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Dissecting and Reassembling Color Correction
Algorithms for Image Stitching

Fabio Bellavia and Carlo Colombo

Abstract— This paper introduces a new compositional frame-
work for classifying color correction methods according to
their two main computational units. The framework was used
to dissect fifteen among the best color correction algorithms
and the computational units so derived, with the addition of
four new units specifically designed for this work, were then
reassembled in a combinatorial way to originate about one
hundred distinct color correction methods, most of which never
considered before. The above color correction methods were
tested on three different existing datasets, including both real
and artificial color transformations, plus a novel dataset of real
image pairs categorized according to the kind of color alterations
induced by specific acquisition setups. Differently from previous
evaluations, special emphasis was given to effectiveness in real
world applications, such as image mosaicing and stitching, where
robustness with respect to strong image misalignments and light
scattering effects is required. Experimental evidence is provided
for the first time in terms of the most recent perceptual image
quality metrics, which are known to be the closest to human
judgment. Comparative results show that combinations of the
new computational units are the most effective for real stitching
scenarios, regardless of the specific source of color alteration.
On the other hand, in the case of accurate image alignment and
artificial color alterations, the best performing methods either
use one of the new computational units, or are made up of fresh
combinations of existing units.

Index Terms— Color correction, compositional framework,
image stitching, image mosaicing.

I. INTRODUCTION

COLOR correction is an image processing technique with
several applications, from photometric registration in

image mosaicing and stitching [1] to image enhancement
and recoloring for visual effects generation [2]. Its aim is to
transfer color properties from a source image to a target image.
In applications such as image mosaicing, it is also required that
color attributes remain consistent with the image geometric
structures, so as to prevent alterations of the original image
content at the semantic level. For this purpose, a preliminary
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Fig. 1. Color mapping CUs. Source and target images are shown superim-
posed before and after color correction and as anaglyphs to emphasize image
misalignments. PA determines the image subregions that serve as input to
ME, and combines the ME output color maps to obtain the final result (best
viewed in color and zoomed in).

geometric alignment of the input images is required to obtain
color correspondences. Despite the recent progress in image
stitching [3], [4], only a coarse image alignment is often
obtained in practical situations, giving rise to wrong color
correspondences that can remarkably affect the final results.

Several color correction algorithms have been proposed and
analyzed in the last few years. Their strengths and weaknesses
have been outlined in recent surveys [5] and evaluations [6],
that classify color correction methods into model-based
parametric vs model-less non-parametric, or local vs global
approaches (see Sec. II).

A. Paper Contributions
In this paper, we introduce a compositional framework for

classifying color correction methods in a new way. The idea
stems from the observation that any color correction method
can be decomposed into two main Computational Units (CUs).
These are (1) the low-level color map Model Estimator (ME),
that actually computes the color maps, and (2) the high-
level color map Prober and Aggregator (PA), that organizes,
combines and applies the color maps. As shown in the block
diagram of Fig. 1, the PA unit (a) receives as input an image
pair, computes sets of pixel correspondences and (b) outputs
them to the ME unit, then (c) inputs from ME one or more
color maps, and finally (d) provides as output the corrected
image. The two CUs are distinct yet mutually interdependent,
providing input data to each other in steps (b)-(c), that can be
iterated according to the PA used.

The main contributions of this work arise from the above
framework, which allowed us both to investigate existing
methods from a new perspective, and to develop more effective
solutions to the color correction problem. Specifically:

– 15 among the most successful literature approaches
were revisited and categorized according to the specific
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ME/PA pair they employ. The analysis revealed that
many methods share either one of their CUs. As a
result, only 12 distinct MEs and 5 distinct PAs were
found, to which four novel CUs (2 MEs and 2 PAs),
expressly designed for this work, were added. Sec. III
addresses the above computational unit categorization and
design.

– The combinatorial nature of our compositional framework
led us to perform an exhaustive comparative evalua-
tion of all the color correction methods that can be
assembled with the available MEs and PAs, for a total
of 14 × 7 = 98 different methods, 83 of which never
considered before (see Sec. IV).

As anticipated, another contribution of this paper is the design
of four novel CUs (2 MEs and 2 PAs), which according to
the experiments can be used to build the best performing
algorithms. The first ME, named GPS (Gradient Preserving
Spline), employs a monotone cubic spline to locally model the
correction function. It takes into account not only the color
values of corresponding image pixels, but also the gradient of
both the source and target images so as to preserve the image
structure. The second ME, referred to as FGPS (Fast GPS),
introduces an approximated yet faster coarse-to-fine spline
search space reduction with respect to GPS, thus extending
the idea originally presented in [7]. Of the two PAs, the Linear
Color Propagation (LCP) CU is based on the approach first
introduced in [7], now also integrating a global color map
estimation step and further refinements. The other PA, called
Best Local to Global (BLG), extracts local color maps from
the input data and globally selects and combines the best ones
to form a final color palette. Both PAs can infer local color
properties unattainable by global methods, and then propagate
global color models to the non-overlapping area of the
target image.

As a final contribution of the paper, a very thorough exper-
imental evaluation of the 98 color correction methods was
carried out. In particular, besides testing with 123 image pairs
from three different existing datasets [2], [6], [7], we further
experimented with a novel dataset of 127 real image pairs (thus
increasing the number of tested image pairs to 250), created ad
hoc for this work. Image pairs from this dataset are classified
according to the four main acquisition setups giving rise to
color alterations. Unlike previous evaluations, specific tests
were done in order to assess the robustness of the evaluated
methods in the presence of hard color inconsistencies, such
as those due to image misalignments and light scattering
effects, which is a critical aspect in real world applications
such as image stitching. Moreover, unlike previous evalua-
tions, the image quality metrics used for all the experiments
were the recent state-of-the-art improved Color Image Differ-
ence (iCID) measure [8] and the Feature Similarity (FSIM)
index [9], which are known to be the closest to human
judgment.

The remainder of the paper is organized as follows. Sec. II
addresses related work on color correction. Computational
units are introduced in Sec. III, and results are discussed in
Sec. IV. Finally, conclusions are drawn and future work is
outlined in Sec. V.

II. RELATED WORK

Recent surveys on color correction algorithms can be found
in [5] and [6]. Color correction techniques can be classified
into model-based parametric and model-less non-parametric
approaches. The former assume a known color distribution
model for both the source and target images, to be inferred
from the input data. Conversely, no explicit assumptions are
made for model-less non-parametric methods, usually inferred
directly from color histograms and employing a look-up table
to record the color map. Color correction methods can also
be divided into global and local approaches. While in global
approaches a single color transfer function is estimated and
applied to the whole image, in local approaches multiple
color maps are computed for different areas of the image,
previously segmented according to their spatial and chromatic
characteristics.

The earliest work on color correction can be traced back
to Reinhard [10]. This global approach consists in rearranging
the color distribution of the target image to have the same
mean and variance of the source image. Color space is
first converted into the lαβ space representation in order to
decorrelate color channels, on which to independently apply
the transformation. An alternative solution is proposed in [11],
where a linear transformation is applied to decorrelate color
channels.

Local approaches give generally better and more accurate
results on complex scenes [12], since the assumption that a
single global color palette is sufficient to cover all the color
maps is often unrealistic. To overcome this issue, Reinhard’s
method can be extended in order to obtain a more accurate
color map as the combination of several weighted color maps
after segmenting the image into several regions [11], [13], [14].
This is achieved, for instance, with mean shift or soft color
segmentations.

A very popular model-based color correction approach
is gain compensation [1], originally introduced to address
symmetric color balancing in panoramic mosaicing by a
least-square minimization. This method was further improved
by introducing block-wise smooth multiple models [15].
Other model-based approaches fit linear or polynomial least-
squares transformations, working simultaneously on all color
channels [16]. Models based on weighted affine transforma-
tions [2], splines [17], Gaussian mixture models [18] and
nonlinear manifold learning approaches [19] have also been
proposed.

Straight model-less color histogram transformations can be
derived by histogram matching [20], and further refined using
segmentation and Bayesian inference [21]. Since histogram
matching is a channel-wise operation, the Radon transform is
used in [22] to define one-dimensional subspaces on which to
apply the histogram matching; then, back-projection is applied
to return back to the original color space. Color histogram
peaks can also be used to define image ‘principal regions’ [23],
modeling a polynomial mapping function between correspond-
ing color histogram peaks of the input images.

The monotone constraint is often imposed on the color map,
since it holds for the camera radiometric response function that
models the image formation. This constraint is used in the case
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of spline-based color map models [17] but also for model-less
approaches. In particular, tensor voting [24] and maximum
likelihood estimation of the brightness transfer function [25]
model the color correction map according to this constraint.

Color mapping requires to find color correspondences
between the source and target images. In the case of local
methods, each segmented region should be sufficiently wide
to tolerate color correspondence mismatches that can occur
due to coarse image alignment [21]. Keypoint-based matching
can be used to define and grow corresponding image regions
instead of segmenting the images [26], thus bypassing the
rigid transformation constraint imposed by mosaicing, but also
increasing the risk of color mismatches.

III. COMPOSITIONAL FRAMEWORK

According to our compositional framework, color correc-
tion algorithms can be organized into two main CUs (see
again Fig. 1). The low-level ME is the inner core of the
algorithm. Given as input a set P = {(Is(x), It (x)} of
spatially referenced corresponding color pairs, where Is(x)
and It (x) are the color values at x in the source and target
images, respectively, ME generates as output a color map CP .
Assuming that input and output are coarsely registered 24 bit
RGB color images, CP is defined as

CP : R
3 → R

3 = U ◦ M ◦ T (1)

where T : R
3 → R

n , U : R
m → R

3 are invertible, fixed,
space projection functions and M ∈ R

m×n is a matrix inducing
a linear map. On the other hand, PA provides ME with
multiple color correspondence sets P , combines and applies
the output color maps CP , thus synthesizing from the spatially
registered input images Is and It the final corrected source
image Ic. For example, a global PA computes only a single
color correspondence set P of overlapping pixels between the
images, and applies the resulting color map CP to the whole
source image Is .

In the next subsection, the most relevant color correction
methods are revised according to our compositional frame-
work, and the T , U and M functions defining the correspond-
ing MEs are explicitly outlined and reported. Analogously, all
PAs are discussed in detail in Sec. III-B. A summary of all
the MEs and PAs analyzed in this paper is reported in Table I
for the readers’ convenience.

A. Color Map Model Estimators (MEs)

1) Reinhard’s (R) [10]: The function

T : [R G B]T �→ [l α β 1]T (2)

maps RGB to lαβ space in homogeneous coordinates,
U = T −1, and M ∈ R

4×4 is computed as

M =

⎡
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(3)

TABLE I

COMPUTATIONAL UNITS SUMMARY

where μk
i and σ k

i are respectively the mean and standard
deviation for channel k and image i ∈ {s, t} in the input set P .

2) Correlated Space (CS) [11]: The function

T : [R G B]T �→ [R G B 1]T (4)

converts its input into homogeneous coordinates, U = T −1,
and

M = A−1
t RT

t D−1/2
t D1/2

s RsAs (5)

where Ci = RT
i Di Ri is the eigendecomposition of the autoco-

variance matrix Ci ∈ R
3×3 provided by P for image Ii . The

matrix

Ai =

⎡
⎢⎢⎣

1 0 0 −μR
i

0 1 0 −μG
i

0 0 1 −μB
i

0 0 0 1

⎤
⎥⎥⎦ (6)

translates its input into a zero mean distribution.
3) Gain Compensation (GC) [1]: T , U are the identity

function, and

M =
⎡
⎣

gR 0 0
0 gG 0
0 0 gB

⎤
⎦ (7)

where the gain gk for channel k is computed as

gk = μk
s μ

k
t σ

2
g + N2σ 2

N

μk
t

2
σ 2

g + N2σ 2
N

(8)

with N = |P |, and σg, σN two fixed constants that avoid the
zero solution. This formulation is derived from the original
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symmetric minimization error [1] by setting to 1 the gain for
the target image.

4) 3 × 3 Map (3M) [16]: T , U are the identity function,
while M ∈ R

3×3 is obtained by least squares minimization so
that ⎡

⎣
Rt

Gt

Bt

⎤
⎦ = M

⎡
⎣

Rs

Gs

Bs

⎤
⎦ (9)

where Ii (x) = [Ri Gi Bi ]T and (Is(x), It (x)) ∈ P is a color
correspondence.

5) 2nd Order Polynomial Map (PM) [16]: M ∈ R
3×7 is

computed analogously to 3M, but on a different space, since

T : [R G B]T �→ [R2 G2 B2 R G B 1]T (10)

and U is the identity function.
6) Affine Map (AM) [2]: T maps to homogeneous coordi-

nates as in Eq. (4), U = T −1, and the matrix M, obtained by
least square minimization, is constrained to be an affine map
in R

3.
7) Principal Regions (PR) [23]: T projects into a higher

dimension lαβ space

T : [R G B]T �→ [l2 α2 β2 l α β 1]T (11)

while U : R
3 → R

3 maps lαβ to RGB. M is computed
according to the ‘principal regions’ of images [23]. Principal
regions are defined according to the 3 highest peaks in the
hue histogram of the image. For each channel, the average
color value for corresponding principal regions between the
two images is used to compute a polynomial mapping function,
yielding a matrix M of the form

M =
⎡
⎣

a 0 0 b 0 0 c
0 d 0 0 e 0 f
0 0 g 0 0 h i

⎤
⎦ (12)

8) Histogram Matching (HM) [20]: For each 8-bit RGB
channel k a lookup table H k(x) = y is defined, which maps
all the possible 256 color values according to the cumulative
distribution of the corresponding color value channels as
described in [20]. In this case, the function

T : [R G B]T

�→ [0 · · · 0 1R+1 0 · · · 0 1G+256 0 · · · 0 1B+512 0 · · · 0]T

(13)

maps RGB to a 256 × 3 = 768 binary space, i.e. to a vector
which is zero everywhere except at the positions defined by the
RGB value. U can be written as the block matrix U ∈ R

3×768

U =
⎡
⎣

v 0 0
0 v 0
0 0 v

⎤
⎦ (14)

where 0 ∈ R
1×256 is a zero vector and v = [0 1 . . . 255]. The

binary block matrix M is defined as

M =
⎡
⎣

LR 0 0
0 LG 0
0 0 LB

⎤
⎦ (15)

where each Lk ∈ R
256×256 is such that

Lk
i, j =

{
1 if H k( j) = i
0 otherwise

(16)

9) Truncated Gaussian (TG) [21]: Lookup tables H k are
derived from local joint image histograms modeled as col-
lections of truncated Gaussians using a maximum likelihood
estimation procedure. These lookup tables are used to define
the functions T , U and M as for HM (see Eqs. (13)-(16)).

10) Gaussian (G) [21]: This ME differs from TG only for
the use of the classical Gaussian distribution instead of the
truncated Gaussian distribution.

11) Monotone Spline (MS) [17]: Lookup tables H k are
derived according to a channel-wise mapping into splines.
In particular, piece-wise cubic splines Sk are estimated from
data independently for each channel, so that H k(x) =
round(Sk(x)). Splines are constrained to be monotone and to
have 6 knots, two of them fixed so that the color values 0 and
255 map to themselves. Outliers are discarded and the spline
is re-estimated to improve the model. Functions T , U and M
are defined as for HM.

12) Correlated MS (3MS) [17]: This is the proper color
mapping described in the original paper. The spline model
obtained by MS is concatenated with 3M to take into account
channel correlation.

13) Gradient Preserving Spline (GPS): This is the first of
the two MEs specially designed for this work. Lookup tables
H k that map channel-wise to splines are used, and T , U and
M are derived as for HM. Although MS also is based on
splines, our approach is altogether different as we show in
the following. We employ the monotone piecewise Hermite
cubic spline interpolation procedure described in [27], with
only 4 knots, two of them fixed so as to map the 0 and
255 color values to themselves. For each channel k, we look
for the spline minimizing the weighted error sum

Ek = wμ εk
μ + wσ εk

σ +
∑

d∈{x,y}

∑
m∈{s,t}

wd,m εk
d,m (17)

among all the possible splines meeting the previous con-
straints. The errors

εk
μ = |μk

c − μk
t | (18)

εk
σ = |σ k

c − σ k
t | (19)

are respectively the absolute differences between the mean and
the standard deviations of the color values of the corrected
source image Ic and the target image It computed in P for
channel k, and minimize the color distribution in the spirit of
Reinhard’s method. The term

εk
d,m = 1

|P |
∑
P

∣∣∣∣
∂ I k

c

∂d
(xs) − ∂ I k

m

∂d
(xm)

∣∣∣∣ (20)

in Eq. (17) improves structure similarity with the target image
while also preserving the image structure of the source image
Is , by explicitly taking into account the derivatives for each
channel k along the direction d . The error weight wμ in
Eq. (17) was set experimentally to 0.5 while the other five
were set to 0.1 so that all weights add to unity. According
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Fig. 2. The checkerboard-like sampling grids (left) for the two knots K1 and
K2 leading to the spline with minimum error for the correspondence set P .
Inside a neighborhood R j (right, yellow squares) of the current region R0
(green square), already computed spline color maps fi (red splines) for regions
Ri (red squares) can be used to restrain the sampled search space (yellow
band) according to their mean f (purple spline) and standard deviation σ f
in order to obtain the spline color map f0 for R0 (green spline) minimizing
the error (best viewed in color and zoomed in).

to our preliminary tests, variations up to 20% around these
values do not affect significantly the final result.

Since finding an analytical solution for minimizing the
error Ek is not trivial, an exhaustive search for the two free
knots defining the spline is carried out. In the case of 8-bit
color channels, imposing only the monotone condition and
neglecting that different knot pairs can give rise to the same
spline color map, this would yield to an upper bound of
q = (n (n − 1)/2)2 = n2(n − 1)2/4 different error values to
test, which for n = 256 amounts to about 109, an unfeasible
number in practice. Nevertheless, both the time spent to
evaluate the error Ek on a given spline and the solution search
space can dramatically be reduced by employing three suitable
heuristics, thus obtaining a near-optimal solution.

The first heuristic is motivated by the observation that, for
common images, the error on the mean color value εk

μ is
dominant in Eq. (17), while the other errors just refine the
solution. Therefore, if the error εk

μ for the current solution is
greater than εk

μ + 15 for the best solution so far, the current
solution is discarded, thus avoiding the computation of the full
error Ek and saving time.

The second heuristic can be derived by observing that (1)
some knot arrangements are unlikely to occur and (2) perturb-
ing the position of a knot changes only slightly the error Ek .
In particular, for each knot, instead of a full range value
search, we can define two uniform square grids in the range
of [0, 144] and [111, 255] respectively, with a step of 8 and
a checkerboard-like alternate grid sampling (see Fig. 2). Such
sampling scheme reduces the search space to approximately
3×104 possible splines, i.e. by five orders of magnitude, while
still maintaining a near-optimal solution.

The last heuristic arises from the following observation: In
the case of PAs working locally (see Sec. III-B), for each
channel, spline color maps f j = CP j of neighboring regions
R j must change smoothly, as they are related to region areas
with similar color properties. Hence, when computing the
color map f0 of the region R0, one can take advantage of

the already computed neighborhood color maps fi , 1 ≤ i ≤ b
(red splines in Fig. 2). If at least b ≥ 3 such neighborhood
regions exist, then the search space of the two free knots
of f0 (green line) can be statistically constrained within a
narrow region (yellow band). Indeed, given a knot in the form
(x, f0(x)), the error Ek is evaluated only if it holds

| f0(x) − f (x)| ≤ h (21)

for both knots defining the spline, with

h = min(a, 4 σ f (x)) (22)

where f (x) and σ f (x) are respectively the mean and standard
deviation of the already computed fi (x) mapped values (pur-
ple and yellow splines respectively), and a = 48 is used
to limit the standard deviation value. This heuristic, which
typically halves the search space, is used only in combination
with LCP and BLG (see Sec. III-B and Fig. 4) since other
PAs are either global or do not provide uniform neighborhood
regions.

Further speed-up improvements can be obtained with trivial
optimizations, including a pre-computation of the spline maps
for each knot pair and a parallel implementation of the code.

14) Fast Gradient Preserving Spline (FGPS): In order to
reduce even further the spline search space of GPS, a coarse-
to-fine approach was designed. The spline search space Γ =
{ f1, f2, . . .} is split into several subsets Vr , r > 0, each
induced by the representative splines f r ∈ Γ through

Vr = { f ∈ Γ : ∀x | f r (x) − f (x)| ≤ t0} (23)

for a given threshold t0. In other words, the subset Vr contains
all the splines in the search space Γ that are inside a band of
width t0 around f r (see Fig. 3). A greedy strategy is adopted
to construct the set F = { f r } of representative splines. F ,
initially containing only the identity color map, is grown by
iterating on the whole search space Γ and including at each
iteration i the spline fi under evaluation only if

∀ f r ∈ F ∃ x : | f r (x) − fi (x)| > t1 (24)

where t1 ≤ t0, i.e. the current spline fi is included in F
only if fi does not fall completely inside a band of width
t1 for each representative spline f r already included in F
(see Fig. 3). By construction, the union of the subsets Vr

covers the whole search space, but it does not form a partition,
since non-empty intersections exist between Vr subsets. For
each channel k, the error Ek is first evaluated on the set F
of representative splines, by choosing the best representative
spline f r�

minimizing the error Ek . Then, only splines in the
subset Vr� are evaluated. According to our experiments, setting
t0 = 16 and t1 = 12 gives a good compromise between speed
and correctness of the solution, leading to a further reduction
of the spline search space ranging from two to eight times.

B. Color Map Probers And Aggregators (PAs)

1) Global (GL): This is the simplest PA. The color map
CP is applied to the whole source image Is to obtain the
corrected output image Ic, where P = {(Is(x), It (x)) : x ∈
Is ∩ It } contains the color correspondences in the overlapping
area between the source and target images Is and It .
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Fig. 3. A representative spline f r (red) and some splines of its subset
Vr (blue), falling inside the band limited by t0 (green). Other representative
splines (purple) cannot fall completely inside the t1 band (yellow) (best viewed
in color and zoomed in).

2) Pitié’s (P) [22]: Originally combined with HM, this PA
progressively transforms the source image Is into the target
image It by projections onto random orthonormal basis sets,
i.e. by multiplying the color values by a rotation matrix R ∈
R

3×3. This is aimed at decorrelating the signal in the RGB
space in order to support those MEs that operate channel-
wise. The input images in the new space Ĩs and Ĩt are then
passed to ME, where P is computed as for GL but in the space
induced by the rotation matrix R. The corrected image Ĩc is
back-projected into the original RGB space, thus obtaining Ic,
that is used in the next iteration as the new estimate of Is .
More specifically, the RGB vector Ii (x) for the pixel x in the
generic image Ii is projected as

Ĩi (x) = RIi (x) (25)

With the assumption that

Ic(x) = Is(x) + δ (26)

one obtains

Ĩc(x) = RIc(x) = R(Is(x) + δ) = Ĩs(x) + Rδ (27)

so that δ can be derived in the least square sense by solving
for all the considered x

Rδ = Ĩc(x) − Ĩs(x) (28)

3) Color Influence Map (CIM) [13]: This PA was originally
combined with R. The source image Is is partitioned into n
regions Rq by mean shift segmentation [28]. The set Pq =
{(Is(x), It (x)) : x ∈ Rq} of corresponding color values for
each region Rq is passed to ME, thus producing n color maps
CPq . The final output image is obtained as the weighted sum
of each color map CPq . In particular, defining the CIM weight
w for the region q on the lαβ space as

w(x, q) = e−3‖Is (x)−μRq ‖2
(29)

where μRq is the mean color value of Is over Rq , the final
image Ic is obtained as

Ic(x) =
n∑

q=1

w(x, q)CPq (Is(x))
n∑

q̄=1
w(x, q̄)

(30)

Fig. 4. The whole area Is ∪ It is divided by a grid (green) into overlapping
image square regions Rb (blue square), with central cell Rb (red square).
Color maps of neighboring cells (yellow squares) can be used to reduce the
search space and to speed up the minimization when GPS or FGPS are used,
see Sec. III-A.13 (best viewed in color and zoomed in).

Note that a similar approach using manually segmented
regions had already been proposed in [11].

4) Soft Tai’s Segmentation (TS) [29]: Designed to work in
conjunction with R, this PA operates analogously to CIM.
However, weights w are obtained directly with the soft color
segmentation algorithm exploiting Gaussian mixture models
described in [29].

5) Mean Shift Segmentation (MSS) [21]: Paired in the
original paper with TG, this unit considers two distinct mean
shift segmentations of Is . The first segmentation works on the
whole image, and produces na regions Ra ; the second one
works only on the overlapping area Is ∩ It and produces no

regions Ro. As with CIM, the no sets Po corresponding to
the regions Ro are given to ME, that outputs the color maps
CPo . Colors inside each Ro region are corrected accordingly.
Colors inside regions Ra that are outside the overlap area are
corrected according to the closest color map CPk , where

k = argmin
o

‖ μRa − μRo ‖ (31)

6) Linear Color Propagation (LCP): This is the first of
the two PAs specially designed for this work. This PA com-
pletes and refines the blending scheme of [1], applying color
correction into non overlapping image areas as the weighted
combination of propagated local color maps with a global
color map.

The bounding box of Is ∪ It is divided by a g1 × g2
grid into overlapping 64 × 64 pixel regions; the grid step is
32 pixels (see Fig. 4). We denote the b-th square region by
Rb and its central 32 × 32 grid cell by Rb. The local color
maps CPb are derived for each Rb in the overlapping area,
where Pb = {(Is(x), It (x)) : x ∈ Rb, Rb ⊂ Is ∩ It }. In order
to improve method robustness especially in the case of bad
image registration, CPb is discarded if the average rms error
between Ic and It in Rb exceeds a threshold of 32. Surviving
local color maps are then propagated into the non-overlapping
area by smoothly mixing them with a global color map.

This global color map, referred to as Cg , is obtained by
a weighted average of the local color maps with a channel-
wise monotone piecewise Hermite cubic spline. In detail,
indicating with superscript k the k-th color channel, internal
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Fig. 5. The binary mask on the target image It (red boundaries) is expanded
sequentially through morphological dilation, and its intersection with the
source image Is (blue boundaries) is used for propagating color maps and
computing the weight mask z (lighter red corresponds to later expansion steps
and lower weight values for z). Given the initial M (see text) including only
color maps for the intersection area Is ∩ It (yellow), at each dilation step
convolution is applied to each M slice (dark green) to propagate color maps.
For each slice, only values present at the previous iteration (colors darker than
the kernel center on the right) are used. Kernel weights for slice values not
included at the previous dilation step are set to zero (white entries) and the
kernel is re-normalized (best viewed in color and zoomed in).

knots (x, f k(x)) for the spline f k are such that

f k(x) = 1
∣∣{I k

s (x)=x}∣∣
∑

b

∑
x∈Rb,

I k
s (x)=x

Ck
Pb

(Is(x)) (32)

where x ∈ Is ∩ It and | · | denotes the set cardinality. Note
that in the case of a zero denominator in Eq. (32), no knot is
defined for x .

Color maps CPb are propagated as illustrated in Fig. 5 and
discussed hereafter. The grid of Fig. 4 is employed to create
a g1 × g2 binary mask, with values 1 if the corresponding
grid cells include pixels from It , and 0 otherwise. Successive
expansions of the binary mask are then carried out using the
dilation morphology operator [30] with a square 3 × 3 kernel,
until the resulting area covered by 1’s is three times the initial
area. At each dilation step, color maps CPb for the grid cells
Rb corresponding to new 1’s into the mask are computed
by interpolation. For this purpose, assuming from Eq. 1 that
CPb = U ◦ Mb ◦ T with Mb ∈ R

m1×m2 , a three-dimensional
matrix M ∈ R

g1×g2×(m1m2) is created, by stacking the matrices
Mb, according to the grid. That is, if CPb is defined, Mb1,b2,m

is the m-th element of Mb, considered as a column vector,
with b1, b2 the grid indexes of Rb, otherwise Mb1,b2,m = 0.
Color map values corresponding to the grid cells added at
the current mask dilation step are obtained by convolution of
each two-dimensional slice of size g1 × g2 obtained from M
by iterating over index m, with a 5 × 5 re-weighted binomial
kernel. The kernel is re-normalized after setting to zero the
weight values corresponding to zeros in the binary mask.

Once the global and local color maps have been obtained,
they are combined to produce the color corrected image.
A weight z = (l̄ − l)/l̄ is associated to each grid cell,
where l is the dilation step at the time the cell was included
into the binary mask, and l̄ is the final number of dilations
made (l is set to zero for all the cells in the overlapping area).

Fig. 6. (a) The source input image Is and (b) the final corrected image Ic
obtained by using the LCP unit in combination with the AM unit. Both images
are superimposed on the input target image It for a better understanding (best
viewed in color and zoomed in).

The weight map z as well as all slices of M are resized 32×
to the original image size through bicubic interpolation, thus
obtaining for each pixel location x a weight z(x) and a color
map CPx . Finally, the corrected source image is computed as

Ic(x) = (1 − z(x)) Cg(Is(x)) + z(x) CPx(Is(x)) (33)

i.e. as the combination of the local propagated color maps
CPb and the global color map Cg , weighted according to the
distance from It . An example of the final output Ic can be
found in Fig. 6.

7) Best Local to Global (BLG): The second original PA
computes an interpolated color palette as in [2]. Grid-wise
color maps CPb are obtained as for LCP and the best cell
index

d(x) = argmin
b

‖ CPb (Is(x)) − It (x) ‖ (34)

is associated to each pair of corresponding color values
(Is(x), It (x)) in the overlapping area. Note that d can differ
from the cell index the pixel belongs to.

The color palette is computed explicitly by quantizing the
RGB color space. In particular, each color channel is quantized
into q = 21 levels so that q3 = 9261 quantized colors are
obtained. Color similarity p(ci , x) between the i -th quantized
color ci and the RGB value of the pixel in Is is defined as

p(ci , x) =
{

1 − ‖ci −Is (x)‖
Q if ‖ ci − Is(x) ‖≤ Q

0, otherwise
(35)

where Q = 255
√

3/q is the maximal Euclidean dis-
tance between two quantized color neighbors in the three-
dimensional RGB color space. The color map Ci associated
to a quantized color ci is the weighted sum of the best color
maps CPd(x)

for pixels inside the overlapping area

Ci =
∑

x∈Is∩It

p(ci , x) CPd(x)∑
x̄∈Is ∩It

p(ci , x̄)
(36)

where linear combinations of color maps are intended in the
space induced by the transformation T of ME (see Eq. (1)),
i.e.

aCPx + b CPy = U ◦ (aMx + bMy) ◦ T (37)

Finally, the color value of a pixel x, even not in the intersection
area of the input images is computed as

Ic(x) = Cv (Is(x)) (38)
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where

v = argmin
1≤i≤q3

‖ ci − Is(x) ‖ (39)

is the index of the quantized color closest to Is(x).

IV. EVALUATION

A. Experimental Setup

Following the recent literature on the subject [3], [4], [31],
[32], stitching can be regarded as an extension of image
mosaicing to the case where homography constraints are
relaxed and hold only locally, so that registered images are
just coarsely aligned.

For our evaluation, we relied mainly on the protocol
described in [6] (the most complete comparison of color
correction methods for stitching to date, here significantly
extended), which assumes no known color transform model,
this being the most general and sensible way to address the
problem. Indeed, most recent datasets avoid to refer to any par-
ticular image acquisition conditions, i.e. operating setups (e.g.
single vs multiple cameras, fixed vs changing camera parame-
ters), due to the impossibility for the common user to have a
fully controlled environment and the right level of knowledge
and expertise. Nevertheless, we verified experimentally that
the results of the best color correction methods are virtually
uncorrelated with the acquisition setup and therefore with the
associated color alteration (see Sec. IV-B).

The protocol of [6] was suitably modified so as (a) to take
advantage from the improved image quality metrics published
later, and (b) to better handle coarsely registered images.
We used image pairs from three different existing datasets, plus
a novel dataset explicitly designed to investigate the behavior
of the color correction methods under different acquisition
conditions. The first dataset [6] is subdivided into two classes
of 30 real and 40 synthetic scenes. The real scene images
of this dataset have been obtained from various sources,
including image frames from multi-view video applications,
photos with or without flash lighting or under different capture
modes, and aerial image clips taken in the same place at
different times. In the case of synthetic scenes, a perfect image
alignment exists and color alterations have been obtained by
software editing. The second dataset [2] contains 15 already
registered image pairs mainly taken with different camera
types and setups, or undergoing palette recoloring. The third
dataset [7] is made up of 38 color image pairs, belonging
to 6 real and almost planar scenes, obtained by varying
image exposure only. The reader may refer to [2], [6], [7]
for further details about the transformations involved in the
related datasets. The novel dataset contains 127 image pairs
taken from real image stitching application scenarios. These
image pairs are divided into four groups of almost equal size,
containing respectively image pairs obtained with (1) distinct
cameras (NVIDIA Shield Tablet, Huawei P8, Huawei P9 light,
SONY SLT-A37), (2) same camera (NVIDIA Shield Tablet)
with locked setup parameters or (3) varying ISO, exposure
and white balance, and (4) fixed parameters but different
environmental illumination conditions. For all datasets, image

Fig. 7. Input images (top row) and the actual overlapping area (bottom row)
used in tests T1 and T2. (best viewed in color).

pairs were registered through planar homographies according
to the method described in [33] if the registration was not
already available. The overall set of 250 image pairs was
manually split into two working datasets, referred to as D1
and D2. Specifically, D1 contains 158 realistic stitching image
pairs with relevant image misalignments or other color incon-
sistencies (e.g. a shadow is present in the source image image
but not in the target image), while D2 contains the remaining
images, mostly exhibiting a very accurate geometric registra-
tion and artificial color alterations (see the additional material).
Notice that D1 incorporates all the 127 new image pairs
from the four groups corresponding to different acquisition
conditions, respectively denoted as D1.1-4, while D2 includes
all the synthetic images from [6] and all the repainting images
from [2].

On each image pair, we performed two distinct tests in
which, given the input source and target images Is and It ,
the corrected image Ic is output and evaluated accordingly.
In the first test, named T1, we evaluated both the combinations
(Ia, Ib) and (Ib, Ia) as input image pairs (Is , It ) that can be
obtained by interchanging the role of the source and target
images, according to a chosen image quality metric. In partic-
ular, the recent iCID measure [8] and FSIMC index [9] (i.e. the
FSIM index extended to color images) were selected as the
closest to human judgment. These quality metrics work better
than simpler measures as PSNR [34] and SCIELAB [35] and,
in contrast to the SSIM index [36], can deal with color images,
which is an essential requirement in our case. Additionally,
in the second test T2, only the image pairs with an overlap
greater than 25% were selected, and It was set to 50% of its
overlapping area when computing Ic (of course, the whole It

is used for the comparison against Ic), thus gaining a further
insight into the sensitivity of the algorithms with respect to
input data size and outliers (see Fig. 7).

We ran all the possible ME/PA combinations, listed
in Table I, for a total of M = 14 × 7 = 98 different
color correction algorithms. Matlab code, datasets and low-
resolution output images are freely available.1 Implementa-
tions of P and TS were derived respectively from [22] and [6].
Parameters for the Edison mean shift implementation [28] used
by CIM and MSS were tuned on a dataset sample to get the
best results.

1https://drive.google.com/open?id=0B_3Nh0OK9BclQkt4empQVU5yVE0
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Since, whatever the quality metric used, absolute errors
may vary dramatically from an image pair (I1, I2) to another,
in order to better appreciate the relative differences between
the different methods Ai under examination, i = 1, . . . ,M,
we define and use the soft rank

r(Ai , I1, I2) = |ε(Ai , I1, I2) − b(I1, I2) + ε|∑M
j=1 |ε(A j , I1, I2) − b(I1, I2) + ε| (40)

where ε(Ai , I1, I2) is the error, in terms of either
iCID or FSIMC in the overlapping area I1 ∩ I2, obtained
when the color correction method Ai is used with the image
pair (I1, I2), ε is a small constant value avoiding a zero
denominator, and

b(I1, I2) = min
j=1,...,M

ε(A j , I1, I2) (41)

is the best value among all methods for the image pair (I1, I2)
in the case of the iCID metric. When FSIMC is employed,
the min function in Eq. (41) must be replaced by the max
function, since FSIMC is a similarity measure. The soft rank
r(Ai , I1, I2) ranges in [0, 1], since

M∑
i=1

r(Ai , I1, I2) = 1 (42)

and achieves lower values for better methods. Notice that the
soft rank of Eq. (40) is proportional (by the constant M) to
the error �i = |ε(Ai , I1, I2) − b(I1, I2) + ε| normalized with
respect to its average μ�

r(Ai , I1, I2) ∝ �i

μ�
(43)

This is more robust and stable than normalizing by the
maximum error (e.g. removing the worst method does not
change significantly the rank). Notice also from Eq. (42) that
the average soft rank value is 1

M = 1
98 ≈ 1%.

A quantitative and exhaustive evaluation of all the possible
ME/PA combinations requires a careful selection of the eval-
uation protocol to avoid results in contrast with the common
human perception. In order to evaluate a given method Ai ,
we compare, as it is usual in the literature [6], the corrected
and target images, i.e.

rt = r(Ai , Ic, It ) (44)

Nevertheless, since in the real case of mosaicing and more
general stitching applications we are dealing with coarsely
registered input images, such straightforward comparison,
requiring an almost perfect registration, may lead to erroneous
evaluations whatever the image quality measure used [37]. For
instance, if an object moves between the two input images Is

and It , a color correction method that simply copies the It

pixel data into Is to get the corrected image Ic would achieve
the best score with rt , notwithstanding the fact that the object
in the corrected image is in the wrong location. This is due to
the fact that Eq. (44) does not take into account altogether the
structural content of the source image Is . Therefore, to avoid
erroneous comparative results especially in the case of images
from dataset D1, composed of real scene data, the methods
were tested not only with rt , but also with the average between

the results of the comparison of Ic with both the input images
Is and It , i.e.

rg = rt +rs
2 (45)

where

rs = r(Ai , Ic, Is) (46)

B. Results

Tables II-III show the soft ranks rg and rt (expressed as
percentages, the average error being about 1%, see Sec. IV-A)
for test T1 with both FSIMC and iCID, on datasets D1 and D2,
respectively. Each table entry corresponds to a different
ME/PA pair under test. The five best results obtained for each
soft rank are shown in bold. Subscripts in Table II(III) refer
to the associated result examples of Fig. 8(9).

According to Table II, GPS/LCP and its faster counterpart
FGPS/LCP (both assembled with new CUs proposed in this
work), followed by HM/LCP, are the only methods that rank
among the best top five in rg with both iCID and FSIMC .
Figure 8 shows color correction results obtained by the four
best ME/PA pairs of Table II on an example image pair of
dataset D1. Visual inspection of Fig. 8(c-1) confirms that
these three methods provide the least number of artifacts and
the most natural color of all. Therefore, numerical results are
in good accordance with human judgment. However, the top
five ranked ME/PA pairs with rt /FSIMC are completely
different from those obtained with rt /iCID. There is no
method that performs clearly better than the others on
D1 images with both error metrics. This corroborates our
observation of Sec. IV-A that, in the presence of image
misalignments, the soft rank rt may not be appropriate for
comparing color correction results, nor be in agreement with
perceptual evidence. Nevertheless, notice that both GPS/LCP
and FGPS/LCP are also top-ranked for rt /FSIMC .

On the other hand, results with both soft ranks rt and rg on
dataset D2, containing image pairs with accurate geometric
registration and artificial color alterations, are more similar
and consistent among them (see Table III). In particular,
the AM/BLG pair (BLG being one of the new PAs proposed
in this paper) achieves the top ranked results with all four
combinations of soft ranks and quality metrics. Additionally,
GPS/BLG and PM/TS are among the top ranked pairs with rg

and both quality metrics, the latter being also top-ranked for
rt /iCID. Finally, PM/MSS, TG/MSS and G/MSS are among
the five top ranked pairs with rt and both quality metrics (note
that PM/MSS is composed of CUs never considered together
before). From the visual example of Fig. 9, it is worth
noting that, unlike the D1 dataset case, there are no strongly
noticeable perceptual differences among the best performing
methods for the D2 dataset, so that any of the above methods
would give visually similar results.

The contrasting conclusions drawn out from D1 and D2
are compatible with the different input data employed in the
datasets. In particular, images from D1 are from realistic
scenarios, contain more wrong color correspondences and have
less content overlap to reconstruct the whole color mapping
function. For this kind of images, working (as done e.g. in
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TABLE II

SOFT RANK ON DATASET D1 , TEST T1, BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER (BEST VIEWED IN COLOR)

TABLE III

SOFT RANK ON DATASET D2 , TEST T1, BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER (BEST VIEWED IN COLOR)

Fig. 8. Results on an example image pair for the first four top ranked ME/PA pairs (c-l) on dataset D1, test T1, according to rt and rg for FSIMC and
iCID. Is and Ic are superimposed on It for a better understanding (best viewed in color and zoomed in).

the GPS/LCP method) on robust characteristics such as the
average color values and image gradient, yields the most
satisfactory results. This said, it is not true, as one may
hypothesize, that approaches with fewer parameters are most

robust and therefore should do better than others. Actually,
despite their apparently simple model formulation, GPS and
FGPS (the best MEs for D1) have more implicit hidden
parameters than others. As a matter of fact, error minimization
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Fig. 9. Results on an example image pair for the first four top ranked ME/PA pairs on dataset D2, test T2, according to rt and rg for FSIMC and iCID. Is
and Ic are superimposed on It for a better understanding (best viewed in color and zoomed in).

Fig. 10. Example of different outputs for intra-channel color transforma-
tions (best viewed in color and zoomed in).

with these methods is so complex that we gave up finding an
analytical, yet approximate, solution, and decided to perform
a brute force space search. On the other hand, when color
correspondences are more complete and correct, and color
alteration less realistic, such as with the D2 input images,
CUs that “overfit” the data (e.g. the AM and PM MEs and
the BLG and MSS PAs) achieve the best accuracy. Notice also
that segmentation-based PAs such as MSS and TS are unlikely
to give good results in D1, especially in the non-overlapping
area, yet are expected to do quite well in D2. Similar ranking

considerations hold in the case of test T2 (more detailed results
are reported as additional material), but clearly the quality of
the final corrected image is lower, as less data correspondences
are available as input for the algorithms.

An additional observation must be made about MEs
working channel-wise (i.e. GC, HM, TG, G, GPS, FGPS and
MS) in the presence of some limited, application-specific
color transformations, such as those employed for palette
recoloring (see Fig. 10). These MEs, when combined with
PAs based on linear combinations (e.g. GL and LCP), are
mostly unable to handle intra-channel color transformations
such as those from red to green. This does not hold for
non-linear PAs (e.g. BLG and MSS).

Concerning image pairs from realistic image stitching sce-
narios, we further evaluated the color correction methods
according to datasets D1.1-4 given by splitting the novel
127 image pairs created for this work, representing four main
sources of color alterations (see Sec. IV-A). Tables IV-V report
the top five soft ranks ME/PA pairs for each evaluated test
and dataset (detailed results can be found in the additional
material). According to the previous observations, we focus
our attention only on soft rank rg due to the nature of
considered images. Results show that for D1.1, containing
input images from distinct cameras, GPS/LCP and FGPS/LCP
are still the best methods. In the case D1.2 of stitching images
from the same camera with a locked setup, the same results as
for the whole dataset D1 hold for test T1, while GC/GL is the
best method for test T2. This is not surprising, as in test T2 the
number of color correspondence outliers is really high due to
the low image overlap, and in the case of a single camera and
a locked setup the true color transformation is close to the
identity map. Therefore, GC/GL, which we found generally
to alter the original colors of Is less than other methods,
performs best. On the other hand, for D1.3, where images
come from the same camera but with varying ISO, exposure
and white balance, GPS/BLG and FGPS/BLG do better than
GPS/LCP and FGPS/LCP, which nevertheless are still among
the best top-ranked methods. This is probably due to some
recoloring effects caused by the white balance adjustment,
which alters intra-channel color relations as discussed above.
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TABLE IV

TOP FIVE ME/PA PAIRS FOR SOFT RANK rg ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEW CUs ONLY

TABLE V

TOP FIVE ME/PA PAIRS FOR SOFT RANK rt ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEW CUs ONLY

Finally, for D1.4, having images from a fixed camera and
varying environmental illumination, GPS/LCP and FGPS/LCP
are still the best methods, followed by 3MS/LCP and
MS/LCP.

To summarize: Referring again to Tables IV-V, GPS and
FGPS are the best MEs in the case of real stitching input
images, either paired with LCP (bold black entries) or, in the
case of intra-channel transformation, with BLG (bold red
entries). Moreover, LCP and BLG are generally the best PAs
for other MEs. For what concerns real stitching applications,
we can conclude that there is no evidence that a given source
of color distortion noticeably affects the output of the best
color correction methods. Conversely, in the case of artificial
color alterations and finer image registration, BLG and MSS
are the best PAs, combined with PM followed by AM, TG,
G and GPS.

C. More about soft ranks and quality metrics

Table VI reports the Spearman rank-order correlation coeffi-
cient (SROCC) [38] between soft ranks rt , rs and rg , obtained
by comparing the corrected image Ic respectively against the
target It , the source Is or both input images. Both FSIMC

and iCID on the D1 and D2 datasets (see Sec. IV-A) are
considered. SROCC is often used for the analysis of image
quality metrics [8], [9], [36], [39].

In the case of iCID vs iCID (bottom right block matrices), rg

is strongly correlated with rt , less with rs , on both D1 and D2.
Similarly, rt and rs are strongly uncorrelated. This implies that
rg is unlikely to be minimum when Ic is half way between
It and Is for iCID. Note also that ranks on D2 are more
correlated to each other than ranks on D1, as accurate image
alignment implies anyway a higher structural similarity inside
image pairs.

In the case of FSIMC vs FSIMC (top left block matrices),
rt and rs have a good correlation on D2 but not on D1, while

TABLE VI

SPEARMAN RANK-ORDER CORRELATION COEFFICIENT (%) FOR

DIFFERENT SOFT RANKS AND IMAGE QUALITY METRICS

rg has a strong correlation with both rt and rs . This is likely
due to the fact that, differently to iCID, FSIMC relies more on
image structural content than on color intensities, as geometric
transformations become stronger.

Further evidence of this behavior can be observed by
inspecting SROCC for FSIMC vs iCID (top right and bottom
left block matrices). On D1 (see Table VI(a)), rg /iCID is not
strongly correlated with rg /FSIMC , and is more correlated
with rt /FSIMC than with rs /FSIMC . The opposite happens
for rg /FSIMC , which is less correlated with rt /iCID than with
rs /iCID. This does not happen on D2 (see Table VI(b)), where
in any case rg is more correlated with rt than with rs , thanks
to the accurate geometric registration of the images.

To summarize: For accurately registered images, rg gives
similar results whatever the error quality metric
used (FSIMC or iCID), and is more in accordance with rt than
with rs , as quality metrics are designed to privilege more
color content than structural context. On the other hand, for
coarsely registered images, rg /FSIMC tends to emphasize
more than rg /iCID the structural context of Is (taken into
account by rs ) over the color content of It (taken into
account by rt ). As a result, special care should be taken when
using Table II to select a good color correction method for
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TABLE VII

AVERAGE RUNNING TIME (S), DARKER VALUES ARE
BETTER (BEST VIEWED IN COLOR)

coarsely registered images. To be sure that the chosen method
works reasonably well, it should have a high rank with both
rg /FSIMC and rg /iCID, and not with only one of them.
Following this observation, we can conclude that, as already
emerged from the analysis of Table II, both GPS/LCP and
FGPS/LCP are ideal candidates for color correction with
coarsely registered images, as they rank among the first
with rg whatever the quality metric, and are also visually in
accordance with human judgment.

D. Running Time

Table VII shows the average running time for input images
of about 800 × 600 pixels. Times refer to our 6 core multi-
threaded Matlab implementation on a Intel i7 at 4GHz.

Concerning the running time for PAs, GL is obviously the
fastest with any ME, followed by LCP and BLG, both working
block-wise on the images. CIM and MSS, which are based
on mean shift segmentation, come next, followed by P, when
combined with all but GPS, FGPS and TG. The worst running
times are obtained with TS whichever ME, and by P when
combined with either GPS, FGPS and TG.

An insight into the time performance of MEs is given by the
GL column of Table VII, dealing with the simplest PA. Data
show that almost all MEs run in less than 2 seconds, except for
GPS, FGPS and TG, whose running times are still reasonable.
In addition, both GPS and FGPS, when coupled with LCP
and BLG, that provide the most promising visual results (see
Sec. IV-B), are still conveniently usable with respect to GL.
Notice also that FGPS provides a remarkable running time
improvement over GPS, with a speedup of about 4×.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new compositional framework
for classifying color correction methods in terms of ME/PA
pairs. This framework is completely general and comprehen-
sive, and allows for a clearer analysis of color correction
methods, providing a deeper insight into their properties.

We revisited and categorized 15 of the existing color
correction methods according to this framework, identifying
and combining pairwise their MEs and PAs to design new
methods never considered before. We also designed four novel
CUs (2 MEs and 2 PAs), that were found to be the building
material for the best performing algorithms.

In order to evaluate all possible 98 color correction methods
that arise from the proposed framework, image pairs from
several distinct datasets were used. Differently from previous
evaluations, our tests focused on performance evaluation in
the presence of image misalignments, bearing in mind real
world applications such as image mosaicing and stitching.
To the best of our knowledge, this is the first evaluation
on a so large dataset, explicitly takes into account coarse
image registration issues, and is also the first to employ the
latest state-of-the-art image quality metrics, known to be the
closest to human judgment. According to our comparative
evaluations, the GPS/LCP and FGPS/LCP methods, built upon
our proposed CUs, achieved the top ranking and obtained the
most robust results in the case of real stitching scenarios.
In the presence of accurate image registration and artificial
color alterations, AM/BLG, whose PA was also proposed in
this paper, obtained the most accurate results, followed by
PM/MSS, which is an original combination of existing CUs.

Our compositional framework is quite general. Therefore,
we plan as future work to add further CUs from existing
color correction methods which were not considered in this
paper. We also plan to extend the datasets and the quality
assessment metrics employed, for instance by applying on
accurate registered images known geometric transformations
to mimic a coarse image alignment, thus making the choice
of the ground-truth and of the error metrics more reliable.
Even more importantly, we think that an interesting direction
for future research is the investigation of computational chains
composed of more than one pair of ME and PA, which could
prove effective at overcoming the weaknesses of a given single
ME/PA pair.
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