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We investigate graviton radiation in gravitational scattering at small impact parameters b < R≡ 2G
ffiffiffi
s

p
and extreme energies s ≫ M2

P, a regime in which classical collapse is thought to occur, and thus radiation
may be suppressed also. Here however, by analyzing the soft-based representation of radiation recently
proposed in the semiclassical Amati-Ciafaloni-Veneziano framework, we argue that gravitons can be
efficiently produced in the untrapped region jxj ≳ R > b, so as to suggest a possible completion of the
unitarity sum. In fact, such energy radiation at large distances turns out to compensate and to gradually
reduce to nothing the amount of energy E0 being trapped at small-b’s, by thus avoiding the quantum
tunneling suppression of the elastic scattering and suggesting a unitary evolution. We finally look at the
coherent radiation sample so obtained and we find that, by energy conservation, it develops an exponential
frequency damping corresponding to a “quasitemperature” of order ℏ=R, which is naturally related to a
Hawking radiation and is suggestive of a black-hole signal at quantum level.

DOI: 10.1103/PhysRevD.96.126008

I. INTRODUCTION

The thought experiment of point particle gravitational
scattering at trans-Planckian energies has been investigated,
since the eighties [1–7], as a probe of quantum-gravity
theories, mostly in connection with the problem of a
possible loss of quantum coherence in a process leading
classically to gravitational collapse and perhaps black-hole
formation. In an S-matrix framework such a loss would be
associated with the breakdown of unitarity at sufficiently
small impact parameters.
In the scattering regime of large energies (

ffiffiffi
s

p ≡ 2E ≫
MP) but small deflection angles (i.e., in a regime far away
from that of collapse), several authors proposed [1–5], on
various grounds, an approximate semiclassical description,
whose S-matrix exponentiates an eikonal function of order
αG ≡Gs=ℏ ≫ 1, G being the Newton constant, which
corresponds to the s-channel iteration of the spin-2 graviton
exchange at impact parameters b much larger than the
gravitational radius R≡ 2G

ffiffiffi
s

p
. Such description implies

that the large momentum transfer built up at fixed Einstein
deflection angleΘE ≡ 2R=b and trans-Planckian energies is
due to a large number hni ∼ αG ≫ 1 of single hits with very
small scattering angle θm ∼ ℏ=bE.
Starting from that leading eikonal approximation, the

strategy followed in [6,7] consisted in a systematic study of

subleading corrections to the eikonal phase, scattering
angle, and time delays [8–10] in terms of the expansion
parameter R2=b2 (and possibly l2s=b2 if working within
string theory at scale ls). These corrections can be
resummed, in principle, by solving a classical field theory
and one can thus study the critical region b ∼ R where
gravitational collapse is expected.
That Amati-Ciafaloni-Veneziano (ACV) program (the

“ACV resummation”) was carried out, neglecting string
corrections and after a drastic axisymmetric truncation (the
“reduced-action model”) of the classical field theory due to
Lipatov [11], in Ref. [12] (see also [13–15]). It was noted
there that below some critical impact parameter value
bc ∼ R, the elastic S-matrix—evaluated by taking UV-safe,
but possibly complex, solutions of the field equations—
shows a unitarity deficit.
Indeed, the resummed eikonal of the axisymmetric

reduced-action model has the simple form [12]1

δðb; sÞ ¼ αG

�
log

L
R
þ ΔðbÞ

�
;

ΔðbÞ≡ −a tanhðtbÞ þ
1

2
−

1

2tb
; ð1:1Þ
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1Boldface variables b, q etc. denote two-dimensional Euclid-
ean transverse components, while three-dimensional spatial
vectors are marked by an arrowlike q⃗.
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where tbðb=RÞ is a properly chosen solution of the
criticality equation

tbð1 − t2bÞ ¼
R2

b2
ð1:2Þ

and L is an IR cutoff, factorized in the elastic S-matrix
expression

Selðb; sÞ ¼ e2iδðb;sÞ ¼ e2iαG logLRe2iαGΔðbÞ: ð1:3Þ
We notice that the leading contribution αG logðR=bÞ is
corrected in ΔðbÞ by higher order terms, corresponding to
irreducible diagrams [7] of the relevant effective action,
which are thereby resummed. Furthermore, the criticality
equation (1.2) identifies a branch-cut singularity of the
series at b2 ¼ b2c ≡ ð3 ffiffiffi

3
p

=2ÞR2, below which the eikonal
function acquires a (positive) imaginary part. As a conse-
quence, for b > bc the perturbative solution (tb → 1 for
b ≫ R) keeps the eikonal a pure phase. But for b < bc, by
choosing the appropriate [12] tb branch, the elastic scatter-
ing amplitude acquires the suppression factor

jSelðb;sÞj≃
8<
:
exp

h
−2

ffiffi
2

p
3
αG

�
1− b2

b2c

�
3=2

i
ðbc−b≪RÞ

exp
h
−αG

�
π− 3

ffiffi
3

p
2

�
b
R

�
2=3

�i
ðb≪RÞ

ð1:4Þ

which eventually forbids the direct observation of the
trapped energy 2E in the elastic channel.
That conclusion was confirmed, at quantum level, by the

interpretation of the above (complex) restricted solutions as
due to tunneling through a barrier in metric space [16],
which is classically forbidden. Therefore, by the apparent
lack of sufficiently large inelastic contributions to unitarity,
the above results seem to imply that the lost information
could possibly be recovered only through use of UV-
sensitive solutions which, by definition, cannot be studied
by the effective action approach.
On the other hand, the more recent investigation of

graviton radiation associated to trans-Planckian scattering
at both classical [17] and quantum level [18–20] has brought
up in various approaches some interesting new features
which suggest a solution for the unitarity problem at a
simpler andmore conservative level. First of all, the emission
energies ℏω we are interested in are mostly of order ℏ=R ∼
M2

P=E ≪ MP and are thus soft at trans-Planckian energies,
by calling attention to soft physics (as emphasized e.g. in
[21,22]) besides high-energy scattering. That poses a non-
trivial consistency requirement on our graviton radiation
amplitude, because it should agree with both the emission
implied by the Weinberg current [23] in the fragmentation
region and with that required by the high-energy Lipatov
current [11] in the central region. Starting from that
observation, a unified approach to both regimes has been
proposed in [18,19], leading to the so-called “soft-based

representation” of graviton emission to be summarized
shortly in Sec. II. Furthermore, the latter has been tentatively
extended [20] to the eikonal resummation of the reduced-
action model [12] just mentioned, by making it possible to
investigate the small impact parameter region b≲ bc, within
the drastic assumptions implied by that model.
Given the new context emphasized above, the purpose of

the present paper is to reexamine the unitarity issue at small
impact parameters by taking advantage of the soft-based
representation of graviton radiation, and to show how it is
possibly solved, by emphasizing the role of multigraviton
states which turn out to act as a key to weaken and,
eventually, to pass the metric barrier.
Before presenting our arguments, we need to make two

premises. First, the soft-based representation has already
been used for b > bc [18,19], where unitarity is not at
stake, by emphasizing the role of the gravitational radius R
in the radiation process. Indeed, by combining the rela-
tively small emitted energy (ℏω=E ≪ 1) with the large
number hni ∼ αG ¼ ER=ℏ of single hits in eikonal scatter-
ing, the variable ωR emerges and identifies the main
features of the energy emission distribution. The outcome
is an operator S-matrix combining the resummed eikonal
and radiation in a (unitary) coherent state

Ŝ ¼ e2iδðb;sÞ exp
�Z

d3q

ℏ3
ffiffiffiffiffiffi
2ω

p 2i

�X
λ

Mλðb; q⃗Þa†λðq⃗Þ

þ H:c:
��

; ð1:5Þ

where the probability amplitude Mλðb; q⃗Þ for emitting a
graviton with momentum q⃗ and helicity λ is explicitly given
and briefly constructed in Sec. II, while a†λðq⃗Þ is the
corresponding creation operator. Unitarity here is supposed
to follow from appropriate and factorized virtual correc-
tions [Eq. (3.4)], which are argued for in Secs. II and III, but
are not really derived from some underlying quantum-
gravity theory. For that reason we prefer to talk of
“unitarization procedure” rather than “unitarity proof” in
passing from the tree-level amplitudeM to the final unitary
coherent state (1.5), with its factorized emission structure.
Secondly, we have shown [20] that such an (approxi-

mate) independent-particle picture can be extended to the
approach-to-collapse regime b → bþc of enhanced radiation
by incorporating energy-conservation constraints in the
unitarization procedure. The latter cause the emergence of a
novel, exponential frequency damping whose coefficient
τ̄R defines what we call a quasitemperature T ≡ ℏ=ðτ̄RÞ
which is naturally related to the Hawking temperature
[24,25]. The main difference, though—and the motivation
for its unconventional name—is that τ̄ is supposed to keep
quantum coherence, and is not due to a statistical averag-
ing. Rather, the lack of sizeable correlations in such a result
is due to the soft-graviton dynamics we started with, which
led to the unified form of the b → bþc emission amplitudes.
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Finally, the basic question comes back: what about
the collapse regime of b < bc, in which the energy 2E
appears to be “trapped” because elastic unitarity is expo-
nentially violated by the suppression factors (1.4) without
apparent contributions in the most naive radiation models
[8,16,26,27]? In other words, is unsuppressed radiation
predictable for b < bc in our present soft-based represen-
tation? That is precisely the question that we address in
this paper. We argue that during eikonal scattering, the
soft-radiation process has indeed the ability to reduce the
amount of trapped energy crossing the barrier, and thus to
weaken and, eventually, to eliminate (Sec. III) the sup-
pression factor (1.4). As a consequence (Secs. IV and V),
our coherent radiation sample can efficiently contribute to
the unitarity sum, and still may have a normal quasitem-
perature of order ℏ=R. For that reason, it is a good candidate
for the generalized unitarization procedure that we
describe, as discussed in Sec. VI.

II. UNIFIED SOFT-BASED REPRESENTATION
OF SINGLE-EMISSION AMPLITUDE

We start, in the ACV framework, from the (irreducible)
resummed eikonal αGΔðbÞ in Eq. (1.1), whose Fourier
transform defines a “potential” ~ΔðQÞ in transverse space. In
the soft limit and in the fragmentation region, the emission
amplitude is then given by the external-line insertion
formula, which factorizes in Q-space as follows (ℏ ¼ 1
from now on):

Msoft
λ ðb; E; q;ωÞ ¼ ffiffiffiffiffiffi

αG
p R

π

Z
d2Q
2π

~ΔðQÞeiQ·b

×
1

2

�
E
ω

�
e−iλðϕq−ωEQ

−ϕqÞ − 1
��

; ð2:1Þ

where q is the transverse momentum of the emitted
graviton, ϕq is its azimuth in the transverse plane, λ ¼
�2 is its helicity, and the factor in square brackets comes
from the explicit computation of the Weinberg current on
helicity states [18].
It was shown in [19] that a similar formula is able to

describe graviton emissions in the central region—where
the Lipatov current [28] should be used in the high-energy
limit—by just performing a simple subtraction of the same
expression at scale E → ω. The unified single-emission
amplitude thus reads

M½1�
λ ðb; E; qÞ ¼ − ffiffiffiffiffiffi

αG
p R

π
eiλϕq

Z
d2x

2πjxj2eiλϕx
eiq·x

×

�
E
ω

	
Δ
	
b −

ω

E
x



− ΔðbÞ




− ðΔðb − xÞ − ΔðbÞÞ
�
; ð2:2Þ

where we have exchanged the Q integration with an x
integration that provides a convenient representation of
phase transfers (e.g. for λ ¼ −2),

e2iϕθ − e2iϕθ0 ¼ −2
Z

d2x
2πx�2

ðeiAx·θ − eiAx·θ
0 Þ; ð2:3Þ

where A is a nonvanishing real-valued constant and
x≡ x1 þ ix2, x� ≡ x1 − ix2 is the complex notation for
the transverse vector x.
We notice that Eq. (2.2) is directly expressed in terms of

the eikonal function αGΔðbÞ of Eq. (1.1), which occurs in
the so-called modulating function

Φðω; xÞ≡ E
ω

�
Δ
	
b −

ω

E
x



− ΔðbÞ

�
− ½Δðb − xÞ − ΔðbÞ�

≡ΦAðxÞ −ΦBðxÞ; ð2:4Þ

where the first (second) term is in correspondence with
external (internal) insertions. Thus, the single-exchange
amplitude (2.2) measures the Fourier transform of the “soft
field”

hðλÞs ðω; xÞ ¼ −
Φðω; xÞ
π2jxj2eiλϕx

; ð2:5Þ

which plays an important role in the expression of the ACV
metric also [19].
For the purpose of orientation, we note that in the ω → 0

limit, (2.4) becomes

Φð0; xÞ ¼ −Δ0ðbÞx · b̂þ ΔðbÞ − Δðb − xÞ; ð2:6Þ

an expression in which the term linear in x · b̂, proportional
to the classical scattering angle2 of order ΘE ≡ 2R=b,
dominates in the fragmentation region thus reproducing
the Weinberg results [19].
The full graviton radiation amplitude is now obtained by

superimposing the single-exchange amplitudes (2.2) over
all the n rungs of the eikonal diagrams (Fig. 1). The
contribution of the jth rung can be written as

M½n;j�
λ ðb;E;qÞ¼ eiλϕθ

ffiffiffiffiffiffi
αG

p R
2

ð2iαGÞn−1
n!

×
Z

d2xeiq·x
�
Δ
	
b−

ω

E
x

�

j−1
hðλÞs ðω;xÞ

× ½ðE−ωÞΔðbÞþωΔðb−xÞ�n−j; ð2:7Þ

where we notice two important effects. First, the jth
incidence angle is rotated with respect to the z-axis, by

2The estimate Θcl ¼ −2RΔ0ðbÞ comes from a saddle point
evaluation of the elastic scattering amplitude as a Fourier trans-
form of Eq. (1.3).
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translating the θ-dependence by the quantity Θj ¼
ðQ1 þ � � � þ Qj−1Þ=E. That produces in turn, after
Fourier transform, the shift −ðω=EÞx in the impact param-
eter of the elastic amplitudes before emission.
Secondly, after emission we have the rescattering effects:

the energetic particle acquires the recoil energy E − ω, and
the emitted graviton at position x rescatters with energy ω
and relative impact parameter b − x.
Finally, the summation over j of the contributions (2.7) is

performed by the formula

X∞
n¼1

1

n!

Xn
j¼1

Aj−1Bn−j ¼
X∞
n¼0

1

n!
An − Bn

A − B
¼ eA − eB

A − B
; ð2:8Þ

where

A≡ 2iαG

�
ΔðbÞ þ ω

E
ΦAðxÞ

�
;

B≡ 2iαG

�
ΔðbÞ þ ω

E
ΦBðxÞ

�
ð2:9Þ

are given in terms of the ΦA;B of Eq. (2.4). We thus realize

that the factorΦðxÞ ¼ ΦA −ΦB in the soft field h
ðλÞ
s cancels

out with the A − B denominator of the summation (2.8).
That cancellation is somewhat surprising. Somehow, the
identity used in Eq. (2.2)

Mmatched ¼ softjE − softjω; ð2:10Þ

that was interpreted as a decomposition of external
plus internal insertions in the soft language, acquires
now the interpretation of (A) “incidence-changing” plus
(B) rescattering terms in the high-energy language.
The final result can thus be written as

Mλðb; E; qÞ ¼ e2iαGΔðbÞMλðb;ω; qÞ

Mλðb;ω; qÞ ¼
ffiffiffiffiffiffi
αG

p R
π
eiλϕq

Z
d2x

2πjxj2eiλϕx
eiq·xe2iωRΦAðxÞ

×
e−2iωRΦðxÞ − 1

2iωR
; ð2:11Þ

where Mλ is the probability amplitude occurring in the
unitary coherent state (1.5).

III. MULTIGRAVITON EMISSION
AND UNSUPPRESSED RADIATION

IN THE COLLAPSE REGIME

As we have just seen, the Ciafaloni-Colferai (CC) [20]
method for incorporating the resummed eikonal αGΔðbÞ of
Eq. (1.1) in the radiation process is best illustrated (Fig. 2)
by the one-graviton emission amplitude

M2→3 ¼
Z

d2x
ð2πÞ2

ffiffiffiffiffiffi
αG

p
x�2

eiq·x

iω

× ½e2iðE−ωÞRΔðbÞþ2iωRΔðb−xÞ − e2iαGΔðb−ω
ExÞ� ð3:1Þ

which contains (i) the rescattering term with its typical
(E − ω) recoil energy (which is here listed as the first term)
and (ii) the incidence-changing term with its ω-dependent
shift (second term). From Eq. (3.1), by dividing out the
2 → 2 S-matrix exp½2iαGΔðbÞ�, we obtain the single-
emission probability amplitude of Eq. (2.11),

Mλðb;ω; qÞ≃
Z

d2x
ð2πÞ2

ffiffiffiffiffiffi
αG

p
jxj2eiλϕx

eiq·x

iω

× fe−2iωR½ΔðbÞ−Δðb−xÞ� − 1

þ 1 − e2iαG½Δðb−ω
ExÞ−ΔðbÞ�g; ð3:2Þ

where in curly brackets we have singled out the rescattering
and incidence-changing terms.
Multiple emission from the eikonal ladder is then treated

by summing up the various rungs’ contributions by general-
izing Fig. 1. That procedure, carried out in Refs. [19,20],
shows that, in the soft region ωi ≪ E, real emission
factorization holds in the form

M2→2þN ≃ e2iαGΔðbÞ
YN
i¼1

Mλiðb;ωi; qiÞ

×

�
1þO

	
ω2
j

E2


�
: ð3:3Þ

θj−1θj sΘθ1

p’
2

Q
j

p

p

1

2
p’
2

p’
1

Q
1 n

−1θn

Q q

n,j
Σ=

p

p
2

1
p’
1

q

FIG. 1. Graviton emission from the eikonal ladder. The n-rung
diagram with the emission from the jth exchange is denoted by
M½n;j� in the text.

0 E(  ,   )

E(  ,   )b

E − ω

ωx(  , )

b− xE
ω−b x

E − ω

ωx(  , )

(b)(a)

ω

FIG. 2. Radiation diagram of the soft-based representation:
(a) External line insertion shifts the impact parameter b − ω

E x
and rotates the incidence angle. (b) Internal line insertion
scatters at recoil energy E − ω and rescatters at position b − x
and energy ω.
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In the case b > bc, ΔðbÞ is real and the factorization (3.3)
can be extended to virtual corrections by addition of a
factor

ffiffiffiffiffiffi
P0

p
, the no-emission amplitude, where

P0 ¼ exp

�
−2

Z
d3q
ω

X
λ

jMλj2
�

ð3:4Þ

is the no-emission probability. Equation (3.3), with the
correction factor (3.4) is then equivalent to using the unitary
S-matrix parametrization

S ¼ e2iδ exp

�Z
d3qffiffiffiffiffiffi
2ω

p 2i
X
λ

½Mλa
†
λðqÞ þM�

λaλðqÞ�
�

ð3:5Þ

ωPðωÞ ¼ 2
X
λ

Z
d2qjMλj2 ð3:6Þ

corresponding to the linear coherent-state operator (1.5)
and to its emission density.
In [20] we noticed that the independent-particle picture

just outlined is not fully consistent when scattering angle
and coupling enter the collapse region and radiation
should be corrected for energy-conservation effects.
The latter can be taken into account by introducing,
besides

ffiffiffiffiffiffi
P0

p
, an amplitude renormalization factor

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N ðEÞp

, where N ðEÞ is dependent on the available
energy E and is determined by unitarity, by including the
kinematical constraints event by event. The outcome is
then the occurrence of the quasitemperature factor e−ω=T

in inclusive distributions [20], which allows the corre-
spondence of our coherent radiation sample with a
Hawking radiation.
The case b < bc is deeply different, however. In fact,

in such a case ΔðbÞ acquires an imaginary part which is
of size iπ=2 in the b ≪ R limit of deep collapse and
has the interpretation of tunneling through a barrier [16].
As a consequence, the elastic amplitude in the ansatz
(3.3) is exponentially suppressed like e−παG ¼ e−πER (for
E ¼ ffiffiffi

s
p

=2), and thus the combined use of Eq. (3.3) and
(3.4) cannot possibly correspond to a unitary para-
metrization of type (3.5). How does one reach unitarity
then?
Our purpose here is to single out those emission

processes which, on the basis of (3.1) and (3.2), are not
suppressed and can possibly lead to unitarity recovery.
We start noticing that, even at small impact parameters
b ≪ R, the emission amplitude (3.2) stays unsuppressed
in (3.3) if the graviton is emitted at sufficiently large jxj,
outside the trapped region, so that the corresponding
eikonal is real valued. For the rescattering terms [with
Δðb − xÞ] such an “exit” occurs already at jxj > R ≫ b,
while for the incidence-changing terms [with Δðb − ω

E xÞ]

we have to require that jxj > ðE=ωÞR be much larger,
in which case the x-integration is suppressed by a
phase space factor ω2=E2 in the interesting soft region
ωR ≪ αG.
Therefore, for b ≪ R, the rescattering terms appear

to provide the best visible radiation window and are
investigated first at multigraviton level in the following.
Indeed, according to Sec. II of [20], the multigraviton
factorization (3.3) appears to hold exactly in the rescatter-
ing case—if incidence-changing terms are turned
off—because the ωjR-dependence is simply additive.
Furthermore, the probability amplitude M of the rescat-
tering term in (3.2) is increasing like expðπωRÞ3 within
the kinematical bounds and thus yields a strong radi-
ation enhancement. The physical reason for such an
increase is just energy conservation, because the recoil
energy (E − ω) signals the corresponding suppression
decrease.
As a consequence, by collecting all exponential terms

and discretizing the phase space in energy intervals
½ωj;ωj þ Δωj�, the independent particles’ distribution
reads, approximately, in each one of the forward and
backward “jets,”

dPðfωj; NjgÞ ¼ PelðEÞΘ
	
E −

X
j

ωjNj




×
Y
j

½PðωjÞΔωj�Nj

Nj!
; ð3:7Þ

where Nj is the occupation number of the energy ωj,

PelðEÞ≡ jSelðb ¼ 0; sÞj2 ¼ e−2πER ð3:8Þ

is the suppressed elastic scattering probability and

PðωÞ≡ e2πωRpðωÞ;
pðωÞ ∼ αG=ðπω3R2Þ × ½1 −Oðe−2πωRÞ� ð3:9Þ

is the enhanced single-graviton emission probability
density, expressed in terms of pðωÞ which is obtained
from the x-integration of the leading rescattering term
with important subleading corrections for ωR≲ 1.
In more detail, referring to one jet, we have from
Eq. (3.2)—by use of the Parseval identity—the estimate
of the rescattering density integrated over the solid angle
Ω for jxj≳OðRÞ ≫ jbj,4

3Here we treat in detail, for definiteness, the b ≪ R case, but
our arguments about suppression and compensation are valid for
general b < bc by just replacing π by 2ℑΔðbÞ.

4Integrating over q phase space in Eq. (3.6) limits
jqj ¼ ω sin θ < ω ¼ Oð1=RÞ and thus introduces a natural cutoff
jxj > R in Eq. (3.10) for the validity of the Parseval identity at
small x-values.
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ωPðωÞ ¼
Z X

λ

jMλj22ω2dΩ

¼ αG

Z
d2x4ð2πÞ2
ð2πjxjÞ4ω2

jeωR½πþ2iΔð−xÞ� − 1j2

≃ αG
πω2R2

e2πωR½ð1 − e−πωRÞ2

þ 4hsin2 ωRΔðxÞie−πωR�
≡ ωpðωÞe2πωR; ð3:10Þ

where h� � �i denotes x-integration (averaging). We thus
realize by Eq. (3.7) that the suppression factor PelðEÞ is
compensated by the rescattering enhancement factors
e2πωjR in PðωjÞ provided

P
jωjNj ¼ E, that is close to

the energy conservation boundary in which the whole
energy E is radiated off. That compensation may occur
for a few hard gravitons as well as a bunch of soft
ones with ωjR ¼ Oð1Þ, thus allowing, in principle, a
unitary behavior with a normal quasitemperature of
order 1=R.

IV. UNITARITY RESTORATION
AND QUASITEMPERATURE:
THE RESCATTERING TERMS

In order to better understand how suppression is
avoided and unitarity is possibly restored in the rescattering
case, note that the expressions (3.7) and (3.10) allow
the use of the energy-conserving unitarization method based
on theN ðEÞ rescaling [20,29,30] in the b < bc case also. In
fact we can replace the independent-particle distribution
(3.7) by

d ~Pðfωj; NjgÞ ¼
PelðEÞ
N ðEÞ

Z
cþi∞

c−i∞

dλ
2πiλ

eλðE−
P

j
ωjNjÞ

×
Y
j

½PðωjÞΔωj�Nj

Nj!
; ð4:1Þ

where Pel=N plays a role similar to the b > bc case, but
Pel ¼ e−2πER is the ACV-resummed suppression result.
What we are really assuming here is that the multigraviton
emission amplitudes (including higher order terms playing
the role of virtual corrections) keep the eikonal factorization
structure (3.3), apart from the positive rescaling factor
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N ðEÞp

, even in the case in which the elastic channel
carries a suppression factor and the emission ones various
enhancement factors.
Then, the unitarity requirement

P
fNjgd

~Pðfωj; NjgÞ ¼ 1
(with the kinematical constraint

P
jωjNj ≤ E) determines

N ðEÞ as

N ðEÞ≡ PelðEÞ
�
1þ

X∞
N¼1

1

N!

Z 	YN
j¼1

dωjPðωjÞ



Θ
	
E −

XN
j¼1

ωj


�

¼
Z

2πRþi∞

2πR−i∞

dλ
2πiλ

PelðEÞeλEþ
R

∞
0

dωe−λωPðωÞ; ð4:2Þ

where we have set ℜλ ≥ c ¼ 2πR to let the exponent
integrand formally converge. By the translation λ ¼
ð2π þ τÞR we then obtain

N ðEÞ ¼
Z þi∞

−i∞

dτ
2πiðτ þ 2πÞ e

τREþ
R

∞
0

dωe−τωRpðωÞ; ð4:3Þ

where Pel has been replaced by 1 and PðωÞ by pðωÞ of
Eq. (3.10).5 Therefore, all suppression and enhancement
factors are now eliminated and the determination of the
energy-conserving d ~P’s can proceed as for b > bc.
First of all, the distribution (4.1) in the τ-representation

becomes

d ~P ¼ 1

N ðEÞ
Z

ϵþi∞

ϵ−i∞

dτ
2πiðτ þ 2πÞ e

τRðE−
P

j
ωjNjÞ

×
Y
j

½pðωjÞΔωj�Nj

Nj!
; ð4:4Þ

where N ðEÞ in (4.2) essentially exponentiates the
single-emission graviton multiplicity (of order αG),
subject to the kinematical constraints and to the sup-
pression and enhancement factors. Its estimate can be
given in the τ-representation (4.3) by a saddle point
method around some τ ¼ τ̄ > 0. For instance, in the toy
example pðωÞ ¼ αGRp̂ ¼ const, we find directly τ̄ ¼ ffiffiffiffî

p
p

and, for E ¼ ffiffiffi
s

p
=2 − ω, N ðEÞ ∼ exp½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αGERp̂
p � ∼

exp½2αGτ̄
ffiffiffiffiffiffiffiffiffiffiffi
1 ωffiffi

s
p

=2

q
� illustrating the fact that N ðEÞ ≫ 1

despite the suppression factor PelðEÞ in Eq. (4.2). That
suggests the tentative interpretation of N ðEÞ as the
effective number of states available to the trapped energy
E fragmentation process. Correspondingly, 1=N ðEÞ is the
analogue, for b < bc, of the no-emission probability in
Eq. (3.4) which, for b > bc, plays the role of virtual
corrections.

5In writing (4.2) [(4.3)] we have to exchange the order of
λ (τ)-integrations with ω-integrations. That is simply achieved
by the truncation of PðωÞ at the kinematical boundary:
PðωÞ → PðωÞΘð ffiffiffi

s
p

=2 − ωÞ. That truncation is understood in
the following, and is a consequence of the kinematical constraints
also for E ≤

ffiffiffi
s

p
=2. We note that E in Eq. (4.4) varies from

the “on-shell” value E ¼ ffiffiffi
s

p
=2 depending on the type of

measurement being made, E ¼ ffiffiffi
s

p
=2 −

P
jωjNj if associated

with the emitted graviton energies ωj.
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Secondly, the general saddle point equation reads

αG ¼ 1

τ̄ þ 2π
þ αGFðτ̄Þ

Fðτ̄Þ≡
Z

∞

0

dω
ω

E
e−τωRpðωÞ

¼
Z

∞

0

dðωRÞ αG
πðωRÞ2 ½ð1 − e−πωRÞ2

þ 4hsin2 ωRΔðxÞie−πωR�e−τ̄ωR; ð4:5Þ

which for αG ≫ 1 leads to approximately Fðτ̄Þ ¼ 1, that is
to
P

jωjNj ¼ E, or radiation of the total trapped energy, as
suggested by Eq. (3.7).
Furthermore, we can calculate from Eq. (4.1) the single-

graviton inclusive distribution dN=dω, which involves
fixing ωj ¼ ω for some j, and integrating over the
remaining ones at

ffiffiffi
s

p
=2 − ω fixed. It is straightforward

to see that this provides, apart from small fluctuation
corrections Oð1=αGÞ,

dN
dω

¼ pðωÞN ð ffiffiffi
s

p
=2 − ωÞ

N ð ffiffiffi
s

p
=2Þ ≃ pðωÞe−τ̄Rω; ð4:6Þ

which is consistent with the average emitted energy in (4.5)
and, together with Eqs. (4.3)–(4.5), appears to solve the
b ≪ R model with a meaningful unitarization.
The exponential damping at largeωR, which affects all the

inclusive distributions as in Eq. (4.6), allows us to interpret
ðτ̄RÞ−1 as the quasitemperature of graviton radiation, and
provides an effective cutoff in frequency, superimposed to
the density pðωÞ, typical of our soft-based representation.
The overall picture of the “trapped-energy” fragmenting
into soft gravitons according to the distribution (4.4) looks
generically compatiblewith ideas discussed in Refs. [21,22],
although applied—in our case—to the precise ACV frame-
work at fixed impact parameter b and with s-channel
iteration. Arguments for a cutoff are given also in the
approach of Ref. [22] to the trans-Planckian scattering
without impact parameter identification of Ref. [21].
The precise determination of the inverse quasitemper-

ature τ̄ for rescattering requires a small-x cutoff parameter
jxjcut ¼ OðRÞwhich takes contributions from ℑΔðxÞ > 0 if
jxj2cut < b2c ¼ ð3 ffiffiffi

3
p

=2ÞR2, a region where the x-depend-
ence starts being suppressed in (4.5). We then find the
numerical results of Fig. 3, showing that τ̄≃ 3 is a
reasonable estimate (solid-blue curve), to be compared
with τ̄ ¼ 1.2 from b → bþc [20]. We should notice, how-
ever, that τ̄ is rather sensitive to the value of jxjcut around
and below bc. That means that the inclusion of incidence-
changing contributions to radiation may possibly be needed
to provide a more stable temperature estimate and a firmer
conclusion on the unitary behavior on the basis of
Eqs. (4.3) and (4.5).

We should add finally that, starting from Eq. (3.1),
we can also compute the probability distribution for
the residual energy of the trapped gravitons E0 ¼
E −

P
jωjNj. By introducing the δ-function constraint,

we get the formula

dP
dE0 ¼

PelðEÞ
N ðEÞ

X
fNjg

δ

	
E − E0 −

X
j

ωjNj


Y
j

½PðωjÞΔωj�Nj

Nj!

¼ ΘðE0Þ
N ðEÞ e

−2πRE0
Z þi∞

−i∞

dτ0R
2πi

eτ
0ðE−E0ÞRþ

R
∞
0

dωpðωÞe−ωRτ0 ;

ð4:7Þ

which can be estimated by a saddle point method also.
We note that the unitarity condition

R
∞
0 dE0dP=dE0 ¼ 1

fixes again N ðEÞ as in Eq. (4.3) by reproducing the
translation τ0 → τ0 þ 2π in the denominator. Indeed, the
E0 distribution is mostly dependent on the tunneling
exponent 2πR, which appeared in PelðEÞ. At E0 fixed
the saddle point τ̄0 is determined by

Fðτ̄0Þ ¼ 1 −
E0

E

	
≃1 −

1

αGðτ̄ þ 2πÞ



ð4:8Þ

and the average hE0i≃ 1=ð2πRþ τ̄RÞ makes τ̄0 roughly
consistent with τ̄ in Eq. (4.5), with a maximal residual
“bound” energy of order 1=ð2πRÞ. It seems therefore that
both the “bulk” temperature 1=ðτ̄RÞ and the residual-energy
temperature 1=ð2πRÞ (reminiscent of the Schwarzschild
black-hole limit [12]) play a role in this model. We stress
the point, however, that, because of (4.7), they are con-
sistent with each other, due to their different definition.

 0

 1

 2

 3

 4

 5

 6

 0.6  0.8  1  1.2  1.4  1.6
 0

 2

 4

 6

 8

 10

τ-

T
/T

H

|x|cut / R

FIG. 3. Dependence of the saddle point value τ̄ (solid blue, left
axis) and of the rescattering quasitemperature T ≡ 1=ðτ̄RÞ
(dashed red, right axis) in units of TH ≡ 1=ð4πRÞ on the cutoff
parameter jxjcut introduced in the approximate determination
of the saddle point Eq. (4.5). Including incidence-changing
effects at first order (see Sec. V) the saddle point values increase
(solid light blue) and correspondingly the quasitemperature
decreases (dashed orange).
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V. INCIDENCE-CHANGING CONTRIBUTIONS

We have so far considered the rescattering terms in (3.1)
and (3.2), because they offer the first exit window at
jxj≳ R. Now we want to estimate the incidence-changing
window at varying values of ω

E jxj, in which the parameter
ω=E affects directly the x-dependence.
The single-emission density of Eq. (3.10) becomes,

approximately,

ωPðωÞ≃ αG
πω2hx2i je

ωR½πþ2iΔð−xÞ� − eαG½πþ2iΔð−ω
ExÞ�j2;

ð5:1Þ

while the elastic scattering probability is Pel ¼ e−2παG
as usual for b ≪ R. We note that in the incidence-
changing term the enhancement occurs at coupling
αG > ωR, but there is further suppression, due to the
ω=E dependence in the eikonal expansions at small ωjxj
values (bR ≪ ωjxj

ER ≪ 1) [12]

2Δ
	
−
ω

E
x



≃ iπ − 3eiπ=3

	
ωjxj
ER



2=3

þO
	
b2

R2



1=3

;

ð5:2Þ

eαG½πþ2iΔð−ω
ExÞ� ≃ eaαGð

ωR
αG
Þ2=3 ;	

a ¼ 3
ffiffiffi
3

p

2
for hx2i ¼ R2



: ð5:3Þ

We thus realize, by (5.1) and (5.3), that we should
consider two regions for incidence-changing terms. In
the region jxj ≥ E

ωR the trapping suppression is indeed
canceled out, but the outcome is reduced by the phase
space factor ðω=EÞ2, yielding small (∼1=αG) contribu-
tions in the hard-graviton corner. On the other hand, in
the region jxj ≳ R we are interested in, there is a small-
ωR configuration ðωR=αGÞ1=3 < a=π < 1 in which the
enhancement (5.3), though insufficient by itself to
overcome the damping, is anyway larger than the
single-density rescattering contribution, and therefore
should be taken into account. To this purpose, we
can provide from (5.3) a crude estimate of the
Laplace transform

~PicðλÞ≡
Z

αG

0

dωPicðωÞe−ωλ ≃
8<
:

e
2
3
aαGð4a3λÞ2

�
4a
3λ < 1

�

eð2a−λÞαG
�
4a
3λ ≥ 1

� ;

ð5:4Þ

where the last expression is provided by a saddle point
at ω̄R ¼ αGð4a3λÞ3, if below ω̄R ¼ αG, and by the end
point ωR ¼ αG otherwise. We note that

−
~P0
icðλÞ
~PicðλÞ

¼

8>><
>>:

αG
�
4a
3λ

�
3 ¼ ω̄R

�
4a
3λ < 1

�

αG
�
4a
3λ ≥ 1

� : ð5:5Þ

Our task, however, should be to provide a reliable
estimate of the incidence-changing terms at the many-
graviton level required by Eq. (4.4), and that raises a variety
of questions, involving both matter of concept (factoriza-
tion is justified for rescattering terms only) and technical
approximations for b ≪ R. Therefore, further analysis is
needed and treating incidence-changing contributions in
detail in addition to rescattering ones is outside the scope of
the present paper.
We only point out that the rescattering estimate of N ðEÞ

in the τ-representation (4.3) can be improved by including
incidence-changing effects at the level of single power of
PicðωÞ. In that case the exponent in the integrand of (4.3) is
corrected by adding a log ~picð2π þ τÞ from (5.4) and the
saddle point equation (4.5) becomes

αG ¼ 1

τ̄ þ 2π
þ αG

�
Fðτ̄Þ þ

	
4a

3ðτ̄ þ 2πÞ



3
�
; ð5:6Þ

where the logarithmic derivative is taken from (5.5). The
meaning of (5.6) is that a fraction of the overall energy is
now radiated by Pic also. The addition of such an
incidence-changing effect on the saddle point and temper-
ature values is shown in Fig. 3. There is a moderate increase
in τ̄ (solid-light-blue curve) and a corresponding decrease
in temperature (dashed-orange curve).

VI. DISCUSSION

Here we have investigated the collapse regime of
gravitational scattering at extreme energies (E ≫ Mp)
and small impact parameters (b < bc ∼ R), and we have
pointed out that—in the present approach—graviton radi-
ation is not necessarily suppressed, and actually multi-
graviton amplitudes suggest how a unitary S-matrix may
still be found.
Our framework is semiclassical scattering [7] in the

ACV-resummed [12] eikonal formulation and in the
soft-based representation [20] of graviton radiation. Our
suggestion is based on two main points. First, starting
from jet energy E ¼ ffiffiffi

s
p

=2 at impact parameter b ≪ R≡
4GE elastic scattering to free-particle states is exponen-
tially suppressed by jSelðbÞj≃ e−πER because of ℑΔðbÞ≃
π=2 [Eq. (1.4)]. But rescattering contributions of an
emitted graviton at position x are regulated by Δðb − xÞ
[Eq. (3.1)] and are thus unsuppressed if jxj2 > b2c ≡
ð3 ffiffiffi

3
p

=2ÞR2 ≫ b2. That large-distance radiation is in turn
associated to the recoil energy E − ω of the energetic
particle, so that the suppression amplitude is reduced—and
the emission one is enhanced—by the factor eπωR, within
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the kinematical bounds. The same conclusion is reached for
general b < bc by replacing π by 2ℑΔðbÞ.
Secondly, that suppression-enhancement correspon-

dence goes through to multigraviton states provided the
related soft-graviton (ωj ≪ E) amplitudes are factorized, as
argued for in [20] on the basis of eikonal factorization, at
least for rescattering amplitudes. In such a case, the overall
suppression factor in multigraviton emission becomes

exp

�
−π

	
E −

XN
j¼1

ωj



R

�
Θ
	
E −

XN
j¼1

ωj



ð6:1Þ

and is therefore Oð1Þ (meaning no suppression) if E ¼P
jωj or, in other words, if the whole energy is radiated off.

That may happen for a few hard gravitons, but also for a
bunch of soft ones, thus allowing, in principle, unsup-
pressed emission amplitudes with a normal quasitemper-
ature of order 1=R.
Therefore, if we take multigraviton factorization for

granted, the above argument hints at the probability
distribution (4.4), which is unitarized by the normalization
factor N ðEÞ in (4.3) and is characterized by the saddle
point τ̄ in (4.5), the inclusive distribution (4.6) and thus the
quasitemperature 1=ðτ̄RÞ.
This looks to be the right path to follow in general, but

unfortunately we do not quite understand how to combine
the incidence-changing contributions with the rescattering
ones at the multigraviton level required by (6.1), because of
their uncertain factorization properties. That is not surpris-
ing, because the incidence-changing terms (which regulate
the rotation of the incidence axis) are basically dependent
on the overall coupling αG of the energetic particles, while
their ωjR-dependence is tied up with the x-dependence and
is normally nonfactorizable.
For those reasons, in Sec. IV we concentrate on the

rescattering terms (for which multigraviton factorization
is justified) by introducing a cutoff jxjcut ¼ OðRÞ, to
regulate small-x contributions. We thus find that the
unitarization method suggested by (6.1) actually works,
with some cutoff dependence of τ̄ with τ̄≃ 3 for jxjcut ¼ R.

We feel that a better understanding of incidence-changing
contributions could be able to close the gaps and reduce
the cutoff dependence, as suggested by the provisional
estimate of Fig. 3. Such an analysis is deferred to further
investigations.
A perhaps more fundamental question to be discussed

is what our results in Sec. IV actually mean for the
gravitational scattering and, possibly, for black-hole phys-
ics. We have already noticed that there are two ways the
trapped energy

ffiffiffi
s

p ¼ 2E can be observed: either in full,
without accompanying soft gravitons, by the amplitude
∼e−παG [corresponding to the residual energy temperature
1=ð2πRÞ] which is exponentially suppressed, or instead by
a sort of collective fragmentation into soft gravitons,
described by the distribution (4.4) and the quasitemperature
1=ðτ̄RÞ. Shall we conclude that the latter is the most
probable issue and that, therefore, the unitary distribution
(4.4) represents the quantum black-hole spectrum?
If that is really the case, then the solution of the unitarity

problem and, perhaps, of the information paradox in black-
hole fragmentation would rely only on our ability to keep
track of the phases and to describe the quantum states. That
brings us back to the previous question of whether or not
we are able to disentangle the full multigraviton ampli-
tudes, and that, finally, seems to be a matter of technique
and not a matter of principle.
To conclude, we are aware of the fact that our framework

is not a consistent quantum gravity theory and is thus
providing a limited description of gravitational processes.
Nevertheless, our discussion suggests that some difficulties
previously found with unitarity and the information para-
dox may be solved by our proposal in a simpler way than
previously thought.
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