. By increasing the interaction we increase the critical velocity for the Landau

instability above the system velocity. As a consequence, we observe a considerable decrease

of the damping rate G, until it becomes negligible in the limit of strong interaction. This

behaviour confirm the fact that in this situation the system prefers to behave as a superfluid.

Therefore the dissipation rate that we observe in the case of 1D superfluids in the presence

of an optical lattice cannot be related to the Landau instability. In fact, its behaviour as a

function of the interaction is different from the case described above. As I mentioned above, by

increasing the interaction we observe a decrease of the damping rate G. In the measurements

shown in sect boh, instead, we observe that at low velocity, for v ≪ vs the damping rate G is

constant. For large velocity, instead, the damping rate G increases as the interaction increases.

In both regimes of small and large velocity of the system compared to the sound velocity, the

behaviour of the damping rate G as a function of the interaction is different and this confirms

our idea that the observed dissipation cannot be due to the presence of phonons but is due to

the presence of phase slips.
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