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Abstract We consider group-based anonymized tables, a popular approach to data
publishing. This approach aims at protecting privacy of the involved individuals, by
releasing an obfuscated version of the original data, where the exact correspondence
between individuals and attribute values is hidden. When publishing data about in-
dividuals, one must typically balance the learner’s utility against the risk posed by
an attacker, potentially targeting individuals in the dataset. Accordingly, we pro-
pose a MCMC based methodology to learn the population parameters from a given
anonymized table and to analyze the risk for any individual in the dataset to be
linked to a specific sensitive value when the attacker has got to know the individ-
ual’s nonsensitive attributes. We call this relative risk analysis. Finally, we illustrate
results obtained by the proposed methodology on a real dataset.
Abstract Nel lavoro consideriamo tabelle anonimizzate realizzate per rendere
disponibili informazioni sulla popolazione, nascondendo però l’attribuzione dei
dati sensibili ai singoli rispondenti. Si valuta l’informazione sulla popolazione che
rimane disponibile e il rischio di violare i la privacy dei rispondenti, fornendo di-
verse forme di apprendimento e di valutazione. Vengono riportati i risultati di un
esperimento condotto su un dataset reale.
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Table 1 A table (left) anonymized according to Local recoding (center) and Anatomy (right).

ID Nat. ZIP Dis.
1 Malaysia 45501 Heart
2 Japan 45502 Flu
3 Japan 55503 Flu
4 Japan 55504 Stomach
5 China 66601 HIV
6 Japan 66601 Diabetes
7 India 77701 Flu
8 Malaysia 77701 Heart

Original table

ID Nat. ZIP Dis.
1 {M,J} 4550* Heart
2 {M,J} 4550* Flu
3 Japan 5550* Flu
4 Japan 5550* Stomach
5 {C,J} 66601 HIV
6 {C,J} 66601 Diabetes
7 {I,M} 77701 Flu
8 {I,M} 77701 Heart

Local recoding

GID Nat. ZIP Dis.
1 Japan 45502 Heart
1 Malaysia 45501 Flu
2 Japan 55504 Flu
2 Japan 55503 Stomach
3 Japan 66601 HIV
3 China 66601 Diabetes
4 Malaysia 77701 Flu
4 India 77701 Heart

Anatomy

1 Introduction

It is a common practice to release datasets involving individuals in some
anonymized form. The goal is to enable the computation of population character-
istics with reasonable accuracy, at the same time preventing leakage of sensitive
information about individuals in the dataset. We are interested in group-based tech-
niques, put forward in Computer Science in the last 15 years or so: k-anonimity
[5] and its variants, like �-diversity [2], and Anatomy [8]. Despite their weakness
against attackers with strong background knowledge, these techniques are a com-
mon choice when it comes to table publishing [3]. In group-based methods, the
anonymized or obfuscated version of a table is obtained by partitioning records in
groups enjoying certain properties (see Section 2). Generally speaking, even know-
ing that an individual belongs to a group of the anonymized table, it will not be
possible for an attacker to link an individual to a specific sensitive value in the
group. Two examples of group based anonymization are in Table 1, adapted from
[7]. The original table collects medical data from eight individuals; here Disease
is considered as the only sensitive attribute. The central table is a 2-anonymous ta-
ble, obtained by local recoding: within each group, the nonsensitive attributes are
generalized so as to make them indistinguishable. This is an example of horizontal
scheme. Generally speaking, each group in a k-anonymous table consists of at least
k records, which are indistinguishable as far as the nonsensitive part is concerned.
Finally there is an example of application of Anatomy: within each group, the non-
sensitive part of the rows are vertically randomly permuted, thus breaking the link
between sensitive and nonsensitive values.

We put forward a probabilistic model to reason about the relative risk posed by
the release of anonymized datasets (Section 2), i.e. the leakage of sensitive informa-
tion for an individual in the table, beyond what is implied for the general population.
To see what is at stake here, consider the central table of Fig. 1. An adversary may
reason that, with the exception of the first group, a Japanese is never connected to
Heart Disease. This hint can become a strong evidence in a larger, real-world table.
Suppose now that the attacker’s target, a Malaysian living at ZIP code 4550*, is
known to belong to the table, so he must be in the first group. On the basis of the
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evidence about Japanese not suffering from Heart Disease, the attacker can then link
with high probability his target to Heart Disease. Here, the attacker combines knowl-
edge learned from the anonymized table and about his victim with the group struc-
ture of the table itself. To formally reason about this phenomenon, we will define
the relative privacy risks by comparing two conditional probability distributions, en-
coding respectively: what can be learned about the population from the anonymized
table; and what can be learned about a the victim, given knowledge of her/his non-
sensitive attributes and presence in the table (Sections 3). Generalizing Kifer [1]
and Wong et al. [7], we propose a MCMC to learn both the parameter’s population
and the attacker’s probability distribution from the anonymized data (Section 4). We
finally illustrate the results of an experiment on a real-world dataset (Section 5).

2 Group based anonymization schemes and the probabilistic
model

Given a dataset of N individuals, let R and S , ranged over by r and s, be finite
nonempty sets of nonsensitive and sensitive values. A row is a pair (s,r) ∈ S ×R.

In a group based scheme a cleartext table is an arrangement of a multiset of N
rows, say d = (s1,r1), ...,(sN ,rN), into a sequence of groups, t = g1, ...,gk, where
each group is a sequence g j = (s j1 ,r j1), ...,(s jn j

,r jn j
). Given a generic group g, its

obfuscation is a pair g∗ = (l,m), where m = s1,s2, ... is the sequence of sensitive
values occurring in g, and l, called generalized nonsensitive value, is:

• a superset of g’s nonsensitive values for horizontal schemes (e.g. k-anonymity);
• the multiset of g’s nonsensitive values {|r1,r2, ... |}, for vertical schemes.

Given a table t = g1, ...,gk, an obfuscated table is a t∗ = g∗1, ...,g
∗
k , such that each

g∗j is an obfuscation of the corresponding group g j. An anonymization algorithm A
is a – possibly probabilistic – mechanism that maps collections of N rows, d, into
obfuscated tables, t∗.

Our model consists of the following random variables with the associated mean-
ing.

• Π , taking values in the set of full support probability distributions D over S ×
R: the (unknown) joint probability distribution of the population.

• T = G1, ...,Gk, taking values in the set of tables. Each group G j is in turn a
sequence of n j consecutive rows in T , G j = (S j1 ,R j1), ...,(S j1+n j ,R j1+n j); the
number k of groups is not fixed, but depends itself on the rows S j,R j;

• T ∗ = G∗
1, ...,G

∗
k , taking values in the set of obfuscated tables.

We assume that the above three random variables form a Markov chain Π −→
T −→ T ∗. In other words, the joint probability density f of these variables can be
factorized as:

f (π, t, t∗) = f (π) f (t|π) f (t∗|t) . (1)
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We also assume the following.

• π ∈ D is encoded as a pair of (πS,πR|S) such that f (s,r|π) ∝ f (s|πS) f (r|πr|s).
Here, each πS is a distribution over S , and each πR|S is viewed as a collection
of distributions over R, πR|S = (πR|s)s∈S . We posit that the πS and the πR|ss are
chosen independently, according to Dirichlet distributions of hyperparameters
α = (α1, ...,α|S |) and β s = (β s

1 , ...,β
s
|R|), respectively. In other words

f (π) = Dir(πS |α) · ∏
s∈S

Dir(πR|s |β s) . (2)

• The N individual rows composing the table t, (s1,r1), ...,(sN ,rN) are assumed to
be drawn i.i.d. conditionally to Π . This amounts to positing that:

f (t|π) ∝ f (s1,r1|π) · · · f (sN ,rN |π) . (3)

3 The honest learner, the attacker and measures of relative risk

A honest learner is someone who, after observing T ∗ = t∗, updates his knowledge
on the population parameters π . In addition an attacker also knows the nonsensitive
value rv of a victim in T . In what follows we shall fix once and for all t∗ and rv such
that f (rv, t∗)

�
= f (rv occurs in T , T ∗ = t∗)> 0. Let pL(s,r) be the joint probability

distribution on the population that can be learned given from t∗. Formally, for each
(s,r)

pL(s,r|t∗) �
= Eπ∼ f (π|t∗)[ f (s,r|π)] =

∫

π∈D
f (s,r|π) f (π|t∗) dπ . (4)

Of course, we can condition pL on any given r so also the victim’s nonsensitive
attribute rv and obtain the corresponding distribution on S .

pL(s|rv, t∗)
�
= Eπ∼ f (π|t∗)[ f (s|rv,π)] =

∫

π∈D
f (s|rv,π) f (π|t∗) dπ . (5)

Given knowledge of rv and knowledge that the victim is in T , we can define
the attacker’s distribution on S as follows. Let us introduce a random variable V ,
identifying the victim as one of the individuals in T . In other words, V is is an index,
which we posit is a priori uniformly distributed on 1..N, and independent from Π ,T .
Recalling that each row (S j,R j) is identified by a unique index j, we can define the
attacker’s probability distribution on S , after seeing t∗ and rv, as:

pA(s|rv, t∗)
�
= f (SV = s | RV = rv, t∗) . (6)

Theorem 1 provides pA(s|rv, t∗) only based on the marginals R j given t∗.

Theorem 1. Let T = (S j,R j) j∈1..N and s j the sensitive value in the row j of t∗. Then
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pA(s|rv, t∗) ∝ ∑
j :s j=s

f (R j = rv | t∗) . (7)

We now define some measures of relative privacy risk to be put at work in Section
5.

Definition 1 (risk measures). Let p a full support distribution on S and (s,r) a row
in t. We say this row is at risk under p if p(s) = maxs� p(s�), and that its risk level
under p is p(s). For an individual row (s,r) in t, which is at risk under pA(·|r, t∗), its

relative risk level is R(s,r, t, t∗) �
= pA(s|r,t∗)

pL(s|r,t∗) . For � ∈ {L,A}, let us define (using the

multiset notation {| · · · |}) N�(t, t∗)
�
= |{|(s,r)∈ t : (s,r) is at risk under p�(·|r, t∗) |}|.

The global relative risk of t given t∗ is: GR(t, t∗) �
= max

{
0, NA(t,t∗)−NL(t,t∗)

N

}
.

4 Gibbs sampling

For real world datasets, none of the distributions (4), (5) or (7) will be computable
analytically. Nonetheless, we can build accurate estimations of these distributions
from samples of the marginals of the density f (π, t|t∗), with t = g1, ...,gk (note
that here the sensitive values si are actually fixed and known from t∗). This can done
using a Gibbs sampler, provided we can effectively sample from the full conditionals
of π and g j, for 1 ≤ j ≤ N. This is discussed below.

The Gibb’s chain state sequence (π i, ti), i = 0,1, ..., is defined in the usual way,
starting from an initial state x0 = (π0, t0) and sampling in turn π i and each of the
groups of ti = gi

1, ...,g
i
k separately, from the respective full conditionals. From equa-

tions (1), (2) and (3), it is easy to check that:

f (π|t, t∗) = f (π|t) (8)

f (g j|t− j,π, t∗) ∝ f (g j|π) f (g∗j |t) (1 ≤ j ≤ k). (9)

Each of the above two relations enables sampling from the corresponding full
conditional on the left-hand side. Indeed, (8) is a posterior Dirichlet distribu-
tion, from which effective sampling can be easily performed. Denote by γγγ(t) =
(γ1, ...,γ|S |) the vector of the frequency counts γi of each si in t. Similarly, given
s, denote by δδδ s(t) = (δ s

1 , ...,δ
s
|R|) the vector of the frequency counts δ s

i of the pairs
(ri,s), for each ri, in t. Then, for each π = (πS,πR|S), we have

f (π|t) = Dir(πS |ααα +γγγ(t)) · ∏
s∈S

Dir(πR|s | βββ s +δδδ s(t)) .

Let us discuss now (9). Here we will confine ourselves to the important case when
the following conditions are satisfied: (a) the obfuscation function is deterministic,
so that f (g∗j |t) equals 0 or 1; (b) the set G j of the g j’s such that f (g∗j |g j, t− j) = 1
depends solely on g∗j = (l j,m j), and is given by

G j =

{ {g = (s1,r1), ...,(sn,rn) : r� ∈ l j for 1 ≤ �≤ n } (horizontal schemes)
{g = (s1,ri1 ), ...,(sn,rin ) : for ri1 , ...,rin a permutation of m j } (vertical schemes).

(10)
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This assumption is exact in many important cases (e.g. Anatomy) and reasonable
in the remaining ones. Under assumptions (a), (b) and (10) above, sampling from
(9) amounts to drawing an element g j ∈ G j with probability ∝ f (g j|π). This can be
achieved via different techniques in each of the two cases of interest, horizontal and
vertical; the details are omitted here due to lack of space.

5 Experiments

We have put a proof-of-concept implementation of our methodology at work on
a subset of the Adult dataset from the UCI machine learning repository [6]. The
considered subset consists of 5692 rows, with the following categorical attributes:
sex, race, marital status, education, native country, workclass, salary class, occu-
pation, with occupation considered as the only sensitive attribute. Using the ARX
anonymization tool [3], we have obtained three different anonymized versions of
the considered dataset, enjoying k-anonymity for, respectively: k = 4, k = 5 and
k = 10. The average size of the groups varied from 38 rows (for k = 4) to 355 rows
(for k = 10). We run the Gibbs sampler on each of these three anonymized datasets.
We obtained the following figures for the global relative risks (cf. Def. 1) of the
three datasets: GR1 = 3.98%, GR2 = 1.7% and GR3 = 1.86%. In absolute terms,
the fraction of rows of t∗ correctly classified by the attacker ranged from 27.3% to
29.4%. The maximal relative risk level R ranged from about 1.9 to 3.93.

All in all, these results indicate that, in each case the considered anonymized
datasets imply a significant relative privacy risk, for an appreciable fraction of the
rows.
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