
LOG-CONCAVE FUNCTIONS

ANDREA COLESANTI

ABSTRACT. We attempt to provide a description of the geometric theory of log-concave
functions. We present the main aspects of this theory: operations between log-concave
functions; duality; inequalities including the Prékopa-Leindler inequality and the func-
tional form of Blaschke-Santaló inequality and its converse; functional versions of area
measure and mixed volumes; valuations on log-concave functions.

1. INTRODUCTION

A function f is log-concave if it is of the form

f = e−u

where u is convex. This simple structure might suggest that there can not be anything too
deep or interesting behind. Moreover, it is clear that log-concave functions are in one-
to-one correspondence with convex functions, for which there exists a satisfactory and
consolidated theory. Why to develop yet another theory?

Despite these considerations, which may occur to those who meet these functions for
the first time, the theory of log-concave functions is rich, young and promising. There
are two main reasons for that. The first comes from probability theory: many important
examples of probability measures on Rn, starting with the Gaussian mesure, have a log-
concave density. These measures are referred to as log-concave probability measures
(and thanks to a celebrated results of Borell they admit an equivalent and more direct
characterization, see [14]). They have been attracting more and more interest over the
last years. Typical results that have been proved for these measures are: Poincaré (or
spectral gap) and log-Sobolev inequalities, concentration phenomena, isoperimetric type
inequalities, central limit theorems and so on (see [46] for a survey).

The second motivation comes from convex geometry and gives rise to the geometric
theory of log-concave functions, which is the theme of this paper. There is a natural
way to embed the set of convex bodies in that of log-concave functions, and there are
surprisingly many analogies between the theory of convex bodies and that of log-concave
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functions. The extension of notions and propositions from the context of convex bodies
to the more recent theory of log-concave functions is sometimes called geometrization
of analysis. The seeds of this process were the Prékopa-Leindler inequality (see [43],
[49]), recognized as the functional version of the Brunn-Minkowski inequality, and the
discovery of a functional form of the Blaschke-Santaló inequality due to Ball (see [8]).
A strong impulse to the development of geometrization of analysis was then given by the
innovative ideas of Artstein-Avidan, Klartag and Milman who, through a series of papers
(see [3], [5], [6] and [46]), widened the perspectives of the study of log-concave functions
and transformed this subject into a more structured theory. In the course of this paper, we
will see how many authors have then contributed in recent years to enrich this theory with
new results, concepts and directions for future developments.

Here we try to provide a picture of the current state of the art in this area. We will start
from the beginning. In Section 3, we give a precise definition of the space of log-concave
functions we work with, denoted by Ln, and we describe basic properties of these func-
tions. Moreover, we define the operations that are commonly used to add such functions
and to multiply them by non negative reals. Once equipped with these operations Ln is
a convex cone of functions, just like the family of convex bodies Kn with respect to the
Minkowski addition and the corresponding multiplication by positive scalars.

Section 4 is entirely devoted to the notion of duality. The most natural way to define
the dual of a log-concave function f = e−u is to set

f ◦ := e−u
∗

where u∗ is the Fenchel (or Legendre) transform of the convex function u. The effec-
tiveness of this definition will be confirmed by the inequalities reported in the subsequent
Section 5. In Section 4, we recall the basic properties of this duality relation and the
characterization result due to Artstein-Avidan and Milman, which ensures that the du-
ality mapping which takes f in f ◦ is characterized by two elementary properties only:
monotonicity, and idempotence. In the same section, we will also see a different duality
relation, due to Artstein-Avidan and Milman as well, which can be applied to the subclass
of Ln formed by geometric log-concave functions.

Inequalities are the salt of the earth, as every analyst knows, and log-concave functions
are a very fertile ground by this point of view. In Section 5, we review the two main
examples of inequalities in this area: the Prékopa-Leindler inequality and the functional
versions of the Blaschke-Santaló inequality together with its converse. Concerning the
Prékopa-Leindler inequality, we also explain its connection with the Brunn-Minkowski
inequality, and we show how its infinitesimal form leads to a Poincaré inequality due to
Brascamp and Lieb. In the same section we also introduce the notion of the difference
function of a log-concave function and an inequality which can be interpreted as the func-
tional version of the Rogers-Shephard inequality for the volume of the difference body of
a convex body.
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The analogy between convex bodies and log-concave functions has its imperfections.
Here is a first discrepancy: in convex geometry the important notions of mixed volumes
and mixed area measures are originated by the polynomiality of the volume of Minkowski
linear combinations of convex bodies. This property fails to be true in the case of log-
concave functions, at least if the usual addition (the one introduced in Section 3) is in
use. Nevertheless, there have been some attempts to overcome this difficulty. In Section
6, we describe two constructions that lead to the definition of functional versions of area
measure and mixed volumes for log-concave functions.

A second aspect in which the geometric theory of log-concave functions, at present,
differs from that of convex bodies is given by valuations. The theory of valuations on
convex bodies is one of the most active and prolific parts of convex geometry (see for
instance Chapter 6 of [56] for an updated survey on this subject). Two milestones in this
area are the Hadwiger theorem which characterizes continuous and rigid motion invariant
valuations, and McMullen’s decomposition theorem for continuous and translation invari-
ant valuations. On the other hand, the corresponding theory of valuations on the space
of log-concave functions is still moving the first steps, and it is not clear whether neat
characterization results will be achieved in the functional setting as well. The situation is
depicted in Section 7.

In the appendix of the paper we collected some of the main notions and results from
convex geometry, described in a very synthetic way, for the reader’s convenience.

Acknowledgements. The author would like to thank the anonymous referee for the care-
ful reading of the paper and his/her corrections and valuable suggestions.

2. NOTATIONS

We work in the n-dimensional Euclidean space Rn, n ≥ 1, endowed with the usual
scalar product (x, y) and norm ‖x‖. Bn denotes the unit ball of Rn.

If A is a subset of Rn, we denote by IA its indicatrix function, defined in Rn as follows:

IA(x) =

{
0 if x ∈ A,
∞ if x /∈ A.

The characteristic function of A will be denoted by χA:

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

The Lebesgue measure of a (measurable) set A ⊂ Rn will be denoted by Vn(A) (and
sometimes called the volume of A) and ∫

A

fdx

stands for the integral of a function f over A, with respect to the Lebesgue measure.



4 ANDREA COLESANTI

A convex body is a compact, convex subset of Rn; the family of convex bodies will be
denoted by Kn. Some notions and constructions regarding convex bodies, directly used
in this paper, are recalled in the appendix. For an exhaustive presentation of the theory of
convex bodies the reader is referred to [56].

3. THE SPACE Ln

3.1. The spaces Cn and Ln. In oder to define the space of log-concave functions, which
we will be working with, in a precise way, we start by the definition of a specific space of
convex functions. The typical convex function u that we will consider, is defined on the
whole space Rn and attains, possibly, the value∞. The domain of u is the set

dom(u) = {x ∈ Rn : u(x) <∞}.

By the convexity of u, dom(u) is a convex set. The function u is proper if its domain is
not empty.

Definition 3.1. We set

Cn =

{
u : R→ Rn ∪ {∞} : u convex and s.t. lim

‖x‖→∞
u(x) =∞

}
and

Ln = e−C
n

=
{
f = e−u : u ∈ Cn

}
.

Clearly in the previous definition we adopt the convention e−∞ = 0. Ln is the space of
log-concave functions which we will be working with. Note that the support of a function
f = e−u ∈ Ln, i.e. the set

sprt(f) = {x ∈ Rn : f(x) > 0}

coincides with dom(u).

Remark 3.2. As an alternative to the previous definition (to avoid the use of convex
functions), one could proceed as follows. A function f : Rn → [0,∞) is said log-
concave if

f((1− t)x0 + tx1) ≥ f(x0)
1−t f(x1)

t, ∀x0, x1 ∈ Rn, ∀ t ∈ [0, 1]

(with the convention: 0α = 0 for every α ≥ 0). Then Ln is the set of all log-concave
functions f such that

lim
‖x‖→∞

f(x) = 0.

There are clearly many examples of functions belonging to Ln. We choose two of them
which are particularly meaningful for our purposes.
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Example 3.3. Let K be a convex body; then IK ∈ Cn. As a consequence the function
e−IK , which is nothing but the characteristic function of K, belongs to Ln.

This simple fact provides a one-to-one correspondence between the family of convex
bodies and a subset of log-concave functions. In other words, Kn can be seen as a subset
of Ln. We will see that this embedding is in perfect harmony with the natural algebraic
structure of Ln and Kn.

Example 3.4. Another prototype of log-concave function is the Gaussian function

f(x) = e−
‖x‖2

2

which clearly belongs to Ln.

Remark 3.5. By convexity and the behavior at infinity, any function u ∈ Cn is bounded
from below. As a consequence

f ∈ Ln ⇒ sup
Rn

f <∞.

3.2. Operations on Ln. We will now define an addition and a multiplication by non-
negative reals on Ln. With these operations Ln becomes a cone (but not a vector space)
of functions, just like the family of convex bodies Kn with respect to the Minkowski
addition and dilations, is a cone of sets. The operations that we are going to introduce are
widely accepted to be the natural ones for Ln. Their construction is not straightforward;
the following stepwise procedure might be of some help for the reader.

Let u and v be in Cn; their infimal convolution, denoted by u�v, is defined as follows

(u�v)(x) = inf
y∈Rn
{u(y) + v(x− y)}.

This operation is thoroughly studied in convex analysis (see for instance the monograph
[52] by Rockafellar, to which we will refer for its properties). As a first fact, we have that
u�v ∈ Cn, i.e. this is an internal operation of Cn (see, for instance, [25, Prop. 2.6]). The
infimal convolution has the following nice geometric interpretation (which can be easily
verified): u�v is the function whose epigraph is the vector sum of the epigraphs of u and
v:

epi(u�v) = {x+ y : x ∈ epi(u), y ∈ epi(v)} = epi(u) + epi(v),

where, for w ∈ Cn

epi(w) = {(x, y) ∈ Rn × R : y ≥ w(x)}.
Naturally associated to � there is a multiplication by positive reals: for u ∈ Cn and α > 0
we set

(α× u)(x) = αu
(x
α

)
.

This definition can be extended to the case α = 0 by setting

0× u = I{0};
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the reason being that I{0} acts as the identity element: I{0}�u = u for every u ∈ Cn. Note
that

u�u = 2× u ∀u ∈ Cn,
as it follows easily from the convexity of u.

We are now ready to define the corresponding operations on Ln.

Definition 3.6. Let f = e−u, g = e−v ∈ Ln and let α, β ≥ 0. We define the function
α · f ⊕ β · g as follows

(α · f ⊕ β · g) = e−(α×u�β×v).

According to the previous definitions, when α, β > 0 we have that1

(1) (α · f ⊕ β · g)(x) = sup
y∈Rn

f

(
x− y
α

)α
g

(
y

β

)β
.

Example 3.7. As an instructive and remarkable example, let us see how these operations
act on characteristic functions of convex bodies. Let K,L ∈ Kn, and α, β ≥ 0. The
Minkowski linear combination of K and L with coefficients α and β is

αK + βL = {αx+ βy : x ∈ K, y ∈ L}.

Te reader may check, as a simple exercise, the following identity

α · χK ⊕ β · χL = χαK+βL.

As Cn is closed with respect to � and × (see [25, Prop. 2.6]), we have the following
result.

Proposition 3.8. Let f, g ∈ Ln and α, β ≥ 0. Then α · f ⊕ β · g ∈ Ln.

3.3. The volume functional. In the parallelism between convex geometry and the theory
of log-concave functions it is important to find the corresponding notion of the volume of
a convex body, in the functional setting. The natural candidate is the L1(Rn)-norm. Given
f ∈ Ln we set

I(f) :=

∫
Rn

f(x)dx.

To prove that this integral is always finite we exploit the following lemma (see Lemma
2.5 in [25]).

Lemma 3.9. Let u ∈ Cn; then there exists a > 0 and b ∈ R such that

u(x) ≥ a‖x‖+ b ∀x ∈ Rn.

1For this reason the sum defined here is sometimes referred to as the Asplund product, see for instance
[3].
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As a consequence, if f = e−u ∈ Ln, we have that

f(x) ≤ Ce−a‖x‖ ∀x ∈ Rn

for some a > 0 and C > 0. This implies that

I(f) <∞ ∀ f ∈ Ln,

i.e.

Ln ⊂ L1(Rn).

We will refer to the quantity I(f) as the integral or the volume functional, evaluated at f .
Note that if K is a convex body and f = χK , then

I(f) = I(χK) =

∫
K

dx = Vn(K).

3.4. p-concave and quasi-concave functions. A one parameter family of sets of func-
tions which includes log-concave functions, is that of p-concave functions, as the param-
eter p ranges in R∪{±∞}. Roughly speaking a function is p-concave if its p-th power is
concave in the usual sense, but the precise definition requires some preparation.

Given p ∈ R ∪ {±∞}, a, b ≥ 0 and t ∈ [0, 1], the p-th mean of a and b, with weights t
and (1− t) is

Mp(a, b; t) := ((1− t)ap + tbp)1/p

if p > 0. For p < 0, we adopt the same definition if a > 0 and b > 0, while if ab = 0 we
simply set Mp(a, b; t) = 0. For p = 0:

M0(a, b; t) := a1−tbt.

Finally, we set

M∞(a, b; t) := max{a, b}, M−∞(a, b; t) := min{a, b}.

A non-negative function f defined on Rn is said to be p-concave if

f((1− t)x+ ty) ≥Mp(f(x), f(y); t) ∀x, y ∈ Rn, ∀ t ∈ [0, 1].

For p = 0, we have the condition of log-concavity; for p = 1, this clearly gives back the
notion of concave functions; for p = −∞, the above conditions identifies the so-called
quasi-concave functions, which can be characterized by the convexity of their super-level
sets.

In the course of this paper we will see that some of the results that we present for
log-concave functions admits a corresponding form for p-concave functions.
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4. DUALITY

The notion of conjugate, or dual, function of a log-concave function that we introduce
here (following, for instance, [3]) is based on the well-known relation of duality in the
realm of convex functions, provided by the Fenchel, or Legendre, transform, that we
briefly recall. Let u be a convex function in Rn; we set

u∗(y) = sup
x∈Rn

(x, y)− u(x), ∀ y ∈ Rn.

Remark 4.1. Being the supremum of linear functions, u∗ is convex. Moreover, unless
u ≡ ∞, u∗(y) > −∞ for every y. If we require additionally that u ∈ Cn (and u 6≡ ∞),
then u∗ is proper (see [25, Lemma 2.5]). On the other hand, u ∈ Cn does not imply, in
general, u∗ ∈ Cn. Indeed, for u = I{0} we have u∗ ≡ 0.

Definition 4.2. For f = e−u ∈ Ln, we set

f ◦ = e−u
∗
.

A more direct characterization of f ◦ is

f ◦(y) = inf
x∈Rn

[
e−(x,y)

f(x)

]
(where the involved quotient has to be intended as ∞ when the denominator vanishes).
Hence f ◦ is a log-concave function (which does not necessarily belong to Ln).

The idempotence relation (that one would expect)

(2) (u∗)∗ = u

has to be handled with care, as it is not always true in Cn. This depends on the fact that the
Fenchel conjugate of a function is always lower semi-continuous (l.s.c., for brevity), while
u needs not to have this property. On the other hand, this is the only possible obstacle for
(2).

Proposition 4.3. Let u ∈ Cn be l.s.c., then (2) holds.

Corollary 4.4. Let f ∈ Ln be upper semi-continuous (u.s.c.). Then

(3) (f ◦)◦ = f.

Examples.
1. Let K be a convex body and IK be its indicatrix function. Then we have

(IK)∗(y) = sup
x∈K

(x, y) =: hK(y) ∀ y ∈ Rn.

Here, following the standard notations, we denoted by hK the support function of the
convex body K (see the appendix).
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2. The Gaussian function is the unique element of Ln which is self-dual:

f = e−
‖x‖2

2 ⇔ f ◦ ≡ f.

Remark 4.5. The Fenchel transform gives another interpretation of the inf-convolution
operation and, consequently, of the addition that we have defined on Ln. Indeed, if u and
v are in Cn and α, β ≥ 0, then:

(α× u� β × v)∗ = αu∗ + βv∗ ⇒ α× u� β × v = (αu∗ + βv∗)∗,

if the function on the left hand-side of the last equalty is l.s.c. (see [25, Prop. 2.1]). Hence,
given f = e−u, g = e−v ∈ Ln (such that α · f ⊕ β · g is u.s.c.) we have

(4) α · f ⊕ β · g = e−(αu
∗+βv∗)∗ .

In other words, the algebraic structure that we have set on Ln coincide with the usual
addition of functions and multiplication by non-negative reals, applied to the conjugates
of the exponents (with sign changed).

4.1. Characterization of duality. In the papers [5] and [6], Arstein-Avidan and Milman
established several powerful characterizations of duality relations in the class of convex
and log-concave functions (as well as in other classes of functions). The space of convex
functions in which they work is slightly different from ours. They denote by Cvx(Rn)
the space of functions u : Rn → R ∪ {±∞}, which are convex and l.s.c. One of their
results is the following characterizations of the Fenchel conjugate, proved in [6].

Theorem 4.6 (Artstein-Avidan, Milman). Let T : Cvx(Rn)→ Cvx(Rn) be such that:
(1) T T u = u for every u ∈ Cvx(Rn);
(2) u ≤ v in Rn implies T (u) ≥ T (v) in Rn.

Then T coincides essentially with the Fenchel conjugate: there existC0 ∈ R, v0 ∈ Rn and
an invertible symmetric linear transformation B of Rn such that for every u ∈ Cvx(Rn),

T (u)(y) = u∗(By + v0) + (x, v0) + C0, ∀y ∈ Rn.

A direct consequence of the previous result, is a characterization of the conjugate that
we have introduced before for log-concave functions. Following the notation of [5] and
[6] we set

LC(Rn) = {f = e−u : u ∈ Cvx(Rn)}.

Theorem 4.7 (Artstein-Avidan, Milman). Let T : LC(Rn)→ LC(Rn) be such that:
(1) T T f = f for every f ∈ LC(Rn);
(2) f ≤ g in Rn implies T (f) ≥ T (g) in Rn.
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Then there exist C0 ∈ R, v0 ∈ Rn and an invertible symmetric linear transformation B of
Rn such that for every f ∈ LC(Rn),

T (f)(y) = C0e
−(v0,x) f ◦(Bx+ v0) ∀y ∈ Rn.

4.2. Geometric log-concave functions and a related duality transform. In the paper
[7] the authors introduce a special subclass ofCvx(Rn), called the class of geometric con-
vex functions, and denoted by Cvx0(Rn). A function u ∈ Cvx(Rn) belongs to Cvx0(Rn)
if

inf
Rn
u = min

Rn
u = u(0) = 0.

Correspondingly, they define the class of geometric log-concave functions as follows:

LCg(Rn) = {f = e−u : u ∈ Cvx0(Rn)}.
Note in particular that if f ∈ LCg(Rn), then

0 ≤ f(1) ≤ 1 = f(0) = max
Rn

f ∀x ∈ Rn.

For u ∈ Cvx0(Rn) the set

u−1(0) = {x : u(x) = 0}
is closed (by semicontinuity), convex and it contains the origin, even if not necessarily as
an interior point. As an extension of the notion of polar set of a convex body having the
origin in its interior (see the appendix), we set

(u−1(0))◦ = {x ∈ Rn : (x, y) ≤ 1 ∀ y ∈ u−1(0)}.
The new duality transform introduced in [7], denoted byA, is defined, for u ∈ Cvx0(Rn),

by

(Au)(x) =


sup

{y :u(y)>0}

(x, y)− 1

u(y)
if x ∈ (u−1(0))◦,

∞ otherwise.
Many interesting properties of this transform are proved in [7]; among them, we men-

tion that A is order reversing and it is an involution, i.e.

(5) A(Au) = u ∀u ∈ Cvx0(Rn).

As in the case of Fenchel transform, these features can be used to characterize this opera-
tor, together with the Fenchel transform itself.

Theorem 4.8 (Artstein-Avidan, Milman). Let n ≥ 2 and T : Cvx0(Rn)→ Cvx0(Rn)
be a transform which is order reversing and is an involution. Then either

T u = (u∗) ◦B ∀u ∈ Cvx0(Rn),

or
T u = C0(Au) ◦B ∀u ∈ Cvx0(Rn),
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where B is an invertible linear transformation of Rn, C0 ∈ R.

As an application, a corresponding characterization result can be derived for the case
of geometric log-concave functions.

5. INEQUALITIES

5.1. The Prékopa-Leindler inequality. Let f, g, h be non-negative measurable func-
tions defined in Rn, and let t be a parameter which ranges in [0, 1]. Assume that the
following condition holds:

(6) f((1− t)x0 + tx1) ≥ g(x0)
1−th(x1)

t ∀x0, x1 ∈ Rn.

In other words, f which is evaluated at the convex linear combination of any two points
is greater than the geometric mean of g and h at those points. Then the integral of f is
greater than the geometric mean of the integrals of g and h:

(7)
∫
Rn

fdx ≥
(∫

Rn

gdx

)1−t(∫
Rn

hdx

)t
.

Inequality (7) is the general form of the Prékopa-Leindler inequality; it was proved in
[43], [49] and [50].

Though the inequality (7) in itself is rather simple, the condition behind it, i.e. (6),
is unusual as it is not a point-wise condition but involves the values of f , g and h at
different points. It will become clearer once it is written using the operations that we have
introduced for log-concave functions. In fact, our next aim is to discover how Prékopa-
Leindler is naturally connected to log-concavity. As a first step in this direction, we
observe that, given g and h, one could rewrite inequality (7) replacing f by the smallest
function with verifies (6). Namely, let

(8) f̄(z) = sup
(1−t)x+ty=z

g1−t(x)ht(y).

Then, if f̄ is measurable2, (7) holds for the triple f̄ , g, h. In view of (1), if g, h ∈ Ln then

f̄ = (1− t) · g ⊕ t · g ∈ Ln.

The second observation concerns equality conditions in (7), in which log-concave func-
tions intervene directly. Note first that if f = g = h (for which we trivially have equality
in (7)), then (6) is equivalent to say that these functions are log-concave. Moreover,
the converse of this claim is basically true, due to the following result proved by Dubuc
(see [28, Theorem 12]). Assume that f , g and h are such that (6) is verified and equal-
ity holds in (7); then there exists a log-concave function F , a vector x0 and constants

2In general the measurability of g and h does not imply that of f . See [34] for more information on this
point.
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c1, c2, α, β ≥ 0 such that:

f(x) = F (x) a.e. in Rn,
g(x) = c1F (αx+ x0) a.e. in Rn,
h(x) = c2F (βx+ x0) a.e. in Rn.

In view of what we have seen so far, we may rephrase (7) in the realm of log-concave
functions in the following way.

Theorem 5.1. Let g, h ∈ Ln and let t ∈ [0, 1]. Then

(9)
∫
Rn

[(1− t) · g ⊕ t · h]dx ≥
(∫

Rn

gdx

)1−t(∫
Rn

hdx

)t
,

i.e.
I((1− t) · g ⊕ t · h) ≥ I(g)t−1 I(h)t.

Moreover, equality holds if and only if g coincide with a multiple of h up to a translation
and a dilation of the coordinates.

Written in this form, the Pŕekopa-Leindler inequality is clearly equivalent to the fol-
lowing statement: the volume functional I is log-concave in the space Ln. This point of
view will be important to derive the infinitesimal form of this inequality. In the sequel we
will refer to the Prékopa-Leindler inequality in the form (9) as to (PL).

We note here an important consequence of (PL), which was emphasized and exploited
in various ways in [17].

Theorem 5.2. Let F = F (x, y) be defined in Rn×Rm, and assume that F is log-concave.
Then the function f : Rn → R defined by

f(x) =

∫
Rm

F (x, y)dy

is log-concave.

The proof is a simple application of (PL).

We conclude this part with some further remarks on the Prékopa-Leindler inequality.

Remark 5.3. One way to look at (PL) is as a reverse form of the Hölder inequality.
Indeed, an equivalent formulation of Hölder inequality is the following: if g and h are
non-negative measurable functions defined on Rn, and t ∈ [0, 1],∫

Rn

g1−thtdx ≤
(∫

Rn

gdx

)1−t (∫
Rn

hdx

)t
.

Prékopa-Leindler inequality asserts that the previous inequality is reversed if the geomet-
ric mean of g and h is replaced by the supremum of their geometric means, in the sense
of (8).
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Remark 5.4. A more general form of (PL) is the Borell-Brascamp-Lieb inequality (see
for instance Section 10 of [34]). This inequality asserts that if f, g, h are non-negative
measurable functions defined on Rn such that for some p ≥ − 1

n
and t ∈ [0, 1]

f((1− t)x+ ty) ≥Mp(g(x), h(y); t) ∀x, y ∈ Rn,

then ∫
Rn

fdx ≥M p
mp+1

(∫
Rn

gdx,

∫
Rn

hdx; t

)
.

Here we have used the definition of p-mean introduced in subsection 3.4.
In the same way as (PL) has a special meaning for log-concave functions, Borell-

Brascamp-Lieb inequality is suited to p-concave functions.

Remark 5.5. Prékopa-Leindler inequality can also be seen as a special case of a very
general class of inequalities proved by Barthe in [9]. One way (even if limiting) of looking
at Barthe’s inequalities is as a multifunctional version of (PL). Barthe’s inequalities are
in turn the reverse form of Brascamp-Lieb inequalities, which have as a simple special
case the Hölder inequality. A neat presentation of these inequalities can be found in [34],
Section 15.

5.2. Proof of the Prékopa-Leindler inequality. For completeness we supply a proof
of the Prékopa-Leindler inequality in its formulation (9), i.e. restricted to log-concave
functions (omitting the characterization of equality conditions).

As preliminary steps, note that if one of the functions g and h is identically zero then
the inequality is trivial. Hence we assume that g 6≡ 0 and h 6≡ 0. Moreover, as it is easy
to check, it is not restrictive to assume

(10) sup
Rn

g = sup
Rn

h = 1

(see also Remark 3.5).
The rest of the proof proceeds by induction on the dimension n. For simplicity we will

set
f = (1− t) · g ⊕ t · h

throughout. For convenience of notations we will in general denote by x, y and z the
variable of f , g and h, respectively.

The case n = 1. Fix s ∈ [0, 1]; by the definition of the operations · and ⊕, we have the
following set inclusion

{x : f(x) ≥ s} ⊃ (1− t){y : g(y) ≥ s}+ t{z : h(z) ≥ s}.
As f , g and h are log-concave, their super-level sets are intervals, and, by the behavior of
these functions at infinity, they are bounded. Note that if if I and J are bounded interval
of the real line we have

V1(I + J) = V1(I) + V1(J)
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(which is the one-dimensional version of the Brunn-Minkowski inequality, in the case of
“convex sets”). Hence

V1({x : f(x) ≥ s}) ≥ (1− t)V1({y : g(y) ≥ s}) + tV1({z : h(z) ≥ s}).

Now we integrate between 0 and 1 and use the layer cake principle∫
R
f dx ≥ (1− t)

∫
R
g dy + t

∫
R
h dz ≥

(∫
R
g dy

)1−t (∫
R
h dz)

)t
where we have used the arithmetic-geometric mean inequality. This concludes the proof
in dimensional one. Note that in this case one obtains (under the assumption (10)) a
stronger inequality, namely the integral of f is greater than the arithmetic mean of those
of g and h.

The case n ≥ 1. Assume that the inequality is true up to dimension (n− 1). Fix ȳn and
z̄n in R, and let x̄n = (1− t)ȳn + tz̄n. Moreover let f̄ , ḡ, h̄ : Rn−1 → R be defined by

f̄(x1, . . . , xn−1) = f(x1, . . . , xn−1, x̄n), ḡ(y1, . . . , yn−1) = g(y1, . . . , yn−1, ȳn),

h̄(z1, . . . , zn−1) = h(z1, . . . , zn−1, z̄n).

As xn is the convex linear combination of yn and zn, and as f = (1 − t) · g ⊕ t · h, we
have that f̄ , ḡ and h̄ verify the assumption of (PL), so that, by induction,

(11)
∫
Rn−1

f̄dx ≥
(∫

Rn−1

ḡdy

)1−t(∫
Rn−1

h̄dz

)t
.

Next define F,G,H : R→ R as

F (x) =

∫
Rn−1

f(x1, . . . , xn−1, x)dx1 . . . dxn−1,

G(y) =

∫
Rn−1

g(y1, . . . , yn−1, y)dy1 . . . dyn−1,

H(z) =

∫
Rn−1

h(z1, . . . , zn−1, z)dz1 . . . dzn−1.

By Theorem 16 these are log-concave functions; moreover (11) is exactly condition (6)
for them. Hence, by induction,∫

R
Fdx ≥

(∫
R
Gdy

)1−t (∫
R
Hdz

)t
,

and this is nothing but the required inequality for f, g, h.

�
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5.3. Prékopa-Leindler and Brunn-Minkowski inequality. One way to understand the
importance of Prékopa-Leindler inequality is to set it in relation to the Brunn-Minkowski
inequality, one of the most important results in convex geometry.

Theorem 5.6 (Brunn-Minkowski inequality). Let K and L be convex bodies and t ∈
[0, 1]. Then

(12) [Vn((1− t)K + tL)]1/n ≥ (1− t)[Vn(K)]1/n + t[Vn(L)]1/n.

In case both K and L have non-empty interior, equality holds if and only if they are
homothetic, i.e. they coincide up to a translation and a rotation.

The article [34] by Gardner contains an exhaustive survey on this result. Here we
only mention that Brunn-Minkowski inequality ((BM) for brevity) is a special case of the
family of Aleksandrov-Fenchel inequalities (see [56]), and that a simple argument leads in
few lines from this inequality to the isoperimetric inequalitiy (restricted to convex bodies):

(13) Vn(K) ≤ c
[
Hn−1(∂K)

]n/(n−1) ∀K ∈ Kn : int(K) 6= ∅.

Here c is a dimensional constant andHn−1 is the (n−1)-dimensional Hausdorff measure.
Moreover equality holds if and only if K is a ball. The argument to deduce (13) from (12)
is rather known and can be found, for instance, in [34].

In what follows we show that (BM) can be easily proved through (PL).

Proof of the Brunn-Minkowsi inequality. Let K, L and t be as in Theorem 5.6. Let

g = χK , h = χL, f = (1− t) · g ⊕ t · h.
As we saw in example 3.7,

f = χ(1−t)K+tL.

By (PL) we get

(14) Vn((1− t)K + tL) ≥ Vn(K)1−t Vn(L)t.

This is usually referred to as the multplicative form of the Brunn-Minkowski inequality.
From that, by exploiting the homogeneity of volume, (BM) in its standard form can be
deduced as follows. Given K, L and t as above, assume that the volumes of K and L are
strictly positive (the general case can be obtained by approximation). Let

K̄ =
1

Vn(K)1/n
K, L̄ =

1

Vn(L)1/n
L,

so that
Vn(K̄) = Vm(L̄) = 1.

We set also

t̄ =
Vn(L)1/n

(1− t)Vn(K)1/n + tVn(L)1/n
t.
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Applying (14) to K̄, L̄ and t̄ leads to

1 ≤ Vn((1− t̄)K̄ + t̄L̄) = Vn

(
1

(1− t)Vn(K)1/n + tVn(L)1/n
(1− t)K + tL

)
.

�

5.4. The infinitesimal form of (PL). Both Prékopa-Leindler and Brunn-Minkowski in-
equalities are concavity inequalities. More precisely, (BM) asserts that the volume func-
tional to the power 1/n is concave on the family of convex bodies Kn, while, according
to (PL), the logarithm of the integral functional I is concave on Ln. The concavity of a
functional F can be expressed by the usual inequality:

F ((1− t)x0 + tx1) ≥ (1− t)F (x0) + tF (x1) ∀x0, x1; ∀ t ∈ [0, 1],

or by its infinitesimal version

(15) D2F (x) ≤ 0 ∀x,
where D2F (x) denotes the second variation of F at x (if it exists, and whatever its mean-
ing can be). The infinitesimal form of the Brunn-Minkowski inequality has been inves-
tigated in [24], where it is shown that (15) provides a class of Poincaré type inequalities
on the unit sphere of Rn. Here we will show that correspondingly, the infinitesimal form
of (PL) is equivalent to a class of (known) inequalities, also of Poincaré type, on Rn,
with respect to log-concave probability measures. These inequalities have been proved
by Brascamp and Lieb in [17].

Theorem 5.7 (Brascamp-Lieb). Let f = e−u ∈ Ln and assume that u ∈ C2(Rn) and
D2u(x) > 0 for every x ∈ Rn. Then for every φ ∈ C1(Rn) such that∫

Rn

φfdx = 0,

the following inequality holds:

(16)
∫
Rn

φ2fdx ≤
∫
Rn

((D2u)−1∇φ,∇φ)fdx.

Remark 5.8. When

u(x) =
‖x‖2

2
,

i.e. f is the Gaussian function, (16) becomes the usual Poincaré inequality in Gauss space:

(17)
∫
Rn

φ2dγn(x) ≤
∫
Rn

‖∇φ‖2dγn(x)

for every φ ∈ C1(Rn) such that

(18)
∫
Rn

φdγn(x) = 0,
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where γn is the standard Gaussian probability measure. Note that (17) is sharp, indeed it
becomes an equality when φ is a linear function. In general, the left-hand side of (16) is a
weighted L2(Rn, µ)-norm of ∇φ (squared), where µ is the measure with density f . Note
however, that (16) admits extremal functions (i.e. for which equality holds) for every
choice of f ; this will be clear from the proof that we present in the sequel.

Proof of Theorem 5.7. We will consider a special type of log-concave functions. Let
u ∈ C2(Rn) ∩ Cn be such that

(19) cIn ≤ D2u(x) ∀x ∈ Rn,

where In is the n × n identity matrix and c > 0. We denote by Cns the space formed by
these functions and set

Lns := e−C
n
s ⊂ Ln.

We set
(Cns )∗ = {u∗ : u ∈ Cns }.

By standard facts from convex analysis (see for instance [52]), if u ∈ Cns then u∗ ∈
C2(Rn); moreover∇u is a diffeomorphism between Rn and itself and

∇u∗ = (∇u)−1;(20)

u∗(y) = ((∇u)−1(y), y)− u((∇u)−1y) ∀ y ∈ Rn;(21)

D2u∗(y) = (D2u((∇u)−1(y)))−1 ∀ y ∈ Rn.(22)

Let f = e−u ∈ Lns ; the functional I is defined by

I(f) =

∫
Rn

f(x)dx.

By the change of variable y = ∇u(x) and by the previous relations we get

I(f) =

∫
Rn

eu
∗(y)−(y,∇u∗(y))det(D2u∗(y))dy.

In other words, I(e−u) can be expressed as an integral functional depending on u∗. Given
v ∈ (Cns )∗ set

J(v) =

∫
Rn

ev(y)−(y,∇v(y))det(D2v(y))dy.

By Remark 4.5, Prékopa-Leindler inequality in its form (9), restricted to Lns , is equiva-
lent to say that

(23) J : (Cns )∗ → R is log-concave

where now log-concavity is with respect to the usual addition of functions in (Cns )∗. The
previous relation is the key step of the proof. We will now determine the second variation
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of ln(J) at v ∈ (Cn)∗. Let ψ ∈ C∞c (Rn) (i.e. ψ ∈ C∞(Rn) and it has compact support).
There exists ε > 0 such that

vs = v + sψ is convex for every s ∈ [−ε, ε].
Set

g(s) = J(vs).

Then ln(g(s)) is concave in [−ε, ε], so that

(24) g(0)g′′(0)− g′2(0) ≤ 0.

After computing g′(0) and g′′(0) and returning to the variable x, inequality (24) will turn
out to be nothing but the Poincaré inequality of Brascamp and Lieb.

For simplicity, from now on we will restrict ourselves to the one-dimensional case, but
the same computation can be done for general dimension (at the price of some additional
technical difficulties, consisting in suitable integration by parts formulas), as shown in
[24] for the case of the Brunn-Minkowski inequality.

So now v and ψ are functions of one real variable; we denote by v′, v′′, ψ′, ψ′′ their first
and second derivatives, respectively. The function g(s) takes the form

g(s) =

∫
R
evs(y)−yv

′
s(y)v′′s (y)dy.

Then
g′(s) =

∫
R
evs(y)−yv

′
s(y)[(ψ(y)− yψ′(y))v′′s (y) + ψ′′(y)]dy.

Note that ∫
R
evs(y)−yv

′
s(y)ψ′′(y)dy =

∫
R
yψ′(y)v′′s (y)dy

after an integration by parts (no boundary term appears as ψ has bounded support). Then

g′(s) =

∫
R
evs(y)−yv

′
s(y)ψ(y)v′′s (y)dy.

Differentiating again (this time at s = 0) we get

g′′(0) =

∫
R
ev(y)−yv

′(y)ψ(y)[(ψ(y)− yψ′(y))v′′(y) + ψ′′(y)]dy

=

∫
R
ev(y)−yv

′(y)[ψ(y)v′′(y)− (ψ′(y))2]dy,

where we have integrated by parts again in the second equality. Now set

φ(x) = ψ(u′(x)).

Note that φ ∈ C∞c (R); moreover, any φ ∈ C∞c (R) can be written in the previous form for
a suitable ψ. We have:

g′(0) =

∫
R
φ(x)f(x)dx,
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and

(25) g′′(0) =

∫
R
φ2(x)f(x)−

∫
R

(φ′(x))2

u′′(x)
dx.

Hence (18) is equivalent to g′(0) = 0. If we now replace (25) in (24) we obtain the desired
inequality.

�

Remark 5.9. There are several other examples of the argument used to derive “differ-
ential” inequalities (i.e. involving the gradient, or derivatives in general) like Poincaré,
Sobolev and log-Sobolev inequalities, starting from Prékopa-Leindler or Brunn-Minkowski
inequality; see for instance: [11], [12], and the more recent paper [13].

5.5. Functional Blaschke-Santaló inequality and its converse. One of the most fasci-
nating open problems in convex geometry is the Mahler conjecture, concerning the opti-
mal lower bound for the so-called volume product of a convex body. If K ∈ Kn and the
origin is an interior point of K, the polar body (with respect to 0) of K is the set

K◦ = {x ∈ Rn : (x, y) ≤ 1 ∀ y ∈ K}.

K◦ is also a convex body. More generally, ifK has non-empty interior and z is an interior
point of K the polar body of K with respect to z is

Kz := (K − z)◦.

It can be proved that there exists an interior point of K, the Santaló point, for which
Vn(Kz) is minimum (see [56]).

Roughly speaking, the polar body of a large set is small and vice versa; this suggests to
consider the following quantity:

P(K) = Vn(K)Vn(Kz),

where z is the Santaló point of K, called the volume product of K. P is invariant un-
der affine transformations of Rn and in particular it does not change if K is dilated (or
shrunk). It is relatively easy to see that it admits a maximum and a minimum as K ranges
in Kn. Then it becomes interesting to find such extremal values and the corresponding
extremizers.

The Blashcke-Santaló inequality asserts that

P(K) ≤ P(Bn) ∀K ∈ Kn,

(we recall that Bn is the unit ball) and equality holds if and only if K is an ellipsoid (see
for instance [56]). On the other hand, the problem of finding the minimum of P is still
open, in dimension n ≥ 3. The Mahler conjecture asserts that

P(K) ≥ P(∆) ∀K ∈ Kn
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where ∆ is a simplex. Correspondingly, in the case of symmetric convex bodies it is
conjectured that

P(K) ≥ P(Q) ∀K ∈ Kn, symmetric
where Q is a cube. The validity of these conjectures has been established in the plane
by Mahler himself, and, in higher dimension, for some special classes of convex bodies;
among them we mention zonoids and unconditional convex bodies. Anyway it would
be impossible to give even a synthetic account of all the contributions and results that
appeared in the last decades in this area. A recent and updated account can be found
in [55]. We mention, as this result has a specific counterpart for log-concave functions,
that the best known lower bound for the volume product of symmetric convex bodies
(asymptotically optimal with respect n as n tends to∞), has been established by Bourgain
and Milman (see [16]):

(26) P(K) ≥ cnP(Q), ∀K ∈ Kn, symmetric,

where c is a constant independent of n. For a recent improvement of the constant c as well
as for different proofs of (26), we again refer the reader to [55] (see in particular Section
8).

Within the framework that we have been describing so far, where results from convex
geometry are systematically transferred to the space of log-concave functions, it is natural
to expect a functional counterpart of the volume product of convex bodies, and related
upper and lower bounds. Given a log-concave function f = e−u ∈ Ln, we have seen that
we can define

f ◦ = e−u
∗

where u∗ is the Fenchel conjugate of u (see Section 4). Hence we are led to introduce the
following quantity

P(f) :=

∫
Rn

fdx

∫
Rn

f ◦dx = I(f) I(f ◦)

as a counterpart of the volume product of a convex body. On the other hand, as suggested
by the case of convex bodies, it could be important to introduce also a parameter z ∈ Rn,
as the center of polarity. Hence, given f ∈ Ln and z ∈ Rn, we set

fz(x) = f(x− z) ∀x ∈ Rn,

and more generally we consider

P(fz) :=

∫
Rn

fzdx

∫
Rn

(fz)
◦dx.

The functional Blaschke-Santaló inequality, i.e. an optimal upper bound for P(fz), was
established in [3] where the authors prove that for every f ∈ Ln (with positive integral),
if we set

z0 =
1

I(f)

∫
Rn

xf(x)dx
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then

(27) P(fz0) ≤ (2π)n

and equality holds if and only if f is (up to a translation of the coordinate system) a
Gaussian function, i.e. is of the form

f(x) = e−(Ax,x)

where A is a positive definite matrix. In the special case of even functions, for which we
have z0 = 0, this result was achieved by Ball in [8]. A different proof (which in particular
does not exploit its geometric counterpart) of the result by Artstein, Klartag and Milman
was given by Lehec in [41]. We also mention that an interesting extension of (27) was
given in [30] (see also [42]).

In a similar way, the reverse Blaschke-Santaló inequality (26) have been extended to
the functional case. In [39] the authors proved that there exists an absolute constant c > 0
(i.e. c does not depend on the dimension n) such that

P(f0) ≥ cn

for every f ∈ Ln even. This result has been improved in various ways in the papers
[32] and [33]. We also mention that in [31] a sharp lower bound for the functional P(f)
have been given for unconditional log-concave functions f (i.e. even with respect to each
coordinate). This corresponds to the solution of the Mahler conjecture in the case of
unconditional convex bodies.

5.6. Functional Rogers-Shephard inequality. Given a convex body K in Rn, its differ-
ence body DK is defined by

DK = K + (−K) = {x+ y : x ∈ K, −y ∈ K}.

DK is a centrally symmetric convex body, and, in a sense, any measurement of how far
is K from DK could serve as a measure of asymmetry of K. The discrepancy between
K and DK can be identified via the volume ratio:

Vn(K)

Vn(DK)
.

If we apply the Brunn-Minkowski inequality to K and −K we immediately get

V (DK) ≥ 2nVn(K).

The celebrated Rogers-Shephard inequality (see [51]) provides a corresponding upper
bound:

(28) Vn(DK) ≤
(

2n

n

)
Vn(K).

Equality holds in the previous inequality if and only if K is a simplex.
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It is natural to wonder whether these facts may find any correspondence for log-concave
functions. This question was studied in [23]. The first step is to define a notion of differ-
ence function of a log-concave function. Let f ∈ Ln; we first set

f̄(x) = f(−x) ∀x ∈ Rn

(clearly f̄ ∈ Ln). Then we define

∆f =
1

2
· f ⊕ 1

2
· f̄ .

In more explicit terms:

∆f(x) = sup

{√
f(y)f(−z) : x =

y + z

2

}
(in fact ∆f corresponds to the difference body rescaled by the factor 1

2
).

To get a lower bound for the integral of the difference function we may use the Prékopa-
Leindler inequality and obtain:

I(∆f) =

∫
Rn

∆fdx ≥
∫
Rn

fdx = I(f).

In [23] the following inequality was proved:

(29)
∫
Rn

∆fdx ≤ 2n
∫
Rn

fdx ∀ f ∈ Ln.

The previous inequality is sharp. One extremizer is the function f defined by

f(x) = f(x1, . . . , xn) =

 e−
∑n

i=1 xi if xi ≥ 0 for every i = 1 . . . , n,

0 otherwise.

All other extremizers can be obtained by the previous function by an affine change of
variable and the multiplication by a positive constant (see [23]).

The results of [23] have been recently extended and complemented in the papers [1] and
[2], where the authors obtain considerable new developments. To describe an example of
their results, given f and g in Ln one may consider

∆(f, g) =
1

2
· f ⊕ 1

2
· ḡ.

In the above mentioned papers, among other results the authors establish optimal upper
bounds for the integral of ∆(f, g), which in the case f = g returns the inequality (29).
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5.7. The functional affine isoperimetric inequality. We conclude this section by men-
tioning yet another inequality for log-concave functions. As we recalled in the introduc-
tion, among the main results that can be proved for log-concave probability measures
there are log-Sobolev type inequalities (we refer the reader to [40] for this type of in-
equalities). In the paper [4] the authors prove a reverse form of the standard log-Sobolev
inequality (in the case of the Lebesgue measure). The proof of this inequality is based on
an important geometric inequality in convex geometry; the affine isoperimetric inequality,
involving the affine surface area. We refer the reader to [56] for this notion.

The research started in [4] is continued in the papers [19], [20], [21] and [22]. In partic-
ular, in these papers several possible functional extensions of the notion of affine surface
area are proposed, along with functional versions of the affine isoperimetric inequality.

6. AREA MEASURES AND MIXED VOLUMES

6.1. The first variation of the total mass functional. Given two convex bodies K and
L, for ε > 0 consider the following perturbation of K: Kε := K + εL. The volume of
Kε, as a function of ε, is a polynomial and hence admits right derivative at ε = 0:

(30) lim
ε→0+

Vn(K + εL)− Vn(K)

ε
=: V (K, . . . ,K︸ ︷︷ ︸

(n− 1)-times

, L) = V (K, . . . ,K, L).

Here we used the standard notations for mixed volumes of convex bodies (see the appen-
dix). The mixed volumes V (K, . . . ,K, L), when K is fixed and L ranges in Kn, can be
computed using the area measure ofK. Indeed, there exists a unique non-negative Radon
measure on Sn−1, called the area measure of K and denoted by Sn−1(K, ·), such that

(31) V (K, . . . ,K, L) =
1

n

∫
Sn−1

hL(x)dSn−1(K, x) ∀L ∈ Kn.

According to (30) we may say that V (K, . . . ,K, L) is the directional derivative of the
volume functional at K along the direction L. Moreover, as support function behaves
linearly with respect to Minkowski addition (see the appendix), (31) tells us that the first
variation of the volume at K is precisely the area measure of K. Note also that if we
choose L to be the unit ball Bn of Rn, then we have (under the assumption that K has
non-empty interior) that the derivative in (30) is the perimeter of K:

V (K, . . . ,K,Bn) = lim
ε→0+

Vn(K + εL)− Vn(K)

ε
= Hn−1(∂K)

whereHn−1 stands for the (n− 1)-dimensional Hausdorff measure.

One could try to follow a similar path to define a notion of area measure of a log-
concave function f , replacing the volume functional by the integral of f ∈ Ln

I(f) =

∫
Rn

f(x)dx.
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Then the idea is to compute the first variation of I and deduce as a consequence a surrogate
of the area measure. More precisely, in view of (30) and (31), the problem of computing
the following limit arises:

(32) δI(f, g) := lim
ε→0+

I(f ⊕ ε · g)− I(f)

ε

where f , g ∈ Ln. Here a first striking difference between the geometric and the functional
setting appears. While the volume of the linear combination of convex bodies is always
polynomial in the coefficients, this is not the case for functions. Indeed (see for instance
[25]) there are examples in which δI(f, g) =∞.

The idea to compute the limit (32) appeared for the first time in the papers [39], [53]
and [54], for a specific choice of the function f (the density of the Gaussian measure),
in order to define a notion of mean width (one of the intrinsic volumes) of log-concave
functions. The computation of the same limit for general f and g was then considered in
[25].

Even if the limit (32) exists (finite of infinite) under the sole assumption I(f) > 0 (see
[25] and [39]), explicit formulas for it (e.g. similar to (31)) have been found only under
quite restrictive assumptions. To give an example of such formulas we rephrase Theorem
4.5 in [25]. This result needs some preparation. First of all we denote by C2

+(Rn) the set
of functions u from C2(Rn) such that D2u > 0 in Rn. Next we define

Cns =

{
u ∈ Cn : u <∞ in Rn,u ∈ C2

+(Rn), lim
|x|→∞

u(x)

|x|
= +∞

}
and

Lns = e−C
n
s = {e−u : u ∈ Cns } ⊂ Ln.

Given f = e−u and g = e−v ∈ Lns , we say that g is an admissible perturbation of f if
there exists a constant c > 0 such that

u∗ − cv∗ is convex in Rn.

This condition can be viewed as the fact the convexity of u∗ controls that of v∗.

Theorem 6.1. Let f = e−u, g = e−v ∈ Lns and assume that g is an admissible perturba-
tion of f . Then δI(f, g) exists, is finite and is given by

(33) δI(f, g) =

∫
Rn

v∗(∇u(x)) f(x) dx.

Using a different point of view, we may consider the measure µ̃f on Rn, with density
f with respect to the Lebesgue measure. Then we define µf as the push-forward of µ̃
through the gradient map ∇u. At this regard note that, as f = e−u ∈ Lns , ∇u is a
diffeomorphism between Rn and itself. Then (33) is equivalent to

(34) δI(f, g) =

∫
Rn

v∗(y) dµf (y) =

∫
Rn

(− ln(g))∗(y) dµf (y).
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Roughly speaking, as the linear structure on Ln is the usual addition and multiplication
by scalars, transferred to the conjugates of the exponents (with minus sign), (34) says that
the measure µf is the first variation of the functional I at the function f ; for this reason
this measure could be interpreted as the area measure of f . Note that this fact can not be
considered to be too general: if we change the assumptions on f (i.e. the fact that f ∈ Lns )
then the expression of δI(f, g) may change significantly (see for instance Theorem 4.6 in
[25]) .

It is interesting to note that the measure µf was studied also by Cordero-Erausquin and
Klartag in [27], with a different perspective.

6.2. Mixed volumes of log-concave functions. As we saw in the previous section, if
we endow Ln with the addition defined in Section 3.2, the total mass functional of linear
combinations of log-concave functions is in general not a polynomial in the coefficients.
This is a clear indication that, within the frame of this linear structure, it is not possible to
define mixed volumes of generic log-concave functions. On the other hand, there exists a
choice of the operations on Ln which permits to define mixed volumes. These facts were
established mainly in the papers [47] and [48] (see also [10] for related results), and here
we briefly describe the main points of this construction.

As we said, we have to abandon for a moment the addition previously defined on Ln
and introduce a new one. Given f , g ∈ Ln we set

(35) (f+̃g)(z) = sup{min{f(x), g(y)} : x+ y = z}.

This apparently intricate definition has in fact a simple geometric interpretation:

{z ∈ Rn : (f+̃g)(z) ≥ t} = {x ∈ Rn : f(x) ≥ t}+ {y ∈ Rn : g(y) ≥ t}

for every t > 0 such that each of the two sets on the right hand-side is non-empty. In
other words, the super-level sets of f+̃g are the Minkowski addition of the corresponding
super-level sets of f and g.

The addition (35) preserves log-concavity (see, for instance, [47]), and then it is an
internal operation of Ln (but it is in fact also natural for quasi-concave functions; see
[10], [47]).

A notion of multiplication by non-negative scalars is naturally associated to the previ-
ous addition: for f ∈ Ln and λ > 0 we define λ̃·f by

(λ̃·f)(x) = f
(x
λ

)
.

In this new frame, the functional I evaluated at linear combinations of log-concave
functions admits a polynomial expansion. More precisely, the following theorem, proved
in [47], provides the definition of mixed volumes of log-concave functions.
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Theorem 6.2. There exists a function V : (Ln)n → R such that, for every m ∈ N,
f1, . . . , fm ∈ Ln and λ1, . . . , λm > 0,

I(λ1̃·f1+̃ . . . +̃λm ·̃fm) =
m∑

i1,...,in=1

λi1 · · ·λin V (fi1 , . . . , fin).

In [47] the authors prove several inequalities for mixed volumes of log-concave (and,
more generally, quasi-concave) functions, including versions of the Bunn-Minkowski and
Alexandrov-Fenchel inequalities.

As in the case of convex bodies, several interesting special cases of mixed volumes can
be enucleated. For instance, if we fix f ∈ Ln and consider, for i ∈ {0, . . . , n},

Vi(f) := V (f, . . . , f︸ ︷︷ ︸
i-times

, IBn , . . . , IBn︸ ︷︷ ︸
(n− i)-times

),

we have a notion which can be regarded as the i-intrinsic volume of f . These quantities
have been studied in [10] and [47].

7. VALUATIONS ON Ln

We start by valuations on convex bodies. A (real-valued) valuation on Kn is a mapping
σ : Kn → R such that

(36) σ(K ∪ L) + σ(K ∩ L) = σ(K) + σ(L) ∀K, L ∈ Kn s.t. K ∪ L ∈ Kn.

The previous relation establishes a finite additivity property of σ. A typical example of
valuation is the volume (i.e. the Lebesgue measure), which, as a measure, is countably
additive and then fulfills (36). Another, simple, example is provided by the Euler charac-
teristic, which is constantly 1 on Kn and then it obviously verifies (36). Note that both
volume and Euler characteristic are also continuous with respect to Hausdorff metric, and
invariant under rigid motions of Rn. Surprisingly, there are other examples of this type;
namely each intrinsic volume Vi, i = 0, . . . , n, (see the appendix for a brief presentation)
is a rigid motion invariant and continuous valuation on Kn.

The celebrated Hadwiger theorem (see [35], [36], [37]), asserts that, conversely, every
rigid motion invariant and continuous valuation can be written as the linear combination
of intrinsic volumes; in particular the vector space of such valuations has finite dimen-
sion n and {V0, . . . , Vn} is a basis of this space. If rigid motion invariance is replaced
by weaker assumption of translation invariance, still the relevant space of valuations pre-
serves a rather strong algebraic structure. It was proved by McMullen (see [45]) that any
translation invariant and continuous valuation σ on Kn can be written as

σ =
n∑
i=0

σi

where σi has the same property of σ and it is i-homogeneous with respect to dilations.
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The results that we have mentioned are two of the milestones in this area and stimulated
a great development of the theory of valuations on convex bodies, which now counts many
ramifications. The reader may find an updated survey on this subject in [56, chapter 6].

The richness of this part of convex geometry recently motivated the start of a parallel
theory of valuations on spaces of functions. Coherently with the theme of this article,
we restrict ourselves to valuations on Ln; the reader may find a survey of the existing
literature on this field of research in [18], [26] and [44].

A mapping µ : Ln → R is called a (real-valued) valuation if

µ(f ∨ g) + µ(f ∧ g) = µ(f) + µ(g), ∀ f, g ∈ Ln s.t. u ∨ g ∈ Ln,

where “∨” and “∧” denote the point-wise maximum and minimum, respectively (note
that the minimum of two functions in Ln is still in Ln). In other words, sets are replaced
by functions and union and intersection are replaced by maximum and minimum. One
reason for this definition is that, when restricted to characteristic functions, it gives back
the ordinary notion of valuation on relevant sets.

Having the picture of valuations on Kn in mind, it becomes interesting to consider
valuations µ on Ln which are:

• invariant with respect to some group G of transformations of Rn:

µ(f ◦ T ) = µ(f) ∀ f ∈ Ln, ∀T ∈ G;

• continuous with respect to some topology τ in Ln:

fi → f as i→∞ w.r.t. τ ⇒ µ(fi)→ µ(f).

The investigation in this area is still at the beginning, and satisfactory characterizations of
valuations with the previous properties are not known. At this regard we report a result
which can be deduced from [18], preceded by some preparatory material.

Let µ be a valuation defined on Ln. For G we chose the group of rigid motions of Rn;
hence we assume that µ is rigid motion invariant.

Next we want to define a continuity property for µ. Note that, while in Kn the choice
of the topology induced by the Hausdforff metric is natural and effective, the situation in
Ln is rather different. For a discussion on this topic we refer the reader to [26, section
4.1]. Here we consider the following notion of continuous valuation on Ln. A sequence
fi, i ∈ N, contained in Ln, is said to converge to f ∈ Ln if:

• fi is increasing with respect to i;
• fi ≤ f in Rn for every i;
• fi converges to f point-wise in the relative interior of the support of f (see the

definition in the appendix).
Given this definition, we say that µ is continuous if

lim
i→∞

µ(fi) = µ(f),
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whenever a sequence fi converges to f in the way specified above. To be able to charac-
terize µ we need two additional properties: µ is increasing, i.e.

f1 ≤ f2 in Rn ⇒ µ(f1) ≤ µ(f2);

and µ is simple, i.e.
f ≡ 0 a.e. in Rn ⇒ µ(f) = 0.

Theorem 7.1. µ is a rigid motion invariant, continuous, increasing and simple valuation
on Ln if and only if there exists a function F : R+ → R+ such that

(37) µ(f) =

∫
Rn

F (f(x))dx,

and, moreover, F is continuous, increasing, vanishes at 0 and verifies the following inte-
grability condition:

(38)
∫ 1

0

(− ln(t))n−1

t
F (t)dt < +∞.

The proof is a direct application of the results proved in [18] for valuations on the space
of convex functions Cn. Indeed, we set µ̄ : Cn → R defined by

µ̄(u) = µ(e−u) ∀u ∈ Cn

µ̄ inherits the features of µ. The valuation property follows immediately from the mono-
tonicity of the exponential function. Rigid motion invariance and monotonicity are straight-
forward (note that µ̄ is decreasing). As for continuity, the reader may check that the con-
vergence that we have introduced in Ln induces precisely the one defined in [18]. The
property of being simple for µ implies that µ̄(u) = 0 for every u ∈ Cn such that u ≡ ∞
a.e. in Rn. Hence we may apply Theorem 1.3 in [18], and deduce the integral representa-
tion (37). The integrability condition (38) follows from (1.5) in [18].

Other type of valuations on Ln can be generated by taking wighed means of intrinsic
volumes of super-level sets. More precisely, let f ∈ Ln. For every t > 0 the set

Lf (t) = cl({x ∈ Rn : f(x) ≥ t})
(where “cl” denotes the closure) is (either empty or) a compact convex set, i.e. a convex
body, by the properties of f . Note that, for every f, g ∈ Ln,

Lf∨g = Lf (t) ∩ Lg(t), Lf∧g = Lf (t) ∪ Lg(t).
Using these relations and the valuation property of intrinsic volumes (see (41)) we easily
get, for an arbitrary i ∈ {0, . . . , n},

Vi(Lf∨g(t)) + Vi(Lf∧g(t)) = Vi(Lf (t)) + Vi(Lg(t)).

In other words, the map Ln → R:

f −→ Vi(Lf (t))
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is a valuation on Ln. More generally we may multiply this function by a non-negative
number depending on t and sum over different values of t (keeping i fixed). The result
will be again a valuation. The most general way to do it is to consider a continuous sum,
that is an integral. In other words, we may take the application:

(39) µ(f) =

∫ ∞
0

Vi(Lf (t))dν(t)

where ν is a Radon measure. These type of valuations have been considered in [18] for
convex functions. In particular, it follows from condition (1.11) in [18] that µ(f) is finite
for every f ∈ Ln if and only if ν verifies the integrability condition

(40)
∫ 1

0

(− ln(t))i

t
dν(t) < +∞.

Moreover, µ is homogeneous with respect to dilations of Rn. More precisely, given f ∈
Ln and λ > 0, define the function fλ as

fλ(x) = f
(x
λ

)
∀x ∈ Rn.

Then

µ(fλ) = λiµ(f) ∀ f ∈ Ln.

By theorem 1.4 in [18] and an argument similar to that used in the proof of theorem 7.1,
we obtain the following result.

Theorem 7.2. A mapping µ : Ln → R is a rigid motion invariant, continuous, monotone
valuation, which is in addition homogeneous of some order α, if and only if α = i ∈
{0, . . . , n}, and µ can be written in the form (39), for some measure ν verifying condition
(40).

Remark 7.3. In the case i = n formulas (37) and (39) are the same via the layer cake
principle.

It would be very interesting to remove part of the assumptions (e.g. monotonicity or
homogeneity) in theorems 7.1 and 7.2 and deduce corresponding characterization results.

APPENDIX A. BASIC NOTIONS OF CONVEX GEOMETRY

This part of the paper contains some notions and constructions of convex geometry
that are directly invoked throughout this paper. Our main reference text on the theory of
convex bodies is the monograph [56].
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A.1. Convex bodies and their dimension. We denote byKn the class of convex bodies,
i.e. compact convex subsets of Rn.

Given a convex body K its dimension is the largest integer k ∈ {0, . . . , n} such that
there exists a k-dimensional hyperplane of Rn containing K. In particular, if K has non-
empty interior then its dimension is n. The relative interior of K is the set of points
x ∈ K such that there exists a k-dimensional ball centered at x included in K, where k is
the dimension of K. If the dimension of K is n then the relative interior coincides with
usual interior.

A.2. Minkowski addition and Hausdorff metric. The Minkowski linear combination
of K,L ∈ Kn with coefficients α, β ≥ 0 is

αK + βL = {x+ y : x ∈ K, y ∈ L}.
It is easy to check that this is still a convex body.

A.3. Support function. The support function of a convex body K is defined as:

hK : Rn → R, hK(x) = sup
y∈K

(x, y).

This is a 1-homogeneous convex function in Rn. Vice versa, to each 1-homogeneous
convex function h we may assign a unique convex body K such that h = hK . Support
functions and Minkowski additions interact in a very simple way; indeed, for every K
and L in Kn and α, β ≥ 0 we have

hαK+βL = αhK + βhL.

A.4. Hausdorff metric. Kn can be naturally equipped with a metric: the Hausdorff met-
ric dH . One way to define dH is as the L∞(Sn−1) distance of support functions, restricted
to the unit sphere:

dH(K,L) = ‖hK − hL‖L∞(Sn−1) = max{|hK(x)− hL(x)| : x ∈ Sn−1}.
Hausdorff metric has many useful properties; in particular we note that Kn is a locally
compact space with respect to dH .

A.5. Intrinsic volumes. An easy way to define intrinsic volumes of convex bodies is
through the Steiner formula. Let K be a convex body and let Bn denote the closed unit
ball of Rn. For ε > 0 the set

K + εBn = {x+ εy : x ∈ K, y ∈ B} = {y ∈ Rn : dist(x,K) ≤ ε}
is called the parallel set of K and denoted by Kε. The Steiner formula asserts that the vol-
ume of Kε is a polynomial in ε. The coefficients of this polynomial are, up to dimensional
constants, the intrinsic volumes V0(K), . . . , Vn(K) of K:

Vn(Kε) =
n∑
i=0

Vi(K)εn−iκn−i.
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Here κj denotes the j-dimensional volume of the unit ball in Rj , for every j ∈ N. Among
the very basic properties of intrinsic volumes, we mention that: V0 is constantly 1 for
every K; Vn is the volume; Vn−1 is (n− 1)-dimensional Hausdorff measure of the bound-
ary (only for those bodies with non-empty interior). Moreover, intrinsic volumes are
continuous with respect to Hausdorff metric, rigid motion invariant, monotone, and ho-
mogeneous with respect to dilations (Vi is i-homogeneous). Finally, each intrinsic volume
is a valuation

(41) Vi(K ∪ L) + Vi(K ∩ L) = Vi(K) + Vi(L)

for every K and L in Kn, such that K ∪ L ∈ Kn. Hadwiger’s theorem claims that every
rigid motion invariant and continuous valuation can be written as the linear combination
of intrinsic volumes.

A.6. Mixed volumes. The Steiner formula is just an example of the polynomiality of
the volume of linear combinations of convex bodies. A more general version of it leads
to the notions of mixed volumes. Let m ∈ N and K1, . . . , Km be convex bodies; given
λ1, . . . , λm ≥ 0, the volume of the convex body λ1K1 + · · · + λmKm is a homogeneous
polynomial of degree n in the variables λi’s, and its coefficients are the mixed volumes of
the involved bodies. The following more precise statement is a part of Theorem 5.16 in
[56]. There exists a function V : (Kn)n → R+, the mixed volume, such that

Vn(λ1K1 + · · ·+ λmKm) =
m∑

i1,...,in=1

λi1 · · ·λinV (Ki1 , . . . , Kin)

for every K1, . . . , Km ∈ Kn and λ1, . . . , λm ≥ 0. Hence a mixed volume is a function of
n convex bodies. Mixed volumes have a number of interesting properties. In particular
they are non-negative, symmetric and continuous; moreover they are linear and monotone
with respect to each entry.

A.7. The polar body. The polar of a convex body K, having the origin as an interior
point, is the set

K◦ = {y : (x, y) ≤ 1 ∀x ∈ K}.
This is again a convex body, with the origin in its interior, and (K◦)◦ = K.
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[1] D. Alonso-Gutierrez, B. González, C. H. Jiménez, R. Villa, Rogers-Shephard inequality for log-
concave functions, preprint (2015).

[2] S. Artstein-Avidan, K. Einhorn, D.Y. Florentin, Y. Ostrover, On Godbersen’s conjecture, Geom. Ded-
icata 178 (2015), 337-350.

[3] S. Artstein-Avidan, B. Klartag, V. Milman, The Santaló point of a function, and a functional form of
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