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Abstract. We study the asymptotic convergence to a periodic steady state of
the solution of a nonlinear system of equations modelling electric conduction in
biological tissues. Such model keeps into account both the resistive behaviour of
the intracellular and extracellular domain and the capacitive/resistive behaviour
of the lipidic cellular membrane. Because of the large number of cells involved in
the model an homogenized version of the problem is also available. Also for the
homogenized problem asymptotic convergence to a periodic steady is proved. The
rate of convergence is analyzed, moreover the systems of equations satisfied by the
limits are exhibited.
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1. Introduction
s:introduction

Composite materials have widespread applications in science and technology and,
for this reason, have been extensively studied especially using homogenization tech-
niques. In this framework the authors have deeply investigated a problem arising in
electric conduction in biological tissues (with the purpose of obtaining some useful
results for applications in electrical tomography), see [?], [?], [?], [?], [?], [?], [?], [?],
[?].
From a physical point of view the problem consists in the study of the electric cur-
rents crossing a living tissue when an electrical potential is applied at the boundary
(see [?], [?], [?], [?], [?]). Here the living tissue is regarded as a composite peri-
odic, domain made of extracellular and intracellular materials (both assumed to be
conductive, possibly with different conductivities) separated by a lipidic membrane
which experiments prove to exhibit both conductive (due to ionic channels in the
membrane) and capacitive behavior. In this regard the large number of cells con-
tained in the biological sample allows us and even imposes to use an homogenization
technique. Such technique yields the system of partial differential equations satisfied
by the macroscopic electric potential u, i.e. the limit of the electric potential uε in
the tissue as ε (the characteristic length of the cell) tends to zero.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Florence Research

https://core.ac.uk/display/301574677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. AMAR, D. ANDREUCCI, AND R. GIANNI

Naturally, if we want the capacitive and the conductive behavior of the membranes to
be maintained when ε → 0 we must properly rescale the capacity and the conductivity
of such membranes with respect to ε. In [?] and [?] the authors have shown that,
essentially, only three scalings are physically sensible. One of these scalings seems to
be the more suitable to describe the behavior of the membranes at radiofrequency
range (which is the standard frequency used in electric tomography) and for this
reason it has been widely studied by the authors in [?], [?], [?], [?], [?], [?]. In
this peculiar model the magnetic field is neglected (as suggested by experimental
evidence) and the potential uε is assumed to satisfy an elliptic equation both in the
intracellular and in the extracellular domain while, on the membranes it satisfies the
equation

α

ε

∂

∂t
[uε] + f

(
[uε]

ε

)
= σε∇uε · νε

where [uε] denotes the jump of the potential across the membranes and σε∇uε · νε

is the current crossing the membranes. Note how the scaling parameter ε appears
in our model. The previous condition on the membranes was rigorously obtained by
the authors by means of a concentrated capacity technique in [?].
From a mathematical point of view a big difference does exist between the case of
linear f and the nonlinear case. Homogenization limits have been rigorously found
in both cases. In the linear case the result has been obtained in [?], [?] and [?], via
asymptotic expansion in ε and it has been proved that the limit potential u satisfies
an elliptic equation with memory for which an existence and uniqueness theorem has
been proved in [?]. In the nonlinear case the approach is much more complicated and
relies on the two-scale convergence technique. The final result is that, in this case, a
memory effect is still present but it is not possible to find a single partial, differential
equation satisfied by u (see [?]). Indeed, in this situation, u is coupled with another
function u1 and together they satisfy a system of partial differential equations where
u1 keeps into account the microscopic properties of the material and depends both on
the macroscopic variable x and the microscopic variable y (also for this case existence
and uniqueness results have been proved in [?]).
Going back to the technical applications of bioimpedence tomography it must be
noticed that usually a time harmonic boundary data is applied and it is assumed
that the resulting potential inside the biological material is time harmonic too. Under
this assumption the behavior of the biological tissue is modeled by means of complex
elliptic equations (one for every harmonic frequency). The correctness of this model
has been proved by the authors in the linear case in [?], [?] and [?], investigating the
time limit, as t → +∞, of the solution u of the homogenized problem. The authors
were able to prove that the equations presently used in electric tomography can be
rigorously obtained by means of an asymptotic limit with respect to t (when time
periodic boundary data are assigned). They proved that u tends exponentially to a
limit up and such a limit satisfies the partial differential equation currently used in
applications. Also, as a new input, they were able to find the relation linking the
complex admittivity of the limiting partial differential equation to the frequency of
the assigned boundary data.
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It is remarkable that an elliptic equation with memory has no, in principle, asymptotic
stability even if the memory kernel decreases to zero exponentially when t→ +∞ (see
[?]). For this reason, in [?], [?] and [?], the result is obtained proving an asymptotic
exponential convergence in t for the problem of level ε (i.e. before homogenization)
and observing that such a convergence is stable with respect to ε, so that it passes to
the limit and holds also for u. The proof relies on an appropriate eigenvalue theorem
for the problem of level ε satisfied in a periodic unitary cell. See, for instance, [?] and
[?] for an alternative approach relying on some extra-assumptions on the structures of
the kernel. Nevertheless the problem at level ε is not in general asymptotically stable
in t. In fact, if f is identically equal to zero, uε does not tend to zero exponentially
in t even if a homogeneous boundary condition is assigned. To get such a result the
initial jumps of the potential across the cellular membranes must have zero mean
value on each membrane. However this fact will have major consequences when the
nonlinear case will be treated. Indeed, in the linear case we can always assume that
the initial jumps have zero mean value by subtracting from the initial potential a
piecewise constant function, while in the nonlinear one this is not possible and we
must proceed in a different way. However such a pathology does not appear in the
homogenized problem.
Motivated by the previous considerations, in this paper we investigate the behavior
as t→ +∞ of the nonlinear problem introduced in [?]. We will prove that, if periodic
boundary data are assigned and f is coercive in the sense of (??), then the solution
of the ε-problem converges as t → +∞ to a periodic function solving a suitable
system of equations. In this case then such a convergence is exponential. Moreover,
if we have homogeneous boundary data, then at least the homogenized solution tends
exponentially to zero for a much more general class of functions f ; for example f may
be not increasing, provided it is Lipschitz-continuous and

f(s1) − f(s2) > −L−(s1 − s2), ∀s1, s2 ∈ R

with L− sufficiently small (see Remark ??).
Analogously, the asymptotic convergence of the solution (u, u1) of the homogenized
problem to a periodic solution (up, u1p) solving a suitable system of equations is
proved when periodic boundary data is assigned. Such convergence is exponential if
the boundary data is identically equal to zero. If this is not the case, as before, f
must be assumed to satisfy (??).
It is important to note that in [?], [?] and [?] our approach was based on eigenvalue
estimates which made it possible to keep into account (as far as the asymptotic rate
of convergence is concerned) both the dissipative properties of the intra/extra cellular
phases and the dissipative properties of the membranes. Here, for technical reasons,
we are able to use this method only in the case of homogeneous boundary data.
Instead, in the general case, we proceed by exploiting the coercivity of f , hence the
electrical properties of the intra/extra cellular phases do not appear in the rate of
convergence.
If f is not coercive it must be assumed to be monotone increasing and we can proceed
in to different ways: with the first one the asymptotic convergence of (u, u1) as
t→ +∞ is proved via a Liapunov-style technique and the rate of convergence is not
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quantified, with the second one &SPERIAMO CHE FUNZIONI the convergence of
(u, u1) is, again, proved to be exponential.

The paper is organized as follows: in Section 2 we present the geometrical setting and
the nonlinear differential model governing our problem at the microscale ε. In Section
3 we prove the exponential decay in time of the solution of the microscopic problem,
both in the case of homogeneous boundary data and in the case of time-periodic
boundary data. In this last case, we need the additional coercivity assumption on
the nonlinear function f , governing the dissipative properties of the cell membrane.
Finally, in Section 4, we recall the definition and some useful results concerning the
two-scale convergence on bulks and on surfaces and we prove the exponential decay
in time of the solution of the macroscopic (or homogenized) problem, providing also
the differential system satisfied by the limit function.

2. Preliminaries
s:prel

Let Ω be an open bounded subset of R
N . In the sequel γ or γ̃ will denote constants

which may vary from line to line and which depend on the characteristic parameters
of the problem, but which are independent of the quantities tending to zero, such as
ε, δ and so on, unless explicitly specified.

ss:geometry
2.1. The geometrical setting. The typical geometry we have in mind is depicted
in Figure 1. In order to be more specific, assume N ≥ 3 and let us introduce a

Figure 1. On the left: an example of admissible periodic unit cell Y =

E1 ∪E2 ∪Γ in R
2. Here E1 is the shaded region and Γ is its boundary. The

remaining part of Y (the white region) is E2. On the right: the corresponding
domain Ω = Ω

ε
1 ∪ Ω

ε
2 ∪ Γ

ε. Here Ω
ε
1 is the shaded region and Γ

ε is its
boundary. The remaining part of Ω (the white region) is Ω

ε
2. fig:omega

periodic open subset E of R
N , so that E + z = E for all z ∈ Z

N . For all ε > 0
define Ωε

1 = Ω ∩ εE, Ωε
2 = Ω \ εE. We assume that Ω, E have regular boundary,

say of class C∞ for the sake of simplicity, that Ωε
2 is a connected subset of Ω and

dist(Γ ε, ∂Ω) ≥ γε, where Γ ε = ∂Ωε
1. We also employ the notation Y = (0, 1)N , and
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E1 = E ∩ Y , E2 = Y \ E, Γ = ∂E ∩ Y . As a simplifying assumption, we stipulate
that Γ ∩ ∂Y = ∅. We denote by ν the normal unit vector to Γ pointing into E2, so
that νε(x) = ν(ε−1x).
For later use, we denote also

σ(y) =

{
σ1 if y ∈ E1,

σ2 if y ∈ E2,
and σ0 = |E1|σ1 + |E2|σ2 ,

where σ1, σ2 are positive constants, and we also set σε(x) = σ(ε−1x). Moreover, let
us set

C
1
#(Y ) := {u : Y → R | u|E1 ∈ C1(E1) , u|E2 ∈ C1(E2) , and u is Y − periodic} ,

X 1
#(Y ) := {u ∈ L2(Y ) | u|E1

∈ H1(E1) , u|E2
∈ H1(E2) , and u is Y − periodic} ,

and

X 1(Ωε) := {u ∈ L2(Ω) | u|Ωε
1
∈ H1(Ωε

1), u|Ωε
2
∈ H1(Ωε

2)} .
We note that, if u ∈ X 1

#(Y ) then the traces of u|Ei
on Γ , for i = 1, 2, belong to

H1/2(Γ ), as well as u ∈ X 1(Ωε) implies that the traces of u|Ωε
i

on Γ ε, for i = 1, 2,

belong to H1/2(Γ ε).
ss:statment

2.2. Statement of the problem. We write down the model problem:

− div(σ1∇uε) = 0 , in Ωε
1 × (0, T ); (2.1) eq:PDEin

− div(σ2∇uε) = 0 , in Ωε
2 × (0, T ); (2.2) eq:PDEout

[σε∇uε · νε] = 0 , on Γ ε × (0, T ); (2.3) eq:FluxCont

α

ε

∂

∂t
[uε] + f

(
[uε]

ε

)
= σε∇uε · νε , on Γ ε × (0, T ); (2.4) eq:Circuit

[uε](x, 0) = Sε(x) , on Γ ε; (2.5) eq:InitData

uε(x) = Ψ(x, t) , on ∂Ω × (0, T ), (2.6) eq:BoundData

where σ1, σ2 are defined in the previous subsection and α > 0 is a constant; moreover,
we note that, by the definition already given in the previous section, νε is the normal
unit vector to Γ ε pointing into Ωε

2. Since uε is not in general continuous across Γ ε

we set

u(1)
ε := trace of uε|Ωε

1
on Γ ε × (0, T ); u(2)

ε := trace of uε|Ωε
2

on Γ ε × (0, T ).

Indeed we refer conventionally to Ωε
1 as to the interior domain, and to Ωε

2 as to the
outer domain. We also denote

[uε] := u(2)
ε − u(1)

ε .

Similar conventions are employed for other quantities, for example in (2.3). In this
framework we will assume that

Sε ∈ H1/2(Γ ε) ,

∫

Γ ε

S2
ε (x) dσ ≤ γε . (2.7) eq:assumpt2
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Moreover, f : R → R satisfies

f is a Lipschitz-continuous function with Lipschitz constant L , (2.8) eq:assumpt1

f is a strictly monotone function and f ′(s) ≥ 0 , ∀s ∈ R ; (2.9) eq:a37

f(0) = 0 , (2.10) eq:assumpt1bis

f ′(s) ≥ δ0 , for a suitable δ0 > 0 and ∀s sufficiently large. (2.11) eq:a38

Previous assumptions imply also

f(s)s ≥ λ1s
2 − λ2|s| , for some constants λ1 > 0 and λ2 ≥ 0. (2.12) eq:a36

Finally, Ψ : Ω × R → R is a function satisfying the following assumption

i) Ψ ∈ L2
loc

(
R;H2(Ω)

)
;

ii) Ψt ∈ L2
loc

(
R;H1(Ω)

)
;

iii) Ψ(x, ·) is 1-periodic for a.e. x ∈ Ω.

(2.13) eq:h1

These assumptions will guarantee the time asymptotic decay of the solution uε, when
ε is fixed. The set of equations (2.1)–(2.6) models electrical conduction in a biological
tissue. It is important to notice that the first term in the left hand side of (2.4)
models the behavior of the lipidic cell membrane which acts mainly as a capacitor,
while the second term in the left hand side keeps into account the resistive behavior of
the membrane which is caused by channels allowing charged molecules to go through.
Here the resistive behavior is assumed to be nonlinear and it is relevant that the small
parameter ε, which is of the order of magnitude of the cell width, appears inside the
argument of f . Existence of such solution has been proved in [?]. Moreover, by
[?, Lemma 3.6 and Remark 3.8] it follows that uε ∈ C0

(
(0, T ];X 1(Ωε)

)
and [uε] ∈

C0
(
(0, T ];L2(Γ ε)

)
.

3. Asymptotic convergence to a periodic solution of the ǫ-problem
s:asymptotic1

The purpose of this section is to prove the asymptotic convergence of the solution of
problem (2.1)–(2.6) to a periodic function u#

ε when t→ +∞. The function u#
ε is, in

turn, a solution of the system

− div(σε∇u#
ε ) = 0 , in (Ωε

1 ∪Ωε
2) × R; (3.1) eq:per_PDEboth

[σε∇u#
ε · νε] = 0 , on Γ ε × R; (3.2) eq:per_FluxCont

α

ε

∂

∂t
[u#

ε ] + f

(
[u#

ε ]

ε

)
= (σε∇u#

ε · νε) , on Γ ε × R; (3.3) eq:per_Circuit

u#
ε (x, t) = Ψ(x, t) , on ∂Ω × R; (3.4) eq:per_BoundData

u#
ε (x, ·) is 1-periodic, in Ω. (3.5) eq:per_periodicity

Indeed, this problem is derived from (2.1)–(2.6) replacing equation (2.5) with (3.5).
As a first step we will prove the following result.

p:prop6 Proposition 3.1. Under the assumptions (2.9)–(2.12), problem (3.1)–(3.4) admits

a 1-periodic solution u#
ε ∈ C0([0, 1];X 1(Ωε)).
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Proof. For δ > 0, let us denote by fδ(s) := f(s) + δs, for every s ∈ R, and consider
the problem

− div(σε∇u#
ε,δ) = 0 , in (Ωε

1 ∪Ωε
2) × R; (3.6) eq:per_PDEbothdelta

[σε∇u#
ε,δ · νε] = 0 , on Γ ε × R; (3.7) eq:per_FluxContdelta

α

ε

∂

∂t
[u#

ε,δ] + fδ

(
[u#

ε,δ]

ε

)
= σε∇u#

ε,δ · νε , on Γ ε × R; (3.8) eq:per_Circuitdelta

u#
ε,δ(x, t) = Ψ(x, t) , on ∂Ω × R; (3.9) eq:per_BoundDatadelta

u#
ε,δ(x, ·) is 1-periodic, in Ω. (3.10) eq:per_periodicitydelta

For any positive ε and δ, the preceding problem admits an unique periodic solution
because of the results already proved in [?].
On the other hand, denoting with uε,δ such a solution, multiplying equation (3.6)

by u#
ε,δ − Ψ, integrating by parts on Ω × [0, 1], using the periodicity and taking into

account equations (3.7)–(3.9), we get

1∫

0

∫

Ω

σε

2
|∇u#

ε,δ|2 dx dt+

1∫

0

∫

Γ ε

fδ

(
[u#

ε,δ]

ε

)
[u#

ε,δ] dσ dt ≤
1∫

0

∫

Ω

σε

2
|∇Ψ|2 dx dt . (3.11) eq:a39

Finally, using (2.12), we obtain

1∫

0

∫

Ω

σε

2
|∇u#

ε,δ|2 dx dt+

1∫

0

∫

Γ ε

λ1

2ε
[u#

ε,δ]
2 dσ dt ≤

1∫

0

∫

Ω

σε

2
|∇Ψ|2 dx dt+

ε

2λ1

λ2
2|Γ ε| . (3.12) eq:a40

Multiplying now equation (3.6) by u#
ε,δ,t−Ψt, integrating by parts on Ω× [0, 1], using

the periodicity and taking into account equations (3.7)–(3.9), we get

α

ε

1∫

0

∫

Γ ε

[u#
ε,δ,t]

2 dσ dt+

1∫

0

∫

Γ ε

fδ

(
[u#

ε,δ]

ε

)
[u#

ε,δ,t] dσ dt

≤
1∫

0

∫

Ω

σε∇u#
ε,δ∇Ψt dx dt ≤

1∫

0

∫

Ω

σε

2
|∇u#

ε,δ|2 dx dt+

1∫

0

∫

Ω

σε

2
|∇Ψt|2 dx dt

≤
1∫

0

∫

Ω

σε

2
|∇Ψ|2 dx dt+

ε

2λ1
λ2

2|Γ ε| +
1∫

0

∫

Ω

σε

2
|∇Ψt|2 dx dt , (3.13) eq:a41
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where we used (3.12). Hence

α

2ε

1∫

0

∫

Γ ε

[u#
ε,δ,t]

2 dσ dt

≤
1∫

0

∫

Γ ε

(L+ δ)2

2αε
[u#

ε,δ]
2 dσ dt+

1∫

0

∫

Ω

σε

2
|∇Ψt|2 dx dt+

1∫

0

∫

Ω

σε

2
|∇Ψ|2 dx dt+

ε

2λ1
λ2

2|Γ ε|

≤




1∫

0

∫

Ω

σε

2
|∇Ψ|2 dx dt+

ε

2λ1

λ2
2|Γ ε|




(

(L+ δ)2λ1

α
+ 1

)
+

1∫

0

∫

Ω

σε

2
|∇Ψt|2 dx dt ,

(3.14) eq:a42

where we used again (3.12). Inequalities (3.12) and respectively (3.14), for ε > 0

fixed, yield the weak convergence of u#
ε,δ and ∇u#

ε,δ in L2(Ωε
i × (0, 1)), i = 1, 2, and

respectively the strong convergence of [u#
ε,δ] in L2(Γ ε×(0, 1)), for δ → 0. Since all the

functions u#
ε,δ are 1-periodic, denoting as usual with u#

ε the limit of u#
ε,δ we have that

the same periodicity holds true for u#
ε . Moreover we can pass to the limit, as δ → 0,

in problem (3.6)–(3.9), thus obtaining that u#
ε is a 1-periodic solution of problem

(3.1)–(3.4), under the assumptions (2.9)–(2.11).
Since the estimates above, and the ones for ∇uε,δ,t are uniform in δ, we have that u#

ε

belongs to the class claimed in the statement. �

r:rem1 Remark 3.2. The uniformity of the above estimates is a result similar to the one
obtained in Lemma 3.6 of [?]. �

Given ε > 0, it remains to prove the asymptotic convergence of a solution uε of
(2.1)–(2.6) to u#

ε , for t→ +∞, also in this case, as stated in the following theorem.

t:t5 Theorem 3.3. Let ε > 0 be fixed and let uε be the solution of problem (2.1)–(2.6).
Then, for t→ +∞, uε → u#

ε in the following sense:

lim
t→+∞

‖uε(·, t) − u#
ε (·, t)‖L2(Ω) = 0 ; (3.15) eq:decayperiodic_new

lim
t→+∞

‖∇uε(·, t) −∇u#
ε (·, t)‖L2(Ω) = 0 ; (3.16) eq:decayperiodic1_new

lim
t→+∞

1

ε
‖[uε](·, t) − [u#

ε ](·, t)‖L2(Γ ε) = 0 . (3.17) eq:decayperiodic3_new

Proof. Setting rε := u#
ε − uε, we obtain that rε satisfies

− div(σε∇rε) = 0 , in (Ωε
1 ∪Ωε

2) × (0,+∞); (3.18) eq:PDEboth1r

[σε∇rε · νε] = 0 , on Γ ε × (0,+∞); (3.19) eq:FluxCont1r

α

ε

∂

∂t
[rε] + gε(x, t)

[rε]

ε
= σε∇rε · νε , on Γ ε × (0,+∞); (3.20) eq:Circuit1r

[rε](x, 0) = [u#
ε (x, 0)] − Sε(x) =: Ŝε(x) , on Γ ε; (3.21) eq:InitData1r

rε(x) = 0 , on ∂Ω × (0,+∞); (3.22) eq:BoundData1r



ASYMPTOTIC ... 9

where gε(x, t) :=
f

�
[u

#
ε ]
ε

(x,t)

�
−f( [uε]

ε
(x,t))

[u
#
ε ]
ε

(x,t)−
[uε]

ε
(x,t)

≥ 0, and Ŝε(x) still satisfies assumption (2.7)

because of the energy inequality satisfied by u#
ε and by (3.12). Multiplying equation

(3.18) by rε and integrating by parts we have

∫

Ω

σε|∇rε|2 dx+
α

ε

∫

Γ ε

[rε,t][rε] dσ +

∫

Γ ε

gε(x, t)

ε
[rε]

2 dσ = 0 . (3.23) eq:a43

Equation (3.23) implies that the function t 7→ α
ǫ

∫
Γ ε[rε(x, t)]

2 dσ is a positive, de-
creasing function of t; hence, it tends to a limit value rε ≥ 0 as t → +∞. We
claim that the value rε must be zero. Otherwise, there exists t > 0, such that,
for t ≥ t, α

ǫ

∫
Γ ε[rε(x, t)]

2 dσ ≥ rε

2
. On the other hand, given t > t and setting

Γ ε
rε

(t) := {x ∈ Γ ε : [rε(x, t)]
2 ≤ rεε

4α|Γ ε|
}, it is evident that

α

ε

∫

Γ ε\Γ ε
rε

(t)

[rε(x, t)]
2 dσ ≥ rε

4
, ∀t ≥ t . (3.24) eq:a44

Indeed, for every t ≥ t, by definition,

rε

2
≤ α

ε

∫

Γ ε

[rε(x, t)]
2 dσ ≤ α

ε

∫

Γ ε\Γ ε
rε

(t)

[rε(x, t)]
2 dσ +

α

ε

∫

Γ ε
rε

(t)

[rε(x, t)]
2 dσ

≤ α

ε

∫

Γ ε\Γ ε
rε

(t)

[rε(x, t)]
2 dσ +

α

ε

rε

4α|Γ ε| |Γ
ε
rε
| ≤ α

ε

∫

Γ ε\Γ ε
rε

(t)

[rε(x, t)]
2 dσ +

rε

4
,

which implies (3.24). Moreover, for t ≥ t, we have that, on Γ ε \Γ ε
rε

(t), gε(x, t) ≥ χ >
0, where χ is a suitable positive constant depending only on (rε, ε, α, |Γ ε|) (this last
result follows from assumption (2.9)–(2.12)). Hence, using (3.23), it follows

d

dt


 α

2ε

∫

Γ ε

[rε(x, t)]
2 dσ


 ≤ −

∫

Γ ε\Γ ε
rε

(t)

gε(x, t)

ε
[rε(x, t)]

2 dσ

≤ −χ
∫

Γ ε\Γ ε
rε

(t)

1

ε
[rε(x, t)]

2 dσ ≤ − rε

4α
χ < 0 . (3.25) eq:a45

Inequality (3.25) clearly contradicts the asymptotic convergence in t of the function
t 7→ α

ε

∫
Γ ε[rε(x, t)]

2 dσ, hence

lim
t→+∞

α

ε

∫

Γ ε

[rε(x, t)]
2 dσ = 0 . (3.26) eq:a46
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In particular, this gives (3.17). Integrating (3.23) in [t,∞) and taking into account
(3.26), we get

+∞∫

t

∫

Ω

σε|∇rε|2 dx dt ≤ α

2ε

∫

Γ ε

[rε(x, t)]
2 dσ , (3.27) eq:a47

which implies

lim
t→+∞

+∞∫

t

∫

Ω

σε|∇rε|2 dx dt = 0 . (3.28) eq:a48

Condition (3.28) guarantees that for every positive η there exists a t̂(η) > 0, such
that

+∞∫bt ∫

Ω

σε|∇rε|2 dx dt ≤ η ,

which, in turn implies that, for every natural number n, there exists a tn ∈ (t̂+n, t̂+
(n+ 1)), such that ∫

Ω

σε|∇rε(x, tn)|2 dx ≤ η . (3.29) eq:a49

Now, we multiply (3.18) by rε,t and integrate in Ω, so that
∫

Ω

σε∇rε∇rε,t(x, t) dx+
α

ε

∫

Γ ε

[rε,t(x, t)]
2 dσ +

∫

Γ ε

gε(x, t)

ε
[rε(x, t)] [rε,t(x, t)] dσ = 0 ,

(3.30) eq:a50

which implies ∫

Ω

σε∇rε∇rε,t dx ≤
∫

Γ ε

g2
ε(x, t)

2αε
[rε]

2 dσ . (3.31) eq:a51

Moreover, integrating (3.31) in [tn, t
∗] with t∗ ∈ [tn, tn + 2] and using (3.29), we have

sup
t∈[tn,tn+2]



∫

Ω

σε

2
|∇rε(x, t)|2 dx


 ≤ η

2
+
L2

2α2
sup

t∈[tn,+∞)


α
ε

∫

Γ ε

[rε(x, t)]
2 dσ


 , ∀n ∈ N .

Since tn+1 − tn < 2, the intervals of the form [tn, tn + 2], when n varies in N , are
overlapping; hence, we obtain

sup
t∈[bt+1,+∞)



∫

Ω

σε

2
|∇rε(x, t)|2 dx


 ≤ η

2
+

2L2

α2
sup

t∈[bt,+∞)


α
ε

∫

Γ ε

[rε]
2 dσ


 . (3.32) eq:a52

Because of (3.26) the integral in the right-hand side of (3.32) can be made smaller

than η
2

(
L2

α2

)−1

, provided t̂ is chosen sufficiently large in dependence of η. This means
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that

sup
t∈[bt+1,+∞)



∫

Ω

σε

2
|∇rε(x, t)|2 dx


 ≤ η , (3.33) eq:a53

hence

lim
t→+∞

∫

Ω

σε|∇rε(x, t)|2 dx = 0 . (3.34) eq:a54

In particular, this gives (3.16). Finally, Poincare’s inequality together with (3.26)
and (3.34) yield

lim
t→+∞

∫

Ω

|rε(x, t)|2 dx = 0 , (3.35) eq:a55

which gives (3.15). �

r:rem10bis Remark 3.4. Observe that this asymptotic convergence result implies uniqueness of
the periodic solution (in the class of functions specified above). �

4. Exponential decay of the solution of the homogenized problem
s:asymptotic_hom

The aim of this section is to prove a result similar to the one proved in the previ-
ous section; i.e., the convergence of the solution to a periodic steady state, for the
homogenized problem. We will employ a slightly different technique which is maybe
simpler than the one displayed above. To this purpose we will make use of some
fundamental properties of two-scale convergence, which we recall in the following.

ss:twoscale
4.1. Two-scale convergence. In this subsection we recall some definitions and
properties concerning two-scale convergence in the time-dependent case (for a survey
in this topic see, for instance, [?, Section 4]).
We firstly recall the following definition ([?, Definition 2.1]).

d:2scale_test2 Definition 4.1. A function ϕ ∈ L2
(
(0, T );L2(Ω×Y )

)
, which is Y -periodic in y and

which satisfies

lim
ε→0

T∫

0

∫

Ω

ϕ2
(
x,
x

ε
, t
)

dx dt =

T∫

0

∫

Ω×Y

ϕ2(x, y, t) dx dy dt , (4.1) eq:test3

is called admissible test function for the two-scale convergence on L2
(
(0, T );L2(Ω)

)
.

r:test1bis Remark 4.2. We recall that any function ϕ ∈ C0
(
Ω × [0, T ]; C0

#(Y )
)

is an admissible

test function as well as any function ϕ ∈ L2
#

(
Y ; C0(Ω × [0, T ])

)
(see [?, Remark

1.5]). �

d:2scale_new Definition 4.3. Given a sequence {hε} ∈ L2
(
(0, T );L2(Ω)

)
and a function h0 ∈

L2
(
(0, T );L2(Ω×Y )

)
, we say that hε two-scale converges to h0 in L2

(
(0, T );L2(Ω×

Y )
)

for ε→ 0 (and we write hε
2−sc→ h0) if

lim
ε→0

T∫

0

∫

Ω

hε(x, t)ϕ
(
x,
x

ε
, t
)

dx dt =

T∫

0

∫

Ω×Y

h0(x, y, t)ϕ(x, y, t) dx dy dt
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for any admissible test function.

th:2scale_new Theorem 4.4. (See [?], [?])

• From any bounded sequence in L2
(
(0, T );L2(Ω)

)
, it is possible to extract a two-

scale converging subsequence.

• If hε
2−sc→ h0 then, setting h(x, t) =

∫
Y
h0(x, y, t) dy, it follows that hε ⇀ h weakly

in L2
(
(0, T );L2(Ω)

)
.

• If hε
2−sc→ h0 then, setting h(x, t) =

∫
Y
h0(x, y, t) dy, it follows that

lim inf
ε→0

‖hε‖
L2
(
(0,T );L2(Ω)

) ≥ ‖h0‖
L2
(
(0,T );L2(Ω×Y )

) ≥ ‖h‖
L2
(
(0,T );L2(Ω)

) .

p:dafare1 Proposition 4.5. Let {hε} ⊆ L2
(
Ω × (0, T )

)
be a sequence of functions converging

to a function h ∈ L2
(
Ω × (0, T )

)
strongly in L2

loc

(
(0, T );L2(Ω)

)
. Assume also that

there exists a constant γ > 0 such that ‖hε‖L2(Ω×(0,T )) ≤ γ. Then hε
2−sc→ h.

Recalling [?], we extend the notion of two-scale convergence to sequences of functions
defined on periodic surfaces and depending on the time t.

d:2scale_all_new Definition 4.6. Given a sequence {ĥε} ∈ L2
(
(0, T );L2(Γ ε)

)
and a function ĥ0 ∈

L2
(
Ω×(0, T );L2(Γ )

)
, we say that ĥε two-scale converges to ĥ0 in L2

(
Ω×(0, T );L2(Γ )

)

for ε→ 0 (and we write ĥε
2−sc→ ĥ0) if

lim
ε→0

ε

T∫

0

∫

Γ ε

ĥε(x, t)ϕ̂
(
x,
x

ε
, t
)

dσ dt =

T∫

0

∫

Ω

∫

Γ

ĥ0(x, y, t)ϕ̂(x, y, t) dx dσ(y) dt

for any test function ϕ̂ ∈ C0
(
Ω × [0, T ]; C0

#(Y )
)
.

r:rem3 Remark 4.7. In some part of the paper we will choose as test function ϕ̂ν, with
ϕ̂ ∈ C0

(
Ω × [0, T ]; C0

#(Y )
)
. In this regard, ν will denote a continuous extension of

the normal vector to the whole Y . �

t:2scale_allnew Theorem 4.8. (See [?], [?])

• From any sequence {ĥε} in L2
(
(0, T );L2(Γ ε)

)
bounded in the following sense

ε

T∫

0

∫

Γ ε

|ĥε(x, t)|2 dσ dt ≤ γ ,

where γ is a positive constant, it is possible to extract a two-scale converging

subsequence.

• If {ĥε} is a sequence in L2
(
(0, T );L2(Γ ε)

)
which two-scale converges to ĥ0 ∈

L2
(
Ω × (0, T );L2(Γ )

)
, then the measure εĥε dσ converges in the sense of dis-

tribution in Ω × (0, T ), to the function ĥ(x, t) =
∫

Γ
ĥ0(x, y, t) dσ(y), with ĥ ∈

L2
(
Ω × (0, T )

)
.
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• If {ĥε} is a sequence in L2
(
(0, T );L2(Γ ε)

)
which two-scale converges to ĥ0 ∈

L2
(
Ω × (0, T );L2(Γ )

)
then, setting ĥ(x, t) =

∫
Γ
ĥ0(x, y, t) dσ(y), it follows that

lim inf
ε→0

√
ε‖ĥε‖

L2
(
(0,T );L2(Γ ε)

) ≥ ‖ĥ0‖
L2
(

Ω×(0,T );L2(Γ )
) ≥ ‖ĥ‖

L2
(
(0,T );L2(Ω)

) .

t:2scale_humnew Theorem 4.9. Assume that {uε} ⊆ L2
(
(0, T );X 1(Ωε)

)
, be a sequence of functions

such that uε = Ψ on ∂Ω and

T∫

0

∫

Ω

|∇uε|2 dx dt+
1

ε

T∫

0

∫

Γ ε

[uε]
2(x, t) dσ dt ≤ γ , (4.2) eq:hum1bis3

then there exist two functions u ∈ L2
(
(0, T );H1(Ω)

)
, u = Ψ on ∂Ω, and u1 ∈ L2

(
Ω×

(0, T );X 1
#(Y )

)
such that, up to a subsequence, uε

2−sc→ u, 1Ω\Γ ε∇uε
2−sc→ ∇u + ∇yu

1

in L2
(
(0, T );L2(Ω×Y )

)
and ε−1[uε]νε

2−sc→ [u1]ν in L2
(
Ω× (0, T );L2(Γ )

)
for ε→ 0.

r:rem4 Remark 4.10. Since the normal νε can be included in the test function for the two-
scale convergence in L2

(
Ω × (0, T );L2(Γ )

)
(see Remark 4.7), by Theorem 4.9 we

obtain also that ε−1[uε]
2−sc→ [u1] in L2

(
Ω × (0, T );L2(Γ )

)
.

�

ss:asympt1

4.2. Asymptotic convergence to a periodic steady state. Let (u, u1)∈L2
(
(0, T );

H1(Ω)
)
×L2

(
Ω×(0, T );X 1

#(Y )
)

be the two-scale limit obtained in Theorem 4.9, when
uε is the solution of problem (2.1)–(2.6) and the initial data Sε satisfies the additional
condition that Sε/ε two-scale converges in L2

(
Ω;L2(Γ )

)
to a function S1 such that

S1(x, ·) = S|Γ (x, ·) for some S ∈ C
(
Ω; C1

#(Y )
)
, and

lim
ε→0

ε

∫

Γ ε

(
Sε

ε

)2

(x) dσ =

∫

Ω

∫

Γ

S2
1(x, y) dx dσ(y) . (4.3) eq:init_asym1

We recall that, by [?, Theorem 2.1], the pair (u, u1) is the solution of problem

− div



σ0∇u+

∫

Y

σ∇yu
1 dy



 = 0 , in Ω × (0, T ); (4.4) eq:PDE_limit

− divy(σ∇u+ σ∇yu
1) = 0 , in Ω × (E1 ∪E2) × (0, T ); (4.5) eq:PDEper_limit

[σ(∇u+ ∇yu
1) · ν] = 0 , on Ω × Γ × (0, T ); (4.6) eq:FluxCont_limit

α
∂

∂t
[u1] + f

(
[u1]
)

= σ(∇u+ ∇yu
1) · ν , on Ω × Γ × (0, T ); (4.7) eq:Circuit_limit

[u1](x, y, 0) = S1(x, y) , on Ω × Γ ; (4.8) eq:InitData_limit

u(x, t) = Ψ(x, t) , on ∂Ω × (0, T ). (4.9) eq:BoundData_limit
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Note that the variational formulation of problem (4.4)–(4.9) is the following:

T∫

0

∫

Ω

∫

Y

σ
(
∇u+ ∇yu

1
)
(∇φ+ ∇yΦ) dx dy dt+

T∫

0

∫

Ω

∫

Γ

f([u1])[Φ] dx dσ dt

− α

T∫

0

∫

Ω

∫

Γ

[u1]
∂

∂t
[Φ] dx dσ dt− α

∫

Ω

∫

Γ

[Φ]S1 dx dσ = 0 . (4.10) eq:a76

Moreover we assume that u satisfies the boundary condition on ∂Ω × [0, T ] in the
trace sense (i.e. u(x, t) = Ψ(x, t) a.e.) and u1 is periodic in Y and has zero mean
value in Y for every (x, t) ∈ Ω × (0, T ).
Here φ is any regular function depending on (x, t), with compact support in Ω, and
Φ is any Y -periodic function on Ω × Y × [0, T ], which may jump across Γ , is zero
when t = T and is regular elsewhere.
For later use, let us define

|||
(
h(·, t), h1(·, t)

))
||| := ‖h‖C0([0,1];L2(Ω)) + ‖∇h‖C0([0,1];L2(Ω))

+ ‖h1‖C0([0,1];L2(Ω×Y )) + ‖∇yh
1‖C0([0,1];L2(Ω×Y )) + ‖[h1]‖C0([0,1];L2(Ω×Γ )) , (4.11) eq:a86

where (h, h1) ∈ C0([0, T ];H1(Ω)) × C0([0, T ];L2(Ω;X 1
#(Y )), and

||||(h̃, h̃1)|||| := ‖h̃‖H1(Ω) + ‖h̃1‖L2(Ω×Y ) + ‖∇yh̃
1‖L2(Ω×Y ) + ‖[h̃1]‖L2(Ω×Γ ) , (4.12) eq:a85

where (h̃, h̃1) ∈ H1(Ω) × L2(Ω;X 1
#(Y )).

As in the previous section, we firstly prove that there exists a periodic solution of the
homogenized problem

− div


σ0∇u# +

∫

Y

σ∇yu
1,# dy


 = 0 , in Ω × R; (4.13) eq:PDE_limit_per

− divy(σ∇u# + σ∇yu
1,#) = 0 , in Ω × (E1 ∪E2) × R; (4.14) eq:PDEper_limit_per

[σ(∇u# + ∇yu
1,#) · ν] = 0 , on Ω × Γ × R; (4.15) eq:FluxCont_limit_per

α
∂

∂t
[u1,#] + f

(
[u1,#]

)
= σ(∇u# + ∇yu

1,#) · ν ,on Ω × Γ × R; (4.16) eq:Circuit_limit_per

[u1,#](x, y, ·) is 1-periodic, on Ω × Γ ; (4.17) eq:InitData_limit_per

u#(x, t) = Ψ(x, t) , on ∂Ω × R. (4.18) eq:BoundData_limit_per

p:prop7 Proposition 4.11. Under the assumptions (2.9)–(2.11), problem (4.13)–(4.18) ad-

mits a 1-periodic in time solution.
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Proof. For δ > 0, let us denote by fδ(s) := f(s) + δs, for every s ∈ R, and consider
the problem

− div


σ0∇u#

δ +

∫

Y

σ∇yu
1,#
δ dy


 = 0 , in Ω × R ;

(4.19) eq:PDE_limit_perdelta

− divy(σ∇u#
δ + σ∇yu

1,#
δ ) = 0 , in Ω × (E1 ∪ E2) × R ;

(4.20) eq:PDEper_limit_perdelta

[σ(∇u#
δ + ∇yu

1,#
δ )·ν] = 0, on Ω × Γ × R ;

(4.21) eq:FluxCont_limit_perdelta

α
∂

∂t
[u1,#

δ ] + fδ

(
[u1,#

δ ]
)

= σ(∇u#
δ + ∇yu

1,#
δ ) · ν , on Ω × Γ × R ;

(4.22) eq:Circuit_limit_perdelta

[u1,#
δ ](x, y, ·) is 1-periodic, on Ω × Γ ; (4.23) eq:InitData_limit_perdelta

u#
δ (x, t) = Ψ(x, t) , on ∂Ω × R .

(4.24) eq:BoundData_limit_perdelta

Since fδ has a strictly positive derivative on R, by the results proved in [?, Subsec-

tion 4.2], a unique periodic solution (u#
δ , u

1,#
δ ) of problem (4.19)– (4.24) does exist.

Recalling equation (4.40) in the proof of Theorem 4.14 of [?]; i.e.

t2∫

t1

∫

Ω

∫

Y

σ
(
∇u#

δ (x, t) + ∇yu
1,#
δ (x, y, t)

)
(∇φ(x, t) + ∇yΦ(x, y, t)) dx dy dt

+

t2∫

t1

∫

Ω

∫

Γ

fδ([u
1,#
δ (x, y, t)])[Φ(x, y, t)] dx dσ dt

− α

t2∫

t1

∫

Ω

∫

Γ

[u1,#
δ (x, y, t)]

∂

∂t
[Φ(x, y, t)] dx dσ dt = 0 ; (4.25) eq:a35

we obtain that (u#
δ , u

1,#
δ ) satisfies an energy inequality, easily obtained replacing

(φ,Φ) in (4.25) with (u#
δ − Ψ, u1,#

δ ), which implies

1∫

0

∫

Ω

∫

Y

σ

2
|∇u#

δ + ∇yu
1,#
δ |2 dx dy dt+

1∫

0

∫

Ω

∫

Γ

fδ([u
1,#
δ ])[u1,#

δ ] dx dσ dt

=

1∫

0

∫

Ω

∫

Y

σ

2
|∇Ψ|2 dx dy dt . (4.26) eq:a56
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Note that (u#
δ , u

1,#
δ ) because of their periodicity, can be used as test functions, even

if they have not compact support in [0, 1]; indeed, it is enough to apply a routine
approximation procedure.
From (4.26), working as done in (3.11)–(3.12) of Section 3 and taking into account
(2.12) and the fact that

1∫

0

[u1,#
δ,t ][u1,#

δ ] dt =
1

2

1∫

0

∂

∂t
[u1,#

δ ]2 dt = 0

because of the periodicity, we get

1∫

0

∫

Ω

∫

Y

σ|∇u#
δ + ∇yu

1,#
δ |2 dx dy dt+

1∫

0

∫

Ω

∫

Γ

λ1[u
1,#
δ ]2 dσ dt ≤ γ , (4.27) eq:a57

where γ is a constant depending on λ1, λ2, |Γ | and the H1-norm of Ψ.

Replacing (φ,Φ) in (4.25) with (u#
δ,t − Ψt, u

1,#
δ,t ), by (4.27), (2.12) and taking into

account the fact that

1∫

0

(∇u#
δ + ∇yu

1,#
δ )(∇u#

δ,t + ∇yu
1,#
δ,t ) dt =

1

2

1∫

0

∂

∂t
|∇u#

δ + ∇yu
1,#
δ |2 dt = 0

because of the periodicity, we get

1∫

0

∫

Ω

∫

Γ

fδ([u
1,#
δ ])[u1,#

δ,t ] dx dσ dt+ α

1∫

0

∫

Ω

∫

Γ

[u1,#
δ,t ]2 dx dσ dt ≤ γ , (4.28) eq:a58

where, again γ depends on λ1, λ2, |Γ | and the H1-norms of Ψ and Ψt.
Inequality (4.28), together with (4.27), gives

α

2

1∫

0

∫

Ω

∫

Γ

[u1,#
δ,t ]2 dx dσ dt ≤ γ , (4.29) eq:a59

γ depends on λ1, λ2, |Γ |, L and the H1-norms of Ψ and Ψt. Moreover, from (4.26),
we obtain

1∫

0

∫

Ω

|∇u#
δ |2 dx dt ≤ γ , (4.30) eq:a60

1∫

0

∫

Ω

∫

Y

|∇yu
1,#
δ |2 dx dy dt ≤ γ . (4.31) eq:a61
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Indeed,

1∫

0

∫

Ω

∫

Y

|∇yu
1,#
δ (x, y, t)|2 dy dx dt+

1∫

0

∫

Ω

|∇u#
δ |2 dx dt

≤γ − 2

1∫

0

∫

Ω

∫

Y

∇yu
1,#
δ (x, y, t)∇u#

δ (x, t) dy dx dt

=γ − 2

1∫

0

∫

Ω

∇u#
δ




∫

Y

∇yu
1,#
δ (x, y, t) dy



 dx dt

≤γ + 2

1∫

0

∫

Ω

|∇u#
δ |



∫

Γ

|[u1,#
δ (x, y, t)]| dσ


 dx dt

≤γ +
1

2|Γ | |Γ |
1∫

0

∫

Ω

|∇u#
δ |2 dx dt+ 2|Γ |

1∫

0

∫

Ω

∫

Γ

[u1,#
δ (x, y, t)]2 dσ dx dt

≤γ +
1

2

1∫

0

∫

Ω

|∇u#
δ (x, t)|2 dx dt+ γ .

(4.32) eq:a20

Finally, (4.27) and (4.29)–(4.31) allow us to pass to the limit with respect to δ in the
weak formulation of problem (4.19)–(4.24), thus proving that there exists a periodic
(in time) solution (u#, u1,#) of the homogenized problem

T∫

0

∫

Ω×Y

σ(∇u# + ∇yu
1,#) · ∇ϕ dx dy dt+

T∫

0

∫

Ω×Y

σ(∇u# + ∇yu
1,#) · ∇yΦ dx dy dt+

T∫

0

∫

Ω

∫

Γ

µ[Φ] dx dσ(y) dt− α

T∫

0

∫

Ω

∫

Γ

[u1,#]
∂

∂t
[Φ] dx dσ(y) dt = 0 (4.33) eq:a88

for every test function ϕ ∈ C1
c

(
Ω × (0, T )

)
and Φ ∈ C1

(
Ω × [0, T ]; C1

#(Y )
)

1-periodic

in time (recall the definition of C1
#(Y ) given in Subsection 2.1). It remains to identify

µ. To this purpose, we follow the Minty monotone operators method. Let us consider
a sequence of 1-periodic in time test functions ψk(x, y, t) = φk

0(x, t) + φk
1 (x, y, t) +

λφ2 (x, y, t), with φk
0 ∈ C1(Ω×R), φk

1 ∈ C1
(
Ω×R; C1

#(Y )
)
, φ2 ∈ C1

c

(
Ω×R; C1

#(Y )
)
,

with φk
0(·, t), φk

1(·, y, t) vanishing on ∂Ω for every t ∈ R and every y ∈ Y , φk
0 → u#

strongly in L2
loc

(
R;H1(Ω)

)
, φk

1 → u1,# strongly in L2
loc(R;L2(Ω;X 1

#(Y ))
)

and [φk
1,t]
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stable in L2([0, 1];L2(Ω × Γ )
)

because of inequality (4.28), i.e.

1∫

0

∫

Ω

‖φk
1(x, ·, t) − u1,#(x, ·, t)‖2

H1(Ei)
dt dx

+

1∫

0

∫

Ω

‖[φk
1(x, ·, t)] − [u1,#(x, ·, t)]‖2

L2(Γ ) dt dx→ 0 , for k → +∞, i = 1, 2;

and

1∫

0

∫

Ω

‖[φk
1,t(x, ·, t)]‖2

L2(Γ ) dt dx ≤ γ ,

with γ independent of k. Taking only into account the monotonicity assumption on
f and the periodicity in time of φk

0 and φk
1, we obtain

1∫

0

∫

Ω×Y

σ(∇u#
δ + ∇yu

1,#
δ −∇φk

0 −∇yφ
k
1 − λ∇yφ2) · (∇u#

δ −∇φk
0) dx dy dt

+

1∫

0

∫

Ω×Y

σ(∇u#
δ +∇yu

1,#
δ −∇φk

0 −∇yφ
k
1−λ∇yφ2) ·(∇yu

1,#
δ −∇yφ

k
1−λ∇yφ2) dx dy dt

+ α

1∫

0

∫

Ω

∫

Ω×Γ

∂

∂t

(
[u1,#

δ ] − [φk
1 + λφk

2]
)(

[u1,#
δ ] − [φk

1 + λφk
2]
)

dx dσ dt

+

1∫

0

∫

Ω×Γ

(
fδ([u

1,#
δ ]) − fδ

(
[φk

1 + λφk
2]
))(

[u1,#
δ ] − [φk

1 + λφk
2]
)

dx dσ dt

=

1∫

0

∫

Ω×Y

σ|∇u#
δ + ∇yu

1,#
δ −∇φk

0 −∇yφ
k
1 − λ∇yφ2|2 dx dy dt

+ α

1∫

0

∫

Ω

∫

Ω×Γ

∂

∂t

(
[u1,#

δ ] − [φk
1 + λφk

2]
)(

[u1,#
δ ] − [φk

1 + λφk
2]
)

dx dσ dt

+

1∫

0

∫

Ω×Γ

(
fδ([u

1,#
δ ]) − fδ

(
[φk

1 + λφk
2]
))(

[u1,#
δ ] − [φk

1 + λφk
2]
)

dx dσ dt ≥ 0 . (4.34) eq:monotonia1
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Taking the function (u#
δ − φk

0, u
1,#
δ − φk

1 − λφ2) as a test function (ϕ,Φ) in the weak
formulation of problem (4.19)–(4.24), inequality (4.34) can be rewritten as

−
1∫

0

∫

Ω×Y

σ(∇φk
0 + ∇yφ

k
1 + λ∇yφ2) · (∇u#

δ −∇φk
0) dx dy dt

−
1∫

0

∫

Ω×Y

σ(∇φk
0 + ∇yφ

k
1 + λ∇yφ2) · (∇yu

1,#
δ −∇yφ

k
1 − λ∇yφ2) dx dy dt

− α

1∫

0

∫

Ω

∫

Ω×Γ

∂

∂t
[φk

1 + λφ2]
(
[u1,#

δ ] − [φk
1 + λφ2]

)
dx dσ dt

−
1∫

0

∫

Ω×Γ

fδ

(
[φk

1 + λφ2]
) (

[u1,#
δ ] − [φk

1 + λφ2]
)

dx dσ dt ≥ 0 . (4.35) eq:monotonia1bis

Hence, passing to the limit as δ → 0 and using (4.28), it follows

−
1∫

0

∫

Ω×Y

σ(∇φk
0 + ∇yφ

k
1 + λ∇yφ2) · (∇u# −∇φk

0) dx dy dt

−
1∫

0

∫

Ω×Y

σ(∇φk
0 + ∇yφ

k
1 + λ∇yφ2) · (∇yu

1,# −∇yφ
k
1 − λ∇yφ2) dx dy dt

− α

1∫

0

∫

Ω

∫

Ω×Γ

∂

∂t
[φk

1 + λφ2]
(
[u1,#] − [φk

1 + λφ2]
)

dx dσ dt

−
1∫

0

∫

Ω×Γ

f
(
[φk

1 + λφ2]
) (

[u1,#] − [φk
1 + λφ2]

)
dx dσ dt ≥ 0 . (4.36) eq:monotonia2

Now, letting k → +∞, we obtain

1∫

0

∫

Ω

∫

Y

σ(∇u# + ∇yu
1,# + λ∇yφ2) · λ∇yφ2 dx dy dt+

α

1∫

0

∫

Ω

∫

Γ

∂

∂t
[u1,# + λφ2]λ[φ2] dx dσ(y) dt

+

1∫

0

∫

Ω

∫

Γ

f
(
[u1,# + λφ2]

)
λ[φ2] dx dσ(y) dt ≥ 0 . (4.37) eq:monotonia3
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Taking into account (4.33) with ϕ ≡ 0 and Φ = φ2, it follows

λ2

1∫

0

∫

Ω

∫

Y

σ∇yφ2 · ∇yφ2 dx dy dt+ αλ2

1∫

0

∫

Ω

∫

Γ

∂

∂t
[φ2][φ2] dx dσ(y) dt

− λ

1∫

0

∫

Ω

∫

Γ

µ[φ2] dx dσ(y) dt+ λ

1∫

0

∫

Ω

∫

Γ

f
(
[u1,# + λφ2]

)
[φ2] dx dσ(y) dt ≥ 0 .

(4.38) eq:monotonia4

Assuming firstly that λ > 0 and then λ < 0, dividing by λ the previous equation and
then letting λ→ 0, we obtain

1∫

0

∫

Ω

∫

Γ

µ[φ2] dx dσ(y) dt =

1∫

0

∫

Ω

∫

Γ

f
(
[u1,#]

)
[φ2] dx dσ(y) dt ,

which gives

µ = f
(
[u1,#]

)
, (4.39) eq:identificazione

so that (4.33) becomes exactly the weak formulation of problem (4.13)–(4.18). There-
fore the thesis is achieved. �

r:rem10 Remark 4.12. Note that (4.29) is uniform with respect to δ. Moreover, we can obtain

also estimates for ∇u#
δ,t and ∇yu

1,#
δ,t uniform in δ. Indeed, differentiating formally with

respect to t problem (4.19)–(4.24), multiplying equation (4.19) (differentiated with

respect to t) by
(
(u#

δ,t − Ψt)υ̂
τ , u1,#

δ,t υ̂
τ
)
, where τ ∈ (0, 1/4) and υ̂τ : [0,+∞) → R is

a function such that 0 ≤ υ̂τ ≤ 1, υ̂τ(t) = 1, for t ≥ 2τ , υ̂τ(t) = 0, for 0 ≤ t ≤ τ , and
finally integrating by parts, we obtain

1∫

2τ

∫

Ω

∫

Y

|σ∇u#
δ,t + σ∇yu

1,#
δ,t |2 dx dy dt+ α sup

t∈(2τ,1)

∫

Ω

∫

Γ

[u1,#
δ,t ]2 dx dσ

≤
1∫

0

∫

Ω

∫

Y

|σ∇u#
δ,t + σ∇yu

1,#
δ,t |2υ̂τ(t) dx dy dt

+ α sup
t∈(0,1)

∫

Ω

∫

Γ

[u1,#
δ,t ]2υ̂τ(t) dx dσ ≤ γ(τ) (4.40) eq:a81
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where we used assumption (2.8), (2.13) and (4.29). Now, proceeding as in the proof
of (4.30) and (4.31), we obtain

1∫

2τ

∫

Ω

|∇u#
δ,t|2 dx dt ≤ γ , (4.41) eq:a60bis

1∫

2τ

∫

Ω

∫

Y

|∇yu
1,#
δ,t |2 dx dy dt ≤ γ . (4.42) eq:a61bis

Therefore, passing to the limit for δ → 0+, in (4.29), (4.41) and (4.42), we obtain
that the same estimates hold for (u#, u1,#).
This implies that (u#, u1,#) belongs to C0([0, 1];H1(Ω)) × C0([0, 1];L2(Ω;X 1

#(Y )).
�

It remains to prove that any solution (u, u1) of the homogenized problem converges
to (u#, u1,#) as t→ ∞. This will be stated in the next theorem.

t:t6 Theorem 4.13. Let (u, u1) be the solution of problem (4.5)–(4.9). Then, for t →
+∞, (u, u1) → (u#, u1,#) in the following sense:

lim
t→+∞

‖
(
u(·, t), u1(·, ·, t)

)
−
(
u#(·, t), u1,#(·, ·, t)

)
‖L2(Ω×Y ) = 0 ; (4.43) eq:decayperiodic_neww

lim
t→+∞

‖
(
∇u(·, t),∇yu

1(·, ·, t)
)
−
(
∇u#

ε (·, t),∇yu
1,#
ε (·, ·, t)

)
‖L2(Ω×Y ) = 0 ; (4.44) eq:decayperiodic1_neww

lim
t→+∞

‖[u1](·, ·, t) − [u1,#](·, ·, t)‖L2(Ω×Γ ) = 0 . (4.45) eq:decayperiodic3_neww

Proof. As usual, let (r, r1) := (u#, u1,#) − (u, u1), so that the pair (r, r1) satisfies:

t∫

0

∫

Ω

∫

Y

σ
(
∇r + ∇yr

1
)
(∇φ+ ∇yΦ) dx dy dt

+

t∫

0

∫

Ω

∫

Γ

f([u1,#]) − f([u1])

[u1,#] − [u1]
[r1][Φ] dx dσ dt+α

t∫

0

∫

Ω

∫

Γ

[r1
t ][Φ] dx dσ dt = 0 , ∀t > 0 ,

(4.46) eq:a62

where u = 0 on ∂Ω× [0, T ] in the trace sense, u1 is periodic in Y and has zero mean
value in Y for every t. Here φ is a any regular function depending on (x, t), with
compact support in Ω and Φ is a any function depending on (x, y, t) which jumps
across Γ , is zero when t = T and is regular elsewhere. Differentiating (4.46) with
respect to t, we get
∫

Ω

∫

Y

σ
(
∇r + ∇yr

1
)
(∇φ+ ∇yΦ) dx dy +

∫

Ω

∫

Γ

f([u1,#]) − f([u1])

[u1,#] − [u1]
[r1][Φ] dx dσ

+ α

∫

Ω

∫

Γ

[r1
t ][Φ] dx dσ = 0 . (4.47) eq:a63
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Replacing (φ,Φ) with (r, r1) in (4.47), we get

∫

Ω

∫

Y

σ|∇r + ∇yr
1|2 dx dy +

∫

Ω

∫

Γ

f([u1,#]) − f([u1])

[u1,#] − [u1]
[r1]2 dx dσ

+ α

∫

Ω

∫

Γ

[r1
t ][r

1] dx dσ = 0 . (4.48) eq:a64

As in Section 3, equation (4.48) implies that the function t 7→ α
∫

Ω

∫
Γ
[r1(x, t)]2 dσ dx

is a positive, decreasing function of t, hence it tends to a limit value r1 ≥ 0 as
t → +∞. The value r1 must be zero otherwise α

∫
Ω

∫
Γ
[r1]2 dσ dx ≥ r1

2
for t ≥

t, for a suitable t > 0. On the other hand, fixed t > 0 and setting Γr1(t) :={
(x, y) ∈ Ω × Γ : [r1]2(x, y, t) ≤ r1

4α|Γ | |Ω|

}
, reasoning as in the proof of Theorem 3.3,

it follows that

α

∫

Ω

∫

Γ\Γ
r1 (t)

[r1(x, y, t)]2 dσ dx ≥ r1

4
.

However, on Γ \Γ r1
, g(x, y, t) := f([u1,#])−f([u1])

[u1,#]−[u1]
≥ χ > 0, where χ is a suitable positive

constant depending only on r1, α, |Γ | (this last result follows from the assumptions
(2.9)–(2.11)). Hence, using (4.48), we get

d

dt


α

2

∫

Ω

∫

Γ

[r1(x, y, t)]2 dσ dx


 ≤ −

∫

Ω

∫

Γ\Γ
r1 (t)

g(x, y, t)[r1(x, y, t)]2 dσ dx

≤ −χ
∫

Ω

∫

Γ\Γ
r1 (t)

[r1(x, y, t)]2 dσ dx ≤ − r1

4α
χ < 0 . (4.49) eq:a65

Inequality (4.49) clearly contradicts the asymptotic convergence for t → +∞ of
α
∫

Ω

∫
Γ
[r1]2(x, y, t) dσ dx, hence

lim
t→+∞

α

∫

Ω

∫

Γ

[r1(x, y, t)]2 dσ dx = 0 , (4.50) eq:a66

which is exactly (4.45). Integrating (4.48) in [t,∞) and taking into account (4.50),
we get

+∞∫

t

∫

Ω

∫

Y

σ|∇r + ∇yr
1|2 dx dy dt ≤ α

2

∫

Ω

∫

Γ

[r1(x, y, t)]2 dσ dx , (4.51) eq:a67

which implies

lim
t→+∞

+∞∫

t

∫

Y

∫

Ω

σ|∇r + ∇yr
1|2 dx dy dt = 0 . (4.52) eq:a68
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This last condition guarantees that for every positive η there exists a t̂(η) > 0, such
that

+∞∫bt ∫

Ω

∫

Y

σ|∇r + ∇yr
1|2 dx dy dt ≤ η ,

which in turn implies that, for every n ∈ N , there exists a tn ∈ (t̂+ n, t̂+ (n + 1)),
such that ∫

Ω

∫

Y

σ|∇r(x, tn) + ∇yr
1(x, y, tn)|2 dx dy ≤ η . (4.53) eq:a69

Hence, replacing (φ,Φ) with (rt, r
1
t ) in (4.47), we get

∫

Ω

∫

Y

σ(∇r0 + ∇yr
1)(∇rt + ∇yr

1) dx dy +

∫

Ω

∫

Γ

g(x, y, t)[r1][r1
t ] dσ dx

+ α

∫

Ω

∫

Γ

[r1
t (x, y, t)]

2 dσ dx = 0 , (4.54) eq:a70

and∫

Ω

∫

Y

σ(∇r + ∇yr
1)(∇rt + ∇yr

1
t ) dx dy ≤

∫

Ω

∫

Γ

g2(x, y, t)

2α
[r1(x, y, t)]2 dσ dx . (4.55) eq:a71

Moreover, integrating (4.55) in [tn, t
∗], with t∗ ∈ [tn, tn + 2], we have

sup
t∈[tn,tn+2]




∫

Ω

∫

Y

σ

2
|∇r(x, t) + ∇yr

1(x, y, t)|2 dx dy





≤ η

2
+

2L2

2α2
sup

t∈[tn,+∞)


α

∫

Ω

∫

Γ

[r1(x, y, t)]2 dσ dx


 , ∀n ∈ N ; (4.56) eq:a72

i.e.,

sup
t∈[bt+1,+∞)



∫

Ω

∫

Y

σ

2
|∇r(x, t) + ∇yr

1(x, y, t)|2 dx dy




≤ η

2
+
L2

α2
sup

t∈[bt,+∞)


α

∫

Ω

∫

Γ

[r1(x, y, t)]2 dσ


 . (4.57) eq:a73

Because of (4.50) the integral in the right-hand side of (4.57) can be made smaller

than η
2

(
L2

α2

)−1

, provided t̂ is chosen sufficiently large in dependence of η. This means

that

sup
t∈[bt+1,+∞)



∫

Ω

∫

Y

σ

2
|∇r(x, t) + ∇yr

1(x, y, t)|2 dx dy


 ≤ η . (4.58) eq:a74
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Inequality (4.58) implies

lim
t→+∞

∫

Ω

∫

Y

σ|∇r(x, t) + ∇yr
1(x, y, t)|2 dx dy = 0 . (4.59) eq:a75

Now, working as done in (4.32), we get

lim
t→+∞

∫

Ω

|∇r(x, t)|2 dx dy = 0 ; and lim
t→+∞

∫

Ω

∫

Y

|∇yr
1(x, y, t)|2 dx dy = 0 ,

which gives (4.44). Finally, the previous results together with (4.50) and Poincare’s
inequality yield

lim
t→+∞

∫

Ω

|r(x, t)|2 dx = 0 ; and lim
t→+∞

∫

Ω

∫

Y

|r1(x, y, t)|2 dx = 0 ,

which gives (4.43) and concludes the proof. �

r:rem11 Remark 4.14. Observe that this asymptotic convergence results implies uniqueness
of the periodic solution (u#, u1,#) (in the class of functions specified above). �
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