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Abstract: Candida albicans is an ubiquitous fungal commensal of human skin and 

mucosal surfaces, and at the same time a major life-threatening human fungal pathogen in 

immunocompromised individuals. Host defense mechanisms rely on the capacity of 

professional phagocytes to recognize Candida cell wall antigens. During the past decade, 

the host immune response to Candida was dissected in depth, highlighting the essential 

role of C-type lectin receptors, especially regarding the power of the Dectins’ family in 

discriminating between the tolerated yeast-like form of Candida and its invading 

counterpart, the hyphae. This review focuses on the immuno-modulatory properties of the 

Candida morphologies and their specific interactions with the host innate immune system 

in different body surfaces. 
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1. Introduction 

Pathogens are usually regarded as autonomous causative agents in virulence studies even though the 

host and the host microbiota can influence their pathogenicity [1]. In healthy individuals, most of the 

microbial resident eukaryotes are rather mutualistic or commensal and do not cause infections. 

However, when the host microbiota gets disturbed or the host defense mechanisms extenuated these 

commensals can become pathogens [2]. An important representative of such opportunistic fungi is the 

yeast C. albicans, a permanent member of the human microbiota, present on the skin [3], oral cavity 

[4], vagina [5,6] and gut mucosa [7] in 30%–70% of healthy individuals. Under normal conditions,  

C. albicans does not cause significant disease [8,9], yet, it has the potential to infect and colonize the 

host in immunocompromised individuals, like HIV-patients [10], lung transplant recipients [11] and 

cystic fibrosis patients [12]. Invasive Candida infections lead to high mortality and to enormous 

treatment costs of annually US$ 8 billion alone for the United States [13]. 

Generally, the interaction between the human host and its microbiota is based on the immunological 

tolerance of colonizing microorganisms by the mucosal host defenses. This commensal stage is 

regarded to be inoffensive to the host due to a tight control that is highly regulated by a continuous or 

transient cross-talk between the fungus and the host immune system [14]. The latter maintains 

homeostasis with the resident mycobiota, ensuring the balance between tolerogenic and pro-

inflammatory response. In parallel, disturbance of the network of competitive commensal bacteria can 

lead to increased susceptibility to C. albicans infections and distorted immunological responses against 

C. albicans have been proposed to contribute to the pathological auto-inflammation that occurs in 

patients with Crohn’s disease [15]. 

Candida is a dimorphic fungus with distinct phenotypical features in its yeast form versus its hyphal 

form. This phenotypic transition led to a long-lasting debate on relative attributes of C. albicans 

morphotypes during the colonization of skin and mucosae, and subsequently on the invasion of the 

bloodstream and deep tissues [16,17]. Whereas disseminated candidiasis is generally induced by the 

yeast form, mucosal diseases are more strongly correlated to filamentous forms like invasive hyphae 

and pseudohyphae [18]. The Candida cell wall is mainly composed of different carbohydrate moieties, 

such as β-glucan, mannan and chitin (Figure 1). In the course of a C. albicans infection the initial 

response of the innate immune system is determined by the recognition of these fungal cell wall 

components, also referred as pathogen associated molecular patterns (PAMPs), by pattern recognition 

receptors (PRRs) located on the surface of innate immune cells. C-type lectin receptors (CLRs) are the 

main group of PRRs involved in antifungal responses, recognizing polysaccharide structures of 

microorganisms [19]. Individual CLRs, particularly receptors of the “Dectin-1” and “Dectin-2” 

families [20], are able to recognize different fungal pathogens but there is a clear overlap in the 

substrate recognized by some of these receptors [19,21–23]. 

Differences in TLR and CLR signaling can be used to classify microorganisms for the induction of 

pro-inflammatory or tolerogenic signals [24,25]. This fine-tuned recognition potential opens the 

possibility to investigate in depth the human susceptibility to fungal infections caused by specific 

strains. Thus, discovering differences and commonalities allows the subsequent development of new 

antifungal therapies. 
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Figure 1. Candida albicans morphotypes and cell wall composition. (A) The various 

morphologies of C. albicans play different roles in colonization and disease. White yeast 

cells are important for establishment and dissemination of fungal infections, and 

pseudohyphae and true hyphae for tissue penetration and invasion. Opaque-phase cells are 

mating competent cells that resemble gastrointestinally induced transition (GUT) cells, but 

other than opaque cells they lack surface pimples in their cell wall and have been uniquely 

adapted for commensal growth; (B) Schematic diagram of the cell wall composition in C. 
albicans yeast cells and hyphae. In yeast and hyphal forms the sugar moieties present on 

the fungal cell wall are the same but their exposure and thickness determine different 

immunogenic properties. For example, β-glucans are just exposed on the yeasts’ bud scars 

and division septa and are hidden by a surface layer of mannan in the hyphal form. 

In this review, we will describe the most recent discoveries on the immuno-modulatory properties 

of C. albicans morphotypes relevant to the interaction with the host, and the immunological 

consequences of the underlying shifting nature of the cell surface of this fungus. We will further focus 

on new advancements regarding the important role of the Dectin-1 and Dectin-2 receptor families in 

terms of antifungal mucosal immunity in different body districts (Figure 2). 
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Figure 2. C. albicans and mucosal immunity. The major cells participating in the Dectin-1 

mediated antifungal immune response are depicted for four body sites frequently subjected 

to Candida infections. (A) Skin: On the epidermis Candida is mainly present as yeast-like 

cells while pseudohyphae are the predominant form in the dermis. The epidermis is 

interspersed with LCs, DETCs and CD8+ T cells, representing the first line of defense 

towards yeast-like cells. To face hyphal invasion, the dermis contains CD4+ T effector 

memory cells, macrophages, mast cells and DCs; (B) Oral cavity: DCs and LCs reside in 

the stratified squamous epithelium. In the lamina propria, DCs project dendrites into the 

epithelium to uptake antigens and to prime CD4+ T cells; (C) Vagina: In healthy 

individuals Lactobacillus species produce a low pH which keeps pathogens at bay. The 

vaginal mucosa is surveyed by macrophages and DCs present in the epithelial layer (LCs, 

CD8+) and the submucosal lamina propria (CD4+); (D) Gut: In the gut lumen C. albicans 
is predominately present in small numbers and as yeast-like cells which do not cause 

epithelial damage. Contrary high loads of Candida lead to abundant growth on the surface 

and the mucosa is invaded by the hyphal form. CD103+ DCs, macrophages and NK cells 

collaborate in promoting the activation of the appropriate Th response. Mϕ, macrophage; 

DC, dendritic cell (prefix “O” oral, “V” vaginal); LC, Langerhans cell; DETC, dendritic 

epidermal T cells; NK, natural killer cell; CD, cluster of differentiation. 

2. The Highly Plastic Nature of C. albicans Morphology and Its Implications for Pathogenicity 

As indicated, C. albicans uptake and clearance require a concert action of different receptors of the 

host innate immune system which is responsible for the recognition of PAMPs and for the subsequent 

release of an antifungal-specific immune response. C. albicans developed an enormous phenotypic 

armamentarium to colonize diverse host niches and to escape the host immune defense. A key 

virulence factor of C. albicans pathogenesis is its ability to switch between different morphologies, 

comprising yeast, pseudohyphae and true hyphae (Figure 1). C. albicans uses the reversible transition 
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to filamentous growth as a response to environmental cues and to either block or avoid recognition by 

stimulatory PRRs [26]. 

The current paradigm is that yeast forms are critical for colonization, early infection and 

dissemination, while filaments are responsible for tissue invasion and deep infection [26,27]. These 

morphological transitions go along with cell wall remodeling, leading to a change in the composition 

of the exposed components, which in turn influences the recognition by the host immune system. The 

fungal cell wall consists of two main parts: an inner skeleton composed of β-glucan and chitin and an 

outer cell surface layer of mannan (Figure 1). Cell wall carbohydrates represent the major PAMPs of 

Candida and their different exposure on the surface is thought to influence the recognition by 

leukocytes. Here, mannan, as the outermost layer, masks the subjacent cell wall layers and thus, 

prevents the Dectin-1 pro-inflammatory response [28,29], yet on the bud scars chitin and β-glucan can 

become exposed to the surface [30,31]. 

Despite this findings, recent analyses of the interaction between murine macrophages and  

C. albicans mutants defective in filamentation suggest that rather than filamentation, the change in the 

cell wall composition, that occurs during the yeast-to-hyphae transition, is the driving force for 

infection causing macrophage lysis and Candida outgrowth [32]. Here, a genome scale analysis 

revealed 102 negative and 872 positive genetic regulators during C. albicans morphogenesis 

highlighting the importance of the early and middle stages of ergosterol biosynthesis during adaption or 

evasion of the immune system [32]. 

Further, macrophage migration towards C. albicans has been shown to depend on the glycosylation 

status of the fungal cell wall, but not on cell viability or morphogenic switching from yeast to hyphae. 

Lacking specific PAMPs, C. albicans glycosylation mutants are slowly phagocyted by macrophages 

and in particular mannosylation seems to be a key determinant in the rate of macrophage engulfment, 

consequent fungal recognition and clearance through differential activation of macrophage PRRs [33]. 

Additionally, apart from protection against the host defense by camouflaging cell wall 

polysaccharides against detection of the innate immune system, covalently linked cell wall proteins 

(CWPs) serve several important virulence features such as adhesion, biofilm formation and tissue 

invasion. The diversity of CWPs is amplified by another particularity of Candida species: the 

ambiguous translation of the serine CUG codon as serine and leucine [34,35]. Here, especially CWPs 

are enriched in CUG codons and it was shown that increased CUG mistranslation is an important 

factor in triggering the above mentioned virulence attributes by creating variability in CWPs [35,36]. 

These studies on codon ambiguity open a new perspective on the immune-modulatory capacities of 

Candida by expanding its adaptation to host microniches [35,36]. 

Another fascinating transition is the mating-type locus (MTL) controlled white-opaque switch from 

the yeast morphology to the mating-competent elongated cell morphology with pimpled cell  

walls [37]. This switch is a phenotypic transition associated with changes in cell morphology, 

physiology and gene expression [38] and is accompanied by differences in virulence. In mouse models 

the smooth white cells have been shown to colonize mouse kidneys rapidly and at higher levels than 

the hyphae-like opaque cells, while the latter have advantages in the colonization of the skin [38]. 

Recently two new cell types, gray and GUT (gastrointestinally induced transition), were added to the 

C. albicans phenotypic switching system [39,40]. GUT cells resemble opaque cells but lack pimples 

on their cell surface. They seem to be optimized for commensalism in the mammalian digestive tract 
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[40]. Gray cells are also elongated but smaller than opaque and GUT cells and colonies have a smooth 

gray colored appearance [39]. Both cell types showed higher expression of secreted enzymes and cell-

wall remodeling proteins when compared to white and opaque cells. Interestingly, gray cells had an 

advantage over white cells regarding dissemination in an ex vivo tongue infection model and caused 

more damage in an in vivo skin infection model [39]. 

Further, C. albicans forms biofilms which represent a mixture of yeast and filamentous cells, but 

also in this regard C. albicans is unique as it forms two types of biofilms, one pathogenic and one  

sexual [41]. Like for white-opaque switching the form of the biofilm depends on the MTL 

conformation. Ninety percent of strains exhibit the a/alpha MTL configuration forming the pathogenic 

biofilm that is robust, impermeable and drug-resistant, while homozygosity of the MTL leads to a 

drug-susceptible biofilm that is associated to mating [41]. Biofilm formation starts with the adherence 

of yeast-form cells to the substrate but the formation of “sticky” hyphae is regarded as the initiation 

step of biofilms [42]. For dispersal the yeast to hyphae transition seems to be reversed as mature 

biofilms release yeast-form cells and this dispersed cells exhibit an increased potential for adherence 

and filamentation. Therefore, C. albicans biofilms in implanted medical devices are a main source of 

disseminated infection leading to high mortality [42]. 

Taken together this complex plasticity and strong remodeling ability together with the discovery of 

novel cell types enable a specific capability of C. albicans to alternatively mask or uncover  

immune-stimulatory antigens, and thus, provides an incredible complexity of host—fungal interactions. 

3. C-Type Lectins in Fungal Immunity: Dectin-1 and Dectin-2 Signaling 

CLRs receptors play a major role in anti-fungal immunity, both in mice and men [43].  

Receptor-mediated responses include fungal binding and phagocytosis, as well as production of 

soluble molecules, including cytokines, chemokines and inflammatory lipids, which drive 

inflammation and adaptive immunity in the host. These actions are dependent on the activation of a 

common signaling pathway that involves Syk kinase, Card9 and NF-κB in both DC and macrophages 

[44] and that directly modulate adaptive immunity by priming Th1 and Th17 responses [19–22] 

(Figure 3). Indeed, defects in several components of the Th17 pathway, ranging from the signaling 

molecules (CARD9, STAT1, STAT3) to the cytokines involved (IL-17), have been linked to chronic 

mucocutaneous candidiasis [23,45]. All of these responses are mainly driven by the Dectin-1 and Dectin-

2 receptors [43]. 
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Figure 3. Schematic representation of selected signal networks induced by Dectin-1 and 

Dectin-2. Dectin-1 and Dectin-2 induce intracellular signaling via tyrosine (Y)-based 

activation motifs (immunoreceptor tyrosine-based activation motifs or ITAMs) which 

recruit and activate Syk-kinase either directly, or indirectly through the FcγR adaptor 

chain. Signaling through protein-kinase C (PKC) δ activates the Card9-Bcl10-Malt1 

complex and induces gene transcription and the production of various inflammatory 

mediators. Dectin-1 can signal via the Raf-1 kinase pathway which modulates other 

signaling pathways, including those induced by the Toll-like receptors (TLR) and the 

Dectin-1/Syk pathway. Dectins can also collaborate with TLRs, to synergistically induce or 

repress various cytokines and chemokines and to mediate fungal phagocytosis (not shown). 

Dectins-mediated recognition of C. albicans yeasts or hyphae drives their uptake and 

killing by phagocytes, and directs the development of protective Th1/Th17 responses. 

Induction of IL-12 drives IFN-γ production by Th1 cells, which is critically required for 

the activation of phagocytes. Signals inducing IL-10 production lead to Treg 

differentiation. On the other hand, induction of IL-1β, IL-6, and IL-23 promotes Th17 

differentiation, which drives the production of IL-17 and IL-22. 

3.1. Dectin-1 

Dectin-1 signaling is considered archetypal for non-Toll like pattern recognition receptor mediated 

signal transduction. It was first identified on DCs [46] but later it was shown that the receptor is also 

widely expressed on other cell types like macrophages, neutrophils (Robinson, et al., 2006, Taylor,  
et al., 2002), γδ T cells, and on epithelial cells of the mucosa (Martin, et al., 2009, Rand, et al., 2010). 
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Dectin-1 recognizes β-1,3-glucans in a calcium-independent manner, and is involved in both ligand 

uptake and phagocytosis, as well as proinflammatory cytokine production. 

Through its pathway, Dectin-1 can synergistically collaborate with the TLRs to induce  

pro-inflammatory responses (Brown, 2006) but also without TLR engagement it can elicit a robust 

inflammatory response in DCs [19]. This response is modulated by the progression of the phagocytosis 

following Dectin-1 clustering into “phagocytic synapses” (also known as phagocytic cups) [47], 

resulting in a dramatically augmented inflammatory response which is mainly induced by β-glucan 

through a mechanism previously referred as “frustrated phagocytosis” [48,49]. Frustrated phagocytosis 

indicates for example the limit of phagocytes to internalize just as many particles that they burst [50]. 

Similar to other CLRs, Dectin-1 engagement leads to tyrosine phosphorylation of the  

ITAM-like/ITAM motifs, recruitment and activation of Syk kinase and subsequent activation of the 

CARD9–Bcl10–Malt1 complex through PKCδ [51,52] (Figure 3). Stimulation of this pathway by 

Dectin-1 and other Syk-independent pathways, as those mediated by Raf-1, results in the activation of 

several transcription factors including canonical and non-canonical subunits of NF-κB as well as 

NFAT, IRF1 [53–55] and IRF5 [56]. A recent study in mice showed that, Dectin-1 activation of 

CARD9 recruits and activates HRas through Ras-GRF1 phosphorylation resulting in the induction of 

ERK-mediated signaling in bone-marrow derived macrophages and DCs [57]. This CARD9 activation 

lead to an increased survival of mice during systemic candidiasis [57]. 

In general, Dectin-1 signaling regulates numerous cellular responses like phagocytosis, autophagy 

and the respiratory burst as well as, the production of inflammatory lipids, cytokines and chemokines 

such as the Th17- polarizing cytokines IL-23, IL-6 and IL-1β. Especially, Dectin-1 induced production 

of IL-1β is of interest, as it involves both the NLRP3/caspase-1 and non-canonical caspase-8 

inflammasomes [54,58,59]. 

While it is generally accepted that Dectin-1 is able to induce Th17 responses [19] and instruct Treg 

to express IL-17 [60] in vitro, it is controversial whether Dectin-1 promotes these responses during a 

fungal infection. For example in mice Dectin-1 is not required for IL-17 production during a  

gastro-intestinal infection with C. albicans [61] but human deficiencies in Dectin-1 result in 

diminished Th17 responses and increased susceptibility to mucosal candidiasis [45]. This discrepancy 

reflects once more the existing differences among mice and men. Further, studies demonstrated that 

Dectin-1 recognition clearly depends on the fungal strains [62] and on the accessibility of the ligand on 

the fungal cell wall [63]. 

3.2. Dectin-2 

An efficient antifungal immunity requires also Dectin-2, whose importance in protective anti-fungal 

immunity has been deeply investigated in mice [64,65]. While Dectin-1 recognizes the yeast fungal 

form, soluble Dectin-2 seems infact to preferentially bind the hyphal form of C. albicans [66], 

recognizing cell wall α-mannans [22]. Initially, Dectin-2 was identified as a Langerhans cell-specific 

receptor, but subsequently it was shown to be expressed on a variety of myeloid cells, including tissue 

macrophages, neutrophils and several DC subsets (e.g., pDCs) [20,67–70]. Dectin-2 shows a divergent 

expression pattern between humans and mice. In humans Dectin-2 [71,72] transcripts were detected in 
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lung, spleen, lymph nodes, leukocytes, bone marrow and tonsils, but unlike in mice, Dectin-2 was not 

expressed in the human thymus. 

While Dectin-1 forms a homodimer after engagement, Dectin-2 is associated to FcRγ [66]. Similar 

to Dectin-1, signaling from Dectin-2 passes through the Syk, PKCδ and CARD9–Bcl10–Malt1 

pathway, leading to the induction of several cytokines and chemokines (including TNFα, IL-2, IL-10, 

IL-23, IL-1β, IL-6 and IL-12) [20,22,53,66,73] (Figure 3). Further in mice, Dectin-2 signaling has 

been shown to involve phospholipase Cγ2 (PLCγ2) and mitogen-activated protein kinases [74]. Here, 
in vitro experiments could unveil that, following fungal challenge, abrogating PLCγ2 results in the 

defective activation of NF-κB and MAPK and a significantly reduced production of reactive oxygen 

species. In addition, PLCγ2-deficient mice are defective in clearing C. albicans systemic infection in 
vivo [74]. Indeed, mice lacking Dectin-2 demonstrated greatly increased fungal susceptibility, with 

consequent increased fungal burden and death [22]. Abolishing Dectin-2 results in impaired cytokine 

response impacting the ability of the DCs to prime Th1/Th17 differentiation in response to Candida 

intraperitoneal infection [20,22]. Further, Dectin-2 promotes Th17-biased immunity in response to 

fungi through the differential activation of cRel containing NF-κB dimers by Malt1, and the 

preferential induction of IL-23 and IL-1β [75]. 

As observed for Dectin-1, triggering of the Dectin-2-Syk signaling induces the respiratory burst, 

fungal killing by ROS production [76] and NLRP3 inflammasome activation [77]. During C. albicans 

infection, Dectin-1 and Dectin-2 synergistically cooperate to cope with the invading fungus. Robinson 
et al. (2009) used a blocking mAb against Dectin-2 to treat murine wild-type and Dectin-1-deficient 

DCs. Stimulation of these DCs with heat-killed C. albicans or zymosan revealed an almost complete 

abolition of cytokine production when both of these CLRs were knocked out [20]. This result was 

reminiscent of those observed with Syk-deficient cells and therefore it has been proposed that all  

Syk-dependent responses to Candida may depend on Dectin-1 and Dectin-2. However, Th17 responses 

were only dependent on Dectin-2, and not Dectin-1, suggesting that Dectin-2 is the main receptor 

during C. albicans systemic infection [20]. 

3.3. Dectin-3 

Several other microbial antigens contribute in sensing C. albicans [78–82,83]. Among those, 

Mincle, DCIR, BDCA2 and Dectin-3 (previously named CLECSF8 or Clec4d) have been shown to 

share structure and signaling features with Dectin-2, and therefore included in the Dectin-2 family [84–

86]. Dectin-3 is expressed in peritoneal macrophages, in the spleen and bone marrow and only at lower 

level in lymph nodes and lungs [87]. Blocking or deficiency of Dectin-3 rendered mice more 

susceptible to Candida systemic infection [88] and Dectin-3 seems to have redundant functions with 

Dectin-2. Like Dectin-2 it is able to specifically recognize α-mannans that are exposed on the surface 

of C. albicans hyphae [88] and Dectin-3 stimulation by these hyphae effectively activates p65 nuclear 

translocation, Syk phosphorylation and Ikα degradation. Here, Syk inhibition completely blocks p65 

nuclear translocation, assuming that Dectin-3 induces Syk-dependent activation of NF-κB [88]. This 

discovery could explain why murine cytokine production induced by C. albicans hyphae is only 

partially dependent on Dectin-2 [22]. In this regard, it is notable that a recent study demonstrated that 
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Dectin-2 and Dectin-3 can form a heterodimeric PRR with increased sensitivities for recognizing 

surface mannose-rich structures [88]. 

3.4. Dectin-1 Antagonist: CLRs Antagonism 

As shown above, some PRRs demonstrate some degree of redundancy in certain roles, which are 

not only restricted to CLRs. A well-known example of convergence and cooperation in activation of 

inflammatory gene expression is the integration between Dectin-1 and TLR2-mediated signaling. This 

synergism is dependent on Syk and is most pronounced during NF-κB activation [89]. It leads to a 

consequent production of Th17 priming cytokines like TNFα, IL-6, IL-23 [89] and IL-1β [59], but 

simultaneously to down-regulation of IL-12p70 [89]. This is coherent with the discovery that IL-12p70 

is the target of Mincle suppression [55]. It has been recently shown that while Dectin-1 and Dectin-2 

trigger the Syk-CARD9-MALT1-BCL10 module to activate NF-κB, Mincle uses the same signaling to 

induce a PI3K-PKB activation without NF-κB activation. The simultaneous activation of Dectin-1 and 

Mincle leads to DC induction of IL-6, IL-23, IL-1β but not IL-12p70. Mincle activates a secondary 

signaling through PI3K-PKB that directed Mdm2-mediated proteosomal degradation of IRF1. IRF1 

degradation and subsequent selective abrogation of IL-12p35 transcription promote a shift from a Th1 

antifungal response towards Th2 differentiation [55]. This shift probably contributes to the 

establishment of fungal infections, and thus, presents a strategy by which fungal pathogens exploit 

selective PRRs to evade and promote their survival. 

4. The Mucosal and Epithelial Barrier and C. albicans 

C. albicans is able to colonize the healthy oral, vaginal and gastro-intestinal mucosa and the skin. 

Here, immune defensive mechanisms allow colonization by Candida but prevent its dissemination and 

invasion, unless the epithelial barrier is breached or the immune system compromised. Indeed an 

equilibrium exists that balances the defense response against invading tissue. Moyes et al. [90] attempt 

to understand how epithelial cells, the cell type in closest contact with mucosal or skin flora, are able 

to distinguish between colonizing C. albicans that poses no apparent threat and the invading Candida 

that can result in mucosal or systemic infection. The authors proposed that a common core of 

recognition leads to the early activation of NF-κB and the MAPK c-Jun through p38 in a morphology 

independent manner. After this initial recognition hyphal formation and fungal burden can elicit a 

second signaling through MAPK, MKP1, and c-FOS which consequently induces a strong pro-

inflammatory response. Thus, fungal germination and the recognition of hyphae by the epithelial cell 

represent a major danger signal upon tissue invasion. Nowadays a paucity of data exists on the role of 

receptors and signaling integration that enable the host immune system to discriminate between 

colonizing and invading Candida, revealing that Dectin-1 and Dectin-2 seem to be differently involved 

in different mucosal sites. 

4.1. Skin 

Mucocutaneous immunity to C. albicans requires Th17 differentiation that in vitro is activated upon 

hyphae recognition. On the skin stratum corneum, C. albicans exists as yeast form, while in the dermis 
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and internal organs it is predominantly present as pathogenic pseudo-hyphae [91]. During epicutaneous 

infection, CD103+ dermal DCs prime Th1 differentiation through IL-12 secretion [92]. Langerhans 

cells (LCs) on the other hand are fundamental for Th17 differentiation via IL-1β, TGFβ and IL-6  

production [93]. Of consequence, several subsets of DCs could be potentially engaged to properly 

respond to the various morphotypes. Using a skin infection mouse model, it has recently been shown 

that C. albicans yeasts but not pseudo-hyphae were able to induce Th17 adaptive responses.  

This activation relies on Dectin-1 triggering on LCs and subsequent IL-6 production. Nevertheless, 

pseudohyphae, that after spreading and invasion are the predominant form on the skin, failed to 

activate Dectin-1 competent CD11b+ dermal DCs [94]. This defect could be rescued by addition of 

exogenous Dectin-1 ligand, indicating that, during the epicutaneous challenge, dermal DCs have 

limited access to antigens due to Candida morphological switch [94]. The same authors found that 

Th17 provided protection against cutaneous but not systemic infection, while Th1 provided the 

opposite [94]. 

Innate immune cells with phagocytic activity such as neutrophils, macrophages and mast cells are 

the first defense line on the skin. Mast cells for example can degranulate in response to C. albicans and 

kill them [95] before they induce chemokines and cytokines release to recruit other immune effector 

cells [96]. Mast cells are equipped with a vast array of PRRs, including Dectin-1, whose role in 

mediating their response to C. albicans has been recently addressed [97]. It is now clear that mast cells 

are able to recognize both the hyphal and the yeast form, by inducing Syk phosphorylation and NF-κB 

activation through IKBα degradation. Phagocytosis and ROS production were associated with TNFα, 

IL-6, IL-10, CCL3 and CCL4. However, just the yeast form was able to induce IL-1β, through NLRP3 

inflammasome activation [97]. NLRP3 plays an essential role in host defence during in vivo infection with 

C. albicans [59]. Moreover, the switch from yeast to hyphae is necessary for NLRP3 activation and IL-

1β secretion in macrophages, and it was suggested that the NLRP3 inflammasome is activated by the 

membrane disruption that occurs during this transition, rather than by the hyphae themselves [98]. This 

specific morphotype activation reveals once more the fundamental role of the morphological transition 

for C. albicans’ adaptation to the host. 

4.2. Mouth 

Candidosis is the most common oral opportunistic infection [99,100]. Symptomatic oral infection 

with C. albicans is characterized by invasion of the oral epithelium by virulent hyphae. In response to 

them, myeloid DCs in the oral mucosal epithelium activate different receptors including TLR2, Dectin-1 

and Dectin-2. Their individual or combined activation by C. albicans hyphae, triggers intracellular 

signaling pathways including the NF-κB, the MAPK and the IRF pathways [90,101]. Like on other 

mucosa, C. albicans-induced activation of the Dectin-1 receptor-Syk-CARD9 intracellular signaling [19] 

and co-stimulation of Dectin-1 and Dectin-2 pathways [75] promote DCs maturation and secretion of 

IL-23 and IL-β, and thus consequently boosts the differentiation of Th17 cells. This adaptive response, 

rather than the Th1 response, appears essential in limiting the oral candidiasis infection in both human [99] 

and mice [100]. In humans, deficiency in CARD9, the central signaling molecule downstream of 

CLRs, determines susceptibility to chronic mucocutaneous candidiasis due to a lack of Th17 response 

induction [102]. In mice, it has been observed that CARD9 is required for the adaptive C. albicans 



Pathogens 2015, 4 650 

 

response but not necessarily for effective oral mucosal innate protection carried out by IL-17 

producing innate cells [103]. This discrepancy in innate and adaptive immune activation by  

CLR-mediated signaling could indicate how the immune system evolved to specifically respond to the 

infection requirements. 

4.3. Gut 

Fungi and particularly C. albicans are important components of the gut microbiota. In the gut, fungi 

are recognized by Dectin-1. Its absence seems to increase susceptibility to murine experimental colitis, 

leading to an increase in Candida colonization, and in parallel in humans a severe form of ulcerative 

colitis is strongly linked to a polymorphism in the gene for Dectin-1 (CLEC7A) [104]. 

Along the gastrointestinal tract from the ileum to the colon Dectin-1 has been shown to be 

expressed not only on the surface of immune cells but also on intestinal epithelial cells (IEC) [105]. Its 

expression was found similar to that presented by lamina propria CD45+ CD13+ macrophages. IEC 

activation by β-glucan leads to a Dectin-1-dependent Syk phosphorylation and cytokine chemokine 

production, resulting in high levels of IL-8 and CCL2 [105]. This recent discovery proposes that IEC 

could act in concert with DCs and resident macrophages in mucosal recognition and immunity to C. 
albicans. Moreover, other PRR signaling might induce Syk phosphorylation in vivo [106,107], thus the 

involvement of Dectin-2, Dectin-3 and Mincle cannot be excluded in IEC driven fungal immunity. 

In susceptible hosts systemic C. albicans infections are thought to start in the gastro-intestinal tract. 

As hyphal forms predominate at sites of primary epithelial infection [90], morphogenetic shift back to 

yeast cells seems to facilitate the access of C. albicans to the bloodstream and their consequent 

systemic spread [91]. To test this hypothesis of GI colonization immunocompetent mice were treated 

with antibiotics and led to be colonized by hyphae or yeasts of C. albicans. The results showed that the 

yeast form was favored in the GI tract while the filamentous form was rapidly cleared [108]. In 

contrast, for tissue invasion Vautier et al [108] discovered that the ability to transition between 

morphotypes is essential for GI survival in conditional mouse mutants. This is in agreement with the 

discovery of the yeast-like GUT morphotype, present after gut colonization [40]. During systemic 

infections Dectin-1-deficient mice were in fact susceptible to localized GI tract colonization, correlated 

to increased fungal burdens, dysregulated cytokine responses and increased levels of bile acids. As a 

consequence, Dectin-1 might also be involved in controlling the colonization of gut mucosa by C. 
albicans following a previous oral infection. As mice are not colonized in a normal fashion by this 

fungal pathogen, similarly to the GI colonization experiment mice are treated with antibiotics to 

displace the endogenous microbiota and then orally infected with C. albicans via the drinking water 

[109]. Surprisingly, after oral infection, no difference in colonization levels of the Dectin-1−/− mice, was 

observed when compared to wild-type animals, neither in stool burdens nor in GI tissue fungal 

burdens. Moreover, Dectin-1 deficiency did not affect cytokine responses or tissue pathology during 

fungal GI colonization [61], revealing that Dectin-1 is not required for controlling mucosal 

colonization of the GI but it is fundamental for controlling systemic infection [61,110]. 
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4.4. Vagina 

Approximately 75% of all adult women are subject to vulvovaginal candidiasis at least once in their 

lives, and approximately half of these cases are re-infected with a rate of 5%–8% resulting in recurrent 

vulvovaginal candidiasis [111]. This indicates that some women are more prone to vaginal candidiasis. 

Dectin-1 Y238X polymorphism was initially correlated to individual predisposition causing Candida 
colonization and candidemia in 142 patients, who had a hematological malignancy [112]. The 

relationship between recurrent vulvovaginal candidiasis and Dectin-1 Y238X polymorphism was 

recently investigated [113] in 100 patients. Among them one individual had homozygous Dectin-1 

polymorphism and 13 individuals had heterozygous Dectin-1 polymorphism. This frequency could be 

defined as a polymorphism, however, the authors were not able to correlate the presence of Dectin-1 

Y238X polymorphism with recurrent vulvovaginal candidiasis etiology [113]. This preliminary result 

suggests a potential absence of Dectin-1 requirement in vaginal mucosa defense. However, the analysis 

was restricted to only a single polymorphism in Dectin-1 gene, thus limiting any definitive conclusion. 

It has been shown that during Candida vaginal infection, and in general mucosal candidiasis, 

Dectin-1 crucially contributes to the balance of Th1/Th17/Treg responses. However, the contribution 

of Dectin-1 mediated response is dependent on the genetic background of the host. In particular, 

different mice respond differently to mucosal candidiasis, in a manner dependent on Dectin-1 isoforms 

expression [114]. Macrophages from BALB/c mice express similar levels of the full-lenght Dectin-1A 

and the stalkless dectin-1B, while C57BL/6 derived macrophages predominantly express the smaller 

isoform [115]. This determines a different outcome in resistance and protection to the invading 

Candida, where BALB/c mice showed more resistance to re-infection. Dectin-1 deficiency 

disproportionally increases the Th17 cell-mediated response in C57BL/6 mice and the Th1/Treg 

balance in BALB/c mice. This last finding indicates that Dectin-1 signaling pathway could be involved 

in both Th1 and Th17 priming. 

5. Conclusion 

The shift between commensalism and pathogenicity is a combination of failure of host defenses and 

increased expression of specific virulence traits that promote establishment and progression of 

infection. The main driver of differential pathogenicity of different C. albicans strains seems to rely on 

the rapidity of the morphological switch and the resulting ability to evade immune defenses of the host. 

Especially, the different recognition of yeast and hyphae cells by the immune system prevents the 

drawing of a conclusive recognition model. Even though significant advancements regarding the 

molecular mechanisms underlying the morphological transition and the respective immune sensing, 

have been achieved in the last decade, those achievements are far from being conclusive and complete. 

This is mainly caused by contradictory reports to the prevailing view that yeast cells, but not C. 
albicans hyphae, trigger cytokine stimulation by human PBMCs and macrophages [116–118]. Here, 

new studies revealed that in contrast hyphae, but not yeast cells, stimulate macrophages’ production of 

IL-1β via the Nlrp3 inflammasome [98,119], a protective Th17 response [119], and an innate response 

in oral and vaginal epithelial cells [90,101]. 
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Additionally, the failure of murine studies in unequivocally showing the role of Dectin-1 and Th17 

response during systemic and mucosal Candida infection reveals (1) the possible involvement of 

different CLRs, (e.g., Dectin-2, Dectin-3); (2) how the confounding results obtained by using different 

models could rely on the site-specific requirements of peculiar cells to properly cope with the diverse 

Candida morphotypes; (3) how immune outcomes can be influenced by the strains used as infection agent. 

Several studies are suggesting that variability in fungal immune reactivity could depend on cell wall 

composition. This cell wall plasticity reflects the different ability of strains to face hostile 

environmental conditions, including temperature, pH and carbon source availability. 

Thus, we believe that the main future discoveries will stem from the investigation of the 

evolvability and ability of C. albicans to adapt to rapidly changing environments and to colonize 

diverse host microniches. The availability of a C. albicans deletion collection and of a large number of 

clinical isolates make Candida a perfect model to study the boundary between commensalism and 

pathogenicity, as a continuum between optimal recognition and host immune escape. In this respect, 

comparative population immunology studies should be addressed at understanding whether the ability 

of the immune system to discriminate between commensals and colonizers is specific or subtends a 

common scheme that can be applied to other less investigated pathogenic Candida species. 
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