7

Lightweight Formal Analysis
of Requirements

Andris Pataricza!, Imre Kocsis!, Francesco Brancati?,
Lorenzo Vinerbi? and Andrea Bondavalli**

'Dept. of Measurement and Information Systems, Budapest University

of Technology and Economics, Budapest, Hungary

ZResiltech s.r.1., Pontedera (PI), Italy

3Department of Mathematics and Informatics, University of Florence,
Florence, Italy

*CINI-Consorzio Interuniversitario Nazionale per I'Informatica-University
of Florence, Florence, Italy

Requirements are the core work items of the design and checking work-
flow target safety critical systems. Accordingly, their completeness, com-
pliance with the standards and understandability is a dominant factor in
the subsequent steps. Requirements review is a special kind of Independent
Software/Systems Verification and Validation (ISVV). The current chapter
presents methodologies to use lightweight formal methods supporting experts
in a peer review based ISVV.

7.1 Introduction

The quality of requirements dominates the efforts of a design process especi-
ally in the case of safety-critical applications (see Chapter 6). As described
in the previous chapter in details, the effort and quality of the ISVV heavily
depend on the input quality of the work items submitted for review by the
customer. Frequently a significant part of the efforts is wasted to basic activi-
ties similar to the data cleansing phase in the field of data analysis regarding
their level and ratio (which can reach a few tens of percents). For instance, ill-
structured documents, inconsequent and non-conformant with the standards

143

144 Lightweight Formal Analysis of Requirements

use of terminology all require expert effort to be checked although they do
not form the essence of the assessment.

Correspondingly, the exhaustiveness of the checks performed has a major
impact on all the activities relying on the completeness, standards com-
pliance and integrity of them. This way, requirement review has to be as
thoroughgoing as possible. However, this part of the workflow benefits only
to a moderate extent of the advantages of Model-Based System Engineering
(MBSE) and formal methods due to the typically conservative (informal) or
at most semi-structured text based formulation used mostly in the industry.

The objective of the current chapter is the presentation of an approach
targeting a gradual introduction of MBSE and formal methods to requirement
checking. The introduction of easy-to-use methods simultaneously assures
an increased productivity and quality without the need of a single step
introduction of a complete framework or specialized skills in formal methods.

The chapter introduces the basic modeling concepts as defined by stan-
dards. The subsequent section presents techniques carrying out extended
syntactic analysis over the requirement documents. After addressing change
management in iterative requirement design/modification-checking work-
flows the closing section deals with the integration of the measures described
into the ISVV.

7.2 Objective

Our objective is supporting dominantly peer review based ISVV executed
by SME:s. Typically, highly-qualified experts constitute the personal of such
companies. Reviewers usually are very familiar and knowledgeable of the
application domain without deep skills in advanced formal methods.

Accordingly, our evolutionary approach is less ambitious, than a revolu-
tionary one exploiting the full potential of mathematical proof of correctness
methods. It follows the paradigm of hidden formal methods in which
the user of the tool gets the support from a built-in intelligence, but the
working environment has no or very moderate changes compared to the
traditional one.

Our approach does assume either an end-to-end MBSE or a complete
automation of the workflow; however, it can contribute to a significant effort
saving by reducing the overhead originating in document cleaning, managing
the progress of the assessment including checking its completeness.

This way, the efforts of the experts can be focused on the hardcore
problems related to technical evaluation deliberated of the majority of the
pure mechanical tasks not requiring their expertise.

7.3 ReqlF and Modeling 145

The subsequent sections address the three major questions in improving
ISVV:

* How to create interchangeable and well-structured documents out of
traditional unstructured ones?

* How to create a domain-specific working environment out of a tradi-
tional one by adding quality improvement and checking measures based
on hidden formal methods?

* How to improve the convergence of requirements by change manage-
ment in iterative design-ISVV workflows?

7.3 ReglF and Modeling

The requirements play an important role in cooperating between final product
manufacturers and part suppliers, as these provide the basis of outsourcing
and acceptance tests between them. This way, the exchange of requirement
between cooperating partners is a crucial part for instance in the automotive
industry demanding relatively low interaction times.

The Object Management Group (OMG) developed an open standard [1]
called Requirements Interchange Format (ReqlIF) to assure interoperability
between cooperating partners (see Figure 7.1). This standard is open toward
different design and checking technologies thus it is a natural candidate to
information exchange between designer and independent software/system

. Partner 1 Partner 2
Export of
SRS Snapshot
RM-Tool A — — R RM-Tool B
i Importer — exporter €
$ Customer 1 System
H Requirements Spec. (CRS) 1 Eventdriven, Requirements Spec. (SRS)

+ asynchronous
 data exchange
via BXISUHg
mechanisms

Ié
RegqlF- ReqlF
> exporter ._) Importer

4 Export
1 CRS Snapshot
'

= ~ —
Repository

Figure 7.1 ReqlF based information exchange.

146 Lightweight Formal Analysis of Requirements

verification and validation (ISVV). OMG ReqlF provides a well-regulated
set of rules and protocols for cooperation.

Requirements Interchange Format has wide support regarding open and
commercial requirement design and management tools. Also, leading vendors
put requirements as the core entity of the entire design and checking work-
flow. Advanced MBSE based frameworks integrate requirement management
with design and test. Traceability is a priority concept in ReqlF.

The following summary presents the main benefits of ReqlF as an
exchange model language for ISVV based on the top-level constructs in its
meta-model.

Requirements Interchange Format supports the exchange of core content
labeled by a header sufficiently detailed to identify the document itself and
optionally tool specific extensions from other information sources, like results
of evaluation (Figure 7.2).

The specification is the core content of a ReqlF instance associated with
specification types, objects and the relations between them (Figure 7.3). The
notion of links (called here “SpecRelations™) assures the traceability of the
requirement model to other artifacts. The metamodel supports hierarchical
composition of requirement sets, like a well-structured description of safety
cases derived by specialization from a standard, e.g., as an evidence list and
interlinked supportive arguments.

E ReqIFContent [ReqIFToolExtension £ ReqIFHeader

&2 extensions : EObject = comment: EString

7 creationTime : DateTime
7 identifier : ID

= repositoryld : EString

7 reqFToolld : EString

7 reqlFVersion : EString
7' sourceToolld : EString
T title : EString

[0..*] toolExtensions

E ReqlF

= lang : langType | [1..1] theHeader

[1..1] coreContent

Figure 7.2 Exchange document structure.

7.3 ReqlF and Modeling 147

Identifiable

desc: sting [0..1]

7z
D + identifier ID
+ lastChange: dateTime
+ longName: sting [0..1]
SASCEIAY Attribute Value
Attribute Definition SpecElementWithAttibutes : VRIS ¥
+specAttibutes Zﬁ ZF %
Specification SpecObject SpecRelation
+specType RelationGroup|
1
SpecType +specRelations|
0. 0.* o.*

— - +type |

AN ificationTypq
P
sSpecobjectiypdl _*YPe\/!
SpecRelationTypd
+type\[/1

RelationGroupType|

n

Figure 7.3 Specifications, requirements, and attributes.

The most popular infrastructure for ReqlF is Eclipse RMF (Require-
ment Management Framework) [2]. ProR [3] an open-source editor to edit
structured requirement documents.

Definition of data types, including enumeration types, supports the
creation of a domain-specific MBSE-styled model representation.

For instance, the different Safety Integrity Levels form a core enumeration
datatype of the form of {SILO0. .. SIL4}. Traditional type checking assures the
avoidance of omissions or ill-specified values in the corresponding field.

Syntax-driven editors constrain the designer to use only such values in the
field, that comply with the datatype definition.

However, turning a column in an Excel worksheet from the general
string type to one out of the predefined values forming the enumerated
data type implements simply the same principle. Such constraints simply
prohibit entering a wrong value into the instance model corresponding to the
application under development.

Moreover, this tiny example indicates a further opportunity in separating
the duties: If a domain and modeling specialist designs the Excel template, he
could embed the terminology, structure, etc., from the standards, as well. The
application designer filling out the template with the content corresponding to
the particular application under development will face his traditional working

148 Lightweight Formal Analysis of Requirements

environment with the hidden type model and check already embedded by the
expert.

At the same time, the example pinpoints the limitations of a pure ReqlIF-
based working environment design approach, as well. Implementation of
complex relations necessitates low-level (e.g., VisualBasic) programming and
it benefits of modeling only by starting from a proper blueprint, which implies
all the drawbacks of traditional programming.

Bidirectional communication between cooperating partners was a pri-
mary design objective of the OMG ReqlF standard. In the context of ISVYV,
this offers the opportunity of using it in the ISV V-to-developer communica-
tion for feeding back the review results in an entirely standards compliant
way. This way, the iterative process can benefit from the rich navigation and
traceability supporting features of Reqlf.

7.3.1 Domain Conceptualization

The industrial success of ReqlF in the inter-party communication in product
design makes it a natural candidate in developer-to-assessor cooperation
and model-based ISVYV, as well. Moreover, as ReqlF documents carry both
the instance model and its respective metamodel, they can harmonize of
requirement design and ISVV.

At the top end, ReqlF-based requirement modeling serves as the starting
point of sophisticated methodologies aiming at correctness by design (like
RODIN - Rigorous Open Development Environment for Complex Systems
[12] transforming specifications into formal Event-B models). However, the
introduction of heavyweight formal methods into ISVYV, a single phase of
the product development process faces serious obstacles regarding skills, and
in the overwhelming majority of ISVV tasks, it has an improper modeling
effort/benefit ratio.

Our approach uses ReqlIF similarly for information exchange, as this
assures a well-structured requirement set. Lightweight modeling should
complement the methodology of customization of the ReqlF metamodel
and work environment of the requirement composer to a particular prod-
uct or product family using MBSE. Finally, the customized work envi-
ronment accommodates traditional, manual, design, and V&V methods,
as well.

Ontologies serve as primary candidates for semantics based unification
and conceptually clean metamodel design [4]. Ontologies are formalized

7.3 ReqlF and Modeling 149

vocabularies of terms covering a specific domain. They define the meaning
of terms by describing their relationships with other terms in the ontol-
ogy. They classify the terms that can be used in a particular application,
characterize possible relationships, and define possible constraints on their
use by providing formal naming and definition of the types, properties, and
interrelationships [5].

Knowledge organization, complexity reduction, and problem solution all
use ontologies for a variety of fields ranging from the Semantic Web, through
systems and software engineering to such non-technical fields, as library
science. The main use case of ontologies is conceptual data integration.

The driving force behind their standardization of formats (RDF and RDF
Schemas, OWL) is the World Wide Web Consortium (W3C). The formats
support interoperability, information fusion, and interchange.

MBSE largely depends on metamodeling (UML and derivatives). Meta-
modeling and ontologies are two different, but mutually transformable
approaches! to modeling language and model construction. Both paradigms
focus on the description of the relations between concepts, checking of the
compliance of instances (individual models) with their respective parent
metamodel or upper ontology.

In contrary of usual metamodels, ontologies have a precise semantics
regarding mathematical logic, for instance in ISO/IEC Common Logic [6].
Ontology tools have built-in functions checking the completeness and con-
sistency of the models, and the correspondence of subontologies (speciali-
zations) and instances to their upper ontology (subsumption check).

The gradual introduction of hierarchical and relational elements into
the model following a vocabulary—taxonomy—ontology process results in
an ontology corresponding to a particular standard. Such an ISVV ontol-
ogy consolidates notions and their mutual relations defined in standards as
concepts.

Ontology processing has supportive mechanisms for information fusion
by virtually merging multiple, physically separate ontologies. Starting from
multiple ontologies representing different viewpoints facilitates aspect-
oriented modeling.

!"Theoretically, not all ontologies have an explicit metamodel counterpart, but the subclass
of ontologies referred in the current chapter is subject of metamodeling based design. For
instance, the Object Management Group (OMG) offers a bridge in the form of an “Ontology
Definition Metamodel” [13].

150 Lightweight Formal Analysis of Requirements

The requirement set related to a particular application (legacy documen-
tation, source code, and comments, etc.) are then instances of this ontology.
This way the interdependence of entities and V&V steps managing them is
explicit.

7.3.2 Integration with Existing Practice of ISVV

A (slightly simplified and obfuscated) real-life example taken from a railway
hazard analysis project serves as motivating example.

The railway is a safety-critical domain; various safety measures designed
into the system address the hazards that pose an unacceptable risk; these have
to be proven to mitigate the various risks to an acceptable level.

The assignment of so-called Safety Integrity Levels ranging from O to 4
classify safety instrumented systems and functions. Each level has an associ-
ated interval of probability of failure on demand of the safety function, what
translates to an overall risk reduction capability.

Designers of the original documentation used a plain, unstructured list
of hazards as the input for risk analysis (Figure 7.4). However, structuring
the potential causes indicates clearly its flaws. At first, the introduction of
the abstract concepts “Subject” and “Impact” separates the different aspects
related to a hazard event (Figure 7.4).

Aspect weaving in the form of interrelating them derives the individual
categories, like “Line Controller Death.” The inclusion of “No Hazard Event”
and “Fire” do not fit into the scheme. The list of hazards is still incomplete
w.r.t cardinality constraints. For instance, the standard may require the com-
plete coverage of all potential hazard events by evaluating all “Subject” and
“Impact” combinations. Automated reasoning reveals that the “Staff OnBoard
Death” category lacks the considerations.

— Collision

{— Derailment

Passenger

{— PassengerDeath Il Line controller N
hasSubject %
— SUBJECT ; StaffOnBoard \
{— Passengerinjury ‘ G)
! LineControlle
HAZARI AZA i pi
HAZARD N |- Death L
2| EVEN'II’) ~— LineControllerDeath EVENT et : /,, _________
] =
hasImpact L -
{— LineControllerinjury = 4Pt \ /

Equipment Derailment

[— StaffOnBoardInjury

— Fire

“— NoHazardEvent

Figure 7.4 Unstructured and structured model.

7.3 ReqlF and Modeling 151

At the same time, this model is easy to maintain. For instance, after the
introduction of the notion of a “Driver” as a separate category, inherence
mechanisms can derive the two subcases “Driver Death” and “Driver Injury”
without touching other parts of the model.

Moreover, the design and ISVV workflows may rely on external infor-
mation sources, as well. Information fusion necessitates the unification of
the concepts of the different data sources by establishing the correspondence
between their notions.

For instance, risk analysis should cover all the hazards above a given fre-
quency of occurrence, which necessitates the inclusion of historical statistical
data from external data sources (like [14] in Figure 7.5). Their integration
into the ontology can follow the same unification approach, as in [7] based
on mapping the notions in different models after some elementary operation
(like calculating totals when aggregating overly fine granular statistical data).

Note, that the process of information fusion is an important engineering
task and not a pure semantic matching of two models. Apparently, resolution
of the two models differ merging different categories in the statistics into a
single concept in the model of hazard events assumes a similarity in their
occurrence and impacts. Aggregation of categories is at the same time an
input specification for the underlying summation of frequencies of their
occurrence.

Train accidents
Slip trips and falls
Platform train interface
Assault and abuse

- © Passenger
On-board injuries

Contact with object or person

: Struck by train on station crossin,
© Accidental y B

Other passenger fatalities

® Cause © Workforce -

© Public)+

| ©Suicide

Figure 7.5 Causality statistics structure.

152 Lightweight Formal Analysis of Requirements

Such an interrelation of statistical data and the input model of hazard
analysis support augmentative maintenance of the model. The appearance of a
new category in the statistics (e.g., security) with no counterpart in the hazard
event ontology pinpoints that the later one is not up-to-date.

7.4 Requirement Change Propagation

Our motivational example comes from the railway domain loosely based
on an actual change scenario, similarly as the example above. It highlights
the importance of lightweight formal methods from a further aspect, change
management. For didactical as well as legal reasons, the case presented here
is very heavily simplified and sanitized from multiple aspects.

The SIL of a function has a fundamental impact on its development cost
and time, as higher levels require increasingly sophisticated V&V activi-
ties. Consequently, during requirement change impact analysis it is essential
to correctly identify whether a requirement change indirectly causes SIL
changes in a specification through change propagation.

7.4.1 Original Specification

Our example demonstrates how the changes in the requirement set of a
Central Traffic Control system have a propagation effect in the whole
specification.

Keeping station area traffic safe is a complex problem involving many
tracks and switches in a complex manner, and the risks stemming from a
significant number of hazardous situations have to be mitigated. Trackside
signals regulate station area traffic allowing or denying entry to a track or
(switching) point. Classically, the control of the traffic through the signals
has been performed by local personnel and systems. The main means of
risk mitigation is signal interlocking: a separate system overrides any traffic
control command that would lead to a hazardous signal configuration. (For
instance, giving a “clear” signal at the same time at two entry points of an
interlocking.) Signal interlocking can be overridden in the local traffic control
system under strict operational rules, e.g., a switch with broken switch state
monitoring correctly halts traffic; however, to resume traffic, local personnel
has the situational awareness and authority of a temporal override of the
associated signal interlocking.

Traffic control has been and is being centralized worldwide To increase
operational efficiency, a Central Traffic Control (CTC) system manages the

7.4 Requirement Change Propagation 153

traffic at multiple stations. CTC can be an overlay to the existing systems
without substituting the local traffic control and the remote CTC “pushes
its buttons” instead of local personnel. Local signal interlocking is left
unchanged, too.

The “original” specification on Figure 7.6 represents a simplified excerpt
from the specification of such a system. Importantly, the CTC does not
have the full authority of local personnel; it is not allowed to issue signal

Original specification: no station signal interlocking override from CTC

Functional architecture

FA1 signal
interlocking

Safety goals Safety requirements

FA2 central
SR1 Interlocking traffic control
SG1 No train enters denies entry to
occupied tracks and »| occupied tracks and
points points, ur{Iess n HW architecture (incomplete)
override
| SiL4 SIL4 |
| station area traffic: L HW1 SiL4
I numerous further | - .. interlocking |«
| goast _ system
Changed specification: CTC can issue signal interlocking overrides
Functional architecture
Safety goals Safety requirements
: .FA1 sign-al
SR1 Interlocking interlocking
SG1 No train enters denies entry to
occupied tracks and > occupied tracks and
points points, unless in
override — FAZI central
SiL4 siL4 traffic control
SG2 Remote SR2 Ensure that HW architecture (incomplete)
interlocking override o | remoteoverride is
not issued ~] always issued as an
unintentionally intended command W1 SiL4
|__—,S"A I_,S"'4 interlocking [«
T~ 1 system
—_——— J

Figure 7.6 The original and changed specification in our example.

154 Lightweight Formal Analysis of Requirements

interlocking override (more generally, safety-critical) commands. As a result,
the process of setting up safety goals, decomposing them into safety require-
ments and mapping those onto elements of the functional architecture
identifies that it is SILO (not safety critical). On the other hand, notice how
the high-risk mitigation capability requirement (SIL4) is carried over from
the safety goal to the interlocking system.

7.4.2 Changed Specification

This specification has the chance to lead to a highly safe system that conforms
to the legal requirements on safety. However, an operator is also concerned
about operational efficiency. Let us assume that the operator finds the above
specification too restrictive; in many circumstances, override situations can be
managed acceptably safely, even if the override command is issued remotely.
However, some characteristic hazards have to be avoided [8]; one of them is
the CTC issuing override commands unintentionally. (The CTC is usually a
complex, software-based system, where operators manage multiple stations
of a geographical region with reduced situational awareness due to their
remote location.) This leads to the specification excerpt depicted in Figure 7.6
as the changed specification.

The key difference between the two specifications from change impact
analysis is that the central traffic control became a safety-critical component.
Risk mitigation assumes the absence of override commands issued by the
central traffic control unintentionally.? This change in SIL has further propa-
gating effects; the V&V activities associated with the architecture, interfaces
and implementing components of central traffic control have to be revisited.

7.4.3 The Change Impact Propagation Method

Requirement engineers have to evaluate the propagating effect of changes and
rework the specification accordingly. This task involves two major phases.

* Suspicion marking through change impact propagation. The directed
dependency graph of the specification is traversed starting from the
initial changes introduced into the specification. Dependencies and
requirements that may have to be changed as an effect of the original
change are marked as SUSPICIOUS. After that, specification objects

There are many ways to ensure this, regarding the operators as well as the software/hard-
ware system; discussing these is not in the scope of this chapter.

7.4 Requirement Change Propagation 155

that are connected to SUSPICIOUS ones are evaluated and poten-
tially marked, too in a transitive manner. Effectively, the SUSPICIOUS
marking is “propagated” in the reachability subgraph of the originally
changed elements. The resulting change impact cover — the subgraph
defined by the vertices marked SUSPICIOUS - is passed on to marking
processing.

* Processing marking. One by one, the suspicion-marking of the marked
dependencies and requirements has to be either accepted or refuted. If
accepted, the appropriate specification change has to be designed and
performed.

We are mainly concerned here with the first phase, although the value-
based change impact propagation we introduce gives guidance to the second
one, t0o.

* In practice, manually performing the first activity is a repetitive, time-
consuming and error-prone task even for moderate size specifications.

* The best of breed modern requirement management tools support
topology-based propagation: anything that is connected to a specifica-
tion element marked SUSPICOUS is SUSPICIOUS, too.

* Some modern tools begin to support type-based propagation. In this
case, marking is propagated only along the configured types of depen-
dencies and only upon the configured types of requirement attributes
becoming SUSPICIOUS.

Type-based propagation is a powerful tool to reduce the extent of the
change impact cover in the specification. Observe that on Figure 7.6, textual
description change along the <SG2, SR2, FAZ2, HWI1> trace does not
propagate into the functional architecture due to the safety requirement
mapping nature of the (SR2, FAZ2) link. On the other hand, SIL change
does propagate, as F'A2 got connected to a new safety requirement; thus, its
SIL has to be potentially (and in this case, also actually) modified.

Value-based propagation can further reduce the extent of the change
impact cover. In addition to types, it also takes into account the nature
of the propagating changes as well as the current values captured in each
requirement. Notice that HW1 has not to be changed, although FA2 has
been mapped to it. The reason is that although it got newly connected to
a (newly) high-SIL function, it already has the highest SIL level. Thus,
during marking, propagation can safely stop here. Figure 7.7 demonstrates
the relationship between the change impact cover extents and the resolution of
propagation.

156 Lightweight Formal Analysis of Requirements

Specification

Topology-based propagation
Type-based propagation

Value-based propagation

3 L
T d

Vv

Change Change Impact cover

Figure 7.7 Propagation resolution and computed change impact cover extent.

Independently of the category, we have to note that propagation does
not necessarily happen only “forward” or “downstream”. The change of a
requirement may impact its parent (containment-wise), not just its children;
and it may impact the sources of its incoming traceability links, not just
the targets of its outgoing ones. Tooling supports the user to configure the
directionality of propagation; this is a largely orthogonal concern to the
propagation resolution. For the sake of simplicity, in the following, we focus
on the forward direction unless otherwise noted.

7.5 Abstraction Levels of Impact Propagation

We have argued informally that there are three major categories of change
impact propagation from resolution. In this section, we describe and compare
these categories using a simple example.

Let us consider the rich requirement structure in Figure 7.8. In addition
to an SIL attribute, our requirements can have a priority attribute, too. In the
context of this example, priority expresses the importance of overall oper-
ational efficiency with the levels HIGH, MEDIUM and LOW. It aggregates

7.5 Abstraction Levels of Impact Propagation 157

REQ3
p=HIGH->MEDIUM
REQ1 P
s=SIL2 S
REQ4
REQ2 s=SIL4 > REQS
s=SIL4 s | p=HIGH =
|
REQ5
s=SIL4
p=LOW

Figure 7.8 Example rich requirement structure for propagation categorization.

some concepts, including maintainability, time to repair and cost of operation.
This priority concept is largely independent of SIL, and while the safety level
is an absolute requirement, priorities are subject to business considerations
and not critical to meet.

The example requirement model uses

* containment (parent relationship, denoted by P),
* SIL-mapping traceability links (denoted by S) and
* SIL and priority level attributes for the requirements.

For the purposes our example, we assume that the following consistency rules
are applied during requirement management.

* Rule 1. Any requirement that has an incoming “safety mapping” (S)
traceability link has an SIL attribute, and its value is the maximum of the
SIL values at the source requirements. For codification, the requirement
engineer should be able to derive this rule from the process definition
and the safety standards that have to be applied.

* Rule 2. A prioritized requirement must have only prioritized descen-
dants. This value can be only less or equal than that of the parent. For
codification, the requirement engineer should be able to formulate this
rule as a locally used and observed rule.

158 Lightweight Formal Analysis of Requirements

Let us emphasize that these rules are for demonstration purposes. SIL value
constraints along traceability links can be much more complicated in the
general case. The handling of priorities also represents only one possible
choice; among others, even its exact reverse may be justified in a specific
project. Our modeling approach and the subsequently introduced solution
method can support almost arbitrary rules. We also handle the potential
non-determinism of the rules.

The change we will be concerned with is modifying the priority of REQ3
from HIGH to MEDIUM. Figure 7.9 demonstrates propagation for the three
categories.

7.5.1 Topology-Based Propagation

We can propagate the change along the outgoing dependencies (containment
and traceability links) of the requirement, marking requirements transitively
as SUSPICIOUS. This approach is commonly referred to as topology-based
change propagation. In addition to attribute changes, the creation of new
dependencies as well as deletion of existing ones (through deleting the
source/target requirement or otherwise) is seamlessly supported.

7.5.2 Type-Based Propagation

The next level is type-based propagation. Dependencies have types, as well
as the attribute of the originally changed requirement that is changed. We
can filter propagation for dependency type as well as changed attribute
type. We reflect the changes that are allowed to propagate into the first-
level dependents by marking the dependents or some of their own attributes
as SUSPICIOUS. We can then perform propagation from this first level
transitively by propagating the requirement or attribute SUSPICIOUS mark-
ing using the same configurable filtering and configurable attribute marking
mapping mechanism. In the context of the example of Figure 7.8: for priority
changes, we propagate the SUSPICIOUS marking only along the descendants
of the changed requirement. Priority attribute markings are mapped into
priority attribute markings, as there is no logical dependency between the
two attributes in this case. Note that in addition to the orthogonal analysis of
attributes, this as well as the next category supports conjoint analysis — we
can express when the change of an attribute propagates to another.

Dependency changes are handled similarly to topology-based
propagation.

7.5 Abstraction Levels of Impact Propagation

REQ3
p:CHANGED
REQ1 P
s=SIL2 v
REQ4: REQ6:
REQ2 SUSPICIOUS s | suspicious
s=SIL4
p
Y
REQ5:
SUSPICIOUS
REQ3
REQ1
s=SIL2
REQ4
REQ2 s=SIL4 |»| REQS
S | s=siLa
s=SIL4
REQS5
s=SIL4
REQ3
p:CHANGED (DECREASE)
REQ1 P
s=SIL2 \ 4
REQ4
REQ2 s=SIL4 —Sb :Eﬁf
s=SIL4 p:SUSPICIOUS(DECREASE) —
P
y
REQ5
s=SlL4
p:LOW
REQ3
p:CHANGED(HI -> MED)
REQ1 pl """"""""""""" »
s=SIL2 29
REQ4
s=SIL4 p:SUSPICIOUS(HI -> MED) =
pl T C—:
.
REQS
s=SiLd-"
p=MEDIUM

1. topology-based
change impact
propagation

2. type-based
change impact
propagation

Dependency types,
Attribute/property

types

3a. Qualitative
value-based
change impact
propagation

Value change types
Local current values

3b. Specific
value-based
change impact
propagation

Enforcing value
consistency
constraints

Figure 7.9 Change impact propagation categories.

159

160 Lightweight Formal Analysis of Requirements

7.5.3 Value-Based Propagation

Type-based propagation is a powerful tool for controlling the extent of
change propagation in specifications that have a dense dependency structure;
however, it still does not take into account the kind of the change in the value
domain. Change can be described either qualitatively or in specific terms;
a qualitative description for priorities would be e.g. declaring its increase
or decrease, while the specific description is either the new value or the
old-new value pair. We establish the category of value-based change impact
propagation with these two subcategories.

In the qualitative case, observe that if Rule 2 is known, it means that the
priority increase change of a parent does not need SUSPICIOUS-marking
on the children. However, when it decreases, priorities in the children may
have to be revisited. We can say even more: when the priority at the next
level is HIGH, we are certain that changes are necessary; conversely when
it’s LOW, we are certain that propagation stops here. A somewhat similar
qualitative logic exists for the SIL mapping in our case; at level 4, any
increase upstream will not have any impact, while a decrease may require
requirement reconsideration.

The downside is that the rule set that is to be used has to be defined;
however, with predefined templates, this promises to be a manageable
overhead.

The next logical step is to consider propagating the specific change and
computing the specific local changes that may be necessary to be made. We
call this approach specific value based change propagation. On paper, this
idea seems not too far-fetched (see the example in Figure 7.9). However, it
requires formulating explicit, value-specific consistency rules. More specifi-
cally, propagation needs value change consistency rules that connect allowed
changes in localized requirement contexts (in the simplest, the allowed
attribute co-changes at the two ends of a typed link). However, it is easy
to see that the most of such change consistency rules can be transformed into
value-specific specification consistency rules and vice versa. In this last case,
the line between propagation and marking processing becomes very blurred,
as essentially specific change candidates are computed as a marking during
propagation.

We treat this last category as a theoretically interesting option; however, it
is one that has little immediate value to the practice in an industry that doesn’t
even use type-based change propagation in a widespread way yet.

7.6 Resolution Modeling with CSP 161

We have conducted an analysis of a sample of the best-of-breed require-
ment management solutions, to determine the extent and sophistication to
which they support assessing the propagation of requirement change impacts.
Topology-based propagation seems becoming available. Type-based prop-
agation is still a novel feature, available, e.g., in Rational DOORS Next
Generation. Value based propagation (qualitative or otherwise) is practically
non-existent yet.

7.6 Resolution Modeling with CSP

To establish a common, computable framework for the first three categories
above, we define them declaratively as finite-domain Constraint Satisfaction
Problems (CSPs) [9]. The motivation is that many sensitivity analysis tasks
in error propagation assessment and test generation are known to be definable
and also solvable this way — and tracking the propagating effect of require-
ment changes is very similar to tracking the potential effects of faults in a
system.

In CSPs, a finite set of variables, each with a nonempty domain, is
subjected to a set of constraints. Each constraint is a relation that specifies
the permissible value combinations for a subset of the variables; a solution
of the CSP is such a value-assignment of the variables that satisfies each
constraint. An important category of such problems is finite-domain CSP, or
csp(FD); in this case, the variables are discrete and have finite domains. This
way, csp(FD) expresses combinatorial search style problems.

The power of csp(FD) is that it can be used to declaratively specify a
problem and letting one of the mature, optimized and very sophisticated
existing tools to look for a solution (or enumerate all solutions). Tools widely
recognize a standard set of composable “simple” constraints (linear arith-
metic equalities and inequalities, Boolean arithmetic, etc. over the declared
variables) and so-called global constraints, too. The latter involve a poten-
tially large number of variables and need specific algorithmic optimization
(for an exhaustive list, see the Global Constraint Catalog [10]). Constraint
problems have a widely recognized standard representational language in the
form of XCSP3 [11].

Change impact propagation problems can be easily represented as a
CSP. We declare the marking of each requirement, attribute and dependency
(containment and traceability links) as a variable; define the possible marking
value set for each; describe propagation as constraints and lastly introduce
the constraints for the performed changes. Table 7.1 gives an outline of this
process.

162 Lightweight Formal Analysis of Requirements

Table 7.1 Comparison of change impact propagation categories

Constraints for the Dependencies

Requirement/
Dependency Marking If Dependency d Further
Cat Literals with Type ¢ isthen Constraints
1. Regs: Not DELETED Target of d not Only the actual
CHANGED, or ADDED INTACT changes can be
SUSPICIOUES, CHANGED,
INTACT h fdi dis DELETED,
Attributes: N/A ey SUSPICION. ADDED
LINK Maximize the
number of
Dependencies: Not INTACT Target of d is INTACT
DELETED, ADDED, not INTACT markings
SUSPICION_LINK,
INTACT
2. Regs: N/A not DELETED or Attributes Only the actual
ADDED declared as changes can be
a-propagation CHANGED,
target for ¢ at DELETED,
Attributes: the target of d ADDED
CHANGED, attribute a at the not INTACT
INTACT, source not dis Maximize the
SUSPICIOUS INTACT SUSPICION. number of
LINK INTACT
Dependencies: a declared markings
DELETED, ADDED, propagation
SUSPICION_LINK, source for ¢
INTACT DELETED or Attributes at the
ADDED target declared
for ¢ creation or
deletion
propagation not
INTACT
3a. Regs: N/A Rule set that for each Only the actual

dependency type ¢, encodes the
relation expressing the together
permissible (or ruled out)

changes can be
CHANGED,
DELETED,
ADDED

7.7 Conclusions 163

Table 7.1 Continued

For each attribute: * source-side attribute marking values,
NOCHANGE, * target-side attribute marking values,
SUSPICIOUS_CHTYPEI, * dependency markings.
SUSPICIOUS -

CHTYPE2, ...

Dependencies: Rules allowed also to incorporate
DELETED, ADDED, current attribute values.
SUSPICION_LINK,

INTACT

A few things have to be noted on this framework. For topology- and type-
based propagation, the table describes only rules for forward propagation;
however, backward propagation rules can be introduced similarly. Notice that
type-based propagation introduces attribute marking and discards require-
ment marking; the latter can be incorporated (with some complexity increase)
or emulated by declaring all attributes suspicious.

For qualitative value-based propagation, due to the variability of the
rules (that is the intended goal), we can’t characterize propagation rules in
the same manner. Still, all practically important propagation intentions can
be formulated using standard CSP expressions. For instance, propagation
of priority increase suspicion for requirement R1 and R2 interconnected
through a link type t can be expressed e.g. as t_connected (R1l_p-
marking, R2_p.marking) AND Rl p marking == SUSPICIOUS_
INCREASE AND R2 p _current < HIGH— R2 p marking == SUS
PICIOUS_INCREASE.? That said, our ongoing work addresses creating a
domain-specific language that simplifies the creation of the sets of rules.

7.7 Conclusions

The OMG Requirements Interchange Format (ReqlF) assures interoperabi-
lity between cooperating partners. This standard is a natural candidate to
information exchange between designer and independent software/system
verification and validation (ISVV).

Using ReqlF facilitates (which is occasionally only the question of
asking the developers using top-end requirement design tools for providing

3Variables are typeset bold, value-literals are typeset italic and t_connected is a
constraint that we defined based on the specification.

164 Lightweight Formal Analysis of Requirements

the native ReqlIF model in addition to the derived documentation not contai-
ning the model) an immediate entry to the benefits of lightweight formal
models.

At the same time, OMG ReqlF provides a well-regulated set of rules for
the developer-ISVV interoperation and the communication of the assessment
results.

Traceability is a priority concept in ReqlF. The option of defining the
structure the document, introducing types and well-formedness constraints
are all major means to introduce the main concepts of domain-specific MBSE.

Similarly to development, where advanced tools can generate traditional
office-like documentation out of their internal ReqIFmodels, ISVV can highly
benefit from using RequlF as the core model for communicating ISVV
results.

Ontologies provide an easy way to overcome the limitations of
ReqlF regarding conceptual modeling. Ontology-based metamodel design
is a modern model development paradigm, as its standardized language
and development tools implement all the main concepts of complexity
management, like the composition of complex ontologies out of simpler
ones, hierarchical modeling and aspect weaving. At the same time, their
well-defined semantics allows using reasoners.

The simple mathematical background of ontologies, set theory results in
a low entry threshold related to skills. The built-in logic reasoners can check
the contradiction freedom of a requirement set (by a satisfiability test), and
its well-formedness (by a subsumption check), thus deliberating the ISVV of
tedious manual checks.

Ontologies are highly standardized. Model formats assure interoperabi-
lity; moreover, standard transformations exist to the world of metamodeling.
As ontologies provide an abstract representation of knowledge, automated
export and import tools exist between ontologies and knowledge storage
tools like structured semi-formal representations (Excel), relational, object-
oriented and graph databases.

Classically, requirement changes involve a significant effort and quality
cost, especially if the tooling provides no proper guidance for the reassess-
ment. Intelligent change impact analysis helps properly focusing the
assessment after a change by evaluating the propagating effects of the intro-
duced changes. In a properly structured requirement specification with a rich
traceability structure, algorithmic analysis can significantly reduce the extent
of the change impact propagation cover that analysts have to check.

References 165

References

[1] Object Management Group. (2017). Requirement Interchange Format
(ReqlF). Available at: http://www.omg.org/spec/ReqlF/ (accessed on
1 March 2017).

[2] Requirements Management for Eclipse. Available at: https://eclipse.org/
rmf/ (accessed on 1 March 2017).

[3] Eclipse. (2017). ProR Requirements Engineering Platform. Available at:
http://www.eclipse.org/rmf/pror/ (accessed on 1 March 2017).

[4] Knublauch, H. (2004). “Ontology-driven software development in the
context of the semantic web: An example scenario with Protege/OWL,”
in Ist International Workshop on the Model-Driven Semantic Web
(MDSW2004) (New York, NY: IEEE), pp. 381-401.

[5] W3C. (2009). W3C: OWL 2 Web Ontology Language Document
Overview. Available at: https://www.w3.0rg/2009/pdf/REC-owl2-over
view-20091027.pdf (accessed on 1 March 2017).

[6] ISO. (2007). ISO/IEC 24707:2007: Information technology — Common
Logic (CL): a framework for a family of logic-based languages.

[7] Pataricza, A., Gonczy, L., Kovi, A., and Szatmari Z. (2011). “A Method-
ology for Stand-ards-Driven Metamodel Fusion,” in Model and Data
Engineering: First International Conference, MEDI 2011 (Berlin:
Springer), 270-277, Obidos, Portugal, September 28-30, 2011. Eds L.
Bel-latreche and F. Mota Pinto.

[8] Tarnai, G., and Saghi, B. (2006). “Hazard and Risk Analysis of Human-
Machine Interfaces of Railway Interlocking Systems,” in 7th World
Congress on Railway Research, Montral, Canada, 4-8 June.

[9] Brailsford, S. C., Potts, C. N., and Smith, B. M. (1999). Constraint
satisfaction problems: algorithms and applications. Eur. J. Operat. Res.
119.3, 557-581.

[10] Beldiceanu, N., Carlsson, M., and Rampon, J.-X. (2012). “Global
Constraint Catalog, (revision a).” Available at: http://www.diva-
portal.org/smash/record.jsf?pid=diva2:1043063 (accessed on 1 March
2017).

[11] Frédéric, B., Lecoutre, C., and Piette, C. (2016). “XCSP3 Specifica-
tions — Version 3.0 Available at: http://www.xcsp.org (accessed on
1 March 2017).

[12] RODIN. (2017). Rigorous Open Development Environment for Complex
Systems. Available at: http://rodin.cs.ncl.ac.uk/ (accessed on 1 March
2017)

166 Lightweight Formal Analysis of Requirements

[13] Object Management Group. (2017). Ontology Definition Metamodel
(ODM). Available at: http://www.omg.org/spec/ODM/ (accessed on
1 March 2017).

[14] Government of the United Kingdom, Department of Transport.
(2017). Rail Accidents and Safety Statistics Tables. Available at:
https://www.gov.uk/government/statistical-data-sets/rai05-rail-accidents-
and-safety (accessed on 1 March 2017).

