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ABSTRACT

In this work, we study the use of Convolutional Neural Networks for counting the number of records in
each page of an historical handwritten document. The initial network training is made on a large set of
document images synthetically generated with a suitable tool implemented for this task. The trained
network allows us to evaluate the number of records in the documents with a good accuracy that is
subsequently improved with a fine-tuning performed with a limited number of real documents. In the
experiments we compared three architectures on two datasets. On one benchmark dataset composed
by marriage records we outperform previous results on a similar task.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One important application area for the processing of hand-
written documents is related to information extraction from his-
torical documents coming from census, birth records, and other
public or private collections. The pages in these documents are
often semi-structured and contain a variable number of records
where each record follows a general structure, but does not have
a fixed number of lines or items. For instance, in a given doc-
ument there might be records with more or less details accord-
ing to the information available. By completely recognizing the
content of these documents it is possible to reconstruct genealo-
gies and perform demographic studies [3] [7] [9] [17].

When analyzing handwritten historical records it is possible
to explicitly segment each record identifying its position in the
page or to count the number of records in each page. It is clear
that the former task provides more information, but is also more
complex. On the other hand, often the solution of some sub-
tasks can provide valuable information to the users before, or
instead of, recognizing the whole content. In particular, when
the recognition of handwriting is difficult, and the transcription
is performed by human annotators, one accurate count of the
number of records in one collection can provide useful informa-
tion to foresee the amount of data available in the digitized doc-
uments and therefore give an estimate of the conversion costs.
One example of page with records highlighted is shown in Fig-
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Fig. 1. The records in the document on the left are shown with different
colors on the right.

ure 1.
One solution to the record segmentation task has been pro-

posed in [2] where the authors perform structure detection and
page segmentation applied to marriage license books. The latter
books are handwritten documents where each page contains a
variable number of records. Each record is composed by three
main logical entities (body, name and tax) and the number of
records in each page is variable. In [2] different approaches to
perform record and cell segmentation (including 2D Stochastic
Context Free Grammars) are compared. As an indirect result
of this segmentation step it is possible to count the number of
records in each page.

Object counting in an image is a relevant task in computer
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Fig. 2. An overview of the proposed system to train and predict the number of records in an handwritten collection.

vision, with several applications in real-world problems. One
solution for object counting has been proposed in [13] where
the authors aim to recover a density function related to one input
image and enumerate the objects. The density function is a real-
value functions over the pixel grid and the integral over this
representation is expected to match the overall objects count.

The authors also highlight two approaches for object count-
ing. Counting by detection is based on detecting the objects and
then counting them. In counting by regression the objects are
counted by using only input image features and object count-
ing is casted as a classification (or regression) problem and to
cover all the dataset variabilities a large training set is usually
required.

In recent years, deep architectures have been proposed to ad-
dress many computer vision tasks and object counting is not an
exception. More specifically, several tasks in document image
analysis applications have been often addressed with artificial
neural networks [16]. In particular, convolutional neural net-
works have been initially used for handwritten digit recognition
on the well known MNIST dataset [12] and more recently used
to address other tasks (e.g. [1] [10]).

In the work described in this paper, we address the record
counting problem by using deep Convolutional Neural Net-
works (CNNs) [12]. To the best of our knowledge, this is the
first time that these techniques have been applied to this task.
One related work [21] investigates the task of even digits count-
ing in synthetic images generated from the MNIST dataset by
means of CNNs. The authors apply the same approach also
to count pedestrians by creating synthetic images to extend the
initial dataset. People counting by using convolutional neural
networks has been addressed also by [24] [25] [26]. In partic-
ular [24] and [26] compute the density function (like in [13])
by using CNNs and then the integral over the image domain of
the density function is used to count the number of items. On
the other hand in [25] there is no density map and one regres-
sion neuron is the network output whose value is expected to
identify the number of people in the image patch. One similar
approach (with one regression neuron in output) is proposed in
[19] for the task of fruit counting. What is common to all these
methods is the assumption that individual items to be counted
(i.e. people, fruits or cells in microscopy images) cover a rel-
atively small portion of the image. Moreover, single items can
be often modeled as Gaussian kernels centered on the location
of the objects (or sliglty more complex models, like in [26]). In
several works it is also assumed, for training and testing pur-

poses, that the position of each item is known and can be used
for the network training.

On the other hand in the application addressed in this work
the items (records) span large portions of the image, that is often
nearly completely covered by records. In addition, the informa-
tion about the position of each record is not available for the
most challenging dataset used in our experiments. Therefore
it was not possible to use the above methods for attaching the
records counting task described in this work.

It is well known that to train CNNs it is important to use a
large dataset of labeled instances. To the best of our knowledge
there is no large data set annotated on the basis of the number
of records in the pages and therefore we need to find a solution
to this lack of data. This is not an uncommon problem and,
when dealing with pattern recognition tasks by using learning
system, common solutions to the scarcity of data are based on
the generation of synthetic data and on the use of data augmen-
tation. In the first case, synthetic data that emulate real ones
are generated with one suitable application. In data augmenta-
tion, the number of real data is increased by adding distortions
or noise to the existing ones. The best practice clearly requires
to use the generated data only for training the system, while the
performance should be always computed on real data. In the
item counting task synthetic images of fruits are for instance
generated in [19].

In the area of document image analysis and recognition syn-
thetic data generation has been used for instance to model the
character degradation [15] or to generate synthetic documents
for performance evaluation of symbol recognition systems in
the area of graphics recognition [8]. In the field of handwrit-
ing processing, handwritten documents have been generated by
using standard cursive fonts with an approach that is important
for our research [22].

We present in Figure 2 one overview of the proposed ap-
proach for counting records. As we can notice, one Toolkit [5]
is used to generate a large dataset of pages used for the prelim-
inary training of the CNN. Real data are then used to finetune
the model and to asses the system performance in the test set.
Concerning the architecture, we modified the AlexNet architec-
ture [11], the Network in Network (NIN) architecture [14], and
the VGG16 architecture [23]. In all the cases we modified the
input size and the final and output layers in order to fit to the
record counting problem.

To evaluate the proposed approach we used two collections:
one benchmark dataset proposed in [2] for addressing the seg-
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Fig. 3. Page structure defined in the XML configuration file. Left Esposalles dataset. Right Brandenburg dataset.

mentation of historical handwritten documents (we will refer to
this collection as Esposalles); one collection composed by im-
ages provided by Ancestry (the global leader in family history
and consumer genomics) through our research collaboration.
The latter images were drawn from their collection Branden-
burg, Germany, Transcripts of Church Records, 1700-1874 (we
will refer to this collection as Brandenburg). Additional details
on both collections will be provided in Section 4.

There are three main contributions of this paper. First, we de-
scribe one tool for the semi-automatic generation of synthetic
handwritten documents containing records. Second, we pro-
pose a simple algorithm based on the alignment of vertical rul-
ing lines that allows us to group together similar pages from
large collections of documents. Third, we demonstrate that by
training a deep architecture (described in Section 3) with syn-
thetic pages it is possible to estimate the number of records in
real documents with very good results. These contributions are
described in Sections 2, 4, and 5 respectively, while the conclu-
sions are drawn in Section 6.

2. Generation of Synthetic Data

To build a large training set we implemented one tool that
can generate synthetic pages that look similar to real ones when
considering their layout. We designed this application to be
flexible and easy to configure (hiding to the user some techni-
cal details) so as to allow the generation of a broad range of
different types of documents. We provide here a brief descrip-
tion of the tool, while additional details on it can be found in [4]
and [6]. To allow further research in the field the toolkit is avail-
able as open source, together with some examples of synthetic
images [5].

To infer the general record structure the user needs to analyze
a few pages in the collection and describe the record structure in
one XML configuration file that defines the rules needed to gen-
erate the documents. This is the only process that is performed
by the user, while the other tasks for synthetic data generation
are made by the application with a sequence of steps that some-
how emulate the document generation. In particular, in the first
step the background from some real pages is extracted and used

Fig. 4. Example of real (left) and synthetic (right) images.

to define the substrate where the synthetic text will be printed.
In the next step the synthetic pages are generated taking into
account the rules defined in the XML file.

The previous general procedure is often adopted when gener-
ating synthetic document images. The peculiarities of the tool
described in this work is that the pages are generated consid-
ering the desired record structure. It is important to notice that
in the record counting task there is no need to model the pages
at a fine grained resolution. In particular, we assume that we
can count the records in a page regardless of the actual textual
content and of the actual font used to write the text. This as-
sumption will be verified in the experimental part of this paper
and is a consequence of the observation that humans can infer
the location of records in pages (and their number) even without
reading the actual text.

2.1. Background Extraction

The first step in the generation of synthetic pages is the ex-
traction of the background from real documents. As we will
see in the experiments (Section 5) the generation of pages with
a white background produces worst results than those achieved
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with a real background. To extract the page background from
some training pages we first identify the pixels that surely be-
long to the foreground by using the Otsu [18] and the Sauvola
[20] binarization algorithms. We subsequently ”clean” the im-
age by replacing the foreground pixels with the average value
of background pixels in a 20 × 20 window centered over each
foreground pixel.

In this way, we obtain a few empty pages that can be used,
like ancient palimpsests, to write new synthetic documents as
described in the following.

2.2. Page Generation

By means of the XML configuration file the user can define
the page size, the zone of the page that will contain (when ap-
propriate) the page header, the structure of records, and the po-
sition and range of the number of records that populate the page.
It is also possible to define the dictionary used to write the text
and the cursive font.

For the latter we used the “Scriptina”, “A glitch in time”,
“Love letter tw”, and “Vultures” fonts downloaded from http:

//www.dafont.com and Italian text as dictionary. For the dic-
tionary we considered random words from one Italian text that
obviously has no relationship with the real textual content of the
page. Considering the resolution of the images fed to the clas-
sifier, the actual textual content has little relevance and this is in
agreement with the observation that there is no need to read the
document contents to infer the record location and number.

To increase the noise of the documents it is also possible to
define in the configuration file the probability distribution of
salt and pepper noise or other artifacts, like random white or
black lines printed along the page. In some cases we need to
model also ruling lines to design preprinted structured docu-
ments and it is therefore possible to include these objects that
can be placed in fixed or variable locations in the page.

In Figure 3 we graphically illustrate the main areas in the
page that are described in the configuration file. In particular,
we show two examples corresponding to the collections used in
our experiments. In both cases the banner of the page is shown
in light blue and the record structure in green. We can notice
that in the Esposalles dataset the banner and the records span
the whole page width. On the other hand in the Brandenburg
collection the banner is more complex since it is composed by
fixed lines with a preprinted structure that can change from doc-
ument to document. Also the record structure is more complex
since there are six columns which define each record cell to be
filled with text lines.

The record of the header, like other records, can contain
mandatory fields (e.g. the page number) and other fields that
are added according to a specified probability distribution. The
main corpus area, depicted in green, defines the part of the
page where records are printed. Any page generated by the
tool contains records in the area between the header and any
vertical position comprised between the min corpus height and
max corpus height delimiters. The generation of records is
based on a random selection of words from the dictionary and
subsequent ”writing” until each record line (the green boxes) is
filled with text. If the number of lines in each record is not fixed

we randomly decide their number. When the printed records
reach the min corpus height position, to increase the variabil-
ity of pages, the tool adds a random number of records to fill
the document until the max corpus height delimiter is reached.

To illustrate the output of the synthetic generator, in Figure 4
we compare one real and one synthetic image from the Brand-
burg collection.

3. Convolutional models

The first model used to count the number of records is
based on the well-known Alexnet architecture [11], where we
changed the input size and replaced the output classification
layer with one regression neuron, trained to count the number
of records in the page. According to [21] we therefore casted
the counting problem as a regression one. In Figure 5 (top) we
graphically depict the corresponding architecture.

In the second model we extended the Network in Network
(NIN) model proposed by Lin et al. [14]. This architecture
consists of stacked blocks. Each block computes a transforma-
tion composed by a convolution operator followed by a Multi
Layer Percepron (MLP). The resulting structure is called mlp-
conv layer. The mlpconv maps the input patch to the output fea-
ture vector. The MLP is shared among all local receptive fields
and the feature maps are computed by sliding the MLP over the
input. The overall model consists of four mlpconv transforma-
tion layers. The output of the last layer are a number of feature
maps corresponding to the number of classes. Each feature map
is followed by one global average pooling.

In [14] the output of the global average pooling is fed into
one softmax layer. In our work we have one single feature map
as output map that is followed by one global average pooling to
compute the prediction about the number of records. In Figure 5
(bottom) we graphically depict the corresponding architecture.

The third model used to count the number of records is based
on the VGG16 architecture [23], where we changed the input
size and replaced the output classification layer with one re-
gression neuron, trained to count the number of records in the
page.

The input dimensions slightly change according to the
dataset. In all the cases we scale the images preserving the orig-
inal proportions to reduce the network input size and improve
generalization. With the Esposalles dataset the input images
have been scaled to 366 × 256, while with the Brandenburg
dataset the images have been scaled to 450× 190. In both cases
we used binarised images (obtained with the Sauvola algorithm
[20]) as input for both the training and test.

4. Datasets

As previously mentioned, to evaluate the proposed tech-
niques we used the Esposalles collection (containing 200
pages) and the Brandenburg one (containing 4, 956 pages). In
both cases we generated synthetic data as described in Section
2.

For the Esposalles collection we generated 81, 060 synthetic
pages with associated information about the number of records
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Fig. 5. Architectures used in the experiments. Top: Regression layer added to the NIN model. Bottom: regression layer added to the AlexNet model. A
similar change is considered for the VGG16 architecture.

in each page. The synthetic dataset contains pages with a num-
ber of records comprised between 3 and 9 even if the bench-
mark collection in [2] contains only pages with 5, 6, or 7
records each.

The distribution of the 4, 956 pages in the Brandenburg col-
lection is as follows (where (X,Y) means X pages with Y
records): (127, 1), (273, 2), (356, 3), (485, 4), (574, 5), (806, 6),
(813, 7), (833, 8), (689, 9). The distribution is not balanced, but
there is a large number of pages for each number of records.
For this collections we generated 61, 914 synthetic pages with
a number of records comprised between 1 and 11.

The variability of the Brandenburg collection is significantly
higher than the Esposalles one not only because the number of
records in each page range from 1 to 9 but mostly because the
pages come from different sources and the layout is variable
(some examples are shown in Figure 9).

4.1. Dataset Selection for the Brandenburg collection
Through our research collaboration with Ancestry we had the

chance to work with one large collection containing 78, 781 im-
ages were only the number of records in each page was avail-
able. However, this collection contained pages with signifi-
cantly different layouts, while one assumption of our task is
to deal with relatively similar images (as will be clear in the
experiments there is no need to deal with identical documents).

In order to build one homogeneous subset one visual scan of
all the images is clearly infeasible. To obtain the 4, 956 pages
we therefore designed one technique to identify pages with sim-
ilar layouts taking into account the presence of pre-defined rul-
ing lines in all the pages. One example page is shown in Figure
6.

4.1.1. Page fingerprint
The selection of the sub-set of pages is based on a page de-

scription (like a fingerprint) that is based on the column struc-
ture that is defined by the spatial organization of the vertical
ruling lines. To represent the pages we therefore first identify
the vertical lines in the top half part of the page by using the
Hough transform. The vertical lines identified in one page are
shown in red in Figure 7. The relative line position computed
in the center of the top half part of the page (along the blue
dotted line) defines the page fingerprint. Along the blue line we
compute the distances between neighboring lines that define the
column width. Excluding lines too close to the page borders the
fingerprint is made by considering the list of distances between
neighboring vertical lines. In the example in Figure 7 the fin-
gerprint is: F = (d(1, 2), d(2, 3), . . . , d(12, 13)) where d(i, j) is
the distance between the i-th and j-th vertical lines.

4.1.2. Finding similar pages
Using the previous approach we can define one fingerprint

for each page. As we can see from Figure 7 the scanned images
are noisy and in particular the identification of vertical lines is
not reliable in the center and at the borders of the image. This
noise is incorporated in the fingerprint that is not unique for
very similar pages.

In order to identify the pages most similar to one prototype
page we represent this page with one subset of the page sig-
nature, one pattern, which represents only the columns that are
correctly identified in most cases. For instance, the pattern that
defines the example page is P = (d(1, 2), d(2, 3), . . . , d(5, 6)).

The distance between one page fingerprint F and one pattern
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(a) Input image (b) First segmentation (c) Second segmentation

Fig. 6. One example page from the Brandenburg dataset.

Fig. 7. Page fingerprint.

descriptor P can be computed (when |P| < |F|) by:

D(F, P) = min
j∈0,...,|F|−|P|−1

|P|−1∑
i=0

|F j+i − Pi|

 (1)

where |P| and |F| denote the length of the vector P and F
respectively.
D(F, P) defines the smallest distance between the pattern P

and one subset of the descriptor F. By using this distance it is
possible to estimate the similarity between each document and
the pattern and therefore select a subset of pages (with distance
below a given threshold) from the larger dataset. In this way
we obtained the 4, 956 pages used in the experiments in the
Brandenburg collection.

As a side effect of this column alignment it is also possible
to crop the left page in a two-page document and use only this
portion for the subsequent steps. In Figure 6 we show the whole
page and in Figure 6b the cropped area. As we can see from the
image, the cropped part needs to be cleaned by removing the
noisy parts on the top and bottom. These parts are removed by
first binarizing the page and the identifying the largest blobs in
the top and bottom part of the page obtaining the image shown
in Figure 6c.

This last image is used as input to the neural network. Since
the records span the whole two-pages image (Figure 6a) it is
possible to count the number of records only considering the
smaller image in Figure 6c. In this way, we can reduce the
image size and we can deal with less noisy pages. It is therefore
also easier to generate the synthetic pages.

5. Experiments

In this Section we describe the experiments performed to an-
alyze the record counting. Two main approaches are considered
for training the models (Figure 2).
In the first case we use only real data for the training consider-
ing the cross-validation data for stopping the training.
In the second case we first train the network using only syn-
thetic images (real images are used as a validation set to stop
the learning). This pre-trained network is subsequently fine-
tuned using the real images in the training set that are different
from those used as validation set.
In both cases the test is made with one disjoint set of real im-
ages and suitable measures are computed for performance eval-
uation.

5.1. Performance evaluation
The system performance are measured with two values.

The Accuracy is the percentage of pages where the number of
records is correctly identified. The Error is the percentage of
errors in the record count when making a decision on one page
at a time. This value is defined according to Equation (2) where
ri is the actual number of records in page i, pi is the predicted
value (bpi + 1

2 c is the rounded predicted value), and N is the
number of test pages.

Error =

N∑
i=1

∣∣∣∣bpi + 1
2 c − ri

∣∣∣∣
N∑

i=1
ri

(2)

5.2. Esposalles
In the Esposalles collection we performed several experi-

ments to identify the best training strategy and compare the re-
sults obtained by the proposed approach with those described
in [2] considering the same split of the data in training, valida-
tion, and test datasets (we refer to this partitioning of data as
Benchmark Split). Due to the limited size of the dataset in [2]
we performed also a stratified cross validation to estimate the
error rate on a larger dataset.
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Table 1. Esposalles dataset. Comparing different backgrounds in the
benchmark split.

Model Initial Training Accuracy Error
weights (%) (%)

AlexNet Random Synth/W 85.0 2.6
AlexNet Synth/W Real+DA 95.0 0.8

AlexNet Random Synth/E 90.0 1.7
AlexNet Synth/E Real+DA 97.5 0.4

Table 2. Esposalles dataset. Random initialization vs pretrained Imagenet
in the benchmark split.

Model Initial Training Accuracy Error
weights (%) (%)

AlexNet Imagenet Synth 100.0 0.0
AlexNet Random Synth 90.0 1.7
AlexNet Synth Real+DA 97.5 0.4

NIN Imagenet Synth 100.0 0.0
NIN Random Synth 95.0 0.9
NIN Synth Real+DA 100.0 0.0

5.2.1. Esposalles: Benchmark Split
In the Benchmark experiments we compare the results ob-

tained by our system with those presented in [2] using the same
split (150 pages for training, 10 for validation, and 40 for test).

In the first experiment (Table 1) we evaluated the impact of
the use of a white background (Synth/W) instead of the back-
ground extracted with the procedure described in Section 2.1
(Synth/E) when building the synthetic dataset. In both cases
the initial training is made with the synthetic images and the
160 training and validation images are used to stop the training.
In the fine-tuning we first augmented the 160 training and vali-
dation images (see [4] for additional details) and therefore used
1350 pages for fine-tuninng and 90 as a validation set. We com-
pared the two training data using the AlexNet architecture and
concluded that in general it is better to use a real background
than a white one. In the subsequent experiments we always
used extracted backgrounds.

In the second experiment we verified that training a network
pretrained on Imagenet might provide better results with respect
to a random initialization of the weights (Table 2). In particular,
for both the AlexNet and the NIN architectures one 100% ac-
curacy is achieved by training the pretrained network with syn-
thetic data only. On the other hand when using randomly ini-
tialized weights we need to perform a finetuning with real data
to achieve the 100% accuracy with NIN (97.5% with AlexNet).
In the subsequent experiments with the Esposalles dataset we
trained networks pretrained on Imagenet.

In the third experiment we considered one recent deep model
still pre-trained on Imagenet (the VGG16 architecture [23]).
In Table 3 we report the results obtained on the benchmark
split when considering three architectures: AlexNet, NIN, and
VGG16. For each architecture we compare the performance

Table 3. Esposalles dataset. Results on benchmark split.

Model Initial Training Accuracy Error
weights (%) (%)

AlexNet Imagenet Real 87.5 2.14
AlexNet Imagenet Synth 100.0 0.0

NIN Imagenet Real 100.0 0.0
NIN Imagenet Synth 100.0 0.0

VGG16 Imagenet Real 92.5 1.29
VGG16 Imagenet Synth 100.0 0.0

[Alvaro et al][2] 80.0 -

Table 4. Esposalles dataset. Average results with five fold cross-validation.

Model Initial Training Accuracy Error
weights (%) (%)

NIN Imagenet Real 94.5 0.9
NIN Imagenet Synth 97.1 0.5

VGG16 Imagenet Real 86.1 2.4
VGG16 Imagenet Synth 93.5 1.1

when finetuning the Imagenet network with real data (without
the data augmentation considered in the first two experiments)
and when training it with synthetic data like in the second ex-
periment, but without performing a finetuning. We can notice
that the training with real data has in general worst performance
with respect to the training with the synthetic data.

In Table 3 we also compare the results achieved by our sys-
tem with those reported in [2] where the right number of records
is predicted for 80% of the test documents. It is very important
to observe that the system in [2] is designed to segment the
records and therefore the record counting is only one additional
information that is computed from the segmentation.

From this experiment we can notice that the networks trained
with Synthetic data provide one 100% accuracy also without
finetuning. With these data, the NIN slightly outperforms the
other architectures.

5.2.2. Esposalles: Five Fold Cross-validation
Since the number of labeled pages in the Esposalles collec-

tion is limited, in this experiment we tested the system with a
five fold stratified cross validation. The Esposalles dataset con-
tains 44 pages with 5 records, 152 with 6 records and only 4
with 7 records. The five folders contain, on average, 40 pages
each. In each fold we used 160 pages to perform the fine-tuning
using 142 pages for training and 18 as validation set; we left the
remaining 40 pages for evaluating the performance on real data.

In Table 4 we report the average values of the results obtained
in the five folders. In this experiment we considered the two
most promising architectures: NIN and VGG16. Like in Table
3 we compared the training using only real data of networks
pretrained on Imagenet and the training the same networks us-
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Table 5. Brandeburg dataset. Comparison of different architectures (Ran-
dom initialization of weights).

Model Initial Training Accuracy Error
weights (%) (%)

Alexnet Random Real 66.53 6.19
Alexnet Random Synth 46.63 12.40
Alexnet Synth Real 74.87 4.40

NIN Random Real 74.47 4.53
NIN Random Synth 51.26 9.84
NIN Synth Real 77.79 3.96

NIN + FC Random Real 76.38 4.18
NIN + FC Random Synth 48.34 10.72
NIN + FC Synth Real 76.98 4.06

NIN softmax Random Real 69.35 6.93
NIN softmax Random Synth 45.60 14.26
NIN softmax Synth Real 69.09 6.98

ing the synthetic data. In both cases one network trained us-
ing only synthetic data outperforms one network trained using
a very limited number of real data. It is worth recalling here
that for each folder we use for the Real training on average 142
real training data (the validation set contains 18 pages). For the
Synth training we use 81, 060 synthetic pages while the valida-
tion and test sets are the same of the Real training.

5.3. Brandenburg
The second main group of experiments is made using the

4, 956 pages of the Brandenburg collection described in Section
4. Since this dataset is significantly larger than the Esposalles,
we made more detailed experiments. In particular, we analyze
the change of performance when varying the training set size.
We split the pages in three sets: 3, 165 pages for training, 796
for validation and 995 for test.

Once again the first experiments have been performed to
identify the most promising architectures (Table 5). We con-
sidered architectures based on the AlexNet and NIN models us-
ing a random initialization of weights. For NIN we considered
one version with the global average pooling as last layer (NIN
in Table 6) and one with a fully connected layer as last layer
(NIN+FC in Table 6). In the last case the weights are initial-
ized to compute the average over the input features map. The
best results are obtained with the NIN with global average pool-
ing. We also considered one architecture with the output based
on one softmax layer with 9 outputs corresponding to the num-
ber of classes (NIN softmax in Table 6). Not surprisingly, in the
latter case we obtained worst results.

Also in this first experiment with the Brandeburg dataset the
NIN architecture outperforms the AlexNet one confirming the
results for the Esposalles collection. In almost all the cases,
the finetuning of a network initially trained on synthetic data
improves the results on the test set with respect to the training
only on real data (without data augmentation).

One exception is the NIN softmax experiment. However, it
is worth noticing that the Accuracy and Error are worst than in

Table 6. Brandeburg dataset. Comparison of different architectures (Ima-
genet initialization of weights).

Model Initial Training Accuracy Error
weights (%) (%)

Alexnet Imagenet Real 70.55 5.26
Alexnet Imagenet Synth 55.58 10.09
Alexnet Synth Real 79.90 3.66

NIN Imagenet Real 82.51 2.98
NIN Imagenet Synth 57.59 9.14
NIN Synth Real 83.22 3.08

VGG16 Imagenet Real 86.23 2.35
VGG16 Imagenet Synth 60.20 7.46
VGG16 Synth Real 85.93 2.48

the other tests. Apart from the softmax NIN in all the cases the
finetuning of a network trained with synthetic data has higher
Accuracy and lower Error with respect to a network trained on
real data only.

Since this collection is larger than the Esposalles one we con-
sidered also one experiment where all the training and test are
made with real data and the networks are pretrained on Ima-
genet (Table 6). For the Alexnet and NIN architectures the best
results are obtained when finetuning with real data one network
initially trained with synthetic data. On the other hand the train-
ing with only real data on VGG16 pretrained on Imagenet pro-
vides the best overall results.

One of the claims of this paper is that when the number of
training data available is limited, then the performance can be
improved by using synthetic data. In order to investigate the ef-
fect of the number of training pages used for finetuning, in Ta-
ble 7 we show the results of two of the experiments described
in Table 6 (training with real data one network pretrained on
Imagenet and finetuning with real data one network trained on
synthetic data) when using different sizes for the real training
set. For example the smallest training set contains 396 images
(1/8 of the total 3, 165 pages available for training) and the cor-
responding validation set contains 104 images. The test sets are
left unchanged with respect to the experiments in Table 6.

With the exception of VGG16 trained with 100% of the data
in all the cases the finetuning of a network trained with syn-
thetic data outperforms the same model only trained on real
data. We can also notice that in general the gap between the two
approaches narrows when the size of the training set increases.

To provide additional information on the results we show in
Figure 8 the confusion matrix for the results obtained with the
VGG16 model. In is worth to notice that for nearly all the types
of pages the results are in a range of ±1 with respect to the
correct record count.

To further analyze the results in Figure 9 we show some
pages in the collection with five records. From these exam-
ples we can notice how variable are the pages in the collection.
The pages are grouped in the Figure according to the results
achieved when training one VGG116 model with the two exper-
iments summarized in Table 7. The number of records for pages
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Table 7. Brandeburg dataset. Varying the size of the data used for training or for finetuning.

Initial Trainset size
Model Measure(%) weights Training 1/8 1/4 1/2 1/1

Alexnet
Accuracy Imagenet Real 44.22 51.15 57.39 70.55

Synth Real 65.93 71.96 77.89 79.90

Error Imagenet Real 11.55 9.61 7.99 5.26
Synth Real 6.89 5.43 4.13 3.66

NIN
Accuracy Imagenet Real 56.08 61.81 73.57 82.51

Synth Real 67.44 71.76 76.18 83.22

Error Imagenet Real 8.49 7.04 4.61 2.98
Synth Real 6.29 5.48 4.51 3.08

VGG16
Accuracy Imagenet Real 70.45 72.96 79.19 86.23

Synth Real 74.07 76.98 80.60 85.93

Error Imagenet Real 5.56 4.89 3.60 2.35
Synth Real 4.83 4.26 3.46 2.48

Fig. 8. Confusion matrix for the best VGG16 model.

in the first group is correctly identified with both approaches.
On the other hand the number of records for pages in the sec-
ond group is not identified by either methods. For instance, the
first two pages in the group have a long comment at the bot-
tom, while in the last one the first record has been canceled and
therefore is not counted in the ground-truth.
For the groups in the bottom part of the Figure the two ap-
proaches provide different results. In the first two pages the first
record is very difficult to read and faded and this type of degra-
dation was probably not properly modeled by the synthetic doc-
ument generator. The latter tool was however able to model the
irregular distribution of records in the last three examples, that
are probably rare in real training pages.

6. Conclusions
In this paper we addressed the identification of the num-

ber of records in handwritten historical documents by using
Convolutional Neural Networks trained on synthetic data. We
performed several experiments to study the capability of syn-
thetic data to model real handwritten documents belonging to

two different collections. In the experiments we tested three
well known deep architectures that we modified to compute
the number of records in a page. With both datasets the NIN-
based architecture provided better results than the one based
on AlexNet. On the other hand the VGG16 architecture shown
better results in the larger Brandenburg collection.

We are currently studying the information that can be ex-
tracted from the feature maps in the convolutional neural net-
works. This type of information can be of interest for under-
standing which parts of the input image are more informative
to compute the record counting task. The latter study may lead
at the end to address the record segmentation with deep convo-
lutional networks.
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