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Oil pollution resulting from day to day human maritime activities contributes a high portion of the
overall input into marine environments, constituting a major threat to marine ecosystems worldwide. In
Canada, the National Aerial Surveillance Program (NASP) extensively monitors and collects information
on oily discharges using remote sensing devices. Despite the availability of data from NASP and other
surveillance programs internationally, there is a paucity of spatial analyses of oil pollution patterns,
particularly in their association with human marine pursuits. The objective of this paper is to analyze the
association between observed oily discharges and human maritime activities in the Canadian Pacific
Ocean. This study used Poisson regression to spatially model detected oily discharges with marine traffic,
coastal facilities and proximity to coast. Further, it developed localized (‘regional’) models to address
spatial heterogeneity. The models identify recreational activities, passenger traffic, commercial traffic,
fisheries, and proximity to the coast as predictors of observed oily discharges. The regional models yield
more accurate and reliable estimates of local associations, and identify more parsimonious sets of pre-
dictors for each region. By identifying and accounting for human activities most associated with oily
discharge patterns, the models developed in this study could be used to estimate pollution rates in areas
with less surveillance, and identify areas where NASP coverage may need to be increased. Spatially
explicit rates estimated by these models can be used to monitor the effectiveness of programs and policy
aimed at reducing discharge rates of oily pollution. This study can be used as a model approach for

extending the analysis to the other coasts of Canada, using available NASP data.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Oil pollution is a major threat to marine ecosystems and coastal
communities  worldwide (Charlier, Fink, &  Krystosyk-
Gromadzinska, 2012). Extensive research has proven this true for
seabirds, which are highly visible and considered one of the most
vulnerable taxa to marine oil pollution (Burger & Fry, 1993;
Camphuysen & Heubeck, 2001). There are many ways that oil can
enter these ecosystems, including natural seeps, vessel accidents,
terrestrial run-off, and as a result of day to day activities associated
with thousands of human maritime pursuits (GESAMP, 2007, 83
pp.; NRC, 2003, 265 pp.). Oily discharges can occur intentionally
(see Camphuysen & Heubeck, 2001; Wiese & Robertson, 2004),
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through negligence (i.e., poor maintenance for example), or purely
by accident. In more extreme cases, oily discharges into marine
environments can occur as a result of third party activities such as
malicious (i.e., “interdictions” as per Church, Scaparra, & Middleton,
2004; see Anifowose, Lawler, van der Horst, & Chapman, 2012) or
accidental (see Transport Safety Board of Canada, 2007) pipeline
disruptions, or acts of war (see Iraq—Kuwait Conflict, p. 135 in NRC,
2003 , 265 pp.). Nevertheless, in most if not all cases, these dis-
charges would be considered non-compliant with international
standards (i.e., MARPOL) and therefore, illegal as defined by Ca-
nadian legislation. Although land-based activities (i.e., through
terrestrial run-off) and natural seeps are considered the largest
inputs of oil pollution into marine environments in terms of volume
per year, (GESAMP, 2007, 83 pp.; NRC, 2003, 265 pp.), research and
enforcement efforts have focused on human maritime activities as
they are easier to quantify and associate with specifically identifi-
able oily discharges.

0143-6228/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:bertazzs@ucalgary.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apgeog.2014.04.010&domain=pdf
www.sciencedirect.com/science/journal/01436228
http://www.elsevier.com/locate/apgeog
http://dx.doi.org/10.1016/j.apgeog.2014.04.010
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.apgeog.2014.04.010
http://dx.doi.org/10.1016/j.apgeog.2014.04.010

S. Bertazzon et al. / Applied Geography 52 (2014) 78—89 79

Oil pollution from shipping accidents tends to be catastrophic,
capturing much of the public attention; however, cumulatively oil
pollution stemming from day to day activities (“operational dis-
charges”) contributes a higher rate of input into marine environ-
ments than pollution from shipping accidents (GESAMP, 2007, 83
pp.; NRC, 2003, 265 pp.). Most studies on impacts from operational
discharges have focused on operational discharges and larger
catastrophic spills from marine vessels (for example, see
Camphuysen & Heubeck, 2001; Piatt, Lesink, Butler, Kendziorek, &
Nysewander, 1990; Wiese & Robertson, 2004). However, day to
day oily discharges also can be associated with outflows from
terrestrial run-off, accidental spills from fuel docks, derelict vessels,
coastal transfer facilities, pleasure craft, and fishery activities
(GESAMP, 2007 , 83 pp.; NRC, 2003 , 265 pp.; NASP crew pers.
comm.). Furthermore, size of discharge is not the only predictor of
impact (Burger, 1993). Indeed, operational discharges can have
devastating effects on highly mobile marine taxa such as seabirds,
simply by virtue of timing and location. For example, over 50% of

the global population of Cassin’s Auklet (Ptychoramphus aleuticus)
returns to Triangle Island (see Fig. 1) to breed. These breeding
auklets tend to forage in relatively small areas of ocean over the
shelf break approximately 60 km southwest or 80 northwest of
Triangle Island (Boyd, McFarlane Tranquilla, Ryder, Shisko, &
Bertram, 2008), which are areas also transited by vessels moving
between the lower U.S. and Alaska or Prince Rupert in northern B.C,
(O’Hara & Morgan, 2006). A single operational oily discharge from
any of these vessels could have a major impact on Cassin’s Auklet
populations on a global scale. Camphuysen (1989), 322 p. provided
an empirical example of the importance of timing and location of a
spill when he reported on a massive die-off of Common Scoters
(Melanitta nigra) and Common Eiders (Somateria mollissima), spe-
cies which tend to aggregate in flocks along the shoreline, from a
small coastal spill in the North Sea. Clearly, when considered
cumulatively, oil pollution from operational discharges is likely to
have a big effect on marine ecosystems as these discharges occur at
a much higher frequency and are extensive spatially (Serra-Sogas,
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Fig. 1. Observed oily discharges in the Canadian Pacific region.
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O’Hara, Canessa, Keller, & Pelot, 2008). It is, therefore, vitally
important to integrate the spatial and temporal patterns of oper-
ational discharges, or any anthropogenic stressor, to fully estimate
potential impacts associated with them.

To date, analyses estimating occurrence rates and impact of oil
spills have focused on the larger spills (for examples on estimating
occurrence see Meade, LaPointe, & Anderson, 1983; Ketkar & Babu,
1997; Vieites, Nieto-Roman, Palanca, Ferrer, & Vences, 2004; on
impact estimation see Gundlach et al., 1983; Teal & Howarth, 1984;
Piatt et al., 1990). It is generally difficult to model occurrence and
estimate the impact of smaller oil spills because they are far more
likely to go unreported and undetected. Both aerial and satellite
surveillance techniques are increasingly employed and have been
proven effective at monitoring and enforcing pollution law inter-
nationally (for example see Keramistoglou, Cartalis, & Kiranoudis,
2006 [Aegean Sea]; Carpenter, 2007 [Bonn agreement: North
Sea]; Ferraro et al., 2007 [Adriatic Sea]; Backer et al., 2010 [HEL-
COM: Baltic Sea]; Wang, Gong, Pan, Hao, & Zhu, 2010 [China];
O’'Hara, Serra-Sogas, Canessa, Keller, & Pelot, 2013 [Canada]).
Although both monitoring techniques provide useful information
for modeling the occurrence and impact of these smaller often
unreported spills, there have been only a few studies analyzing
these data statistically (Carpenter, 2007; Gade & Alpers, 1999;
Volckaert, Kayens, Schallier, & Jacques, 2000), and fewer studies
with spatially explicit components such as mapping of probability
surfaces of oil pollution occurrence (Ferraro et al.,, 2007; Serra-
Sogas et al., 2008) or association with possible sources such as
vessel traffic intensity (i.e., inside or outside traffic separation
schemes: Volckaert et al., 2000).

Transport Canada’s National Aerial Surveillance Program (NASP)
uses aircraft fitted with specialized monitoring equipment that
includes remote sensing instruments to monitor and enforce
pollution regulations in Canadian waters. This study analyzes oily
discharges as detected by NASP in the Pacific region of Canada,
using multivariate statistical methods to model these discharges
with factors that may be associated with spatial patterns in their
occurrence. The main objectives of this study were to: i) identify
human activities that may be driving spatial patterns in oily dis-
charges detected by NASP; ii) partition the study area into relatively
homogeneous portions (‘regions’) and define localized models; iii)
estimate the parameters linking observed oily discharges with each
predictor, as these parameters can support the extrapolation of oily
discharges to areas less covered by NASP. Similar modeling ap-
proaches have been proposed in the land use regression (LUR)
literature (Gilbert, Goldberg, Beckerman, Brook, & Jerrett, 2005;
Jerrett et al., 2005), which has emerged as a valuable technique
for estimating local scale variability in air pollution, providing an
accurate method for exposure analysis. LUR models estimate
pollutant concentrations at fine spatial resolutions by regressing
measured pollutant concentrations against land—use characteris-
tics, such as surrounding traffic volume, potential industrial sour-
ces, and population density (Henderson, Beckerman, Jerrett, &
Braurer, 2007; Jerrett et al., 2007). This study may constitute the
first attempt at applying similar LUR modeling techniques in the
marine environment. There is no evidence, in the surveyed litera-
ture, of use of localized modeling approaches; the definition of local
(regional) models, presented in this paper, is therefore novel in this
context.

Study area and data

Although the NASP covers all oceanic regions of Canada, our
analyses are based on data collected in the Pacific region only, to
simplify analyses and because of authors’ familiarity to this area.
The Canadian Pacific is a large region where oily discharges are a

generally rare occurrence, exhibiting a sparse spatial distribution
and visually discernible clustering in proximity of the coast, as
summarized in Fig. 1.

Analyses were based on data collected from 2008 to 2010 (in-
clusive) by NASP in the Pacific region. All analyses were based on
oily discharge counts rather than total estimated volume, in part
because quantity of discharge generally is not a good predictor of
ecological impact (Burger, 1993), and because count data were
considered more reliable than data on estimated volume dis-
charged for the models discussed in this paper (NASP crew pers.
comm.). For analytical purposes, the study area was divided into
5 x 5 km grid cells. Cell size was determined in consideration of size
of the study area and spacing of observed discharges. Qil discharge
counts for each year were summed up in each cell, and the total was
used as regression response variable: the Pacific portion of the
Canadian economic exclusive zone (EEZ) contains 37,162 grid cells
with 101 observed discharges over the three years (Fig. 1).

The regression analysis (see below) was guided by a combina-
tion of expert opinion and spatial exploratory techniques (i.e.,
Getis-Ord G, Moran’s I). Expert opinion was harnessed through
consultation with members of the Oil in Canadian Waters (OCW)
research working group, and members of the NASP as well as the
Marine Aerial Reconnaissance Team (MART) with years of experi-
ence detecting oily discharges in the Pacific region of Canada. The
MART is responsible for the detection and documentation of oily
discharges using the Marine Surveillance System or MSS6000
developed by the Swedish Space Corporation. The MSS6000 has
been installed on all NASP aircraft since 2007-2008. The OCW
consisted of researchers with experience with the issue of smaller
scale oily discharges and modeling risk associated with ship traffic
from federal government departments (Transport Canada and
Environment Canada)' and universities (University of Victoria,
University of Calgary, Mount Allison University and Dalhousie
University).?

Exploratory spatial data analyses indicated that the majority of
observed oily discharges occur near shore, with very few occur-
rences farther than 20—30 km from the coastline. Expert opinion
also suggested that near-shore discharges are likely determined by
different processes than those governing offshore discharges.
Therefore, it was decided to define a minimum bounding or mini-
mum convex polygon (MCP) (Nilsen, Pedersen, & Linnell, 2008)
around observed near-shore discharges to delineate the study area,
in order to reduce the number of null observations. After exper-
imenting with various buffer sizes, again in consultation with the
same experts described above, a buffer was selected of 25 km from
the coast and 50 km from the farthest near-shore observed
discharge. The resulting polygon contains 3414 grid cells, and 96
discharges® (Fig. 1).

For the multivariate regression models of oil discharges, two
categories of predictor variables were considered: marine traffic
(i.e., presence of different vessel types), and proximity to other
human maritime activities (i.e., distance from coast, distance from
ports, and number of marinas), in addition to surveillance effort
(see Table 1). Surveillance data were provided by the NASP along
with oily discharge data. The variable “ViewArea” represents NASP
surveillance effort in square kilometers per cell. Yearly data were
summed up, as with oily discharge counts. Surveillance effort is

! Louis Armstrong, John Heiler, Suxanne Baumeler, Kim Pearce, Ralph Hilchie,
Patrick O’Hara, and Sabina Wilhelm.

2 Rosaline Canessa, Norma Serra, Stefania Bertazzon, Olesya Barrett, Abul Azad,
David Lieske, Ron Pelot, Andrew Szeto, and Casey Hilliard.

3 5 of the 101 observed discharges were considered offshore and excluded from
the analysis.



S. Bertazzon et al. / Applied Geography 52 (2014) 78—89 81

PACIFIC
OCEAN
~
~
~
\
\
\
\
AN
\i
N
A Y
A Y
Y
N
~
\\
0 30 60 120 180 242 ,/{bo\‘\\c’
2
N,

Getis Ord Z-Score
o -1.89--0.91

o -0.90-0.31
o 032-1.97
o 198-448
e 449-8.06
BRITISH
COLUMBIA

Strait
of
Georgia

]
Vancouver

Fig. 2. Spatial clustering analysis.

viewed as a precondition for the observation of oily discharges, and
therefore is treated as an offset variable in many of our regression
models (see ‘Methods’ below).

Minimum distance or proximity to coast or port was measured
as the distance from each cell centroid to the closest point on the
coastline, or closest port, using the Euclidean metric (straight line)
in ArcGIS (ArcMap version 10). Top commercial ports in the region
were selected based on volume of domestic and international cargo
handled in 2007 and 2008 (AAPA). In addition, a few U.S.A. ports
were included, due to their proximity to Canadian waters. Also
calculated per cell was the average distance from all ports.

The total number of marinas per cell was also determined
(“Marina”). Marinas were defined as small craft harbors, which
include marine recreation facilities (i.e., marinas, yacht clubs and
public docks), fishing harbors, and ferry docks. Location informa-
tion on these facilities was provided by the Department of Fisheries
and Oceans. A simple count of the number of small harbors per cell
was performed using ArcGIS (ArcMap 10). Total marinas per cell

and coastal proximity were treated as independent, or predictor
variables in regression models, to analyze the association between
chronic oil pollution and boating activities occurring in proximity
to those facilities and the coast. These variables were specific to the
process linked to near-shore oily discharges.

A rich marine traffic database, summarized in Table 1, was
prepared by OCW research working group partners (Ron Pelot and
Casey Hilliard, Marine Activities Risk Information Network [MARIN
— http://www.marin-research.ca/], Dalhousie University). Each
traffic variable represents the total number of hours spent in each
grid cell per vessel type or category. Categories were based on ship
type, ship length, flag of convenience and ship age. Flag of conve-
nience refers to vessels that are registered to nation-states that are
different from the nation-state of the ship owner, often to avoid
high registration fees, taxes and tighter regulatory controls. Ship
age refers to vessels built before or after 1992 — this threshold age
of vessel was considered important based on a report on sub-
standard shipping published by the Organization of Economic
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Fig. 3. Model residuals.

Cooperation and Development (OECD, 2002 , 53 pp.) that stated
vessels generally became less compliant with international regu-
lations at about 20 years of age. Marine traffic data were available
over the same period as NASP data (2008—2010); likewise, yearly
data were summed up per grid cell.

Our multivariate analysis tested for significant association be-
tween total count of oily discharges detected (response variable)
and this subset of predictor variables.

Methods

Regression analysis is a fundamental multivariate technique,
where a response variable is conceptualized as a function of a set of
predictor variables (Burt, Barber, & Rigby, 2009). In this study, all the
variables are spatial, hence prone to spatial dependence and het-
erogeneity (Anselin, 1998). The dependent variable (observed oily
discharges) consists of positive integers, exhibiting few non-null low
values and a large proportion of null values (Fig. 1): such variables

are best modeled by Poisson regression (Burt et al., 2009). The
Poisson regression model assumes equidispersion of the response
variable; that is, the expected mean is equal to the expected vari-
ance. When this assumption is violated and the variance is greater
than the mean, the distribution is considered overdispersed and
treated accordingly (McCullagh & Nelder, 1989). It also assumes that
the logarithm of the response variable changes linearly with equal
increment increases in the predictor variables (IMcGree & Eccleston,
2012). It further assumes that changes in the dependent variable,
from combined effects of different independent variables, are mul-
tiplicative. The specification of a Poisson regression model may
include a so-called offset variable. As shown in Eq. (1), the offset
variable (os) enters as denominator of the dependent variable.

ln(y/os) = 604—61)(1 +52X2+...+5kxk+8 (l)

Model specification was guided by the same experts described
above (NASP and MART members, and OCW partners). Prior to
estimating any regression, cross-correlation across response and



S. Bertazzon et al. / Applied Geography 52 (2014) 78—89 83

Table 1
Predictor variables.

Category Data field Description

" surveillance | ViewARea i Total surveilled area (sqkm)

PortShortDist Shortest distance to port (m)

Proximity

Marine  Traffic
traffic Type

r— S S —

Length L50- Hours of vessels of length < 50 m
L50-100 Hours of vessels of 50 < length < 100 m
L100-200 Hours of vessels of 100 m < length < 200 m
L200+ Hours of vessels of length > 200 m

Flag FOC Hours of flag of convenience vessels

predictor variables was tested using Pearson’s coefficient (Burt
et al., 2009). In an effort to control for multicollinearity, which
implies extreme instability of model estimates (Gujarati, 2003),
when two predictors exhibited high cross-correlation (greater than
0.65 in absolute value), only one was maintained in the model.
Whenever possible, the predictor most highly correlated with the
response variable was chosen; in some cases, two or more alter-
native models were specified, each one containing alternative sets
of uncorrelated predictors. The Pearson’s correlation coefficient,
however, provides only an indication of the linear correlation be-
tween predictors, but high correlation may still occur within the
regression due to a non-linear relationship among predictors (Eq.
(1)). Therefore, the correlation of estimated coefficients was
analyzed and, likewise, in the case of highly correlated coefficients,
one of the predictors was removed. Further, each regression was
refined using a backward selection procedure, which excluded
predictors that were not significantly associated with the response
variable. Akaike information criterion (AIC) (Gujarati, 2003) was
used, in conjunction with other regression diagnostics, to compare
and select alternative models. McFadden pseudo R?> (Veall &
Zimmermann, 1996) was also calculated for each model; it is
computed as the ratio between the log likelihood of the null model
(constant only) and the log likelihood of the model with the
selected set of predictors. It can be adjusted to take into consider-
ation the number of predictors and, similar to AIC, it favors more
parsimonious models. The assumption of equidispersion was
assessed by calculating the difference between mean and variance,
and t-tests and Wilcoxon Rank Sum tests were computed.

Lastly, the Poisson regression model assumes independence of
observations. Meeting this assumption may be problematic with
spatial data, which tend to exhibit spatial heterogeneity and spatial
dependence (Anselin, 1998). In the practice of spatial analysis, a
number of exploratory and analytical tools are generally used to
test these properties on model variables, and to assess the error
properties once the model is estimated. However, most of these
tools employ inferential procedures that assume normally distrib-
uted variables and residuals (Anselin, 1995; Lin & Zhang, 2007).
Although some procedures exist for statistical testing of non-
normally distributed data (Lin & Zhang, 2007), admittedly they
are generally not reliable (Augustin, McNicol, & Marriott, 2006;

Dormann et al., 2007; Dray, Legendre, & Peres-Neto, 2006).
Griffith (2010) discusses the validity of computing the Moran co-
efficient for non-normally distributed variables; however, he notes
the need to extend his results to function-based test statistics. For
this reason, classical spatial exploratory tools (i.e., Moran’s I and
Getis-Ord G) were used, even though the variables used in this
study are not distributed normally. While these spatial analytical
tools cannot be used for inference on these data, they still provide
an indication of those key spatial properties.

Spatial heterogeneity was analyzed using Getis-Ord general G
statistic (Getis & Ord, 1992), which provides an assessment of the
degree of spatial clustering. Significant positive values of the z-
score associated with G indicate clustering of high values; signifi-
cant negative values of the z-score indicate clustering of low values
(Getis & Ord, 1992). Non-significant values of the z-score indicate
spatial randomness, or independence of observations. Spatial
dependence was assessed by spatial autocorrelation analysis,
which indicates whether an observed spatial variable displays self-
similarity over short distances. Moran’s I (Getis, 2008) spatial
autocorrelation index was used. Moran’s I ranges from —1 for
perfect negative spatial autocorrelation (dispersion, or regular
pattern) to +1 for perfect positive spatial autocorrelation (clus-
tering), with a value of 0 indicating absence of spatial autocorre-
lation, or spatial randomness (Getis, 2008). It is known that spatial
autocorrelation analysis tends to produce significant results when
conducted on a raster of cells where only few cells present non-null
values (Boots & Tiefelsdorf, 2000); tests therefore were conducted
on the whole dataset, on reduced datasets, where arbitrary por-
tions of null values were removed, and on the reduced set con-
taining only non-null values.

When the assumptions of identical and independent distribu-
tion of the residuals are violated by spatial heterogeneity or spatial
dependence, spatial regression techniques yield more reliable
models than standard regression techniques. Spatial regression
techniques include geographically weighted regression and
spatially autoregressive methods (Anselin, 1998; Fotheringham,
Brundson, & Charlton, 1998). These modeling techniques have
been extended to the Poisson model: generalized forms of Poisson
include spatially weighted generalized models (Lambert,
McNamara, & Garrett, 2006; Mohebbi, Wolfe, & Jolley, 2011), and
spatially  autoregressive  generalized models (Nakaya,
Fotheringham, Brunsdon, & Charlton, 2005). Even with general-
ized models, statistically assessing the spatial properties of model
residuals remains problematic due to the non-normality of their
distribution (Leung, Mei, & Zhang, 2000).

Because of all these difficulties, independence of observations
could not be assessed conclusively. It was preferable to use a
standard Poisson regression model, while the G statistic was
employed to visually identify spatial heterogeneity in the response
variable and in the model residuals. These analyses lead to the
definition of relatively homogeneous regions, and for each region
individual models were estimated. Spatial heterogeneity suggests
that distinct processes are locally associated with oily discharges:
individual models estimated for each region are expected to yield
more accurate and reliable results.

In delineating the borders of the three regions (see ‘Results’
below), it was observed that no discharges were recorded on the
northern portion of the west coast of Vancouver Island, located at
the intersection of the three regions; for this reason, this portion of
coast was omitted in the regional analyses. The three regions can be
broadly labeled as: Region 1, or the northern coast; Region 2, or the
Strait of Georgia; and Region 3, or the south-western coast of
Vancouver Island (see Fig. 4, below). For each of the three regions,
alternative models were specified, using the same methods
employed for the entire study area; cross-correlation patterns
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Fig. 4. Identified regions and regional model residuals.

within each region were considered in each model specification. In
inspecting the three regions individually, it was observed that the
surveillance effort covers the entire Regions 2 and 3, whereas its
spatial coverage is much more limited for Region 1. Consequently,
effort as an offset variable was considered redundant and removed
from the models for Regions 2 and 3.

Unavoidably, spatial analytical results are subject to the modi-
fiable areal unit problem (MAUP) (Fotheringham & Wang, 1991;
Openshaw & Alvanides, 1999), and their interpretation is prone to
ecological fallacy, i.e., relationships found at the aggregate level
cannot be inferred to the individual level (Anifowose et al., 2012;
Robinson, 2009). In consideration of these problems, all in-
ferences in this study are only drawn for the spatial units defined
above. Further, exploratory analyses (not reported in this paper for
brevity sake) were conducted on the whole Canadian Pacific EEZ,
on a minimum convex polygon of 200 km from shore, as well as and
on variously O-reduced sets. While these analyses cannot be

directly compared, it can be said that all the results were relatively
consistent.

Results

All the analyses reported in this study were conducted on
5 x 5 km grid cells on the minimum convex polygon shown in Fig. 1.
At the spatial scale of analysis (Fig. 1), observed oily discharges are
Poisson-distributed and equidispersed. Exploratory spatial analysis
does not provide conclusive evidence of spatial heterogeneity. The
G statistic indicates that clustering occurs only in parts of the re-
gion. Most notable is positive clustering in the Strait of Georgia,
whereas minor areas of negative clustering are observed in the
northern and southwestern parts (see Fig. 2). Spatial autocorrela-
tion was inspected on the complete minimum convex polygon and
on variously O-reduced sets (Boots & Tiefelsdorf, 2000), and
calculated for 1 to 30 nearest neighbors. The z statistic associated
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Table 2
Correlation between response and predictor variables.
Discharges ViewArea Traffic Passenger Fishing  Recreation Cargo Tank Tug Built < 92 Built >92 Marina CoastDist

Discharges 0.24** 0.14 0.16 0.34** 0.11 0.01 0.21** 0.10 0.12 0.15 -0.07
ViewArea 0.02 0.00 0.18* 0.05 0.32**  0.05 0.03 0.30** 0.18* -0.03 0.52**
Traffic 0.24** 0.11 - 0.36* 0.47** 0.56**  0.42** 0.68 **  0.56** 0.57** 0.01 -0.12
Passenger 0.14 0.00 0.73** 0.20** 0.16 0.06 0.13 0.11 0.10 0.00 -0.07
Fishing 0.16 0.18* 0.36™ 0.08 * 0.28*  0.07 0.38* 0.26** 0.23* -0.02 —0.06
Recreation 0.34** 0.05 0.47** 0.20** 0.45** > 0.18* 0.41* 0.34** 0.38** 0.08 -0.14
Cargo 0.11 0.32** 0.56** 0.16 0.28** 0.29** 0.37** 0.79** 0.58** 0.01 0.01
Tank 0.01 0.05 0.42** 0.06 0.07 0.18* 0.28** - 0.70** 0.87** 0.00 0.00
Tug 0.21** 0.03 0.68* 0.13 0.38* 0.41** 0.37**  0.24* * 0.37* 0.00 -0.16
Built < 92 0.10 0.30** 0.56** 0.11 0.26** 0.34** 0.79"*  0.70** 0.35* - 0.00 0.02
Built > 92 0.12 0.18* 0.57** 0.10 0.23** 0.38** 0.58**  0.87** 0.37* 0.88** -0.01
Marina 0.15 -0.03 0.01 0.00 -0.02 0.08 0.01 0.00 0.00 0.00
CoastDist -0.07 0.52** -0.12 -0.07 —0.06 -0.14 0.01 0.00 -0.16 0.02 —0.01 —0.05

*Sig. 0.01; **Sig. 0.05.

with Moran’s I spatial autocorrelation index was significant up to 18
nearest neighbors, but its values were generally low: for example,
values lower than 0.1 were significant. Considering the non-normal
distribution of the data, the low values of Moran’s I were not
considered a conclusive indication of spatial dependence. Summing
up, both exploratory spatial analyses suggest that spatial hetero-
geneity and spatial dependencies, though possibly present, are
unlikely to severely impact the models. Therefore, standard Poisson
regression was preferred over generalized forms of Poisson
regression, such as spatially autoregressive or geographically
weighted Poisson regression. Model residuals were also assessed
using Getis G and Moran’s 1.

Global models

Table 2 summarizes the correlations of the response variable
with each predictor variable, as well as the correlations between all
predictors. Correlation is generally low between response and
predictor variables, suggesting that there is more contributing to
oily discharges than traffic and other marine activities represented
by this set of variables. Notably, the highest correlations are with
total traffic and with recreational activities, whereas tank and cargo
vessels are among the lowest correlations.

Correlation between predictor variables is also generally low,
with a few exceptions: both vessel age categories are highly
correlated with tank and cargo vessels (greater than 0.65 in abso-
lute value). Additionally, there are some expected high cross-
correlations: between older and newer vessels, as well as be-
tween the variable representing total traffic and those representing
traffic of some vessel types. To address these instances, two alter-
native models were examined, to control for multicollinearity*
(Table 3). The variable representing the surveillance effort by the
NASP program was included in each model as an offset variable (Eq.
(1)), to emphasize its role as a precondition for the observation of
oily discharges.

Based on statistical indicators, including AIC, the log likelihood
and McFadden pseudo R%, Model 1 (vessel type) performs slightly
better than Model 2 (vessel age). Moreover, in comparison with
Model 2, Model 1 presents a more explicit set of predictors, which
potentially make this model a more effective analytical and deci-
sion support tool, therefore Model 1 was preferred.

Significant variables, rank-ordered by significance, are: presence
of small harbors, proximity to coast, recreational traffic, passenger
traffic, tug traffic, and fishing traffic, with McFadden pseudo R? just

4 Only one of the two vessel age variables was included, because of their high
cross-correlation. Neither variable was significant in the model.

above 0.3. Cargo and tank vessels were not significant, and there-
fore sequentially removed from the model. Fig. 3 depicts the spatial
distribution of the model residuals over the study area. Residuals
range between —2.11 and +7.12, whereas the dependent variable
ranges between 0 and 14. The residuals appear to be less clustered
than the observed dependent variable (see Figs. 2 and 3), and
Moran’s 1 spatial autocorrelation tests yield lower correlation
values than for the dependent variable. Negative residuals and low
positive residuals appear to be evenly scattered throughout the
region. The highest positive residuals are observed in the northern
part of the study region (near Prince Rupert), off northeastern
Vancouver Island, in the Strait of Georgia (mostly north of Van-
couver), and off southwestern Vancouver Island (Fig. 3). Comparing
the observed pattern of the response variable with the residual
pattern (Figs. 1 and 3), the model tends to slightly underpredict the
response variable in most of the study region, whereas over-
prediction occurs mostly in the Strait of Georgia, particularly on the
East side.

The model, with its set of predictors, suggests that oily dis-
charges are mainly associated with recreational activities and
passenger traffic, in close proximity to the coast. The localized
pattern of positive residuals (Fig. 3), along with the pattern of
observed discharges (Fig. 1) and their clustering pattern (Fig. 2),
appears to reflect differences between the various parts of the
study region, leading to spatial heterogeneity. Indeed, all the ana-
lyses conducted in this paper hint to the presence of a spatial
pattern, which is visually apparent even though it cannot be
confirmed by inferential tests.

Table 3
Alternative models.

Model 1: Vessel type

Std. beta Std. error Wald
Marina 0.45 0.04 15.97
CoastDist -10.36 0.05 -8.45
Recreation 0.18 0 54
Passenger 0.19 0 4.75
Tug 0.22 0 4.44
Fishing 0.12 0 2.09
McFadden pseudo R? 0.32 Adjusted McFadden pseudo R? 0.31
Log-likelihood —550.54 AIC 1115.1
Model 2: Vessel age

Std. beta Std. error Wald
Marina 0.44 0.04 16.97
Traffic 0.42 0 9.81
CoastDist -0.43 0.05 -9.43
McFadden pseudo R? 0.3 Adjusted McFadden pseudo R* 0.3
Log-likelihood-564.65 AIC1137.3
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Regional models

Building on these results and visual analyses, and guided by
expert opinion, the study area was subdivided into three regions, as
shown in Fig. 4. Partitioning of the study area not only addresses
spatial heterogeneity, but also yields more accurate and reliable
models of the local processes associated with oily discharges in
each region. Regional models remain based on 5 x 5 km grid cells;
however, direct comparisons between global and regional models
should be avoided, in consideration of the MAUP and ecological
fallacy problems (Fotheringham & Wang, 1991; Robinson, 2009;
Tranmer & Steel, 1998).

The selection criteria used for the entire region lead to prefer
Model 1 for all the regions.” The three regional models are sum-
marized in Table 4.

Since each of the three regional models and the global model are
estimated on a different number of observations, a comparison of
the models based on AIC or other statistical indices would be
problematic; therefore, the adjusted McFadden pseudo R? was used
as an indicator of fit. The local regression for Region 1 presents the
highest McFadden pseudo R? value, showing a remarkable
improvement over the global regression, whereas Regions 2 and 3
present similar McFadden pseudo R? values. Notably, Region 1
contains a larger number of grid cells, approximately twice as many
as each of Region 2 and Region 3 (see Fig. 4).

The three regional models appear to identify local processes
associated with oil discharges more clearly than the global model.
In Region 1 oily discharges are clearly associated only with recre-
ational and passenger activities, mostly represented by recreational
vessel traffic, proximity to the coast, and passenger traffic; the
variable “small harbors” is borderline significant, probably due to a
more sparse presence of these facilities in the northern area. Tug
traffic was excluded from the model due to its high (negative)
correlation with recreational traffic; cargo, tank, and marina were
not significant, therefore sequentially removed in the selection
process. Even though McFadden pseudo R? values were adjusted for
sample size and number of predictors, the larger sample size may
have a role in improving the goodness of fit of the model for this
region. Region 2 features the largest set of predictors, reflecting the
broader range of activities that take place in the area. The number
of discharges is the highest in this region, at least three times as
many as in each of the other regions. This is also the only region
where extensive positive spatial clustering was detected (Fig. 2).
This set of variables is similar to the variables significant in the
global model, probably because of the intensity of the phenomenon
in this region. Tug traffic is only significant in this regional model,
likely due to fact that tug boats are the most common mode of
commercial transportation along the coastal routes and inner
passages. Cargo, passenger, and tank traffic were not significant,
therefore sequentially removed from the model. Finally, Region 3,
with the lowest number of observed discharges, features only two
predictor variables: cargo and fishing traffic. Marinas, recreation,
and tug traffic were excluded from this model because of their high
cross-correlations; tank traffic, passenger traffic, and distance from
coast were not significant, therefore sequentially removed through
the selection process. The spatial distribution of the regional model
residuals is shown in Fig. 4: only the model for Region 1 presents

5 Notably, Model 2 produces slightly better statistical results for region 1
(AIC = 238.09; LoglLikelihood = —115.04; pseudo-R?> = 0.51; with significant vari-
ables, rank- ordered, “built before 1992”, “Distance from Coast”, and “Total Traffic
Hours”); however, Model 1 is still preferred and reported in detail, as it provides a
more clear set of predictors and can be more easily compared to the other regional
models.

Table 4

Regional regression models.

Region 1 model

Std. beta Std. error Wald
Recreation 0.19 0 6.4
CoastDist -18.19 0 —4.48
Passenger 0.08 0 2.85
McFadden pseudo R? 0.47 Adjusted McFadden pseudo R? 0.45
Log-likelihood-124.74 AIC 257.48
Region 2 model

Std. beta Std. error Wald
Marina 0.21 0.05 6.59
Recreation 0.21 0 6.28
Tug 0.28 0 4.75
Fishing 0.28 0 4.4
CoastDist —0.91 0 —4.37
McFadden pseudo R? 0.2 Adjusted McFadden pseudo R? 0.19
Log-likelihood-335.2 AIC 682.36
Region 3 model

Std. beta Std. error Wald

Cargo 1.76 0 3.93
Fishing 1.55 0 3.79
McFadden pseudo R? 0.13 Adjusted McFadden pseudo R? 0.1
Log -Likelihood —60.05 AIC 126.10

consistently lower residuals (in absolute value) than the global
model. The residual values of the models for Regions 2 and 3 are
lower than for the global model, however the intensity of oily
discharges is lower in these regions, hence it cannot be concluded
that these models perform better than the global model. The re-
siduals of all regional models exhibit lower clustering than the
residuals of the global model, suggesting that regional models
address spatial heterogeneity and yield more reliable results.

Discussion

Regional models performed better than the global model, sug-
gesting that oily discharges occurred in association with human
maritime activities that varied among regions. Most of the detected
oily discharges occurred close to shore, particularly in Regions 1
and 2. Discharges were negatively correlated with distance from
shore in the best-fit global model, and in regional models for Re-
gions 1 and 2. Oily discharge patterns are clearly associated with
number of marinas in a grid cell, as the predictor variable “Marina”
was retained in the best-fit global, and best-fit regional models for
both regions 1 and 2. In region 1, the positive residuals in the vi-
cinity of Prince Rupert are probably due to the anomaly of high
discharge values in an area otherwise characterized by low and
sparse discharge values; analogous considerations apply for areas
off northeastern and southwestern Vancouver Island.

Region 2 is a very complex area, both morphologically and in
terms of human use. This region is exposed to intense commercial
traffic traveling to and from major ports and terminals in Vancou-
ver, Puget Sound and along the southern coast of the Strait of Juan
de Fuca. The Port of Vancouver is large by any standard, with the
fifth largest container throughput in North America (AAPA). Not
surprisingly, this region exhibits the highest clustering and the
highest number of observed discharges, in an area that is just over
half the extent of each of the other regions. The pseudo R? of this
model is slightly lower than the global model. Compared to the
global model, it contains almost the same set of predictors; how-
ever, the relative contribution of each predictor is different, as
indicated by the coefficient associated with each variable. The
model for this region does not include surveillance effort as offset
variable, as the coverage by the NASP program is quite consistent
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(i.e., little variability for the model to test) over the entire region,
and apparently complete.

Although the models performed well, there was a significant
amount of variability in detection rates that was not captured with
our suite of predictor variables. The most obvious explanation
would be that drift moved oily discharges before detection
occurred, producing error associating these discharges with po-
tential sources. Hind cast trajectory modeling of detected oily dis-
charges may reduce this error, though it would be difficult to
estimate the length of time between detection and the oily
discharge occurrence. As well, we did not include variation in type
of oil discharged or conditions that might affect weathering and
thus the persistence of an oily discharge. Persistence can affect the
detectability of an oily discharge by the NASP crew, biasing our
results. For example, oily discharges associated with recreational
activities are likely highly refined petroleum products such as
diesel or gasoline. The higher volatility of these products results in a
lower probability of persisting long enough to be detected by NASP
when compared to heavier, less refined products such as bunker
fuel spills associated with larger commercial vessels. Another po-
tential explanation would be that important factors were not
included in the models. There is a paucity of data on both the
fishing and recreational vessel activities because they generally are
not tracked by marine traffic control systems, such as Automated
Identification System (AIS) and radar. Even if fishing activity is
covered by marine traffic control systems, their fishing locations
are protected by Canadian federal legislation (“Privacy Act”). There
is some anecdotal evidence that suggests oily discharges are asso-
ciated with these two activities, but this is not conclusive and
should be modeled specifically. Associating oily discharges with
marinas is consistent with this anecdotal evidence (these marinas
are used by both fishery and recreational vessels), but this only
provides a piece of the puzzle.

The distribution of the response variable of this study imposed a
number of limitations to the use of common standard and spatial
statistical methods. The variable contains a very large number of
null values over the entire Canadian Pacific EEZ. In this paper we
used Poisson regression; however, alternative modeling techniques
can be used to model surveillance data. One such alternative is the
log transformation of the dependent variable and the consequent
estimation of a linear model on the transformed data (Gujarati,
2003). Our study may lend itself well to Bayesian approaches as
well (for example see Szwed, van Dorp, Merrick, Mazzuchi, & Singh,
2006). The equidispersion assumption was met by restricting the
analysis to near-shore discharges and reducing the study area by
means of a minimum convex polygon. Further studies, considering
the entire area, may need to employ other analytical methods, such
as zero-inflated (Lambert, 1992; Zuur, Saveliev, & leno, 2012 , 324
pp.) or hurdle models (Heilbron, 1994; Mullahy, 1986), or binomial
models with an integrated parameter for dispersion correction
(Zeileis, Kleiber, & Jackman, 2008). When modeling a data set with
a large number of zeros, it is important to determine first what
types of zeros are present in order to select the appropriate
analytical approach (Martin et al., 2005). For example, if the excess
of zeros is due to poor or inadequate sampling, it is important to
collect information on factors that affect detectability: factors such
as visibility, ocean surface conditions, height of aircraft, and
observer for example. Much of these data are not currently being
collected consistently by NASP (Serra-Sogas, 2010).

The application of spatial analytical methods to Poisson-
distributed data remains problematic, despite recent progress
(Griffith, 2010). Here, the use of geographically weighted or
spatially autoregressive generalized Poisson models appeared un-
warranted, given our Moran’s I and Getis-Ord G scores. However,
future work should consider the use of spatially autoregressive

models, as the autoregressive term may be a way of modeling
spatial uncertainty induced by wind and currents for example. The
use of regional models to address spatial heterogeneity appears to
be a very valuable alternative to geographically weighted models.
Although the regional approach improves the model fit only in one
of the regions based on pseudo R? values (Region 1), this approach
reduces the clustering of residuals in all regions, yielding more
reliable models. These regional models constitute more effective
decision support tools, because of their increased reliability and
because they provide a more detailed analysis by identifying pre-
dictors that are locally associated with the response variable.

As mentioned in the introduction, most of the literature
modeling oil pollution occurrence and impacts has focused on
accidental discharges associated with large vessel traffic. We
believe this is the first published attempt at modeling the high
resolution (5 x 5 km) spatial probability of occurrence of smaller,
often unreported oily discharges based on aerial surveillance data.
Furthermore, although external predictor variables have been used
to model accidental discharges from large vessel traffic (i.e., Hong,
Chen, & Zhang, 2010; Meade et al., 1983; Ketkar & Babu, 1997; Pelot
& Plummer, 2008), we believe our study is the first attempt to
model oily discharge occurrence probability using an exhaustive
suite of external predictor variables.

The reasons for predictive modeling of oily discharges are
manifold. Surveillance effort is patchy in time and space, and the
environmental consequences of detected oily discharges typically
involve some form of extrapolation to areas not covered sufficiently
by NASP, particularly to areas considered sensitive to exposure of oil
pollution. The identification of factors significantly associated with
the spatial-temporal patterns of oily discharges could inform the
extrapolation to areas with less surveillance. Additionally, explan-
atory variables or predictors that are significantly associated with
spatial patterns of discharge rates can be used to account for spatial
variability, allowing for greater precision in estimating spatially
explicit trends in discharge rates over time. Increasing the precision
or reducing the coefficient of variation of estimated means in-
creases the power of statistical test for detecting change
(Gerrodette, 1987). Our approach to increasing precision in esti-
mated discharge rate is essentially a model-based approach for
increasing statistical power as described by Buckland et al. (2012).
Model results can also be used to inform NASP efforts to identify
human activities most associated with oily discharge patterns, and
identify areas where NASP coverage may need to be increased.
Finally, spatially explicit estimates of discharge rates can be used to
monitor the effectiveness of programs and policy aimed at reducing
the rates of discharge of oily pollution.

Conclusion

For several years the national aerial surveillance program
(NASP) has detected oily discharges in Canadian waters. This study
is a first effort to analyze the spatial patterns of discharge and their
association with human marine activities. Discharges occurring in
the Canadian Pacific Ocean were modeled using Poisson regression.
To address the complexity of the study area and observed spatial
heterogeneity, three partitions of the area (‘regions’) were identi-
fied and modeled separately. These regional models were im-
provements to the global model, by yielding more accurate and
reliable estimates, and by more clearly identifying predictors
associated with oily discharges locally. The northern coast exhibits
a sparse pattern of oily discharges, associated with recreational and
passenger traffic, and a similar pattern of discharges off the south-
west coast of Vancouver Island is associated with commercial and
fishing traffic. The highest intensity of discharges is observed in the
Strait of Georgia; this region exhibits the largest set of predictors,
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including commercial, fishing, and recreational traffic. All the
models tend to underestimate the response variable, likely due to
spatial uncertainty associated with ocean drift, insufficient sur-
veillance coverage, and other potential predictors, not considered
in this study.

As NASP data are available for all the Canadian coasts, future
studies can extend the analysis to the Atlantic coast, the Great Lakes
and the Arctic region, as well as compare the results obtained for
each coast. These studies should also consider larger geographic
areas, ideally the entire Canadian economic exclusive zone (EEZ).
For such analyses, the methods used here may be limited, but
promising alternatives include negative binomial models, zero-
inflated and hurdle Poisson, or Bayesian models. Future directions
of this study should also consider more explicit spatial modeling
techniques, including geographically weighted and spatially
autoregressive generalized models.
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