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We deal with the problem of determining an unknown part of the boundary of an
electrical conductor that is inaccessible for external observation and where a
corrosion process is going on. We obtain estimates of the size of this damaged region
from above and below.
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1. Introduction

We consider an electrical conductor Ω whose boundary is not fully observable, and
denote by Γ the portion of ∂Ω where it is possible to make measurements. The aim
of this paper is to extract information on an unknown subset E contained in ∂Ω \
Γ , where a corrosion process is going on, by performing boundary measurements
on Γ . These problems arise in non-destructive testing of materials and modelling
phenomena of surface corrosion in metals (see [16,23]).

Prescribing a current density g supported on Γ such that g = 0 on ∂Ω \ Γ , we
induce a potential u solution to the problem

∆u = 0 in Ω,

∂u

∂ν
+ γu = g on ∂Ω,

⎫⎬
⎭ (1.1)
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where γ denotes the surface impedance in the form

γ(x) = γ0(x)χΓ + kχE for any x ∈ ∂Ω, (1.2)

where k is a constant whose value is unknown and γ0 ≡ 0 in ∂Ω \ Γ . The case
in which k is replaced by a variable function can be treated similarly with minor
adjustments, while on the remaining portion of the boundary ∂Ω\E the impedance
term γ is fully known.

Our goal is to bound the measure of E by comparing the solution u on the
boundary with the solution u0 of the ‘unperturbed’ problem

∆u0 = 0 in Ω,

∂u0

∂ν
+ γ0u0 = g on ∂Ω,

⎫⎬
⎭ (1.3)

where E = ∅, i.e. is, in principle, completely known. Note that ∂u0/∂ν vanishes
outside Γ .

Specifically, using similar arguments to those developed in the context of the
inverse inclusion problem (see [5] and the references therein), we deduce information
on the size of E by analysing the so-called power gap, defined as

W − W0 =
∫

∂Ω

gu dσ −
∫

∂Ω

gu0 dσ =
∫

Γ

g(u − u0) dσ.

Note that the quantities W and W0 can be computed from the boundary data that
we measure and are meaningful from a physical viewpoint as they represent the
power required to maintain the boundary current g.

The idea of bounding the size of an unknown object D enclosed in a given domain
Ω goes back to Friedman [13]. The key point is to extract as much information as
possible from the boundary measurements available. More precisely, the approach
we follow is that proposed by Alessandrini and Rosset [3] and Kang et al . [15] and
subsequently refined by Alessandrini et al . [4].

The basic aim is to gain information on the hidden boundary by studying the
power gap, which is sensitive to the presence of the defect. In particular, since
such a power gap contains information at the accessible boundary, it is possible
to extend this to the inaccessible part of the boundary in a quantitative manner
and thus obtain information on its size. This procedure follows the lines of simi-
lar problems studied in [3, 15] and later developed in [5, 8, 10–12, 19, 20]. The main
novelty of this paper relies on the evaluation of a defect located on the boundary.
Such a new feature requires an original approach to relate the power gap and the
size of the defect. In order to overcome such a difficulty we find it convenient to
analyse the problem in an abstract Hilbert setting (see § 3). Due to its general char-
acter, this argument can be applied to inverse problems in other practical contexts.
The main technical arguments are based on the use of the three-spheres inequal-
ity and the doubling inequality at the boundary as unique continuation tools that
allow us to extract information on the unknown defect from the interior and the
boundary values of the solution. Another issue that arises in dealing with bound-
ary defects concerns the use of quantitative estimates. With the introduction of a
suitable norm (see remark 2.3) and quantitative estimates of unique continuation
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Size estimates of unknown boundaries with a Robin-type condition 729

(see proposition 4.2), it is possible to obtain the desired bounds on the size of the
corroded part.

The plan of the paper is the following. In § 2 we define our notation and state
the main theorem. In § 3 we present an abstract formulation of our problem that
will be applied in § 4 to prove our main result.

2. Assumptions and main result

For a given vector x = (x1, x2, . . . , xn) in R
n, we write x = (x′, xn), where x′ =

(x1, . . . , xn−1). Moreover, we denote by Br(x) and B′
r(x) the open balls of radius r

centred at x and x′ in R
n, Rn−1, respectively.

Definition 2.1. Let Ω be a bounded domain in R
n. Given k, α with k ∈ N,

0 < α � 1, we say that a portion S of ∂Ω is of class Ck,α with constants r0, M if,
for any P ∈ S, there exists a rigid transformation of coordinates under which we
have P = 0 and

Ω ∩ Br0(0) = {x ∈ Br0(0) : xn > ψ(x′)},

where ψ is a Ck,α function on B′
r0

(0) satisfying

ψ(0) = 0,

∇ψ(0) = 0 when k � 1,

‖ψ‖Ck,α(B′
r0

(0)) � Mr0.

When k = 0 and α = 1, we also say that S is of Lipschitz class with constants r0
and M .

Remark 2.2. We have chosen to normalize all norms in such a way that their
terms are dimensionally homogeneous and coincide with the standard definition
as the dimensional parameter equals 1. For instance, the meaning of the norm
appearing in the previous definition is as follows:

‖ψ‖Ck,α(B′
r0

(0)) =
k∑

i=0

ri
0‖Diψ‖L∞(B′

r0
(0)) + rk+α

0 |Dkψ|α,B′
r0

(0),

where

|Dkψ|α,B′
r0

(0) = sup
x′,y′∈B′

r0
, x′ �=y′

|Dkψ(x′) − Dkψ(y′)|
|x′ − y′|α .

Similarly, we shall set

‖u‖L2(Ω) = r
−n/2
0

( ∫
Ω

u2
)1/2

, (2.1)

‖u‖H1(Ω) = r
−n/2
0

( ∫
Ω

u2 + r2
0

∫
Ω

|∇u|2
)1/2

. (2.2)

Let 〈·, ·〉H−1/2,H1/2 denote the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω)
based on the L2 scalar product. Given the open and connected portion Γ of ∂Ω,
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we introduce the trace space H
1/2
00 (Γ ) as the interpolation space [H1

0 (Γ ), L2(Γ )]1/2
(see [17, ch. 1]). Let us now consider the following space of distributions:

H−1/2(Γ ) = {η ∈ H−1/2(∂Ω) | 〈η, ϕ〉 = 0 ∀ϕ ∈ H
1/2
00 (∂Ω \ Γ̄ )}.

2.1. Assumptions on the domain Ω

Given constants r0, M > 0, we assume that Ω ⊂ R
n, n � 2, and

Ω is of Lipschitz class with constants r0, M. (2.3)

Furthermore, given L > 0, we assume that

|∂Ω| � Lrn−1
0 . (2.4)

In addition, we assume that the portion of the boundary

∂Ω \ Γ is of class C1,1 with constants r0, M. (2.5)

2.2. Assumptions on the surface impedance γ

Given an open and connected subset E of ∂Γ \ Γ̄ and an open and connected
subset Γ0 of Γ , we assume that

γ ∈ L∞(∂Ω). (2.6)

Moreover, for a given constant c0, 0 < c0 � 1, we have that

γ(x) � c0

r0
> 0 on Γ0. (2.7)

Finally, for a given function γ0(x) ∈ L∞(∂Ω) supported on Γ and such that

γ0(x) � c−1
0 /r0, (2.8)

we have that
γ(x) = γ0(x)χΓ + kχE , (2.9)

where k > 0 is an unknown constant such that

0 < k̄0 < kr0 < k̄1 (2.10)

for given constants k̄0 and k̄1.
Here and in the following we shall set

γ(x) =
γ̄(x)
r0

, (2.11)

γ0(x) =
γ̄0(x)

r0
, (2.12)

k =
k̄

r0
. (2.13)
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2.3. Assumptions on the given data g

Given g0 > 0 we assume that

‖g‖H−1/2(Γ ) � g0. (2.14)

Furthermore, given F > 0 we assume that

‖g‖H−1/2(Γ )

‖g‖H−1(Γ )
� F. (2.15)

This ratio (called frequency) takes into account the oscillatory character of the
boundary data. Other choices of norm are possible and we refer the reader to [5]
for a discussion on this topic.

Remark 2.3. We first observe that the standard norm in H1(Ω) and the norm

‖u‖∗ = r
−n/2
0

(
r2
0

∫
Ω

|∇u|2 dx + r0

∫
Γ0

u2 dσ

)1/2

,

are equivalent.
Indeed, we note that, on the one hand, by the standard trace estimate we have

‖u‖H1/2(Γ0) � C‖u‖H1(Ω), (2.16)

where C > 0 is a constant depending only on L and M . The above inequality leads
to

r2
0

∫
Ω

|∇u|2 dx + r0

∫
Γ0

u2 dσ � C

(
r2
0

∫
Ω

|∇u|2 dx +
∫

Ω

u2 dx

)
,

where C > 0 is a constant depending only on L and M .
On the other hand, by the argument in [6, example 3.6], we deduce that

r2
0

∫
Ω

|∇u|2 dx +
∫

Ω

u2 dx � C

(
r2
0

∫
Ω

|∇u|2 dx + r0

∫
Γ0

u2 dσ

)
,

where C > 0 is a constant depending only on L and M .

Again denoting by 〈·, ·〉H−1/2,H1/2 the duality pairing between H−1/2(∂Ω) and
H1/2(∂Ω), with a slight abuse of notation, we shall write

〈g, f〉H−1/2,H1/2 =
∫

∂Ω

gf dσ

for any g ∈ H−1/2(∂Ω) and f ∈ H1/2(∂Ω).

Remark 2.4. By solution to (1.1) we mean a function u ∈ H1(Ω) such that∫
Ω

∇u · ∇v dx +
∫

∂Ω

γ(x)uv dσ =
∫

∂Ω

gv dσ ∀v ∈ H1(Ω).

As a consequence of remark 2.3, we deduce that the existence and uniqueness of the
weak solution to problem (1.1) follow from standard theory on the boundary-value
problem for the Laplace equation and the sign condition (2.7).
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The inverse problem we are addressing is to estimate the size of the corroded part
E of the boundary from a knowledge of Cauchy data {g, u|Γ }. To do this we shall
compare u with the solution u0 of the problem when E = ∅ and γ ≡ γ0. Precisely,
u0 ∈ H1(Ω) is such that

∫
Ω

∇u0 · ∇v dx +
∫

∂Ω

γ0(x)u0v dσ =
∫

∂Ω

gv dσ ∀v ∈ H1(Ω).

As earlier, we denote by W and W0 the power required to maintain the current
density g on ∂Ω when E is and is not present, respectively, namely

W =
∫

∂Ω

gu dσ =
∫

Ω

∇u · ∇u dx +
∫

∂Ω

γu2 dσ,

W0 =
∫

∂Ω

gu0 dσ =
∫

Ω

∇u0 · ∇u0 dx +
∫

∂Ω

γ0u
2
0 dσ.

From now on we shall refer to the following set of quantities as the a priori data:
M , L, k̄0, k̄1, c0, g0, F .

We can now state the main result we want to prove.

Theorem 2.5. Let Ω ⊂ R
n be a bounded domain whose boundary is of class C0,1.

Let γ, γ0 ∈ L∞(∂Ω) defined as above. Then there exist positive constants C1, C2, p >
1 depending only on the a priori data such that

C1r0
n−1 W − W0

W0
� |E| � C2r0

n−1
(

W − W0

W0

)1/p

. (2.17)

3. Abstract formulation

To prove theorem 2.5 we shall make use of techniques developed in the context of
the inverse conductivity problem [5]. The difference from other situations is that
we want to determine a defect in the external boundary of the specimen, whereas
in the other cases the inhomogeneity is fully contained in the domain. To overcome
this difficulty we shall rephrase our argument in an abstract way, disconnecting it
from the physical context.

We denote by H a Hilbert space and by H ′ its dual. Let a1(·, ·) and a0(·, ·) be
two bilinear symmetric forms on H and let F ∈ H ′. By the Lax–Milgram theorem,
there exist u1 and u0 in H such that

aj(uj , v) = 〈F, v〉 ∀v ∈ H, j = 0, 1,

where 〈·, ·〉 denotes the duality pairing between H and H ′.

Lemma 3.1. The following inequalities hold:

J1 := a0(u1 − u0, u1 − u0) − [a1(u0, u0) − a0(u0, u0)] = 〈F, u1 − u0〉, (3.1 a)
J2 := a0(u0 − u1, u0 − u1) − [a0(u1, u1) − a1(u1, u1)] = −〈F, u1 − u0〉, (3.1 b)
J3 := a0(u1, u0) − a1(u1, u0) = 〈F, u1 − u0〉. (3.1 c)
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Proof. Let us verify (3.1 a).

a0(u1 − u0, u1 − u0) − [a1(u0, u0) − a0(u0, u0)]
= a1(u1, u1) − 2a1(u1, u0) + a1(u0, u0) − a1(u0, u0) + a0(u0, u0)
= 〈F, u1〉 − 2〈F, u0〉 + 〈F, u0〉 = 〈F, u1 − u0〉.

Equalities (3.1 b) and (3.1 c) can be obtained similarly.

We now define
G(u) := a1(u, u) − a0(u, u), u ∈ H.

Let us observe that G is a functional depending on the defect. We also define

α(u, v) := 1
4 [G(u + v) − G(u − v)], u, v ∈ H.

Trivially, we have

a1(u, v) = a0(u, v) + α(u, v), u, v ∈ H.

Lemma 3.2. If, for every u ∈ H, either α(u, u) � 0 or α(u, u) � 0, then

|α(u, v)| � |α(u, u)|1/2|α(v, v)|1/2 (3.2)

for every u, v ∈ H.

Proof. If α(u, u) = 0 and α(v, v) = 0, then, assuming α(w, w) � 0 for every w ∈ H,
we would have

0 � α(u + tv, u + tv) = 2tα(u, v) ∀t ∈ R,

which implies α(u, v) = 0 and (3.2) is proved.
If α(u, u) �= 0 or α(v, v) �= 0, then assuming, for instance, α(v, v) > 0, we would

have
0 � α(u + tv, u + tv) = t2α(v, v) + 2tα(u, v) + α(u, u) ∀t ∈ R,

from which
(α(u, v))2 − α(u, u)α(v, v) � 0

and (3.2) follows.
If α(w, w) � 0 for every w ∈ H, the thesis follows by similarly applying the above

argument to −α(·, ·).

Defining
δW = 〈F, u1 − u0〉,

formula (3.1) can be written as

a1(u1 − u0, u1 − u0) − α(u0, u0) = δW, (3.3 a)
a0(u1 − u0, u1 − u0) + α(u1, u1) = −δW, (3.3 b)

α(u0, u1) = δW. (3.3 c)

We now prove estimates for a and α that will be useful for our purposes.
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Proposition 3.3. Let λ0, λ1 ∈ (0, 1] be given. Assume that a0 and a1 satisfy the
following conditions:

λ0‖u‖2 � a0(u, u) � λ−1
0 ‖u‖2 ∀u ∈ H, (3.4 a)

λ1‖u‖2 � a1(u, u) � λ−1
1 ‖u‖2 ∀u ∈ H. (3.4 b)

If α satisfies the condition

0 � α(u, u) � C0a0(u, u) ∀u ∈ H, (3.5)

where C0 is a positive constant, then

|δW | � α(u0, u0) � (1 + C0)|δW |. (3.6)

Conversely, if α satisfies the condition

α(u, u) � 0 ∀u ∈ H, (3.7)

then
C|δW | � −α(u0, u0) � |δW |, (3.8)

where C is a positive constant depending only on λ0 and λ1.

Proof. Let us first consider (3.5). By (3.3 b) we have δW � 0, and by (3.3 a) we
have −α(u0, u0) � δW . Thus,

|δW | � α(u0, u0). (3.9)

Let us now obtain the upper bound for α(u0, u0). Using lemma 3.2 we have

α(u0, u0) � α(u0 − u1, u0 − u1) + α(u1, u1)

+ 2|α(u0 − u1, u0 − u1)|1/2|α(u1, u1)|1/2

� α(u0 − u1, u0 − u1) + α(u1, u1)

+ εα(u0 − u1, u0 − u1) +
α(u1, u1)

ε

� (1 + ε)
[
C0a0(u0 − u1, u0 − u1) +

α(u1, u1)
ε

]

� (1 + C0)|δW |,

where in the last line we have chosen ε = 1/C0. Hence, we get

α(u0, u0) � (1 + C0)|δW |.

Let us now consider (3.7). By (3.3 a) we get δW � 0 and also

|α(u0, u0)| � δW. (3.10)

Let us recover an estimate from below for |α(u0, u0)|. By (3.3 c) we get

δW = α(u0, u1)

� (−α(u0, u0))1/2(−α(u1, u1))1/2

� ε

2
(−α(u1, u1)) +

1
2ε

(−α(u0, u0)). (3.11)
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Also, by (3.3 b), we have

−α(u1, u1) = a0(u1 − u0, u1 − u0) + δW. (3.12)

Moreover, by (3.4 a) and (3.4 b), we have

a0(u1 − u0, u1 − u0) � λ−1
0 λ−1

1 a1(u1 − u0, u1 − u0).

By the above inequality and (3.12) we obtain

−α(u1, u1) � λ−1
0 λ−1

1 a1(u1 − u0, u1 − u0) + δW.

Then, substituting (3.11) and using (3.3 a), we have

δW � ε

2
[Aa1(u1 − u0, u1 − u0) + δW ] +

1
2ε

(−α(u0, u0))

=
ε

2
[A(a1(u1 − u0, u1 − u0) − α(u0, u0)) + Aα(u0, u0) + δW ]

+
1
2ε

(−α(u0, u0))

=
ε

2
(1 + A)δW +

(
1
2ε

− A
ε

2

)
(−α(u0, u0)),

where A := λ−1
0 λ−1

1 . Thus,

(
1 − ε

2
(1 + A)

)
δW � 1 − Aε2

2ε
� |α(u0, u0)|.

If ε <
√

A, we have

(
1

1 − Aε2

)(
2ε

(
1 − ε(1 + A)

2

))
δW � |α(u0, u0)|.

Finally, choosing ε = 1/(1 + A), we get

cδW � |α(u0, u0)|,

where c depends only on λ0 and λ1.

Remark 3.4. In (3.5), condition (3.4) can be weakened by assuming a0(·, ·) and
a1(·, ·) are positive semi-definite. Conversely, in (3.7), it is enough to require that
a0(·, ·) and a1(·, ·) are positive semi-definite, such that

a0(u, u) � C1a1(u, u) ∀u ∈ H,

where C1 is a positive constant.
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4. Proof of the main result

We want to make use of estimates obtained in the previous section to prove our
bounds on the size of E. To do this we define

a1(u, v) =
∫

Ω

∇u · ∇v dx +
∫

Γ

γ0uv dσ + k

∫
E

uv dσ,

a0(u, v) =
∫

Ω

∇u · ∇v dx +
∫

Γ

γ0uv dσ,

α(u, v) = k

∫
E

uv dσ

for u, v ∈ H1(Ω). We immediately obtain

α(u, u) = k

∫
E

u2 dσ � 0, a0(u, u) � a1(u, u), (4.1)

for every u ∈ H1(Ω).

Lemma 4.1. There exists a constant C > 0 depending only on M and L such that∫
∂Ω\Γ

u2 dσ � C

(
r0

∫
Ω

|∇u|2 +
∫

Γ0

u2 dσ

)
(4.2)

for every u ∈ H1(Ω).

Proof. By a standard trace inequality (see [1, ch. 7]) we get

r0

∫
∂Ω\Γ

u2 dσ � C

( ∫
Ω

|u|2 dx + r2
0

∫
Ω

|∇u|2 dx

)
. (4.3)

Moreover, by the equivalence between the norm in H1(Ω) and ‖ · ‖∗ introduced in
remark 2.3, the thesis follows.

The main tools of unique continuation needed in the proof of our main result are
contained in [21, lemma 4.5, theorem 4.6 and corollary 4.7], and for a detailed proof
we refer the reader to [21]. However, for the reader’s convenience and to make this
paper as self-contained as possible, we sketch the proof of our main ingredient of
unique continuation below.

Proposition 4.2 (Ap property on the boundary). Let u0 be a solution to problem
(1.3). Then there exist constants p > 1, A > 0, r̄ > 0 depending only on the a priori
data such that for every x0 ∈ Γ1,2r̄ the following holds:

(
1

|∆r(x0)|

∫
∆r(x0)

|u0|2
)(

1
|∆r(x0)|

∫
∆r(x0)

|u0|−2/(p−1)
)p−1

� A, (4.4)

where Γ1,2r̄ = {x ∈ ∂Ω : dist(x, Γ1) < 2r̄}, Γ1 = ∂Ω\Γ̄ and ∆r(x0) = Γ1,2r̄∩Br(x0)
with 0 < r < r̄.

Proof. We recall that, as our main tool of unique continuation, the following so-
called surface doubling inequality was achieved in [21]: there exists a constant
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K1 > 0 depending only on the a priori data, such that, for any x0 ∈ Γ1,r̄/2 and for
every r ∈ (0, r̄), ∫

∆2r(x0)
u2

0 � K1

∫
∆r(x0)

u2
0 (4.5)

holds. The proof of the latter has two main ingredients. The first is the well-known
stability estimate for the Cauchy problem (see, for example, [22]):

∫
Br/2(x0)∩Ω

|u0|2 � Cr

( ∫
∆r(x0)

u2
0 + r2

∫
∆r(x0)

|∇tu0|2
)1−δ

×
( ∫

∆r(x0)
u2

0 + r2
∫

∆r(x0)
|∇tu0|2 +

∫
Br(x0)∩Ω

|∇u0|2
)δ

,

(4.6)

where ∇t denotes the tangential gradient on ∆r(x0) (more precisely, we have
∇tu0 = ∇u0 − (∇u0 · ν)), and C > 0, 0 < δ < 1 are constants depending only
on the a priori data.

The second main ingredient is the following volume doubling inequality (see [21,
lemma 4.5]): ∫

Bβr(x0)∩Ω

|u0|2 � CβK

∫
Br(x0)∩Ω

|u0|2 (4.7)

for every r, β such that β > 1 and 0 < βr < 2r̄, where C and K are positive
constants depending only on the a priori data. The inequality (4.7) was achieved
in [21] by combining the techniques, introduced in [2], that apply to homogeneous
Neumann boundary conditions, with a suitable change of variable that fits the
problem under the assumption required in [2].

The control on the vanishing rate of the solution on the boundary provided by
inequality (4.5) allowed Sincich [21, corollary 4.7] to obtain the following reverse
Hölder inequality:

(
r−2

∫
∆r(x0)

u2
0

)1/4

�
(

Cr−2
∫

∆r(x0)
u2

0

)1/2

, (4.8)

which in turn, combined with the powerful theory of Muckenhoupt weights (see [9]),
leads to the desired integrability property for |u0|−1 in (4.4).

Proof of theorem 2.5. By lemma 4.1, there exists a positive constant C1, depending
on M , L, c0, such that

0 � α(u, u) � C1a0(u, u) ∀u ∈ H1(Ω).

By the above inequality and by proposition 3.3, we have

|δW | � k

∫
E

u2
0 dσ � (1 + C1)|δW |, (4.9)

where δW =
∫

∂Ω
gu0. The leftmost inequality and standard bounds on the Neu-

mann problem solution lead to the following inequality:

|δW | � |E|k‖u0‖2
L∞(E).
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Moreover, by a uniform boundedness-type estimate (see [14, ch. 8]) we have that

|δW | � Ck̄r−1
0 |E|‖u0‖2

H1(Ω),

where C depends on the a priori data only. By remark 2.3 we also have that

|δW | � Ck̄|E|r−n−1
0

(
r0

∫
Γ0

u2
0 + r2

0

∫
Ω

|∇u0|2
)

.

Moreover, by the lower bound in (2.3) we deduce that

|δW | � Ck̄|E|r1−n
0 max{c−1

0 , 1}
( ∫

Γ0

γ0u
2
0 +

∫
Ω

|∇u0|2
)

� Ck̄|E|r1−n
0 max{c−1

0 , 1}
( ∫

∂Ω

γu2
0 +

∫
Ω

|∇u0|2
)

.

Finally, by the weak formulation for u0 (see remark 2.4) we have that

|δW | � Ck̄|E|r1−n
0 max{c−1

0 , 1}
( ∫

∂Ω

gu0 dσ

)
.

Let us consider now the upper bound for E. First, we have to cover properly the
unknown part of the boundary (we refer the reader to [8] for a similar construction).
Let r be such that

r =
1
4

min
{

r0

8
√

n
,

r0

2
√

nM

}
(4.10)

and define
Γ r

1 = {x ∈ Ω : dist(x, Γ1) < r}, (4.11)

where Γ1 = ∂Ω \ Γ̄ .
Let {Qj}J

j=1 be a family of closed mutually internally disjoint cubes of size 2r
such that

Γ r
1 ∩ Qj �= ∅, j = 1, . . . , J, (4.12)

Γ r
1 ⊂

J⋃
j=1

Qj . (4.13)

Let xj ∈ Γ r
1 ∩ Qj , j = 1, . . . , J . We have that

Γ r
1 ⊂

J⋃
j=1

B4
√

nr(xj).

Indeed, for x ∈ Γ r
1 , there exists x̄ ∈ Γ1 such that dist(x, x̄) < 2

√
nr. Let j be such

that x̄ ∈ Qj . Since |x̄ − xj | � 2
√

nr, we have

|x − xj | � |x − x̄| + |x̄ − xj | � 4
√

nr,

which implies x ∈ B4
√

nr(xj). Making use of the construction argument in [8, propo-
sition 5.2] we can infer that there exists a constant C > 0 depending only on M
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and L such that
J⋃

j=1

Qj ⊂ {x ∈ R
n : dist(x, Γ1) � 4

√
nr} and J � C, (4.14)

where C > 0 is a constant depending only on M and L. By the Hölder inequality,
(3.6) and (4.3) we have

|E| =
∫

E

|u0|−2/p|u0|2/p

�
( ∫

E

|u0|−2/(p−1)
)(p−1)/p( ∫

E

|u0|2
)1/p

�
( ∫

Γ1

|u0|−2/(p−1)
)(p−1)/p

((1 + C0)|δW |)1/p, (4.15)

where C depends only on M , L and c0. Now,∫
Γ1

|u0|−2/(p−1) �
∫

Γ1∩(
⋃J

j=1 B4
√

nr(xj))
|u0|−2/(p−1)

�
J∑

j=1

∫
∆j

|u0|−2/(p−1)

�
J∑

j=1

Lrn−1
0

|∆j |

∫
∆j

|u0|−2/(p−1), (4.16)

where ∆j = B4
√

nr(xj) ∩ Γ1. By proposition 4.2, we have that

1
|∆j |

∫
∆j

|u0|−2/(p−1) �
(

A

(1/|∆j |)
∫
∆j

|u0|2

)1/(p−1)

, (4.17)

where A is a constant depending only on M , L, c0 and F . Let us assume that the
index j̄, 1 � j̄ � J , is such that

1
|∆j̄ |

∫
∆j̄

|u0|2 = min
1�j�J

1
|∆j |

∫
∆j

|u0|2. (4.18)

By combining (4.15), (4.16) and (4.18), we have that

|E| �
(

JLrn−1
0

(
A

(1/|∆j̄ |)
∫
∆j̄

|u0|2

)1/(p−1))(p−1)/p

((1 + C0)|δW |)1/p. (4.19)

By the a priori bound |∂Ω| � Lrn−1
0 , we easily get that

1
|∆j̄ |

∫
∆j̄

|u0|2 � 1
Lrn−1

0

∫
∆j̄

|u0|2. (4.20)

By (4.5) and by a standard trace inequality we can infer that∫
∆j̄(xj)

|u0|2 � Cr−1
0

∫
B2

√
nr(xj)∩Ω

|u0|2, (4.21)
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where C > 0 is a constant depending only on k̄0, k̄1, M , L and F . Let x̄ ∈
B2

√
nr(xj) ∩ Ω be such that B√

nr/4(x̄) ⊂ B2
√

nr(xj) ∩ Ω. Hence, we get
∫

∆j̄(xj)
|u0|2 � Cr−1

0

∫
B√

nr/4(x̄)
|u0|2. (4.22)

Now, using the arguments developed in [18, proposition 3.1] (see also [7, lemma 5.3]),
relying on a standard propagation of smallness, we get∫

B√
nr/4(x̄)

|u0|2 � C

∫
Ω

|u0|2, (4.23)

where C > 0 is a constant depending only on M , L, k̄0, k̄1 and F . Hence, combining
(4.20), (4.22) and (4.23), it easily follows that

1
|∆j̄ |

∫
∆j̄

|u0|2 � Cr−n
0

∫
Ω

|u0|2, (4.24)

where C > 0 is a constant depending only on M , L, k̄0, k̄1 and F . By the estimate
(4.22) and the Caccioppoli inequality we get that

∫
∆j̄

|u0|2 � Cr0

∫
B√

nr/8(x̄)
|∇u0|2, (4.25)

where C > 0 is a constant depending only on M , L, k̄0, k̄1 and F . Repeating the
propagation of smallness techniques described in [18, proposition 3.1], this time for
the gradient, we get that

1
|∆j̄ |

∫
∆j̄

|u0|2 � Cr2−n
0

∫
Ω

|∇u0|2, (4.26)

where C > 0 is a constant depending only on M , L, k̄0, k̄1 and F . We can then
infer that

1
|∆j̄ |

∫
∆j̄

|u0|2 � C

(
r−n
0

∫
Ω

|u0|2 + r2−n
0

∫
Ω

|∇u0|2
)

, (4.27)

where C > 0 is a constant depending only on M , L, k̄0, k̄1 and F . By the equivalence
between the standard H1(Ω) norm and the norm introduced in remark 2.3 we find
that

1
|∆j̄ |

∫
∆j̄

|u0|2 � Cr−n
0

(
r0

∫
Γ0

|u0|2 + r2
0

∫
Ω

|∇u0|2
)

, (4.28)

where C > 0 is a constant depending only on M , L, k̄0, k̄1 and F . Now, by the
a priori bound γ0(x) � c−1

0 /r0 on Γ , we get that

1
|∆j̄ |

∫
∆j̄

|u0|2 � Cr2−n
0 min{1, c0}

( ∫
Γ0

γ0|u0|2 +
∫

Ω

|∇u0|2
)

� Cr2−n
0 min{1, c0}

∫
∂Ω

gu0. (4.29)
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Combining (4.14), (4.19) and (4.29) and recalling that
∫

∂Ω
gu0 = W0, we obtain

that

|E| � Crn−1
0

(
W − W0

W0

)1/p

, (4.30)

where C > 0 is a constant depending only on M , L, k̄0, k̄1, F and c0.
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