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Summary. The paper is aimed at presenting the finite element code MADY and the models 
formulated on purpose for masonry structures and implemented into the code in the last 
decade. Beam elements as well as plane, shell and brick elements are available. As for the 
material models, in the framework of the continuous homogeneous approach, those provided 
by the code range from the simplest no-tension material to more refined models, accounting 
for bounded tensile and shear strengths with damage process and plasticity in compression. In 
the paper, the main features of the code are presented through some static and dynamic 
analyses of masonry structures, shown for the sake of example. 

1 INTRODUCTION 

MADY is a non-commercial finite element code for conducting static and dynamic 
analyses of masonry structures. 

Initially developed on the basis of a one-dimensional no-tension model formulated for 
masonry columns, or masonry slender structures in general1,2,3,4, the code has been enriched 
by different and more refined models. 

In order to cover different types of masonry structures and capture various and different 
aspects inherent in the masonry’s behavior, the code has been provided by different finite 
elements – plane, shell and brick isoparametric elements. For what concerns the material’s 
library, a constitutive equation has been formulated for an isotropic elastic material with some 
constrain imposed by requiring that the stress must belong to a stress range, i.e. a non empty, 
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closed and convex subset of the space of all symmetric tensors of the second order. Masonry-
like materials, eventually with bounded compressive strength, belong to this class of 
hyperelastic materials5. In addition, such formulation allows to consider a limited shear 
stress6. For these cases, where the domain of the strength is a polyhedron, the relationship 
between stress and strain and its derivatives – required to numerically solve the equilibrium 
and evolution problems7,8 – have been explicitly evaluated.  

The material model allows to account also for an initial bounded tensile strength, that can 
be progressively decreased according to a prescribed damage law. 

Moreover, when dynamic or cyclic loading are applied, the material’s behavior may 
depend on the whole history of deformation; for these cases, a plastic model has also been 
provided9. 

Lastly, an input/output interface for MADY has been implemented to generate the mesh 
files and visualize the results. 

In the paper, results of static and dynamic analyses for two recurrent masonry typologies– 
a groin vault and a free-standing bell tower - have been selected to present the main features 
of the code. For the sake of clarity, idealized structural schemes have been intentionally used. 
 

2 THE MATERIAL MODELS 

2.1 Beam models 

The development of a basic beam element got started from a constitutive equation 
formulated in terms of generalized stress (normal force and bending moment) as a function of 
the generalized strain (extensional strain and curvature change of the beams longitudinal 
axis). This constitutive equation was defined by making the Euler-Bernoulli hypothesis and 
assuming that the material is unable to withstand tension in the longitudinal direction and has 
a bounded compressive strength1,2. 

Developed initially for rectangular cross-section, the constitutive relations of the beam 
have been then formulated for other geometries, such as hollow rectangle, having in mind to 
model towers or minarets1,3. The constitutive model has also been generalized to take into 
account the presence of a reinforcement, such in case of FRP strengthened arches9,11. 

A bounded shear strength can be accounted for as well as a limited tensile strength. In 
addition, refined constitutive idealizations to account for adequate post-yield behaviour of 
masonry in compression and in tension has been defined9,11. Specifically, accounting for a 
linear piecewise law of softening behaviour, the actual stress distribution of a generic cross-
section is represented by means of an equivalent section for which the values of the materials 
Young modulus and compressive strength are updated and reduced through a damage 
function, if the section is about to evolve into a state with a degree of damage greater than its 
current state. Obviously, the material thus obtained is no longer elastic, because the damage 
phenomenon is irreversible. 

Over the last ten years, several comparisons of the results obtained through the Mady code 
with those provided by other models and experimental data have been carried out. Just to cite a 
few, results of pushover analyses obtained through Mady have been compared with those 
provided by a considerable number of numerical models, including numerical approaches 
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specifically developed for masonry buildings (3Muri, 3DMacro, etc.) and general-purpose 
finite element codes (DIANA, ANSYS and Code ASTER)3,12. Results of dynamic analyses 
have, instead, been compared with those from OpenSees4 and the NOSA-ITACA code13. 

2.2 Normal elastic and elasto-plastic materials 

For plane, shell and brick elements, the constitutive models implemented into the code are 
the normal elastic and elasto-plastic materials. 

For a normal elastic material, the infinitesimal strain tensor � is the sum of two parts, the 
elastic part �� from which the stress	� depends linearly and isotropically and the anelastic 
part �� which belongs to the normal cone	����	 of  � at �. Namely5 

� 
 �� � ��,     � 
 ��� , 					�
�����	, (1) 

where � is the tensor of the elastic moduli. Let � 
 �����	 be the elastic range. As � is a 
closed, non-empty and convex set, for a given strain tensor E, the Minimum Norm Theorem 
guarantees the existence and uniqueness of the projection ��� of E onto �, with respect to the 
energy inner product6. Then, in order to obtain (1) it is enough to put 

�� 
 ���,	�� 
 � � ���,� 
 ����. (2) 

In the formulation currently implemented in MADY, there are three types of anelastic 
deformation, depending on the region of  ∂� on which � is projected. They are the tensile, 
shear and compressive anelastic strains. An explicit expression of the stress has been 
determined when � is a polyhedron. Precisely, if � is a face of the polyhedron belonging to a 
plane having a normal � and a distance δ from the origin, it results 

� 
 � �� � ��⊗�	��δN�⋅� �, (3) 

where N is the outward unit normal to ��.  
An elasto-plastic material is a material with memory, i.e., the stress at a material point 

depends on the history of all the deformations that took place at that point, but is independent 
of the strain rate. A (deformation) history is defined as a Lipschitz continuous mappings �:  0,1$ → &'( (the space of all second order symmetric tensors), such that ��0	 
 0. 
Moreover, it is assumed that there exists a constitutive functional that, for each history E and 
instant τ ∈ [0, 1], assigns the attained stress �*�+	. The memory of elasto-plastic materials is 
characterized by the fact that, at every instant of each history, there exists a stress-free 
configuration that can be elastically reached from the current configuration. In addition, if 
damage is not taken into account, the elastic response of the material is not affected by 
previous plastic deformations. 

Then, it is assumed that for each history E there is a plastic history �, such that, for each τ ∈ [0, 1], the following conditions are satisfied: (i) the elastic strain �� 
 � � �,		belongs to 
the reduced elastic range �; (ii) the stress reached at instant τ during history E depends 
linearly on ��, i.e. �* 
 ���. 

The stress range and the reduced elastic range may change during a history if the material 
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is allowed to undergo hardening or softening. Here, for the sake of simplicity, it is assumed 
that the material is ideally plastic and then �		and � are fixed once and for all. 

Let ���τ	� ∂�		be a regular point, and let ��τ			and ��τ		 be the unit outward normals to ∂� at E(τ ) and to ∂�at ����τ		, respectively. As usual the normality rule �. , 
 /�. ,/� is 
accepted and, moreover,	∂� is supposed to be locally defined by a smooth real function γ. 
Therefore, the following flow rule can be proved9 

0�. 1�τ		0 

23
4
35 0, if	8 ����τ		� 9 0,

0, if	8 ����τ		� 
 0	and	��τ		 ∙ �. �τ		 > 0,
��τ		 ∙ �. �τ		
��τ		 ∙ ��τ		 , if	8 ����τ		� 
 0	and	��τ		 ∙ �. �τ		 ? 0

 

(4) 

from which, 

�. 
 � �@ � ��⊗�	
�⋅� ��. , (5) 

with @	the fourth order identity tensor, follows. 
A comparison between the relationships (3) and (5) suggests that the normal elastic 

material is the Hencky ’version’ of the elasto-plastic model. In other words, the two 
constitutive models correspond to the deformation and the flow theory of plasticity, 
respectively9. 

One of the main feature of the flow theory of plasticity is the ”elastic unloading”. For 
masonry, however, when a tensile anelastic strain - which represents the opening of fractures- 
is attained, it is not realistic to assume that a strain inversion induce compressive stress before 
that fractures are re-closed. Thus, the model proposed is elasto-plastic solely with reference to 
the compressive and shear behaviour, whereas it is nonlinear elastic in traction. 

To better highlight the differences between the proposed plastic model and a fully (i.e. 
classical) elasto-plastic model, the results obtained for a simple case are provided in Fig. 1. 
The structure (see Fig. 1 a)) is a squat panel with 1.35 m height, having a rectangular cross-
section 1 m in width and 0.25 m in thickness. It is perfectly clamped at its base with a further 
restrain to rotation at the top. 

The main mechanical characteristics assumed are as follows: Young’s modulus E = 1500 
MPa, Poisson's ratio ν = 0.1, compressive strength σc = 3.0 MPa, tensile strength σt = 0, 
cohesion τ0 = 0.3 MPa, friction parameter tanφ = 0.4 and density ρ = 1900 kg/m3. 

 The panel has first been subjected to the vertical load q, which is equal to 0.6 MPa. Then, 
the cyclic process has been conducted by applying a vertical displacement at the top. 

Fig. 1 b) shows the difference of the hysteresis curve obtained via the proposed model 
against the classical one. 
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a)                                                               b) 

Figure 1: a) sketch of the example case b) hysteresis curve of the proposed model, compared to that from the 
classical elasto-plastic model. 

3 EXAMPLES OF APPLICATIONS 

3.1 Static analysis of a groin vault 

Some results from a static analysis of a groin vault are provided in the following. The 
analysed vault is a 4.92m*4.12m single span (within adjacent spans on both sides) of a 
vaulted cloister. It is set on the rear wall and on pillars in the side facing the cloister. The 
interaction with the remaining parts of the structure is accounted for via boundary conditions, 
while the infill has been considered as a dead load.  The vault’s thickness is 0.12m (except for 
the lateral arches whose thickness is 0.24m). Three chains are located on the lateral arches.  

The structure is discretized by means of 800 thick shell elements, for 4125 degrees of 
freedom. Masonry is considered a non-linear elastic material with zero tensile strength. 
Values of the other mechanical parameters have been selected according to the Italian 
guidelines14,15, accounting for the material safety factor γm = 3 and the Confidence Factor 
(CF) = 1.2 (for a building knowledge level LC2): Young’s modulus E = 1.5 105N/cm2, 
Poisson’s coefficient ν = 0.1, compressive strength σo = 89 N/cm2; for bounded shear 
strength, cohesion τ0 = 9 N/cm2 and friction parameter tanφ = 0.4.  

The mass density is assumed equal to 1.3*18 10-3 kg/cm3 , while the infill density is 1.3*16 
10-3 kg/cm3; an uniform distributed load equal to 0.7 N/cm2 has also been applied. 

The numerical convergence has been achieved. Figs. 2 to 5 show some of the information 
provided by the code. Fig. 2 shows the mesh and the deformed configuration, while Fig. 3 
gives a contour map of the compressive principal stress on the extrados of the vault. Fig. 4 
and 5 depict the tensile and the shear anelastic strain, indicating the presence of fractures and 
sliding, respectively.   
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Figure 2: Mesh in the deformed configuration (amplified 100 times). 

 

Figure 3: Compressive principal stress on the extrados of the vault. 

 

Figure 4: Tensile anelastic strain on the extrados of the vault. 

 

Figure 5: Shear anelastic strain on the extrados of the vault. 
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3.2 Dynamic analysis of a masonry tower 

Results are provided for the structure proposed in literature16 as an ideal scheme able to 
represent the main features of many existing Italian bell towers. 

It’s a free-standing tower, 27 m in height with a squared cross-section, 5.8 m in width; the 
geometry is extremely simplified, accounting solely for few typical elements: a door, a briefly 
and a change in wall’s thickness from 1 to 0.85m occurring at the height of 11.5m.  

Values of 3500 MPa, 3.5 MPa, 1900 kg/m3and 0.1 have been adopted, respectively, for the 
Young’s modulus E, the compressive strength σo, the mass density and the Poisson’s 
coefficient ν. When a bounded shear strength is considered, the parameter of cohesion τ0 has 
been assumed equal to 0.15 MPa, while the friction parameter tanφ is 0.4. 

Dynamic (time-history) analyses has been conducted by applying, as earthquake input, the 
strong ground motion recorded during the Tabas, Iran event of 1978. The accelerogram has a 
magnitude of 7.4, a duration of 63.40s and a PGA of 0.925g. Moreover, a viscous damping 
coefficient of 4% for the first two flexural modes has always been used. 

Fig. 6 shows the time-history of the displacement at the top of the tower, as obtained via a 
(3D) model - discretized through 810 shell elements, with a no-tension material behaviour and 
bounded compressive strength (referred in the following as NT model). The results obtained 
through a masonry-like beam model with an hollow rectangular cross-section are also shown 
to highlight the accuracy and type of information that such a model can provide. As can be 
seen, the two models experienced almost the same displacements at the top. 

From a local perspective, the beam’s predictions are also in good agreement with the 3D 
model predictions. At time t = 11.45s, where the first significant peak of the top displacement 
occurs, the two models provides the same values of the stress in the vertical direction and 
both highlight a zone, located near the tower’s base, where crushing of the material occurs 
(Fig. 7 and 8). In terms of cracking, both the models predict a significant occurrence: the 
tower undergoes consistent tensile anelastic strain (see Fig. 7), emerging also in the beam 
model’s from the amount of cracked areas (Fig. 8 b), c)). However, the location of cracking 
appears quite different. Although the (continuous) beam model can account for a distribution 
of cracking along the height of the tower (Fig. 8 c)), is not capable of giving the accurate 
description provided by the 3D model, which shows that cracking is much more extended in 
the upper part of the tower, with strong localization around the belfry. 

A further comparison is presented accounting for a refinement of the constitutive law: a 
bound to shear stress is introduced in the 3D model, which is referred as BS model. 

As shown by Fig. 9, differences in peak displacement are more pronounced, as shear 
strength is attained in the BS model. Fig 9 b) shows that the tensile anelastic strain (and the 
compressive anelastic strain as well) turn out to be similar to those obtained via the NT 
model, given in Fig. 7. However, as shown by Fig. 9 c), the tower undergoes a significant 
shear anelastic strain, with the consequent loss of stiffness and variation of amplitude and 
period in oscillation highlighted by Fig. 9 a). In the lateral view of the tower (depicted on the 
right in Fig. 9 c)), the effects of dilatancy can also be observed. 

A further material’s behaviour is considered, described by an elasto-plastic law, denoted as 
PL model. As shown by Fig. 10, where the response is compared with those of the NT and BS 
cases, it emerges that some variations has been obtained even with respect to the BS model, 
which has the same strengths domain but considers the material as normal elastic. 
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Figure 6. Time-history of the displacement at the top of the tower, obtained via the masonry-like 3D and the 
beam models.  

 
a)   b)                              c) 

Figure 7. 3D model results, at t = 11.45s: a) axial stress σz (Pa) in the vertical direction, anelastic strain due to b) 
traction and c) compression.  

 
a)                          b)                               c) 

Figure 8. Beam model results at t = 11.45s: a) deformed mesh, b) axial stress σz (Pa), cracking (red area) and 
crushing (blue area) at the tower’s base; c) cracked area (% of the total area) along the height H of the tower. 
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a)    b)    c)  

Figure 9.  3D model with bounded shear stress: a) time history, b) tensile anelastic strain and c) shear anelastic 
strain at t = 11.45s.   

 
                                a)                                                                b)                       c) 

Figure 10. 3D plastic model: a) Time-history, b) plastic strain attained at t = 11.45s, c) overall tensile inelastic 
strain occurred until t = 11.45s. 

3 CONCLUSIONS 

The article presents the MADY computer code for the static and dynamic analysis of 
masonry buildings, which has been written by the authors for research purposes over the last 
ten years. While retaining its original features that make it easy to use and refined, the code 
now has a sufficient number of models to handle the analysis of many types of masonry 
structures. Of course, the class of materials can and should be further enriched.  

The examples presented confirm the need for different types of models, both regarding the 
discretization of the structure in finite elements (beam, shell, 2D and 3D elements) and the 
constitutive characteristics of the material. In particular, despite the roughness of the beam 
element’s formulation, it still allows for achieving a number of important indications. 
Moreover, the limit of shear strength, which is often neglected in studying masonry buildings, 
appears to be indispensable at least under certain load conditions. 
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