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Weierstrassian Lévy walks are the archetypical form of random
walk that do not satisfy the central limit theorem and are
instead characterized by scale invariance. They were originally
regarded as a mathematical abstraction but subsequent
theoretical studies showed that they can, in principle, at
least, be generated by chaos. Recently, Weierstrassian Lévy
walks have been found to provide accurate representations
of the movement patterns of mussels (Mytilus edulis) and
mud snails (Hydrobia ulvae) recorded in the laboratory under
controlled conditions. Here, we tested whether Weierstrassian
Lévy walks and chaos are present under natural conditions
in intertidal limpets Patella vulgata and P. rustica, and found
that both characteristics are pervasive. We thereby show
that Weierstrassian Lévy walks may be fundamental to how
molluscs experience and interact with the world across a
wide range of ecological contexts. We also show in an easily
accessible way how chaos can produce a wide variety of
Weierstrassian Lévy walk movement patterns. Our findings
support the Lévy flight foraging hypothesis that posits that
because Lévy walks can optimize search efficiencies, natural
selection should have led to adaptations for Lévy walks.

1. Introduction

Lévy walks are a popular but controversial model of forager
movement patterns [1-4]. They comprise clusters of many
short steps with longer steps between them. This pattern is
repeated across all scales with the resultant clusters creating
fractal patterns that have no characteristic scale. The hallmark
of a Lévy walk is a distribution of step lengths with a heavy
power-law tail; p(I)~I7# with 1<u <3, where [ is the step

‘7

length and u is the power-law (Lévy) exponent (‘~’ means
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distributed as). The hallmarks of Lévy walks have, to some extent, been observed in the molecular
machinery operating within cells [5], bacteria [6,7], T cells [8], a diverse range of marine predators
[9-11], mussels [12,13], mud snails [14,15], honeybees and bumblebees [16,17], midge swarms [18],
the wandering albatross and shearwaters [19-21], human hunter—gatherers [22], and have even been
observed in trace fossils—the oldest records of animal movement patterns [23]. Their occurrence is often
attributed to the execution of an advantageous searching strategy in accordance with the Lévy flight
foraging hypothesis (LFFH) that posits that because Lévy walk can optimize search efficiencies, natural
selection should have led to adaptions for Lévy walks [1,2]. The key to understanding does, however,
lie with the elucidation of the underlying generative mechanisms. Many simple putative generative
mechanisms have been identified [3]. But these findings tend to challenge the LFFH, rather than support
it, because they suggest that Lévy walks arise freely from seemingly benign or innocuous behaviours.
This in turn suggests that their optimality, if it occurs, is fortuitous rather than the result of natural
selection.

Mud snails (Hydrobia ulvae) and mussels (Muytilus edulis) appear to be exceptions [12-15], since
the explanation of their movement patterns can be connected to the LFFH. These species appear to
approximate optimized Lévy walk searching patterns as tri-modal walks, i.e. by continuously switching
between three different modes of walking, each with its own distinctive average step length [13-15]. The
close resemblance with an optimized Lévy walk searching strategy is indicative of selection because it
seems to require that the switching rates and average step lengths be finely tuned. Tri-modal walks with
arbitrarily chosen parameters will typically not resemble any kind of Lévy walk.

The mud snails” tri-modal walk is, in fact, a truncated form of Weierstrassian Lévy walk [13].
Weierstrassian Lévy walks can be characterized by a hyper-exponential step-length distribution

-1 —1
p(l) = ”77 S gL exp (ﬁ) . (1.1)

=0

Note that a step drawn from an exponential distribution with mean length Lb/ is g times more likely
than is a step drawn from an exponential with the next longest mean. As a consequence, a walker will
typically make a cluster of g steps with mean length L before making a step of mean length bL, and so
initiating a new cluster. About g such clusters separated by a distance of about bL are formed before a
step of mean length b?L is made and so on. Eventually, a hierarchy of clusters within clusters is formed.
This scale-free pattern is the hallmark of a Lévy walk. The construction given in equation (1.1) therefore
provides a recipe for approximating Lévy walks as multi-phasic walks, an approximation that becomes
ever more precise as the number of modes (number of terms included in the summation) increases.

Mud snails and mussels have movement patterns consistent with the first three hierarchical levels
in Weierstrassian Lévy walks [13,15]. Truncation inevitably introduces characteristic scales that make
movement patterns scale finite. But unlike other finite-scale movement patterns variability around the
characteristic scales is huge and self-similar, and so movement patterns can retain the hallmarks of Lévy
walks over a broad range of scales [13].

The movement patterns of mussels [12] and mud snails [14] were recorded in the laboratory under
controlled conditions. A key open question is whether Weierstrassian Lévy walks and chaos are present
under natural conditions and so fundamental to how foragers interact and experience the world. Here,
we addressed this question by testing for the prevalence of Weierstrassian Lévy walks and chaos under
natural conditions, in the presence of environmental stimuli, in intertidal limpets Patella vulgata and
P. rustica. We then show that the programming for these Lévy walk movement patterns does not need to
be very sophisticated or clever on the organism’s part, as these movement patterns can be a by-product
of chaos. Many other putative biologically plausible mechanisms have been identified for the generation
of Lévy walk movement patterns [3], but in contrast with the chaotic pathway these tend to produce just
one kind of Lévy walk rather than a variety of Lévy walks. This is a crucial distinction because plasticity
is a prerequisite for the LFFH.

2. Foraging behaviours of intertidal snails

Movement patterns of intertidal snails are highly specific adaptations to the alternation of favourable
and unfavourable nictemeral and tidal phases. Intertidal snails are compelled to rest in refuges (often
home scars) during unfavourable phases to avoid predation and/or physical stress (e.g. dehydration)
and to move to graze on the algal film only when external conditions are favourable [24,25]. For
example, the limpet P. vulgata, an important algal grazer of northeast Atlantic rocky shores, is often
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active during nocturnal low tides and after each foraging excursion it returns to its home scar, although
considerable variability has been observed [26]. The limpets dwelling in the highest shore fringe
perform shorter excursions than those living in the lower fringe, and size-related variability was also
observed [27,28]. Patella rustica, on the other hand, live in the upper shore fringe of the cliffs of the
weakly tidal Mediterranean Sea and are only active when the upper shore is well splashed by waves
during storms [29].

3. Material and methods

3.1. Study areas and data collection

Patella rustica were monitored at Cala Galera (Italy) in autumn (8-11 November) 1988 and summer (8-9
July) 1989 during stormy weather. Patella vulgata were studied at Menai Bridge, Wales, UK in April and
November 1992. Following Della Santina et al. [27], we distinguish between ‘high shore” (HS) limpets,
zoned between 4.65 and 5.0 m above the level of the lowest low tide and ‘low shore’ (LS) limpets, zoned
between 3.9 and 4.4 m above the level of the lowest low tide.

Limpets from both populations were monitored using a motographic method described in full detail
by Chelazzi et al. [30]. A light emitting diode and a battery were glued to the shell and the position of the
animal was recorded by an automatic camera (Hasselblad 500 EL) placed on a column facing the limpets
resting positions. The camera was remotely controlled to shoot pictures at regular time intervals. Each
exposure lasted 5 or 10min (5 P. vulgata November; 10 P. rustica and P. vulgata April, see below) and
thus recorded the entire path covered by a limpet during that time. Individual paths were graphically
reconstructed from pictures and stored into a computer as sequential files of coordinates with reference
to an arbitrary origin, using a digitizer (figure 1).

Recordings of P. vulgata behaviour were carried out during nocturnal low tides, as previous
investigations have clearly demonstrated that at this location limpets are only active during low tide [27].
Limpets were monitored during four and five nocturnal low tides in April and November, respectively.
The activity of P. rustica were continuously monitored for several days but the periods a limpet spent
inactive (i.e. not moving) on its home scar were not considered in the analysis. These excursions usually
lasted 4-6h. More details on data acquisition and preparation for P. vulgata and P. rustica can be found
in Della Santina ef al. [27] and Chelazzi et al. [31]. We recorded the movement of 15 and 14 P. rustica in
November and July, respectively, while for P. vulgata 17 and 18 animals were monitored in November
and April.

3.2. Analysis of movements

Each foraging excursion is represented by a set of locations, or fixes, with respect to an arbitrary origin
on the shore and known temporal coordinates. Owing to the rigid homing behaviour of the two Patella
species examined in this study, an excursion is defined as a movement trajectory starting and ending on
the same resting site (the home scar). Movement trajectories were digitized without any a priori fixed step
length, to represent as accurately as possible limpets movements ([30] for details). For each individual,
we then aggregated regularly sampled snail tracks into sequences of ‘steps’. This was done using the
approach of Humphries et al. [19] in which the movement patterns are first projected onto the x- and
y-axes to create two one-dimensional movement patterns for each individual. Humphries et al. [19]
showed that the projection of a Lévy walk is itself a Lévy walk and that projection does not result in
non-Lévy walks being misidentified as Lévy walks and vice versa. Turns in these projections can then be
identified in an unambiguous way as occurring where the direction of travel changes. Without projection,
turns can only be identified by making reference to arbitrarily defined critical-turning angles.

The minimum step length was taken to be 1cm unless stated otherwise. We find that our
results to do not change significantly when this minimum length ranges between 0.5 and 5cm
(electronic supplementary material, §51). The step-length distributions were fitted to tri- or four-
modal exponentials corresponding to truncated Weierstrassian Lévy walks and to competing models
(exponential, bi-exponential and power-law distributions). Power laws are indicative of true Lévy
walks, exponentials are null models of the movement patterns and bi-exponentials are indicative of
bi-modal searching. Fittings were performed by maximum-likelihood methods [32] and the best model
distribution was identified using the Akaike information criterion [33].

Here, following Clauset et al. [32], the absolute goodness-of-fits (GOF-test) of the model distributions
were quantified by p-values. If the p-value is large, then the difference between the empirical data and
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(b) (©

Figure 1. A schematic of data acquisition. (a) Example of a 10 min exposure to record P vulgata movements. The movements of limpets
appear as continuous red lines (white arrow). (b) All the pictures, shot at regular time intervals, are then projected in sequence and (c) the
tracks of all limpets are reconstructed and digitized. The numbers represent the ending points of all the movement segments observed
in (a). Knowing the time of start and ending of each exposure, it is possible to attribute a time to each point along the track.

the model distribution can be attributed to statistical fluctuations alone; if it is small, then the model
distribution is not a plausible fit to the data. Following Clauset et al. [32], we make the relatively
conservative choice and reject the model distribution of interest if p <0.1, otherwise it is accepted as
being plausible.

Two different analyses were performed. Population level analysis refers to different sets defined by
the variable ‘species’ (P. rustica and P. vulgata), season and zonation (HS and LS, for P. vulgata only).
We pooled all steps of the individuals in each population set. Second, we investigated the movement
patterns of individual limpets. This was done for P. vulgata, by pooling all excursions (usually 4-5)
made by each individual. We also tested for the presence of chaos in the time series. Since this kind
of analysis is data intensive, it was only done for the population sets. It is generally accepted that
a unique intrinsic and observable signature of systems exhibiting deterministic chaos is a fluctuation
power spectrum with an exponential frequency dependency [34-36]. White noise processes (i.e. Poisson
processes and all other processes which have no temporally correlated behaviour) and multi-phasic
walks (electronic supplementary material, §52), on the other hand, have flat spectra while ‘1/f” noise
(found in scale-invariant systems with long-range correlations) have spectra with power-law frequency
dependency [37].

The fluctuation power spectrum is calculated from the extracted one-dimensional turns which define
a time-series u(t). If, for example, turns occurred at times t =3At, 5At, 6At, ... (N —2)At, NAt, where At
is the time interval between consecutive positional fixes defining the steps and N is the total number of
these positional fixes then the entries in the time-series u(t) would be 0,0, 1,0, 1,1, ... ,1,0, 1. The power
spectrum of u(t), S(f), is the square of the magnitude of the Fourier transform of u(t) and is given by

2

1 X —i2nft| _ 1 *

SN=|7= ké‘) ue M = —F(OF (), (3.1)
where t=kAt is the time at which the kth positional fix was made; f is frequency, F(f) is the discrete
Fourier transform of u(t) and F*(f) is its complex conjugate. The data were neither smoothed nor
tapered prior to transforming. Spectra were fitted to stretched exponentials, S(f) oce(f /)" and to power
laws 1/f* using maximum-likelihood methods. Good fits to stretched exponentials would be consistent
with the presence of chaos, poor fits would be indicative of the absence of chaos. We performed an
independent test for chaos by calculating the largest Lyapunov exponents (electronic supplementary
material, §S3).

The detection of chaos in the time-series data allows us to distinguish between ‘Lévy-like statistics’
in the movement pattern data, and ‘Lévy walk behaviour’ per se; that is, to distinguish between step-
length distributions displaying power-law scaling over a range of scales (which does not account
for autocorrelation) and independent and identically distributed step lengths following distributions
displaying power-law scaling. A multi-phasic walk would be a Weierstrassian Lévy walk if and
only if the step-length distribution were a finite mixture model, i.e. if at each step the snails ‘chose’
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Figure 2. (a) Movement patterns of P vulgata at Menai Bridge, UK. Rank frequency plot of the tested model step-length distributions
(exponential, blue; bi-exponential, pink; four-mode Weierstrassian Lévy walk, green; and power law, red) and empirical data (open
circles). (b) Power spectrum (black line) together with the best fit stretched exponential (red line) and the best fit power law (blue).

Table 1. Model selection for pooled P vulgata data.

model AIC AAIC Akaike weight
four-mode Weierstrassian 18888.0 0.0

expon

independently from the different components of the power-law mixture distribution. Alternatively, if the
behaviour is better described by a hidden Markov model, then the snail would move consistently with
a characteristic step length for number of steps.

4, Results

At the global level, our movement pattern data for P. vulgata closely resemble a four-mode Weierstrassian
(GOF-test, p =0.135) (figure 2a). We find no support for our data being either exponential, bi-exponential
or power-law distributed (table 1). The four-mode Weierstrassian fit to our data is, however, only slightly
better than the three-mode Weierstrassian fit. Note also that our step lengths are practically independent
(electronic supplementary material, §54).

Our data are also indicative of the presence of chaos (figure 2b), as the power spectrum is well
represented by a stretched exponential and less well represented by a power law which overestimates the
low-frequency content of the power spectrum and underestimates the high-frequency content. Positivity
of the largest ‘Lyapunov exponent’ is also indicative of the presence of chaos (electronic supplementary
material, §53).

The movement patterns of most of the studied individuals are well fitted by Weierstrassian Lévy
walks in all but one of the ecological conditions studied (table 2). The rank-frequency plots of the different
models are reported in figure 3 and clearly show a very good fit of the three-mode Weierstrassian Lévy
walk in the four ecological situations. The presence of a rarely occurring fourth mode which was evident
in the globally pooled data is not evident when the data is subsampled. There were fewer long steps
observed than predicted by the fitted distribution. Indeed, comparing figures 3 and 5 one may note that
the excess of short steps is much more common for P. vulgata than P. rustica. Our interpretation is that the
former species is severely constrained by the tidal phase and is compelled to return to the scar, and so the
number of longer movements is reduced. The latter is instead free in its movement during a storm which
can last several days. Nonetheless, the GOF-test is always highly non-significant (April: LS, p =0.567;
HS, p =0.165, November: LS, p = 0.50; HS, p = 0.380).
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Table 2. Model comparisons for individual movement patterns of P, vulgata recorded in April and November at Menai Bridge, UK, and n
different zones (high shore and low shore) of the cliff where the home scar was located. The best model is highlighted in italics.
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Figure 3. Movement patterns of P vulgata at Menai Bridge, UK. Rank frequency plot of the tested model step-length distributions
(exponential, blue; bi-exponential, black; three-mode Weierstrassian Lévy walk, green; and power law, red) and empirical data recorded
(open circles) in April and November and different zones (high shore and low shore) of the liff where the home scar was located. For the
November, high shore case the minimum step length was 2 cm rather than T cm because there were no steps shorter than 1.5 cm.

There is variability in the average i values observed in the four environmental conditions, illustrated
by a pooled analysis and confirmed by the analysis of single limpets (table 3). In April, limpets perform
more meandering foraging excursions in the LS than in the HS (Student’s t-test with Satterthwaite
correction d.f. =183.5, t = —8.04, p < 0.0001) while the reverse holds in November (Student’s t-test with
Satterthwaite correction d.f. =150.58, t = 6.37, p < 0.0001).

The hallmarks of chaos are evident in the time series of movement collected in the four ecological
conditions (figure 4). The power spectra are seen to have exponential rather than power-law frequency
dependence. This confirms that the signature of chaos is not an artefact due to the pooling of
heterogeneous samples but a systematic feature of these movements.

To test whether or not our results are specific to the population of P. vulgata in Menai Bridge we
analysed a smaller dataset; a Mediterranean population of the limpet P. rustica (figure 5a). Even in this
species, three-tier Weistrassian Lévy walks fit the experimental data better than do the concurrent model
distributions. Indeed, the Akaike weights for Weierstrassian Lévy walks are 1.00 for both seasons and the
GOF-test yield p=0.499 and p =0.929 in July and November, respectively. The y values associated with
the Weierstrassian Lévy walks are 1.87 and 1.81 in July and November. In both periods, we observed the
presence of an exponential spectrum characteristic of a weakly chaotic generator (figure 5b). The very
noisy aspect of the July plot is probably due to the small number of steps recorded in this period (about
50 per snail, whereas in November we recorded about 200 per snail).

5. Chaos can generate Weierstrassian Lévy walks

Lévy walks can be generated in surprising simple, biologically plausible ways and the identification of
these processes has gone some way to demystifying the occurrence of Lévy walks in foragers [3]. It is
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Figure 4. Movement patterns of P vulgata at Menai Bridge, UK recorded in April and November and different zones (high shore and
low shore) of the cliff where the home scar was located. Power spectrum (black lines) are shown together with the best fit stretched
exponentials (red lines) and the best fit power laws (blue lines).

also known that chaos can produce Weierstrassian Lévy walks [38,39]. In the electronic supplementary
material, §S5, we show how Weierstrassian Lévy walks arise in a simple chaotic system. The chaotic
system examined, a bouncing ball, is chosen because it is easy to comprehend and because the governing
equation can be approximated by a prototype model for chaos. Our analysis thereby shows that
Weierstrassian Lévy walks can arise for ‘free’ from generic properties of chaos and does not require
sophisticated internal rules governing the switching between a variety of random walks each with its
own characteristic step length.

6. Discussion

Our results show that Weierstrassian Lévy walks are common in intertidal snails under different field
conditions. This demonstrates that the previously reported occurrence of Weierstrassian Lévy walks in
the mud snail H. ulvae [14] did not represent a mathematical ‘curiosity” and may have important impacts
on our understanding of the life history of gastropods. It shows that the occurrence of Weierstrassian
Lévy walks are not confined to the laboratory as they also arise in natural surroundings in the presence
of environmental stimuli. Indeed, we showed such movement patterns occur in two different limpet
species, dwelling in quite different intertidal seascapes, in contrasting seasonal periods. We suggested
that the occurrence of these Weierstrassian Lévy walks can be attributed to chaos and found evidence
for chaos in our movement pattern data. That is, Weierstrassian Lévy walks are just a mathematical
consequence of chaos and one which can be realized by the simplest of systems, e.g. a bouncing ball.
Nonetheless, this analysis does not locate the source of the chaotic activity, which could arise either
intrinsically, in the neural circuits responsible for coordinated movement (central pattern generators)
or in sensory systems. Or, the source could be related to the way the limpets respond to subtle
environmental cues, or even in the fine-scale structure of the algal biofilms on which the animals graze.
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Figure 5. Movement patterns of P rustica at Cala Galera, ltaly. Rank frequency plot of the tested models (exponential, blue;
bi-exponential, black; three-mode Weierstrassian Lévy walk, green; and power law, red) and empirical data recorded (open circles) in
summer and autumn. Power spectrum (black line) together with the best fit stretched exponentials (red line) and the best fit power laws
(blue lines).

Table 3. Patella vulgata at Menai Bridge, UK. For different periods and zones we report the results of the analysis where all steps were
pooled (pooled analysis) and where we investigate individual movement (individual analysis). Pooled analysis: median value of the Lévy
exponent, 1, for the best fit Weierstrassian Lévy walks together with 95% confidence limits derived by a bootstrap with 100 replications.
Individual analysis: number of studied individuals and the Lévy exponent, 1, for the best fit Weierstrassian Lévy walk (from table 2).

sampled areas pooled analysis individual analysis

w median value

April high 117 1.09 128 1 123 £0.07
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o e T s
N h.gh ........................ e T S o
...................................... O

The first of these explanations is perhaps more likely because Weierstrassian Lévy walks and chaos have
also been observed in molluscs under laboratory controlled conditions [13-15].

We showed (electronic supplementary material, §55) that the chaotic route to Lévy walking stands
apart from the many other potential routes to Lévy walking which have been identified [3] because it
produces plastic rather rigid Lévy walks which can be fine-tuned by natural selection in accordance
with the LFFH [2]. Nonetheless, it remains to be seen to what extent, if any, the Weierstrassian Lévy
walks in snails are adaptive. The values of the characteristic Lévy exponents, 4, (tables 1 and 2) are,
in fact, significantly different from 2, the value usually associated with optimal searching [2]. Future
work could evaluate the impact of Weierstrassian Lévy walks movement patterns on algal gardening
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and intraspecific competition by limpets [40—-42]. It would also be interesting to assess the impact of the
persistence of previous trails; trails which could be used by snails to relocate or better to avoid algal
patches already exploited in the recent past.

Our results underscore the fact that Lévy walk-like movement patterns can and do arise naturally
from the simplest of processes, e.g. chaotic dynamics. They also vividly illustrate that the binary
arguments about the relative merits of Lévy walks and multi-phasic walks as models of movement
pattern are misconstrued [43], as animals can move in ways that are well approximated by various types
of Lévy walks, internally triggered multiphasic walks being but one.

Our analysis has resonance with that of Sims et al. [23] who reported that trace fossils from the Eocene
demonstrates that ancient movement patterns can be described as hierarchically nested Brownian walk
clusters that converge to a truncated Lévy walk. Sims et al. [23] remarked that it is striking that the
composite Brownian walks were finely tuned to theoretically optimal Lévy walks, suggesting selection
pressure for Lévy walk characteristics. Our findings suggest that this congruence is not unexpected
given the presence of chaos. Weierstrassian Lévy walks may, therefore, have ancient origins, predating
molluscs which are, in fact, one of the most ancient forms of animals that are living amongst us. It
would, therefore, be interesting to test explicitly for the presence of Weierstrassian Lévy walks in trace
fossils as this was not done by Sims et al. [23]. We could then ascertain the origins of Weierstrassian
Lévy walks.
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