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Abstract

This thesis is concerned with cloud computing and big data for smart cities.

As far as the cloud is concerned, a framework has been developed, which

can create patterns relating to the workload of a virtual machine for a certain

period of time and for all the resources that are considered useful during

the simulation phase. Using these patterns, it was possible to simulate the

workload of a datacenter and find the best allocation of its virtual machines

using heuristics to solve the Vector Bin Packing problem. All phases, i.e., the

insertion of the datacenter’s characteristics, the simulation of the datacenter

and the visualization of the results are supported by a webapp.

As far as smart cities are concerned, an application has been developed

that uses the model and tools made available by the Km4City framework.

Based on the application architecture, a “Sii-Mobile Mobile App Develop-

ment Kit” has been created, which allows other developers to create their

own module to be integrated into the already developed application. A

machine learning algorithm has been developed, based on data relating to

parking lots with controlled access (large paid parking lots with bar), which

carries out daily training of a “Bayesian Regularized Neural Network”, which

allows to generate predictions (every 15 minutes) of how many free spaces

will be available in a specific parking lot, one hour after the prediction has

been made. This algorithm has been successfully implemented within the

application to make the data related to the predictions generated available

to users.
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Introduction

This thesis describes the PhD activity carried out at DISIT laboratory (Dis-

tributed Data Intelligence and Technology Lab.) of the Department of Infor-

mation Engineering (DINFO) at the University of Florence. The work done

is composed of two parts.

The first part concerns Cloud Computing and was developed within the

iCaro project in collaboration with Computer Gross Italia, Liberologico and

CircleCap.

Most of the Small and Medium-sized Enterprises (SME) are based on

old architectures hosted on their local servers. A clear advantage offered by

Cloud Computing for SMEs’ is the cost reduction, increment of flexibility,

enhance and accelerate the renewal. Housing and hosting solutions available

are rigid, have inertia adaptation to new requirements, in increments of

market, require huge investments in infrastructure and/or re-engineering of

processes and management software. For SMEs’ need to go towards the

concept of business as a service.

iCaro aims (with an action of industrial research, innovation and exper-

imental development) to produce prototypes of innovative technology solu-

tions to solve these difficulties, providing an integrated and gradual access

to cloud services (i.e. business platform) as a service, with customized cost

models and consumption, accessible to the business owner.

Creating and maintaining a Cloud Computing infrastructure, such as that

of the iCaro project, can lead to significant costs for the company that will

have to manage it. If the physical machines in the infrastructure increases,

the costs also increase, as these machines must be powered and the environ-

ment, in which they are stored, cooled. Therefore, reducing the number of

physical machines can lead to cost savings, and this can be done by opti-

mizing the allocation of virtual machines in fewer physical machines, taking

1
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great care not to compromise infrastructure performance.

Possible allocation strategies cannot be tested directly within the infras-

tructure that offers services to customers so as not to compromise their data

from an integrity and privacy point of view. The most convenient solution

is to use a simulator that calculates the best allocation in a virtual environ-

ment and then make the necessary changes in the actual structure. Currently,

simulators in the literature do not allow the simulation of complex Business

Configuration (needed to provide Business Platform as a Service to SMEs’),

nor address Service Level Agreements, complex/real workload pattern mod-

els, with the aim of exploring, assessing and predicting the best resource

allocation based on consumption of resource in the real cloud infrastructure

for a long time ahead.

For this reason, a cloud simulator has been developed that makes it

possible to compensate for the missing features in those already developed.

Furthermore, a framework has been developed, which can create patterns

relating to the workload of a virtual machine for a certain period and for all

the resources that are considered useful during the simulation phase.

In Chapter 1 an introduction is made to the new concept of cloud com-

puting that began to expand from last years to the present day, highlighting

how machine virtualization technology can lead to high savings in terms of

energy consumption and data center maintainability. To take full advantage

of virtualization, the best allocation of all virtual machines in the datacenter

should be found, but to do the allocation tests it is not possible to move ma-

chines directly into the production environment. So, there is the need for a

simulator that allows to perform such tests without damaging the datacenter

or violating the privacy of the data contained in it.

In Chapter 2 an analysis of the literature is made to find the best state-

of-the-art simulator. This state of the art shows that many simulators are

created to perform simulations with low-level workloads, with low charac-

terization of the virtual machines considered and without high-level connec-

tions between the various virtual machines. For the iCaro project we need

a simulator that can simulate high level workloads, virtual machines that

are strongly characterized and connected in different ways to create business

configurations. The remainder of this chapter analyzes the most popular

methods for solving allocation problems such as the Knapsack Problem and

Bin Packing Problem, focusing on heuristic methods for solving the latter be-

cause it is more similar to the problem of allocating virtual machines within
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physical hosts.

Chapter 3 deals with one of the main problems of simulators in the state

of the art of Chapter 2: the lack of real workload in order to simulate virtual

machines within a data center. Starting from the workloads of real machines

in the DISIT Lab (where this thesis has been realized) an algorithm was

developed, together with the student Riccardo Mariucci, which generates

patterns to be reused in the simulation phase. These patterns allow to realize

a simulation with a workload that correlates between them all the resources

that are deemed necessary and can be considered high level because it can be

associated with a certain type of virtual machine (i.e. web server, processing,

balancer), in order to group it with others to create a business configuration.

Chapter 4 briefly describes the general architecture of the iCaro project

and which other tools of the iCaro project are relevant and used to carry out

the simulation.

Finally, the new developed simulator is described in Chapter 5. First of

all, the requirements, it will have to meet in order to overcome the problems

found in the other simulators (described in Chapter 2), are listed. The

architecture of this simulator and how patterns generated in Chapter 3 are

used to perform the simulations, are then shown. The statistics related to

the simulation performance and, in particular, to the allocation of virtual

machines, with heuristics described in Chapter 2, are finally reported.

The second part concerns Smart City and Big Data and was developed

within the Sii-Mobility project for the study of mobility and transport as-

pects (for the evaluation of service quality, for the study of events) and

RESOLUTE H2020 project for resilience aspects, data collection related to

mobility, transport system, flows of people in the city and risk assessment.

The Smart City and Big Data concepts are both fundamental in this

context, because to be able to make a city really Smart it is necessary to

collect an enormous amount of data on it to help citizens in their needs. In

order to efficiently collect data from a wide variety of sources, a knowledge

model must be developed to represent all the data that can be measured by

sensors in the city.

This may not be enough without an architecture that optimally connects

all the systems dedicated to this work. These issues are described in the

first chapters of the second part with the description of Knowledge Model

for City (KM4City) and Sii-Mobility architecture. Once the data has been

collected, they must be made available to citizens and content creators must
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be able to create functional tools for use on mobile devices quickly and easily.

For this reason, a Mobile Application Developer kit has been developed that

allows developers to create mobile applications, based on the Sii-Mobility

architecture and the Km4City framework, simply and fast.

Finally, it is demonstrated in the last chapter that, in such a system, it

is also possible to make predictions about the future values of the data that

have been recorded to offer citizens a service that makes it evident that they

live in a Smart City.

Chapter 6 describes the concepts related to smart cities and then de-

scribes the Km4City framework developed within the DISIT Lab, which

forms the basis of the Sii-Mobility architecture for collecting and enriching

data from all available sensors in the cities covered by the project.

Chapter 7 describes the Mobile Application Developer Kit developed to

enable faster implementation of modules for the information contained in

the Sii-Mobility project. With this Kit is given the opportunity to develop

your own module and insert it into the mobile platform already created, so

as to completely skip the study of how a hybrid application should be made,

focusing the developer’s attention on the logic and data of the new module.

This chapter also describes the operation of the service that allows to acquire

data from the sensors of the devices that install the applications generated

with the Kit. Finally, the results of an usability study on the Tuscany where,

what... Km4City app (developed with the Kit), are reported.

Finally, Chapter 8 describes the logic inside the module that allows to

view free parking spaces in real time and with a forward prediction of one

hour, inside the Tuscany where, what... Km4City app. Starting from the

data on free parking places in some controlled access car parks in the munic-

ipality of Florence, on weather, on traffic and on time (meaning day of the

week, parking hour, etc.), together with the colleague Irene Paoli, a machine

learning algorithm has been developed which, by carrying out daily training

on the data prior to the day considered, manages to make a prediction at

one hour ahead of the free slots of the main parking spaces in the city.
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Chapter 1

Cloud Computing

This chapter briefly describes the technologies that have con-

tributed to the exponential development of Cloud Computing in

the early years of this decade and the terminologies that have

been created to describe its functionalities and components. Fol-

lowing, virtualization, one of the most important technologies for

Cloud Computing growth, is analyzed to understand how it can

be used to reduce the costs of such an infrastructure. A first

introduction is given to how simulators can be used in conjunc-

tion with virtualization to save energy consumption by the Cloud

Computing infrastructure.

1.1 Concept

The concept of Cloud Computing (CC) dates back to John McCarthy’s vision

stated at the MIT centennial celebrations in 1961:

If computers of the kind I have advocated become the computer

of the future, then computing may someday be organized as a

public utility just as the telephone system is a public utility... The

computer utility could become the basis of a new and important

industry.

Fifty years later the NIST in [94] and other authors in [130] defining the

CC as:

7
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A model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g.

networks, server, storage, applications and services) that can be

rapidly provisioned and released with minimal management effort

of service provider interaction to external customers over the In-

ternet.

In addition to this definition, the NIST [94] lists 5 features that must be

possessed by any structure that defines itself as a cloud:

On-demand self-service A consumer can unilaterally provision comput-

ing capabilities such as server time and network storage, as needed

automatically without requiring human interaction with each service

provider.

Broad Network Access Capabilities are available over the network and

accessed through standard mechanisms that promote use by heteroge-

neous thin or thick client platforms.

Resource pooling The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different phys-

ical and virtual resources dynamically assigned and reassigned accord-

ing to consumer demand. There is a sense of location independence

in that consumer generally has no control or knowledge over the exact

location of the provided resources but may be able to specify location

at higher level of abstraction.

Rapid elasticity Capabilities can be elastically provisioned and released,

in some cases automatically, to scale rapidly outward and inward com-

mensurate with demand. To the consumer, the capabilities available

for provisioning often appear to be unlimited and can be appropriated

in any quantity at any time.

Measured service Cloud systems automatically control and optimize

resource use by leveraging a metering capability at some level of ab-

straction appropriate to the type of service. Resource usage can be

monitored, controlled and reported, providing transparency for both

the provider and consumer of the utilized service.

In [130] are listed the more important benefits of using CC which could

not otherwise be realized and which may be derived from the essential char-

acteristics indicated by the NIST:
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Scalable Clouds are designed to deliver as much computing power as any

user wants. While in practice the underlying infrastructure is not infi-

nite, the cloud resources are projected to ease developer’s dependence

on any specific hardware

Quality of Service (QoS) Unlike standard data centers and advanced com-

puting resources, a well designed Cloud can project a much higher QoS

than typically possible. This is due to the lack of dependence on specific

hardware, so any physical machine failures can be mitigated without

user’s knowledge.

Specialized Environment It is possible to use the most up-to-date version

of libraries, toolkits or create a legacy environment to have greater

compatibility with previous versions of the tools: the users can utilize

custom tools and services to meet their needs.

Cost Effective Users find only the hardware required for each project. This

greatly reduces the risk for institutions who may be looking to build

a scalable system. Thus providing greater flexibility since the user is

only paying for needed infrastructure while maintaining the option to

increase services as needed in the future

According to the authors in [18], developers with innovative ideas for

new Internet services no longer require the large capital outlays in hardware

to deploy their services or the human expense to operate them. They need

not to be concerned about over-provisioning for a service whose popularity

does not meet their predictions, thus wasting costly resources, or under-

provisioning for one that becomes wildly popular, thus missing potential

customers and revenue.

When the cloud was emerging, there were three possible service models,

based on the NIST [94] definition from the lowest to the highest level:

IaaS - Infrastructure as a Service The capability provided to the con-

sumer is to provision processing, storage, networks, and other funda-

mental computing resources where the consumer is able to deploy and

run arbitrary software, which can include operating systems and ap-

plications. The consumer does not manage or control the underlying

cloud infrastructure but has control over operating systems, storage,

and deployed applications; and possibly limited control of select net-

working components.
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PaaS - Platform as a Service The capability provided to the consumer

is to deploy onto the cloud infrastructure consumer-created or acquired

applications created using programming languages, libraries, services,

and tools supported by the provider. The consumer does not manage or

control the underlying cloud infrastructure including network, servers,

operating systems, or storage, but has control over the deployed appli-

cations and possibly configuration settings for the application-hosting

environment.

SaaS - Software as a Service The capability provided to the consumer

is to use the provider’s applications running on a cloud infrastructure.

The applications are accessible from various client devices through ei-

ther a thin client interface, such as a web browser, or a program inter-

face. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage,

or even individual application capabilities, except for limited users’

specific application configuration settings.

Later, each possible specialization of the previous 3 models became a

service and maintained the acronym XaaS in order to indicate that anything

can be a service, such as [105]:

� HaaS - Hardware as a Service

� DaaS - Development, Database, Desktop as a Service

� BaaS or BPaaS - Business (Platform) as a Service

� FaaS - Framework as a Service

� OaaS - Organization as a Service

In particular, this research work will focus on BPaaS, as the iCaro project

(Chapter 4) builds on them to facilitate the migration of Small Medium-

sized Enterprises (SMEs) on CC. In fact, as reported in [122], CC makes

eminent sense for SMEs; however, there are significant technical, operational

and organizational issue which need to be tackled before clouds are used

extensively at the enterprise level: iCaro project tries to eliminate these

problems.

As mentioned above, the CC has taken half a century to move from idea

to everyday reality. This period was necessary to develop all the technologies,



1.2 Virtualization 11

services and infrastructure needed to develop CC as a utility, because only

recently the hardware and software has been available to support the concept

of utility computing on a large scale [130]. In [90] they are identified as

enabling technologies: virtualization, multi-tenancy and web services:

Virtualization is the technology that hides the physical characteristics of

a computing platform from the users, instead presenting an abstract,

emulated computing platform [11].

Multitenancy whereby a single instance of an application software serves

multiple clients. This allows better utilization of a system’s resources,

the requirements of which could otherwise be considerable if the soft-

ware instance had to be duplicated for each individual client.

Web services [90] The definition encompasses many different systems, but

in common usage the term refers to clients and servers that commu-

nicate over the HTTP protocol used on the Web. Web services help

standardize the interfaces between applications, making it easier for a

software client to access server applications over a network.

1.2 Virtualization

Virtualization is one of the three technologies described in the previous sec-

tion that has contributed most to the development of CC. Virtualization

concept has made progress since 1960s within IBM [11] mainframe systems

(M44/M44X systems [130]). Only recently with the increase in computer and

network power it is possible to reach a level, with virtualization, that the user

cannot distinguish whether he is using a system installed on a physical or a

VM [90]. This reason has led virtualization to expand from mainframe sys-

tems to computers with the X86 architecture [130]. In addition, the concept

has matured a lot since its inception and is now applied to every possible re-

source in a system: memory, storage, processing, software, networks, as well

as services the IT offer [11]. Not being tied to a particular physical machine

allows to have an agile and flexible system and to better maintain VMs: for

example, each VM can be cloned or moved to another physical machine at

any time to increase system scalability or maintain an active service in the

event of a physical machine failure [105] [90].

These features make virtualization extremely well suited to a dynamic

cloud infrastructure, because it provides important advantages in sharing,
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manageability and isolation [105]. By [18] is noted that many traditional

SaaS providers developed their infrastructure without using VMs, either be-

cause they preceded the recent popularity of VMs or because they felt they

could not afford the performance hit of VMs, but since VMs are de rigueur

in utility computing, the virtualization may make it possible to capture valu-

able information in ways that are implausible without VMs.

Virtualization also offers an opportunity to reduce the power consump-

tion of the entire data center. The policy with which VMs are allocated can

lead to significant savings in terms of energy and maintainability. In particu-

lar, CC model has immense potential as it offers significant cost savings and

demonstrates high potential for the improvement of energy efficiency under

dynamic workload scenarios [32]. This has led to the development of algo-

rithms to find the best allocation of VMs in a data center [33], [130], [113] [78]

and to the development of specific simulators to control power consumption

based on the migrations of VMs made by these algorithms [77].

The use of simulators is necessary to test a new configuration of VMs,

in order to avoid real migrations within the physical machines that operate

in production. If the simulation of the workload of each individual VM

has been done with a good estimate, compared to the actual workload, it is

possible through it, to highlight and thus avoid problems of over-provisioning

of VMs within a single physical machine. If on the one hand, by bundling

VMs as much as possible within a limited number of physical machines it

is possible to shut down unused physical machines saving energy. On the

other hand, CC vendors have Service Level Agreements (SLAs) to respect

and an unexpected peak in the workload can lower QoS levels provided to

customers, mainly if it occurs in a physical machine with an already high

resource consumption due to VMs overload.

1.3 Simulators

As mentioned in the previous section, companies offering services XaaS must

be able to optimize the use of resources available to prevent damage and to

minimize energy consumption, but this optimization cannot be tested on the

resources that provide services, as it would risk impairment of the data or

customer privacy.

For this reason, companies and researchers have developed, in the last

years, many cloud simulation tools to test every new progress mentioned
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above (optimize the use of resources), avoiding that tests impair production

machines. The first step in developing a new simulator is to decide which

of the below challenges the developer wants to engage. In fact, most of the

simulators already developed are focused on one challenge only. In [133] and

in [50] are described the major challenges:

Security since all the storage and computations are processed in cloud

servers, the importance of confidentiality, data integrity and non-repudiation

issues are predominant.

Cost Modeling CC has a unique pay-as-you-go service model; through

which organizations pay only for what is being used and nothing more.

For example, it might be highly beneficial for a company if a brand

new high powered server farm could be obtained to introduce a new

web based market offering with zero upfront capital.

Energy Management due to fluctuation of workload, the average load is

only 30% of data center resources and rest of the 70% account putting

resources in sleep mode, so the main goal is to run an application with

a minimum set of computing resources and maximize the resources

that are in sleep mode [83] and [77].

VM Migration since CC is a distributed system, when the workload is

increased in a particular data center, VM migration helps to prevent

performance degradation of the system. [13]

iCaro project is trying to develop solutions that offer services with the

BPaaS model, so the simulation of the data center must take place at a

higher level than that of considering only the allocation of VMs. Providing

a Business Platform can mean offering the customer more systems that build

it and can be located on different VMs. For more maintainable management

of the system, it is desirable to keep in the same physical machine the VMs

that make a platform for a single customer.

Currently, some cloud simulators have been proposed and they are mainly

suitable to simulate and assess specific cases and workloads, by adopting

specific models for energy, cloud capacity, allocations, networking, security,

etc. complex Business Configurations, BCs, need to be allocated on the

cloud to satisfy specific demands. These configurations include several hosts

and VMs with many services/applications arranged as multi-tier solutions.

When several BCs need to be allocated or changed on cloud, the assessment
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of free resources into a set of hosts or external storages (CPU, memory,

network and storage) cannot be based on the simple estimation of current

conditions in a limited time interval, with simple workload patterns.

A deeper simulation of the cloud conditions can be performed by using re-

alistic workload partners and longer time forward is needed. Thus, the same

host could have some VMs with heavy work during day-time and a bit less at

night-time, while other VMs on the same host could have a complementary

behavior in time, with typical weekly, monthly and seasonal behavior. A new

allocation on the cloud may imply changes in the distribution of resources

exploited in the cloud. The duty of a cloud simulation should include the

verification of resource consumption and the assessment of its capability.

Not all the configurations can be viable. For example, by deploying a

VM on a given Host may be unfeasible due to lack of resources (i.e., CPU

clocks and/or memory). The resources on a given host may be over-assigned

by the VMs to exploit the compensation of the different CPU and memory

exploitation during the day, week and months of different allocated VMs.

In chapter 2, the state of the art of cloud simulators is studied, looking

for a system that allows high-level simulation for the above reasons. In

the remainder of the chapter, the literature on the solving algorithms for

Knapsack Problem and Bin Packing and on heuristics to solve them within a

reasonable time is studied, because they mirror the problem of the allocation

of VMs within physical machines.



Chapter 2

State of the art

This chapter provides an overview of related work on the Cloud

Simulator. For each simulator in the literature, the character-

istics that distinguish it from others, its qualities and defects

are analyzed in detail. All the data are reported in a table and

a report is made on the various simulators found regarding the

characteristics that are missing to carry out a simulation with the

requirements of the iCaro project. The literature on Knapsack

and Bin Packing problem resolution algorithms is then analyzed

as these two problems represent the generalization of the prob-

lem of virtual machine allocation. As these problems have NP

complexity, part of the chapter is dedicated to heuristics that can

solve them within a reasonable time.

2.1 Software Simulators

Most part of cloud simulation tools are software because until a few years

ago, it was very expensive to create a simulated data center buying the

hardware infrastructure on which to run tests. Also, creating a practical

test-bed, consisting of a reasonable number of servers (say, 40 machines)

can still be out of reach for most researchers when one needs to consider

space, power and cooling infrastructure. Nowadays some researchers have

taken the effort to create a scaled data center using the Raspberry Pi device

reducing drastically the cost of this solution [121], but most of the literature

covers articles related to software simulators and therefore the research work

15
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focuses on those last ones.

The present state of the art of cloud simulators is quite wide. Many

surveys on cloud simulation have been presented [12, 13, 104, 107, 108, 116]

stressing the different kinds of goals meant for such simulators and their

mathematical models.

CloudSim [41] A new, generalized, and extensible simulation framework

that allows seamless modeling, simulation, and experimentation of

emerging CC infrastructures and application services. By using CloudSim,

researchers and industry-based developers can test the performance of

a newly developed application service in a controlled and easy to set-up

environment [41].

Features: � Modeling and creating a huge data center, unlimited

number of VMs, introducing brokering policy and support

the important feature of CC pay-as-you-go model [13]. The

time to instantiate an experiment setup with 1 million hosts

is around 12s [41].

� It implements generic application provisioning techniques that

can be extended with ease and limited efforts [88].

Cons: � Lack of GUI.

� Does not run in real time. So, you would not be able to

evaluate how long does it take for your algorithm to decide.

� For complex simulation you must learn the architecture of

CloudSim and you must write in Java your simulation. This

fact heavily affects the design of experiments, which must

be large enough to extract interesting conclusions, but on

the other hand must be small enough to fit into 2 GB of

memory: Java can only handle at most 2 GB of memory in

32bits systems. However, this limitation does not affect 64

bits systems [99].

� CloudSim is not a framework as it does not provide a ready

to use environment for execution of a complete scenario with

a specific input [88].

� Users of CloudSim must develop the Cloud scenario it wishes

to evaluate, define the required output, and provide the input

parameters [88].
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� Basically built for single server architecture and become in-

sufficient for real cloud model, deploying different type of ap-

plications from different customer [13].

� CloudSim implements an HPC-style workload, with Cloudlets

(jobs) submitted by users to VMs for processing. It can be

used to simulate a transactional, continuous workload such

as a web server or other service, but it lacks a detailed model

of such an application [119].

CloudAnalyst [126] Supports visual modeling and simulation of large-

scale applications that are deployed on Cloud Infrastructures. Cloud-

Analyst, built on top of CloudSim, allows description of application

workloads, including information of geographic location of users gen-

erating traffic and location of data centers, number of users and data

centers, and number of resources in each data center [126].

Features: � Provides modelers with a high degree of control over

the experiment, by modeling entities and configuration op-

tions [13].

� Allows modelers to save simulation experiments, input pa-

rameters, and results in the form of XML files so the experi-

ments can be repeated [13].

Cons: � CloudAnalyst is favorable for testing the performance of

social networking sites such as Facebook, Twitter etc. [50].

� Need to restart of CloudAnalyst for every simulation.

� OS and architecture are transparent to simulation. Only x86

and Linux can be selected.

� Workload based on users’ requests, a preliminary study is

needed for the number and size of users’ requests (Inheritance

of CloudSim).

� Allows the configuration of high level parameters only [99].

GreenCloud [77] For advanced energy-aware studies of CC data centers

in realistic setups. Extracts, aggregates, and makes information about

the energy consumed by computing and communication elements of

the data center available in an unprecedented fashion. In particular, a

special focus is devoted to accurately capture communication patterns

of currently deployed and future data center architectures [77].
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Features: � Developed as an extension of a packet-level network

simulator Ns2 [73].

� Implements a full TCP/IP protocol reference model which

allows integration of different communication protocols with

the simulation [88].

Cons: � The simulation duration is greatly influenced by the num-

ber of communication packets produced as well as the num-

ber of times they are processed at network routers during

forwarding. As a result, a typical data center simulated in

GreenCloud can be composed of thousands of nodes while the

Java-based CloudSim and MDCSim can simulate millions of

computers [77].

� User of this simulator needs to learn both programming lan-

guages i.e. C++ and Otcal to use this simulator, which is

a noticeable drawback [13] two different languages must be

used to implement one single experiment [99].

� Basically built for single server architecture and become in-

sufficient for real cloud model, deploying different type of ap-

plications from different customer [13].

� Although it can support a relatively large number of servers,

each server is considered to have a single core and there is

no consideration of virtualization, storage area networks and

resource management [12].

� Although it has a detailed workload model, it does not include

any modeling of virtualization. As such, it is not suitable for

virtualized resource management research [119].

iCanCloud [99] The main objective of iCanCloud is to predict the trade-

offs between cost and performance of a given set of applications exe-

cuted in a specific hardware, and then provide to users useful informa-

tion about such costs [99].

Features: � Provides in-depth simulation of physical layer entities

such as cache, allocation policies for memory and file system

models [99].

� It has been designed to perform parallel simulations, so one

experiment can be executed spanning several machines. In

[99] this feature is not available yet.
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� Several methods for modeling applications can be used in

iCanCloud: using traces of real applications [99].

Cons: � It does not provide models for power consumption, al-

though this is included as future work [99].

� The essential capability to simulate the variety of heteroge-

neous networks involved in the end-to-end cloud service sup-

ply chain is lacking in this tool [49].

� Aimed at simulating instance types provided by Amazon with-

out considering the underlying network behavior [121].

NetworkCloudSim [60] The main challenge addressed is to develop appli-

cation and network models that are sophisticated enough to capture the

relevant characteristics of real Cloud data centers, but simple enough

to be amenable for analysis [73].

Features: � It is equipped with more realistic application models

than any other available Cloud simulator [60].

� Network flow model for Cloud data centers utilizing band-

width sharing and latencies to enable scalable and fast simu-

lations [60].

� For helping users to model such communicating tasks, the

NetworkCloudlet class was developed that represents a task

executing in several phases/stages of communication and com-

putation [60].

� It uses Network Topology class which implements network

layer in CloudSim, reads a BRITE file and generates a topo-

logical network [88].

Cons: � Although, users can model complex applications in their

simulation environment, still the precise execution of such

applications depend highly on the underlying network model

[60].

EMUSIM [40] It is not only simulator; it provides both simulation and

emulation of a cloud application. It is developed for SaaS, applications

having huge CPU-intensive and which are very costly for actual de-

ployment. For these types of applications, customer needs to analyze

before renting the resources [13].
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Features: � For improving the accuracy, relevant information of the

application is taken out during emulation and is used during

the simulation [13].

� Output from the emulation stage and input to the simulation

stage are loosely coupled; the emulation generated a perfor-

mance file that is later translated into a simulation model of

the application [40].

� Information that is typically not disclosed by platform own-

ers, such as location of VMs and number of VMs per host in

a given time, is not required [88].

Cons: � For emulation it is necessary a real cluster with Xen Hy-

pervisor installed on the host.

MDCSim [82] It is a commercial discrete event simulator developed at the

Pennsylvania State University. It helps the analyzer to model unique

hardware characteristics of different components of a data center such

as servers, communication links and switches which are collected from

different dealers and allows estimation of power consumption [88].

Features: � It allows measuring power and analyze each layer of

3-layer architecture model and can modify any layer without

affecting other layer of the architecture [13].

� It can also model hardware characteristic such as links be-

tween two communication nodes and switches connected with

these nodes [13].

� It is supplied with specific hardware characteristics of data

server components such as servers, communication links and

switches from different vendors and allows estimation of power

consumption [77].

� The simulator featured IBA and Ethernet communication

protocols over TCP/IP and support many functions of IBA.

There is no restriction in adding any new communication pro-

tocol [13].

Cons: � The drawback of this simulator is that it is commercial

(since it is built on CSIM [108], a commercial product [99]),

so users need to buy it for full functionality [13].
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DCSim [119] It is an extensible data center simulator implemented in Java,

designed to provide an easy framework for developing and experiment-

ing with data center management techniques and algorithms. It is an

event-driven simulator, simulating a data center offering IaaS to multi-

ple clients. It focuses on modeling transactional, continuous workloads

(such as a web server), but can be extended to model other workloads

as well [119].

Features: � It provides the additional capability of modeling repli-

cated VMs sharing incoming workload as well as dependen-

cies between VMs that are part of a multi-tiered application.

SLA achievement can also be more directly and easily mea-

sured and available to management elements within the sim-

ulation [119].

� The resource needs of each VM in DCSim are driven dynam-

ically by an Application, which varies the level of resources

required by the VM to simulate a real workload [119].

� Multi-tier application model which allows simulating inter-

actions and dependencies between VMs, VM replication as

a tool for handling increasing workload, and the ability to

combine these features with a work conserving CPU sched-

uler [119].

Cons: � Simulations as large as 10000 hosts and 40000 VMs can be

executed in approximately 1 hour [119].

In the tables 2.1 and 2.2 the cloud simulators previously described are

compared mainly on these attributes [13]:

Underlying Platform Some simulators are built upon any existing sim-

ulation framework. The features of existing platform are inherited in

the new simulation framework.

Availability This is important to know the availability of a simulator is

commercial or open source.

Programming Language Most of simulator uses Java language for script-

ing or modeling any system. This is very important, since the users

have to learn the language first to use the simulator.



22 State of the art

Cost Modeling Since pay-as-you model go is one of fundamental service

of CC, or utility computing and one of the challenging issues of cloud

simulator. The user can model any new policy by using the simulator

that has this module.

Graphical User Interface Graphical user interface is for visual purpose

and for simplicity when modeling. Many of the above simulators have

an interactive GUI.

Communication Model Communication Model is one of the important

in CC, especially for networking within the data center and message

passing between applications.

Simulator Time This is the execution time of the simulator during testing.

This will determine whether simulator is heavy.

Energy Modeling Energy modeling is very important in CC research be-

cause of huge energy consumption in the data center and various net-

working elements (router, switch etc.).

Federation Policy Since, cloud is distributed system. Many cloud service

providers are located in different geographical locations. The feder-

ation policy allows coordinating different cloud service provider that

supports inter-networking of application and workload migration to

benefit high quality of service.

Services [25] The type of Cloud Services supported by the simulator (e.g.

IaaS, PaaS, and SaaS).

At this list of attributes taken from [13], we added other self-explanatory

attributes taken from the papers indicated near the attribute name. The

symbol ‘-’ in a cell means that the simulator presents in the column was not

compared on the attribute presents in the row with another simulator by the

author of the above paper.

Other attributes are not self-explanatory and they are described here:

Change Structure during Simulation is set to yes if it is possible, for

example, to add one or a set of new VMs during the simulation of a

data center. The possibility to perform this operation it is important

to analyze changes on the workload of the data center, if independent

from previous workload, a VM is added. This operation is different

from adding VMs to satisfy peak of workload.
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Full Description of VM This attribute indicates if VMs in the simulation

are fully described with information about, OS, CPU, memory, storage,

service and application and not merely with CPU and memory. That

is, the value is set to yes if each VM has its own “identity”. This

attribute is important for high level simulation: if it is possible to add

a VM during the simulation that needs a service in other VM, then

the workload of the first machine affect the workload of the second.

Programming Skill for Create Scenarios It is set to yes, with an in-

dication of what language it is necessary, if the skill is required to

generate scenarios of the simulation.

CloudSim

Cloud

Analyst

Network

CloudSim EMUSIM

Underlying

Platform
SimJava CloudSim CloudSim

AEF

CloudSim

Available
Open

Source

Open

Source

Open

Source

Open

Source

Program-

ming

Language

Java Java Java Java

GUI No Yes No No

Cost

Model
Yes Yes Yes Yes

Applica-

tion

Model [77]

Computa-

tion Data

transfer

Computa-

tion Data

transfer

Computa-

tion Data

transfer

-

Services

[25]
IaaS IaaS IaaS -

Communi-

cation

Model

Limited Limited Full Limited

Support of

TCP/IP

[77]

No - - -

Energy

Model
Yes Yes Yes Yes
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CloudSim

Cloud

Analyst

Network

CloudSim EMUSIM

Power

Saving

Modes [77]

No [77]

Yes (create

by

user) [41]

- - -

Simulation

Time
Seconds Seconds Seconds Seconds

Simulation

Type [88]

Event

Based

Event

Based

Event

Based

Event

Based

Federation

Policy
Yes Yes Yes No

Models for

public

cloud

providers

[99]

No No - -

Physical

models [99]
No No - -

Change

Structure

During

Simulation

No No No No

Full De-

scription of

VM

No Yes (if

created by

user)

No No No

Program-

ming Skill

For Create

Scenarios

Yes (Java) No Yes (Java) No

Inserting

in other

project

Yes (as

Java

Library)

No Yes No

Table 2.1: Comparison between software cloud simulators previ-

ously developed (First Set)
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Green-

Cloud

iCan-

Cloud
MDCSim DCSim

Underlying

Platform
Ns2

SimCan

[13]

Omnet,

MPI [99]

CSIM -

Available
Open

Source

Open

Source

Commer-

cial

Open

Source (on

github)

Program-

ming

Language
C++/OTcl

C++ Java/C++ Java

GUI Limited Yes No No

Cost

Model
No Yes No Yes

Applica-

tion

Model [77]

Computa-

tion Data

transfer

Execution

deadline

-
Computa-

tion

Multi-tier

Sharing

workload

[119]

Services

[25]
IaaS IaaS - IaaS, PaaS

Communi-

cation

Model

Full Full Limited No

Support of

TCP/IP

[77]

Full - No -

Energy

Model

Yes

Precise

(Servers,

Network)

[77]

No

Rough

(Server

Only) [77]

Rough

(Host

Only) [119]

Power

Saving

Modes [77]

DVFS,

DNS and

both

- No -
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Green-

Cloud

iCan-

Cloud
MDCSim DCSim

Simulation

Time
Minutes Seconds Seconds Minutes

Simulation

Type [88]

Packet

Level
-

Event

Based

Event

Based

[119]

Federation

Policy
No No No No

Models for

public

cloud

providers

[99]

No Amazon No No

Physical

models [99]

Available

using

plug-in

Full No No

Change

Structure

During

Simulation

No No - No

Full De-

scription of

VM

No No - No

Program-

ming Skill

For Create

Scenarios

Yes (Tcl) Yes (NED) - Yes (Java)

Inserting

in other

project

No No No No

Table 2.2: Comparison between software cloud simulators previ-

ously developed (Second Set)

According to our analysis,

CloudSim [37] is the most popular cloud simulator; developed in Java as
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a library it has been used as a basis for other simulators as CloudAna-

lyst. CloudSim is mainly focused on modeling IaaS aspects, allocating

VM into single and multiple datacenters. CloudSim environment al-

lows simulating specific configuration by programming and exploiting a

limited number of aspects in modeling cloud resources at level of PaaS

and SaaS which are left to high level programming. On the other hand,

it has been used to create low level cloud simulators as: EMUSIM,

CDOSim [88].

CloudAnalyst [126] is an extension of CloudSim where the GUI and net-

work modeling have been added,

NetworkCloudSim [60] is an extension of CloudSim where networks topolo-

gies/aspects are addressed supporting HPC, e-commerce and work-

flows.

GreenCloud [77] was based on Ns2 a discrete cloud simulator imple-

menting simulation of full TCP/IP. GreenCloud has been proposed

to simulate the energy/power consumption aspects of cloud, and the

networking level, thus suitable to simulate workload distributions and

make decisions based on mathematical models of energy consumption.

GreenCloud does not address higher level aspects of cloud stack and

complex BCs. GreenCloud presents a limited graphic user interface

and provides low performance in simulation by limiting the size of the

simulated clouds configurations.

MDCSim [82] addressed the simulation of large scale multitier datacenters,

taking into account the aspects related to NIST layers, communication

aspects, etc. MDCSim is a library and does not provide a user interface,

thus forcing to cloud configuration and related workload programming;

therefore it shows limited capabilities in both modeling and simulating

complex BCs which change over time.

iCanCloud [99] was developed with the aim of solving some of the limita-

tion of CloudSim, GreenCloud and MDCSim. It is based on SIMCAN,

OMNET, MPI, and provides the modeling of the infrastructure permit-

ting the modeling of the hypervisor (with its related math model that

could be used for any estimation of power consumption, temperature,

costs, etc.) and can be executed on parallel instances. iCanCloud

has a relevant graphic user interface. At the state of the art, cloud
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simulators are mainly based on addressing low level aspects of commu-

nicating processes on cloud such as NetworkCloudSim and MDCSim,

or on energy consumption as GreenCloud, iCanCloud even modeling

the hardware aspects.

To this purpose, a number of simulators are based on direct math model for:

energy consumption (relating clock, storage access, and bandwidth to power

consumption and temperature), network simulation in terms of packets, stor-

age and database simulation in terms of latency, etc. For such reasons, it

is very complex to make a full comparison of the different clouds, since the

consumed memory and speed in simulation strongly depend on the resource

and the adopted mathematical models [99].

As a result, cloud simulators at present do not allow the simulation of

complex BCs, nor address Service Level Agreements (SLAs), complex/real

workload pattern models, with the aim of exploring, assessing and predict-

ing the best resource allocation based on consumption of resource in the

real cloud infrastructure for long time ahead. The above revised simulators

hardly cope with the huge amount of data produced by simulating the be-

havior along several weeks, taking into account workload patters describing

the whole duration of the temporal windows. For example, the analysis of

real monitored data from the services, VM and hosts in place, can be used

to learn hourly, daily or weekly resource consumption patterns which can be

used to produce a forward simulation and prediction.

2.2 Allocation of Virtual Machines

The problem of allocation is mathematically generalized by reformulating it

through two more general approaches, the Knapsack and the Bin Packing

problems. The two problems have both NP complexities for which requires

the use of heuristic techniques to determine a sub-optimal solution. The

differences between the two approaches are as follows:

Knapsack Problem (KP) A problem of optimization through which we

try to maximize the profit deriving from inserting a set of objects inside

the knapsack. Each object is associated with a value and a weight and

the constraint to respect is that the capacity of the knapsack must not

be exceeded.
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BP Problem (BPP) The objective is to use the fewer containers, bins,

to allocate a set of objects. Obviously each container has a certain

capacity while each object requires a certain amount of space to be

allocated inside the bin.

In the allocation of VMs within Host, it is desirable to be able to allocate

all the VMs created in the smallest number of Host (BP), respecting the

constraints imposed by the resources available within each Host (KP). In

the KP, however, there is no explicit constraint to ensure that all objects

are placed inside the Knapsack: in the case of the allocation of VMs it is

evident that each one must be allocated to provide the requested service. The

solutions proposed require dividing objects into groups and selecting from

each group the object that maximizes profit. Later through some heuristics

one or more objects are selected from the backpack and replaced by others

within the same group. Therefore, even considering a single object as a

group and thus guaranteeing the allocation of all objects in the knapsacks

(multi-KP) if possible, most of the proposed heuristics could not be used

efficiently.

For these reasons, the approach generally used is to divide the problem

into two steps:

� maximize profit against a set of possible SLAs to be respected, so as

to allocate it those BCs that ensure maximum functionality using the

heuristics of KP resolution

� minimize the number of hosts used, as in the case of allocation, or

compacting VMs using the heuristics of BP resolution

2.2.1 Multi-Dimensional Multiple-Choice

Multi-Knapsack problem

The basic formulation of the KP [92], known in the literature as 0 - 1 Knapsack Problem,

is to choose between a set of objects with a certain value and weight. The

goal of the optimization is to identify a configuration that maximizes the

sum of the values of the objects contained in the knapsack without violating

the maximum capacity constraint with the sum of the weight of the same

objects. Let v1, v2, . . . , vn the values associated with a set of n objects, let

them be w1, w2, . . . , wn the respective weights and x1, x2, . . . , xn of the indi-
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cator variables. The problem, notes the c capacity of the knapsack can then

be formulated as follows:

maximize

n∑
i=1

xivi

subject to
n∑

i=1

xiwi ≤ c

xi ∈ {0, 1}, i = 1, . . . , n

The basic formulation is not applicable to the problem of VM allocation.

It is necessary to consider at least 4 additional points:

Multi-Dimensional the capacities to be considered during the allocation

will be as many as the resources considered and it will therefore be

necessary to define an additional constraint for each resource (capacity)

to be respected in the knapsack.

Multi-Knapsack the number of hosts to be considered will depend on the

size of the data center being simulated.

Multiple-Choice certain VMs must provide for an exclusive allocation if

they belong to certain categories.

All VMs Allocated a constraint must be added to ensure the allocation

of all VMs that are present within the simulation.

The problem with these additional points becomes more complex and is

referred to as Multi-dimensional Multiple-Choice Multi-Knapsack Problem

(MMMKP).

Similarly to [43], supposing that the VMs are pooled in groups, it is

possible to define:

� G as the number of groups. Each group is composed of gi VMs.

� Each VM has associated a vector of resource requestsDi,j = (di,j1 , di,j2 , . . . , di,jk ),

where k (1 ≤ k ≤ K) indicates the different resources, i the group

which the j − th VM belongs.

� Each Host has associated an available resource vectorRm = (rm1 , r
m
2 , . . . , r

m
k ),

where m (1 ≤ m ≤M) indicates the different Hosts.
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The decision variable xi,jm is 1 if the VM ij is instantiated over the physical

hosts m, otherwise is 0. Different from [43] in the following problem, several

VMs belonging to the same group can be chosen and each VM must be

inserted in at least one host.

maximize
G∑
i=1

gi∑
j=1

M∑
m=1

xi,jmDi,j

subject to

G∑
i=1

gi∑
j=1

xi,jmDi,j ≤ Rm,∀m

M∑
m=1

xi,jm = 1,∀i, j

xi,jm ∈ {0, 1},∀i, j,m

The problem so formulated (MMMKP) has NP complexity and therefore

requires that the optimal solution be approximated in some way by some

heuristics. In literature there are various solutions to solve the generalization

of the KP, nevertheless, there are not many resolution methods that consider

the MMMKP case. In general, although the problem can be reworded as a

Linear Programming (LP) problem and the solution obtained adapted to the

discreet case, the temporal complexity makes this strategy impracticable in

many real cases: almost all articles then define a heuristics to obtain a sub-

optimal solution to the problem.

In [53], dynamic programming and branch-and-bound methodologies are

combined to produce a hybrid algorithm for the Multi-choice KP (MKP).

In [69], the authors approximately solve the Multi-dimensional Multi-choice

KP (MMKP) with an algorithm which is based upon reactive local search

and where an explicit check for the repetition of configurations is added to

the local search. The algorithm starts by an initial solution and improve it

by using a fast iterative procedure. Later, both deblocking and degrading

procedures are introduced in order (i) to escape to local optima and, (ii) to

introduce diversification in the search space. Also in [63] the authors develop

an approximate core for the MMKP and utilize it to solve the problem

exactly and in [72] the authors proposed two novel algorithms based on Ant

Colony Optimization (ACO) for finding near-optimal solutions, although

ACO algorithms are known to have scalability and slow convergence issues,

here the authors have augmented the traditional ACO algorithm with a



32 State of the art

unique random local search, which not only produces near-optimal solutions

but also greatly enhances convergence speed.

In the literature on the resolution of the MMMKP the following articles

can be highlighted:

In [43] the authors seek to maximise the profit from the allocation of

some VMs to a number of hosts. VMs are divided into groups and each

group allocates one and only one VM. The algorithm proposed is divided into

two phases: in the first phase, a solution is sought by bringing the problem

back to that of BP and then we introduce randomness trying to maximize a

goodness. The work is based on the gain obtained by inserting one machine

rather than another into a host, so it is necessary to associate each machine

with a gain in order to take advantage of the algorithm proposed as a possible

solution to the problem.

In [14], the authors define a new heuristics (A-HEU) to solve the problem

of MMMKP. The algorithm uses a distributed resolution system and the

authors provide a fairly in-depth study of the computational complexity of

the method proposed.

From the literature analysis it is possible to consider the KP as a sort of

specialization of the problem of BP: generally, in fact, the heuristic proposals

try to improve an acceptable solution obtained by solving a problem of BP

through heuristics elaborated on the specific problem. For this reason, the

literature that deepens the heuristic resolution for BP has been analyzed.

Priority is given to the allocation of VMs only, without worrying about

any additional costs and considering only the number of hosts used as an

optimization parameter. For this reason, the literature aimed at limiting the

number of hosts used was more relevant for the purposes of the discussion.

2.2.2 Bin Packing Problem

The basic formulation of BP Problem is to choose how to insert a certain

number of objects into multiple containers, bins, in order to minimize the

number of bins used. Formally, given:

� O a set of n objects, with wi the weight of object i

� C a set of m containers, with vj the capacity of container j

assign each item to one bin so that the total weight of the items in each

bin does not exceed vj and the number of bin used is a minimum. A possible

mathematical formulation of the problem is:
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minimize

m∑
j=1

yj

subject to

n∑
i=1

wixij ≤ vjyj ∀j ∈ 1, . . . ,m

m∑
j=1

xij = 1 ∀i ∈ 1, . . . , n

xij , yj ∈ {0, 1} ∀i, j

In [112], the basic formulation is adapted to the problem of static al-

location of VMs in physical hosts, known in the literature as Static Server

Allocation Problem (SSAP). In this formulation, the problem is to allocate

a set of services within some physical servers. Suppose you have n services

i ∈ I that must be allocated using m server j ∈ J . Each service requires a

certain capacity of a particular resource k ∈ K (CPU, memory, bandwidth,

etc....). Each i service to be allocated will require a certain amount of the

k resource, the amount indicated by uik. Conversely, each server will have

some capacity for that particular k resource, indicated with sjk. With these

considerations, the SSAP problem can be formulated as follows:

minimize

m∑
j=1

cjyj

subject to

n∑
i=1

uikxij ≤ sjkyj ∀j ∈ J, ∀k ∈ K

m∑
j=1

xij = 1 ∀i ∈ I

xij , yj ∈ {0, 1},∀i ∈ I, ∀j ∈ J

(2.1)

Where variables cj indicate the cost of keeping the server active while the

yj and xij variables are indicator variables that represent respectively the

servers used and on which server j the i service is allocated. This formulation

is similiar to Vector BP (VBP) or d-Dimensional Vector Packing (d-DVP)

defined in [59], but in this case the servers do not have the same capacity

C in all resources. Since d-DVP is a generalization of BP, this problem is

strongly NP-hard [57].
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As for the KP, various heuristics have been researched to find sub-optimal

solutions and solve the problem in good time: BP is also used to reallocate

any overloaded machines by building schedulers that work online during the

life of the data center and that are responsible for migrating and moving

such machines. It is therefore essential that the algorithms used in these

applications are able to find a good solution quickly enough.

In [45] the authors study the approximability of multidimensional gen-

eralizations of three classical packing problems: multiprocessor scheduling,

BP, and the KP, obtaining a variety of new algorithmic as well as inapprox-

imability results for these three problems.

In [24] the authors introduce a new general framework for set covering

problems, based on the combination of randomized rounding of the (near-

)optimal solution of the LP relaxation, leading to a partial integer solution,

and the application of a well-behaved approximation algorithm to complete

this solution. Applying their general framework they obtain a polynomial-

time randomized algorithm for d-dimensional vector packing with approxi-

mation guarantee arbitrarily close to ln d + 1.

In [127], the authors focus on dynamic environments where VMs need to

be allocated to servers over time, studying simple BP heuristics and using

them to place VMs. The authors also note that these placement heuristics

can lead to suboptimal server utilization, because they cannot consider VMs,

which arrive in the future and they found that combinations of placement

controllers and periodic reallocations achieve the highest energy efficiency

subject to predefined service levels.

In [54] the authors try to improve the BP algorithm applied to the online

allocation of VMs introduce the concept of typology of machine load, differ-

entiating the same machines according to the variability of the workload: in

this way they introduce a kind of penalty into the optimization that makes

that machines with a fairly constant workload are less subject to migration

compared to those with more variable loads. The objective of the work,

however, is not to solve the problem of On-line BP, but rather to find a so-

lution to solve the generalized problem of SSAP by introducing the concept

of temporal variability in the workload. As described in [112] the equation

2.1 represents a single service’s resource demand as constant over time and

it is possible to consider variations in the workload, and time is divided into

a set of intervals T indexed by t = {1, . . . , τ}: Cyclic workloads over time

are now represented in the matrix uikt describing how much capacity service
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i requires from resource type k in time interval t. This assumption modifies

the second constraint of the equation 2.1 as follows:

n∑
i=1

uiktxij ≤ sjkyj ∀j ∈ J, ∀k ∈ K, ∀t ∈ T

On the basis of these considerations, the most influential works for treat-

ment are [54] and [101]. In [54] the trend of the workload over time is taken

into account, rather than the maximum value of use of each individual re-

source. In [101] a series of innovative heuristics are presented for solving the

problem of BP. Before analysing the approach to the problem, the concept

of over-provisioning and a series of heuristics used to solve the problem of

allocation is briefly presented.

2.2.3 Over-provisioning

Over-provisioning is a general technique used by most providers of telematics

services to optimise revenues from a given infrastructure. The concept is

very simple: cloud sell more resources than cloud actually do. The use of

resources within a telematic system that is shared by several users is almost

never homogeneous and there is an alternation of periods in which the system

is stressed and periods in which resources are little used.

Obviously, an analysis of a system from this point of view requires that

the temporal trend of the workload be considered at the centre of the study.

It is therefore clear that, by recasting the problem of allocation, introducing

time as a parameter with respect to which the workload varies, it is neces-

sary to modify the model presented in Section 2.1. In particular, the ujk
parameter will not be a scalar value representing the maximum value of use

for that resource, but rather a matrix of dimensions j, k, with k the number

of resources of hosts and VMs considered and j the number of time inter-

vals taken into consideration when analyzing that particular workload (as

discussed in subsection 2.2.2).

Although it may seem trivial, the concept of over-provisioning is quite

delicate: if the estimation of the workload and consequent machine allocation

is wrong, all users of the machines contained in the overloaded host will

be affected. Any over-provisioning policy must be executed with caution,

because the short-term benefit is in conflict with mid-term losses in the

reputation of the provider [85]. The cost of overprovisioning is difficult to

measure yet potentially equally serious: not only do rejected users generate
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zero revenue, they may never come back. For example, Friendster’s decline

in popularity relative to competitors Facebook and MySpace is believed to

have resulted partly from user dissatisfaction with slow response times (up

to 40 seconds) [75].

Based on this assumption, systems have been studied to optimize eco-

nomic resources: as in [84] which authors use an Economically Enhanced

Resource Manager (EERM) (defined in [86]) instead of a simple Resource

Manager (RM). If there are not enough unreserved resources at a given time,

a classical RM will refuse a SLA proposal from the client. However, clients do

not always use the total of resources that they have reserved, and these un-

used resources could be resold to other clients for increase the revenue. When

the provider is not able to fulfill all the SLAs that has agreed, the EERM

can perform a selective violation of some SLAs for minimizing the economic

impact of the penalties [84,86]. It is therefore essential to have a sufficiently

thorough knowledge of the workload or BC before over-compacting VMs.

Two types of BCs were identified based on the use of services resident

on machines and the application context of the application: low priority and

high priority configurations:

high priority In BCs that represent a system designed to host high priority

applications, it is essential to limit the overload of machines resident on

hosts, in order to limit the degradation of speed introduced by exceed-

ing the thresholds on the available resources of the host. In particular,

a parameter must be defined that limits the amount of resources that

can be allocated to the load of VM, so that any unexpected peaks can

degrade too much the responsiveness of the system.

low priority In the case of configurations that do not require a high pri-

ority the threshold of available resources can be increased, and in this

situation more memory is used than the host has, so that performance

will fall in terms of efficiency.

In general a part of the host resources is dedicated to memory reserved for

individual VMs and another part of all resources is necessary to ensure the

proper functioning of the hypervisor virtualizing machines. In order to over-

provisioning without degrading performance for high-priority applications, it

is possible to consider a smaller amount of resources as available than would

actually be available when considering the amount of resources described

above. In this way the over-provisioning window will be found between
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Figure 2.1: Allocate VMs for high priority applications.

the figure value indicated with limit and the available value (see Figure

2.1). Note that the resources used by machines within this window are still

available and that being inside this window does not results in the loss of

benefits.

2.2.4 Item Centric Heuristics

The problem of BP is NP-complete and there is no ρ− approximation with

ρ < 3
2 unless P = NP . This implies that there is no algorithm polynomial

with absolute small error at will. Generally, two different approaches are

used to solve the problem of BP, one based on heuristics and the other based

on LP. The LP approach involves either transforming the discrete problem

to a linear problem and solving it through branch and bound methods or

solving the relaxed linear problem, and then round off the solution obtained

to bring it back to a discreet case. However, despite the good theoretical

results in some studies ( [24] and [114]) report that the problem does not scale

when the number of machines increases. The quality of the solution found

through an approximate algorithm at polynomial timeA is measured through

its approximation ratio, indicated with R(A), compared to the excellent
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algorithm OPT .

R(A) = lim sup
n→inf,OPT (L)=n

A(L)

OPT (L)

Heuristic Next Fit

The Next Fit algorithm assigns the current object to the first bin containing

it. If the currently open bin contains no object, a new bin opens. Previous

bin are no longer taken into account. Let xik the variable indicating the

assignment of the k − th object to the i− th bin. Let i the total number of

binds used and c the remaining bin capacity. In addition, be wk the capacity

required by the object k. The pseudo-code is the following:

for all objects k {

consider current bin i

if (w[k] <= c) {

x[i][k] = 1

c = c - w[k]

} else {

adding a new bin i = i + 1

x[i][k] = 1

c = c - w[k]

}

}

The Next Fit algorithm is an algorithm 2 − approximation for the Bin

Packaging problem, i.e. the number of bins obtained z is equal to z ≤ 2z∗−1

with z∗ the best solution to the problem. The execution time is linear with

respect to the input data, i.e. O(n). A first improvement could be to recheck

any previous bin, so as not to waste space during the allocation.

Heuristic First Fit

This variant ensures a better use of space, reconsidering the bin that already

contains objects. The pseudo-code is the following:

for all objects k {

set placed to FALSE

for all bin i {
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if (w[k] <= c) {

x[i][k] = 1

c = c - w[k]

set placed to TRUE

break

}

}

if ( ! placed ){

adding a new bin i = i + 1

x[i][k] = 1

c = c - w[k]

}

}

This heuristics is an algorithm 17
10−approximation for the Bin Packaging

problem, i.e. the number of bins obtained z is equal to z ≤ 17
10z
∗ with z∗ the

best solution to the problem.

From this heuristics it is possible to derive another one almost immedi-

ately, the First Fit Decreasing (FFD). In fact, thinking about the proce-

dure one could think of ordering objects in a descending way compared to

the required capacity and then applying the First Fit.

The time required to execute the algorithm depends on how long it takes

to sort objects and the time it takes to allocate the i-th object in the bin.

The total time is therefore O(n log n).

The FFD algorithm ensures that the solution found is z ≤ 3
2z
∗ with z∗

the best solution to the problem.

Asymptotic Polynomial Time Approximation Scheme

An AP-TAS is a family of algorithms such that for each ε > 0 there is a k0

number and an algorithm (1 + ε) − approximation algorithm for K∗ ≥ k0.

This family exists for the problem of BP, however, the execution time is

quite high despite being polynomial compared to n. In particular is worth

the following theorem:

∀ 0 < ε ≤ 1
2 there is an algorithm performed in polynomial time

with respect to n and that finds an assignment that has at most

k ≤ (1 + ε)k∗ + 1 bin
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Due to the high execution time in practice, however, this heuristics is not

considered as a valid resolution method for the problem.

2.2.5 Bin Centric Heuristic

The work presented in [101] proposes a different algorithm for placing objects

in bin called bin-centric approach. In particular the authors compare heuris-

tics based on FFD variants empirically with the bin-centric variants they

have proposed, obtaining better results and that in some cases reduce the

number of necessary bins by about 10%. The construction of the training-

set is detailed and tries to reproduce those particular cases in which the

performance of the FFD degrades. The idea of the work is motivated by

the fact that there are particular instances of problems in which the shape

of objects makes heuristics based on FFD less efficient: in particular if ob-

jects have a strong correlation between dimensions, performance degrades.

Unfortunately, this is quite a common case in the case of VMs where there

will generally be a strong negative dependency between its resources com-

pared to the use of the machine. The same case occurs when a service is

only active during the day or at night. The problem of BP becomes more

complicated as soon as bin capacity and the weight of the objects, increases

in dimensionality: it has been demonstrated by various studies that there is

no PTAS for the problem when the size of the capacities to be considered

d > 1.

In particular, it has been shown that no algorithm with execution time

(n log n) can give a better approximation than d−approximation. It should

be noted that if d > 1 the heuristics presented so far cannot be applied

directly, as it is necessary to assign a weight to the objects and then order

them. In [101] two solutions have been proposed to assign a weight to the

objects to be ordered called FFDProd (Eq. 2.2) and FFDSum (Eq. 2.3):

w(I) =
∏
i≤d

Ii (2.2)

w(I) =
∑
i≤d

aiIi (2.3)

Where a = a1, . . . , ad is a scale vector whose purpose is to normalise the

demand for resources on the various dimensions, represented by variable I,

and to weight the demand for the various resources against their relevance
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during allocation. The determination of the scaling vector a can be derived

from two criteria, FFDAvgSum (Eq. 2.4) and FFDExpSum (Eq. 2.5):

ai =
1

n

n∑
j=1

Iji (2.4)

ai = exp(ε
1̇

n

n∑
j=1

Iji ) (2.5)

Analyzing the execution time of the FFD algorithm in the multidimen-

sional case it is necessary to consider the shape of the object in order to be

able to define which bin will actually contain it. The execution time then

becomes Ω(n log n+ nk) with k the number of bin of the solution.

The pseudo-code of the proposed FFD Bin Centric solution is as fol-

lows:

while there are objects to be allocated {

adding a new bin

while some object enters the bin {

insert the "largest" object into the bin

}

}

Although in the single-dimensional case the algorithms are identical (item-

centric vs bin-centric), in the case of multidimensional results depends on

how the result is selected the largest object.

FFD Dot Product

This heuristics defines the larger object as the object that maximizes the

scalar product between the vector of the remaining bin capacity and the

vector of the object request. Each object is assigned a score defined as

score(Ij) =
∑
i

aiI
j
i r(t)i (2.6)

with r(t) indicating the vector of the remaining capacities of the host
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FFD Norm Based

In this case the score is assigned on the basis of the difference between

the host residue vector and the machine request according to a certain

norm.Using L2 you get:

score(Ij) =
∑
i

ai(I
j
i − r(t)i)

2
(2.7)

Grasp-k Variant

A certain randomness can be introduced into the solution search to run the

algorithm in parallel and choose the best solution. One possibility is to

introduce the Grasp − k: with this technique, during the selection phase

of the object to be allocated, one is chosen randomly from among the first

k larger. The work done by the authors of [101] has also been taken up

in [57] with the aim of providing a solution for those problems where bin

sizes vary. The implementation, however, envisages normalizing the use of

resources with respect to the size of the bin, while maintaining unchanged

the heuristic proposals in [101].



Chapter 3

Pattern Generator

This chapter explains in detail the steps that are performed to

obtain patterns to be used as a load of the virtual machines to

be allocated. The patterns generated in this work differ from

the others, present in literature, because within each one the

resources related to a virtual machine can be correlated and can

be considered as high level patterns, as they are different for

machines that run different applications (this is very important

to make a simulation at Business Configuration level). Finally,

it is possible to generate them from the workload of real virtual

machines (i.e. those running in production).

3.1 Concept

The problems analyzed in the Chapter 2 may seem simple to resolve in their

one-dimensional or multidimensional version, which is not time-dependent.

For the type of allocation that we want to achieve with this research work, we

must consider time-dependent workloads as dimensions of previous problems.

Consider the huge variety of applications that can be found on data center

machines. The fundamental concept is that it is not possible to determine

in advance what the use of the resources of a certain VM will be, according

to the type of applications installed inside it. The problem, therefore, is to

determine a load pattern for the use of the resources of a VM as closely as

possible to the real one.

An analysis of the literature highlights how the problem of estimating

43
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the workload of one or more VMs is generally solved by considering the

latter identical: with the same applications installed or performing the same

work. Instead, one should assume that the workload of a VM depends on

the services offered by it: for example, cpu-consuming, memory-consuming

or disk-consuming. Another problem that can be seen in the data sets of

real patterns (supplied in literature) from which artificial workloads should

be generated, is that although these refer to different resources measured in

the same period on the same machine, they cannot be related to each other,

often lacking the metadata necessary for this operation.

In previous literature works [48], [64], [58], authors restrict the field to a

single resource (often the CPU) or to the number of tasks that are performed

on a supercomputer and focus on the workload of a single VM. These works,

moreover, do not try to create workload patterns to be reused later to char-

acterize a pool of VMs that are part of the same BC, but concentrate on

predicting what the future trend will be knowing the past [131]. The work

that come closest to this is [76], but authors analyze the workloads of all

possible VMs looking for a common behavior of some compared to others,

in order to create clusters of VMs. In this work, we already have clusters

of VMs that correspond to those needed for the creation of a BC desired by

the customer and generate workload models to characterize them.

The enhancements proposed in this work are three:

� considering the workload as a function variable in time

� trying to group together the results obtained for some macro-categories

of VMs according to the role played by them within a system n-tier.

� considering the correlation between the workloads of different resources

measured on the same VM over the same period

3.2 Workload Models

Due to the variability of possible configurations that a machine can assume

when considering the values of all the resources analyzed, the model must

necessarily be compressed in order to be reused later. This made it necessary

to take a series of intermediate steps in order to simplify the actual perfor-

mance of each machine and limit the number of possible configurations.

The collection of data related to VMs takes place, in the system in exam-

ination, through the use of NAGIOS network manager [6] who stores data
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Time / Resources r1 r2 . . . rk
t1 r1,1 r1,2 . . . r1,k
t2 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

tn rn,1 rn,2 . . . rn,k

Table 3.1: Representation of a time-series object

on Round Robin Database (RRD). The structure of an RRD database is dif-

ferent than other linear databases. In case of linear databases, new data gets

appended at the bottom of the database table: its size keeps on increasing.

RRD uses a scheme where data is logically organized as fixed size circular

buffers: when new data reaches the starting point, it overwrites existing

data. This way the size of an RRD database is determined at creation time

and always remains constant [8].

The data saved on RRD can be exported in XML and it is possible to

choose the time period to export. In this work the selected periods are 1 day,

1 week and 1 month. Depending on the period considered, the granularity

of data increases or decreases (see tag < step > in Figure 3.1):

Day every 60 seconds

Week every 5 minues

Month every 30 minues

When an export is performed, a description file containing the details of

the resource that has been measured is also generated (see Figure 3.2). The

values of this file that will be useful during the generation of the simulated

workload are max and min to avoid generating abnormal values.

The exported data is then loaded into time-series (TS) objects. There

are three TS for each machine. Each TS can be represented through a matrix

(see Table 3.1): each column contains the value of a certain resource while

the rows indicate the time at which the measurement was made.

The aim of the analysis is to obtain one or more models that can char-

acterize the use of the resources of a analyzed VM during an interval of

time:

Daily Model where the hours are modeled.
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(a)

(b)

(c)

Figure 3.1: File exported with daytime, weektime and monthtime measure-

ments
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Figure 3.2: Partial representation of the resource description file memory for

a generic machine

Weekly Model where the days of the week are modeled.

Monthly Model where the weeks of the month are modeled.

The TS analysis is performed by subdividing the measured data into

subset depending on the TS period being examined. In general called T the

time interval analyzed, the objective is to group the measurements in sets

that have as discriminating parameter Z, a value depending on the value of

T. The size of the sets is indicated by D

T = {day, weekly,monthly}
Z = {hour, day, week}

D = {24, 7, 4}
(3.1)

The sets obtained are:

t1, z1 =


i10 →Measurements made between 00 : 00− 00 : 59

i11 →Measurements made between 01 : 00− 01 : 59

. . .

i123 →Measurements made between 23 : 00− 23 : 59
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t2, z2 =


i20 →Measurements made Monday

i21 →Measurements made Tuesday

. . .

i26 →Measurements made Sunday

t3, z3 =


i30 →Measurements made first week

i31 →Measurements made second week

i32 →Measurements made third week

i33 →Measurements made fourth week

Taking into account the granularity of the measurements, the cardinality

of the individual sets:

|i1j | = 60 elements

|i2j | = 288 elements

|i3j | = 336 elements

In order to obtain a general statistical model of the range T, it is necessary

to model individually all the D sets obtained from the subdivision of T on

the basis of the parameter Z. One solution is to consider each measurement

of each set as a class and to count the occurrences. In this way you get

a probabilistic model for each Z that composes T, allowing both to model

all T and to model some Z. Looking at the daily case, for the creation of

patterns to be used as models it would be possible for each i1j set to consider

the sequences of 60 values that fall into that set. The number of possible

classes, considering the measurements to be made in percentage values on

the range [0− 100] and k resources will be:

10160∗k ' 10120∗k

Average and Quantization of Values

It is therefore necessary to reduce the dimensionality of the measurements

that make up the various sets by introducing some approximation and in

this way it is possible to reduce the noise present in the data. The solution

introduced was to subdivide each time interval analyzed into sub intervals

of m minutes and take the average usage of the resource under the defined

range as considered value. The number of values obtained from the initial

values will be given by the constant C calculated as:
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C =
time interval length of the set

m

Looking at the daily case with m = 10(minutes) and z = hour, each

hour will be represented by a vector of 60
10 = 6 values, in which each individ-

ual value represents the average of the resource values over the previous 10

minutes. Taking an example with the set i10 the calculated samples shall be:

0 : 00− 0 : 09︸ ︷︷ ︸
sample1

0 : 10− 0 : 19︸ ︷︷ ︸
sample2

0 : 20− 0 : 29︸ ︷︷ ︸
sample3

0 : 30− 0 : 39︸ ︷︷ ︸
sample4

0 : 40− 0 : 49︸ ︷︷ ︸
sample5

0 : 50− 0 : 59︸ ︷︷ ︸
sample6

which can be formalized as:

samplec =
1

n

(c+1)∗n−1∑
i=c∗n

rk,i

where n corresponds to the number of values within the range (for ex-

ample n = 10), k indicates the k − th analyzed resource and c indicates

the sample range. Each measurement within the sets ilj considered can be

represented as a vector of length k ∗ C:

sv = [r0,0 r0,1 . . . r0,C |r1,0 r1,1 . . . r1,C |rk,0 rk,1 . . . rk,C ] (3.2)

where v is the v − th measure of all contained in the set ilj . Through

this reduction in measured values, the number of possible sequences to be

considered as classes for the probabilistic model of the daily case are:

1016∗k ' 1012∗k

which could be a good reduction in measurements, but if the weekly case,

where the value of C = 144, is considered:

101144∗k ' 10288∗k

and it should also be kept in mind that the number of resources for which

behavior will be simulated in this work is k = 3 (CPU, memory and disk),

therefore the precise number of classes will be at present:

1036︸︷︷︸
daily

10864︸ ︷︷ ︸
weekly
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Number Pattern (CPU-Memory) Frequency

1 000000 222222 0.75

2 000000 232222 0.1

3 000000 233222 0.025

4 000001 222222 0.1

5 100000 322222 0.025

Table 3.2: Possible patterns of a web server machine

So the average operation performed on the measured values, helped to

reduce the number of classes, but not enough for the model to be generated.

The quantization process allows to map the percentage values into p possi-

ble values, in order to drastically reduce the possible configurations. This

step limits the noise between the measured values, as the neighboring values

will now be quantified through the same value, defined according to the Q

quantization scheme.

Since the measurements are taken in percentage values in the range

[0 − 100], a quantization of these values is carried out on a scale that can

have a maximum of p = 16 values: by limiting the values to 16 it is possible

to represent a class as a string of k∗C characters, using the hexadecimal rep-

resentation. The quantization step can therefore be seen as a transformation

applied to each measurement that restricts data space:

xi = Q(xi)

with x the i− th measure of the sets expressed as a vector. If considered

p = 10, the number of possible classes, in day analysis, becomes:

10120∗k −−−−−→
average

1012∗k −−−−−−−−→
quantization

106∗k

The instance of a string thus constructed represents therefore the situa-

tion of a certain hour for that particular machine. Ideally, a large number of

identical patterns should be found for each machine, so as to further reduce

the classes considered for the model.

Analyzing the time interval between 09 : 00− 09 : 59 of a VM hosting a

web server, the number of patterns is 5: the frequencies of these are shown

in the Table 3.2 and displayed in the Figure 3.3.
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Figure 3.3: Possible patterns of a web server machine

This case is quite simple, as for each set there are few possible patterns,

of which different patterns are identified that have a much higher probability

than the others. The resulting model, taking direct advantage of the prob-

ability tables obtained, would therefore be quite simple and compressed in

terms of the number of patterns.

In Figure 3.4, the situation is much more complex: as a result of the

quantization step there are numerous possible patterns for each set and all

with similar probability of occurrence. The case shown in Figure 3.4 is very

frequent for machines that carry out a processing process. If the generated

probability tables were used directly, the resulting model would be extremely

wide.

Clustering of Pattern

Analyzing the patterns obtained on some machines of those available, it

can be seen that many of them are similar to each other. In this context,

similarity refers to the fact that comparing two patterns between them, the

i− th value of a pattern differs by one or at most two levels of quantization

compared to the value present in the same i − th position of the second

pattern.

See Table 3.2, the difference that exists between the patterns number 1
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Figure 3.4: Possible patterns of a elaboration machine

and number 2 in the second value referring to memory or the difference

that exists between the patterns number 2 and number 3 in the third value

referring to memory. It is possible to bring one of the two patterns to be

equal to the other by modifying the different value of a single quantization

unit. In addition, all 3 patterns examined, when referring only to the CPU

unit, are identical.

Let’s consider 3 patterns, obtained with the algorithm developed so far,

coming from the same machine that deals with intensive processing, mea-

sured at a time ranging from 00:00 to 00:59 and representatives of the 3 main

resources: CPU, memory and disk.

m1 =

 CPU︷ ︸︸ ︷
111111

Memory︷ ︸︸ ︷
986679

Disk︷ ︸︸ ︷
000000


m2 = [111111 986559 000000]

m3 = [111111 875679 000000]

Patterns can also be seen as matrices, where each row indicates a different
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resource:

m1 =

 CPU

Memory

Disk

 =

 1 1 1 1 1 1

9 8 6 6 7 9

0 0 0 0 0 0

 (3.3)

m2 =

 1 1 1 1 1 1

9 8 6 5 5 9

0 0 0 0 0 0



m3 =

 1 1 1 1 1 1

8 7 5 6 7 9

0 0 0 0 0 0


Calculating the absolute value of the difference between the elements in

the same position, the matrices result:

|m1 −m2| =

 0 0 0 0 0 0

0 0 0 1 2 0

0 0 0 0 0 0



|m1 −m3| =

 0 0 0 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0


These matrices are different but, summing up line by line, in order to

measure how much is similarity of the patterns according to the resource,

we get the same vector:

dp(|m1 −m2|) =
∑
row

|m1 −m2| =

 0

3

0

 (3.4)

dp(|m1 −m3|) =
∑
row

|m1 −m3| =

 0

3

0

 (3.5)

The method of choosing between one of the two pairs depends on which

patterns we consider to be more similar. In this work, those patterns are

combined where the individual components have a small difference between

the values of (i.e. 1 1 1 0 0 0 ) rather than favoring the aggregation of pat-

terns with a few different components but with a greater difference between
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these values of these components (i.e. 0 0 0 1 2 0 ). It was therefore nec-

essary to formulate an aggregation criterion that took these considerations

into account and that, with reference to the previous example, selected as

aggregates the configurations m1 and m2 but not m1 and m3.

Before formulating the Criterion of Clustering (CoC) the following func-

tion was defined:

count(X) =


x1
x2
...

xk

 : xl =
∑
row

{
1 valk,c 6= 0

0 valk,c = 0

which counts the elements different from 0 for each row of a given matrix.

Using this function and the dp vector previously obtained (Eq. 3.4 and Eq.

3.4), we can define the CoC as follows:

CoC(mi,mj) =

{
true count(|mi −mj |) ≥ dp(|mi −mj |)
false else

Taking into account the pairs of patterns seen above:

CoC(m1,m2)

⇓
count(|m1 −m2|) ≥ dp(|m1 −m2|)

⇓ 0

3

0

 ≥
 0

3

0


⇓

TRUE

CoC(m1,m3)

⇓
count(|m1 −m3|) ≥ dp(|m1 −m3|)

⇓ 0

2

0

 ≥
 0

3

0


⇓

FALSE
and then, with this criterion the pair m1 and m2 would be clustered.

When clustering occurs, it must be taken into account that the patterns

that are merged may not have the same probability of being generated.

Therefore, when two patterns are merged, the frequency of the new config-

uration will be given by the sum of the frequencies of the initial patterns.

freqmclustered
= freqm1

+ freqm2

and the new configuration will be calculated by weighing the starting

patterns with weights calculated on the frequencies of the initial patterns:
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mclustered = m1wm1
+m2wm2

with weights given by the formulae:

wm1 =
freqm1

freqmclustered

wm2 =
freqm2

freqmclustered

To provide flexibility for the CoC, a tolerance value (Tol) is introduced

within the formula of the criterion.

CoC(mi,mj) =

{
true count(|mi −mj |) + Tol ≥ dp(|mi −mj |)
false else

where Tol is a vector with k components. The Tol parameter directly af-

fects the generated model, because by increasing the value of the Tol param-

eter patterns, that are actually always more distant are considered similar.

In the daily case, where C = 6 and the quantization intervals are 10 (0 to 9),

the maximum tolerance value is obtained by setting all possible components

of a resource to 9, giving an upper limit for the tolerance of 6 ∗ 9 = 54.

Interrupt Clustering

The second step to perform a clustering is to identify a valid criterion to

stop the operation. This step is extremely important because clustering too

little the resulting model will still be too complex, vice versa the model

obtained will tend to the average value, making the model an unnecessary

approximation of the real trend in the use of machine resources.

It is useful, define a Simulation Error (SE), i.e. the error that occurs by

increasing tolerance and aggregating in the same cluster configurations that

are actually always more distant. Let N, the number of actual measurements

of a certain set of Z associated to period of analysis T. Suppose that a

probabilistic model is already defined where at each pattern is associated a

probability of occurrence (i.e. Table 3.2):

model = {(patt1, freq1); (patt2, freq2); . . . (pattn; freqn)},
n∑

i=1

freqi = 1

N patterns, sampled according to the probabilities in freq, getting a vector

of simulations s. Remember that each element si is a matrix of C columns

and k rows (Eq. 3.3 ):
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s = [s1, s2, . . . , sN ]

Each element of this vector shall be compared with a vector of similar

length containing real quantified measurements. To do this, the following

matrices are created:

S =


s1 s2 s3 . . . sN
s1 s2 s3 . . . sN
...

...
...

. . .
...

s1 s2 s3 . . . sN



R =


r1 r1 r1 . . . r1
r2 r2 r2 . . . r2
...

...
...

. . .
...

rN rN rN . . . rN


and matrix D is calculated as follows:

D = |S −R|

=

∣∣∣∣∣∣∣∣∣


s1 − r1 s2 − r1 s3 − r1 . . . sN − r1
s1 − r2 s2 − r2 s3 − r2 . . . sN − r2

...
...

...
. . .

...

s1 − rN s2 − rN s3 − rN . . . sN − rN


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣


d1,1 d2,1 d3,1 . . . dN,1

d1,2 d2,2 d3,2 . . . dN,2

...
...

...
. . .

...

d1,N d2,N d3,N . . . dN,N


∣∣∣∣∣∣∣∣∣

Each element of di,j of the matrix D is in turn a matrix. To reduce the

SE to a single number, the average of the elements in each di,j matrix is

calculated.

di,j =
1

C ∗ k

k∑
l=1

C∑
c=1

dl,ci,j

Obtaining the D matrix:
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D =


d1,1 d2,1 d3,1 . . . dN,1

d1,2 d2,2 d3,2 . . . dN,2

...
...

...
. . .

...

d1,N d2,N d3,N . . . dN,N


On each element of this matrix the average is calculated as follows, ob-

taining the mean SE:

Mean SE =
1

N2

N∑
i=1

N∑
j=1

di,j

Figure 3.5: Trend of simulation error as tolerance increases

It can be assumed that this error increases as the tolerance increases.

In reality, experiments have shown that this measurement does not follow a

monotonous trend and the error oscillates up to converge when the tolerance

is large enough to make the CoC always true. The simulation error stabilizes

because the upper tolerance limit for that particular set has been reached

(Figure 3.5), and the variance between simulations also stabilizes (Figure

3.6).
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Figure 3.6: Trend of variance as tolerance increases

By progressively increasing the tolerance, the quantities converge until

a single cluster is obtained. Aggregating all patterns into a single pattern,

the model obtained is the average value calculated on all the initial data

patterns (Figure 3.7).

Figure 3.7: Single patterns results in the value model average. In red the

mean value, in black the cluster

From Figure 3.8, on the other hand, we can see that the more the model

tends to the average value, the more the variance increases. This is a direct

consequence of the fact that a model with only one cluster cannot express
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all the variability in the use of a machine’s resources.

Figure 3.8: Error and variance with respect to tolerance

Remembering that the objective is to build a compressed model of the

initial configurations but that it is still fairly faithful to the data, it has

made the choice of the parameter to interrupt the clustering on the vari-

ance. To compress the model, the tolerance is progressively increased until a

single configuration is obtained; the model chosen is the one with the lowest

variance.

Using this compression strategy results in a much smaller number of

configurations per machine than those obtained after the quantization step

alone, see Table 3.3.
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Machine A B C

SiiMobility-Master500-72 40.88 19.67 10

SiiMobility-Node200(1)-70 40.83 20.77 10.04

SiiMobility-Node200(1c-esx4)-92 40.79 11.50 10.75

SiiMobility-Node200(2)-69 40.75 5.92 4.83

SiiMobility-Node200(6)-42 40.79 3.7 3.63

SiiMobility2-Mobility7-205 40.71 1 1

disit.org-db-running 40.75 1.08 1.08

ebos0-eclap-bo-scheduler 40.92 1 1

Table 3.3: In column (A) the number of average clusters per group. In

column (B) the number of average clusters per assembly when tolerance is

set to zero. In column (C) the number of average clusters per group when

tolerance is set using the minimum variance criterion.

Generation of workloads

At the end of the clustering procedure, for each machine there is a probability

model for each possible time interval (similiar to Table 3.2). Considering the

definitions in Eq. 3.1 and indicating with M t
i the resource model for the

machine i with respect to the t ∈ T interval, this can be represented as a set

of probability model, each one related to a time range z ∈ Z:

M t
i = {model1,model2, . . . ,modelD}

where each model can be represented as:

modelj = {(c1, f1), (c2, f2), . . . , (cp, fp)} ∀j ∈ 1, . . . , D

where variable p indicates the number of possible patterns identified for

that interval and depends directly on the number of clusters obtained. The

variable ci represents instead a vector such as that of Eq. 3.2: the values

will now be represented by quantized levels, according to the results of the

clustering process. From the models thus constructed it is possible to gen-

erate workloads by sampling l values from each time interval according to

the probabilities f of each tuple and chain the values obtained to obtain a

workload along l.

With this mechanism it is possible to generate an arbitrary number of

workloads to be assigned to as many virtual machines. The workloads as-
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Figure 3.9: Simulated daily workload for memory and CPU of a single VM

signed to each machine will determine, at the time of allocation, the demand

for resources for that specific machine in a given time interval (Figure 3.9).
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3.3 Virtual Machine Allocation

The problem of allocating VMs within the hosts is resolved by considering

CPU and memory resources and generalizing the problem as a Vector Bin

Packing Problem (Section 2.2). The VM allocation algorithm expects to

receive a set of n VMs and m Hosts. Each VM has associated a workload

for all the resources considered.

The workload of the resources can be represented through a matrix

mi,j =

[
rCPU,1 rCPU,2 rCPU,3 . . . rCPU,L

rMem,1 rMem,2 rMem,3 . . . rMem,L

]
in which the values are found on each row, instant by instant, for a certain

resource. This matrix will consist of two lines and L = C×(#in time

intervals to be generated) columns. The elements refer to quantized values,

so they contain integers numbered from 0 to #QuantizationLevels − 1.

These values must be scaled to percentages and then used in conjunction

with the maximum values of the machine’s available resources. A fixed static

value or random value can be added to the scaled values as follows:

mscaled
i,j = mi,j ×#QuantizationLevels+


Q
2

random(0, Q)

where:

Q =
100

#QuantizationLevels

Based on the resource considered, the percentage values thus obtained

are multiplied by the available capacity for that resource in the VM whose

workload is to be generated:

CPUscaled = mscaled
CPU,j ×#CPU × CPU Speed

Memoryscaled = mscaled
Mem,j ×AvailableMemory

The allocation process must check whether the number of hosts can at

least guarantee the reserved resources for each machine. If this were not the

case, the constraints on the SLAs would certainly be breached, since they do

not have the minimum resources required and guaranteed in the contract.



3.3 Virtual Machine Allocation 63

The total CPU and memory resources available within each Host, on

which the allocation is made, are indicated in MHz and GB respectively.

Having re-scaled the use of VM resources compared to the original units of

measurement now ensures that they can be normalized with respect to the

total resources of the Host considered.

Virtualization management software also requires resources. An adequate

amount of CPU and memory must be reserved for the hypervisor to run

smoothly. Reserving few resources for the hypervisor causes slowdowns and

all those problems of overprovisioning (Section 2.2.3. In order to carry out

the allocation taking into account overprovisioning, the following parameters

must be provided:

Max Risk (H) Maximum risk for the host, determines, as a percentage,

the maximum resources to be used during machine placement. Setting

a negative value for the parameter will lower the threshold of resources

available for host allocation to ensure greater resistance to the varia-

tions from the expected workload. In this case, the over-provisioning

window is still lower than the limit of the resources reserved to the host,

so even if you stay within this window the virtual machines would not

be slowed down (Figure 3.10). If the risk is assigned a positive value,

the resulting compaction will generally be greater, as the space avail-

able on the machine increases. However, the risk of slowing down also

increases, as the over-provisioning window is now overlapping resources

reserved for the host (Figure 3.11).

Max Over Time (H) Maximum over-provisioning time, indicates the max-

imum time, during allocation, the resource workload can be found in

the overprovisioning zone. The value is expressed as a percentage of

the maximum allocation time. Note that setting a negative risk can be

used to allocate the machines to balance the load rather than trying

to optimize as few hosts as possible to solve the allocation problem.
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Figure 3.10: Setting a negative risk value ensures better noise resistance

for machines. This approach can be used to ensure high responsiveness of

applications.

Figure 3.11: By setting a positive value for the risk, compaction increases,

but the machine becomes more susceptible to delays caused by changes in

the workload not foreseen during allocation.



Chapter 4

Icaro Project

This chapter gives a brief overview of the iCaro project describ-

ing its architecture and main components that are used by the

simulator or pattern generation framework.

4.1 Introduction

The complexity of Cloud infrastructures is increasing every year, requiring

new concepts and tools to face off topics such as process configuration and

reconfiguration, automatic scaling, elastic computing and healthiness con-

trol [29]. Market analyzes show that Italian SMEs base their business on

non-cloud services hosted on their local servers that are badly adapted to

business evolution. They need to invest heavily in infrastructure and / or

re-engineering processes and management software and SMEs can not han-

dle this. Cloud can be a benefit for SMEs if it provides the BPaaS, cutting

management costs, giving flexibility, favoring and accelerating business pro-

cesses.

To encourage the adoption of cloud solutions for SMEs, the University

of Florence (as DISIT Lab) has developed, in collaboration with several

commercial parties, the iCaro platform.

The main objective of the iCaro project is to provide SMEs with a range

of intelligent tools that can be adapted to existing cloud solutions and en-

vironments to provide greater flexibility to all possible configurations of the

cloud environment itself. To mitigate all issues related to maintenance, con-

figuration and management of infrastructure in typical cloud (IaaS, PaaS

65
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and SaaS) solutions or non-cloud solutions, the iCaro project seeks to en-

close them in a single BPaaS solution, ensuring that SMEs focus on their

core business.

4.2 Architecture

The proposed iCaro Cloud Simulator (ICLOS) (Chpater 5) is integrated

in the context of the iCaro Cloud platform for Smart Cloud management

[29]. In this Section, an overview of the iCaro architecture is reported to

highlight the relationships of ICLOS with other components. The iCaro

Cloud architecture is reported in Figure 4.1 and includes six main areas:

Cloud under management on the left side the real cloud under manage-

ment (including one or more datacenters) is depicted with its layers:

IaaS, SaaS and PaaS. In pure simulation cases this part can be missing.

Cloud administration area including one or more commercial or open

source Cloud Configuration Managers (CCMs) any kind of cloud bro-

kers as those mentioned above, and Orchestrators (e.g., VCO of VMware,

Microsoft cloud solution). In pure simulation cases this part can be

missing.

Supervisor and Monitor (SM) collects monitoring data from real cloud

resources, produces monitoring graphs and charts on demand, etc.

Classical data are collected at level of IaaS (e.g., CPU, Memory, stor-

age, network), at level of PaaS (e.g., operating system status), and

SaaS (e.g., applicative metrics such as: number of users, number of

accesses, number of deploy/download, etc.).

Knowledge Base (KB) can be invoked by any CCM or by the Orches-

trator. The KB models the cloud knowledge in terms of structures,

business configurations, SLA, resources, and corresponding actual val-

ues coming from the SM. KB also manages the monitoring tools per-

forming the automated configuration of monitoring issues related to

the new resources configured by the CCM. The KB may model real as

well simulated cloud configurations, datacenters and conditions. The

use of a KB makes easier interoperability among public and private

clouds, and/or among different cloud segments managed by different

cloud orchestrators or CCM;
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Figure 4.1: iCaro cloud architecture with cloud simulator

Smart Cloud Engine (SCE) exploits the Knowledge Base (KB) where

the cloud under control, and the simulated clouds are modeled. The

SCE allows the execution of making decision processes on a distributed

and parallel architecture to assess cloud healthiness and reconfiguration

strategies [29]

ICLOS simulates cloud conditions hourly, daily, weekly and yearly, taking

into account real resource consumption and workload patterns and

exploiting complex business configuration modeled into the KB.

4.3 Icaro Knowledge Base

The cloud Knowledge Base, KB, stores the general cloud configuration and

the status of the cloud under control (as well as of simulated cloud configura-

tions or mixt simulated over a basis of real conditions). The collected model

includes services ranging from the data center infrastructure to SW appli-

cation structure, as well as the applicative metrics definitions and values,

referred to BC and SLA. A review on knowledge base usage in the context

of cloud can be recovered in [28]. The variety of modeled resources in iCaro

KB is higher if compared with the models adopted in the above mentioned
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simulators. In ICLOS, the KB is adopted for modeling configuration, taking

decision by comparing possible configurations with actions, and it is the very

basis of any simulation. Therefore, the KB models: datacenters, hosts (i.e.,

HW servers), VMs, networks, net devices, SLAs, metrics, users, SW appli-

cations, operating systems, etc., and their generic and specific relationships

such as: is-a (specialization), needs, hasPart, isPartOf, has SLA, hasNet-

workAdapter, isTenantOf, etc. (see Figure 4.2). The model also allows to

represent clusters as specific Business Configurations, racks as specific data

centers elements, etc. The usage of a KB enables the reasoning on cloud

structures and resources by inference on the basis of the specialization (is-

a), aggregation, equivalence, subclassing, etc., relationships. On this basis,

the KB helps to implement SCE strategies and simulations [29], allows for-

mal verification and validation of resource cloud configuration, discovering

and brokering services and resources, reasoning about cloud security, com-

puting capability for horizontal or vertical scaling, thus elastic computing.

The KB models and stores, not only the structure of cloud components (in-

frastructure, applications, and configurations), but also the values of metrics

belonging to components and their temporal trends (collected by the mon-

itoring tools with the needed sub-sampling) to be able to answer questions

such as “Which host machines can allocate a new VM ?”or “Has the host

machine H7897 been over used in the last week?”, “Which VM is using most

resources in the Host ?”. However storing the full history of all metric values

on the KB can be too expensive and unnecessary. Only high level metrics

values are stored on the KB, while the low level metrics are stored in the

monitoring service. The KB is feed by the SM with data regarding the mon-

itored cloud resources (such action is based on NAGIOS monitoring tool).

The KB may refer to multiple Nagios installations collecting data from differ-

ent data centers or segments of data centers. KB stores both the application

as a type and the application instances, and the latter can have specific con-

straints like the number of involved services (e.g., number of front-end web

servers). Therefore, to avoid duplicating type/ instance relation (modeled

in RDF) and to leverage on the modeling features available in OWL2 to ex-

press constraints (e.g., max/min cardinality) it has been decided to represent

the application model as an OWL Class. Another need is the possibility to

aggregate different applications, servers, VMs to build a complete BC (e.g.,

an ERP with a CRM) and also to model applications tenants to be able to

put application tenants in BCs. The KB has to contain the SLAs associated
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with application or application tenants or with a whole business configura-

tion. The SLA has been modeled as a set of Boolean expressions relating

high level metrics values belonging to a component with a reference value.

KB Services are provided as REST APIs for accessing, configuring, mod-

eling, loading SLA, and manipulating any cloud element and metric value on

an RDF Store (currently an OWLIM-SE instance). When a complex datum

(e.g., a complex multitier business configuration) is provided to be stored on

the KB via a RDF-XML description, it is first validated against complete-

ness and consistency and then stored into the KB modeling the cloud. The

KB provides a SPARQL endpoint allowing posing semantic queries for:

� the SCE assessment of the cloud element healthiness,

� the SCE decision criteria,

� the verification and validation of consistency and completeness of BC/SLA,

� any loading, storing and accessing the simulations, etc.

Every time the KB is configured with a new resource to be monitored

(a new host, VM, service, connection, etc.), it automatically sends a corre-

sponding command to the SM to set up the specific monitoring processes to

enable any services and resources control (see Figure 4.3 ). Moreover, in or-

der to make the formalization of semantic queries easier, a suitable graphical

user interface based on Linked Open Graph has been used to access the KB

and browse the semantic model [31]. An instance of the iCaro KB applied

to the DISIT data center can be accessed by the Linked Open Graph tool

on the real time RDF store of the iCaro cloud tools at http://log.disit.org.

4.4 Supervisor & Monitor

The SM is a cloud monitoring engine. It collects data from cloud resources,

stores them for historical reasons, provides relevant data to the KB, and pro-

duces monitoring graphs and charts. For the low level monitoring, the SM

specifically uses drivers to manage multiple Nagios instances (not discussed

in this article). The SM collects monitored values from the cloud IaaS, PaaS

and SaaS levels and high level metrics, HLM. The SLAs are typically based

on HLM such as: the number of users registered on a social network, the

number of downloads, the average number of connections, etc. All the col-

lected data are stored in RRD (round-robin database) format. In this case,
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Figure 4.3: ICARO supervisor and monitor
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Nagios has been chosen but a different low level monitoring tool could be

used, too. The approach of delegating the monitoring processes configura-

tion to the KB (see Figure 4.3 ) makes the work of the Orchestrator simpler,

since each monitoring issue does not need to be programmed into the deploy

workflow, thus reducing the error prone process, the distribution of pass-

words, etc. Besides, it allows to be sure that the SCE automatically adds all

the monitoring processes allowing the SCE to have all the needed informa-

tion to control the active BCs and SLAs. The SM is therefore automatically

managed and configured by the KB. For all the collected data, the SM pro-

vides graphics and charts on demand to CCM (to be shown to customers),

as well as to the user interface of the ICLOS.

4.5 Smart Cloud Engine

The SCE is an autonomous engine for the supervised control of cloud re-

sources, for the automation and optimization of cloud services [29]. The

SCE periodically checks the status of cloud resources in the cloud infrastruc-

ture (e.g., VM and application services) for each Business Configuration, BC,

on the basis of the SLA. To this end, the SCE poses SPARQL queries to the

KB modeling real or simulated clouds against additional rules with respect

to those imposed in simulation. It can pose queries not only on the KB, but

also on any other external database. The KB has the detailed model of the

cloud since any new resource allocated on the cloud is registered into the KB

by the cloud administration tools. The SCE executes a set of decision rules

associated with cloud resources (e.g., Host, VM, services, switch, etc.) and

SLA/BC. Each decision rule is typically composed by:

An assessment condition , when true it activates the actions. The as-

sessment condition estimates the resource healthiness, verifies the con-

tractual conditions of the SLA, etc. For example, if a BC is getting

low in resources, according to the SLA a scale out strategy is planned.

One or more actions corresponding to the activation of strategies and

procedures, for example for: scaling, reconfiguration, migration, cloning,

balancing, etc. Actions can be configured to invoke remote calls (REST

or WS or local calls) towards the CCM or the Orchestrator or other

Thus, thousands and thousands of SCE processes are executed per day,

on a distributed scheduler. With the aim of detecting critical conditions
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and taking decisions in real time, the SCE provides a distributed scheduler

engine with cluster functionality allowing adding new scheduling nodes and

defining jobs, for smart cloud management, without service downtime. The

SCE can take decision about the cloud reconfiguration, address aspects of

energy consumption, capacity planning, etc., with the aim of maintaining a

high quality service according to the SLA, and to the general objectives of

the cloud service provider in terms of energy, costs, etc. Thus the SCE can

activate reconfigurations, in/out scaling, load balancing, moving, cloning,

etc. The SCE presents a graphic user interface which includes: process

definition and monitoring, decision configuration, connection to actions, etc.
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Chapter 5

Icaro Cloud Simulator - ICLOS

This chapter discusses the functionality of Icaro Cloud Simula-

tor. The first part describes the requirements that it must have

to simulate scenarios that cannot be simulated with the other

simulators already present in the literature. The internal and

external architecture is then shown with the links between the

simulator and other iCaro project tools, in particular the KB and

the SM. Finally, it is described how workloads are realized start-

ing from the patterns generated in Chapter 3 and the results of

experiments carried out on the simulation and on the allocation

of virtual machines are reported, as the latter grow.

5.1 Requirements

Real multimedia services, social networks, large web sites with Content De-

livery Network (CDN), crowdsourcing solutions, and smart city solutions,

typically they need to manage:

� Complex BCs as multitier architecture including several VMs, services,

networks, services, processes;

� Real resource consumption patterns that may provide non-periodic be-

havior, as well as overlapped with periodic behavior at level of: hour,

day, week, month and/or year. These factors can be due to the al-

ternation of working hours, vacations, business orientation, seasonal

commercial factors, and to possible unexpected events, like the arrival

75



76 Icaro Cloud Simulator - ICLOS

of a storm, etc. The trends about resource consumption for CPU,

memory, storage, network, etc. are related one another, and thus the

real BC profiling has to be considered in terms of related patterns;

� Simulation for longer time windows by using workload partners describ-

ing days, weeks, months. Longer periods can be produce by replicating,

while the modeling of long duration workload pattern strongly increase

the simulation complexity;

� Simulation of multiple objectives, for example, the energy consumption

on viable cloud allocations;

� Articulated SLA to avoid violation of SLA and to control major cost

parameters, taking decision, informing the customer and administra-

tors, etc., mainly connected to the Smart Cloud, SCE, features;

� Strategies activating elastic configuration processes for scaling on the

front end, scaling on the database, scaling on the content ingestion of

user generated content, scaling for computing suggestions, etc., also

connected to the Smart Cloud, SCE, features;

For the most part such aspects are not addressed in a satisfactory manner

by the simulators at the state of the art, see Chapter 2. The main goal of

the ICLOS is to simulate the workload and cloud model in general and save

them along days, weeks, months, etc. in the SM and KM. This allows to:

1. model and simulate larger cloud and more complex configurations,

2. activate the SCE rules for further analysis.

5.2 General Architecture

Figure 4.1 has presented the general architecture of the ICLOS. As depicted

in Figure 5.1 the ICLOS consists of a number of subsystems. SM and the KB

subsystems have been described respectively in Section 4.4 and in Section

4.3 with the aim of presenting their role for the general cloud management

level.

The elements of the ICLOS solution are described as follows:

Simulator GUI is the user interface of the ICLOS to:



5.2 General Architecture 77

Figure 5.1: ICLOS architecture.

1. set up a new configuration to be simulated,

2. impose the configuration data,

3. obtain the simulation results in terms of resource consumption

graphs and general assessment results.

Simulation Configuration GUI is a specific user interface to configure

parameters of the resources involved into the configuration to be sim-

ulated. A configuration to be simulated is produced and stored into

the KB by sending an XML file. The ICLOS starts from the KB to

perform the simulation, and produces the result corresponding to the

allocated resources into the Simulated Cloud Traces saved into RRD

format.

Pattern Generator a set of tools to estimate patterns for resource work-
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load, always considering the related CPU, memory, network, storage,

etc. along days, hours, week, months, etc., of different VM, hosts and

services of a BC (see Chapter 3).

ICLOS Resource Allocator on the basis of the configuration of resources

it allows to allocate them into the cloud simulator memory.

Resource Group Controller it allows the management of the allocated

resources addressing events and harmonizing the math models for com-

putation.

Cloud Resources a collection of allocated resources according to the pro-

duced configuration. It may take into account multiple and incremental

configurations. The resources that can be allocated in the simulator are

in principle the ones being modeled by the KB (see Figure 4.2 ), while

in reality only some of them are allocated and deployed as described

hereafter.

Simulator Engine the simulation model can progress in estimating the

output workload synchronously among all resources, time instant by

time instant (deep mode), or it can compute the results on the basis

of workload patterns associated to resources in the configuration phase

and taken from the Model Cloud Data Traces in RRD format; thus,

resulting in a faster simulation (Fast mode). The simulated values are

the same requested by the simulator during the configuration and co-

herently defined by the SLA for each BC. The results of the simulation

is again generated in the RRD format, thus allowing the visualization

of results on SM and any further reuse in more complex simulations.

The ICLOS has been designed to model into the simulation the main KB

classes and structures. In Figure 5.2, the main classes modeling layers IaaS,

PaaS and SaaS aspects, the SLA and the group controllers are reported.

According to the design pattern of Model View Control, a number of classes

have been developed (not reported in Figure 5.2). They allow to view and

model the inputting of data for each of the addressed cloud resources. On

the other hand, their purpose is limited to the production of the XML file to

feed the KB. The main goal of the ICLOS is to simulate the workload and

cloud model in general and save them along days, weeks, months, etc. in the

SM and KM. This allows to:
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1. model and simulate larger cloud and more complex configurations,

2. activate the SCE rules for further analysis

5.3 Cloud workload

The problem of pattern production for cloud simulation has been addressed

by Google Cloud Backend which performs a characterization according to

their duration, CPU and memory requirements [67] The analysis of the data

collected by the Performance Monitor may be used to perform a workload

classification [96] [15]. Such workload patterns are exploited in cloud simu-

lation in the ICLOS solution. In reality, the mere statistical characterization

of VM or hosts on the basis of CPU and Memory workload is not enough

to cope with complex BCs. The exploitation of SCE and Cloud Simulation

based on real workload patterns derived from the monitoring log of the SM

can be the path to setup a smarter cloud management engine [62].

The Pattern Generator (Chapter 3) perform a clustering analysis to iden-

tify the most probable workload patterns from real resource consumption

trend of classical cloud resources and/or high level metrics such as: CPU,

memory, network, storage, user activity, disk usage, etc. These trends can be

computed per hour, day, week, month, etc., from real BCs including hosts,

VM and services of a BC. The exploitation of SCE and Cloud Simulation

based on real workload patterns derived from the monitoring log of the SM

can be the path to setup a smarter cloud management engine [62].

The Pattern Generator tools exploit Real Cloud Data Traces in RRD for-

mat collected from Nagios/SM on the real cloud to perform cluster analysis

and produce the most likely family of patterns for a given BC to be used

into the ICLOS simulation phases. The family of patterns of each single

BCs are coherently selected (associating coherent values among resources,

avoiding of making simulations with CPU workload unrealistic with respect

to the memory usage or disk access). Moreover, they are randomly selected

among the most probable patterns (see Figure 5.3) to create the simulation

workload. In addition, the same pattern is normalized and used to create

different kinds of workloads, for example with 10%, 30%, 60%, 90% of load,

and/or adding some random changes of limited value.
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Figure 5.3: Example of three patterns created by Pattern Generator
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5.4 Experimental results in simulating

In [119], the simulation of 1000 Hosts with 4 VM each, for a total of 40,000

VMs, the energy consumption model only, was performed in 3597s on an Intel

Core i7 930 processor and 6GB of RAM. The estimation has been assessed by

performing 5 repetitions and the simulations were done along 10 days, with

a single data value every 10 min. The power consumption model has been

modeled by using SPECpower benchmark [10]. For comparison purposes, a

similar simulation has been performed with ICLOS. Thus, taking 1000 Hosts

with 4 VM each, a total of 40,000 VMs has been simulated by computing

the energy consumption model SPECpower benchmark [10] and using input

values every 5 min, while generating output simulated values every 5 min.

The simulation has been performed 5 times on Debian 64 bit, 6 Gbyte of

memory, CPU 4 core, 2000Mhz, obtaining average time of 1985 s and a

Std.Dev.=245.89. As a result, the ICLOS and DC simulators are comparable

in terms of execution time. The simulation time cannot be easily compared

with other simulators since in the case of ICLOS the simulations address

longer time windows, and longer time lead also to spend more time in saving

the output data resulting from the simulation of all the VM and Hosts on

the hard-disk, with a sample every 5 min. Figure 5.4 reports the ICLOS

simulation directly monitored into the SM tool which exploited NAGIOS

libraries to access and render the RRD storages.

Moreover, Table 5.1 reports details of a number of simulations / config-

urations by considering: VM ranging from 1 to 3000, each of them with:

CPU clocks per second equal to 2000 MHz, reserved CPU clocks per second

equal to 800 MHz; RAM memory of 3 GB, reservation memory space of 1

GB; Hosts (cases 1 and 2) ranging from 1 to 10 (each of them with: 32 cores,

2500 MHz per core and 128 GB Ram); Hosts in cases 3 and 4 have been

scaled up consequently. In ICLOS, the costs of Host computing simulation

is included into the VM model, so that the simulation time and storage is

linear with the number of VMs. The ICLOS simulations have been per-

formed by using workload patterns of 1 week forward for resources (CPU,

memory and disk) from the RRD of the SM with a measure every 5 min,

thus simulating a whole week for the VM and hosts.

Therefore, the input workload patterns have a value every 5 min and

they can be specifically assigned or randomly selected from a set of real pat-

terns taken from ECLAP social network, Sii-Mobility smart city aggregator

tools, etc. from the DISIT data center in XML format coming from RRD of
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Figure 5.4: ICLOS simulation results on SM.

SM. Please note that the simulation of 1 week for 3000 VM/Hosts has been

performed in about 80 min on a single server. The computing time can be al-

located on multiple servers hosting the simulators, taking different segments

of the cloud on KB to be simulated; since all computations are independent

and produce results directly on the ICARO RRD/XML of the SM (the SM

provides high level results to KB). Please note that, the registered numbers

from simulations as reported in Table 5.1 have been obtained as mean value

taken from 20 simulations with the same parameters. The simulations have

been executed on a Debian 64 bit, 6 GB of memory, CPU 4 core, 2000 Mhz.

ICARO Simulator has been developed in Java and runs on Tomcat. The

Mean Total Time refers to the time needed to execute the whole simula-

tion including the reading of the patterns (CPU, memory, storage) for the

whole VM, the computation of the VM and Host load and any saving of

the resulting data on SM in RRD format in a remote HD. The Avg total

time/#VM grows marginally passing from 300 to 3000 VMs (at 1.60 s) with

an increment of the 13% of the mean computational and saving cost per VM.
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Parameters Case 1 Case 2 Case 3 Case 4

# Host 1 10 1 1

# VM per Host 30 30 300 3000

Total number of VM 30 300 300 3000

Memory measures Case 1 Case 2 Case 3 Case 4

MB used for data output (.RRD) 36.1 361.2 350.7 3503

Avg MB used for data output 1.20 1.20 1.17 1.17

Measured times and pc metrics Case 1 Case 2 Case 3 Case 4

Mean Total Time, in s 38 385 422 4798

Std Dev in Mean Total Time, in s 1.32 16.85 19.12 228.47

Avg total time/#VM 1.25 1.28 1.40 1.60

Mean Time Simulation, in s 10 93 90 1061

Avg Time Simulation/#VM 0.330 0.311 0.301 0.298

Mean Time Save RRD on SM, in s 27 289 331 3723

Avg Time Save RRD on SM, in s 0.900 0.963 1.103 1.241

Table 5.1: ICLOS Simulations for power consumption assessment

This increment is mainly due to the cost of writing and sending the RRD of

VM into the store of the SM (see Figure 5.4). The computational time to

simulate the 10 Hosts with 30VMs for week (CPU, mem. and storage) is of

about 93 s. On the other hand, the Mean Total Time reported in Table 5.1

also includes for each VM the access on HD to take the pattern, the XML

parsing, the computation of simulation and the writing of the RRD/XML

with the simulation. Provided that the simulation time is quite constant,

it is almost useless to perform simulations with higher number of VM and

Hosts, with a needed storage of about 1.2Mbyte of HD per each VM for a

week. Each Host simulation is performed autonomously and thus also the

RAM memory used by the simulator is almost constant, keeping its values

under 120 Mbyte in all cases.

5.5 Experimental results in VMs allocation

The first case is reported in Table 5.2, where different BPAs have been used

in order to identify the most probable number of hosts needed to allocate a

number of VM (from 500 to 4000 including BCs).
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Algorithms
Execution

time (sec)

Host

Number

Execution

time (sec)

Host

Number

Number of VM 494 998

Dot Product 49.36 37 169.89 75

L2 Norm 43.62 38 163.88 77

FFD Sum 2.95 37 14.84 75

FFD Prod 5.77 38 14.06 75

Number of VM 2000 4000

Dot Product 708.64 150 3169.60 300

L2 Norm 739.93 153 3457.49 305

FFD Sum 59.09 150 266.38 300

FFD Prod 47.96 150 231.36 300

Table 5.2: ICLOS simulations for allocation by using different algorithms.

The execution time refers to 20 executions of the allocation algorithm in

simulation. The host number refers to the most probable number of hosts

identified among the set of 20 simulations; in most cases, this number is the

minimum number of hosts according to the goals of the adopted Bin Packing

Algorithm (BPA).
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By combining the patterns available in different reports, it was possible

to develop mixed test cases to simulate more complex BCs. To maintain

consistent BCs it is necessary to assign patterns to VMs respecting the mod-

ularity of applications: if a test case consists of four machines, so the number

of VMs that can be used to simulate the allocation on a data center will nec-

essarily have to be a multiple of four. If this were not so, test cases would be

used that do not actually correspond to real applications but only to parts

of them.

The BPAs try to compose the VM while respecting the possible configu-

rations and composing the resources patterns, so as to always keep in mind

the limits of the host capacity (Section 3.3). The algorithms selected have

been already adopted for cloud resource allocation [101], and in particular

the FFD by sum and by product weight, the Dot product, and the L2

Norm (For details see Section 2.2 of this work). When the patterns are com-

plex, the Bin Packing goal is to find the compromise from the most probable

number of minimum host for allocating a number of VMs belonging to a

set of different BCs. The simulations have been performed using generated

patterns from real cases and simulating one working day. As to the obtained

data, it can be remarked that the FFD Prod algorithm provides good results

with shorter execution time in almost all cases. The execution times have

been estimated on a 24 CPU core host at 3.0 GHz with 64 GB of RAM on

20 simulations.

On the other hand, in most cases, 10 simulations could be enough to

estimate the configurations to obtain the most probable number of needed

hosts, as reported in Table 5.2. The patterns where referred to a distribution

of 4 different BCs: a 4 tier architecture for data warehouse (5 VM as a

balancer, 2 web server, one database and 6 computational nodes); a three

tier solution of small social network, a simple two tier solution for a web

server application, and a single tier solution with a web application. The

simulations have been addressed starting from their real workload patterns

and producing clusters simulation patterns for a 1 whole day of 24 h.

A second simulation experiment shows the execution time for VM alloca-

tion from 500 to 64000 VMs. The simulations have been addressed with the

above described BC workload patterns for a day. Figure 5.5(a) reports the

trends of the execution time in seconds, with respect to the number of VMs

and the identified most probable number of hosts. Figure 5.5 (b) describes

the execution time in seconds for simulating a VM and a Host respectively.
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(a)

(b)

Figure 5.5: Simulations for allocating VMs by using FFD Prod algorithm

from 500 to 64000 VMs: (a) trend of execution time and number of VMs

and Hosts (20 simulations), (b) estimation of the executing time cost with

respect to the number of VMs and Hosts.
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Figure 5.6: Simulations for allocating VM by using FFD Prod algorithm

from 500 to 2000 VMs, workload patterns for 1 month according to the

described mix of BC, 10 simulations for each estimation

In both cases, simulations with more than 32000 VMs tend to stabilize the

execution time per VM and per Host.

In Figure 5.6, the trends of simulation execution time are reported for

the case of workload of 1 month, for the same complex BC described in the

first case of this section. The simulations have been addressed with complex

workload patterns of 1 month according to the mixt of BCs described above.

A huge complexity is added when long time durations are taken into account.

In fact, the case of 2000 VMs for a day produced results of packing all into

150 hosts, while in this case of 1 month, the packing leads to 839 hosts, thus

taking into account critical longer period behaviors for the VMs. In terms

of execution time for the 2000 VMs, for a day costs 47 s (see Table 5.2),

while for the case of 1 month pattern the averaged execution time for 20

simulations 2753.6 s that leads to about 91.8 s per day per simulation.
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Chapter 6

Smart City

In this chapter a brief overview is given on the Smart City con-

cept, highlighting the challenges related to this idea and how

these problems have been solved with the development of the

Km4city framework for the aggregation of static and dynamic

data and the creation of the Sii-Mobility architecture to make

these data easily usable by those who are interested in having

them, be they citizens or SMEs.

6.1 Concept

Open data as static data are not the main source of information in the city,

neither the most valuable for the city users (citizens, tourists, commuters,

operators, students, etc.). Most of the big data problems connected to smart

city platforms are related to real time data as the public transports, vehicle

and human mobility in city, events, parking, weather, wind, etc. A smart

city architecture should be capable to take advantage of huge amount of

big data coming from several domains, at different velocity for exploiting

and analyzing them for computing integrated and multidomain information,

making predictions, detecting anomalies for early warning and for producing

suggestions and recommendations to city users and operators [23].

In the last years, many architectural solutions have been proposed with

the aim of making data accessible, aggregated, usable, and exploitable, etc.

[17], [55], [51], [47], and many of them failed in posing the basis for creating

a smart city open environment for new and smart applications.
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The major companies are proposing solutions to make city smarter, fo-

cusing on specific set of domains, such as IBM [4], [5] on services for citizens,

business, transport, communication, water and energy; [89] on governmen-

tal, educational, e-health, safety, energy, transport and utilities; CISCO on

people, things and data [1], etc. Most of these solutions present a multi-tier

architecture ranging from 3 to 6 layers [17].

On the other hand, the number of tiers is partially relevant to the trans-

formation of data in value for business, and thus to services for the city

users, and in opportunities for the enterprises and city operators interested

in creating innovative and effective services, while exploiting city data and

information [55], [51], [47]. Also, the smart city ranking models are not suit-

able in putting in evidence these aspects, since they are mainly focused on

counting the number of provided open datasets, smart services, solutions, or

energy results [109], [70] [19].

In most cases, the effectiveness of a data service system for Smart City

is enabled by the availability of private data owned and managed by City

Operators addressing specific domains: mobility operator, energy providers,

business services (health, water), telecom operators, tourist operators, uni-

versity, etc. They are the city stakeholders providing data and services with

different granularities and size. For example, in the city, we can have few en-

ergy operators with capillary house distribution, many public transport op-

erators with thousands of vehicles/busses, some telecom operators deploying

in the city from tens to hundred thousands or millions of sensors [22].

The data values (actual, predicted and/or detected) can be delivered to

different operators and city users by some personal assistants on the basis

of the user profile and role. For example, in order to provide information

about what is or what would be around a current GPS position, the integra-

tion of geographic information and services is needed; while the integration

of geolocalized services and the assessment of typical people flows may help

the city in improving public services and transport, providing suggestions to

the city users, and planning changes in the city [44]. For example, in [125]

a solution for estimating the crowd density has been proposed exploiting

mobile phones and Bluetooth; while in [95] a solution for monitoring people

and vehicles in the city by exploiting multiple data sources has been pro-

posed. In [91], [66], solutions based on Bluetooth server have been proposed

for estimating the travel time. Thus, aggregated data can be exploited to

implement a large number of services and applications by structuring the
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Smart City Architecture and the corresponding Smart City APIs [19].

Despite of the above described large offer of different kinds and corre-

sponding effort on creating smart city architecture and solutions, nothing

has been done on making simple the creation of mobile and web Applica-

tions. The smart city developers, typically SME, researchers, students, and

operators, still have to develop their applications by studying in deep the

Smart City API, recovering the data models, reconciliating and aggregating

data (to be repeated at each changing of the data model), creating applica-

tions exploiting low level Web Service and/or REST Call without the support

of development tools for Apps [89], [4], [17], [2].

On the other hand, the world of mobile and web Apps is changing, the

Apps are becoming more and more dynamic, pushing on HTML5 and on

instant App, as the Android Instant Apps to run them without installation,

and thus to use them at run time. This approach will create the need to

a continuous renovation of Apps and the reduction of fidelized users. In

conclusion, the production of web and mobile App has to be faster and cost

effective [23].

In this research work, an innovative tool for smart city web and mobile

Apps development is generated (see Chapter 7): it contains a set of open

source Apps for shortening the development (e.g., starting from scratch on

new kind of Apps, as well as developing modules that can be loaded dynam-

ically from a an already published App) [79].

The proposed development tool is based on Smart City API described in

[22] which in turn are based on Km4City ontology [26] and RDF storage. The

proposed development tools have been developed realized in the context of

Sii-Mobility Smart City national project on mobility and transport of Italian

Ministry of Industry and Research, and presently also used as development

tool and model in REPLICATE H2020, and RESOLUTE H2020 projects of

the European Commission.

6.2 Knowledge Model 4 City - Km4City

Km4City provides a unique point of access for interoperable data of a city

metropolitan area via web and mobile applications. Km4City provides a set

of scalable and efficient tools fro data ingestion, management, aggregation,

indexing and for producing in short time web and mobile applications have

been realized and make accessible. Km4City is a comprehensive and open



94 Smart City

Figure 6.1: Ontology macro-classes and their connections

ontology for smart cities covering domains of: weather, cultural heritage,

smart sensors, public structures, mobility, city parking, services, transporta-

tion, events, geographic locations, health, etc. [20].

In order to create a knowledge model for Smart City services, a large

number of data sets have been analyzed to see in detail each single data

elements of each single data set with the aim of modeling and establishing

the needed relationships among elements, thus making a general data set

semantically interoperable at model level (e.g., associating the street names

with toponimous coding, resolving ambiguities) [26].

The analysis of the above mentioned data sets allowed us to create the

km4City integrated ontological model presenting 7 main areas of macro-

classes as depicted in Figure 6.1, and described as follows.

Administration includes classes related to the structuring of the general
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public administrations, namely PA, and its specifications, Municipality,

Province and Region; also includes the class Resolution, which repre-

sents the ordinance resolutions issued by each administration that may

change the traffic stream.

Street-guide formed by entities as Road, Node, RoadElement, Administra-

tiveRoad, Milestone, StreetNumber, RoadLink, Junction, Entry, and

EntryRule Maneuver, it is used to represent the entire road system of

Tuscany, including the permitted maneuvers and the rules of access to

the RTZ. The street model is very complex since it may model from

single streets to areas, different kinds of crosses and superhighways,

etc. In this case, Ontology for Transport Network (OTN) vocabulary

has been exploited to model traffic [7] that is more or less a direct

encoding of Geographic Data Files (GDF) in OWL.

Point of interest (POI) includes all services, activities, which may be

useful to the citizen and who may have the need to search-for and

to arrive-at. The classification of individual services and activities

is based on main and secondary categories planned at regional level.

In addition, this macrosegment of the ontology may take advantage

of reusing Good Relation model of the commercial offers: in fact,

the ontological model Km4City allows connecting Service instances to

the corresponding instances of Location belonging to GoodRelations

model [68].

Local public transport includes the data related to major LPT (Local

Public Transport, in Italian: TPL, Transport Public Local) companies

scheduled times, the rail graph, and data relating to real time passage

at bus stops. Therefore, this macroclass is formed by classes Pub-

licTransportLine, Ride, Route, AVMRecord, RouteSection, BusStop-

Foreast, Lot, BusStop, RouteLink, RouteJunction. (where AVM means

Automatic Vehicle Monitoring).

Sensors macroclass concerns data from sensors: ambient, weather, traf-

fic flow, pollution, etc. Currently, data collected by various sensors

installed along some streets of Florence and surrounding areas, and

those relating to free places in the main car parks of the region, have

been integrated in the ontology. Some of the sensors can be located

on moving vehicles such as those on busses, car sharing, bike sharing,

and on citizens’ mobiles, etc.
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Temporal macroclass that puts concepts related to time (time intervals and

instants) into the ontology, so that associate a timeline to the events

recorded and is possible to make forecasts. It takes advantage from

time ontologies such as OWL-time [100].

Metadata This group of entities represents the collection of metadata as-

sociated with the data sets, and their status conditions. If they have

been ingested and integrated into the RDF store index, data of inges-

tion and update, licenses information, versioning, etc. In the case of

problems with a certain set of triples or attributes, it is possible to

recover the data sets that have generated them, when and how.

6.3 Sii-Mobility Architecture

The reference architecture of Sii-Mobility is depicted in Figure 6.2. The so-

lutions allows to collect data coming from different kind of sources (open

data, private data, real time data), domains (mobility, environment, energy,

culture, e-health, weather, etc.), and protocols. The architecture is based

on a semantic aggregation of data and services according to the Km4City

ontological model. Data providers as City Operators and Data Brokers offer

data which are collected by the Smart city in pull by using Extract Transform

and Load (ETL) processes scheduled on the Big Data processing back office

based on a Distributed Smart City Engine Scheduler (DISCES) tool devel-

oped for Sii-Mobility and made open source. Among the data collected those

provided in Open Data from the municipalities, Tuscany region (Observa-

tory of mobility), LAMMA weather agency, ARPAT environmental agency,

etc., and several private data coming from City Operators: mobility, energy,

health, cultural heritage, services, tourism, wine and food services, educa-

tion, wellness, etc. Data Brokers collect and manage real time data coming

from sensors (IoT), and from vehicular kits (On board Device) which are

developed for monitoring and informing car, bus and bike drivers, etc.

Once the data are collected the back office perform several processes for

improving data quality, re-conciliating data and converting data into triples

for the RDF store of the KB [27], implemented by using a Virtuoso triple

store. DISCES is allocating processes on several virtual machines allocated

on the cloud according to their schedule and requests arriving from the De-

cision Makers, Developers and Data Analytics (typically 3.5-5 thousand of

jobs per day, collecting multiple data per job, for example all the busses on a



6.3 Sii-Mobility Architecture 97

Figure 6.2: Sii-Mobility Architecture.
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line according to DATEX II protocol [3]). The processes for data collection

can be scheduled according to several different policies to cope with Open

Data (to verify if they change sporadically), quasi real time data (changing

a few times per day) to real time data (changing every few seconds, such

as the position of the Bus, or the position of the City Users) and taking

into account all the permissions access connected to each different piece of

information managed in the Km4City Knowledge base.

For semantic aggregation of data and service it has been decided to ex-

ploit and improve the Km4City Ontology (http://www.km4city.org ) [26],

[27], adding a number of details regarding mobility and transport, sensors,

environment, with respect to former model. Now Km4City is modeling mul-

tiple domain aspects related to mobility, services, Wi-Fi, cultural services,

energy, structure (streets, civic numbers, green areas, sensors, busses, etc.).

The above data collected is exploited by a number of scheduled data an-

alytics processes to compute: user behavior and mobility, recommendations,

suggestions and personal assistant messages according to the city and city

operator strategies.

In order to be capable of providing contextual information web and mo-

bile Apps provide data to the Sensor Server and Manager. The data collected

from Apps (mainly mobiles) are related to many different aspects: the po-

sition of the city users, preferences (user profiles), requests to the Smart

City API, searching queries, action performed on mobile, velocity, acceler-

ations, etc. [80]. All these kinds of data are useful to understand the user

behavior, and thus, to engage the users generating ad-hoc suggestions and

recommendations.

In the architecture proposed, in addition to the RDF store for the knowl-

edge base, presents several noSQL stores (namely: HBase and Mongo) for

storing tabular data as those arriving from sensors and user profiles, and

to make versioning of collected data that have to be passed into the RDF

store for reasoning. This approach allows to have the needed tabular data

accessible for Data Analytics processes such as those performed for the: esti-

mations of recommendations, engagements, traffic flow predictions, parking

forecast, clustering of sensor data behavior, and anomaly detection. When

needed, federated queries can be performed among RDF and tabular stores.

The resulted architecture provided several services via Smart City API to

Development Tools or to the City Users Tools (Applications).



Chapter 7

Mobile Application Developer

Kit

This chapter describes the Mobile Application Developer Kit in

all its basic features. This Kit has been developed to simplify

the creation of Mobile Applications using the Sii-Mobility plat-

form and the Km4city framework described in Chapter 6. In

particular, it explains in detail the operation of the service that

allows to provide useful tips to users for experiencing their city

at its best. On two applications developed with this kit, Florence

where, what.... Km4city and Tuscany where, what.... Km4city,

some usability reports have been made in the last part of the

chapter.

7.1 Architecture

The main purpose of the Km4City Architecture is to enrich and aggregate

the data, thanks to the KM4City Semantic Model, and then make the data

available for other purposes, depending on the permission access of each

different kind of data.

The work for a developer, who want to access and reuse the Km4City

aggregated and qualified data is complex. Thanks to the geo-referenced

info of each data stored in the Km4City knowledge base, a set of services

and tools based on a visual approach has been realized, starting from those

useful for the developers. These tools, have been developed in addition to

99
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Figure 7.1: ServiceMap Development Tools.

the API system to simplify the work to the developers, with an easy visual

connections on data, to simplify the use of the Smart City API, to give a

set of guidelines to develop new web and mobile applications. The main

developers’ tools created to solve these kinds of problems are:

� ServiceMap [9]

� Mobile Application Developer Kit [79]

The set of Development Tools also includes other assisting tools to work with

RDF stores and SPARQL queries, when and if needed.

In Figure 7.1, the interaction among the main developers’ tools is de-

picted. The actions performed by the developers to create their application

are:

1. Make searches on the ServiceMap and visualize the resulting data on

the Map.

http://servicemap.disit.org
https://github.com/disit/siiMobilityAppKit
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2. Save the search done and receive an e-mail in which they can find the

API to be used in their App to reproduce the same experience had in

the ServiceMap (the same data).

3. Use the API to develop their own apps, in any forms (i.e., web app or

mobile app, hybrid or not) or use the API and the Mobile Application

Development Kit to create new modules that can be integrated on the

already published Mobile Apps.

The main aim of the Application Developer Kit (ADK) consists in making

simple and fast the production of new applications. This is possible thanks

to the ServiceMap development tool and to the proposed architecture of the

web and mobile applications. The main requirements that have drown our

design have been the strong need of:

Modularity to have a structure which allows the modularization of func-

tionalities in order to make the code development more simple, and

distributed among several teams.

Dynamicity to make possible the addition of modules inside the application

at run time (when the application is installed in the device of the final

users), in order to speed up the deploy of:

� the new functionality in the hands of the final users,

� the integration of the new functionalities in the core part of the

application.

Personalization to adapt the user experience (menu, user interface, func-

tionalities) on the basis of the final users actions and profile; also giving

to the user the possibility of resetting and changing the profile.

Alerting to enable the App to receive alerts, notifications and messages

possibly when the App is in background or off, so that to inform the

user about critical situations in the city and also for personal assistance,

suggestions, etc.

Multiplatform to realize Apps that can be installed and performed on

more than one platform, avoiding substantial changes of the code.

The proposed architecture (see Figure 7.2) of the ADK and thus of the

final App have been designed to enable every developer to create his own

module, that can be dynamically loaded inside the application.
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Figure 7.2: Web and Mobile Application developer kit.

7.2 Modularity and Dynamicity

The modular structure of ADK (see Figure 7.2) is used to prevent the change

of files inside the application with another code or data, from new developers.

New modules have to be placed inside the modules folder of the ADK, and

the ADK has to be loaded at the proper time scripts and templates. New

data have to be also combined with data already present in the basic version

of the ADK (i.e., Labels and Alerts in Data block). The modularity structure

avoids developers to modify the other parts of the ADK; they can use the

functionalities made available for the modules and submitted from other

scripts (i.e., take data from GPS position, visualize services on the map

and other functionalities offered by scripts contained in Core block). As

shown in Figure 7.2, Modules Block contains modules (already developed

and integrated on Sii-Mobility application) concern the services that offer

data in real time:

Parking Searcher it finds the closer and the freest car parks in the city

and shows the number of free parks.

Fuel Station Searcher it finds the closest and cheapest Fuel Stations and

shows the favorite fuel kind and the price.
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TPL Searcher it finds the closer public transportations stops and shows

the next ride time, or all the list;

First Aid Searcher it finds the hospitals and shows the emergency room

situation, the triage status;

Pollution Searcher it finds the closest environmental and pollution sen-

sors and shows the last data collected by the sensor(s).

Each module is substantially a mini-application, in a certain sense, since

each of them exploits the general access to the Smart City API, the regis-

tration of the user ID, the access to sensors of the device, etc., and thus may

receive from the services on servers (see Figure 6.2). The produced modules

may be dynamically integrated inside the official application or provided into

the App from the store. In the first case, every time the App is executed

search for the availability of new modules to load them from the server site,

also updating the former versions when needed. The loader directly locates

the new and updated function and miniapps on the menu, and when needed

new buttons are connected to the new feature that will appear and in the

desired place according to the server manifest of the module.

7.3 Personalization and Profiling

Users of the Apps are profiled and their profile is communicated to the

server. Profile are presently kept totally anonymous and classified as citizens,

students, commuters or tourists. Thus their interaction with the interface

is anonymously recorded, to know the most sought services of the different

profiles and modify the main menu. This allows us to tune the service and

improve the user experience providing different menu arrangement of the

functionalities according to the user profile. Thus the menus offered for each

profile is modified according to the statistics calculated on the collected data,

by defining the positions the most researched categories, buttons, etc., and

in some cases, putting off/on some functionalities. For example, the triage

monitoring may be of interest for citizens and operators and less for tourists,

the parking status is interesting for user using the private car and less for

those moving with the public busses or in bike, etc. The priority on the

creation of the menu profiles is given in first place to the updated menu

which can be found on the server. If the server is unreachable, the last saved
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menu for that specific profile is loaded; if the menu has not been saved, the

loaded menu is the menu released with the application update, and so on.

7.4 Alerting and Tracking

The users on the App need to be informed on what is going on the city. On

the other hand, most of the Mobile platforms have different approaches for

providing asynchronous notifications in push to the device when the App

is not in foreground, is not executed by the user. On this regard, Android

allows to execute processes in background so that it can be used to col-

lect changes with a polling approach, iOS provide a service called APN for

central management of notifications in push and does not allow to execute

processes in background, a similar approach is also provided for Windows

Phone. In addition to the alerting, the movements of the device should be

also communicated to the server in order to get new context based sugges-

tions and alerting, such as: please take care about the weather forecast in

your area, alarms of civil protection, environmental status, closer car park,

etc. Some of these innovative and smart features are produced as sugges-

tions, engagements from personal assistant [21], predictions produced by the

data analytics modules (e.g., parking, arrival of busses, etc.), alerts (e.g.,

civil protections, changes in the traffic, events).

7.4.1 Tracking Service

The mobile application is deployed across multiple operating systems and

different data collection strategies are performed, based on the possibility of

running services in the background inside the various devices. Currently, the

data collection service works as a background service that is always active

for those who install the application on a device with Android operating sys-

tem. In other operating systems, no dedicated background service has been

developed and data is collected during use of the foreground application.

Both services (foreground and background) follow the same workflow of op-

erations (see Figure 7.3), although they are formally different being written

in two different languages: Java for the background service of Android and

Javascript for other operating systems.

The main collected data are those related to:

positions and movements through raw information on latitude, longi-
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Figure 7.3: High level workflow of operations performed by tracker

tude, speed, altitude and accuracy of these measurements provided

by the device’s GPS (or other location provider) [21].

terminal charateristics as operating system, application version, device

mobile

user charateristics as language and profile

Other data collected are related to the disposition, in particular on the

centre of Florence, of public WiFi in order to have an overview of the correct

distribution of these free Wi-Fi access points [30].

The data collection protocol mainly revolves around the possibility of

retrieving the GPS position on a given device at a given time (for a detailed

view see Figure 7.4).

The protocol checks whether a location provider is active on the device:

preferring the GPS over others (the location ca be obtained from the network

or using a mixed strategy). If no provider is active, it means that the user

has disabled location detection so only a status record is retrieved. This

record indicates that the service is still running but it is not possible to do

anything else on that device.

If at least one of the two providers is active, there may be two more

different situations:
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Not Available this provider is not able to detect the location of the device

at that time (for example, the user is inside a building where the GPS

signal fails to retrieve information from satellites)

Not Updated the location detected is not up to date (the device has re-

trieved the position but then entered inside a building: the position is

still the last detected but it has passed too long)

In both cases, a position update is requested from the service to the

active provider at that time: if the update is not possible, a status record is

retrieved.

Assuming that an updated location can be retrieved, it is possible to

scan Wi-Fi and beacons in the proximity of the device and send them to the

server.

If the airplane mode is active no other operation is performed and a status

record is sent (different from others this record contains location informa-

tion). If the airplane mode is not active, then scanning can be performed: it

checks whether the Wi-Fi module of the device can be activated and if it is

possible it is activated and scanning is carried out to collect data near the

device. If the Wi-Fi module has been deactivated, the device will return to

its initial state in order not to interfere with the user’s choices. Once the list

of Wi-Fi devices in the closeness of the device has been obtained, 3 filters

are performed in sequence:

1. data from Wi-Fi, having the same MAC as those already saved, are

deleted if is temporally and spatially close to those already saved.

2. removes as much as possible the private Wi-Fi detected during the

scan: public and free Wi-Fi (with SSID FirenzeWifi and UnifiWifi)

data are immediately saved . If the data of public Wi-Fi do not cover

a wide spectrum of space and time, then private Wi-Fi are also kept

in memory, as they are able to make up for the ”holes” in the recovery

of information that would have happened with public Wi-Fi.

3. the remaining data are compared with the data already sent to the

server and also in this case for data with the same MAC are deleted

those spatially and temporally close to others already sent.

Once the data to be sent has been saved, they are sent periodically by

the service in the background: if the sending is successful, the data sent will
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be deleted from those saved otherwise they will be queued again and sent in

the next period.

If the transmission is successful, a successful data entry message is re-

turned. Eventually, this message as a payload containing a message or more

messages generated by the Engager for the user [21]. These messages are

saved in temporary files located in the folders where the application can be

accessed and once the application is started, they are read and shown to the

user as soon as possible.

In Figure 7.3, the protocol’s operations performed by the background

service are shown. The block called Save Current Location, every time the

GPS position is available, stores a list of data and, whenever the data are

sent to the server, these positions are used to understand how the user is

moving at a given time [30].

Both background service and foreground service perform the same oper-

ations. It is important to notice that the foreground service is more precise

in sending data, since when the application is open, it is possible to make

synchronously all the calls for preparing and sending available data. For

the background scenario, different policies has been adopted by various An-

droid’s versions, both with regard to the official versions and those developed

by device manufacturers. Some of them trying to limit the use of resources

(CPU, memory and network) by the services that run in the background and

increase the period of clock execution of such services up to 5 minutes from

theoretically 30 seconds shown in Figure 7.3.

7.5 Multiplatform

In order to satisfy the first requirement of multiplatform, the Application

Developer Kit and the architecture have been based on Apache Cordova

framework. It allows us to realize hybrid applications on multiple plat-

forms. The applications developed with Apache Cordova, shell consist of

user-interface implemented with HTML, CSS and Javascript, and of plugins

which allow to use the specific hardware functionalities from the different

platforms (i.e., battery-status, camera, device orientation) (Platforms Plu-

gins in Figure 7.2), through a Javascript interface. The Sii-Mobility App

development has shown the powerful of this framework that permit in a very

short time (i.e., few days or one week) to publish the application on different

platforms stores, and to have a unique code for all platforms. It is possible
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to start from the ADK source code released as AGPL, available on GitHub

Disit Lab, for all developers that would like to realize new modules for official

applications on the basis of data available through Smart City API Km4City

and/or from other sources and APIs.

7.6 Usability test

This section discusses the results of the Sii-Mobility App usability assessment

day organised on Wednesday 1 March 2017 by the Center for Generative

Communication (CfGC) and Disit Lab of the University of Florence.

7.6.1 Objective

The aim of the usability tests was to:

� check whether the sample of testers was able to easily use the different

functions offered by the App;

� analyse the perception that users have of this application, in order to

identify its strengths and critical points;

� highlight the main critical issues that need to be resolved.

Among the identified users, subjects who already used mobile apps and

owned an Android device (smartphone or tablet) were selected. They were

also asked to download the App a few days before the test, in order to start

experimenting with its use.

The methodology used in this specific test involved a series of actions for

users to identify the strengths and critical points of the mobile application

[98]. Users had to take 12 actions. As far as the test is concerned, each

action has been designed to introduce the various functionalities of the App

to the testers, giving researchers the opportunity to analyze the level of

understanding and usability of the available functions and the criticality

found in each of them.

7.6.2 Organization

Users have to fill a start questionnaire, to evaluate the perception of the

App downloaded in the previous days. Then they carry out a test based

on 12 actions. Finally they carry out an outgoing questionnaire to allow

https://github.com/disit/siiMobilityAppKit
https://github.com/disit/siiMobilityAppKit
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researchers to acquire further elements of knowledge and verify if, after the

use of some functions in the test, their perception of the App has changed

compared to the initial phase.

The test sheet distributed to users after the completion of the question-

naire was conceived by the CfGC as a succession of 12 pages with:

� a detailed description of the 12 actions to be carried out (1 action per

page);

� a series of choices to be made with an x to indicate the degree of

difficulty of the action to be taken;

� a space to describe the experience of solving the action;

� a space to record the main critical issues.

The team of researchers provided specific timeframes for each action,

derived from simulations carried out previously: in the time available, users

had to carry out the action, write down on the test card the steps taken and

the critical points that emerged. Researchers, in turn, noted on an analysis

sheet what they observed during the user experience. All test phases lasted

about 2 hours in total.

7.6.3 Sample

The Sii-Mobility App usability evaluation day, which took place in Flo-

rence on Wednesday 1 March 2017 by Center for Generative Communication

(CfGC) and DISIT Lab of University of Florence, was attended by 21 people.

The 21 users who took part in the test were distributed as follows:

� 10 citizens,

� 6 students,

� 3 tourist,

� 2 commuters.

The sample of users was equally divided by gender (11 males and 10 fe-

males) as well as each individual category. As far as average age is concerned,

however, the categories were divided as follows:
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� citizens: 38 years

� students: 26 years

� tourists: 26 years

� commuters: 27 years

7.6.4 Test Descripton

The user test included 12 actions, with variable timeframes for each action,

depending on the difficulty of each one. Each action was related to a specific

functionality of the App. The list of actions is as follows:

1. General Settings Open the App and watch the main screen in front

of you and the different features. Go to ”Settings” and bring the

”maximum distance” to 500 meters.

2. Cycle Paths Find cycle paths near you.

3. Distributors Find out how much gasoline costs in the stations around

you.

4. Nearby Point Of Interest Try to find out if there are interesting

places to see around you. After selecting ”Library of Technological

Sciences” take a photo, give a vote and leave a comment. Add this

place to your favorites.

5. Weather Try to discover the next Friday’s weather.

6. Public Transport Starting from where you are now, try to get to

Santa Maria Novella station by public transport via line 4. Find out

when the next bus will be passing and which route it will take.

7. Ticket Try buying a bus ticket to reach Santa Maria Novella station.

8. Parking Search for the nearest car park where you are now. Check if

there are any free places.

9. Events Try to find out if there are exhibitions or other events around

you. Select what you think you are closest to you and look at what it

is about. After writing the event name on the usability test sheet, try

to read the message in full screen. Share the event via WhatsApp (or

another communication channel) with a user.
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10. Civil Protection Look at whether there are civil protection alerts.

11. Far Points of Interest Find out what are the interesting places

around Piazza della Signoria or in another area other than the one

where you are now.

12. Personalization Try to customize the main page of the App according

to the features that are most useful for you. Describe on the test sheet

what features you deleted and why.

7.6.5 Test Results

In most cases, actions have been resolved by all users in the time available

(see Figure 7.5). In 9 out of 12 actions there are users who have not solved

what they were asked.

Figure 7.5: Usability Test Results.

However, only in two cases (action 2 - Cycle Paths and action 11 - Far

Points of Interest) there are three users who have not been able to complete

the action, while in 7 actions there is only one user who has not solved the

proposed tasks. The most successful actions resolved with success are, in

order, the 10 - Civil Protection, resolved without difficulty by all users; action

5 - Weather and action 1 - General Settings, resolved without difficulty by

20 users and by a user with difficulties; action 8 - Parking, resolved without
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difficulty by 20 users and not solved by a user; action 7 - Ticket and action

9 - Events, resolved by solutions.

The most problematic actions were the 2 - Cycle paths and 3 - Distribu-

tors, solved without difficulty by 16 users, with difficulties of 2 and 4 users

respectively and not solved by 3 and 1 users. Always critical at first glance

is the action 11 - Far Points of Interest, which has been solved without diffi-

culty by only 13 users, with difficulties by 5 users and 3 users have not been

able to solve it.

Finally, the most critical cases are represented by actions 4 - Nearby

Points of Interest and 6 - Public transport, both resolved without difficulty

by 11 users, with difficulties for 9 users and not solved by 1 user.

7.6.6 Use of App

Figure 7.6: Statistics on clicks of the main menu.

In Figure 7.6, a statistic on users’ clicks on the buttons of the main menu

is shown. The percentages of clicks have been inserted on the buttons to see

the spatial distribution: the clicks are concentrated mainly at the top left

because the users search the mainly functionality on this area. Secondly, the

clicks are focused on the central buttons and on the alert button: on these

buttons during the use of the application are added badges with number that

indicates how many elements are found once the user open that feature (i.e.,
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the number of events planned for that day, the number of messages sent by

the assistant, etc.). Then the notifications appearing on buttons provokes

curiosity about users who are inclined to click to see what shows them.

In Figure 7.7, a statistic on the categories requested by users is depicted.

The most searched categories are those relating to buttons that display di-

rectly to user the services sought (buttons on the principal menu or buttons

aside of the map, when it is shown). Very popular is also the function Around

you that is shown to the user in a popup over the GPS markers and over

manual position marker. Search for categories, represented in the graph by

the labels ”Tourist Menu” and ”Citizen Menu” is not much used even though

allows the user a more targeted choice of services that should be searched.

Figure 7.7: Statistics on more researched categories.



Chapter 8

Predicting Free Parking for

ParkingSearcher Module

In this chapter, a set of metrics has been identified in order to pre-

dict the number of free parking slots in city garages with gates.

With this aim, three different predictive techniques have been

considered, compared and different models produced. The com-

parison has been performed on the basis of data collected in a

dozen of garages in Florence area. The resulting solution demon-

strated that a Bayesian Regularized Neural Network exploiting

historical data, weather condition and traffic flow data can be

a robust approach for reliable and fast prediction of free slots.

The solution is deployed as a feature on Smart City Apps in the

Florence area for sustainable mobility.

8.1 Introduction

Prediction of free parking spaces is a complex non-linear process whose dy-

namic changes involving multiple kinds of factors. In addition, to cover the

whole Tuscany means to address the computation for about 200 garages.

Those parking facilities provide several different working conditions. Some

of them are dedicated to a specific facility (football stadium, hospital), oth-

ers on multipurpose (station, fair, etc.), and others on periphery. Variability

and performance are one of the problems to be addressed, together with the

precision in critical time slots when the parking is getting full.

115
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Drivers are wasting a considerable amount of time trying to find a vacant

parking lot, especially during the peak hours, depending on the specific urban

areas. Car drivers in dense city quarters usually spend between 3.5 to 14

minutes in search a slot [110]. Consequently, cruising for free parking spaces

may depend from a peculiar number of different situations: different travel

motives, the garage proximity from the destination, the price differences

between garages, the driver’s lack of familiarity with the urban area, etc.

Looking for parking slots may not only be the reason of annoyance and

frustration, it is in fact believed to have a harmful impact on the efficiency

of the transportation system within the urban tissue, thus on sustainability.

Thanks to the today’s technologies, it is possible to collect real-time park-

ing information – i.e., capacity, garage prices, number of empty parking slots

in the silos or in the area. Recent researches have highlighted the relevance

of other data sources such as the garage proximity traffic flow information

and the information related to the weather conditions. The prediction model

proposed has been created by exploiting open data and real time data by

using the Sii-Mobility (see Chapter 6) solution based on Km4City in the

Florence area, Italy, for its corresponding Smart City solution.

In the context of monitoring and predicting the parking garage status,

on Sii-Mobility more than 200 garages are monitored in whole Tuscany (an

area of 3.5 inhabitants), and among them, about 12 are in Florence city. The

status of each of those garages is updated every 15 minutes, while the goal

consists in providing in advance, of 30 minutes and 1 hour, guesses about the

parking status for each parking garage and provide such data within the App

to make them usable by users in real time. In this manner, the car drivers

will have time enough to decide to park in different parking area and/or to

abandon the idea of taking the private car to reach the same destination by

using a more sustainable solution such as the public transportation.

8.2 State of the Art

The parking activity of a driver is influenced by multiple factors, i.e. the

walking distance to destination, driving and waiting time, parking fees, ser-

vice level, parking size, safety [16], [81], parking price, availability and acces-

sibility [103]. In particular, if it is known, the number of free parking spaces

is an important attribute in the parking decision-making process of a driver,

and its past experience on that. So that, drivers that possess information of
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parking availabilities are 45% more successful in their decisions than those

without knowledge about this information when arriving at their parking

facilities [38].

In more details, parking slots can be searched on the street or in some

parking silos of garage with gate. In terms of prediction models, there is a

substantial difference between parking garages and street-parking. In park-

ing garages, it is possible to count the number of free slots considering the

tickets released to drivers at the entrance gate. In street-parking, could

be necessary the set up systems to detect the occupancy with the use of

sensors. For this reason some authors focused their research on the street-

parking prediction, while others focused on the free parking slots prediction

inside garages.

[118] have developed a theoretical model for parking demand forecast

based on the capacity of network in central commercial district attempting

to integrate the requests of both silos and street parking.

[46] tackles the street-parking problem in San Francisco by predicting

the occupancy rate (defined as the number of occupied parking spots in the

total spots) of parking lots in a zone given a future time and geolocation. He

works on aggregated parking lots to explore the estimation error reduction

pattern in occupancy prediction and to investigate different travel behavior

at different region.

[46] discretizes the days into 24 intervals, and performed the principal

component analysis on time series to discover occupancy feature. Thus, four

different predictive approaches (ARIMA, Linear Regression, Support Vector

Regression, and Feed Forward Neural Network) have been tried to investi-

gate the relationships among prediction errors and aggregation levels. The

comparison shown that feed forward neural network was the best model for

prediction, presenting a prediction error 1 hour ahead of about 3.57%. In

this case, only well-defined and stationary cases have been addressed using

historical data and no additional contextual data. On the same line, [117]

proposed an unsupervised clustering (Neural-Gas Network [93]), of the data

to identify the similar street-parking behavior over 24 hours using a small

data sample with a temporal resolution of 15 minutes. This approach for

street parking prediction highlighted the strong variability without present-

ing a prediction model.

[74] have improved the solution [134] method (based on wavelet neural

network) to predict the availability of a parking lot minute, in an interval
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time of 15 hours (from 6:00 AM to 10:00 PM), using a three-days training

set and one day as test set. The predicting capability obtained has been in

the range of 3-10%. While suddenly declare that in critical cases (where the

slots are close to zero) the error rapidly increases. We would stress that is

precisely in those cases that the precision has to be high.

[124] have proposed a two-step methodology for the street-parking occu-

pancy prediction based on sensor data. The first step consists in a real-time

occupancy prediction scheme based on recurrent artificial neural networks.

The second module is a static approach based on survival analysis for es-

timating the probability of finding available parking space with relation to

traffic volume, the type of the day and the time period. The resulting error

for predicting at 30 minutes is the range of 4.3%.

[42] have proposed a mathematical model based on queueing theory

and Markov chain, to predict parking slots occupancy based on informa-

tion exchanged among vehicles, which are connected to an ad-hoc network,

presenting errors in the range of 8% after 30 minutes (1800s). In the same

thematic area, [115], [128] have developed an ”intelligent” parking system.

In particular, [115] proposed a parking space inventory control system based

on a combination of fuzzy logic and integer programming techniques making

”on line” decisions whether to accept or reject a new driver’s request for

parking.

On the other hand, addressing the prediction of free slots in parking

garages/silos is a completely different problem. In this case, the number of

offered slots is typically higher in density, clearly reported at the entrance

gate of the garage, and thus they are a strong attraction for drivers that may

arrive all together. Moreover, they are typically located closer to commercial

centers, hospital, railways stations, theaters, and multipurpose areas, etc.

Therefore, the prediction of free parking slots in garages is not an easy task.

Some of them may have stable stationary behavior over time (since serve

stable facilities, such as peripheral hospitals), thus making their prediction

easier. Others are affected by several factors that make the prediction of

free slots over time much more difficult, especially in the critical situation in

which the parking becomes full.

Considering that the data coming from Sii-Mobility are relative to the

free slots in the garages/silos, more attention has been paid to those articles

dealing with predictions within the garages.

In [102], a distinction between different sources of data, i.e., parking data,
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user data, publicly data, has been proposed. They emphasize the importance

of publicly data to make an independent and sustainable system to support

the search of parking spaces on the street using a neural network model.

According to [129], and [102], the capacity of garage depends on road traffic

flow, weather events, road condition, etc., and the best prediction of available

spaces is a combination of short time and historical information. In [102],

the prediction capability derived by using neural network presented an MSE

(mean square error) of 16% without addressing the critical situations of

parking silos with non-stationary attitudes. [129] also use a neural network

model to predict the available spaces in the city of Beijing but the prediction

results are not well reported. The authors keep saying that their prediction

results shown that when sample size is larger error is smaller, and that large

sample size costs much time and affects real-time requirement, high lighting

problems of performance.

8.3 Data Description

The data used for the prediction of the number of free parking slots in garages

have been collected by the Sii-Mobility infrastructure, in the period from

January 5, 2017 to March 26, 2017. For each car park (they are garages or

silos controlled by a gate), the number of free slots has been captured every

15 minutes with their time stamp. The considered garages are located in

three different areas of Florence: close to hospitals, in downtown (near to

the main touristic area) and in peripheral areas, as exchange parking for who

decides to leave their cars and to switch to public transportation.

As stated in the state of the art section, in terms of distribution of free

spaces in the parking area, there is a substantial difference between a park-

ing garage and a street-parking. In the context of street-parking, it could

be necessary to make a clustering in order to understand the free space

distribution of an area, to reduce the number of possible predictive models,

aggregating the street-parking areas with the same behavior. Instead, taking

into account garages, the distribution between each of them is very different,

and the parking spaces are already concentrated in a specific area. For this

reason a clustering is not viable: each garage can be considered as a different

case, and may have a peculiar set of variables to obtain the needed precision.

Instead, taking into account garages, the distribution between each of

them is very different, and the parking spaces are already concentrated in a
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(a)

(b)

Figure 8.1: Typical daily trends of free slots every 15 minutes in parks (a)

Pieraccini Meyer and (b) Careggi.

specific area.

Thus, one of the difficulties consists in identifying a common model that

can be capable to produce suitable and precise predictions in almost all cases,
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(a)

(b)

Figure 8.2: Typical daily trends of free slots every 15 minutes in parks (a)

Beccaria and (b) S.Lorenzo.

and in particular, when the free parking slots are close to zero, that is the

main critical condition, in which the drivers have to be alarmed in advance.

In Figures 8.1 and 8.2 and 8.3, a number of typical daily trends of free

slots for some parking garages are reported.
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Figure 8.3: Typical daily trends of free slots every 15 minutes in park

Stazione Fortezza Fiera.

According to Figures 8.1(a) and 8.1(b), the workdays are readily recog-

nizable with respect to the weekends (numerically higher since they 5 days

of working over the week). This strong difference is present in cases 8.1(a)

and 8.1(b) which are both located close to hospital: Careggi and Pieraccini

Meyer car parks, respectively.

On the contrary, in the cases of parking areas S. Lorenzo and Beccaria (see

Figures 8.2(a) and 8.2(b)) the number of free slots seems to be independent

on the workdays, and the daily trend is not repeated regularly. Case of Figure

8.2(b) represents an area of Florence’s nightlife and restaurants: it is evident

that in some cases, sporadically, the parking garage is full at lunch/dinner

time and after dinner time. Moreover, in Figure 8.3a more chaotic case is

reported: the garage is located between the main train station and the fair

area of Florence. In this case, the presence of large expositions can make

the difference as the presence of Pitti Fashion Expo from the 9th to 13th of

January 2017.

Moreover, For Careggi and S.Lorenzo car parks (case Figures 8.1(a) and
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(a)

(b)

Figure 8.4: Typical weekly trends of free slots every 15 minutes in parks (a)

Careggi and (b) S.Lorenzo.



124 Predicting Free Parking for ParkingSearcher Module

8.2(b)), the weekly curves are shown in Figures 8.4(a) and 8.4(b) respec-

tively. It should be noted that in Figure 8.4(a) the trend is more defined and

the noise is lower than in Figure 8.4(b). In both of cases, it is possible to

observe that festivity that fall during the week (the 6th of January, Epiphany

vacation) had a trend totally similar to the weekend. According to [74], it

is reasonable that changes in patterns between workdays and weekends can

be due to different travel purposes: people that travel for work on workdays,

and for entertainment on weekends. In this case, we add that the people

have also a different trend for the passing time windows that the hospitals

set up to allow visit patients and friends.

8.4 Features

Some features have been identified and are reported in Table 8.1; in which

they are classified in three main groups. Each measurement containing all

features is carried out within a 15-minute period.

Baseline features refer to the measures related to the free parking slots

recorded every 15 minutes and including: number of free spaces, date

and time, day of the week, festivity. These variables are used to con-

sider the seasonality of the data that may have strongly different trends

– i.e., the work days with respect to the weekend, etc. If the parking

spaces have the same trend during the same day and time between

different weeks, two other features have been included in the model:

difference between the actual and previous number of free space at the

same time, recorded one week before (POD); the difference between

the actual number of parking spaces and the next one at the same

time, recorded one week before (SOD). At a specific observation of a

specific date and time corresponds the POD and SOD of the previous

week (see Figure 4).

Weather feature (i.e., temperature, humidity and rainfall) are collected

every 15 minutes. According to our analysis, the significant values are

those related to the hour before. In order to predict the number of

free spaces in a garage at 3 pm, the weather features related to 2 pm

on the same day are relevant. In fact, the weather conditions typically

influence the decisions of taking the car or the public transportation.

For example, the expected behavior of citizens when it’s raining is to
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drive the car instead of the motorcycle. By doing so, more parking lots

will be occupied. In this case, also the weather forecast may influence

the decisions and are accessible on the Km4City smart city knowledge

base in real time. On the other hand, according to our experiments,

they are less significant with respect to the real weather features.

Traffic sensors feature (i.e., vehicle flow, concentration, average time and

average speed) refers to the values of the previous hour recorded by the

sensors leading from the path to the garage’s area. Traffic sensors for

each garage may be one or more, and they should be chosen considering

the direction of travel and the most likely route to reach the garage.

Note that, there are four features per sensor. The assessment of the

traffic sensors is used as a detector for identifying the occurrence of

relevant events such as those of Figure 8.3. As an alternative, a specific

solution for interpreting events could be performed. On Sii-Mobility,

also the list of the major city events and their GPS coordinates in the

city are available. .

Figure 8.5: Construction of POD and SOD features described in Table 8.1

8.5 Forecasts Techniques

In the general framework, three different approaches were tested, i.e., Bayesian

Regularized Neural Network (BRNN), Support Vector Regression (SVR) and

ARIMA model applied on features presented above.
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Data

Group
Feature Description

B
a
se

li
n

e

Free Parking Slots
Real number of free slots recorded

every 15 minutes

Time Hours and minutes

Month Month of the year (1-12)

Day Day of the month (1-31)

Day Week Day of the week (0-6)

Weekend 0 for working days, 1 else

Previous observation’s

difference (POD)

Difference between the number of

free spaces at time i and number of

free spaces at time (i− 15 minutes)

recorded in the previous week

Subsequent

observation’s

difference (SOD)

Difference between the number of

free spaces at time i, and the

number of free spaces at time

(i+ 15 minutes) recorded in the

previous week

W
e
a
th

e
r

Temperature
City temperature measured one

hour earlier than Time, in ◦C

Humidity
City humidity, measured one hour

earlier than Time, in %

Rainfall
City rain, measured one hour

earlier than Time, in mm

T
ra

ffi
c

S
e
n

so
rs

Average Vehicle Speed

Average speed of vehicles on the

road closest to the parking, over

one-hour period (km/h)

Vehicle Flow

Number of vehicles passed closest

to the parking, over one-hour

period

Average Vehicle Time
Average of distance between

vehicles, over one-hour period

Vehicle Concentration
Number of vehicles per kilometer,

over one-hour period

Table 8.1: Categories and description of features
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8.5.1 Artificial Neural Networks with Bayesian Regu-

larization

The Artificial Neural Network (ANN) is a very popular technique which

relies on supervised learning. ANNs [34], [106], [120] proposed powerful non-

linear regression techniques inspired by theories about how the brain works.

The primary application of neural networks involves the development of pre-

dictive models to forecast future values of a particular response variable

from a given set of independent variables, and they are particularly useful

in problems with a complex relationship between input and output. The

outcome is modeled by an intermediary set of unobserved variables (hidden

neurons), that are linear combinations of the original predictors. The con-

nection between neurons in each layer is termed a link. This link is stored

as a weighted value which provides a measure of the connection between two

nodes [61], [65].

The supervised learning step changes these weights in order to reduce

the chosen error function, generally mean squared error, in order to optimize

the network for use on unknown samples. ANNs tend to overfit, which leads

to a fitting of the noise and a loss of generalization of the network. On the

other hand, Bayesian Regularized ANNs (BRANNs) attempt to overcome the

overfitting problem by incorporating Bayes’ modeling into the regularization

scheme [36]. In general, the potential overfitting increases when a neural net-

work grows in size through additional hidden layer neurons. BRANNs avoid

overfitting because the regularization pushes unnecessary weights towards

zero, effectively eliminating them. The BRANN method is more robust,

parsimonious, and efficient than a classical ANN, and the network weights

are more significant in modeling the phenomena [36].

The BRANN model fits a three-layer neural network as described in [87]

and [56]. The layer weights the network, which is initialized by the Nguyen-

Widrow initialization method [97], and thus, the model is given by:

yi = g(xi) + ei

yi =

s∑
k=1

wkgk

(
bk +

p∑
j=1

xijβ
[k]
j

)
+ ei, i = 1, . . . , n

where:

� ei N(0, σ2
e);
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� s is the number of neurons

� wk is the weight of the k − th neuron, k = 1, . . . , s;

� bk is a bias for the k − th neuron, k = 1, . . . , s;

� β[k]
j is the weight of the j − th input to the net, j = 1, . . . , p;

� gk() is the activation function: in this case

gk(x) =
e2x − 1

e2x + 1

The objective function consists of minimizing F = αEW + βED, where EW

is the sum of squares of network parameters (weight and bias), ED is the

error sum of squares, α and β are the objective function parameters.

8.5.2 Support Vector Regression

The SV (Support Vector) algorithm is a nonlinear generalization of the gen-

eralized Portrait algorithm developed in Russia in the sixties and further

developed for decades [123]. This theory characterizes properties of learning

machines which enable them to effectively generalize the unseen data, and

excellent performances have been obtained in regression and time series pre-

diction applications [52]. SVR model with linear kernel has been adopted

in this paper as a predictive method. The idea of SVR is based on the

computation of a linear regression function

f(x) = wTx+ b

to a given data set

(xi, yi)
N
i=1

in a high dimensional feature space where the input data are mapped via

a nonlinear function. Instead of minimizing the observed training error,

SVR attempts to minimize the generalization error bound so as to achieve

generalized performance. This generalization error bound is the combination

of the training error and a regularization term that controls the complexity

of the hypothesis space [111].
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8.5.3 ARIMA models

The autoregressive integrate moving average approach (ARIMA) has been

adopted as alternative solution to set up accurate predictive models. The

autoregressive part (AR) of the model creates the basis of the prediction,

which can be improved by a moving average modelling for errors made in

previous time instants of prediction (MA). The order of ARIMA modelling

is defined by the parameters (p, d, q): p is the order of autoregressive model;

d is the degree of differencing, and q is the order of the moving average part,

respectively; and by the corresponding seasonal counterparts (P, D, Q). The

predictive model can been developed by using Box-Jenkings methodology for

ARIMA modelling [35].

8.6 Evaluate Tecniques with MASE

According to the literature, most of the researchers use MAPE or MSE to

calculate the prediction error. This choice of error measurements is due to the

fact that on the particular issue of street-parking predictions, critical cases

where the parking slots are close to zero are not present or not analyzed.

Measures based on percentage errors (e.g., MAPE) have the disadvantage

of being infinite or undefined if the observed value is equal to zero during

the period of interest, and having extreme values when any observation is

close to zero. On the other hand, if parking garages issue is analyzed, the

possibility of reaching critical cases is a problem to be taken into account:

most of the garages depicted in Figures 8.1, 8.2 and 8.3, every day for several

hours are full (the number of free parking slots is equal to zero). For this

reason, we have chosen the Mean Absolute Scaled Error (MASE) [71], that is

one the most widely used metrics for the assessment of prediction accuracy

as an alternative to the percentage errors. Mean Absolute Scaled Error is

calculated as follows

MASE = mean(|qt|)

and

qt =
obst − predt

1
n−1

∑n
i=2 |obsi − obsi−1|

where:
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� obst = observation at time t,

� predt = prediction at time t,

� n is the number of the values predicted over all test sets (96 daily

observations per 7 days)

Note that, MASE is clearly independent of the scale of the data. In

comparing models, the best is the one presenting the smaller MASE, and

thus the corresponding predictions can be considered the best among those

compared.

8.7 Experiments and Results

In the general framework, three different approaches were tested – i.e.,

BRANN, SVR and ARIMA model – applied on the features presented above.

In detail, the number of input neurons in BRANN model corresponds to

the number of the features reported in Table 8.1. Note that, all features

are considered as an individual neuron, except Time that has 96 neurons,

one for each slot of 15m (“00:00”, “00:15”,. . . , “23:45”). A single output

neuron represents the predicted value. The model fits a three-layer neural

network with three intermediate neurons – i.e., the number of neurons that

correspond to the lowest error rate [132]. The processing time comparison,

among the above-considered models, is also relevant and it is reported in

Table 8.2 for a single car parking garage. From Table 8.2, it is evident that

all the approaches are capable to produce predictions every hour for the

next hour in advance with a quite low average estimation. On one hand, the

ARIMA approach needs to re-compute the training every hour to produce

satisfactorily significant predictions, which is a very large cost of about 9s for

each car park. On the other hand, BRANN and SVR allow being “trained”

once a day, providing predictive models with 96 values in advance with quite

precise results. For this reason, the ARIMA solution has been discharged

as performed by other researchers in the literature, as reported in Section

1. Note that, the identified ARIMA was (5, 1, 2)x(1, 0, 1) and allowed to

perform short-term predictions with a MASE of about 1.2.

The aim is not only to find a satisfactory solution to make predictions

that are computationally viable and capable to adapt for the several cases

but also to produce satisfactory results in terms of precision in the critical
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Training
Forecasts Techniques

BRNN SVR ARIMA

Average training

processing time, in s
76.3 9.1 9.2

Re-Training frequency Daily Daily Hourly

Training period 3 Months 3 Months 3 Months

Estimation BRNN SVR ARIMA

Average estimation

processing time, in s
0.0031 0.0052 0.0015

Estimation frequency Hourly Hourly Hourly

Estimation length 1 Hour 1 Hour 1 Hour

Table 8.2: Comparison among models processing time in training and esti-

mation, for a single garage

cases discussed before. Therefore, the comparison has been focused in that

direction and by considering BRANN and SVR based on the whole set of car

parks in Florence. In Table 3, some examples related to the reference cases

of Figure 8.1, 8.2 are reported. In Table 8.3, MASE over the predicted week

and the specific MASE relating to morning, afternoon, evening and night,

have been reported for each of the predicted numbers of free parking lots.

The comparison puts is evidence that the most reliable results are produced

by BRANN approach, especially in critical time slots, where the car parking

garages risk to be full. This fact is also highlighted by the best MASE for

BRANN in all reference cases.

Furthermore, a comparison in terms of R-squared, RMSE, and MASE of

the BRNN approach has been computed considering four combinations of

the different categories of data (reported on in Table 8.1): baseline features;

baseline and weather features; baseline and traffic sensors; baseline, weather,

and traffic sensors features together.

According to results reported in Table 8.4, the differences among the

different cases are not very relevant. The results suggest that the best choice

in terms of precision still is the use of model exploiting the baseline only. On

the other hand, extending the assessment to all parking garages the results

are substantially different.

In fact, Figure 8.6 reports the comparison of the 4 models compared in
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Figure 8.6: Comparison among the predictive models for the 12 garages in

Florence in terms of MASE assessed in the last two weeks of predictions.
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Comparison Error
Forecasts Techniques

BRNN SVR

Careggi

MASE Night 34.85 16.29

MASE Morning 0.76 1.42

MASE Afternoon 1.89 4.34

MASE Evening 1.99 1.51

MASE Daily 1.87 2.34

Pieraccini Meyer

MASE Night 6.08 12.83

MASE Morning 0.86 1.27

MASE Afternoon 1.87 2.91

MASE Evening 1.36 1.57

MASE Daily 1.37 2.06

San Lorenzo

MASE Night 10.33 11.81

MASE Morning 2.13 1.91

MASE Afternoon 2.70 3.15

MASE Evening 2.15 3.09

MASE Daily 2.72 3.21

Beccaria

MASE Night 9.32 7.80

MASE Morning 0.95 1.25

MASE Afternoon 2.49 2.14

MASE Evening 2.96 4.75

MASE Daily 2.13 2.67

Table 8.3: Comparison among predictive models estimated considering only

the baseline features. MASE is estimated on a testing period of 1 week after

the 27 of March for: Careggi, Pieraccini Meyer, S.Lorenzo, and Beccaria car

parks.

Table 8.4 extended to all garages on the basis of the estimation of MASE

for the last week. The comparison puts in evidence that in most cases in

which the daily trend for free slots is regular (such as cases (a) and (b) of

Figure 8.1, Careggi or Pieraccini Meyer), the 4 models proposed produce
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BRANN Model Results
Model Features

R-squared RMSE MASE

Careggi

Baseline 0.974 24 1.87

Baseline + Weather 0.975 24 1.75

Baseline + Traffic sensors 0.975 24 2.04

Baseline + Weather + Traffic Sensors 0.975 24 1.87

Beccaria

Baseline 0.888 16 2.13

Baseline + Weather 0.890 15 2.15

Baseline + Traffic sensors 0.892 16 2.24

Baseline + Weather + Traffic Sensors 0.895 16 2.33

Table 8.4: BRNN training model results in terms of R-squared, RMSE and

the estimated prediction error MASE for Careggi and Beccaria car parks

results with no relevant results among each other. On the contrary, when

critical cases such as case of Figure 8.3 is present (Stazione Fortezza Fiera,

Palazzo di Giustizia), a strongly non-stationary trend is present that can be

substantially corrected by adding weather features and traffic sensors.

In detail, Figure 6 depicts the comparison of: (i) the real daily trend;

(ii) the prediction using baseline features only; (iii) the prediction using the

combination of baseline, weather and traffic sensors features, for Careggi and

Stazione Fortezza Fiera car parks. Note that, the addition of weather and

traffic sensors features decreases the difference between the real values and

the predictions in the Stazione Fortezza Fiera car park.

In order to validate the above considerations, in Figure 8.8 the features

listed in Table 8.1 are reported in order of importance for the BRANN full

model prediction – i.e., the model with all the categories of covariates: the

relationship between each predictor and the outcome is evaluated. A loess

smoother is fitted between the outcome and the predictor, while the R2

statistic is calculated for this model against the null model (intercept only).

The histogram suggests that variable Time (of the baseline) is the most

relevant for predicting the number of free slots for all garages. The second

one, in terms of relevance, results to be Average Vehicle Time of the traffic

sensors features. According to these results, traffic variables are of primary
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(a)

(b)

Figure 8.7: Comparison between the actual trend of free parking lots and

the predicted trend on the basis of BRANN using baseline features and all

features for (a) Careggi, (b) Stazione Fortezza Fiera car park for 24 hours.
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Figure 8.8: Variables Importance of the BRNN full model.
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importance, as already mentioned in [129]. These statements seem to be not

coherent with the finding of [102], where traffic was found to be of secondary

importance. This may be due to the fact that, considering garages, it is

easier to choose traffic sensors related to the car park analyzed – i.e., those

sensors on the streets leading from the path to the garage. Contrarily, in

street-parking prediction, only the general traffic situation may be related.

Note that, the chose of sensors can be done only in the case in which the data

are publicly available, as emphasized in [102]. In fact, authors who develop

IPSs on garages seem to focus only on free parking data for forecasting

[115], [128], [39]. In our case, having more public data available, it has been

possible to integrate these data with those of the other features usually used

in the predictions made on road parking lots. To clarify, the proposed model

uses the real number of free parking lots and the real data recorded by traffic

sensors leading from the same path to the garage, every 15 minutes. Finally,

our results cannot directly comparable in terms of prediction error, because

we have analyzed critical cases not reported in the literature before: when

the parking slots are close to zero, measures based on MAPE and MSE have

the disadvantage of being infinite or undefined. For this reason, MASE is

the best choice, resulting to be 1.75 in the best case.
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Conclusions

The research activity is carried out at the DISIT laboratory (Distributed

Data Intelligence and Technologies) of the DINFO department (Department

of Information Engineering) of the University of Florence.

The activities performed during the PhD have focused on the study of

the following topics:

1. iCaro cloud simulator exploiting knowledge base (Part I)

2. A Smart City Development kit for designing Web and Mobile Apps

(Part II)

3. Predicting free parking slots on critical and regular services exploiting

a range of open data (Part II - Chapter 8)

iCaro cloud simulator exploiting knowledge base

This research activity was carried out within the iCaro project in collabora-

tion with Computer Gross Italia, Liberologico and CircleCap.

iCaro is a project that aims to produce prototypes of innovative tech-

nological solutions to solve the difficulties that Italian Small Medium En-

terprises (SMEs) encounter by basing their business on non-cloud services

hosted on their local servers that are poorly adapted to business evolution,

guaranteeing a gradual integrated access to cloud services such as Business

Platform As A Service (BPaaS) and offering flexibility and scalability, cost

reduction, maximum confidentiality and data security.

One of the parameters that mainly affects the costs of the entire cloud

platform is the number of physical machines active: the higher this number,

the more the data center will consume energy and the more it will need

maintenance. In order to make an optimal allocation, account must be taken
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of both the reduction in the number of active physical machines and the

contracts signed with customers, which contain constraints to be respected

for the resources offered.

Since it is not possible to work directly on the physical production ma-

chines, a simulator is needed to find an allocation as close to the optimal

solution as possible, given the Virtual Machines (VMs) currently present

within the cloud platform. Moreover, the simulator can help to decide in

which physical machine a new VM will have to be allocated in order not to

move too much from the previously found allocation (since every VM move

has a cost).

The analysis of the state of the art leads to the identification of the three

main problems that the simulators analyzed have:

� No tools are provided to generate the workloads to be simulated in a

simple and intuitive way for non programmers

� Not allowing a high level description of the workloads which must be

described by low-level information such as: time to execute and main

memory used at level of CPU

� Do not allow a dynamic modification of the simulated data center struc-

ture by adding new resources during simulation.

For these reasons, a framework has been developed to characterize the

trend of any temporal signal and to characterize the trend of several cor-

related temporal signals: with this instrument it is therefore possible to

characterize the workload of a VM for a certain period of time and for all

the resources that are deemed necessary. In order to be able to use the mod-

els generated by the framework in an easy way and to perform simulations of

cloud platforms functioning, a webapp has been created which, in addition,

allows to interact with the other components of the iCaro project and in

particular with:

KB (Knwoledge Base) ontological database containing the description

and associations between entities that can be found in a cloud platform

SM (Supervisor & Monitor) a monitoring tool that uses NAGIOS (ap-

plication for computer monitoring) to collect point data on which to

calculate high level metrics to be entered in the KB.
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This integration is necessary to massively add new entities to the KB,

analyze the metrics entered by SM within the KB and collect real host data

recoverable from SM.

Through the webapp, using the templates generated by the framework,

it is possible to simulate the workload of a data center and find the best

allocation for it using the heuristics of solving the Vector Bin Packing prob-

lem: bin can be considered as the physical machines to be filled with VMs

and each resource is a dimension that needs to be considered during the

allocation phase.

Finally, the interface and simulation logic have become completely in-

dependent, so that it is easier to subdivide the workload generated by the

simulations between several processes that can be executed in different ma-

chines.

A Smart City Development kit for designing Web and Mobile Apps

This research activity is carried out within the projects:

Sii-Mobility National Smart City http://www.sii-mobility.org for the study

of mobility and transport aspects: for the evaluation of service quality,

for the study of events; and

RESOLUTE H2020 http://www.resolute-eu.org for resilience aspects, data

collection related to mobility, transport system, flows of people in the

city and risk assessment.

These projects use the model and tools developed by Km4City (Knowl-

edge Model For City): a framework, created within the DISIT laboratory,

which provides a single access point for interoperable city data across the

web or mobile platforms. Km4City covers mobility and transport, energy,

banking, car parks, commerce, culture, cycling, green areas, health, tourism

and much more. Km4City today processes more than 1 million new data in

real time per day, making them accessible in an aggregated way and produc-

ing suggestions, trajectories, destination origin maps, answers to searches,

predictions, decision support, etc.

A hybrid application has been developed (Tuscany where, what... Km4City)

that uses the model and tools made available by the Km4City framework

and has been created features that allow to have a good user experience and

to analyze the use of the application by users. In addition, a background

http://www.sii-mobility.org
http://www.resolute-eu.org
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service has been created that collects data on public Wi-Fi in the closeness of

users and logs anonymously information about the location and movements

of the devices that have installed the application. Research has focused on

making this service as robust as possible in the background and is continu-

ously refined to minimize battery consumption, bandwidth used for sending

data and data logging errors. Data were collected from each individual de-

vice and it was possible, thanks to this data, to develop two components to

better support the daily life of the user:

Recommender suggests to the user if there are services nearby that can

be of interest to the user based on previous searches by the user, his

profile and his GPS location.

Engager Ask the user to perform actions within the application, for ex-

ample, if he wants to write a review of a particular service, send cus-

tomized surveys or warns, for example, that you have parked the car

in an area where you do not have permission to park. It is based on

the location of the GPS and the permanence of the device in a certain

area.

Correct operation of the service in the background is essential to allow

these components to perform their calculations on the correct data and that

is why it is developed to make it as robust as possible. By analyzing these

data, it has been possible to modify the menus that allow the users to search

for the desired points of interest in order to show each type of user (citizens,

tourists, commuters and students) a menu that is more relevant to their

category. An architecture and a creation of these menus has been developed

that allows remote editing without updating the application, so that each

user has the updated version of the menu at all times.

With the experience gained in the design and development of the appli-

cation, the research focused on creating a Mobile Application Development

Kit, based on the application architecture, allowing other developers to cre-

ate their own module that can be integrated without problems within the

application already developed. Through this Mobile Application Develop-

ment Kit it is possible to realize in a short time, without being aware of

how a hybrid application can be developed, its own application containing

its own modules that are developed in HTML, JS and CSS.
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Predicting free parking slots on critical and regular services ex-

ploiting a range of open data

One of the most important challenges for a Smart City is to make itself more

liveable for its citizens and this can be done, for example, by reducing the

pollution that is generated by those who live there. Think about how many

times, in large cities, it can happen to turn around the streets, before finding

a free place to park: during the time of searching for a free place the car

continues to pollute and this pollution could be reduced simply by finding a

way to park faster. It can be perceived how useful it could be for a driver

looking for parking, to have real-time information on the availability of free

parking spaces in the nearby car parks.

The data in real time, however, is limited if we consider commuters or

people approaching larger centers to entertain themselves in the evening or

to have services that are not provided in the suburbs (think of the large

hospitals that are usually found in the capital cities). These people would

like to know in advance what the parking will be with more free parking

spaces in the vicinity of your destination.

To help these people and, consequently, reduce the pollution generated

during the search for parking, a machine learning algorithm has been de-

veloped, based on data relating to controlled access parking lots (large paid

parking lots with bar), which carries out daily training of a Bayesian Regular-

ized Neural Network (BRNN) and on this training are generated predictions

(every 15 minutes) of how many free spaces will be available, in a given

parking lot, at a distance of an hour.

In addition to the BRNN, two other models based on ARIMA and SVR

were studied, but they were discarded respectively due to the excessive time

taken to carry out training and prediction and the greater prediction error

than the neural network.
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