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Summary. The paper is aimed at presenting the finite elemede MADY and the models
formulated on purpose for masonry structures anplamented into the code in the last
decade. Beam elements as well as plane, shell icid édements are available. As for the
material models, in the framework of the continubosnogeneous approach, those provided
by the code range from the simplest no-tension maht® more refined models, accounting
for bounded tensile and shear strengths with dampegmess and plasticity in compression. In
the paper, the main features of the code are pexbdhrough some static and dynamic
analyses of masonry structures, shown for the sh&rample.

1INTRODUCTION

MADY is a non-commercial finite element code forndaocting static and dynamic
analyses of masonry structures.

Initially developed on the basis of a one-dimenaiomo-tension model formulated for
masonry columns, or masonry slender structureeiregt?>* the code has been enriched
by different and more refined models.

In order to cover different types of masonry stuoes and capture various and different
aspects inherent in the masonry’s behavibe code has been provided by different finite
elements — plane, shell and brick isoparametrimerfdgs. For what concerns the material’s
library, a constitutive equation has been formuldte an isotropic elastic material with some
constrain imposed by requiring that the stress rheking to astressrange, i.e. a non empty,
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closed and convex subset of the space of all synuenhsors of the second order. Masonry-
like materials, eventually with bounded compresssteength, belong to this class of
hyperelastic materidls In addition, such formulation allows to considerlimited shear
stres§. For these cases, where the domain of the stréagihpolyhedron, the relationship
between stress and strain and its derivatives inemjto numerically solve the equilibrium
and evolution problem$ — have been explicitly evaluated.

The material model allows to account also for atiainbounded tensile strength, that can
be progressively decreased according to a prescdamage law.

Moreover, when dynamic or cyclic loading are appli¢the material’'s behavior may
depend on the whole history of deformation; forstheases, a plastic model has also been
provided.

Lastly, an input/output interface for MADY has beemplemented to generate the mesh
files and visualize the results.

In the paper, results of static and dynamic analysetwo recurrent masonry typologies—
agroin vaultand a free-standing bell tower - have been salda@resent the main features
of the code. For the sake of clarity, idealized&tuiral schemes have been intentionally used.

2THE MATERIAL MODELS

2.1 Beam modds

The development of d&asic beam element got started from a constitutive eomat
formulated in terms of generalized stress (normadd and bending moment) as a function of
the generalized strain (extensional strain and ature change of the beams longitudinal
axis). This constitutive equation was defined bykima the Euler-Bernoulli hypothesis and
assuming that the material is unable to withstamdion in the longitudinal direction and has
a bounded compressive streridth

Developed initially for rectangular cross-sectidhe constitutive relations of the beam
have been then formulated for other geometried) aschollow rectangle, having in mind to
model towers or minarétd The constitutive model has also been generaliaedke into
account the presence of a reinforcement, suchsa o6BFRP strengthened archts

A bounded shear strength can be accounted for Hsawea limited tensile strength. In
addition, refined constitutive idealizations to awant for adequate post-yield behaviour of
masonry in compression and in tension has beemat®fi. Specifically, accounting for a
linear piecewise law of softening behaviour, theualkstress distribution of a generic cross-
section is represented by means of an equivaletibador which the values of the materials
Young modulus and compressive strength are updatetl reduced through a damage
function, if the section is about to evolve intstate with a degree of damage greater than its
current state. Obviously, the material thus obthiiseno longer elastic, because the damage
phenomenon is irreversible.

Over the last ten years, several comparisons afethdts obtained through the Mady code
with those provided by other models and experimetata have been carried out. Just to cite a
few, results of pushover analyses obtained thradgldy have been compared with those
provided by a considerable number of numerical rspdacluding numerical approaches
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specifically developed for masonry buildings (3MuDMacro, etc.) and general-purpose
finite element codes (DIANA, ANSYS and Code ASTER) Results of dynamic analyses
have, instead, been compared with those from OpehSed the NOSA-ITACA codé

2.2 Normal elastic and elasto-plastic materials

For plane, shell and brick elementise constitutive models implemented into the cacde
the normal elastic and elasto-plastic materials.

For a normal elastic material, the infinitesimahst tensorE is the sum of two parts, the
elastic partE® from which the stres§ depends linearly and isotropically and the anelast
partE® which belongs to the normal cong(T) of K atT. Namely

E=FE°+E* T=CE®, E%Nyx(T), (1)

whereC is the tensor of the elastic moduli. L&t= C™1(K) be the elastic range. Asis a
closed, non-empty and convex set, for a givenrstesore, the Minimum Norm Theorem
guarantees the existence and uniqueness of thecpanjP¢ E of E onto &, with respect to the
energy inner produttThen, in order to obtain (1) it is enough to put

E® = P;E,E® = E — P.E,T = CPE. 2)

In the formulation currently implemented in MADYhere are three types of anelastic
deformation, depending on the region 8f on whichE is projected. They are the tensile,
shear and compressive anelastic strains. An ekpdxpression of the stress has been
determined whe#g is a polyhedron. Precisely,H is a face of the polyhedron belonging to a
plane having a norm#d and a distanc& from the origin, it results

(NQM)E—ON
T=C(E-50) (3)
whereN is the outward unit normal ©A.

An elasto-plastic material is a material with mewdre., the stress at a material point
depends on the history of all the deformations thaek place at that point, but is independent
of the strain rate. A (deformation) history is defil as a Lipschitz continuous mappings
E:[0,1] - Sym (the space of all second order symmetric tensa@sg¢h thatk(0) = 0.
Moreover, it is assumed that there exists a canist functional that, for each histoEyand
instantt € [0, 1], assigns the attained strd%$t). The memory of elasto-plastic materials is
characterized by the fact that, at every instaneath history, there exists a stress-free
configuration that can be elastically reached frbw current configuration. In addition, if
damage is not taken into account, the elastic resp@f the material is not affected by
previous plastic deformations.

Then, it is assumed that for each histBrihere is a plastic histoy? such that, for each
€ [0, 1], the following conditions are satisfied) {ne elastic straik® = E — EP belongs to
the reduced elastic rangg (ii) the stress reached at instanduring historyE depends
linearly onE®, i.e.Tp = CE®.

The stress range and the reduced elastic rangechaange during a history if the material
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is allowed to undergo hardening or softening. Hesethe sake of simplicity, it is assumed
that the material is ideally plastic and tt#nandé& are fixed once and for all.

Let E¢(t)e 0€ be a regular point, and I&(t) andN(t) be the unit outward normals to
0€ atE(r ) and todXat CE®(t ), respectively. As usual the normality ruf@ = ||EP||N is
accepted and, moreové¥ is supposed to be locally defined by a smooth fwattion vy.
Therefore, the followindglow rule can be prov

0. iy () <o @
| =1 o ifr(E@)=0amdne by <0,
M(t)-E(t) _ . .
[W' 1fV(E (r)) =0and N(t)-E(t) >0
from which,
T=c(1-5)E ®

with 1 the fourth order identity tensor, follows.

A comparison between the relationships (3) and s{ijgests that the normal elastic
material is the Hencky ’version’ of the elasto-pilasmodel. In other words, the two
constitutive models correspond to thlieformation and theflow theory of plasticity,
respectively.

One of the main feature of the flow theory of plast is the "elastic unloading”. For
masonry, however, when a tensile anelastic straihich represents the opening of fractures-
is attained, it is not realistic to assume thatrairs inversion induce compressive stress before
that fractures are re-closed. Thus, the model megas elasto-plastic solely with reference to
the compressive and shear behaviour, whereasdniknear elastic in traction.

To better highlight the differences between theppsed plastic model and a fully (i.e.
classical) elasto-plastic model, the results olethifor a simple case are provided in Fig. 1.
The structure (see Fig. 1 a)) is a squat panel W5 m height, having a rectangular cross-
section 1 m in width and 0.25 m in thickness. pésfectly clamped at its base with a further
restrain to rotation at the top.

The main mechanical characteristics assumed af@laws: Young’'s modulus E = 1500
MPa, Poisson's rati@ = 0.1, compressive strength = 3.0 MPa, tensile strength = 0,
cohesion, = 0.3 MPa, friction parameter tar 0.4 and density = 1900 kg/m.

The panel has first been subjected to the verioea q,which is equal to 0.6 MPdhen,
the cyclic process has been conducted by applyiregtacal displacement at the top.

Fig. 1 b) shows the difference of the hysteresivewbtained via the proposed model
against the classical one.
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Figure 1: a) sketch of the example case b) hystecesve of the proposed model, compared to tlea fihe
classical elasto-plastic model.

3 EXAMPLESOF APPLICATIONS

3.1 Static analysisof agroin vault

Some results from a static analysis of a groin tvatg provided in the following. The
analysed vault is a 4.92m*4.12m single span (with@jacent spans on both sides) of a
vaulted cloister. It is set on the rear wall andpillars in the side facing the cloister. The
interaction with the remaining parts of the struetis accounted for via boundary conditions,
while the infill has been considered as a dead. |odte vault’s thickness is 0.12m (except for
the lateral arches whose thickness is 0.24m). Tt¢inaans are located on the lateral arches.

The structure is discretized by means of 800 tlsickll elements, for 4125 degrees of
freedom. Masonry is considered a non-linear elastaterial with zero tensile strength.
Values of the other mechanical parameters have ke&tted according to the Italian
guidelined**> accounting for the material safety facigr = 3 and the Confidence Factor
(CF) = 1.2 (for a building knowledge level LC2): ¥uy’'s modulus E = 1.5 ¥R/cn?,
Poisson’s coefficienty = 0.1, compressive strength, = 89 N/cnf; for bounded shear
strength, cohesioty = 9 N/cnt and friction parameter tar= 0.4.

The mass density is assumed equal to 1.3*18ktcn? , while the infill density is 1.3*16
10° kg/cn?; an uniform distributed load equal to 0.7 Nfdnas also been applied.

The numerical convergence has been achieved. Figs5 show some of the information
provided by the code. Fig. 2 shows the mesh andiéiermed configuration, while Fig. 3
gives a contour map of the compressive principassbn the extrados of the vault. Fig. 4
and 5 depict the tensile and the shear anelaséimsindicating the presence of fractures and
sliding, respectively.
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Figure 2: Mesh in the deformed configuration (arfigadi 100 times).
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Figure 3: Compressive principal stress on the drsaf the vault.

Figure 5: Shear anelastic strain on the extraddiseofault.
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3.2 Dynamic analysis of a masonry tower

Results are provided for the structure proposelitératuré® as an ideal scheme able to
represent the main features of many existing hdbell towers.

It's a free-standing tower, 27 m in height withcauared cross-section, 5.8 m in width; the
geometry is extremely simplified, accounting solelyfew typical elements: a door, a briefly
and a change in wall's thickness from 1 to 0.85uaing at the height of 11.5m.

Values of 3500 MPa, 3.5 MPa, 1900 kdgamd 0.1 have been adopted, respectively, for the
Young’'s modulus E, the compressive strength the mass density and the Poisson’s
coefficientv. When a bounded shear strength is considered, tlaenpger of cohesioty has
been assumed equal to 0.15 MPa, while the frigiemameter tapis 0.4.

Dynamic (time-history) analyses has been condugyeapplying, as earthquake input, the
strong ground motion recorded during the Tabas, éngent of 1978. The accelerogram has a
magnitude of 7.4, a duration of 63.40s and a PGA.825g. Moreover, a viscous damping
coefficient of 4% for the first two flexural modbas always been used.

Fig. 6 shows the time-history of the displacemériha top of the tower, as obtained via a
(3D) model - discretized through 810 shell elementth a no-tension material behaviour and
bounded compressive strength (referred in thevi@ig as NT model). The results obtained
through a masonry-like beam model with an holloatargular cross-section are also shown
to highlight the accuracy and type of informatitwatt such a model can provide. As can be
seen, the two models experienced almost the saspadements at the top.

From a local perspective, the beam’s predictioesadso in good agreement with the 3D
model predictions. At time t = 11.45s, where thstfsignificant peak of the top displacement
occurs, the two models provides the same valudbheoktress in the vertical direction and
both highlight a zone, located near the tower'ssbaghere crushing of the material occurs
(Fig. 7 and 8). In terms of cracking, both the med@edict a significant occurrence: the
tower undergoes consistent tensile anelastic s{s@a Fig. 7), emerging also in the beam
model’s from the amount of cracked areas (Fig.,&))) However, the location of cracking
appears quite different. Although the (continudosdm model can account for a distribution
of cracking along the height of the tower (Fig.)3, ¢s not capable of giving the accurate
description provided by the 3D model, which sholat icracking is much more extended in
the upper part of the tower, with strong localiaataround the belfry.

A further comparison is presented accounting foefamement of the constitutive law: a
bound to shear stress is introduced in the 3D madeth is referred as BS model.

As shown by Fig. 9, differences in peak displacamae more pronounced, as shear
strength is attained in the BS model. Fig 9 b) shavat the tensile anelastic strain (and the
compressive anelastic strain as well) turn out @osbmilar to those obtained via the NT
model, given in Fig. 7. However, as shown by Fig)9the tower undergoes a significant
shear anelastic strain, with the consequent losstiffifess and variation of amplitude and
period in oscillation highlighted by Fig. 9 a). time lateral view of the tower (depicted on the
right in Fig. 9 ¢)), the effects of dilatancy cdembe observed.

A further material’s behaviour is considered, disat by an elasto-plastic law, denoted as
PL model. As shown by Fig. 10, where the resposseimpared with those of the NT and BS
cases, it emerges that some variations has beametiteven with respect to the BS model,
which has the same strengths domain but considennaterial as normal elastic.
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Figure 6. Time-history of the displacement at tbp of the tower, obtained via the masonry-like 31l ghe
beam models.

0.000000e+000
-4 3750008+008,
-8 75000084005,
-1 312500e+008)
17500002008,
1218750084006,
-2 525000e+005/

-3.0625002+006/

a) b)

Figure 7. 3D model results, att = 11.45s: a) astigdsso, (Pa) in the vertical direction, anelastic straire do b)
traction and c) compression.
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Figure 8. Beam model results at t = 11.45s: a)rdefd mesh, b) axial stress (Pa), cracking (red area) and
crushing (blue area) at the tower’s base; c) crhekea (% of the total area) along the height kheftower.
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Figure 9. 3D model with bounded shear stressin& history, b) tensile anelastic strain and clastanelastic
strain att = 11.45s.
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Figure 10. 3D plastic model: a) Time-history, bgilc strain attained at t = 11.45s, c) overalsiteninelastic
strain occurred until t = 11.45s.

3 CONCLUSIONS

The article presents the MADY computer code for sit@tic and dynamic analysis of
masonry buildings, which has been written by thihans for research purposes over the last
ten years. While retaining its original featureattmake it easy to use and refined, the code
now has a sufficient number of models to handle ahalysis of many types of masonry
structures. Of course, the class of materials aanshould be further enriched.

The examples presented confirm the need for diiteyges of models, both regarding the
discretization of the structure in finite elemeflteam, shell, 2D and 3D elements) and the
constitutive characteristics of the material. Intjgalar, despite the roughness of the beam
element’s formulation, it still allows for achiegna number of important indications.
Moreover, the limit of shear strength, which iseofineglected in studying masonry buildings,
appears to be indispensable at least under céotainconditions.
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