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Abstract 

An emerging need in the management of wastewater treatment plants (WWTPs) is 

the availability of efficient fault detection (FD) methods to maximize the performance 

of the process instrumentation. 

This thesis presents a critical appraisal of several differing approaches to the design 

and testing of FD algorithms to monitor the instrumentation used in the alternate 

aerobic/anoxic cycles (AC) process for nitrogen removal. In this scheme, the nitrogen 

removal is achieved by intermittently switching the aeration on and off, thus enabling 

the ammonia oxidation in the “on” phase and reducing the oxidized nitrogen in the “off” 

phase, provided that enough organic carbon is available. 

The first part of the thesis is devoted to the definition of faults and their 

parametrization based on simple process indicators. Several factors were selected at the 

basis of the diagnosis, involving the slope and the timing of the process measurements 

of the various nitrogen species. Then the faults were classified according to their impact 

on the process. Gross faults, involving total sensor failure, were then separated from 

more subtle malfunctions, like drift and process anomalies. Two distinct detection 

algorithms were developed, separating the anoxic and the aerobic phases. Though the 

two parts require a separate tuning, both share the same principles: first some low-level 

checks are performed on the raw signals, in order to discriminate malfunctions like 

missing data, spikes, anomalous constant measurements and irregular duration of the 

phases. More sophisticated methods have then been developed to investigate the 

presence of anomalies that were not detected by the previous screening. 

The fault detection problem has thus been treated either in terms of classification 

problem, testing different algorithms based on classification techniques such as binary 

trees, support vector machines (SVM) and principal component analysis (PCA), or as a 

forecasting problem, using an approach based on the Bayesian theory to predict the 

faulty or normal state of the process based on the previous records. 

In the PCA-based algorithm, the classification method was improved with respect to 

the normal statistical indicators, like the Hotelling’s T2, by introducing variable fault 

thresholds and a moving window to keep track of the normal variability of WWTP 

operation due to seasonality, varying loading conditions, etc. 

In the beginning, operational data obtained from a municipal plant were used to train 

the algorithm. However, the information which could be extracted from this dataset was 

fairly limited, so in order to set-up a more comprehensive data set an AC model was 

developed starting with the standard Benchmark simulation model with improved 
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nitrogen kinetics and seasonal temperature variations. Detailed sensor models were also 

included, so that the occurrence of faults could be totally controlled, both in kind and 

timing, reproducing the anomalies observed in the operational data. 

The performance of the various methods was then assessed comparing the anomalies 

detected by the algorithm with those actually observed, either in case of actual 

operational data, or produced by the simulation model. While the great majority of the 

gross failures were successfully detected by the preliminary screening, differing 

performances of the subsequent algorithm were obtained, depending on both the data 

set and the detection method. 

A poor detection performance was observed using the operational data, in part due 

to an insufficient characterization of the fault events and in part to the limited number 

of signals available. It was observed, instead, that the higher availability of 

measurements provided by the numerical model enhances the discrimination 

capabilities of the tested methods, especially for on the cubic kernel SVM, while the 

moving window PCA (MWPCA) approach and especially the Bayesian predictor, 

although less effective, results less affected by a change in the combination of diagnostic 

parameters used. 

Apart from the numerical analysis on both the operational and simulation data, the 

MWPCA method, first developed in Matlab environment, was then ported in LabVIEW 

and tested on the alternate aerobic/anaerobic nitrogen removal tanks of the municipal 

wastewater treatment plant of Mantua, Italy. 
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Chapter 1 Introduction 

1.1 Problem statement 

Despite the promising theoretical and experimental results in the research field 

management and control of wastewater treatment (WWT), the methods proposed in 

literature are usually difficult to deploy on a real plant and therefore rarely employed in 

practice. Low reliability of sensors and actuators are often indicated as significant 

barriers between results in obtained in the research and development stages and the 

industrial practice. In addition, the biological processes such as the wastewater 

treatments present some characteristics which impedes a straightforward use of simple 

and non-adaptive control techniques. Some key aspects of WWTs must be considered: 

first of all, these biological processes are characterized by the simultaneous occurrence 

of several chemical, biochemical and physical processes characterized by complex 

causal relationships. On the other hand, however, it should be noted that the biological 

processes are typically slower than those in the chemical industry, with time scales 

ranging from the minute scale for the control of the dissolved oxygen (DO) 

concentration, to weeks or months for the growth of the biomass. This aspect of course 

lightens the computational burden demanded for the process supervision. The 

dependency of the characteristics of the biological process from the changing 

environmental conditions as well as the dependency from the past operations of the 

treatment processes should also be considered. One of the most influencing agent is 

given by the seasonal change in the water temperature but there are many others which 

are more difficult to quantify. In time, the measurement devices have become 

increasingly cheaper, resulting in an increased availability of data. However, the 

relationships among the measured variables, the process states and the process 

performance are not always understood well and many important process variables 

remain impossible to gauge. For example, the amount of some specific groups of 

bacteria (e.g. nitrifying bacteria, denitrifying bacteria) as well as the concentrations of 

some biochemical components concentrations, cannot be measured on-line. Exact 

knowledge of relationships between directly controlled variables and hidden process 

states is inherently absent hereby troubling the formulation and acceptance of automated 

control laws in practice. 

Another important aspect to consider is that in contrast to other kind of industries, 

where it is possible for example to discard low-quality ingredients and it is possible to 

avoid the sale of the flowed products, all wastewaters have to be treated, irrespective of 
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their qualities. The contingency of highly polluted sewages must therefore be accounted 

for in the design phase since not being able to properly handle certain wastewaters can 

results in economic fines and restriction of licenses in most industrialized countries, and 

it is of the outmost importance to recognise the occurrence of such event and to 

discriminate them from the anomalies in the measurements due to a defect of the 

instrument. In this sense, the existing supervision and control techniques for wastewater 

treatment systems generally suffer from a lack of robustness that impairs their practical 

employment, often due to an inadequate or insufficient knowledge of the existing 

relationships between monitored and controlled variables or a lack of integration of 

several control loops and the inability to foresee disturbances to wastewater treatment 

plants. 

Therefore, the main objectives of this dissertation are the evaluation, validation and 

improvement of techniques for process monitoring and diagnosis of wastewater 

treatment systems. More specifically this thesis will focus on the development and 

testing of fault detection methods for a particular class of treatment plants where the 

nitrogen removal efficiency is increased without building new tanks but exploiting the 

existing facility under an improved process configuration called intermittent cycles or 

alternated cycles (AC). 

It is increasingly difficult to process municipal reject water by means of conventional 

wastewater treatment plants, given its increasing imbalance between the carbon and 

nitrogen fractions. There is now a consolidated trend of a decreasing chemical oxygen 

demand (COD) load and an increasing reduced nitrogen content, mostly in the ammonia 

form. For this reason, many municipal wastewater treatment plants are being retrofitted 

by changing their process flow-sheet in order to make nitrogen removal their primary 

goal. One efficient way of improving the efficiency of existing small-to-medium 

wastewater treatment plants (WWTPs) is to change their operation into a sequence of 

alternating aerobic/anoxic cycles by switching on and off the aeration in the oxidation 

tank (Santinelli et al., 2011; Gracia et al., 2013; Martín de la Vega et al., 2013). An 

extensive description of the AC process will be given in Chapter 2. The cheapest way 

of controlling the aeration switch in this kind of plant configuration consists in 

monitoring the oxidation reduction potential (ORP), whose value is related to the 

ammonium-N content. The principle is the same as in Sequencing Batch Reactors (SBR) 

(Kerrn-Jesperson & Henze, 1993; Wilderer et al., 2001), with the difference that in this 

case the switching is applied to a continuous-flow reactor. During the oxidation phase 

NH4Ά is oxidized to nitrite (NO2·) and then to nitrate (NO3·), and the ORP signal rises 

to positive values until it stabilizes when all the NH4Ά has been oxidized. At this point 
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the aeration is switched off and the denitrification phase begins, reducing, provided 

enough organic carbon is available, the oxidized forms of nitrogen (NO2· and NO3·) 
just produced. ORP signal has been largely used to control the process (Battistoni et al., 

2007; Fatone et al., 2008; Guglielmi and Andreottola, 2011; Santinelli et al., 2011), 

however the limited reliability of the ORP probe has also been reported (de Gracia et 

al., 2013). With the growing reliability and availability of specific ion probes, the direct 

measurement of reduced (NH4Ά) and oxidized (NOx) nitrogen is now a viable alternative 

to ORP, provided the sensor is kept in good order and that its malfunctioning is promptly 

detected. 

Thus, sophisticated sensors such as Ion-Specific Electrodes (ISE) have become 

essential for a precise control policy but they require a careful maintenance. For this 

reason, a monitoring system including a fault detection (FD) method is instrumental for 

a successful management. This method should also be capable of discriminating a sensor 

failure to a process anomaly, such as overload or toxic spillage. Hence the need to design 

a smart FD algorithm with these capabilities. 

1.2 State of the art 

Generally, the fault detection and isolation (FDI) algorithms can be divided into three 

main categories (Venkatasubramanian et al., 2003): quantitative model-based methods, 

qualitative knowledge-based methods and process history-based methods. 

Quantitative model-based methods require a deep knowledge of the process and 

proved to be extremely powerful tools, even though their application is limited to linear 

or very specific nonlinear problem at most. These kinds of methods can be, for example, 

represented by one or more observers, i.e. models used to provide an estimation of the 

relevant signals and allowing to detect abnormal process behaviours when the system-

extracted signal is compared to the estimated one. Some successful recent applications 

can be found in (Nagy-Kiss and Schutz, 2013), where the diagnosis of a nonlinear 

system such as a WWTP is achieved with a multi-model approach using a set of 

nonlinear observers, and in (Xu et al., 2014), where the effectiveness of a new approach 

based on a bank of interval observers performing both fault detection and fault isolation 

is proven on a continuous-flow stirred-tank reactor (CSTR) case study. However, 

despite the potentials and the efforts made to make easier their use (Schraa et al., 2006), 

this kind of methods are still the least popular among the FDI techniques, due to the 

high system complexity and the lack of good data from which to develop an accurate 

model. 
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Qualitative model-based fault diagnostics is performed each time one possesses a 

fundamental understanding of the process behaviour but not so deep to allow the 

expression of the input-output relationships in terms of mathematical functions. Typical 

qualitative model-based methods, widely used in risk assessment studies, are the so-

called fault trees i.e. logic trees that relate primary events with hazards. During the 

construction process the cause-effect relationships are derived by asking questions, to 

workers and experts in general, on what could produce the hazard and connecting the 

answers by logic nodes. 

However real processes can rarely be represented as deterministic systems and most 

of the times the diagnostic task requires a quantitative assessment rather than a 

qualitative one. For this reason, instead of the model-based approach, that needs a 

complete a priori knowledge of the process, the vast majority of the FDI approaches rely 

on methods able to extract that knowledge from the history data, i.e. perform a feature 

extraction. The features can then be processed by non-statistical data mining methods, 

such as neural networks (NN), statistical methods, such as principal component analysis 

(PCA), widely used in the context of WWTP fault detection (Rosén and Olsson, 1998; 

Corominas et al., 2011; Garcia-Alvarez et al., 2011; Garcia-Alvarez et al., 2012; Villez 

et al., 2013), or partial least squares (PLS), classification methods such as classification 

trees and support vector machines (SVM), or by a combination of them (Fuente et al., 

2012, 2011; Goode & Chow, 1994; Ruiz et al., 2011; Sainz, 2004). 

Most of the methods mentioned are limited by the underlying assumption of a linear 

relationships between the quantities of interest which, however, especially in the 

environmental systems, this is not generally true. Thus, over the years many solutions 

have been proposed to adapt the linear algorithms to the nonlinear process conditions. 

As shall be seen more extensively in the fourth chapter, one popular strategy is to deal 

with the nonlinearities by using the so-called kernel functions to map the input space 

into a different space (called feature space) where the data vary linearly and therefore 

the linear methods can be successfully employed (Lee et al., 2004; Tong et al., 2013). 

This is computationally cheap and may help to find an appropriate way to transform the 

original, nonlinearly related, data, though the choice of the kernel parameters can be 

difficult and it has a limited applicability for diagnostic purposes, since it does not 

directly operate on the original measurements but rather on their transformations, the 

features, for which no explicit meaning is generally available (Jia et al., 2012; Liu et al., 

2014). 

It has been demonstrated that detection and isolation of anomalies in dynamic 

systems is possible, however this application conflicts with the assumption of time-
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independence of most of the methods used, and therefore returning possibly misleading 

results, such as an excess of false alarms. Various methods were specifically introduced 

to account for the autocorrelations in the measurements of dynamic systems, such as the 

‘dynamic PCA’ (DPCA) proposed by (Ku et al., 1995), which investigates the presence 

of dynamical relationships among the features at different time lags though using a fixed 

(time-invariant) linear model. However, most of the dynamic processes do not preserve 

the relationships among the variables but rather they describe gradual changes of these 

relationships, thus the covariance structure of data varies accordingly. In order to deal 

with such task some efficient strategies were proposed, considering shorter portions of 

the available datasets in which the time-invariance assumption still holds and 

investigating how the information extracted in this portions vary in time. This can be 

achieved using the so-called ‘moving window’ (MW) approach, meaning that the 

covariance matrix is computed at each time instant using the last N samples available as 

in (Rosén and Lennox, 2001), or similarly introducing a ‘forgetting factor’, a weighting 

coefficient decreasing the relative importance of the older samples, as in (Li et al., 2000). 

These strategies are at the basis of the adaptive FD methods, where a reference model 

is computed using a portion of the data and this reference is updated in time (sliding the 

window or revising the weight of the available samples) according to some acceptance 

criteria. The underlying assumption is that the abnormal changes in the process occur 

faster than the updating speed of the reference model. Indeed, if the anomalous event is 

slow enough to satisfy the acceptance conditions, then its information will result in an 

undesired adaptation of the model (Lennox and Rosén, 2002; Baggiani and Marsili-

Libelli, 2009). 

In Chapter 4 an extensive review of the statistical and classification methods used in 

this work is provided, considering both their theoretical foundations and their 

application to the FD of the biological systems reported in literature. 

1.3 Main results and contributions 

The main purpose of this thesis lies is comparing the performances of different 

algorithms and strategies for the detection of the anomalies occurring in a WWTP that 

uses the intermittent aeration process configuration to improve the removal efficiency 

of the nitrogen. 

A new detection framework is proposed, separating the detection of the gross and 

most evident malfunctions, such as sudden spikes and constant signals, from the 

investigation of the finer faults, i.e. those related to drifts and noise affecting the gauging 

instruments. 
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A set of simple checks on the signals was devised to address the first class of faults, 

and this screening shows very high detection performances, being able to identify the 

majority of the observed anomalies. 

As for the detection of the finer faults, some adaptive methods have been employed, 

consisting of a statistical approach, based on the Bayes’ theorem, and other techniques 

based on machine learning algorithms such as binary trees, principal component 

analysis (PCA) and support vector machines (SVM). The theoretical background of the 

methods and their application to the FD problems shall be found in Chapter 4, and an 

adaptive version of them, specifically tailored for the characteristics of the specific plant 

configuration investigated is described in Chapter 5. In the fifth chapter, can be also 

found the results of the tests performed under different conditions of data availability, 

both in terms of monitored variables and in terms of variability of the data used for the 

training. The results show that when trained with a relatively short set of data (less than 

a year, therefore without considering the whole seasonal variability of the processes) 

and moderately diversified set of parameters, the PCA-based algorithm displays a good 

compromise between detection performance and reliability of the fault identification 

and this is also true in case a small number of observed variable is available, However, 

if a relatively higher number of signals is available for the training or a larger set of 

instances covering the whole seasonal variability of the process is provided, the use of 

a nonlinear SVM method appears as the most sensible choice. On the other hand, the 

fault detection provided by the Bayesian predictor, although generally identifying a 

lower number of faulty events, is the method that provides the highest accuracy under 

all the different combinations of diagnostic parameters chosen, regardless the amount 

of historic data avaliable. 
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Chapter 2 The biological wastewater 

treatment 

Wastewater treatment is defined as the ensemble of processes used to remove 

contaminants from household and industrial sewage, that is to say a water which is no 

longer suitable for use due to the presence of organic and inorganic pollutants. It consists 

in a succession of chemical, physical and biological processes in which the undesired 

compounds are removed from the water by concentrating them in the form of sludge 

and creating an effluent that can be either returned to the water cycle with minimal 

environmental issues or reused in the industrial process that generated it. The sludges, 

by-product of the treatment, are often contaminated with toxic compounds and therefore 

must be properly treated in order to be safely disposed in special landfills or even reused 

in agriculture, according to the origin of the sludge and the quality of the treatment. 

Wastewater is a term that covers a broad spectrum of contaminated waters coming 

from different origins but that can mainly be summarized in two categories: municipal 

wastewater (or sewage) and industrial wastewater. Municipal wastewater is typically 

generated by the households but it may include liquid waste from small industries and 

storm water runoff or urban runoff. Households wastewater are rich in fat, proteins, urea 

and cellulose while runoff waters usually have a different concentration of the same 

pollutants which add up to some micro-pollutants such as hydrocarbons, pesticides, 

detergents, etc. It is becoming common, in the developed countries, to separate the 

household wastewater into blackwater and greywater and treat them separately, so to 

make appealing the reuse of treated greywaters for public green watering of flushing 

toilets. Industrial wastewater has a composition that varies according to its origin. 

Traditional wastewater treatment plants can only treat industrial wastewater that can be 

qualitatively considered tantamount to domestic sewage. This type of wastewater can 

be subject to a series of preliminary treatments before discharge to the sewer, in order 

to remove the pollutants incompatible to the further treatments. In fact, some 

compounds can result toxic or dramatically interfere with the microbial growth which 

is the base of the traditional biological treatments. For all wastewater that does not fulfil 

the requirements to be discharged in the sewer or by their nature would be insensitive 

to a biological treatment, special treatment to be performed in situ in the production 

place shall be provided. 
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2.1 Wastewater characterization 

The elements composing the wastewater can be divided in a few main categories 

according to their composition and the effect on the environment if released without a 

proper treatment. 

Table 2.1 Main constituents of a domestic wastewater (Henze, 2008) 

Constituent Source Effect 

Microorganisms 
Pathogenic bacteria, virus, 

antibiotics, worm eggs 
Risk when bathing and 

eating shellfish 
Biodegradable 
organic materials 

Oxygen depletion in rivers, and 
lakes 

Fish death, odours 

Other organic 
materials 

Detergents, pesticides, fat, oil and 
grease, colouring, solvents, phenols, 

cyanide 

Toxic effect, aesthetic 
inconvenience, bio-

accumulation in the food 
chain 

Nutrients Nitrogen, phosphorous, ammonium 
Eutrophication, oxygen 
depletion, toxic effect 

Metals Hg, Pb, Cd, Cr, Cu, Ni 
Toxic effect, bio-

accumulation 
Other inorganic 
materials 

Acids (typically hydrogen sulphide) 
bases 

Corrosion, toxic effect 

Thermal effect Hot water 
Changing living 

conditions for flora and 
fauna 

Odour (and taste) Hydrogen sulphide 
Aesthetic inconvenience, 

toxic effect 

Radioactivity  
Toxic effect, 
accumulation 

 

Generally organic materials are the major pollutants in sewage. Their content is 

traditionally measured in terms of BOD and COD, respectively acronyms for biological 

oxygen demand and chemical oxygen demand. The first usually requires a slow 

procedure while the latter can be quicker but dirty (if mercury is used). With COD, 

expressed in [mg O2/L], one indirectly measures the organic content in wastewater by 

evaluating the amount of oxygen required to chemically oxidise the organic matter using 

dichromate in an acid solution. It measures the majority of the organic matter and it can 

be divided in fractions, for example suspended and soluble, useful for further 

considerations according to the treatment process. It is possible to determine the 

theoretical COD of a known substance from is oxidation equation, for example for 

ethanol: 

22 26 2C H O+3O 2CO +3H O . (2.1) 

from which the theoretical COD can be computed as the ratio between the mass of the 

three molecules of oxygen required and the mass of one molecule of ethanol. 

Another indirect measurement of the organic pollution load in the wastewater is the 

BOD, representing the oxygen consumption per litre needed by the aerobic organisms 
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to oxidise the organic materials at 20°C in a given amount of time. It is commonly used 

in its BOD5 form, where the subscript indicates that the computation of the oxygen 

consumption is referred to a 5 days (120 hours) period. According to specific constraints 

of time, accuracy or economical convenience other evaluation periods can be used, 

computing for example BOD1, BOD25 or BOD7, however BOD5 is the standard and 

when a BOD measurement is reported without subscript the ‘5’ is understood. This 

research makes no exception and all BOD measurement reported are to be intended 

BOD5, unless otherwise stated. 

When referring to the treatment capacity of a WWTP, a measure often used is person 

equivalent (PE). This unit characterize the pollutant load delivered to the treatment 

facility in a 24 hours period and it is defined both in terms of volume or organic load: 

– 1 PE = 0.2 m3/d (200 L/d) 

– 1 PE = 60 g BOD5/d 

These two values are fixed and internationally accepted and should not be confused 

with the amount of organic pollution delivered by an average person the sewers, the so-

called person load (PL). The latter, in fact, represents the average contribution in terms 

of pollutants and depend on the lifestyle, the households and industrial activities and 

more generally the socio-economic factors of the catchment area considered and 

therefore varies from country to country. 

Wastewater variations in terms of flowrates and pollutant load are expected on 

variegated range of time bases and this is an important factor to account for in the design 

of the treatment processes and their control. A diurnal pattern of the water consumption 

related to the human activities can be observed (Figure 2.1), typically showing minimum 

flows in the early hours of the morning, a first peak around lunchtime and a second in 

correspondence of the dinner time. The amplitude of these variations is mainly related 

with the size of the community served, with smaller communities having the higher 

difference between the lower and the upper discharge peak. 
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Figure 2.1 Typical hourly variations in domestic wastewater flowrates and 
concentrations (Metcalf & Eddy Inc. et al., 2004) 

Similarly, a weekly pattern can be generally identified in function of the industrial 

activities and the working days. Seasonal variations of the organic load should also be 

taken into account when designing a treatment plant, especially in the regions interested 

by touristic activities focused in specific periods of the year. 

A significantly influencing factor for the design of the sewage treatments to 

implement is represented by the ratio among the various components of the wastewater, 

for example high nitrogen to carbon ratio may suggest the need of an external carbon 

supply to favour the denitrification process. The ratios are supposed to be almost 

constant for a given plant, with values falling in a limited range that should not change 

at least on a seasonal basis. Industrial discharges, however, are likely to cause 

discrepancies in these ratios when they are collected together with the domestic sewage, 

due to the possible releasing of high quantities of pollutants in a short time frame that 

can cause “shock loadings” to the treatment plant. Moreover, the pollutant content of a 

sewage and the relationship among its constituents is only partially related to the 

contribution of the industries and households served, a conspicuous part may also come 

from rain-washing water and ground infiltration, which are typically events limited in 

time but may cause significant alterations in the constituents’ ratios. The analysis of the 

deviances of these ratios from their usual or expected values can be used to investigate 

their source, distinguishing whether they are caused by an actual change in the influent 

composition or they are just apparent and the anomaly is due to unreliable 

measurements. 

2.2 Operational configuration of a wastewater 

treatment plant 

Wastewater treatment plants consists in a sequence of tanks, generally made of 

concrete, each with a specific function. One can however distinguish two separate 
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“production lines” of the treatment: the water line and the sludge line. For what concerns 

the water line the typical sequence of treatment in an activate sludge plant is composed 

by some preliminary treatments, deputed to the removal of the heaviest solid materials 

and oil separation, followed by the secondary treatments, which consist in the actual 

biological treatment where the suspended organic and pollutant compounds are removed 

and finally the tertiary treatments which allow to polish the biological treatment before 

delivering the water to the river body. Another line, devoted to the treatment of the 

sludge produced during the process, develops parallel to the aforementioned treatments 

and its main goal is to reduce the water content, the volume and the microbial content 

in this kind of waste. In the following paragraphs will be presented the typical treatments 

of a traditional biological treatment plant. 

 

Figure 2.2 Location of physical unit operations in a wastewater treatment plant flow 
diagram (Metcalf & Eddy Inc. et al., 2004) 

2.2.1 Pre-treatments 

A series of preliminary treatments, or pre-treatments, is required on the top of all the 

other treatments in order to remove the gross materials and all the other substances that 

could damage the efficiency and operational of the following treatment stages. 

2.2.1.1 Screening 

The objective of the screening is to hold the largest settling and non-settling solids 

such as branches, dead leaves, rocks, trash or rugs. The screening grid is always installed 

in the entering channel with a 1:3 slope. This channel widens in correspondence with 

the grid so that, accounting for the envelope of the grid bars, the water speed in the 

section remains the same as the entrance speed. Such speed shall be high enough to 

avoid settling before the greed but at the same time not too low. Typical speed values 

are between 0.6 m/s and 0.9 m/s. The screening process can be classified either 

according to the space between the bars of the grid or to the cleaning system used. In 
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the first case we distinguish between coarse (space between bars 5÷10 cm), medium 

(2.5÷5 cm) and thin screening (1÷2.5 cm). Most of the plants employ a coarse screening 

followed by a thinner one. The cleaning system of the grids can be manual, for coarse 

screening or smaller plants where the amount of retained solid is low, or mechanical in 

all other cases. 

2.2.1.2 Grit removal 

The grit removal is mainly provided in case of unitary sewer (black and runoff water) 

in order to remove all the inorganic suspended materials with a diameter smaller than 

0.2 mm, for example sand, grit, stones and broken glass. This treatment is performed in 

sand or grit chambers, tanks in which the velocity of the water is adjusted to allow the 

settlement in a reasonable time of all the solid particles characterised by a specific 

weight higher than water. 

2.2.1.3 Fat and grease removal 

Fat or grease removal is introduced in the treatment cycle after the screening and the 

grit removal when the treated fluid presents a quantity of suspended oil and grease such 

to affect the efficiency of the following treatment, especially the biological ones. In fact, 

oil compounds have tendency to shroud with a thin film the biological particles limiting 

their contact with oxygen and consequently their oxidation. In ordinary plant 

configuration fat and grease, floating on the water surface, are in most part retained by 

skimmers placed before the primary clarifier entrance while in larger plants a specific 

fat removal compartment can be required. Here a deeper fat removal efficiency can be 

achieved blowing air from the bottom of these tank which destabilises the suspended fat 

particles forming a foam on the surface that can be easily collected. 

2.2.2 Primary treatments 

The primary treatments are designed to reduce the variations in the organic load of 

the influent and at the same time possibly reduce it by gravity separation in specific 

tanks. These primary treatments alone are able to reduce the BOD5 of the treated 

wastewater up to 30 %. 

2.2.2.1 Flow equalization 

The biological treatments are more efficient under uniform flow conditions therefore 

in case the influent has a highly variable flowrate or the pollutant load is expected to 

have strong fluctuations, typically because of overloads or in correspondence of storm 

events, the incoming sewage is routed to a large tank, the equalization basin, designed 
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to damp the hydraulic peaks and the organic load and make them sufficiently constant. 

Strong mixing and aeration are used to favour the dilution and homogenization of the 

water as well as to avoid septic conditions 

2.2.2.2 Primary settling 

During the primary sedimentation stage the wastewater is retained in open large tanks 

called primary settlers or clarifiers. In these quiescent settling basins are used to further 

separate the solids from the liquid suspension by gravity separation in an environment 

where the dispersion due to turbulence is reduced. For this reason, the tanks are designed 

to be quite shallow, but their height is not less than 1.80 m, this to avoid that the wind 

lift the already settled sludge, and with a length and width such that the influent is 

retained for at least 2-3 hours but without creating dead spots in the corners where 

putrescence phenomena can occur. The settled sludge is collected at the centre of the 

tank and sent to the “sludge line” for further treatment. 

2.2.3 Secondary treatments 

Secondary treatments represent the most strictly chemical-biological part of the 

treatment process. Here the biodegradable organic compounds are demolished and 

nutrient removal takes place with the help of specific bacterial populations. The sewage 

at this stage is still turbid due to the colloidal and putrescible suspensions, therefore the 

organic particles are first oxidised, i.e. made rot proof, and subsequently removed. 

Another important objective of this stage is the abatement of nitrogen, present either in 

the form of ammonia ions (NH4
+) or in the form of nitrites (NO2

–) and nitrates (NO3
–) 

ions. Nitrogen, as well as phosphorous, is the main responsible for water eutrophication. 

If released in a natural water body the ammonium nitrogen can be toxic and can also 

generate anoxic phenomena due to the high oxygen consumption required for its 

oxidation (4.3 g O2/g N). 

2.2.3.1 Oxidation-Nitrification 

In the activate sludge plants, given the high concentration of microorganisms and the 

density of the sewage that does not allow the growth of algae, not all the oxygen 

necessary to the bacteria development can derive from the interexchange with the 

atmosphere, and it is therefore necessary to provide the tank with an artificial aeration 

system for the air supply. 

During oxidation of sewage the organic colloidal compounds are flocculated so that 

they can be easily removed by settling. With aerations (or biological oxidation) the 

suspended solids incapable of settling and the biodegradable dissolved solids are 
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converted into sludge that can be separated from the water in the settling stage that 

always follows this treatment. 

The ammonium nitrogen (NH3) is also oxidised in this stage. This compound usually 

represents the most relevant source of nitrogen in the influent (60 % of all nitrogen) and 

is originated from the urea and the biological degradation of the nitrogenous organic 

substances that form the cellular material of the organisms. This process can be 

described by the following simple relation: 

5 7 2 2 2 2 3H O N+5O 5C CO +2H O+NH . (2.2) 

The ammonium is first oxidised into nitrites then the nitrites are oxidised into nitrates 

thanks to the work of two different aerobic autotrophic bacteria, respectively called 

Nitrosomonas and the Nitrobacter (Figure 2.3), using carbon dioxide as carbon source. 

(a) 

 

(b) 

 
Figure 2.3 The Nitrosonomas europaea (a) and Nitrobacter agilis (b) bacteria 

The oxidation reactions are: 

+ +3
24 2 2 2+ O NO +H ONH +2H  (2.3) 

1
22 2 3+ ON OO N  (2.4) 

The first reaction represents the control stage as the oxidation velocity of ammonium 

is much slower than the oxidation velocity of nitrites into nitrates, therefore from an 

operational point of view the objective should be to favour the growth of ammonium-

oxidizing bacteria (AOB), the Nitrosomonas. The variables that mostly influence this 

process are the carbonaceous substrate concentration, the level of DO, the temperature 

and pH (Ruiz et al., 2003). Among the different operational condition that cause the 

increase of nitrite concentrations due to the inhibition of the nitrite-oxidizing bacteria 

(NOB) the following are the more relevant (Alleman, 1984; Turk and Mavinic, 1989; 

Abeling and Seyfried, 1992): 

– the concentration of dissolved oxygen: it is usually not preferable to have DO 

concentration below 1-2 mg/L. AOB have more affinity to the oxygen and for 

concentrations 0.3 mg/L < DO < 1 mg/L the growth of NOB is difficult and 

nitrite become the principal by-product of the process; 
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– the pH level: for alkalinity values of pH > 7 with the increase of pH the AOB 

activity increases as well, while the growth of NOB decreases. Optimal pH values 

are between 8.5 and 9; 

– the BOD5/N ratio: this value identifies the fraction of nitrifying bacteria with 

respect to the heterotrophic bacteria employed for the organic load removal. The 

optimal value is around 5; 

– the hydraulic retention time: for equal temperature AOB can operate with lower 

HRT than NOB (see Figure 2.4). 

 

Figure 2.4 Autotrophic growth according to the temperature of the sewage 

The nitrification process, however, can grant a substantial abatement of the nitrogen 

content only if coupled with a denitrification system: once the ammonia is transformed 

in nitrates it is necessary to complete its transformation into the nitrogen gas form by 

creating anoxic environmental conditions. 

2.2.3.2 Denitrification 

The last step of the nitrogen removal process is called denitrification and usually 

takes place in specific tanks placed between the primary treatments and the aerobic 

compartment. Here nitrites and nitrates are transformed by the activity of a special class 

of heterotrophic facultative anaerobes bacterial populations called Pseudomonas. In 

anoxic conditions these bacteria use the carbonaceous substrate of the organic particles 

present in the sewage for their respiration and perform the cellular synthesis of the 

oxygen contained in the nitrates according to the reaction: 

3 2 232NO O +2N  (2.5) 

The denitrification speed is influenced by the alkalinity of the solution (the optimal 

range is between pH = 6 and pH = 8), by the temperature and by the characteristics of 

the sewage: the higher is the amount of rapidly biodegradable organic materials, the 

quicker is the denitrification process. This implies that the denitrification treatment also 

contributes to a reduction of the organic load. Theoretically Pseudomonas consume 

4.5 kg BOD5/kg Nden but only 2.5 kg BOD5/kg Nden are actually used for the respiration 

M
in

im
u
m

 r
e

s
id

e
n
c
e
 ti

m
e

 [d
]

5

4

3

2

1
0 10 20 30 40

Temperature [ C]

Nitrobacter

Nitrosomonas
6



26 The biological wastewater treatment 
 

process, while the rest is stocked inside the bacteria and is therefore available for the 

subsequent oxidation. 

 

Figure 2.5 Nitrification and denitrification scheme with oxygen and organic carbon 
consumption percentages (Pambrun et al., 2008) 

Usually the nitrification and denitrification processes take place in separate reactors 

each dedicate to one process. In the most common configuration the denitrification 

compartment precedes the aerobic one, and this is because this way it is possible to 

exploit the a so-called ‘internal recycle’ and ‘external recycle’ to maximise the 

denitrification efficiency. The first recycle provides the nitrates obtained from the 

oxidation of the ammonia in the aerobic tank and the second supplies the anoxic process 

with the necessary carbonaceous substrate from the secondary settler, without the need 

of an external carbon supply. Other nitrification/denitrification strategies and plant 

configuration have been designed in time, in the attempt of maximising the efficiency 

of the nutrient removal process. Among these a popular one, especially employed in the 

retrofitting of existing facilities, is the alternated cycles configuration where, as shall be 

seen in the next chapter, the aerobic and anoxic conditions for the nitrification and 

denitrification reactions are achieved, by means of an accurate control of the aeration, 

in the same reactor. 

2.2.3.3 Secondary settling 

After the biological treatment, the effluent is subject to a settling stage, necessary to 

separate by gravity the water from the suspended activate sludge of the previous 

treatment. It is important to reach a neat separation of the liquid and solid phases, so not 

to compromise the work done so far: the so called active sludge, in fact, contains all the 

pollutants initially present in the swage, not to mention that the presence of suspended 

solids in the effluent would impair the clarity of the receiving water body. The water 

inside the settler must have a slow speed so that the sludge can deposit on the bottom 

where, as in the primary settler, they are collected. Part of them is sent to for the final 
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treatment of the “sludge line” and another percentage is pumped, or recycled, to the 

beginning of the secondary treatments in order to supply the denitrifying bacteria with 

a sufficient carbonaceous substrate. The clarified water is collected in a circular channel 

on the borders of the tank and sent to the subsequent compartments for the final 

treatments. 

2.2.4 Tertiary treatments 

These final treatments have the objective of completing and perfecting the water 

treatment process removing possibly present suspended solid or pathogens. 

2.2.4.1 Filtration 

A filtration session is performed if there is the possibility of solids still suspended in 

the clarified water: in order to remove these compounds and reduce the turbidity of the 

effluent, the water can be filtered using textiles that would retain the small particles. 

2.2.4.2 Disinfection 

This aim of this treatment is to reduce the number of microorganisms, especially 

pathogens, in the water discharged, in particular when its later use is for bathing or 

irrigating. The most common way to disinfect the water is using chlorine in the liquid 

or gas form or as sodium hypochlorite, while the use of chloramine for non-drinkable 

waters is not advised due to its persistence. Other common sanitation methods involve 

the use of ozone or ultraviolet (UV) light. In general, the effectiveness of the sanitation 

procedure is directly proportional to the dosage of disinfectant and the contact time but 

also the turbidity of the treated water plays a key role especially with the UV treatment. 

2.2.5 Sludge treatment 

The main purpose of this compartment of a WWTP is to stabilize the organic material 

by-product of the water treatment process, which is typically characterised by a high 

concentration of pollutants and organic material, and at the same time minimize the 

costs associated with its disposal. The water extracted in then generally recycled at the 

top of the water line for further treatment. The treatment processes can be chemical, 

biological or physical/thermal and are divided into two main groups: 

– separation processes, which are used to separate the solid phase from the 

liquid; 

– conversion processes, which aim to modify the characteristics of the sludge 

in order to facilitate further treatments. 

The treatments can belong either to one or both the above categories.  
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2.2.5.1 Thickening 

The sludge produced by the secondary treatment is rich in water and, since the price 

of its disposal is computed on the basis of its weight, it is convenient to increase the 

amount of mass of sludge per volume unit, or in other words, to reduce its water content. 

In the thickener, a vertical tank, the phase separation is achieved by gravity and the inter-

particle water, the most relevant amount of water retained by the sludge flakes, is 

removed. Here it is possible to obtain a 70-75% sludge humidity reduction. The 

thickened sludge deposited on the bottom is then collected and sent to another 

compartment for the drying. 

2.2.5.2 Drying 

The thickened sludge still contains a non-negligible amount of water that can be 

naturally or mechanically removed by appropriate treatments. The mechanical drying of 

the sludge is achieved, for instance, with the use of belt filter presses or by 

centrifugation. 

2.2.5.3 Disposal 

The dewatered sludge can be either disposed or reused, according to its 

characteristics and the normative requirements. When disposed, it is transported to a 

landfill, sometimes after being incinerated, but sludge with compatible characteristics 

can find a new use as amendment for agricultural or non-agricultural soils or being 

employed in composting plants for energy production. 
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Chapter 3 Characterization of the 

wastewater treatment 

structure and operation 

In this chapter will be presented the materials used for the research. First the 

particular plant configuration will be illustrated together with some of the main control 

strategies. Since the data used are drawn both from operational data gathered at the 

municipal treatment plant of Mantua (Italy) and from a modified Benchmark Simulation 

Model (BSM), their respective operational characterization and the main features of 

their dataset will be described in two separate paragraphs. Finally, the parameterization 

used for the data will be presented. 

3.1 The alternate cycle processes 

In this paragraph is described the plant configuration of the so-called “alternate 

cycles” (AC) nitrogen removal process. This is an operational solution which can be 

employed in existing plants increasing the efficiency of the removal process without 

raising the costs. 

3.1.1 The process 

The need for ever better results in terms of efficiency together with the rising 

concerns over energy saving brought many small-to-medium plants to invest in the 

optimization of the nitrification-denitrification process. As already mentioned the 

biological nitrogen removal process traditionally achieved with a succession 

nitrification and denitrification steps performed in separate reactors. It is however an 

ever more frequently adopted solution to increase the nitrogen removal efficiency by 

changing the current plant configuration into an AC processes configuration, where the 

nitrification and denitrification steps develop according to time instead of space. This 

retrofitting is encouraged by the possibility to entirely reuse the existing structures, 

moreover without the need of building new ones, and by the versatility of this 

technology towards different plant configuration and incoming influent load conditions. 

Alternate cycle is a continuous process that can be realized in a single tank where the 

aeration and anoxic phases, respectively responsible for the nitrification (ammonium 

oxidation) and denitrification of nitrogen, are automatically alternated. In other words, 

it is no longer necessary to continuously supply air to an aerobic compartment. 

Moreover, it is also possible to completely exploit the oxygen released by the reduction 
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of the nitrates, as in eq. (2.5) for the oxidation of the organic compounds, reducing the 

amount of water to supply during the aerobic phase. Since by using this configuration 

one can avoid to have different sections performing the anoxic denitrification and the 

aerobic oxidation separately, the recycle of the mixed liquor from the oxidation can also 

be avoided, resulting in further energetic savings and simplifying the management. 

A simplified mathematical model of the process can be found in (Battistoni et al., 

2003) under the following assumptions: 

– a zero-order kinetic for nitrification and denitrification; 

– negligible nitrate concentration in the influent, whose consequence is that all 

the incoming nitrogen is assumed to be in the ammonia form; 

– the incoming ammonia volumetric loading is negligible (three times lower) 

when compared to the oxidation capability of the autotrophic organisms. 

Under these assumptions a simplified mass balance is found for both ammonia and 

nitrates either for the aerobic (eqs. (3.1)-(3.2)) and the anoxic phase (eqs. (3.3)-(3.4)). 
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where 

NOx
–-N = nitrogen concentration in form of nitrites and nitrates ions [mg/L] 

NO4
+-N = nitrogen concentration in form of ammonia ion [mg/L] 

Kn = maximum nitrification constant [d–1] 

Kd = maximum denitrification constant [d–1] 

V̇ = influent flow-rate [m3⋅d–1] 

V = volume of the reactor [m3] 

X = suspended solids in the mixed liquor [mg/L] 

t = time [d] 

tc = length of the cycle (sum of the aerobic and anoxic phases) [d] 
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and the meaning of the subscripts used is: 

in = influent 

t0 = beginning of the anoxic phase 

t1 = beginning of the aerobic phase 

 

These equations are used by (Battistoni et al., 2003) to predict the variations in the 

ammonia and nitrate concentrations in the reactor or in the influent. The total time of 

the cycle tc is derived in the ideal situation in which it can be only related to the kinetic 

constants and the influent characteristics. It is clear that according to this model the 

duration of the cycle depends on the volume of the reactor and the characteristics of the 

influent while the ammonia and nitrate concentrations are related only to the kinetic 

constants Kd and Kn. 

 

Figure 3.1 Nitrogen forms during an alternate cycle (Battistoni et al., 2003) 

 

3.1.2 The performances 

The intermittent aerobic-anoxic process was experimentally employed first in pilot-

scale plants and subsequently in real plants, where the performances were constantly 

monitored in order to compare them with the traditional configuration (Battistoni et al., 

2006; Dairi et al., 2010). 

3.1.2.1 Nitrogen removal 

AC process showed higher nitrogen removal performances with respect to the 

traditional processes. The total nitrogen removal efficiency achieved can be up to 90% 

(Nardelli et al., 2009), and this is mainly because all the nitrified ammonium to be 

denitrified is already inside the reactor, decreasing the nitrate output of the aerobic 

compartment of at least 30%. 
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The potentialities of the treatments in the tests of are evaluated by (Nardelli et al., 

2009) according the balance: 

LTN LTN LTN LTNden in qw out
 (3.6) 

where LTN is the total nitrogen mass loading denitrified (subscript den), in the influent 

(subscript in), in the waste activated sludge (subscript qw) and in the effluent (subscript 

out) all measured in [kg/d]. 

Using the notation LTNnit = total nitrogen mass loading nitrified; LNOx-Nin = NOx-N 

mass loading in the plant influent; LNOx-Nout = NOx-N mass loading in the plant 

effluent; LTKNin = total Kjendahl nitrogen mass loading in the influent; LTKNras = total 

Kjendahl nitrogen mass loading in the return activated sludge and LNnb,org,out = non-

biodegradable organic nitrogen mass loading in the influent, all measured in kg/d, the 

performances were assessed evaluating the indicators of: 

the nitrification efficiency of all the incoming nitrogen En: 
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and the removal efficiency of the nitrogen that is actually denitrified Edd: 
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3.1.2.2 Costs savings 

The energetic saving is probably the most interesting advantage of the AC 

configuration. It comes from the plant optimization achieved in three different aspects: 

first the possibility to reduce the amount of oxygen to supply exploiting the oxygen of 

the nitrates to perform the oxidation of the organic compounds; second the switch from 

a continuous aeration system into an intermittent one and finally the economic saving 

due to the fact that the internal recycle is no longer needed. The AC allows an energy 

saving in the range 15-30% with the respect to a traditional plant configuration. 

Some tests were also performed to investigate the impact of the AC process in the 

sludge production. The assessment, conducted in plants with specific characteristics 

such as the presence of a filtration system at the end of the sludge line, the absence of 
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storm water inputs and sludge from third party (e.g. landfill leachate), revealed a 

reduction of both wet and dry sludge between 15% and 40%. This reduction can be 

explained considering the aerobic/anoxic stress of the biomasses, which produces the 

diminishing of their yield coefficients, i.e. the production of new biomass. It is also 

worth notice that these tests confirmed that the alternated processes configuration does 

not affect the settling capability of the sludge, which results equal or even higher with 

respect to a traditional activated sludge plant configuration. 

Another advantage of the AC retrofitting of existing plants is represented by the 

biological removal of phosphorus, in particular for influents characterized by higher 

rapidly biodegradable COD values. In fact, having the nitrification and denitrification 

process happening in the same reactor favours the growth of phosphorus accumulating 

organisms (PAOs) to a point that sometimes it is possible to avoid the addition of 

chemicals for the phosphorus precipitation. 

3.1.3 The control 

The key factor in the feasibility and convenience of the AC retrofitting of a plant is 

represented by the automatic control system responsible of the switching between the 

two phases. Most of the controllers, especially in smaller plants, regulate the activation 

of the aerators (which create the aerobic conditions) or the mixers (to uniform the 

concentration during the anoxic phase) by elaborating the profiles of two commonly 

measured quantities, the DO and the oxidation-reduction potential (ORP), which are 

linked to the chemical-physical and biological phenomena. In particular, the flex of the 

dissolved oxygen profile indicates the end on the aerobic phase and the flex of the ORP 

profile during the anoxic phase is used as an indicator of the end of the denitrification 

process (see Figure 3.2). 

 

Figure 3.2 ORP, NH3-N, NO3
–-N, DO and pH profrfiles in a nitrogen removal bioreactor 

(Olsson et al., 2005) 
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The first condition, the ammonia breakpoint, is a usually sharp rise of the DO due to 

the depletion of ammonia and is also observable in the ORP profile, normally in the 

range 60 - 150 mV, while the nitrates breakpoint, or ‘knee’, usually happens in the 

– 40- – 60 mV (Wareham et al., 1993; Héduit et al., 1996), a higher range than the one 

observed in the traditional plant configurations. 

The pH in the reactor also varies periodically but these variations are more associated 

to the biochemical reactions that take place in the two phases than to the DO 

concentrations. Nitrification is generally characterised by higher values of pH, its profile 

first suddenly increases when the aeration is switched on, than very gently decrease until 

the oxygen reaches the ammonia breakpoint. This point in the pH signal is called the 

‘ammonia valley’. After this a rather slow but constant increase of the alkalinity is 

observed until the aeration is turned off again. When the aeration phase ends the pH at 

first rapidly drops, rising again until the nitrate breakpoint is hit: this is the so called 

‘nitrate apex’, which marks the end of the denitrification process. In the time between 

the breakpoint and the activation of the blowers a slight decrease of the pH can be 

observed. These considerations over the possibility to infer the nitrification and 

denitrification processes using the measurements of instruments usually already present 

in the reactors, led to several, often patented, control systems. 

As for what concerns the control strategies based on the alkalinity and the oxidation-

reduction potentials, they can be split into two categories according to whether they rely 

on the absolute value of the measurements or on the detection of the aforementioned 

bending points. 

In the first case the idea is to set a minimum and a maximum value for either the pH 

or ORP and switch the phase whenever the threshold is exceeded. This kind of control 

strategy however, can result difficult to implement especially with respect to the ORP, 

since its measurement can be subject to significant drifts and it strongly depends on the 

initial treatment of the platinum probes used, making the threshold found quite plant-

specific. The alkalinity measurement instead is prone to less instrument-related 

uncertainties, nevertheless the pH mostly depends on the influent concentration and can 

therefore be subject to major changes in time. 

Since implementing control strategies that are based on the absolute values of the 

measurements results difficult dealing with a fluid which is expected to have strong 

variations in its constituents, it makes sense to use the previously illustrated relations 

among pH, ORP and the biochemical processes of interest. Therefore, pattern 

recognition and feature extraction techniques have been used to identify the bending 

points of ORP (‘ammonia breakpoint’ and ‘nitrate knee’) and those od pH (‘ammonia 
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valley’ and ‘nitrate apex’) and set the activation and deactivation of the aerators 

accordingly. It is however a difficult task to determine these points, especially on the 

ORP curve, during overload episodes or in presence of other strong variations affecting 

the influent, so control strategies that compensate for this have been developed. 

One particularly popular in the north of Italy is outlined in Figure 3.3 and described 

in (Battistoni et al., 2003; Nardelli et al., 2009). It essentially integrates a control based 

on the previously described relations between the nitrification/denitrification process 

and the pH/ORP profiles in time, which are no longer reliable in case of over-aerated or 

overload plant, with two additional controllers that, based on the simplified model of 

equations (3.1)-(3.5), compute the maximum and minimum duration of the phases, and 

ORP and DO maximum and minimum set-points. 

 

Figure 3.3 Example of AC control logic scheme (Nardelli et al., 2009) 

Despite their popularity, the control strategies presented remain based on indirect 

measurements of the nitrification/denitrification processes and the by using them the 

actual state of the process can only be inferred. This is the reason that brought the larger 

plants to install ammonia and nitrate sensors to better monitor and control the removal 

process, but nowadays this tendency is followed also by smaller ones since the probes 

became cheaper. A well-studied control strategy is the one employed in the BioDenipho 

plant configuration, which in is former version (known as BioDenitro) consisted in an 

activated sludge process where the nitrification/denitrification was achieved by 

intermittently changing the flow path through two parallel reactors also intermittently 

aerated. This strategy allowed for two main phases and a series of other combinations 

designed to tackle specific operational conditions. 

In Figure 3.4 it is shown a four-phases strategy for the BioDenipho configuration, 

where the addition of an anaerobic reactor before the nitrification/denitrification tanks 

allow the phosphorous removal and marks the difference with the BioDenitro process. 
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Figure 3.4 A simple four-phase BioDenipho process (DN: denitrification; N: 
nitrification). B and E are the two main phases and C1 and C2 are the two intermediate 

phases (Olsson et al., 2005) 

A more sophisticated control strategy is shown in Figure 3.5 and is composed of six 

phases. The transition from one phase to the other obeys the following rules: 

Rule 1: Transition from phase A to phase B takes place when the ammonia 

concentration in reactor R1 reaches NHmax; 

Rule 2: Transition from phase B to phase C takes place when the nitrate 

concentration in reactor R1 reaches NOmin; 

Rule 3: Transition from phase C to phase D takes place when the ammonia 

concentration in reactor R2 reaches NHmin; 

Rule 4 to 6 regulating the transition from D to E, E to F and F to A mirror the ones 

above. 

 

Figure 3.5 Flow path, aeration status and typical variations of ammonia and nitrate in 
a six-phase BioDenipho process cycle. N: nitrification; DN: denitrification; solid and 

dashed curves are respectively the ammonia and nitrate nitrogen concentrations 
(Olsson et al., 2005) 
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The same concerns expressed before on the use of absolute values of pH and ORP to 

set the thresholds that regulate the activation and deactivation of the blowers apply also 

when using direct measurements of the nutrient concentrations. For this reason, the idea 

of ‘criteria function’ was developed, expressing the lower thresholds not as constant 

values but dynamically determining them based on the reactor status as for example in 

(3.11): 

4NO NH -Nmin   , 

3NH NO -Nmin    
(3.11) 

where α, ȕ, Ȗ and į are fixed parameters and NH4
+-N and NO3

–-N are the measured 

concentrations. These ‘criteria functions’ can as well have a nonlinear form, and for 

example, with reference to Figure 3.5, they can make such that if the first reactor 

receives a nitrogen overload in phase B, then the NOmin is adjusted and raised so that the 

denitrification phase can end earlier and leaving more time for to oxidise the ammonia. 

3.2 Analysis of the operational data 

The data used in this work were drawn from the operational records of a WWTP 

treating a mixed domestic/industrial effluent from the city of Mantua, in north-east Italy. 

The plant with primary sedimentation, has a hydraulic capacity of 100,000 PE and an 

organic loading capacity of 40,000 PE and presents four biological reactors working in 

parallel but with common sludge recycle from the secondary settler. It is managed by 

TEA s.r.l. and in all four tanks the nitrification and denitrification processes are achieved 

by adopting the intermittent aeration process configuration. In the period interested by 

the study a timed logic controlled the activation/deactivation of the blowers for three of 

the tanks, while in the other the switch between the aerobic and anoxic phase was 

decided by the commercial process controller named OSCAR (‘optimal solutions for 

cost abatement in nutrients removal’, ETC-ENG s.r.l., Trento, Italy). 

This study focuses on the data collected in the reactor managed via the OSCAR 

process controller. These data consist in the measurement produced by an ANISE 

(Hach-Lange, GmbH, Dusseldorf, Germany) probe composed by an ‘ammonium-N ion-

specific electrode’ (AISE) and a ‘nitrate ion-specific electrode’ (NISE) and a S∷can 

(Scan Messtechnik GmbH, Vienna, Austria) probe measuring ammonia, potassium, pH 

and temperature. 
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Figure 3.6 Process control scheme: the process SCADA manages the field 
measurements and actuators, serving as an interface between the process and the 

OSCAR controller 

The measurements provided by the S∷can probe spanned a relatively short period 

compared to the others, from 19th July to 27th November 2012 (Figure 3.7), and 

presented a low quality. 

 

Figure 3.7 The concentrations measured by the NH4
+ S∷can probe 

The measurements of the ANISE probe, instead, although consisting in the sole 

concentration values measured by the ammonia and nitrate probes, were available from 

the 1st July 2012 to the 22nd October 2013 (Figure 3.8). However, the data actually used 

for this work span from the 18th Sept. 2012 to the 7th May 2013. The starting time has 

been chosen so to begin the test right after the cleaning of the probes, due to the fact that 

the signal has a different behaviour accordingly to the state of the probes as we shall see 

next. The data after 7th May are instead in most part incomplete and show an erratic 

behaviour, therefore they were not used. 

Some further consideration shall be made concerning the differences between the 

measurements provided by the two probes installed. It can be observed, for instance, 

that the sensors although installed in the same reactor, present significantly different 

concentration profiles. The ANISE probe measures concentration values that varies 

between 2 and 6 mg/L in the summer period and maximum values that raise to 8-9 mg/L 
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in wintertime. The S∷can probe, instead, shows more irregular concentration behaviour 

that varies between 1 and 6 mg/L at the end of July 2012 but the range widens 

afterwards. 

 

Figure 3.8 The concentrations measured by the NH4
+/NO3

– ANISE probe 

A closer comparison of the two signals also reveals other discrepancies. As 

mentioned the range of the measurements provided is different, with those provided by 

the S∷can probe usually 2-3 mg/L lower than those provided by ANISE. This is 

probably due to a suboptimal calibration and maintenance of the two instruments. The 

time labels of the measurements in the offline dataset used are also different. While the 

data stamp of the ANISE measurements resulted aligned with the one of other 

measurements of the plant a problem in the data acquisition software anticipated the 

time label the S∷can probe measurements by almost 10 minutes (Figure 3.9). 

 

Figure 3.9 Differences in the measured signals of the two probes 

These considerations brought to the decision of discarding the S∷can probe 

measurements, therefore the following considerations only apply to the measurements 

provided by the ANISE probe. 

The dataset available presents an extremely variable sampling interval (Figure 3.10a) 

which is between 10 and 70 seconds, with mean value at 30 s in the first part (Figure 

3.10b) and between 60 and 70 s in from February 2013 to the end of the dataset. 
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(a) 

 
(b) 

 
Figure 3.10 Example of irregular sampling of the ammonia concentrations (ANISE 

probe) 

It should be also noticed that the data-logger shows an error, revealed by a negative 

sampling time, whenever the time switches between daylight saving time (DST) and 

summer time (Figure 3.11). 

 

Figure 3.11 Example of negative sampling time revealing the data logging error when 
switching from summer time to DST 

A particular diagnostic feature observed in both the ammonia and the nitrate signals 

is the ripple caused by water movements produced by the mixer. When the probe is 

clean the wavelets caused by the impellers hit the sensor and cause a considerable ripple, 
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whereas a fouled probe is shielded from the eddies and produces much less ripple. 

Figure 3.12 compares the signal of the NH4Ά probe in the clean and foul cases. 

 

Figure 3.12 The ripple during the anoxic phase is an indicator of the progressive 
fouling of the probe. The left plot (a) is from a foul probe (almost no ripple), whereas the 

right plot (b) shows a considerable ripple 

The analysis on the operational data of the Mantua plant revealed that a calibration 

and cleaning phase of the instrumentation are scheduled almost every 14 days and 

required up to 2 hours. It can be noticed in Figure 3.13 that the shielding effect of the 

fouling on the nitrate and ammonia signal is generally different, however it was not 

possible to establish which signal is more affected by the fouling. 

 

Figure 3.13 A particular of the measurements signals before and after the clean and 
calibration phase, a more disturbed signal after the procedure denotes a clean probe 

which is more sensitive to water buffeting caused by the mixer 

Other anomalies of the nitrate and ammonia signals emerged from the analysis of the 

operational data. Their characterization and exhaustive description is demanded to a 

following paragraph for a more direct comparison with the anomalies introduced in the 

numerical model used to generate synthetic data and a straightforward connection to the 

diagnostic tools introduced. 
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3.2.1.1 Blower switching logic 

Another signal retrieved from the instrumental data is the one governing the 

activation/deactivation of the blowers. This will be of extreme importance because it 

will be used to identify the aerobic and anoxic state of the process. The Mantua plant 

manager provided two aeration control signals, respectively 411i and 411, where the 

number identifies the reactor: the first governs the main aeration system while the other 

seems to manage a supplementary aeration system intervening in specific conditions, as 

shown in Figure 3.14. For the purpose of the determining whether the current state is in 

the aerobic or anoxic phase the signal of blower 411i was considered sufficient. 

 

Figure 3.14 Comparison between the blower activation signals 411 and 411i in the 
municipal WWTP of Mantua 

From the I/O signal of the blower it is possible to draw some considerations about 

the state of the system in the aerobic and anoxic phases. Examining for instance the 

length of both the nitrification and denitrification phase one can identify a threshold that 

separates the possibly suspect phases, those that lasts the most, from the reasonably 

normal ones. In general, the aerobic phases are characterised by longer durations, 

between 1 and 3 hours, but as can be seen in Figure 3.15 many extensive aeration periods 

were registered, with aerobic phases that sometimes outlasted the day. 

 

Figure 3.15 Length of the aerobic phases in the studied period 
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As for what concerns the anoxic phases it can be noticed that their durations are 

usually constrained in the 1-3 h interval and the phases that exceed this limit are a few. 

The difference in behaviour with respect to the aerobic phases can be explained 

assuming a different control strategy of the OSCAR controller which seems to favour 

the complete oxidation of the ammonia. 

 

Figure 3.16 Length of the anoxic phases in the studied period 

The limited amount of data available and the general poor quality of them made the 

objective of defining a FDI algorithm extremely difficult to reach. As shall be seen in 

the chapter of the results, the lack of information regarding the source of the 

fault/anomaly and its scarce characterization, both in terms of timely extent and 

quantification, prevented the possibility to create a reliable and robust detection method 

and most of all did not provided a sufficient dataset to perform the necessary validation 

of the methods implemented. In order to overcome these shortcomings, it was decided 

to synthetically produce the data needed using a mathematical model structure of a 

WWTP. The choice naturally fell on the benchmark framework, a valuable and reliable 

protocol used by more than two decades to implement new plant layouts or test the 

response of existing ones to different control strategies. 

3.3 A modified Benchmark simulation model 

for fault detection 

The simulation of the internal processes of a WWTP can be effectively obtained 

using the Benchmark Simulation Model 1 (BSM1) (Copp, 2002; Alex et al., 2008) that 

resulted from the Activated Sludge Models (ASM) (Henze et al., 2000) developed 

within the framework of the European Co-operation in the field of Scientific and 

Technical research (COST) action 682 and 624. Initially sharing the ASM limitation to 

a 14 days simulation interval the BSM1 an extended version was later proposed (the 

BSM1 long term, or BSM_LT (Rosén et al., 2004)) in the attempt to allow the 



44 Characterization of the wastewater treatment structure and operation 
 

assessment of the long term effect of the implemented control strategies. An adapted 

BSM1 using a modified ASM3_2N (Iacopozzi et al., 2007) modelling of the biological 

treatment and the ‘dry weather’ input of the BSM1_LT was used in this work to produce, 

provided the necessary modifications, a series of synthetic data used for the training and 

assessment of the fault detection procedures objective of this research. In the following 

paragraphs the benchmark model will be described in it essential parts and the 

modification introduced to adapt it to the intermitted aeration plant configuration will 

be presented. 

3.3.1 Definition and scope of the Benchmark 

Simulation Models 

The BSM simulation protocol is an accurate model of the biochemical processes of 

a WWTP that comes with a comprehensive description of a typical plant layout and 

configuration, a number of variables describing the time inputs and a series of 

performance indexes. All these elements concur in making it the most adequate tool for 

studying the methodological and operative aspects of the WWT systems. 

The Activated Sludge Model n. 1, or ASM1 (Henze et al., 1987), model represented 

the first tool used for the research, development and optimization of the biological 

nitrogen and organic carbon removal. From its experience the ASM2 was subsequently 

developed (Henze et al., 1995), including the bacterial kinetics of the phosphorus 

accumulating organisms (PAOs), useful to model the treatment of sewages rich in 

phosphorous. They both represented the first step in the direction of a reference system 

for the design and the assessment of advanced control strategies which later evolved in 

the ASM3. 

The three models composing the ASM family only differ on the modelling approach 

towards the simulation of the biological processes but they share the same standardized 

plant layout. The main features of the plant configuration implemented are the 

following: 

– the plant configuration is composed of 5 tanks in series followed by a 

secondary settler (Figure 3.17); 

– tank 1 and 2 are unaerated and fully mixed, while tanks 3 to 5 are aerated; 

– the first two reactors have volume 1’000 m3 each and the other three 1’333 m3 

each, for a total volume of 6’000 m3; 

– the aerated tanks are supplied with a fixed air flow-rate Ua = 18’000 m3/d; 

– the secondary settler has a volume of 6’000 m3 (area of 1’500 m2 and a depth 

of 4 m) subdivided in 10 layers, each 0.4 m high, and the feed point is set at 
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2.2 m from the bottom (6th layer). The settler is modelled according to 

(Takács et al., 1991); 

– the plant configuration has two internal recycles, a recycle from the 5th to the 

1st reactor with a default flowrate of 55’338 m3/d flowing through a pipe with 

internal volume 100 m3 and a recycle from the settler to the 1st tank of fixed 

flow-rate 18’446 m3/d flowing through a pipe with internal volume 300 m3; 

– the sludge waste is continuously pumped from the settler with a constant 

discharge of 385 m3. 

 

Figure 3.17 Schematic representation of the 'simulation benchmark' configuration 

For the modelling of the settling process the choice has fallen upon the one proposed 

by (Takács et al., 1991) and it is based on the concept of double-exponential settling 

velocity function, which has the advantage of being applicable to both the flocculants 

and the hindered settling conditions. The basis of the biological model of the BSM1 is 

represented by the ASM models family, whose main differences will be highlighted in 

a qualitative way. The details of the governing equations are left to their relative 

publications, however in the next paragraphs an extensive description of the biological 

model used in this work will be provided. Let’s just observe here that the biological 

reactors are here modelled in the ASM framework under the assumption of continuous-

flow stirred-tank reactor (CSTR), which means the concentrations are assumed to be 

timely constant in all the tank, and that the volume V is constant for all the time of the 

simulation, so that the flowrate Qin that enters the tank is the same as the output, Qout i.e. 

Qin = Qout. A direct consequence is also that the concentration of the compounds exiting 

the reactor is the same as the concentration inside the tank. 

The BSM protocol also comes with a set of three data files each representing a 

different kind of influent disturbances, namely the ‘dry weather’, the ‘storm weather’ 

and the ‘rain weather’ events, and are publicly available for download. These files, 

intended to allow the testing of the process configurations and control strategies under 

different influent conditions, contain the equivalent of 14 days of influent data sampled 

every 15 minutes and the input variables provided are time, SS, XB,H, XS, XI, SNH, SI, SND, 

XND, Q, SO, XB,A, XP, SNO and SALK. The meaning of most of these abbreviations will be 

explained in the following paragraph, except for those that have been modified such as 
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XP, the representing the particulate products arising from the biomass decay, XB,H and 

XB,A, respectively representing the heterotrophic and autotrophic active biomass and SND 

and XND, respectively the soluble and particulate fraction of the biodegradable organic 

nitrogen. Notice that the input values of SO, XB,A, XP and SNO are assumed to be zero 

while the alkalinity input SALK is set constantly at 7 mol/m3 for the entire period. The 14 

days period considered incorporates the diurnal variations of the organic load as well as 

the weekly trends, however such a limited time span makes negligible to account for the 

temperature-dependency of the kinetic parameters and once experimentally determined 

they can be considered constants. The ‘simulation benchmark’ protocol recommends to 

first run the model in a steady state and then use that as a starting point for the dynamical 

simulations, in order to limit the influence of the starting condition on the dynamical 

process. 

An important aspect of the benchmark protocol consists in the implementation of 

sensors and actuators that allow the testing of the custom control strategies designed. 

The formalization of their realistic modelling within the benchmark framework is 

subsequent to its release BSM1 and is based on two papers (Alex et al., 2003; Rieger et 

al., 2003). The latter in particular provides a classification (Table 3.1) sufficiently 

comprehensive to encompass all the different sensor types and aimed to ease the 

comparison of the simulated results by discouraging the users to implement custom 

sensors unless necessary. The classification contains both continuous (A, B0, C0) and 

time-discrete (B1, C1, D) sensor models. The main parameter describing is the response 

time, a parameter that describes the dynamic response of a sensor to a step input Figure 

3.18. 

 

Figure 3.18 Definition of the response time 

The response time is defined as the sum of the delay time T10, defined as the time to 

reach 10% of the final value of a step response, and the rise (or fall) time. Together they 

represent the time to reach and not leave a band between 90% and 110% of the final 

step response. 
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Table 3.1 Sensor classes according to (Rieger et al., 2003) 

Sensor class T90 Examples 

A 1 min Ion-sensitive, optical without filtration 

B0 10 min Gas-sensitive + fast filtration 
B1 10 min Photometric + fast filtration 

C0 20 min Gas-sensitive + slow filtration 

C1 20 min Photometric+ slow filtration, sedimentation 
D 30 min Photometric od titrimetric for total components 

 

Under the assumption that the real-time behaviour of a sensor is a combination of a 

first, or higher, order dynamics and a transport delay time, the sensors are modelled as 

a combination of first-order delay transfer functions Gsensor in the form: 

(
1

)
sensor

G s
K

Ts
, (3.12) 

where K is the gain and s the Laplace operator. Table 3.2 shows for each class of 

continuous sensors the number of transfer function suggested for the modelling and the 

value of T. 

Table 3.2 Parameters of the response time modelling (Rieger et al., 2003) 

Sensor class T90 Number of transfer fcns T RT10/T90 

A 1 min 2 0.257 0.133 

B0 10 min 8 0.849 0.392 
C0 20 min 8 1.699 0.392 

 

The example in eq. (3.13) shows in form of differential equation the sensor model in 

case of class A sensor, where two first-order delay transfer functions are used: 
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(3.13) 

where u(t) is the ideal signal of the coming from the simulation, x1(t) is the internal state 

of the sensor and u2(t) is the delayed measurement signal. 

The sensor model proposed for the BSM1 does not consider any attenuation on the 

signal, nor the presence of systematic errors, nevertheless it suggests to add a simplified 

model of the noise affecting the measurements. The noise is introduced as a normally 

distributed random signal, the white noise Ș(t), multiplied by the product of the 

measurement range (zmax – zmin) and the noise level (nl = 2.5 %): 

( ( )) ) (
max min

n t t z nlz , (3.14) 

with Ș(t) ~ (0,1). Both the noise level and the measurement range are information 

typically provided by the instrument producers, however in the BSM1 framework, it is 

recommended to use the values in Table 3.3 to facilitate the comparison of results. 
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Table 3.3 Recommended BSM1 sensor parameters range (Alex et al., 2008) 

Measured variable Measurement range 

Flow-rate (high range) [m3/d] 0-100’000 

Water level [m] 0-5 
Temperature [°C] 5-25 

pH 5-9 

SO [g COD/m3] 0-10 
Sludge blanket level [m] 0-5 

SNO [g N/m3] 0-20 
SNH (low range) [g N/m3] 0-20 

SNH (high range) [g N/m3] 0-50 
SALK [mol HCO3/m3] 0-20 

Mixed-liquor suspended solids [g/m3] 0-10’000 

Effluent total suspended solids [g/m3] 0-200 
COD [g COD/m3] 0-1’000 

OUR [g COD/m3⋅d] 0-2’000 

 

The noise signal described above is to be considered an additive component to the 

delayed measurement signal, so following the example of eq.(3.13) the intermediate 

disturbed measurement z1(t) can be computed as: 

1 2( ) ( ) ( )z t t tu n . (3.15) 

Finally, a further consideration on the sensor behaviour should consider that the 

instrument can only return measurements that fall inside its [zmax-zmin] range, which can 

be obtained by applying a simple saturation filter to the signal z1: 
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 (3.16) 

3.3.1.1 Properties and limits of the earlier activated sludge 

models 

The evolution of the ASM family was justified by the need to create a more advanced 

and efficient model support and by the limitations of the earlier ASM versions Here 

below a list of the main characteristics and shortcoming of the ASM1 and ASM2 model 

is presented. 

In both models the kinetics of the heterotrophic organisms were not depending on 

the variation of alkalinity in the mixed liquor nor on the nitrogen concentration. 

In the ASM1 model the soluble biodegradable organic nitrogen (SND) and the 

particulate one (SNI) were distinct, where in real case their different contribution results 

extremely difficult to measure separately. For this reason, the later ASM2 model only 

defined a soluble substrate composed by nitrites and nitrates in the state variable SNO3. 

Also, the ammonification kinetic defined in ASM1, resulted difficult to quantify, and 
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was substituted in ASM2 by a more correct expression, but the quickness of the process 

made it difficult to predict its effects anyway. 

The inert particulate substrate XI was differentiated in the ASM1 model according to 

its origin, the type of influent or the biomass, while the ASM2 model cancelled these 

distinctions because difficult to apply in real case scenarios; 

The lysis, combined with hydrolysis, is used in both models to describe the coupled 

effects of the endogenous respiration of the stored substrate, the death, the predation and 

the lysis of the biomass. However, the hydrolysis process has a dominant effect on the 

quantification of the oxygen consumption and the denitrification of the heterotrophic 

organisms and the coupling of it with the lysis process brought some difficulties in the 

choice of the kinetic parameters. Moreover, the description of the fermentation in the 

ASM2 model resulted complex and without good results. 

The ASM1 model does not includes the possibility to differentiate the decay rates of 

the nitrifying organisms in aerobic and anoxic conditions. An elevated solid retention 

time and the formation of anoxic zones in the aerobic reactor made it difficult to identify 

the maximum nitrification rate. 

Finally, in the assumption of both the ASM1 and the ASM2 models the biomass only 

grows according to the amount of external substrate and the consumption of oxygen 

after the end of the substrate causes the decay of the biomass. In conventional activated 

sludge processes, instead, the feeding regime of the biomass is variable (a ‘feast phase’ 

when the substrate is present and a ‘famine phase’ when is absent) and in this case the 

storage inside the cells plays an important role. 

3.3.1.2 Properties of the activated sludge model n.3 

Those considerations and the earlier applications of the models brought the need of 

a model that could overcome their limitations, such as the model of the endogenous 

respirations and the storage, eliminating the properties that did not produce relevant 

results, such as the lysis and the fermentation process. The result is the ASM3 model 

(Gujer et al., 2000), which includes all the corrections above and eliminates the variables 

related to the phosphorus, resulting in a more slender model yet not less complete. The 

ASM3 results actually simpler to calibrate with respect to the ASM1 model since the 

growth-decay metabolic processes are replaced by the concept of birth-death-

regeneration. This way the state variables are no longer directly influenced by the 

process parameters as in ASM1. In ASM1 model the respiration processes are associated 

either to the growth phase and to the cellular decay and it is therefore not able to explain 

the rapid variation in oxygen consumption experimentally observed. In ASM3, instead, 
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the respiration processes are only related to the aerobic growth and the decay process is 

replaced by endogenous processes: the cellular material is released by the cellular lysis, 

without oxygen consumption. 

(a) 

 

(b) 

Figure 3.19 Schematic representation of the growth-decay model in ASM1 (a) and the 
death-regeneration model in ASM3 (b) 

The non-biodegradable fraction (XI = fp⋅XH) remains as inert material, while the 

remaining part ((1 – fp)⋅XH) is considered available as slowly biodegradable substrate 

(Figure 3.19). 

(a) 

 

(b) 

 

Figure 3.20 Differences between the ASM1 (a) and the ASM3 models (b) 

Another relevant difference between the ASM1 and the ASM3 model is that the latter 

introduces the concept of the storage. The assumption is that all the rapidly 

biodegradable substrate (SS) in absence of external organic load is directly converted in 

storage material (XSTO). These compounds represent the carbonaceous source for the 

growth of the heterotrophic biomass for all the famine phase. This change is reflected 

by the fact that while in the ASM1 model all the state variables are influenced by the 

change of the in the microbial parameters, in the ASM3 model this relationship is 

weaker, increasing the identifiability of the parameters. Finally, it can be observed 

(Figure 3.20) that the ‘carbon path’ and the ‘nitrogen path’ in the ASM3 models are de-

coupled, and a separation in introduced between the endogenous metabolism of the 
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heterotrophic and autotrophic organisms without the recycling of the substrate, defined 

in the ASM1 as the decay of the autotrophic biomass. 

3.3.2 A modified long- term benchmark simulation 

model based on the activated sludge model n.2 

with two-steps nitrification 

The present study uses as basis for the modified BSM1_LT an slightly updated 

version of the ASM3_2N model (Iacopozzi et al., 2007), presented in (Giusti et al., 

2011) plus some adaptation due to the AC configuration examined The changes that are 

going to be presented only concern the biological processes, while for the settling 

process the model proposed by (Takács et al., 1991) and the specification of the BSM1 

still apply. 

While the BSM1 and the later BSM1_LT base the modelling of the biological 

processes mainly on the ASM1 model, due to its widespread diffusion at the time of the 

release rather than to its performances, the present work used as theoretical base of the 

biological process a revised version of the ASM3_2N model. The decision is motivated 

by the need to have a coherent and detailed description of the process of interest, which 

in this case is the nitrification/denitrification process, and it has been demonstrated in 

the previous paragraph that the ASM3 provides a better description for that than the 

ASM1. The ASM3_2N model is a modified version of the ASM3 characterised by the 

addition of the so called ‘2 steps nitrification process’. The modifications introduced 

further improve the description of the complete kinetic of the nitrifying bacteria, 

distinguishing the two stages of the process and accounting for the intermediate by-

products (the nitrites). The state variables of the nitrogen substrate are therefore 

separated into ammonium (SNH4), nitrites (SNO2) and nitrates (SNO3), while those of the 

autotrophic biomass are split into the one of ammonium-oxidating bacteria (Xns), where 

the subscript denotes the Nitrosomonas bacteria), responsible for the oxidation of 

ammonia into nitrites, and that of nitrite-oxidating bacteria (Xnb, from the Nitrobacter 

bacteria), which are responsible for the transformation of the nitrites in nitrates. The 

complete list of the state variables is reported in Table 3.4. 



52 Characterization of the wastewater treatment structure and operation 
 

Table 3.4 State variable of the ASM3_2N model (Iacopozzi et al., 2007) 

Type 
Variable 
number 

Symbol Units Description 
S

o
lu

b
le

 c
o

m
p

o
n

e
n

ts
 

x1 
2O

S
 

[g O2⋅m–3] Dissolved oxygen 

x2 S
S  [g COD⋅m–3] Readily biodegradable substrates 

x3 
2N g

S
 

[g N⋅m–3] Dinitrogen released by denitrification 

x4 
4NH

S
 

[g N⋅m–3] Ammonium concentration 

x5 
2NO

S
 

[g N⋅m–3] Nitrite nitrogen concentration 

x6 
3NO

S
 

[g N⋅m–3] Nitrate nitrogen concentration 

x7 I
S  [g COD⋅m–3] Soluble inert organic material 

x8 ALK
S  [mol HCO3

–⋅m–3] Alkalinity 

P
a

rt
ic

u
la

te
 c

o
m

p
o

n
e
n
ts

 

x9 I
X  [g COD⋅m–3] Particulate inert organic material 

x10 S
X  [g COD⋅m–3] Slowly biodegradable substrates 

x11 H
X  [g COD⋅m–3] Heterotrophic biomass 

x12 STO
X  [gCOD⋅m–3] 

Organic material stored by the 
heterotrophs 

x13 ns
X  [g COD⋅m–3] 

Ammonia-oxidizing autotrophic 
biomass (nitrosomonas) 

x14 nb
X  [g COD⋅m–3] 

Nitrite-oxidizing autotrophic biomass 
(nitrobacter) 

 

The assumption of a single nitrification step is acceptable when modelling a generic 

sewage treatment process, since the nitrite is considered as an intermediate by-product 

only present in the plant for a limited time. However, there are situations in which is 

important to quantify the amount of nitrites in the system, for example when there are 

issues with the nitrification capability of the plant, when there is a limit on the nitrite 

concentration of the effluent, when the characteristics of the influent facilitate the 

inhibition of the nitrite-oxidising bacteria or when the operative conditions limit the 

oxidation to the first step. In case the nitrification/denitrification processes have a strong 

importance, as in AC plant configurations, it is therefore preferable to have a more 

detailed model of them, so that the control strategies can be more effectively tested and 

that the process description results more accurate. 

Table 3.5 Difference of the description of the nitrification process between the ASM3 
model and the ASM3_2N 

ASM3 ASM3_2N 

autotrophic

4 2 3 2H ONH 2O NO 2H  

ammonia-oxidising

4 2 2 2

3
NH O NO 2H O

2
H  

nitrite-oxidising

22 3

1
NO O NO

2
 

autotrophic

4 2 3 2H ONH 2O NO 2H  
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The introduction of the two-step nitrification process brings the need to revise also 

the denitrification model of the ASM3 since the growth of the facultative heterotrophic 

organisms in anoxic conditions uses either nitrite or nitrate as final electron acceptor. 

Therefore, also the denitrification process in ASM3_2N is split in two steps. The 

denitrification step can be analysed in two different ways: one considers the 

denitrification process according to a scheme where the nitrate is first reduced to nitrite 

and later the nitrite is reduced to dinitrogen; the other considers a parallel reaction where 

either the nitrates and the nitrites are reduced to gas dinitrogen. For the present work the 

latter assumption is adopted, despite the debate over which of the two is the best 

modelling approach is still open (Abdul-Talib et al., 2002; Sin et al., 2008). 

In the ASM3_2N model presented in (Iacopozzi et al., 2007) when the nitrate 

concentration is null the equation related to the anoxic storage is not, and so are those 

of the endogenous respiration processes, which means that there is storage of organic 

substrate (and consequently a reduction of the concentration in the mixed liqueur) even 

when the nitrate is not present. Also, according to other kinetic rates the stored biomass 

auto-consumes by respiration reducing the nitrate even in absence of this compound. 

For this reason the kinetic ratios have been modified in (Giusti et al., 2011) splitting the 

storage to distinguish if it develops on the nitrites (ρ2) or on the nitrates (ρ3), and 

therefore it tends to decrease as the concentrations of nitrates decrease. In this updated 

version of the ASM3_2N model also the equation governing anoxic endogenous 

respiration have been modified, splitting them in one equation for each nitrogen oxide. 

Moreover, with respect to the work of (Iacopozzi et al., 2007), two partial ratios have 

been introduced, SNO2/(SNO2 + SNO3) and SNO3/(SNO2 + SNO3), accounting for the nitrites 

and nitrates concentration fraction with respect to the cumulative concentration of the 

NOx. This addition provides a better description of the evolution of the denitrification 

process, allowing to explicitly identify which process (ρ5 or ρ6) is favoured based on the 

nitrites or nitrates concentration and consequently which is the most influential. 

The following table (Table 3.6) lists the transformation processes simulated by the 

numerical model together with their kinetic rates ρi, where it can be observed that with 

respect to the biological transformations induced by the endogenous respiration both in 

the aerobic (ρ7, ρ15 and ρ16) and anoxic phase (ρ8, ρ9, ρ17 and ρ18) already present in the 

ASM3 model it is added the separation in two steps of the denitrification (ρ5-ρ6) and 

denitrification process (ρ13-ρ14). 
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Table 3.6 Kinetic rates of the processes involved in the aerobic tank 

Proc. 
Num. 

Process rate equation Description 

ρ1 
2

1

STO 11

O 1

2

2S

( ( ))
x x

temp t x
K x K x

k  Aerobic storage of SS 

ρ2 

2

2

NO

NO

2

5

O 6

STO

O 1 6

6

11

6 S 2

( ( ))
x

x

xK
temp t

K x

x
x

K x

K x

x

x x

k 
 Anoxic storage of SS 

on NO3 

ρ3 

2

2

5

NO

NO 5

5 2

5

O

STO

O 1

11

26 S

( ( ))
x

x

xK
temp t

K x

x
x

K x

K x

x

x x

k 
 Anoxic storage of SS 

on NO2 

ρ4 
42

81 4

H

O 1 NH 4 ALK

12 11

11

STO 12 11

8

( ( ))

/

( / )

xx x

K x K x K x

x
x

K x

temp t

x

x



 
Aerobic growth of 

heterotrophic 
organisms 

ρ5 

2

2

4

4

H

NH 4

5 5

NO

NO 5 5

O

8 O

6

8 12 11

11

ALK 1 STO 12 11

( ( ))

/

( / )

x

x

x xx

K
temp t

K x x x

K x

K x

x

x x
x

K x xx K

 

 
Nitrite denitrification 
(aerobic growth on 

SNO2) 

ρ6 

2

2

4

4

H

NH 4

6 6

NO

NO 6 5

O

8 O

6

8 12 11

11

ALK 1 STO 12 11

( ( ))

/

( / )

x

x

x xx

K
temp t

K x x x

K x

K x

x

x x
x

K x xx K

 

 
Nitrate denitrification 

(aerobic growth on 
SNO3) 

ρ7 2

2

1

H,O 11

O 1

( ( ))
x

temp t x
K x

b  Aerobic endogenous 
respiration 

ρ8 
2

2

O 6 6

11

O 1 6

H,NO

NO 5 6

x

x

K x x
b x

K x K x x x
 Anoxic NO3 

endogenous respiration 

ρ9 
2

2

O 5 5

11

O 1 5 5

H,NO

NO 6

x

x

K x x
b x

K x K x x x
 Anoxic NO2 

endogenous respiration 

ρ10 2

2

1

STO,O 12

O 1

( ( ))b temp t
x

x
K x

 XSTO aerobic 
respiration 

ρ11 
2

2

O 6 6

STO,NO 12

O 1 6 6NO 5

( ( ))
x

x

K x x
b temp t x

K x K x x x
 XSTO NO3 anoxic 

respiration 

ρ12 
2

2

O

STO,NO 12

O

5 5

NO 51 65

( ( ))

x

x

K x x
b temp t x

K x K x x x
 XSTO NO2 anoxic 

respiration 

ρ13 

2 4

ns

A

81 4

13

,O ,ns A,ALK1 A,NH 4 8

( ( ))
xx x

temp t x
K x K x K x

  Nitrification. I step 
(aerobic growth of Xns) 
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Proc. 
Num. 

Process rate equation Description 

ρ14 

4

2 4

NH ,I1

1 NH ,I 4

8 5

14

8

nb

A,O ,nb

A,ALK A,N 5O

( ( ))

x

Kx
temp t

K x K x

x x
x

K x K x



 
Nitrification. II step 

(aerobic growth of Xnb) 

ρ15 2

2

ns,O

A,O ,ns

1

13

1

( ( ))
x

b temp t x
K x

 Xns aerobic endogenous 
respiration 

ρ16 2

2

nb,O

A,O ,nb

1

14

1

( ( ))
x

b temp t
K x

x  Xnb aerobic endogenous 
respiration 

ρ17 
2

2

2

A,O ,ns

A,NO

A,O ,n

5

1

s A,N

3

O1 5

( ( ))

x

K x
b temp t x

K x K x
 Xns anoxic endogenous 

respiration 

ρ18 
2

3

2

A,O ,nb

A,NO

A,O ,n

6

1

b A,N

4

O1 6

( ( ))

x

K x
b temp t x

K x K x
 Xnb anoxic endogenous 

respiration 

ρ19 
10 11

11

10 11

(
/

( / )
( ))

h

X

x x
x

K
te p

x
k

x
m t  Hydrolysis 

 

The meaning of the model parameters used in Table 3.4 and that of the parameters 

used further in the text is clarified in Table 3.7, distinguishing them in three classes 

depending on whether they belong to the autotrophic biomass, the heterotrophic biomass 

or the hydrolysis process. In the context of the ASM models and of the standard BSM 

the parameters are usually considered constants, since the it is assumed that they do not 

change in the short period analysed (14 days). However, in this case, having chosen a 

long term approach brings the need to account for the temperature-dependency of the 

model parameters and that is achieved by computing their value at each time-step 

according to the Arrhenius law (3.17), where the current value of the parameter πT 

depends on the nominal value π20 relative to a temperature of 20°C (except when is 

specified otherwise) and on its specific coefficient ș: 
( 20)

20

T

T
e
   (3.17) 

Notice that some of the parameters used were experimentally determined in a 

previous work since they were not included in the standard ASM3 list of parameters. 
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Table 3.7 Kinetic parameters and their relative description 

Kinetic 
parameter 

Description 
Value 
(20°C) 

θ Units Reference 

Hydrolysis 

kh Hydrolysis rate constant 3 0.041 
g CODXS⋅ 

(g CODXH)– 1 ⋅d– 1 

(Henze et al., 
2000) 

KX 
Hydrolysis saturation 

constant 
1 - 

g CODXS⋅ 
(g CODXH)–1 

(Henze et al., 
2000) 

Ka Aeration system efficiency 0.15 - m–3 
(Iacopozzi et al., 

2007) 
Heterotrophic organisms, XH 

kSTO Storage rate constant 5 0.069 
g CODSS⋅ 

(g CODXH)–1 ⋅d–1 
(Henze et al., 

2000) 

ηNOx 
Reduction factor for 

denitrif. 
0.6 - - 

(Henze et al., 
2000) 

KO2 
Sat./inhibition constant for 

SO2 
0.2 - g O2⋅m–3 

(Henze et al., 
2000) 

KNOx Saturation constant for SNOx 0.5 - g N-NO3
–⋅m–3 (Henze et al., 

2000) 

KS 
Sat./inhibition constant for 

SS 
3 - g CODSS⋅m–3 

(Henze et al., 
2000) 

KSTO 
Sat./inhibition constant for 

XSTO 
1 - 

g CODXSTO⋅ 
(g CODXH)–1 

(Henze et al., 
2000) 

μH 
Maximum growth rare for 

XH 
2 0.069 d–1 (Henze et al., 

2000) 

KNH4 Saturation constant for SNH4 0.05 - g N-NH4
+⋅m–3 

(Henze et al., 
2000) 

KALK Saturation constant for XH 0.1 - mole HCO3
–⋅m–3 (Henze et al., 

2000) 

bH,O2 
Aerobic endogenous 

respiration rate for XH 
0.2 0.069 d–1 

(Henze et al., 
2000) 

bH,NOx 
Anoxic endogenous 

respiration rate for XH 
0.1 0.069 d–1 

(Henze et al., 
2000) 

bSTO,O2 
Aerobic endogenous 

respiration rate for XSTO 
0.2 0.069 d–1 

(Henze et al., 
2000) 

bSTO,NOx 
Anoxic endogenous 

respiration rate for XSTO 
0.1 0.069 d–1 

(Henze et al., 
2000) 

Autotrophic organisms, XA 

μns 
Maximum growth rare for 

Xns 
0.37* 0.105 d–1 

(Giusti et al., 
2011)  

μnb 
Maximum growth rare for 

Xnb 
0.87* 0.105 d–1 

(Giusti et al., 
2011) 

KA,NH4 Saturation constant for SNH4 1 - g N-NH4
+⋅m–3 

(Henze et al., 
2000) 

KNH4,I 
Ammonia inhibition of 

nitrate oxidation 
5 - g N-NH4

+⋅m–3 
(Henze et al., 

2000) 

KA,O2 
Sat./inhibition constant for 

SO2 
0.5 - g O2⋅m–3 

(Henze et al., 
2000) 

KA,NO2 Saturation constant for SNO2 0.5 - g N-NO2
–⋅m–3 

(Henze et al., 
2000) 

KA,NO3 Saturation constant for SNO3 0.5 - g N-NO3
–⋅m–3 

(Henze et al., 
2000) 

KA,ALK Saturation constant for XH 0.5 - mol HCO3
–⋅m–3 (Henze et al., 

2000) 

bns,O2 
Aerobic endogenous 

respiration rate for Xns 
0.15 0.11 d–1 

(Henze et al., 
2000) 
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Kinetic 
parameter 

Description 
Value 
(20°C) 

θ Units Reference 

bnb,O2 
Aerobic endogenous 

respiration rate for Xnb 
0.151 0.11 d–1 

(Henze et al., 
2000) 

bA,ns 
Anoxic endogenous 

respiration rate for Xns 
0.05 0.092 d–1 

(Henze et al., 
2000) 

bA,nb 
Anoxic endogenous 

respiration rate for Xnb 
0.05 0.092 d–1 

(Henze et al., 
2000) 

* parameter at 15°C 

 

A detail of the conversion rates ri relating the state variables with the process can be 

found in Table 3.8 while the description of the stoichiometric parameters involved can 

be found in Table 3.9. 

Table 3.8 Detail of the kinetic conversion rates for the state variables 

State 
variable 

Symbol Kinetic conversion rate ri 

x1 
2O

S
 

r1 = (YSTO,O2 – 1)⋅ρ1 + (1 – (1/YH,O2))⋅ρ4 + (fXI – 1)⋅ρ7 – ρ10 + (1 
– (3.43/YA,ns))⋅ρ13 + (1 – (1.14/YA,nb))⋅ρ14 + (fXI – 1)⋅ρ15 + (fXI – 1)⋅ρ16 

x2 S
S

 
r2 = – ρ1 – ρ2 – ρ3 + (1 – fSI)⋅ρ19 

x3 
2N g

S
 

r3 = [(1 – YSTO,NOx)/2.86]⋅ρ2 + [(1 – YSTO,NOx)/1.72]⋅ρ3 + [((1/YH,NOx) 
– 1)/1.72]⋅ρ5 + [((1/YH,NOx) – 1)/2.86]⋅ρ6 + [(1 – fXI)/2.86]⋅ρ8 + [(1 

– fXI)/1.72]⋅ρ9 + (1/2.86)⋅ρ11 + (1/1.72)⋅ρ12 + [(1 – fXI)/1.72]⋅ρ17 + [(1 
– fXI)/2.86]⋅ρ18 

x4 
4NH

S
 

r4 = iN,SS⋅ρ1 + iN,SS⋅ρ2 + iN,SS⋅ρ3 –iN,BM⋅ρ4 –iN,BM⋅ρ5 –iN,BM⋅ρ6 + [iN,BM 
– (fXI⋅iN,XI)]⋅ρ7 + [iN,BM – (fXI⋅iN,XI)]⋅ρ8 + [iN,BM – (fXI⋅iN,XI)]⋅ρ9 + [– iN,BM –
( 1/YA,ns)]⋅ρ13 – iN,BM⋅ρ14 + [iN,BM – (fXI⋅iN,XI)]⋅ρ15 + [iN,BM – (fXI⋅iN,XI)]⋅ρ16 

+ (iN,BM – fXI⋅iN,XI)⋅ρ17 + (iN,BM – fXI⋅iN,XI)⋅ρ18 + [iN,XS – iN,SS⋅(1 – fSI) 
– (fSI⋅iN,SI)]⋅ρ19 

x5 
2NO

S
 

r5 = [(YSTO,NOx – 1)/1.72]⋅ρ3 + [(1 – (1/YH,NOx))/1.72]⋅ρ5 + [(fXI 
– 1)/1.72]⋅ρ9 –(1/1.72)⋅ρ12 + (1/YA,ns)⋅ρ13 – (1/YA,nb)⋅ρ14 + [(fXI 

– 1)/1.72]⋅ρ17 

x6 
3NO

S
 

r6 = [(YSTO,NOx – 1)/2.86]⋅ρ2 + [(1 – (1/YH,NOx))/2.86]⋅ρ6 + [(fXI 
– 1)/2.86]⋅ρ8 –(1/2.86)⋅ρ11 + (1/YA,nb)⋅ρ14 + [(fXI – 1)/2.86]⋅ρ18 

x7 I
S

 
r7 = fSI⋅ρ19 

x8 ALK
S

 

r8 = (iN,SS/14)⋅ρ1 + [(iN,SS + (1 – YSTO,NOx – 1)/2.86)/14]⋅ρ2 + [(iN,SS + (1 
– YSTO,NOx – 1)/1.72)/14]⋅ρ3 – (iN,BM/14)⋅ρ4 + [(– iN,BM + (1 

– (1/YH,NOx))/1.72)/14]⋅ρ5 + [(– iN,BM + (1 – (1/YH,NOx))/2.86)/14]⋅ρ6 
+ [(iN,BM – (fXI⋅iN,XI))/14]⋅ρ7 + [((iN,BM – (fXI⋅iN,XI)) + (1 – fXI)/2.86)/14]⋅ρ8 

+ [((iN,BM – (fXI⋅iN,XI)) + (1 – fXI)/1.72)/14]⋅ρ9 + [1/(2.86⋅14)]⋅ρ11 
+ [1/(1.72⋅14)]⋅ρ12 + [– (1/7)⋅(1/YA,ns) – (iN,BM/14)]⋅ρ13 –(iN,BM/14)⋅ρ14 

+ [(iN,BM – (fXI⋅iN,XI))/14]⋅ρ15 + [(iN,BM – (fXI⋅iN,XI))/14]⋅ρ16 + [(iN,BM 
– fXI⋅iN,XI) – (fXI – 1)/1.72)/14]⋅ρ17 + [(iN,BM – fXI⋅iN,XI) – (fXI 

– 1)/2.86)/14]⋅ρ18 + [(iN,XS – iN,SS⋅(1 – fSI) – (fSI⋅iN,SI))/14]⋅ρ19 

x9 I
X

 
r9 = fXI⋅ρ7 + fXI⋅ρ8 + fXI⋅ρ9 + fXI⋅ρ15 + fXI⋅ρ16 + fXI⋅ρ17 + fXI⋅ρ18 

x10 S
X

 
r10 = – ρ19 

x11 H
X

 
r11 = ρ4 + ρ5 + ρ6 – ρ7 – ρ8 – ρ9 

x12 STO
X

 
r12 = YSTO,O2⋅ρ1 + YSTO,NOx⋅ρ2 + YSTO,NOx⋅ρ3 –(1/YH,O2)⋅ρ4 – (1/YH,NOx)⋅ρ5 –

(1/YH,NOx)⋅ρ6 – ρ10 – ρ11 – ρ12 

x13 ns
X

 
r13 = ρ13 – ρ15 – ρ17 

x14 nb
X

 
r14 = ρ14 – ρ16 – ρ18 
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Table 3.9 Values of the stoichiometric constants 

Stoichiometric 
constants 

Description Value Units Reference 

fXI 
Production of XI 
in endogenous 

respiration 
0.20 g CODXI⋅(g CODXBM)–1 

(Henze et al., 
2000) 

fSI 
Production of SI 
in endogenous 

respiration 
0.00 g CODSI⋅(g CODXS)–1 (Henze et al., 

2000) 

YSTO,O2 
Aerobic yield of 

stored product for 
SS 

0.85 g CODXSTO⋅(g  CODSS)–1 
(Henze et al., 

2000) 

YSTO,NOx 
Anoxic yield of 

stored product for 
SS 

0.80 g CODXSTO⋅(g CODSS)–1 
(Henze et al., 

2000) 

YH,O2 
Aerobic yield of 

XH 
0.63 g CODXH⋅(g CODXSTO)–1 

(Henze et al., 
2000) 

YH,NOx 
Anoxic yield of 

XH 
0.54 g CODXH⋅(g CODXSTO)– 1 

(Henze et al., 
2000) 

YA,ns 
Aerobic yield of 

XA 
0.10 g CODXns⋅(g N-NO2

–)–1 
(Marsili-Libelli 

et al., 2001) 

YA,nb 
Aerobic yield of 

XA 
0.14 g CODXnb⋅(g N-NO3

–)–1 
(Marsili-Libelli 

et al., 2001) 

iN,SI 
Nitrogen content 

of SI 
0.01 g N⋅(g CODSI)–1 

(Henze et al., 
2000) 

iN,SS 
Nitrogen content 

of SS 
0.03 g N⋅(g CODSS)–1 

(Henze et al., 
2000) 

iN,XI 
Nitrogen content 

of XI 
0.02 g N⋅(g CODXI)–1 

(Henze et al., 
2000) 

iN,XS 
Nitrogen content 

of XS 
0.04 g N⋅(g CODXS)–1 

(Henze et al., 
2000) 

iN,BM 
Nitrogen content 

of biomass XH, XA 
0.07 g N⋅(g CODBM)–1 

(Henze et al., 
2000) 

 

It is however generally difficult to grasp the mutual relationships among all the 

processes and the variables involved by reading them in the form of Table 3.8 and it is 

instead preferable to express them using the so called ‘stoichiometric matrix’ (Table 

3.10). Moreover, using this matrix it is easy to retrieve the conversion rates ri since: 

,i i j j

j

r w  , (3.18) 

where wi,j represents the stoichiometric relationship between the i-th state variable and 

the j-th process ρj.  
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Table 3.10 Stoichiometric matrix for the aerobic processes 
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Finally, the conversion rates so determined can be used to write the general mass 

balance equations of the biological reactor: 

1
( ) ( ) ( ) ( ) ( ( ))in

i in i out i iQ t Qx x x
V

t t t r x t  for i = 2,…,14. (3.19) 

Remembering that the reactors are modelled under the assumptions of being CSTRs 

with constant volume, and therefore it can be assumed that 

Qin = Qout, (3.20) 

it is possible to define a quantity q with the dimension of the inverse of time: 

in out
Q Q

V
q

V
. (3.21) 

which allow to rewrite equation (3.19) in a simpler form: 

( ) ( ) ( ( ))in

i i i ix x xq t t r x t  for i = 2,…,14 (3.22) 

This is valid for all the state variables of the biological model except for x1, i.e. SO2 

(dissolved oxygen), where the contribution of the exchange with the atmosphere must 

be accounted for: 

11 11 1 ( ( ))( ) ( ) ( ( ) ( () ))in

satLx x x C T t xa T tq t t r x t k  (3.23) 

with Csat given by the law: 

exp 7.7117 1.31403log( ( ) 45.93)
sat

C T t  (3.24) 

and 

( ) 20
( )( ) 1.024

in

T t

L a Air ta tk K . (3.25) 

The BSM1_LT model used as basis for this work is also provided, like the BSM1, 

with a dataset of synthetic data to be used as input, designed to account for different 

scenarios. Unlike its predecessor, though, only one dataset is provided for the long-term 

benchmark model, because in this case the simulation time spans over a year and there 

is room to include rain events and storm events alongside dry weather periods. The 

dataset is composed by the same variables of the files provided for the BSM1 protocol: 

time, SS, XB,H, XS, XI, SNH, SI, SND, XND, Q, SO, XB,A, XP, SNO and SALK, plus the addition 

of the temperature. The total period covered by the measurements is 609 days and, as in 

the BSM1/ASM files, the measurements are assumed to be sampled every 15 minutes. 

The temperature profile over the year is modelled as a sinusoidal trajectory with its peak 

value at the start of August and the minimum at the beginning of February (based on the 

hypothesis of a plant located in the northern hemisphere): 

/[ C] 15 5 cos 365(time[d] 28)2T  . (3.26) 
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In order to increase the realism of the temperature model another sinusoidal function 

with period of 1 day and amplitude of 1°C is summed to eq. (3.26), to account to the 

circadian variation of it. 

The plant layout previously described for the ASM family and the BSM1 model has 

also been modified to account for the different configuration induced by the AC control 

strategy. In particular, with the intermittent aeration configuration the reactors are no 

more used exclusively for the aerobic or the anoxic processes but both can take place in 

the same reactor provided the aeration is active or not. This distinction of use has been 

therefore removed and instead of five separate tanks the biological reactor is assumed 

to consist in a larger one with a volume double than the total volume of the biological 

reactors of BSM1 (i.e. 12’000 m3). The modelling of the settling process, instead, 

remains unchanged. Here below the main features of this plant configuration are listed: 

– the plant configuration is composed of 1 biological reactor followed by a 

secondary settler (Figure 3.21); 

– the biological reactor is fully mixed, both in the aerated and in the anoxic 

phase; 

– the total volume of the biological reactor is 12’000 m3 (but the recirculation 

flow rates and the excess sludge are kept equal to the original BSM); 

– the biological reactor is intermittently supplied, according to the 

concentrations of ammonia and nitrates measured, with a fixed air flow-rate 

Ua = 18’000 m3/d; 

– the secondary settler has a volume of 6’000 m3 (area of 1’500 m2 and a depth 

of 4 m) subdivided in 10 layers, each 0.4 m high, and the feed point is set at 

2.2 m from the bottom (6th layer). The settler is modelled according to 

(Takács et al., 1991); 

– the plant configuration has 1 recycle from the settler to the biological reactor 

with a fixed flow-rate 18’446 m3/d flowing through a pipe with internal 

volume 300 m3; 

– the sludge waste is continuously pumped from the settler with a constant 

discharge of 385 m3. 

 

Figure 3.21 Schematic plant layout of the BSM model adapted for the intermittent 
aeration coniguration 

Input
sewage

Alternate
aerobic/anoxic tank

Treated
effluentSecondary

settler
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In the real plant of Mantua, whose characteristics were presented in a previous 

paragraph, the intermittent aeration was governed by the OSCAR control supervisor 

based on the concentration measured in the aerobic tank. Unfortunately, the underlying 

control logics of OSCAR are unavailable because patented, therefore in the attempt of 

achieving similar results a simpler switching logic is implemented in the simulation 

model. The activation/deactivation of the blowers is regulated by a simple double relay 

controller depending on the concentrations of nitrogen and ammonia measured in the 

tank. Given the concentration thresholds for the NOx
– and NH4

+ ThNOx,max, ThNOx,min, 

ThNH4,max, ThNH4,min, and defining z4 as the measurement of the ammonia (state x4) and 

zx as the sum of the NO2
– and NO3

– contribution, 

zx = f(xx), xx = x5 + x6 (3.27) 

the air is supplied according to the following rule: 

4

4

NH NO

NH NO

( ) (if 0
( )

0

),

(f ), 0)i (

x

x

a

in

R t R t

R t R t

U
Air t  (3.28) 

where Ua is the fixed flow-rate used in the aerated reactors of the regular ASM models 

and RNH4(t) and RNOx(t) are the responses of the passive relays respectively: 

4

4 4 4 4

4

4 NH ,

NH NH NH , 4 NH ,

4 NH ,

if ( )0,

( ) ( 1) , if ( )

1, if ( )

min

min max

max

z t Th

R t R t Th z t Th

z t Th

 (3.29) 

and 

NO ,

NO NO NO , NO ,

NO ,

if ( )1,

( ) ( 1) , if ( )

0, if ( )

x

x x x x

x

x min

min x max

x max

z t Th

R t R t Th z t Th

z t Th

 (3.30) 

In Table 3.11 are reported the threshold values that regulate the switching of the 

blowers. 

Table 3.11 Threshold values regulating the activation of the blowers 

Threshold Value [mg/L] 

ThNH4,max 5 
ThNH4,min 2 

ThNOx,max 0.5 
ThNOx,min 10 

 

As the performance of the AC process implemented depends on the switching logic 

of (3.28), it is crucial to recognise whether the concentration measured are reliable or 

not, which is exactly the purpose of this study. Therefore, when building a model with 

the scope of producing data to be used in this kind of analysis, one must not disregard a 

careful and exhaustive modelling of the sensors, especially those directly influencing 
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the control system, and of the disturbances affecting them. The implementation of the 

sensors in this work started from the one recommended for the simulation benchmark 

protocol and described in the previous paragraph. Some adjustments were required to 

adapt such a model to the examined case, mainly concerning the addition of a model for 

the drift and of the fouling phenomena which are considered important source of 

unreliability. For the sake of simplicity, the more refined sensor modelling just focused 

on the measurements directly affecting the control system: the concentration of NH4
+ 

and NOx
– in the biological reactor. The model wants to mimic the behaviour of a plant 

implementing an AC control configuration similarly to the one implemented in the 

Mantua plant, therefore it is assumed that the same category of sensors is used to feed 

the control logic, that is to say the ion-specific sensors. According to the classification 

of (Rieger et al., 2003) reported in Table 3.1 the ion-specific probes fall in the class A 

category and their transport function is modelled as a series of two first-order linear 

transport functions (Table 3.2) as in eq.(3.13). A noise component n(t) is added to the 

sensor transformed signal following the relation (3.14) but with respect to the suggested 

values of noise level and measurement range of Table 3.3 some changes are introduced. 

It was observed that a noise level of 2.5 % of the measurement range resulted in a more 

disturbed signal compared to the one of the concentrations measured in the Mantua 

plant, therefore it was opted for a smaller coefficient, nl = 0.5 %. On the contrary the 

measurement range of NOx
–, the measured variable accounting for both the nitrites and 

nitrates contributions (3.27), is extended from the 0-20 interval to 0-50 (see Table 3.12), 

consistently with the higher nitrate concentration observed in the operational data of the 

Mantua plant. 

Table 3.12 Measurement range of the nitrate and ammonia sensors 

Measured variable Measurement range 

SNOx [g N/m3] 0-50 

SNH4 (low range) [g N/m3] 0-20 

 

As anticipated before the intent of the model is to produce a dataset of measurements 

as realistic as possible so that they can be used to train and assess the fault detection 

algorithms that will be discussed later, and to this purpose is instrumental a realistic 

description of the disturbances that affect the sensors. Therefore the sensor model 

proposed in (Rieger et al., 2003) is here improved incorporating a drift component d(t) 

and a fouling component fl(t), so that the disturbed measurement signal z(t) returned by 

the modelled sensor be the result of the following combination: 

2( ) ( ) ( ) ( ) ( )z t t d t n t fu l t , (3.31) 
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where u2(t) and n(t) respectively are the output of the transfer function and the noise 

component previously described. 

Moreover, it was also implemented a ‘calibration phase’ of the sensors. Every 14 

days, the average calibration frequency observed in the Mantua plant, a step signal resets 

the coefficients of the simulated disturbances, i.e. resetting the random values used to 

modulate the effect of the perturbations induced by the drift and the fouling in a realistic 

way. This intended to mimic the effect of extracting and recalibrating the probe, 

cleaning it, repairing or substituting parts of it. 

As well as the noise, the drift effect in the measurements is modelled as an additive 

component to the transformed signal. To incorporate the randomness of real 

measurements the drift has been designed (eq.(3.32)) as composed by a constant value 

kd = 0.08, representing the maximum deviation that can affect the instrument, modulated 

by a coefficient į(t) drawn from a uniform distribution (–1,1) after every calibration: 

) )( (
d

t k td  . (3.32) 

The fact that the random coefficient į(t) can assume both positive and negative values 

accounts for the drift effect on the measurement to either increase or decrease the actual 

value of the measured variable. Furthermore, by randomly picking a value that can be 

either close or far from the previous one can account for the different kind of 

maintenance that can take place during the calibration procedure (cleaning, calibration, 

substitution of one or more components, etc.) 

The effect of the fouling on the measurements, that is to say the disturbance on the 

measurement due to a reduced sensitivity and accuracy due to layers of dirt depositing 

on the sensor surface, is here modelled only in its macroscopic effect observed in the 

operational data of Mantua, i.e. the attenuation of the noise of the measurements. The 

effect of fouling on the sensor is therefore simulated as an exponential decay function 

fl(t) that multiplies the random noise component of the concentration measured: 

( )( ) t t
efl t


, (3.33) 

where the exponent α(t) is the product of a constant and a stochastic value: 

(( )) flk tt  . (3.34) 

The constant coefficient kfl is obtained assuming a maximum of 95% reduction of the 

measurement noise after 14 days since the last calibration of the sensor: 

kfl = –ln(1–0.95)/Δtcalib (3.35) 

while the random ϕ is drawn after every calibration phase from a uniform distribution 

(0,1). Also in this case, as for the drift, the idea is use to the constant coefficient to 
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impose a maximum attenuation level but, lacking a more detailed model of the fouling 

process that link the effect to the state of the biological reactor, account for the different 

possible fouling realizations by means of a stochastic variable (Figure 3.22). 

 

Figure 3.22 Example of attenuation levels during the 14 days period 

3.4 Definition and detectability of faults and 

anomalies 

The aim of this research is to design a FD method for the WWTPs implementing the 

intermittent aeration configuration for the optimal removal of the nitrogen 

concentrations. In this paragraph, will be first described the main characteristics of the 

faults and anomalies encountered in the analysis of the operational data and those 

introduced in the simulation model. Subsequently the diagnostic parameters extracted 

from the signals will be presented. 

3.4.1 Fault definitions 

The analysis of the historical operational data provided by the municipal plant of 

Mantua allowed to determine a set of recurring anomalies in the signals. The origin of 

some of them can be quite easily related to a malfunction of one or multiple measuring 

instruments, for some others, instead, is not straightforward to determine whether the 

disturbance is caused by an anomalous organic load concentration in the influent or by 

a deviance of the measurement device. Further on in the paragraph the terms ‘gross 

faults’ and ‘finer faults’ will be used to refer respectively to the first category of faults 

and to the latter. Notice that some of the anomalies observed in the operational data have 

been also introduced and simulated in the numerical model. 
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3.4.1.1 Gross faults 

In the category of gross faults are collected all those anomalies in the measurements 

caused by a fault of the instrument and that mostly manifest themselves with a 

distinctive signature alteration of the signal. Here below are reported the most relevant. 

The signal breakdown (Figure 3.23) is a discontinuity in the data flow that can be 

related to a power failure or to a malfunction of the communication channel. In a real-

time scenario a warning should be issued if the acquisition system does not receive a 

data from the signals within a previously determined time frame threshold. In the off-

line data analysis this malfunction can be easily revealed with a similar approach by 

comparing the timestamp label of two consecutive measurements. 

 

Figure 3.23 Example of signal breakdown fault 

The presence of a fault is reported if the samples have a constant value over the same 

time-horizon as in (Figure 3.24). In this category, we include either the malfunctions 

related to ranging and out-of-scale problems of the instrument but also the 

communication anomalies that produce measurements ‘stuck’ on the same value for a 

long time. 

 

Figure 3.24 Example of constant signal (zero-scale) fault 

A frequently encountered class of fault is represented by the spikes on the signal 

(Figure 3.25), short-lived artefacts possibly caused by electric disturbance. The 
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observed amplitude of the spikes is typically greater than 3 or 4 mg/L in the ammonia 

and nitrate measurements of the operational data. In the sensor model developed for the 

numerical model this kind of disturbances was not introduced. 

 

Figure 3.25 Example of spike on the ammonia concentrations measured 

3.4.1.2 Finer faults 

The anomalies that go under this category are characterized by a more complex 

affection on the signal, such that it is a hard task to recognise ‘at glance’ whether they 

are caused by a proper malfunction of the measurement instrument, and thus 

manifestation of an actual fault, or they are related to an alteration of the incoming 

pollutant concentrations. Generally, the only way to recognise a departure of the 

measurements from the actual concentration level of a compound would be to use 

multiple sensors or compare the measurements returned by the instrument with 

laboratory analysis, but unfortunately such comparison was not available for the data 

used in the present study. Being able to identify these faults and distinguish them from 

the process anomalies on a statistical basis suitable to provide a real-time estimation of 

the state of the instrument and its reliability was the driving motive of this research, 

therefore a proper identification of the fault episodes revealed to be crucial in the 

development of the FD procedure. Despite that, the off-line operational data from the 

Mantua plant. on which the detection algorithm has been first tested presented the 

inconvenience of poor description of the fault events, which prevented the possibility of 

a thorough training of the method as shall be seen in a few lines. The need of an accurate 

list of the instrument malfunction has been one of the main reasons that brought to the 

use of a numerical model for the data generation, where it has been possible to keep 

track of the anomalies introduced in the modelled sensors and easily distinguish their 

effect from those induced by the influent. Here below are presented some considerations 

over the finer faults observed. 
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One recurring example of finer anomaly is represented by a prolonged aeration phase 

(Figure 3.26), characterised, especially in the operational data, by high nitrate 

concentrations while the ammonia levels stay in their normal range; in fact, the 

proprietary logic of the control supervisor OSCAR prevent the ammonium overloads 

automatically switching the aeration on whenever the NH4
+ concentration exceeds a 

given threshold. These anomalies can be either related to the influent pollutant content 

or an effect of a malfunction of the sensors. In the first case the prolonged aeration 

period would be a natural consequence of a high ammonium content in the influent, such 

to require an unusual amount of time to decrease its concentration below the set-point 

threshold for the deactivation of the blowers. In the latter case, however, a malfunction 

of the instrument resulting in an overestimation of the actual concentration in the tank 

would lead the control system to continue the air supply beyond the necessary with the 

consequence, among other factors, of an increase of the operational costs. 

 

Figure 3.26 Example of prolonged aeration phase leading to high nitrate 
concentrations 

As anticipated, distinguish between the operational and the instrumental origin of the 

anomaly observed is not trivial and requires the availability of a set of independent 

evaluations of the quantities of interest. Unfortunately, this kind of information was not 

provided for the data retrieved from the municipal plant of Mantua and this distinction 

could not be made. Therefore, as shall be seen later in section 5.1, the occurrence of this 

kind of anomaly in the signal could not be properly investigated with the more refined 

methods set up for the detection of the complex faults, and, similarly to the gross faults 

a simple method, based on a quite easy to determine feature, the duration, was 

implemented to filter it out from the finer detection. This inconvenience of course does 

not affect the data generated by the numerical model, since the disturbances perturbing 

the measurements are exactly known and separable from those affecting the input 

concentrations. 
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Another very common anomaly, observed in particular in the experimental plant data, 

is represented by periods of extremely low nitrogen concentrations in the tank (nitrate 

below 2 mg/L). In its typical pattern (Figure 3.27) the anoxic phases result longer than 

in the normal operative conditions and the nitrate concentrations slowly decrease 

towards almost zero and then increase again until the normal behaviour is restored, while 

the aerobic phases result generally extremely short. Again, this can be either related to 

a lower nitrogen content of the incoming influent or a drift of the ion-specific probe 

underestimating the concentrations measured but despite the apparent economic 

advantage of having minimum aeration periods the prolonged anoxic phase could 

introduce in the system an undesirably high amount of nitrogen and result in the 

violation of the normative constraints for the effluent quality. 

 

Figure 3.27 Example of low nitrate concentrations. 

Other alterations affecting the instrument result in less evident effect on the measured 

signal, even more in a process operating with intermittently rising and decreasing 

concentrations. This made particularly hard to list the malfunctions occurring in the 

experimental data. 

3.4.2 Preliminary screening of the gross 

malfunctions 

Starting from the classification introduced in paragraph 3.4.1 and the considerations 

about the detectability of the different anomalies observed, a differentiated detection 

strategy for the ‘gross faults’ and the ‘fine faults’ is proposed. Gross faults are easier to 

identify and their detection is for the most part unrelated to the aerobic-anoxic phase 

discretization approach needed for the detection of the finer class of anomalies. This is 

particularly advantageous since it allows to issue a fault warning without waiting for the 

end of the operational phase. For these reasons the screening procedure to detect the 

gross anomalies is inserted in the FD framework proposed before the one devoted to the 

assessment of the fine faults. Here below is presented the detail of the preliminary check 

on the signal implemented for the different class of gross anomalies. 
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– Signal breakdown: given an average sampling interval of 30 s for the field 

measurements and 1 minute for those generated by the numerical model, a 

signal breakdown fault is diagnosed if no samples are received for ten minutes 

(approximately twenty samples). 

– Constant signal: if the samples have a constant value over the same time-

horizon as in the previous case (~10 minutes) a fault is reported. Both proper 

constant signal faults and zero-scale faults are detected using this approach. 

– Spikes: from the analysis of the field data of the nitrate and the ammonia 

concentrations it was observed an average amplitude of the spikes between 3 

and 4 mg/L while the maximum variation between consecutive 

measurements is less than 1 mg/L, therefore a detection threshold is set at a 

conservative value of 2 mg/L. So, if two subsequent samples differ by more 

than 2 mg/L, this is attributed to a spike disturbance, because it is very 

unlikely that such a sudden variation corresponds to an actual concentration 

change. This detection tool also allowed to discriminate the anomaly 

observed in the measurements of last hours of 7th of May 2013 (Figure 3.28), 

where it is present a strong measurement anomaly which has the 

characteristics of a signal overlapping, probably caused by a malfunction of 

the data logging system. In the data generated by the numerical model a more 

general criterion is used to set the detection threshold. For each type of sensor, 

the limit difference to detect the presence of a spike in the signals is set at 

10 % of the respective recommended range of the measurements defined in 

Table 3.3. 

 

Figure 3.28 Signal overlapping on 7th May 2013. 

– Phase duration anomaly: from the analysis of the field measurements 

emerged that the average duration of the aerobic and anoxic phases is between 

1 and 2 hours but some episodes of longer phase duration were observed. In 
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whether the anomalous duration of the phases was originated by an 

anomalous organic load of the influent or by an overestimation or 

underestimation of the actual concentration in the reactor inducing the 

process controller to respond with longer aerobic or anoxic durations. In order 

to filter out these cases and leave the refined fault detection methods to deal 

only with the correctly labelled anomalies, a preliminary screening is 

implemented to isolate the phases lasting more than 3 hours. 

3.4.3 Trend analysis and parameter extraction 

Differently from a traditional plant configuration, where the concentrations measured 

in the reactors are expected to change only according to changes in the influent and in 

the environmental conditions, in alternated cycles plant configurations the same tank 

periodically acts as aerobic and anoxic reactor resulting in ammonia and nitrate 

concentrations periodically increase and decrease according to the 

activation/deactivation of the blowers imposed by the process controller. The trends of 

the main process variables during the basic alternate cycle are shown in Figure 3.29. 

During the oxygenation phase ammonium nitrogen is oxidized to nitrate, whereas during 

the anoxic phase nitrate is reduced to molecular nitrogen and new ammonium enters the 

reactor. The state of the aerator is signalled by an On/Off Boolean signal. 

 

Figure 3.29 Basic alternate cycle and related signals. Two sensor outputs (NH4Ά, 
NOx·) come from the sensors and an actuator signals the state with a Boolean output. 

 

3.4.3.1 Differing parametrization depending on the available 

data 

This intermittent behaviour of the concentrations in an AC plant configuration 

naturally makes more difficult the task to infer the state of the sensor and the reliability 

of the measurements from the relation among the punctual value of a set of parameters. 

The mutually-exclusive switching of the aeration or of the mixer in the Mantua plant is 
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managed by a complex control system developed by E.T.C. engineering s.r.l. whose 

control logics are unavailable due to patent restriction and therefore are not taken into 

account, however from a general point of view the cause-effect relationship is such that 

the switching is related to the exceeding of the predefined thresholds for the NOx
– and 

NH4
+ concentrations. Based on this same principle a simplified switching rule 

(eq.(3.28)) is implemented in the numerical model to simulate the AC configuration. 

Starting from these considerations, a set of representative parameters from the trends of 

Figure 3.29, the probe signals are used as observed variables and the Boolean signals as 

phase delimiters. 

As shall be seen further on in Chapter 5, given the intermittent nature of the process 

it has been decided to split the detection procedure of the more subtle anomalies in two 

parts, one for the aerobic phases and one for the anoxic ones, to be also performed 

intermittently. For this reason, the parameterization of the signals too was chosen in a 

way suitable to reflect this alternation, which means that the parameters computed are 

intended to be representative of the characteristics of the signal in the current phase. 

The four parameters, shown in Figure 3.30, extracted in each phase, are reported in 

Table 3.13. 

Table 3.13 Parameters extracted from the operational plant data of Mantua in each 
process phase 

Description Symbol 

Average ammonia concentration in the biological reactor m⋅,NH4+ 

Growth or decay rate of the ammonia concentration in the biological 
reactor (slope NH4

+
out) 

s⋅,NH4+ 

Average nitrates concentration in the biological reactor m⋅,NOx– 

Growth or decay rate of the nitrate concentration in the biological 
reactor (slope NOx

–
in) 

s⋅,NOx– 

 

The rationale behind this choice lies in the physical meaning of the parameters 

computed: the slopes of the ammonia and nitrate signals in the aerobic phase represent 

the two aspects of the nitrification process, the decrease of the ammonia concentrations 

due to the oxidation process and the consequent increase in the nitrates concentrates; the 

meaning of the two average concentration values is instead straightforward. The same 

rationale just explained for the aerobic phase also applies for the anoxic phase, with the 

only difference of course that the two slopes computed in his case represents the two 

sides of the denitrification process. Despite the perturbations given by the incoming 

ammonia from the influent and nitrogen from the recycle, the idea is that there is a close 

relationship between the two increase/decrease rates and the average concentrations of 

the quantities of interest in the reactor, and this relationship is expected not to change, 

at least not quickly and not in the middle term time range. Here below the detail of the 
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computational procedure for the parameter extraction is presented, focusing in particular 

on the computation of the concentration rations. 

 

Figure 3.30 Definition of the fault detection parameters and related computing 
scheme. The parameters indicated have the following meaning: mox,NH4+= NH4Ά 

nitrification average concentration; mox,NOx– = NOx·, nitrification average concentration; 
sox,NH4+ = NH4Ά nitrification slope; sox,NOx– = NOx· nitrification slope; manox,NH4+ = NH4Ά 

denitrification average concentration; manox,NOx– = NOx· denitrification average 
concentration; sanox,NH4+ = NH4Ά denitrification slope; sanox,NOx– = NOx· denitrification 

slope 

A pre-sampling delay Δt at the beginning of each phase is necessary to avoid 

computing the slope with uncertain data, before the true slope can be reliably computed. 

The initial part of each phase has a variable latency depending on the conditions of the 

cycle. To discard the initial data a moving window of M samples is considered and the 

slopes are computed as 
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the slope is computed as the regression line based on all the remaining phase samples, 

as shown in Figure 3.31. The blower on/off signal was used to detect the phase edges. 
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Table 3.14 Parameters of the moving windows used to compute the signal slopes 

Parameter Aerobic phase Anoxic phase 

Ammonia window length (M⋅,NH4+) 10 5 

Ammonia slope threshold level (S̅⋅,NH4+) –20 40 

Nitrates window length (M⋅,NOx–) 10 5 

Nitrates slope threshold level (S̅⋅,NOx–) 20 –40 

 

 

Figure 3.31 An example of slope computation in the anoxic NH4Ά case. The moving 
window is MNH4+ samples long and scans the data until the conditions of Eq. (3.37) are 
satisfied. The slope computation begins from that point using all the remaining data 

until the end of the phase. 

As already observed, layers of dirt tend to deposit on the surface of the measurement 

instruments causing their fouling. The most evident effect of this phenomenon is that 

the signal of a fouled probes appears smoother, less sensitive to the small concentration 

variations, when compared with the more coarse shape of a clean one. Moreover, 

although a thorough quantitative investigation of the cause-effect relationship was not 

the objective of this research, it is safe to assume that a smoother, and therefore fouled, 

signal is likely to return biased measurements, thus the evaluation of the smoothness of 

the concentration profiles can be used as a qualitative assessment of the state of the 

instrument. The particular parameterization chosen returns an interesting by-product 

that can be used as well as a diagnostic feature for the mentioned purpose: the correlation 

coefficient r², associated to the computation of the regression lines. Later on, in the 

chapter describing the details of the FD method implemented, it shall be presented how 

this parameter is linked to the state of the sensor. 

One of the major limitations in the field measurements used consisted in the 

availability of just two signals: the nitrate and ammonia concentrations in the biological 

reactor, and in the consequently limited amount of information that could be extracted 

from. Using the numerical model, instead, it has been possible to simulate the sensors 

at will and thus to draw on a higher number of measurements, consequently increasing 

the discriminatory power of the methods devised. Keeping the same parameterization 

framework used for the plant data, i.e. the division in aerobic and anoxic phases, a 
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number of sensors have been introduced, being careful that they gauge physical 

quantities related to the nitrification/denitrification process and are actually measurable 

in a real plant. As for what concerns the ammonia and nitrogen concentrations in the 

aerobic tank, the same parameterization presented for the operational data (average 

values and slopes) is maintained. It is worth mentioning, also, that the NOx
– 

measurements are simulated summing the contributions of the state variables describing 

the nitrites and the nitrates, respectively SNO2 (x5) and SNO3 (x6), as in eq. (3.27). The 

ammonia measurements considered instead are relative to its specific state variable: SNH4 

(x4). 

All the other sensors used have been modelled using the simpler approach proposed 

by the benchmark protocol, which means without other disturbances than the noise, as 

in eq.(3.15). The additional monitored variables considered are the temperature, the 

concentration of dissolved oxygen (state variable x1, SO2) and the concentration of 

suspended solids (state variable x2, SS). These variables have been parameterized using 

just the average value and the difference between the maximum and minimum measured 

value in the time spanned by the respective process phase, since no other meaningful 

relation was found. Table 3.15 reports the list of the parameters retrieved for each phase 

from the numerical model. 

Table 3.15 Parameters extracted for each process phase from the data generated by 
the numerical model 

Description Symbol 

Average ammonia concentration entering the biological reactor m⋅,NH4+,in 

Difference between the maximum and minimum ammonia 
concentration entering the biological reactor (range NH4

+
in) 

rg⋅,NH4+,in 

Average ammonia concentration in the biological reactor m⋅,NH4+,out 

Difference between the maximum and minimum ammonia 
concentration in the biological reactor (range NH4

+
out) 

rg⋅,NH4+,out 

Growth or decay rate of the ammonia concentration in the biological 
reactor (slope NH4

+
out) 

s⋅,NH4+,out 

Average nitrates concentration entering the biological reactor m⋅,NOx–,in 

Difference between the maximum and minimum nitrates concentration 
entering the biological reactor (range NOx

–
in) 

rg⋅,NOx–,in 

Average nitrates concentration in the biological reactor m⋅,NOx–,out 

Difference between the maximum and minimum nitrates concentration 
in the biological reactor (range NOx

–
,out) 

rg⋅,NOx–,out 

Growth or decay rate of the nitrate concentration in the biological 
reactor (slope NOx

–
out) 

s⋅,NOx–,out 

Average temperature m⋅,Temp 

Average dissolved oxygen concentration entering the biological 
reactor 

m⋅,DO,in 

Difference between the maximum and minimum dissolved oxygen 
concentration entering the biological reactor (range DOin) 

rg⋅,DO,in 

Average dissolved oxygen concentration in the biological reactor m⋅,DO,out 

Difference between the maximum and minimum dissolved oxygen 
concentration in the biological reactor (range DOout) 

rg⋅,DO,out 
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Description Symbol 
Average suspended solids concentration entering the biological 
reactor 

m⋅,TSS,in 

Difference between the maximum and minimum suspended solids 
concentration entering the biological reactor (range TSSin) 

rg⋅,TSS,in 

Average suspended solids concentration in the biological reactor m⋅,TSS,out 

Difference between the maximum and minimum suspended solids 
concentration in the biological reactor (range TSSout) 

rg⋅,TSS,out 

 

The subscript ‘in’ refers to the variables measured before entering the aerobic reactor 

while the subscript ‘out’ referring to the concentrations measured inside the tank is 

justified by the assumption that the reactor behaves like a CSTR with constant volume 

(eq.(3.20)) therefore the concentrations measured inside the tank are the same that exit. 

The fault detection algorithms proposed have been tested using different 

combinations of the parameters in Table 3.15, as shall be seen in the following chapters. 
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Chapter 4 Review of methods for the 

fault detection 

Sophisticated sensors such as Ion-Specific Electrodes (ISE) are essential for a precise 

control policy but they require a careful maintenance. For this reason, a monitoring 

system including a fault detection device is instrumental for a successful management. 

This device should also be capable of discriminating a sensor failure to a process 

anomaly, such as overload or toxic spillage. Hence the need to design a smart fault 

detection algorithm with these capabilities. 

Generally, the Fault Detection and Isolation (FDI) algorithms can be divided into 

three main categories (Venkatasubramanian et al., 2003): quantitative model-based 

methods, qualitative knowledge-based methods and process history-based methods. 

Quantitative model-based methods require a deep knowledge of the process and 

proved to be extremely powerful tools, even though their application is limited to linear 

or very specific nonlinear problem at most. These kinds of methods can be, for example, 

represented by one or more observers, i.e. models used to provide an estimation of the 

relevant signals and allowing to detect abnormal process behaviours when the system-

extracted signal is compared to the estimated one. Some successful recent applications 

can be found in (Nagy-Kiss and Schutz, 2013), where the diagnosis of a nonlinear 

system such as a WWTP is achieved with a multi-model approach using a set of 

nonlinear observers, and in (Xu et al., 2014), where the effectiveness of a new approach 

based on a bank of interval observers performing both fault detection and fault isolation 

is proven on a CSTR case study. However, despite the potentials and the efforts made 

to make easier their use (Schraa et al., 2006), this kind of methods are still the least 

popular among the FDI techniques, due to the high system complexity and the lack of 

good data from which develop an accurate model. 

Qualitative model-based fault diagnostics is performed each time one possesses a 

fundamental understanding of the process behaviour but not so deep to allow the 

expression of the input-output relationships in terms of mathematical functions. Typical 

qualitative model-based methods, widely used in risk assessment studies, are the so-

called fault trees i.e. logic trees that relate primary events with hazards. During the 

construction process the cause-effect relationships are derived by asking questions, to 

workers and experts in general, on what could produce the hazard and connecting the 

answers by logic nodes. 
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However real processes can rarely be represented as deterministic systems and most 

of the times the diagnostic task requires a quantitative assessment rather than a 

qualitative one. For this reason, instead of the model-based approach, that needs a 

complete a priori knowledge of the process, the vast majority of the FDI approaches rely 

on methods able to extract that knowledge from the history data, i.e. perform a feature 

extraction. The features can then be processed by non-statistical data mining methods, 

such as neural networks (NN), statistical methods, such as principal component analysis 

(PCA) or partial least squares (PLS), classification methods such as classification trees 

and support vector machines (SVM), or by a combination of them (Fuente et al., 2012, 

2011; Goode & Chow, 1994; Ruiz et al., 2011; Sainz, 2004). 

As anticipated in the introduction it was decided to treat the detection problem as a 

classification problem, therefore most of the methods tested are based on well-known 

classifiers. In this chapter is presented the theoretical basis of the methods employed in 

the next chapter to investigate the presence of faults in the measurements. After some 

general considerations on the data structure and the notation used the PCA method is 

introduced either in its classical formulation and in the subsequent extensions to the 

nonlinear, dynamical or batch processes. The second paragraph will be focused on the 

methods based on Bayes’ Theorem and their application to the FD in terms of 

classification. The third class of methods treated will be the based on the classification 

trees, especially concentrating on the binary classification trees. Finally, the methods 

based on the SVM will be examined. 

In order to facilitate the comparison among the different approaches the methods will 

be applied to the same set of data. Let V ∈ ℜN×L be a matrix containing the noise-free 

values vi,j of a process described by L variables (or features) in N samples. Typically, 

the number of monitored variables are usually much less than the number of samples, 

therefore hereafter it will be assumed that L ≤ N. It is then possible to define a data 

matrix X ∈ ℜN×L containing the measurements of V. The relationship between the values 

and their respective measurements is given by: 

, , ,i j i j i jx v  , (4.1) 

where İi,j are the deviations between the true value and its corresponding measurement, 

i.e. the measurement errors. 

Generally, only the measurements xi,j are known and, in absence of further 

information, it is assumed that the mean error is zero: 

,[ ] 0i j . (4.2) 
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In order to perform statistical inference, it is necessary to satisfy two additional 

requirements: the process variables must follow a multivariate (MV) normal 

distribution: 

, MV ( , )i  v  (4.3) 

and the measurement errors must be independent and drawn from the same normal 

distribution: 

, (0, )i j   . (4.4) 

The measurements of X often belong to different physical variables having different 

units of measurements or orders of magnitude. For this reason, a new matrix of 

standardized data X ̃ can be created, centring and scaling the values of X as follows: 

,

, ,    1, , ; 1, ,
i j j

i j

j

x i N j
u

L
x

s
, (4.5) 

Usually uj is chosen as the mean of the measurements of the variable j and sj as its 

variance or its standard deviation. According to this choice, the notation of uj and sj will 

be henceforth changed respectively in ȝj and σj and they will be defined as: 
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(4.6) 

Therefore, the centring and scaling of X will become: 

,

, ,    1, , ; 1, ,
i j j

i j

j

x i N j
x

L



. (4.7) 

A very common practice is the so called “standardization” of X, where ȝj and σj, the 

mean and the variance over the variable j, are set respectively to 0 and 1. 

Once the measurement matrix has been centred and scaled it is possible to compute 

the covariance matrix C: 

1

1
cov T L L

L
C X X X . (4.8) 

Note that if X ̃ is standardized than the covariance matrix is the same as the correlation 

matrix, i.e. ci,i = 1, ∀ i = 1,…,L. Coherently with this notation, the following paragraphs, 

the matrix X will indicate the matrix of the measurements without scaling and X ̃ the 

standardized version of X. 
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4.1 Fault detection based on the principal 

component analyisis 

First introduced by (Pearson, 1901) and subsequently developed by (Hotelling, 

1947), PCA (also known as Karhunen-Loève transform) is a non-parametric method 

(Shlens, 2014) widely used to emphasize the informative content of a large number of 

variables, where the information may be masked by noise and data cross-correlation. It 

provides a linear transformation of the original variables into a new set of optimally 

uncorrelated orthonormal features, called principal components (PCs), converting a 

data-rich and information-poor data set into new data for which the information to data 

ratio is higher. FDI methods based on PCA have been widely used in the context of 

WWTP fault detection (Rosén and Olsson, 1998; Corominas et al., 2011; Garcia-

Alvarez et al., 2011; Garcia-Alvarez et al., 2012; Villez et al., 2013). Here below the 

definitions of the classical PCA method and some extensions to the nonlinear problems 

are presented. Unless otherwise specified the PCA methods will be applied to the 

standardized version of the measurements matrix, so that all the features have the same 

order of magnitude. 

4.1.1 Identification of the principal components 

Once X has been standardized the aim of the PCA is to find a transform of the scaled 

measurement set X ̃ that maximize the variance, represented by the diagonal elements of 

the covariance matrix C, and at the same time reduce de redundancy, represented by the 

elements outside the diagonal. 

Considering a set of K new variables (with K ≤ L), linear combination of the 

variables of X ̃: 

,1 , ,1 ,1 1,1 ,2 2,1 , ,1

,2 , ,2 ,2 1,2 ,2 2,2 , ,2

, , , ,1 1, ,2 2, , ,

i i i i i L L

i i i i i L L

i K i K i K i K i L L K

z

z

x w x w x w

x w x w x w

x w xz w x w

x

wx

w

wx

 (4.9) 

the new variance and covariance matrices can be obtained from the covariance of the 

scaled measurements: 

, , , ,var( ) with 1,T

k k k KkwCz w , 

, , , ,cov( , ) with , 1 ,,T

h k k k h k Kz z w wC . 
(4.10) 

The PCA transform is thus obtained as the linear combination that maximizes the 

variance while at the same time removing their correlation, i.e. satisfying the relation: 
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, ,cov( , ) 0 with , 1, ,h k h K kk hz z . (4.11) 

The first principal component (PC1) is computed as the vector of the new base that 

maximizes the variance of z⋅,1 and has unit norm: 

,1 , ,

,1 ,
0

1max var( ) max var( )
T T

k k

T

w w w
z w X . (4.12) 

The second PC (PC2) is then obtained as the non-null vector w⋅,2 that maximizes 

var(z⋅,2) while being orthogonal to the first principal component, w⋅,1, and constrained to 

have unit norm: 

,2 ,2 ,1 ,2 ,2 ,2 .1 ,2

,2 ,2
,1, cov( ) 0 ,1, cov( ) 0

max var( ) max var( )
T T

w w z z w w wX wX
z wX . (4.13) 

All other components can be determined following this procedure, maximizing the 

variance of additional linear combination and with the constraint of being orthogonal to 

the previous PCs. In general, the k-th component can be determined as: 

, , , ,

, , , ,

, ,

,
1, 1,

cov( ) 0 cov( ) 0,

max var( ) max var( ) ,
T T
k k k k

h k h k

k k h k
w w w w

z z w wX X

wXz . 
(4.14) 

Note that one can at most determine a number principal components equal to the 

number of variables composing the measurements matrix, i.e. K ≤ L 

The so obtained PCs w⋅,k represent the eigenvectors of the covariance matrix C while 

the corresponding eigenvalues Ȝk are the variance of the linear combinations: 

, ,) var(var( )k k kwz X . (4.15) 

Notice that since the covariance C is assumed to be positive definite, the eigenvalues 

are positive. Sorting the eigenvalues by descending order and sorting accordingly the 

corresponding eigenvectors the result is the same as following the procedure above 

described. Moreover, the PCs can be more easily obtained by diagonalizing the 

covariance matrix for the maximum possible number of components, i.e. for K = L: 

cov( ) T
X W Λ W , (4.16) 

where Λ ∈ ℜL×L is the diagonal matrix of the L eigenvalues and W ∈ ℜL×L is the matrix 

of corresponding eigenvectors. 

In PCA it is common to refer to the principal components, the eigenvectors w⋅,k, as 

‘loadings’. Their linear combinations z⋅,k, instead, are usually called ‘principal scores’, 

or simply ‘scores’, and represent the coordinates of the measurement X ̃ in the new 

system: 

N L
Z X W . (4.17) 

A direct consequence of the transform applied is that the covariance matrix compute 

for Z, 
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1 1
cov(

1 1
) T

L L
Z Z Z Λ , (4.18) 

is diagonal, thus any information redundancy in the original data have been eliminated, 

although they can be retrieved by the inverse transform X ̃ = Z∙WT. 

4.1.2 Principal component analysis for 

dimensionality reduction 

From the descending order chosen to sort the eigenvalues, and their respective 

eigenvectors, comes the possibility to reduce the dimensionality of W to an acceptable 

degree of information loss. Choosing the first K largest eigenvalues (K < L), and 

therefore the corresponding K eigenvectors, it is possible to build the matrix WK ∈ ℜL×K, 

where the subscript indicates that is a reduced version of W containing only the K 

retained components. It is now possible to project the measurements onto the lower-

dimensional space, obtaining the scores ZK: 

K KZ X W , with ZK ∈ ℜN×K. (4.19) 

Similarly as before, one can obtain the (approximated) measurements matrix by the 

inverse transform: 

ˆ T

K KX Z W . (4.20) 

However, the measurement matrix retrieved is not the same as X ̃ because of the 

dimensional reduction. In order to get the exact same measurement matrix, one must 

add the other components not retained: 

, , , ,

1

K L
T T

k k h h

k h K

X z w z w . (4.21) 

The vector of residuals between the original and the reconstructed is defined as 

follows: 

, ., ,
ˆ

i i ir x x . (4.22) 

 

4.1.2.1 Choice of the number of principal components to 

retain 

From eq.(4.15) follows an important property concerning the relative variance 

captured by each component, which is to say that the variance captured by the k-th 

component is equal to ratio of the k-th eigenvalue over the sum of all the eigenvalues: 
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(4.23) 

This property can be used to select the appropriate number of principal components 

to retain by calculating the cumulated relative variance of the first K components: 
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, with K < L. (4.24) 

From eq.(4.24) it is clear that once the PCA transform is applied, the more 

components are retained the less information is lost. On the other hand, the informative 

contribution of the latter variables is increasingly lower and comes at the price of an 

increased computational burden. For this reason, one shall find a compromise between 

the dimensional reduction of the problem and the informative content retained. 

It is no surprise that a number of method of selecting a convenient number of PCs 

have been developed. The most common methods, being the already mentioned PC 

selection by means of captured variance, the eigenvalue scree plot, data scrambling and 

data reconstruction method, are reviewed in the following sub-paragraphs. 

4.1.2.1.1 Explained variance 

Based on the CRV computed using eq.(4.24) this simple method is particularly 

suitable for problems in which the main goal is the dimensional reduction. It consists in 

retaining a number of components that explains a cumulative relative variance greater 

than a chosen threshold (usually 80% or 90%), i.e. above the minimal proportion of 

variance that needs to be retained by the model. 

4.1.2.1.2 Eigenvalue scree plot 

A more refined method to choose the most suitable number of components to retain 

is the so-called eigenvalue scree plot. The scree plot itself is simply the plot of the 

eigenvalues corresponding to the principal components, ordered, as aforementioned, 

from the largest to smallest. Given that the eigenvalues are proportional to their 

respective captured variance, one could equally choose to plot the RV values. In this 

selection method one focuses more on the marginal informative contribution gained by 

including an additional component: if the increase of CRV due to the addition of the 

component is meaningful than that component is retained, otherwise it is concluded that 

the additional component can be neglected and a slender model would be almost 
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equivalent. In other words, for each k-th component that one considers to retain the 

following percentage is computed: 

RV( )
100

RV( 1)

k

k
, (4.25) 

which gives an idea of the increase in CRV given by the inclusion of the k-th component. 

A faster and more intuitive way of performing this method is to identify the large 

drops on the eigenvalues scree plot. The eigenvalues reflect the captured variance of 

each component, thus the gaps between them reflect the marginal gain given by retaining 

an additional component to the model. 

Another common practice in using the eigenvalues scree plot to determine the entity 

of the model reduction consists in setting a threshold, usually at 0.7 (Dunteman, 1989; 

Jolliffe, 2002), and retaining all the components whose eigenvalue lie above this limit. 

 

Figure 4.1 Example of eigenvalue scree plot (left) used to determine the model 
reduction 

4.1.2.1.3 Scrambling 

Another way to determine the number of PCs that should be retained is based on the 

so-called data scrambling. It consists of generating a secondary dataset with the same 

elements of the original one and permuting the values for each column, i.e. for each 

variable. This permutation, or scrambling, is supposed to significantly remove or modify 

the relationships among the measurements. A PCA is then performed on this secondary 

dataset. The method compares each eigenvalue of the original dataset with the 

correspondent eigenvalue of the new one. If the eigenvalue of the original non-

scrambled dataset is greater than its scrambled counterpart, then the related PC of the 

original dataset is assumed to capture more variance than a PC computed for a non-

informative dataset. Conversely, if the eigenvalue of a PC computed for the scrambled 

dataset is greater than the one of a non-scrambled dataset than it is possible to conclude 

that the captured RV of the PC in the original dataset is not meaningful and it can be 

neglected in building the reduced model. 
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4.1.3 Fault detection by principal component 

analysis using statistical control charts 

In this paragraph are presented some common statistical control charts used to 

perform a fault detection analysis on the data processed by PCA. It is important to 

remark that these statistical charts require the variables to follow a multivariate normal 

distribution and that the measurement errors must be independent and normally 

distributed. 

4.1.3.1 Univariate control charts 

It is common in practice for industries to perform process monitoring by constructing 

univariate charts for the measurements of some diagnostic variables. Typical examples 

are the Shewhart control charts, consisting in a point representation of a measurement 

(or one of their statistic) at different times. The chart can include an indication of the 

mean value calculated on all the previous samples or on a part of them, a lower and an 

upper limit which indicate the thresholds within the process is statistically considered 

unlikely to be abnormal. However, if there is any correlation between the monitored 

variables, then both the rate of false alarms (henceforth called type I errors) and the rate 

of false acceptance (type II errors) for the given process are expected to increase, being 

not possible to identify some anomalies focusing on just one variable. 

4.1.3.2 Multivariate control charts 

In case of correlation among the variables, a more suitable way of assessing the 

normal or abnormal behaviour of the measurements is represented by the multivariate 

charts. 

Considering a process whose data samples follow an H-variate distribution where u 

is the vector of the means and S the covariance matrix, it is possible to construct a X2 

statistic as follows: 

2 1
, ,)( ( )T

i iX u S uy y . (4.26) 

The X2 statistic represents the measure of the Mahalanobis distance of a sample from 

a χ2-distribution with H degrees of freedom i.e. a special case of the gamma distribution 

which is a sum of the squares of H independent normal random variables. It is preferred 

to use this kind of statistic in a multivariate dataset instead of the classical evaluation of 

the standard deviation of the distance from the centre of mass because the latter assumes 

that the samples are spherically distributed around the centre of mass, so the belonging 

of the tested sample to the set is only dependent on its distance. On the other hand, in a 

multivariate distribution the fact that a tested sample statistically belong to the set or not 
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is expected to depend not only on the distance but also on the direction, since the 

position of the samples around the centre of mass typically assume a non-spherical 

shape. The Mahalanobis distance assumes that the set’s probability distribution of an H-

variate distribution is best represented by an H-dimensional hyper-ellipsoid estimated 

by building the covariance matrix of the set; any point lying outside the ellipsoid will 

therefore indicate an anomaly. 

4.1.3.2.1 Hotelling’s T² statistic 

However, one can compute the X2 statistic only when the true mean and covariance 

matrix are known. If this is not the case, one can estimate the means and covariance 

matrix of a new sample computing the Hotelling’s T2 statistic (Hotelling, 1947; Mason 

et al., 2001), which is a generalization of the Student’s t statistic widely used in fault 

detection based on PCA decomposition (Garcia-Alvarez et al., 2009; Fuente et al., 2012; 

Garcia-Alvarez et al., 2012; Alferes et al., 2013). 

In the simple case the t-test evaluates if the mean is equal to a given value ȝ: 




t
y

N
, (4.27) 

which is a χ2 distribution where y̅ is the sample mean, σ is the standard deviation and N 

the number of samples. This expression is equivalent to: 
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Given a process X ∼ H(ȝ,Σ), i.e. following a H-variate normal distribution with ȝ 

the mean vector and Σ the covariance matrix, and defined the sample mean 

y̅ = (y1,…,yN)/N, the t2 metric can be generalized to yeald: 

2 1 2
HT N y ȝ Σ y ȝ . (4.29) 

To avoid misinterpretations, the transpose has been here indicated by the prime (′). 

The Hotelling’s T2 statistic is then a Mahalanobis measure of a χ2 distribution with H 

degrees of freedom and is related to the F-distribution (also known as Fisher-Snedecor 

distribution) by: 

2
,

1
N H H

H N
T F

N H


, (4.30) 

with ,

N H HF  representing the Fisher statistic with N – H and H degrees of freedom and 

for a suitably chosen significance level  (corresponding to a 100(1 – )% percentile). 
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It is important to remark that this is only valid for new observations, i.e. for samples 

that were not used for the estimation of ȝ, σ or Σ. The distribution of the Hotelling’s T2 

statistic for samples included in the calibration set, instead, follows a ȕ-distribution. 

It is now possible to build a multivariate control chart in the reduced scores space 

context, defining the T2 statistics of an observation vector x̃i,⋅ as 
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 with K < L, (4.31) 

where ΛK = diag(Ȝ1,…,ȜK) is the diagonal matrix of the first K eigenvalues. The 

monitored variables are considered “normal” for a significance level  if the statistics 

defined by eq.(4.31) is lower than the upper control limit (UCL) defined as 

2
lim ,

1
KN K

N
T F

N

K

K


, (4.32) 

where ,N K KF


 is the Fisher statistics with N – K and K degrees of freedom. 

4.1.3.2.2 Q statistic 

In case K < L, i.e. the PCA model retains less components than the maximum 

number, it is also possible to build a joint control chart statistic for the retained PCs, 

which are supposed to contain the largest part of the information of the current and 

future well-behaved samples. The statistics that evaluates to what extent the dimension 

reduction of the PCA model influences the new sample goes by the name of Q statistic, 

also referred to as ‘squared prediction error’ (SPE), and is defined as the sum of the 

squared residuals of the PCA transform, i.e. the components that are not retained. Its 

goal is to measure the variation share that the PCA model does not account for. 

The Q statistics score of an observation vector x̃i,⋅ is defined as: 
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 with K < L, (4.33) 

where I is the identity matrix and WL–K is the eigenvector matrix of the residuals. Note 

that also Q is a χ2 distribution with L – K degrees of freedom, since 

W′L – Kx̃.,k ∼ χ² (0,ΛL – K). The UCL of the Q control chart, which is called Qlim, is defined 

as: 
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where c is the (1 – ) quantile of the normal distribution and the other quantities are 

defined as follows: 
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The geometrical interpretation of the two statistics follows from the projection of the 

considered samples onto the hyperplane identified by the retained PCs (Figure 4.2). 

Since the scores computed are mutually uncorrelated and their square values are divided 

by the respective eigenvalues (i.e. the contained variance), the Hotelling’s T2 is by 

definition the Mahalonobis distance between the estimated mean and the projected 

sample within the subspace defined by hyperplane of the PCs. The violation of the 

Hotelling’s T2 (in absence of violation of the Q statistic) indicates the occurrence of an 

abnormal event, though not violating the identified correlation structure. Conversely, a 

violation of the Q statistic indicates the estimated relationships, represented by the 

hyperplane, are not valid for the tested sample. 

 

Figure 4.2 Geometrical interpretation of the T2 and Q statistics in case of a PCA 
transform where a three-dimensional dataset is projected on a plane 

These considerations are the basis of a possible use of the PCA method for FD or 

classification purposes. A hard classification of the tested sample in the 

‘normal’/’abnormal’ categories can be achieved linking the assignment to one class or 

to the other based on the violation of the control limits. Considering the combination of 

the violation of the two UCT and their different meanings, on the other hand, one could 

expand the number of possible classes or design a more refined FD method for the 

classification of the anomalies in different severity classes. However, T2 and the Q 

statistics remain essentially two global indicators of the state of a process but do not 

directly provide any information on the source of the anomaly. A valuable tool in this 
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sense is provided by the computation of the so-called ‘contribution variables’ (CV). 

Typically, whenever one of the statistical thresholds is violated by an observation x̃i,⋅ its 

projection zi,⋅ onto the PCs plane is processed as: 

 
1

2
,CV( ) T

ii Λz W , (4.36) 

where i is the index of the currently tested observation. Regardless of the diagonal 

matrix Λ and the loadings matrix W being full ranked or belonging to the reduced PCA 

model, the transformation (4.36) yelds a vector CV with as many elements as the 

original variables of x̃i,⋅. Its largest value will identify the feature that most influenced 

the projection and therefore the one most probable responsible for the violation. 

4.1.4 Extensions to the Principal Component 

Analysis 

The classical PCA method described in the previous paragraphs is limited by the 

underlying assumption of a linear relationships between the measured and the 

transformed variables, whatever the dimensions of the latter. However, especially in the 

environmental systems, this is not generally true, thus applying PCA to nonlinear or 

dynamic processes would not help to put the underlying relations between the variables 

in a better perspective but would rather provide a linear static approximation. For this 

reason, over the years many solutions have been proposed to adapt the PCA-based 

algorithms to nonlinear process conditions. 

4.1.4.1 Methods for nonlinear processes based on the 

principal component analysis 

The simpler way to handle the nonlinearities is to perform a transformation on the 

data that turns the nonlinear relationships into linear. Operations like log-transform, 

roots or powers of the original dataset are typical choices. However, these nonlinear 

relationships are typically not known a priori, so that the optimal choice of the transform 

operation is not possible. Moreover, the data are expected to contain error and, even 

when the nonlinearities are known, the transformation is likely to introduce a bias in the 

model. 

A nonlinear extension of PCA developed by (Schölkopf et al., 1998) and called 

‘kernel PCA’ (KPCA) is often applied in the context of process monitoring (Lee et al., 

2004; Tong et al., 2013). The basic idea is to deal with the nonlinearities by using kernel 

functions to map the input space into a different space (called feature space) where the 

data vary linearly and therefore can be linearly separated. In other words, the original 

data are first transformed into the so-called features, then a standard PCA is performed 
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on these features. A major benefit of KPCA is that, thanks to the so-called ‘kernel trick’, 

the models are computed very efficiently. The trick can be applied for all the 

transformations (i.e. the kernel functions) satisfying the Mercer’s theorem and allows 

one not to explicitly compute all the coordinates in the new space, but rather to simply 

compute the inner products between the images of all pairs of data in the feature space. 

This is computationally cheap and may help to find an appropriate way to transform the 

original, nonlinearly related, data, though it does not provide a solution for the nonlinear 

transformation of the measurements errors and the choice of the kernel parameters can 

be difficult (Jia et al., 2012; Liu et al., 2014). Moreover, KPCA has a limited 

applicability for diagnostic purposes, since it does not directly operate on the original 

measurements but rather on their transformations, the features, for which no explicit 

meaning is generally available. A more exhaustive discussion on the kernel trick and its 

application to a different linear classifier in a nonlinear setting will be discussed in 

paragraph 4.4.2. 

4.1.4.2 Methods for batch processes based on the principal 

component analysis 

Some PCA methods specifically developed for batch processes are now presented. 

These techniques were initially developed for the monitoring of chemical processes but 

proved to be effective also in the wastewater treatment processes due to the similarities 

between the two fields. The classical PCA method is designed to handle datasets where 

the information is organized in form of second-order arrays, while batch processes are 

instead usually described by third-grade tensors, hence the motivation for the 

development of dedicated methods. The three coordinates which describe the batch 

array are typically the measured variable (j = 1,…,L), the time index at which the 

measurement was taken during the batch (i = 1,…,N) and the index of the measured 

batch (k = 1,…,B), thus producing a tensor X, with dimensions N×L×B, whose elements 

are xi,j,k = X(i,j,k). 

Before computing the PCA model, MPCA converts the third-order tensor into a 

matrix though a transformation, called unfolding, of the original tensor, basically slicing 

the third-order tensor along a selected coordinate and arranging the slices side by side. 

Theoretically there are six ways of unfolding a tensor of rank three, but only two of them 

are of practical use for the development of a PCA-based monitoring system: the 

variable-wise unfolding and the batch-wise unfolding. The first approach consists in 

slicing the tensor so that each slice contains all the measurements for all the variables 

of the k-th batch and then sorting them as shown in Figure 4.3 producing a matrix of 
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dimensions B⋅N×L. The underlying assumption is that the measurements taken at the 

same time for the same batch are considered a single multivariate sample. 

 

Figure 4.3 Example of batch-wise unfolding of a third-order tensor. The coordinate 
corresponding to the batches is k (Villez, 2007) 

In the variable-wise unfolding a matrix is built by slicing the original tensor along 

the coordinate L and placing side by side the slices so to create a B×N⋅L matrix as 

depicted in Figure 4.4. 

 

Figure 4.4 Example of variable-wise unfolding of a third-order tensor. The coordinate 
corresponding to the variable processes is j (Villez, 2007)(Villez, 2007)(Villez, 

2007)(Villez, 2007) 

When using the batch-wise unfolding a problem may arise in the monitoring task 

since one must wait for the batch process to be completed before building the PCA 

model, delaying the detection of the anomalies. Typically, three approaches are used to 

deal with this problem. One is called ‘zero deviation’. Since the data are usually centred 

and scaled, one can use the mean values as an expectation of the measurement yet to 

come, so that the PCA model can be built without delay. Another approach used in case 

of centred and scaled data is to assume that the deviation of the future data from the 

mean will be the same of the current deviation, which means that for each variable the 

empty places of the vector are filled with the last scaled measurements. A more refined 

technique is based on the data estimation. This is an iterative process that first 

approximates the missing values with the mean values (as in the first approach) then 

corrects the estimation using the PCA model built upon the historical measurements to 
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reconstruct the data until convergence is achieved. The condition to reach a unique 

solution is to have a number of measurements greater than the number of retained PCs. 

The unfolding method of batch processes is a popular technique in PCA-based 

monitoring methods but is also employed in many non-PCA-based methods (Lee and 

Vanrolleghem, 2003; Villez et al., 2008; Aguado and Rosén, 2008; Garcia-Alvarez et 

al., 2012; Tong et al., 2013; Yao et al., 2014). Other methods involving the unfolding 

(hence the name U-PCA) of the dataset, typically a three-way matrix, show good results 

in continuous (Garcia-Alvarez et al., 2011) and transitional processes (Garcia-Alvarez 

et al., 2012). 

4.1.4.3 Methods for dynamic processes based on the 

principal component analysis 

Another variant of the principal component analysis, specifically introduced to 

account for the autocorrelations in the measurements of dynamic systems, was proposed 

by (Ku et al., 1995) and is called ‘dynamic PCA’ (DPCA). It has been demonstrated that 

detection and isolation of anomalies in dynamic systems is possible, however this 

application conflicts with the statistical basis of PCA by violating the assumption of 

time-independence, and therefore returning possibly misleading results, such as an 

excess of false alarms. Since for dynamic systems the current values depend on the past, 

in the DPCA method the first step is to build a matrix X̃g which accounts for the dynamic 

relationships between the last g samples, with g representing the time lag: 

( 1)
, 1, ,

G L g

g i i i gX x x x , with i = 1,…,G; G < N. (4.37) 

For each time lag g a PCA is performed and the auto- and cross-correlation are 

evaluated. While the classical PCA method focuses on the largest eigenvalues, 

considering the smaller ones as a product of noise, DPCA regards the smaller 

eigenvalues as an indication of the existence of nonlinearities and dynamic relationships 

among the samples. For example, if from a first PCA on x̃i,⋅ (g = 0) it results that two 

eigenvalues are smaller than a given threshold, that indicates the presence of two linear 

static relationships. Than one performs a PCA with lag g = 1 (so on [x̃i,⋅ x̃i– 1,⋅]) and if 

the number of small eigenvalues found is five that would reveal the presence of a 

dynamic relation. In fact, four of them represent the two static relationships found in the 

previous step (at each step they will be repeated Δg+1 times), and the fifth is related to 

the dynamic relation. A further step, performing PCA for a lag g = 2 [x̃i,⋅ x̃i– 1,⋅ x̃i– 2,⋅], 
will reveal the presence of other dynamic relations. If now the small eigenvalues are 

eight than the method can stop since six of them represents the linear relations (the two 

small eigenvalues found at the beginning, g = 0, multiplied Δg+1 = 3 times) and the 



Review of methods for the fault detection 93 
 

remaining two are related to the dynamic relation identified at the previous step 

(Δg+1 = 2 in this case since the dynamic relation was found at g = 1). No additional 

dynamic relationships are found so the algorithm can stop reporting that the processed 

data contain two linear relations and one first order (since it was identified at the first 

step) dynamic relation. It is to be noted that in the described method the PCA model is 

fixed beforehand, i.e. this method defines a time-invariant model. 

However, most of the dynamic processes do not preserve the relationships among the 

variables but rather they describe gradual changes of these relationships, thus the 

covariance structure of data varies accordingly. Many authors proposed methods to take 

into account the changes in the covariance matrix. An efficient one, can be found in 

(Rosén and Lennox, 2001) and is called Adaptive PCA. It is based on the so called 

‘moving window’ (MW), meaning that the covariance matrix is computed at each time 

instant t using the last Q samples, where Q is the fixed length of the moving window: 

, ,

t

i i

T

i t Q

t x xC . (4.38) 

Another method, developed by (Li et al., 2000) and called ‘recursive PCA’ (RPCA), 

proposes to update the covariance matrix each time new data are available: if the 

covariance matrix at instant t–1 is known, Ct–1, once the new sample x̃t,⋅ is available the 

covariance matrix is updated as follows: 

1 , ,(1 ) T

t t t t C xC x , (4.39) 

where φ (> 0) is the forgetting factor, a coefficient that assigns an incremental relative 

weight on the older samples. A high value of φ will lead to a longer memory of past 

behaviours, while a low value leads to shorter memory of past behaviour. 

Thus, for both methods the updating consists of building a new PCA model at each 

step, although using different criteria to achieve it. For example, with ‘adaptive PCA’ 

(APCA) the number of PCs to retain is fixed, it is determined at the first step and does 

not change as the window moves. Also, all the new samples are allowed to update the 

model, regardless they are regular or anomalous. In RPCA, instead, the number of past 

samples to consider for the computation of the PCA model is governed by the parameter 

φ but the method prevents the samples that violate the statistical limits to update the 

reference space, since generally one does not want to adapt to abnormal changes in the 

process behaviour. Also at each iteration, if a model reduction is pursued, the number 

or relevant PCs is updated and the statistical limits will change accordingly. 

A method conceived to combine the positive aspects of both the adaptive PCA and 

the Recursive PCA is the one proposed by (Baggiani and Marsili-Libelli, 2009) in view 

of a real-time application. Here the reference PCA model is computed on the data of a 
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fixed-length window which slides according to the outcome of the statistical test of the 

new samples available. Whenever a new sample satisfies the statistical threshold it is 

allowed to join the reference dataset while at the same time the oldest sample is 

discarded. Conversely the samples whose statistical score is above the thresholds are 

labelled as anomalies and not allowed to update the reference space. 

 

Figure 4.5 Initial and real-time window for mowing window PCA method proposed by 
(Baggiani and Marsili-Libelli, 2009). The red-shaded areas represent the anomalous 

samples excluded from reference updating 

It should be noted that the underlying assumption of these updating methods is that 

the abnormal changes in the process are faster than the updating speed of the model. 

Indeed, if the change occurring is abnormal and it is slow enough to satisfy the 

acceptance conditions, then its information will result in an undesired adaptation of the 

model. The diagnosis task, already difficult in adaptive PCA models where the 

properties frequently change, will be even more challenging. 

In their consecutive work (Lennox and Rosén, 2002) further developed their method 

adding to the adaptive part, which accounts for changes in the structure of the 

covariance, a multi-scale part which is devoted to account for the presence of significant 

dynamics with different time scales. They called the new method ‘adaptive multi-scale 

PCA’ (AdMSPCA). Using wavelet decomposition AdMSPCA produces for each 

variable band-limited signal (called details) and an approximation which are then 

projected onto scale-specific PCA models. A violation in the statistical limits at a given 

time scale identifies the presence of a significant dynamics and thus labels the data as 

significant. Only the significant data are thus used to reconstruct the signals and the 

reconstructed data becomes the basis on which an overall PCA model is built. The latter 

is the model eventually used for the monitoring task. 
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4.2 Classifiers based on the Bayes decision 

theory 

From a probabilistic point of view, a classification problem can be seen as a 

forecasting problem, where the class of an observation is predicted, or inferred, based 

on the consideration that similar observations fell in that specific class. In other words, 

the observation is assigned to a specific class conditionally on the probability that the 

observation has a similar behaviour of those belonging to the same class. More formally, 

given a classification problem where an observation vector, or features vector, x, 

belonging to a process X, has to be classified using M classes (ω1,ω2,...,ωM), the 

objective is to determine the conditional probability P(ωm|x) that satisfies the 

classification requirements. This is the so-called a posteriori probability, or posterior, 

of the well-known Bayes’ theorem. Given a set of N events i, with i = 1,…,N and such 

that 

1

( ) 1
N

i

i

P


 , (4.40) 

the probability of occurrence of an arbitrary event  is given by: 

1

( )( ) | ( )
N

i i

i

P PP


  , (4.41) 

where P(|) is the conditional probability of  given the occurrence of  defined as: 

( )
( |

(
)

)

,P

P
P  , (4.42) 

with P(,) the joint probability of the two events. From the latter equation it is possible 

to derive the so-called Bayes’ rule: 

( | ) ) ( )( |( )PP P P  . (4.43) 

Re-arranging the previous relation and translating it to the previous example, it is 

now possible to formulate the classification task in Bayesian terms: 

( | ) ( )
( | )

( )
m m

m

P P
P

P

 


x
x

x
. (4.44) 

From (4.41) the probability P(x) is equal to: 

1

( ) ( | ) ( )
M

m

m mP P P x x . (4.45) 

Let us consider the simple case of a binary classification problem, i.e. M = 2 and ω1 

and ω2 the only two possible classes. One can assume to know the a priori probabilities 
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P(ω1) and P(ω2), and even if it is not the case they can be estimated from the available 

data as the frequency of occurrence in each class. Given have N observations, they can 

be split in N1 and N2 observation focusing respectively on those belonging to the first 

and to the second class, so that N = N1 + N2. The priors are then computed by the 

frequentist approach as: 

( ) m
mP

N

N , (4.46) 

for m = 1, 2. It is also reasonable to assume as known the conditional probabilities 

P(x|ωm), which represent the probability density functions (pdf) describing the 

distribution of the feature vector in each class. It is common to refer to P(x|ωm) as the 

‘likelihood’ of the m-th event, or class, ωm, with respect to the observations x. Also in 

this case, if the pdfs are not known they can be estimated from the known available 

dataset. 

The classification task is then achieved by assigning each sample to the most 

probable class, i.e. computing the maximum of the M conditional probabilities P(ωm|x) 

or the maximum of an appropriate function of them. In the simplest scenario: 

if 
1 2( | ) ( | )P P x x , x is classified to ω1, 

if 
1 2( | ) ( | )P P x x , x is classified to ω2. 

(4.47) 

In case of equality the sample can be assigned to either class. 

An important property of this classification method can be easily derived assuming 

the case of two equiprobable priors, i.e. P(ω1) = P(ω2) =½. The rule of (4.47) 

corresponds to comparing the numerators of (4.44), i.e.: 

1 1 2 2( | ) ( ) ( | ) ( )P P P P   x x , (4.48) 

where the P(x) is not considered being the same for both members, but in case of 

equiprobable priors also the terms P(ωm) can be neglected, becoming: 

1 2( | ) ( | )P P x x . (4.49) 

The further assumption that the sample x consists of a single feature, and thus can be 

written as x, leads to representing the classification problem as in Figure 4.6. 

The vertical line separates the domain of x in two regions R1 and R2, respectively 

denoting the intervals in which an observation of x is assigned to ω1 or ω2 depending on 

whether it is smaller or larger than the threshold x0. However, a classification error is 

unavoidable for the region where the two probabilities overlap. The mathematical 

expression of this probability error Pe is given by: 

0

0

1 2

1 1
( | ) ( | )

2 2

x

e
x

P P x dx P x dx  . (4.50) 
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It can be easily proved that if the threshold x0 is placed in correspondence of the 

intersection of the two probabilities than the probability error Pe, graphically represented 

by the shaded area under the curves, is minimum. In fact, shifting left or right the 

threshold the error probability (shaded area) increases. 

  

Figure 4.6 Example of Bayesian classifier in case of a single feature attribute x to be 
assigned to two equiprobable classes ω1 (solid line) and ω2 (dashed line) 

Minimizing the classification error probability, however, is not always the best 

option, because it means that all the errors are given the same importance, whereas there 

are cases in which the consequences of a misclassification can be more serious than 

others. Let us consider a classification problem involving M classes, thus M regions Rm 

for each m-th class ωm can be identified. The sample vector x, actually belonging to a 

class ωα will be assigned to the class ωȕ if it lies in the Rȕ interval. It is then possible to 

define a weight, a penalty term Ȝα,ȕ called ‘loss’ associated to the wrong decision. The 

losses can be collected in a loss matrix and a risk associated to the misclassification of 

the α-th class can be computed: 
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In this framework, the objective is to minimize the average risk r defined as: 
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 (4.52) 

which is equivalent to assign x to the partitioning region Rȕ if: 
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




     x x . (4.53) 

Of course, this is the same as minimizing the classification error probability when 

the loss Ȝα,ȕ is equal to 1 – įα,ȕ, with the Kronecker’s delta įα,ȕ = 0 if α ≠ ȕ and1 if α = ȕ. 

In the previous example of the two-class case one would have: 

P(x|ω1) P(x|ω2)

xx0
R1   
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1,11 1 2 21 2,1)( | ) ( ( | ) ( )P P Pl P   x x  and 

1,22 1 2 21 2,2) )( | ) ( ( | ) (l P P P P    x x , 
(4.54) 

assigning the sample to the first class if the risk associated is lower than the alternative, 

i.e. l1 < l2, 

2 22,1 2,2 1,2 1,1 11( ) )( | ) ( ( ) )( | ) (P P P P    x x . (4.55) 

It is then natural to assume that the loss of a correct assignment (Ȝi,i) is weighted less 

than a wrong assignment (Ȝi,j), and the rule (4.53) becomes 
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(4.56) 

This rule is known as likelihood ratio test, from the likelihood ratio l1,2. 

To better clarify the concept of associated to the evaluation of the misclassification 

risk it is possible to assume that the risk of wrong assignment for a sample belonging to 

the second class is higher, in other words Ȝ2,1 < Ȝ1,2. In the hypothesis of equiprobable 

priors as before, this different weighting of the misclassification error has the effect of 

moving to the left the threshold x0 of Figure 4.6, increasing the R2 region and decreasing 

R1. 

Thus, either minimizing the classification error by minimizing the probability error 

Pe or the classification risk r, in the general case of M classes, can be seen as a 

partitioning problem where in the feature space M regions have to be determined, 

separated by a threshold, or ‘decision surface’. It can be preferable in some cases to 

compute the decision surfaces using functions of the probabilities or of the risk functions 

instead of working directly with them. For example, using a monotonically increasing 

function f(∙) of the probability it is possible to compute a function gα(x) = f(P(ωα|x)) 

called ‘discriminant function’ where: 

x ∈ ωα if ( ) ( )g g x x , ∀ α≠ ȕ. (4.57) 

4.2.1 Estimation of probability density functions 

In the previous examples the prior pdfs were assumed to be known, however it 

seldom the case and in many problems they have to be estimated from the available data. 

Moreover, the distribution shape may be known (Gumbel, Gaussian, etc.) but its 

parameters are unknown or, more frequently, the variance and the mean are available 

but the specific distribution is unknown. 
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4.2.1.1 Parametric estimation of the probability density 

functions 

In the following examples an M-class problem is considered, where the likelihoods 

P(x|ωm) are expressed in a parametric space Q and the vectors qm of the defining, and 

unknown, parameters are to be determined based on the available data. In the hypothesis 

that the data belonging to one class do not affect the estimation of the parameters of the 

other classes, i.e. they are independent and identically distributed (iid), one can draw N 

samples xi,⋅ from a pdf P(x;q) and build the joint pdf P(X;q), where X = {x1,⋅,x2,⋅,…,xN,⋅} 

as: 

1, 2, , ,

1
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iP P PX q x x x q x q , (4.58) 

which is also known as the likelihood function of q with respect to X. 

It is now possible to use (4.58) to compute the optimal parameter vector q̂MLE as the 

one maximizing: 
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q x q . (4.59) 

This method is called the maximum likelihood estimate (MLE) of q. 

The maximum q̂MLE, must satisfy the necessary condition 
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q
. (4.60) 

However, it can be preferable to consider its logarithm and define 

,

1
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L Pq x q , (4.61) 

and then compute the value q that vanishes its derivative: 
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. (4.62) 

In the definition of the MLE method no prior assumption was made as to the shape 

of the pdf q, which makes the estimate reasonably biased, i.e. its mean does not 

necessarily coincide with the true value. As a consequence of the central limit theorem, 

however, for sufficiently large N all distributions converge towards the Gaussian 

distribution and thus 

0
ˆlim [ ]MLE

N
q q , (4.63) 

with q0 the true value, which makes the MLE an asymptotically unbiased method. 

MLE is also asymptotically consistent, in the sense that 
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0
ˆim 1l MLE

N
q q , (4.64) 

with ϵ arbitrarily small, but also 

2

0
ˆlim 0MLE

N
q q . (4.65) 

The first relation means that for N → ∞ the estimate converges to the true value q0 in 

probability, the second relation says that it also converges, according to the square of 

the mean value, which is the equivalent of saying that the estimate achieves the Cramer-

Rao lower bound. The MLE is therefore, at least for sufficiently large values of N, 

unbiased, consistent and efficient normally distributed estimator. 

A different approach for estimating the distribution consists in considering q not the 

vector of the unknown parameters of the distribution but a random variable that has to 

be estimated. From the Bayes’ theorem (4.44) is: 
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and the goal is now to estimate the optimal value of the random variable that maximise 

the probability P(q|X): 
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q q

q q
. (4.67) 

This is called ‘maximum a posteriori probability’ (MAP) method and its main 

difference with MLE is in the involvement of the prior P(q) for the estimation. Both 

methods however, show similar results if the assumed distribution for P(q) is uniform 

or has small variations, i.e. if a constant or nearly constant prior is assumed, otherwise 

in the estimations of the two methods tend to differ. 

Another different method, called ‘Bayesian inference’ proposes to focus on the 

conditional probability P(x|X) instead of focusing on the conditional probability of q. 

From the extension of (4.45) to the continuous case and (4.66): 
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and still under the assumption of iid samples: 

,
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from which it is possible to estimate 

( | ) ( | ) ( | )P P P dx X x q q X q . (4.70) 

For large numbers of N, as the likelihood product ∏i P(xi,⋅|q) converges to a delta 

function around the mean q̂, the Bayesian inference estimator approximates the MLE 
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one. In this case the Bayesian inference also approximates the MAP estimator, since 

P(x|X) ≈ P(x|q̂), therefore one can claim that for N → ∞ the three methods 

asymptotically converge to the same estimate. 

From Shannon’s information theory and its definition of information entropy it is 

possible to estimate the unknown density function P(ș) of a random variable ș from a 

set of given constraints such as mean, variance, etc. by maximizing its associated 

entropy. The information entropy H associated to P(ș) is: 

( ) ln ( )H P P d   . (4.71) 

When no specific constraints are known for the pdf one can simply assume that it is 

nonzero between two generic points șα and șȕ: 

( ) 1P d
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  , (4.72) 

and minimize (4.71) with respect to P(ș). With such a method, one will obtain that P(ș) 

is estimated as a uniform distribution, i.e. all values of ș are equally possible, however 

adding mean and variance as constraints the approximating distribution that maximizes 

the randomness will result the Gaussian. 

4.2.1.2 Non-parametric estimation of the probability density 

functions 

A different approach to the estimation of the pdf comes from variations of the 

histogram approximation of the distribution of an unknown pdf when there is a lack of 

prior knowledge on the distribution form. In the one-dimensional case one will build the 

approximating histogram of a random variable x by dividing the abscissa into B 

successive bins of fixed length h and approximating the probability of the b-th bin as 

the frequency 
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x
x x , i ∈ [(b–1)⋅h, b⋅h]; b ∈ [1,…,B]. (4.73) 

To guarantee the convergence towards the true pdf, the number of bins M must 

increase and at the same time their width h must reduce. However, this has some major 

shortcomings: the number and the width of the bins are deeply influenced by the number 

of samples falling in each bin, which means that one cannot infinitely reduce h because 

the number of sample N available will always be finite, this implies a finite number of 

bins too and consequently the fact that the estimated distribution will be a discrete one. 

Thus, in practice one will proceed with a non-parametric estimation of the pdf using a 

number “large enough” of bins with a width “small enough” depending on the degree 

of approximation judged satisfying (see Figure 4.7). 
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(a) 

 

(b) 

 
Figure 4.7 Probability density function approximation by histogram varying the bin 

width, large (a) and small (b) (Theodoridis and Koutroumbas, 2009) 

In case of a multi-dimensional set of data, say L-dimensional, the distribution is 

estimated by dividing the space in the multi-dimensional equivalent of the bins, i.e. 

hypercubes of side h and volume hL. If xi,j, with i = 1,…,N and j = 1,…,L are the 

components of the available sample vector xi,⋅ in the L-dimensional space, one can 

define the function ϕ(xi,⋅): 
,
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1 for | 1/ 2
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0 other e
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i

x
x  (4.74) 

which is 1 for all the points in the hypercube of length 1 and 0 outside and can be used 

to rewrite (4.73) for the multi-dimensional case: 
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Still the P(x) is approximated as a sum of discontinuous step functions, which may 

be not desirable in some applications. For this reason, it was proposed (Parzen, 1962) to 

use a set of smooth functions φ(∙), with the characteristic of being 

( ) 0 x  and 

( ) 1d
x

x x  
(4.76) 

to approximate de pdfs, instead of using ϕ(∙). This class of functions are usually referred 

to as ‘Parzen windows’ or ‘kernel functions’ hence the name of this method ‘kernel 

density estimation’ (KDE). Thus, similarly to (4.75) the approximated pdf is 

1

1 1
( )

N
i

L
i

P
h N h


x x

x  (4.77) 

for the general multidimensional case. Notice that using smooth function the parameter 

h assumes a new meaning. What was before the width of the bin or the side of the 

hypercube used to compute the discrete estimate of P(x) becomes here a smoothing 

parameter called ‘bandwidth’. Some remarks on its influence on the final approximation 

should be made: for a given set of N training samples a small h increases the variance. 

The estimated pdf will result from the superposition of extremely sharp functions 

x x
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centred at the training points so that the final shape will be noisy, with high spikes 

around the samples and lower values in the rest of the domain. As the number of training 

points increases, however, the noise reduces because the spiky functions will be more 

closely located. A broader h, on the contrary, will provide a less detailed approximation 

of the pdf, probably underestimating some peaks in multimodal distributions, also it will 

be less affected by an increase in the number of available training samples (Figure 4.8). 

(a) 

 

(b) 
 
 

 

(c) 

 

(d) 

 
Figure 4.8 KDE approximation of a pdf (dotted line) using Gaussian kernels with (a) 

h = 0.1 and 1000 training samples, (b) h = 0.1 and 20’000 samples, (c) h = 0.8 and 1’000 
samples, (d) h = 0.8 and 20’000 samples (Theodoridis and Koutroumbas, 2009) 

In KDE the width/volume hL around the points x is considered fixed, so the number 

of points kN falling in each bin/hypercube can vary if their distribution on the domain is 

not uniform. The k nearest neighbour density estimation method instead, proposes to 

approximate the pdf using a fixed number k of points each time, and therefore a variable 

volume that from time to time can include them. Low-density areas will require a larger 

volume, that can be now written as a function of the training set V(x) while in highly 

dense areas the width will be smaller. The general expression of the estimator is: 

1
( )

( )

k
P

V N
x

x
. (4.78) 

This method can be also employed as a classifier. Assuming that a new sample x is 

available one can compute its distance, not necessarily a Euclidean one, from all the 

training vectors of the various classes ωm. Calling r1 and r2 respectively the radius of the 

x
x

x x
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hyper-sphere (or hyper-ellipsoid) centred in x and containing k points of ω1 or ω2, and 

denoting V1 and V2 their volume, the classification task is performed as: 

x ∈ ω1 if 
2,1 2,22 2

1 1,2 1,
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1 1 1
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(4.79) 

If in the one-dimensional case N observations were considered enough to train 

estimate the M pdfs P(x|ωm) used by the Bayesian classifier to assign a new point to one 

of the M classes, in a L-dimensional space one should have an excessively high number 

of training observations NL, which is often practically unfeasible. However, by assuming 

the L features of x to be iid the problem reduces to the estimation of L one-dimensional 

distributions for each class and a L⋅N points would be sufficient. The so-called ‘naïve-

Bayes’ classifier works under these assumptions and assigns the unknown L-

dimensional sample of x to the class: 

,

1

ˆ (arg max )|
m

L

j

j mP


 x . (4.80) 

This method proved to perform quite well even in case the statistical independence 

assumption is relaxed. 
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4.3 Binary Decision Trees 

A popular class of nonlinear methods for the classification known as ‘decision trees’ 

is now considered. They are one of the most popular and intuitive methods for 

classification as they can treat mixed numeric and categorical datasets. Also, due to their 

structural simplicity, they are easily interpretable. In a classification tree the attributes, 

or features, characterising the observed phenomena are partitioned in different regions, 

or ‘branches’ by some points tb of the attribute domain called ‘nodes’. The nodes and 

branches of the different features are linked together in a sequential manner by a set of 

IF-THEN rules representing the decision process of the classification and the graphical 

portrait of the ensemble of these decisions paths displays the shape of the tree (Figure 

4.9). Classifying an observation x with L features in M classes means then to climb a 

tree where at each node tb the following branch is selected conditionally on whether the 

value of the attribute x⋅,j with j = 1,…,L is larger or smaller than some threshold value 

αtb; the point where the climb stops, the leaf, represents the category to which the 

observation is assigned. 

 

Figure 4.9 Example of binary classification tree for a dataset with two-dimensional 
features in four classes 

This way of performing the classification, having only two possible outcomes for 

each node, is known as ordinary binary classification trees (OBCTs) and is also 

geometrically equivalent of splitting the space spanned by the L features into B 

hyperrectangles representing the different classes (Figure 4.10). 

Other types of trees which split the space into convex polyhedral cells or into spheres 

are also possible. 
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Figure 4.10 Spatial representation of the decision tree of Figure 4.9. The boxes 
represent the partitioning and the shaded areas are the regions occupied by the 

observations of the aggregated per classes 

A key question is now which attribute to consider as the first feature in the training 

phase, which therefore represents the root, and how to build the tree from there. Since 

each node tb is associated with a specific subset Xtb of the training set X then splitting of 

a node is equivalent to the split of the subset Xtb into two disjoint children subsets Xtb|Y 

and Xtb|N, where the first subscript ‘Y’ corresponds to the answer ‘YES’ to the question 

posed by the inequality xi,∙ > αtb and the ‘N’ subscript stands for ‘NO’. So, for every split 

b it is 

Y N
Ø

b bt tX X  and 

Y Nbb bt t tX X X . 
(4.81) 

In the simple scenario where X has only scalar attributes there are infinite possible 

IF-THEN rules, i.e. the threshold αtb of the b-th node can assume all the values in ℜ but 

only a finite number of splits is practically feasible. Indeed, since the training set X has 

a finite number of observations N, each j-th feature can take at most as many values as 

the cardinality of x∙,j in the subset Xtb. Calling Ntb,j this cardinality the number of possible 

splits at the current node is 

,

1
bb

L

t t j

j

N N . (4.82) 

A splitting criterion is therefore required to select the optimal partition associated to 

the subset Xtb. Common sense suggests that these children subsets Xtb|Y and Xtb|N 

originated by the split should present a higher preference for one or more specific classes 

with respect to the subset where the parent node was determined, for example one would 

expect that by choosing ‘YES’ at node tb the subset Xtb|Y is composed by a group of 

observations belonging to a number G < M of classes. From considering the probability 

P(ωm|tb) that a vector in the subset Xtb, associated to the node tb, belongs to class the m-

th class, a commonly used measure of this preference is provided by the relation 

x1
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α ȕ Ȗ
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ξ
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2

1

( ) ( ) log (| | )
M

b m b m b

m

H t P Pt t  , (4.83) 

which is nothing but a different form of the Shannon’s information entropy already seen 

in (4.71), with a base 2 logarithms instead of the natural logarithm. Thus, by computing 

this quantity one can measure the marginal decrease in ‘information entropy’, i.e. the 

increase in discriminatory power induced by the split tb. It is possible to demonstrate 

that this measure is zero when all the remaining observations fall in a same class ωα 

(P(ωα|tb) = 1) and is maximum when all the probabilities of assignment are the same 

(P(ωm|tb) = 1/M, ∀ m = 1,…,M). To further clarify this concepts, let us call Ntb|Y the 

number of observations in the subset Xtb|Y and Ntb|N those belonging to Xtb|N, so that 

Ntb =Ntb|Y + Ntb|N will be the number of points affected by the split tb. The increase in 

discriminatory power induced by the split is the given by: 

N
1Y N1

Y( ) ( )
bb

b b

tt

b b b b

t t

NN
H t H t H t H t

N N
 , (4.84) 

where tb+1|Y and tb+1|N are the children nodes generated by the parent node tb respectively 

in the Xtb|Y and Xtb|N subsets. The best split will then be the one that leads to the 

minimum possible value of entropy, or in other terms the one that maximizes ΔH(tb). 

As for the computation of the probabilities P(ωm|tb) they are generally computed as the 

ratio of all points Ntb
(m) falling in the category ωm over the total number Ntb of elements 

of the whole subset Xtb. Other splitting criteria have been proposed, yielding better 

performances in some conditions, however their suitability essentially depends on the 

kind of problem. 

Now that it is clear which path leads to the optimal splitting of the tree it is also 

important to provide a rule to indicate when to stop the branching. An overgrown tree 

can present the inconvenience of overfitting the training set, adhering too closely to 

some details, thus resulting in a lack of generalization capability. Of course, the most 

intuitive criterion is to stop when there is no more ambiguity in the remaining 

observations and they all belong to the same class (P(ωα|tb) = 1), but this may not always 

be feasible or may lead to unpractically large trees. One possibility is then to stop the 

split when a sufficient level of discrimination T is reached, i.e. if any possible split 

reduces the uncertainty of classification more than T, however this criterion is hardly 

ever a sensible choice. An alternative can be to impose a maximum number of splits or 

more commonly to perform a ‘pruning’ of the tree. In general terms, the latter consists 

in producing first a bigger classification tree and then, according to some criteria that 

are usually a compromise between complexity and classification error, prune some of 

its branches. 
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Regardless the stopping criteria chosen once a terminal node (a leaf) is reached it has 

to be assigned to a class. This is trivial if all the observations have the same class, in all 

other cases the simplest way is to assign it to the category ωα which most the remaining 

observations belong to: 

x ∈ ωα if arg max ( | )m b
m

P t  . (4.85) 

Some similarities between the decision tree classifiers and the neural networks have 

been pointed out. Both methods aim at forming complex decision boundaries in the 

feature space, however a major difference lies in the way decisions are made. Decision 

trees employ a hierarchically structured decision function in a sequential manner while 

the NN work in a parallel fashion. From a performance point of view the NN offers 

generally better results with respect to the classification error, but the decision trees 

require much less training time. Despite the differences, however, it has been shown 

that linear tree classifiers can be adequately mapped to a multilayer perceptron structure. 

Construction of fuzzy decision trees have also been suggested, by allowing the 

possibility of partial membership of a feature vector in the nodes that make up the tree 

structure. The hierarchical nature of the decision trees is indeed important to rank the 

decision variables but often conceals the logical rules behind the decision and the 

resulting decision sequence often lacks generality and flexibility. Application of the 

fuzzy theory to the crisp decision trees dates back to the seventies and it was initially 

focused on the design of the optimal algorithm that given the fuzzy tree allow the extract 

the optimal class assignment for the inputs. Most of the current research on the coupling 

between decision trees and fuzzy inference, which regained popularity in the nineties, 

is mainly devoted to the problem of automatic induction of the ‘soft’ classification tree 

from a set of input data. Various approaches have been tested, some considering the 

decision trees as probabilistic classifiers (Quinlan, 1987; Quinlan, 1990), some others 

more than dealing with the statistical uncertainty used the fuzzy trees with the intent of 

representing and incorporating in the decision the cognitive uncertainty associated with 

the human thinking process (Yuan and Shaw, 1995). The idea is then to make a crisp 

decision tree more flexible by using its hierarchical structure to build a fuzzy inference 

engine (FIE), i.e. fuzzification is achieved by imposing a fuzzy structure over the basic 

skeleton of a standard decision tree. Many algorithms have been proposed in time for 

the construction of the translation of the classification decision trees in fuzzy terms all 

having in common some main characteristics. In (Suárez and Lutsko, 1999) and (Olaru 

and Wehenkel, 2003) each split is redefined in fuzzy terms leading to the so-called ‘soft 

decision’, which, opposed to the crisp splits provided by the classical decision trees, 

introduce the possibility of having overlapping regions where the input can be assigned 
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to both the successors. This ambiguity is modulated by optimizing the cut points and the 

width of the transition zones among the successors. In different terms this is what has 

been obtained in (Marsili-Libelli et al., 2012) where the crisp partitioning of the feature 

sets defined by a previously determined classification tree is replaced by a softer one. 

Here a parametrized membership function is assigned to each interval defined by two 

cut-points on the same variable, initially placing the maximum value in the middle point 

of the interval and the minimum are placed in the middle points of the adjacent intervals; 

this way the intersection point of the memberships, i.e. the highest degree of fuzziness 

results located exactly in correspondence of the breakpoints. A subsequent optimization 

procedure on the same training data used to define the crisp decision tree will then 

determine the best parameters of the membership functions rearranging their shape and 

thus defining the optimal width of the transition zones. 
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4.4 Support Vector Machine 

In section 4.2 the goal was to design a classifier based on probability density or 

probability functions, while in section 4.3 decision trees were considered, whose 

resulting classifiers were equivalent to a set of linear discriminant functions, though 

hierarchically arranged. Here we will focus on the design of a particular category of 

linear classifiers, regardless of the underlying distributions describing the training data. 

The method, called support vector machine (SVM) will be first presented in the case of 

linearly separable classes. Then will be discussed the application of the linear method 

to tackle the nonlinearly separable classes without involving the manipulation of the 

spatial representation of the data. A method will be finally presented in case the 

nonlinearities are such that some minor adjustments are not sufficient to guarantee a 

good performance: an appropriate mapping of the data in some higher-dimensional 

space will ensure the possibility to linearly separate the classes and so to design the 

optimal linear classifier. 

4.4.1 Support vector machine in the linear case 

The major advantage of linear classifiers is their simplicity and computational 

attractiveness. The paragraph starts with the assumption that all the observations x can 

be effectively classified using a linear classifier, and will discuss the application of the 

SVM techniques for the computation of the corresponding linear discriminant functions. 

A more general problem where a linear classifier cannot correctly classify all vectors, is 

then discussed and some approach to design an optimal linear classifier to tackle the 

non-linarites are presented. 

Let us once again focus on the two-class case and consider the previously introduced 

discriminant function to be linear. The decision hypersurface in the L-dimensional 

feature space of the generic observation x ∈ ℜL is then a hyperplane 

0( ) 0Tg wx w x  (4.86) 

where w = [w1,w2,…,wL]T is known as the weight vector and w0 is here used to indicate 

the intercept (in the special case that w0 = 0, the hyperplane passes through the origin). 

Picking two points x1,⋅, x2,⋅ on the decision hyperplane, then 

1, 0 2, 00 T T
w ww x w x  (4.87) 

thus, 

1, 2,( ) 0T
w x x . (4.88) 
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The difference vector x1,⋅ – x2,⋅ lies too on the decision hyperplane, then the vector w 

is orthogonal to that hyperplane. Now it is easy to deduce that the norm |g(x)| represents 

the Euclidean distance of the point x from the decision hyperplane and that it will 

assume positive values on one side of the plane and negative on the other. 

4.4.1.1 Linearly separable classes 

Assuming then that the two classes ω1 and ω2 are linearly separable the objective is 

then to determine the hyperplane g(x) that classifies all the N training vectors xi,⋅ ∈ X 

(X ∈ ℜN×L). It can be demonstrated, however, that this hyperplane is not unique, and the 

objective must then be adjusted in the research of the optimal separation hyperplane, 

one that not only is able to classify all the training data but also presents some 

characteristics that make it a potentially good classifier for the (unknown) samples yet 

to come. In other words, it should be not too much tailored on the training data and this 

property is called the ‘generalization performance’ of the classifier. From these 

considerations, it is now possible to affirm that a sensible choice for the optimal 

separation hyperplane is the one that maximizes the ‘margin’ from the classes. In more 

mathematical terms the goal can be stated as the research of the separation hyperplane 

identified by the direction w for which is maximum the distance d from the nearest 

points in class ω1 and class ω2. Being w1 and w2 the components of w on the spaces of 

the two classes, the distance of the generic point xi,⋅ is computed as 
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w w

x x
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. (4.89) 

In order to separate the following considerations from the problem of scaling, it will 

be from now on assumed that the direction w and the threshold w0 are such that g(x) = 1 

for the nearest points in ω1 and –1 for those of ω2 i.e. 

0 1T ww x , ∀ x ∈ ω1, 

0 1T
ww x , ∀ x ∈ ω2. 

(4.90) 

This way the margin will be 

1 1 2

w w w
, (4.91) 

and calling yi the class labels of each sample of the training set, equal to 1 for class ω1 

and –1 otherwise, the optimization problem can be formalized as the computation of the 

defining parameters w and w0 of the hyperplane such that is minimized 

21
( )

2
J w w , (4.92) 
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subject to 

0)( 1T

iy wxw  for i = 1,…,N, (4.93) 

which is a quadratic optimization problem with linear inequality constraints. 

If the Karush–Kuhn–Tucker (KKT) necessary conditions: 

0, , ) 0( ww Ȝ
w
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0

0

( , , ) 0w
w

Ȝw ; 

Ȝ ≥ 0; 

, 0[ ( 1] 0)T

i i iy w xw , for i = 1,…,N. 

(4.94) 

are met, where Ȝ is a vector of Lagrange multipliers and the Lagrangian function 
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the first two conditions of (4.94) can be respectively rewritten as 
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(4.96) 

Actually, since the Lagrangian multipliers Ȝi can be either positive or zero, it is safe 

to assume that not all N of them give a contribution but in more general terms the 

direction is given by a combination of the Ns ≤ N feature vectors x̂i,⋅ ∈ X̂ (X̂ ∈ ℜNs×L) 

corresponding to the non-zero multipliers: 

,

1

ˆ
sN

i i i

i

yw x . (4.97) 

These are known as support vectors and the optimum hyperplane classifier as a 

support vector machine (SVM). They are the critical elements of the optimization task 

and in fact the optimization results insensitive to all other vectors for which Ȝi = 0, which 

can lie in all the space associated to their class, while the support vectors instead can be 

only found in either of the hyperplanes 

0
ˆ 1T ww x . (4.98) 

In order to determine the parameters, the problem can be solved considering the 

equivalent dual form of (4.92) by maximizing 

0( ), ,ww Ȝ , (4.99) 

subject to the KKT conditions previously introduced: 
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Ȝi ≥ 0, for i = 1,…,Ns, 

(4.100) 

which have the advantage of presenting two equalities instead of inequalities and thus 

can be substituted in (4.99) and reformulate it as 
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Ȝ

x x , (4.101) 

where the possibility to write the optimization problem in terms of the inner product ۦx̂i,⋅,x̂j,⋅ۧ will come in handy later. Once the optimal Ȝi are determined, the hyperplane 

can be computed from the first constraint and the classification is performed as 

x ∈ ω1 (ω2) if ,

1

0
ˆ( ) , ( )0

SN

i

i

i ig y wx x x . (4.102) 

Although the resulting optimal hyperplane is unique, no guarantee in this sense is 

given concerning the Lagrange multipliers, which means the expansion of w in terms of 

support vectors in may not be unique. 

 

Figure 4.11 Different possibilities for the separation hyperplane of a linearly 
separable two-class dataset. The solid-coloured points are the support vectors. The 

direction 2 results the one that maximizes the separation margin 

Some even more general considerations on the geometrical meaning of the SVM 

method can be made. Denoting as conv{X̂} the convex hull of the dataset X̂ containing 

the support vectors it can be demonstrated that it is formed by all the convex 

combinations of the Ns elements of the set X,̂ i.e.: 

, ,

1 1

ˆ ˆˆ ˆconv{ } : , ; 1; 0 1
s sN N
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  X y y x x X . (4.103) 

Then for the linearly separable case solving the optimization problem in (4.101) is 

the equivalent of determining the hyperplane that bisects the linear segment joining two 

nearest points between the convex hulls of the data classes or, in terms of maximum. If 

x2

x1
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yi = 1 and yi = –1 are used to identify respectively the points classified in the first and in 

the second class, the problem becomes the minimization of the norm: 

2

, ,

: 1 : 1

min ˆ ˆ 
i i

i i i i

i y i y
Ȝ

x x  (4.104) 

under the constraints 

: 1 : 1

1, 1
i i

i i

i y i y

  ; Ȝi ≥ 0 and i = 1,…,Ns. (4.105) 

4.4.1.2 Non-separable classes 

In case the two classes are not linearly separable it would not be possible to determine 

the optimal hyperplane as the one that maximizes the distance between the parallel 

hyperplanes of (4.98) because some of them will be falling inside the band or even cross 

the hyperplane and therefore are misclassified. Rewriting the condition (4.93) as 

, 0 )ˆ( 1 T

i i iy wxw , for i = 1,…,Ns, (4.106) 

where Ns ≤ N is again the number of non-zero Lagrangian multipliers and feature vectors 

x̂i,⋅ are their associated support vectors. The so-called ‘slack variables’ ξi are positive 

values used to discriminate the points that fall outside the band (ξi = 0) from those that 

fall inside the parallel hyperplanes (0 < ξi ≤ 1) and those that across the border (ξi > 1). 

The optimization problem should then be reformulated as the research of the optimal 

separation hyperplane that maximizes the margin while at the same time keeping small 

the number of misclassified observations of the training set. In mathematics, the cost 

function (4.92) becomes 
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where C is a positive coefficient that controls the relative influence of the two competing 

terms, ξ is the parameter vector and I(ξi) is such that 
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I(ξi), however, is discontinuous, so it is preferable to express (4.107) as 

2
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1
( , )

2
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sN

i

iJ w Cw wξ , (4.109) 

and use (4.106) as constraint. 

It is again possible to formulate the dual optimization problem in form of a 

maximization task of its Lagrangian expression, obtaining the formulation 
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subject to 

0 i C , for i = 1,…, Ns; 

1
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y . 
(4.111) 

Notice that the multipliers Ȝi 

, 0
ˆ[ ( 1 ]) 0T

i i i iy w xw , for i = 1,…,Ns, (4.112) 

associated to the points inside the band, even those that ‘cross the border’, i.e. all 

Lagrangian multipliers with ξi < 0, are all equal to C, that is they all have the largest 

possible influence in determining the optimal hyperplane direction w. 

The main difference between the linearly separable and non-separable cases lies in 

the fact that for the latter one the Lagrange multipliers need to be bounded above by C, 

or that, from another point of view, the linearly separable case corresponds to the limit 

case when C → ∞. 

The extension of the just considered SVM methods to the multi-class case is 

straightforward. Given M classes the objective will be to determine the optimal 

separation hyperplane gα(x) = 0, α ∈ [1,M], such that if the observation x belongs to the 

α-th class gα(x) > gȖ(x) (α ≠ Ȗ) and, as in (4.90), the linear function will return gα(x) > 0 

if x ∈ ωα and gα(x) < 0 otherwise, then 

x ∈ ωα if arg max{ ( )}
m

mg x . (4.113) 

This kind of ‘one-against-all’ technique may lead to undetermined regions where 

more the one hyperplane is positive. An alternative is the ‘one-against-one’ approach 

where, M⋅(M – 1)/2 binary classifiers are trained on each pair of classes then perform 

the class assignment on the basis of a majority vote. A major drawback, however, is 

represented by the relatively large number of binary classifiers to be trained. 

4.4.2 Support vector machine for the nonlinear case 

In the previous paragraph the attention was focused on the optimal design of a linear 

SVM classifier both in case the classes are actually linearly separable and in the case 

when they are not. In the latter, a full separation of the observations belonging to 

different classes is not possible and the optimal partition is obtained by minimizing the 

misclassification error. This compromise, however, does not always lead to satisfactory 

results and a fully nonlinear classifier should be sought to tackle the problem. 
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One strategy could consist in performing a transformation of the observations from 

their L-dimensional space to a K-dimensional space where the classes can be efficiently 

separated by a hyperplane: 

KL
zx . (4.114) 

Since this new space ℜK usually has a higher dimensionality we might conclude that 

the mapping, although motivated by an increase of the separation efficiency, would also 

increase the computational complexity. However, this is not the case. Having described 

the optimization problem (4.101) in terms of inner products implies that in the linear 

case the expression of the optimal separation hyperplane was: 
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which means that ultimately the classification of the unknown observation x depends on 

the inner product with the support vectors. Supposing to map a two-dimensional 

observation x in a three-dimensional one, for example: 

2
1

2
1 2

2
2

2

x

x x

x

x z , (4.116) 

one would find that the correspondence of the inner products in the two spaces is 

2

, , , ,, ,i j i jxz z x . (4.117) 

This is also known as ‘kernel trick’ and is consequence of the Mercer’s theorem, 

which states that it exists some feature mapping ϕ(∙) of a L-dimensional variable in a 

new Euclidean space Z: 

( ) Zx x , (4.118) 

such that 

( , ( )) ( , )K  zx x z , (4.119) 

where K(x,z) is a symmetric function such that ∀ x ∈ ℜL 

( , ) ( ) ( ) 0K g g d dx xz z zx , 

2( ) dg x x . 
(4.120) 

This class of functions K(x,z)are called ‘kernels’ and the space Z in which they define 

the inner product is known as ‘reproducing kernel Hilbert space’ (RKHS). Popular 

choices for the kernel functions are: 
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– polynomials 

( , 1 0,) ( )T q
K qxz zx ; (4.121) 

– radial basis functions 

2

2
( , ) exp


K

zx
x z , with σ known a priori; (4.122) 

– hyperbolic tangent (the sigmoid transform of neural networks) 

( , ) tanh( )T
K  x xz z , with appropriate ȕ and Ȗ. (4.123) 

Once the kernel function is selected the dual problem (4.110) subject to the 

constraints of (4.111) can be reformulated as 

, ,

1 ,

ˆ ˆ( )
2

m x ,a
1sN

i i j i i j

i i j

jy Ky  
Ȝ

x x  (4.124) 

and the class assignment becomes 

x ∈ ω1 (ω2) if , 0

1

ˆ( ) ( , ) ( )0
S

i

i

i

N

ig y K wx x x . (4.125) 

Due to the nonlinearity of the kernel function, the resulting classifier is a nonlinear 

one in the original ℜL space. 

 

Figure 4.12 Example of nonlinear SVM classifier for the case of two non-linearly 
separable classes. A Gaussian radial basis function was used. the dotted lines 

represent the margins, the solid line is the separation hypersurface and the full marked 
points are the support vectors 

Mercer’s theorem guarantees the existence of such a space in case the conditions 

(4.120) are met but it does not provide any suggestion as to how to build this space or 

even about its dimension, so there is no hint on how to select the optimal kernel function. 

At most, once a kernel function is chosen, it is possible to set up yet another optimization 

problem in order to determine the best value of the parameter C of the cost function and 

the kernel parameters that minimize the classification error. The most common 

procedure solves the SVM task for different sets of hyperparameters, as the ensemble 

x2

x1
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of the parameters to be optimized is called, and finally select the classifier that best fit 

some requirements, for example maximizing the margin over the w and at the same time 

minimizing the bound over the hyperparameters. 

A notable characteristic of the support vector machines is that the computational 

complexity is independent of the dimensionality of the chosen kernel space. The high-

dimensional space can be designed without reference to explicit models, thus avoiding 

to use a large number of parameters, as would be required by the high dimensionality of 

the space. This property also influences the generalization performances (intended as 

the classification error of data outside the training set) of SVMs, which indeed are quite 

good. For this reason, SVM have been applied to a number of diverse applications, 

ranging from handwritten digit recognition, to medical imaging and person 

identification, usually ranking higher when compared with other classifiers (Meyer et 

al., 2003). Moreover, the success of the SVMs, in practice, spurred, whenever the 

computations could be expressed in terms of inner products, a research effort to extend 

a number of linear classifiers, including those based on PCA as we have seen, to 

nonlinear ones by embedding the kernel trick in their structure. 
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Chapter 5 Implementation of the fault 

detection methods and 

performance assessment 

In the previous chapters an overview of the problem setting and the theoretical 

background of the methods chosen to tackle the fault detection problem for the present 

work were provided. In this chapter is discussed the implementation of these methods 

and their application to both the datasets introduced in Chapter 3: the operational plant 

data and the data generated by the numerical model. 

The operational data used in the present work were provided by the plant managing 

society of the municipal treatment facility of Mantua, in Italy, and consisted of an almost 

one year long set of measurements of ammonia and nitrates concentrations measured by 

two ion-specific probes installed in one of the four reactors of the plant, one ANISE 

probe (Hach-Lange GmbH, Dusseldorf, Germany) and one S∷can probe (Scan 

Messtechnik GmbH, Vienna, Austria). Due to the significantly low quality of the 

measurements provided by the latter, the data of the S∷can probe were discarded and 

the design and testing of the detection algorithms was performed only on the data of the 

ANISE probe measured from the 18th September 2012 to the 7th May 2013 where can 

be counted 2102 aerobic phases and the same number of anoxic phases. 

As already mentioned the proposed algorithm is designed to operate as a real-time 

fault detection (RTFD) tool supporting the supervising controller OSCAR (ETC eng, 

Trento, Italy) operating in the Mantua WWTP in conjunction with the plant SCADA 

(supervisory control and data acquisition) system, as shown in Figure 5.1. Based on the 

reliability assessment of the measurements produced by the RTFD, the plant manager 

or the automatic control supervisory system was able to adapt the control strategy to 

compensate for the possible loss in quality of the treatment or cost efficiency and direct 

the process SCADA to enact the necessary countermeasures. The choice of the optimal 

remedial action according to the different anomalies in the measurements quality is 

however beyond the scope of this research. 
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Figure 5.1 Schematic representation of the relationship among the different actors of 
the plant control in the configuration studied. The RTDF algorithm is developed as a 
support tool for the control supervisor providing it with reliability assessment of the 

measurements. The control supervisor will then enact the necessary control strategies 
through the process SCADA 

In section 3.4 it was introduced and discussed the distinction between gross faults 

and finer anomalies affecting the measurements. The first category included all the most 

evident and easy-to-spot signal inconsistencies directly revealing the presence of 

malfunction in the instruments or in the acquisition system. With the term ‘finer fault’ 

we denote the anomalies for which a more refined investigation tool was needed in order 

to discriminate whether its origin lies in an instrument malfunction or in an anomalous 

organic loading of the influent. Thus, two different approaches to the detection were 

used, hierarchically developed to investigate the presence of faults with increasing 

levels of complexity: first the different signals are tested separately for the presence of 

the gross faults using the rationale discussed in section 3.4.2, then, in case nothing is 

found, different methods, whose implementation will be thoroughly discussed 

throughout this chapter, are employed for the detection of the finer faults. The 

prerequisite for the application of the more refined methods for the FD was the 

identification of a set of diagnostic parameters (see section 3.4.3) based upon the 

previously described data mining and classification techniques, with the aim to expose 

the hidden relationship characterizing the good (and by contrast the bad) behaviour of 

the sensors. A by-product of the parameterization of the signals, namely the correlation 

coefficient of the linear regression used to compute the concentration variation ratios of 

the ammonia, proved to have some diagnostic power by itself since it represents a 

measure of the roughness of a signal and thus an indirect indication of the fouling level 

of its measurement device. Finally, it is worth recalling that the considerations 

motivated by the trend analysis of the AC processes brought to the decision to split the 

finer FD check in two parts, one for the anoxic phase and one for the aerobic one. The 

two parts are based on the same methods and employ the same parametrization of the 
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signals but work in parallel each on its pertinent phase. A schematic representation of 

the FD procedure is shown in Figure 5.2. 

 

Figure 5.2 Outline of the main sequential steps RTFD algorithm 

5.1 Implementation of the preliminary 

screenings 

The main features of the treatment process and the characteristics of its quantities of 

interests have been already presented in Chapter 3, regarding both the operational 

measurements and the synthetic data. Chapter 3 also discussed the characterization and 

the detectability of the gross faults, using a slightly different screening approach 

depending on whether the data come from the operational plant or are numerically 

generated by the model. In the latter case, for example, there was no ambiguity as to the 

source of an inconsistent duration of the phases, therefore a preliminary screening to 

detect this kind of behaviour was not necessary. A summary of the type of faults 

investigated and their detection thresholds is reported in Table 5.1. 

Table 5.1 Type of faults and their respective values for the plant operational data and 
the measurements generated by the numerical model 

Type of fault Operational data Synthetic data 

Signal breakdown Δtsamp ≥ 10 min (~20 samples) Δtsamp ≥ 10 min (~20 samples) 
Constant signal / 
zero-scale fault 

Constant values for t ≥ 10 min 
(~20 samples) 

Constant values for t ≥ 10 min 
(~20 samples) 

Spike 
Δ consecutive meas. ≥ 2 mg/L 

(NH4
+ and NOx

–) 
Δ consecutive meas. ≥ 10% of 

meas. range (Table 3.3) 
Anomalous phase 
duration 

Δtphase ≥ 3 h - 

 

According to the methodology illustrated in section 3.4.3, at the end of each process 

phase a set of diagnostic parameters is extracted from the signals. Due to the limited 
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amount of data, mostly in terms of measured variables, a limited number of features 

from the operational data of the Mantua plant could be considered, namely the slopes 

and average concentration values of the nitrate and ammonia in the aerobic reactor 

(Table 3.13). Keeping in mind that the numerical model was developed as a surrogate 

of the real plant, we simulated a wider range of measurements with a precise physical 

meaning and which can be encountered in real-life treatment practice. The broader 

spectrum of possible measurements simulated with the model expanded therefore the 

set of features available for FD purposes, allowing to extend the group previously 

derived for the plant data, adding the average concentration values of the suspended 

solids and the dissolved oxygen, together with the temperature values (Table 3.15). 

As previously mentioned, the water buffeting induced by the impellers on the probe 

during the anoxic phase produces ripples in the signals. These fluctuations are more 

pronounced when the sensor is clean, while as the level of fouling increases the 

roughness of the signal decreases (Figure 3.12) because the fouling layer acts like a 

damper to the incoming wavelets. The correlation coefficient r2, associated to the 

regression line computing the slope of the nitrogen concentration, proved to be a good 

indicator of the probe fouling and by trial and error it was found that a value of r2 = 0.9 

provided a suitable alert level for probe cleaning. Figure 5.3 shows the changes in r2 

values before and after a probe cleaning. A clean probe is more sensitive to the small 

variations in concentrations induced by the turbulences and therefore the correlation 

coefficient of its linear regression coefficient r2 is smaller. On the contrary, its increase 

may indicate a progressive fouling, as the signal becomes smoother. 

 

Figure 5.3 The fouling level of the ammonia probe is given by the square residuals of 
the regression line in the anoxic phase. The spike in the upper plot marks the probe 
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5.2 Implementation of the finer check methods 

In this paragraph, we discuss the implementation of the FD methods used to identify 

the finer faults affecting the measurements. In particular, for the operational plant data 

two methods were employed, one is an adaptive version of the PCA algorithm discussed 

in section 4.1, while the other is based on the simple Bayes classifier presented in section 

4.2. Some of the limitations encountered, due both to the limited set of measurements 

available and to the methods themselves, brought on one hand the need to test new 

detection methods on a wider dataset of numerically generated measurements and on 

the other promoted the implementation of two additional classification methods, one 

based on the classification trees (section 4.3) and the other on the support vector 

machines (section 4.4 The availability of more observed variables also allowed the use 

of different combinations of the diagnostic features for the training and testing of the 

different methods. 

5.2.1 The real-time mowing window principal 

component analysis method 

 

Figure 5.4 Workflow of the MWPCA algorithm 

The fault detection method implemented in this work continues the idea introduced 

with the MWPCA by (Baggiani and Marsili-Libelli, 2009) of merging the main 

advantages of the recursive PCA method and the adaptive PCA method in a new 

methodology suitable for the application to a real-time (RT) detection process. In the 

RT-MWPCA method here implemented the use of a ‘moving window’ containing the 
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reference space of the PCs, sliding to adapt for the changes in time of the relationships 

among the parameters, is maintained and so is the idea to update this space conditionally 

on the respect of the statistical thresholds assessing ‘how similar’ is the new sample to 

those used to build that space. The novelty introduced here is that the two statistical 

thresholds are still based on those defined in the literature but multiplied by a coefficient 

determined during the training phase in order to maximise the detection performances. 

Figure 5.4 shows the complete workflow of the RT-MWPCA algorithm implemented. 

5.2.1.1 Algorithm initialization 

First, the fault detection algorithm is initialized (Box A in Figure 5.4) by selecting a 

set of reference data from which the parameters are extracted. The initial reference 

dataset should represent a fault-free operation period sufficiently extended to represent 

the weekly variability of the organic loading and is normally selected right after a probe 

cleaning and plant overhaul. The initial reference period chosen for each phase is 

therefore composed of the parameters computed for the first 100 fault-free contiguous 

phases for the Mantua plant data and 26 phases in the synthetic data case. A PCA is then 

performed on these parameters at first normalizing theme and subsequently computing 

the eigenvalues of the correlation matrix. The choice of the number of principal 

components to retain without losing relevant information is based on the eigenvalue 

scree plots by selecting the PCs whose associated eigenvalues are greater than 0.7 

(Dunteman, 1989) and the space of the retained PCs is the initial reference space of the 

PCA model. 

5.2.1.2 Threshold definition and optimization 

Once this initial reference is computed, the FD method can be used for the real-time 

FD. As the measurements are collected, they are promptly tested by the preliminary 

screening section for the presence of the most evident sensor malfunctions (Box B1 in 

Figure 5.4). After a phase is completed, without the preliminary screening detecting any 

fault, the phase is further analysed by the RT-MWPCA algorithm, as shown in Box B2 

of Figure 5.4. 

The algorithm is conceived to follow the evolving process conditions through a real-

time conditional update strategy starting with a reference set for fault detection and 

updating it to track the time-varying process characteristics. The fault thresholds Tth and 

Qth, to be described later, are based on the Hotelling’s T2 and Q statistics. Given the 

reduced dimensions in the PC space, both thresholds are important, because while T2 

measures the similarity of the tested sample with respect to the subspace of the retained 
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components (PC1, PC2), Q monitors the importance of the information embedded in the 

excluded components. 

A process anomaly is detected whenever both the current T2 and Q scores exceed the 

thresholds Tth and Qth, otherwise the phase is considered ‘normal’ and its parameters are 

allowed to update the reference space: the newest parameters are included in the dataset, 

while the oldest are discarded. In this way, the moving window has a constant size (the 

same as the initial reference set i.e. 100 samples for the real plant and 26 for the 

simulated measurements) and may be composed of not necessarily consecutive data. 

The theoretical thresholds T2
lim and Qlim provided a too severe criterion for the 

identification of the faults in the current work and led to an undesirably high number of 

anomalies detected and therefore proving to be unsuitable for a reliable fault detection 

in our problem. More realistic discriminating values are thus determined by introducing 

the modified thresholds: 

2
th T limT k T ; 

th Q limQ k Q , 
(5.1) 

where the kT and kQ coefficients are estimated by minimizing the error function 

E A C D C , (5.2) 

in which A is the number of actual faults, D is the number of faults detected by the 

algorithm and C is the number of matches between the detected and observed faults. 

Therefore, the first terms represent the number of false negatives, while the second 

counts the false positive detections so that the whole error function eq. (5.2) has the 

meaning of a classification error minimization, which was performed by the genetic 

algorithm 'ga' in the Matlab® Statistics Toolbox. For practical purposes both kT and kQ 

were constrained in the (0 ÷ 10) interval, allowing the threshold Tth (or Qth) to be lower 

than the theoretical control limits or at most ten times higher. 

5.2.2 The Bayesian method 

Another method tested for the detection of the finer class of faults is based on the 

simple Bayesian classifier of paragraph 4.2. The algorithm proposed is also in this case 

divided in two parts, one devoted to the detection of irregular aerobic phases and one 

for the anoxic ones and both of course are employed only if no anomalies are detected 

by the preliminary check on the state of the measurements. 

Each part of the algorithm is composed of an initialization step, which corresponds 

to the initial training of the Bayesian predictive model. Then the prediction procedure, 

to be repeated at each phase, can begin. This is composed of two sequential steps: 
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1) Preliminary screening, to detect the most evident malfunctions (same as in Box 

B1 in Figure 5.4); 

2) Subsequent finer fault detection, based on Bayesian updating. 

At each new phase, if the preliminary screening reveals the presence of one or more 

gross anomalies the phase is considered faulty and the algorithm waits for the next 

phase. When no anomaly is detected by the preliminary check the current Bayesian 

predictive model, built using the parameters and the normal or abnormal state of the 

phases available so far, is used to estimate whether the parameters of the current phase 

most likely belong to a normal or an anomalous phase. At each next step the prediction 

is then compared to the actually observed state and the information is used to update the 

predictive model for the subsequent group of parameters. 

5.2.2.1 Initialization step 

In order to set up the initial Bayesian predictive model it is required to have a dataset 

composed by at least one regular phase and at least one phase in which is observed an 

anomaly not detected by the preliminary screening. This dataset is used to compute, for 

each parameter, two likelihood distributions: one is the distribution of the samples in 

the fault-free phases, the other in the complementary anomalous phases. 

Given a set of data it is possible to use the Bayes’ theorem to compute the conditional 

probability of detecting a fault given the current parameters as: 
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( | ) ( )

( )
)
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P Faul
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P
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Data
 , (5.3) 

where the first term in the numerator is the likelihood and the second is the prior. 

The idea is to use the Bayes’ theorem to predict the state of the process whenever a 

new observation is available, then at each step compare that prediction to the actual state 

and use this new information to update both the likelihoods and the priors in order to 

obtain a better prediction in the following steps. In other words, this means that given 

the new observation at step t + 1, represented by the set of parameters x(t+1), two 

conditional probabilities are computed: respectively eq.(5.4) and eq.(5.5). The first is 

the probability that the current observation represents a faulty state, i.e. belongs to a 

class ωF, while the other is the probability that the process is normal, i.e. the observation 

x(t+1) belongs to the class ωN: 
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Here Pt(x(t+1)|ωF) and Pt(x(t+1)|ωN) represent the likelihoods, provided the knowledge 

at time t, of obtaining the parameters of x(t+1) given the faulty (or normal) state of the 

process. So, at time t the densities of the parameters both in case of fault or normal 

process conditions are estimated, then they are used to evaluate the conditional 

probabilities of the parameters in the next sample at t+1. 

5.2.2.2 Priors’ estimation 

Regarding the estimation of the priors Pt(ωF) and Pt(ωN) at each step t, they are 

computed as the frequencies of observing (or not observing) a fault, i.e. the number of 

anomalous or regular phases encountered divided by the total number of phases 

investigated so far Nt. 

1
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5.2.2.3 Likelihoods estimation 

In principle, the probabilities density function can be either parametric distribution 

functions (such as normal, uniform, etc.), determined on the base of some a priori 

knowledge, or functions estimated without assuming a parametric form of the 

distribution. Due to the lack of prior knowledge on the distribution form of the 

parameters we opted out for the second approach. 

As seen in paragraph 4.2.1.2 one way to approximate the densities is to use the 

histogram of the values. After dividing the sample space into N intervals (bins) the 

probability density of the sample xi can be approximated by eqs (4.73) and (4.75). 

However, estimating the densities of the likelihoods with the histogram has some 

major shortcomings: the number and the width of the bins deeply influences the shape 

of the distribution and most of all the distribution function is discrete. It was decided 

instead to use kernel density estimation (KDE) techniques to estimate continuous 

densities. The pdf is then built by creating an individual probability density curve for 

each parameter j of x in form of known kernel functions (which are symmetric 

distribution functions such as normal, etc.) for each data value, then the smooth curves 

are summed. From eq. (4.77) the approximated form of the likelihood of observing the 

j-th parameter of x(t+1) in the state ω⋅ given the knowledge acquired until the time t is: 
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where K(∙) is the kernel function chosen and h is a smoothing parameter also called 

bandwidth. 

In this study the KDE of the likelihoods is achieved using the 'fitdist' function of 

the Matlab® Statistics and Machine Learning Toolbox™, choosing the normal 

distribution as kernel function. Using the first 150 samples of the datasets we compared 

the cumulative distribution functions (CDFs) obtained for different values of bandwidth 

in order to select the optimal smoothing parameters. The results found are approximately 

the same for all the parameters in both the aerobic and the anoxic phase, with a few 

exceptions represented by the slopes, therefore a smoothing factor h = 0.5 is used for all 

the average values and h = 5 for the slopes of nitrates and ammonia. Table 5.2 shows 

the bandwidth for the parameters extracted from the synthetic dataset but the same 

considerations apply also for the less populated set of parameters of the plant 

measurements. 

Table 5.2 Parameters extracted for each process phase from the data generated by 
the numerical model 

Parameter KDE smoothing factor 

m⋅,NH4+,in 0.5 

rg⋅,NH4+,in 0.5 

m⋅,NH4+,out 0.5 

rg⋅,NH4+,out 0.5 

s⋅,NH4+,out 5 

m⋅,NOx–,in 0.5 

rg⋅,NOx–,in 0.5 

m⋅,NOx–,out 0.5 

rg⋅,NOx–,out 0.5 

s⋅,NOx–,out 5 

m⋅,Temp 0.5 

m⋅,DO,in 0.5 

rg⋅,DO,in 0.5 

m⋅,DO,out 0.5 

rg⋅,DO,out 0.5 

m⋅,TSS,in 0.5 

rg⋅,TSS,in 0.5 

m⋅,TSS,out 0.5 

rg⋅,TSS,out 0.5 

 

5.2.2.4 Prediction 

Each time a new phase is completed and its parameters are available, the 

distributions, estimated as seen in the previous paragraph, are used to compute the 

likelihoods Pt(x(t+1)|ωF) (or Pt(x(t+1)|ωN)) and then, together with the priors, are used 

to predict the state of the process. Assuming the likelihoods of the L parameters to be 

iid, thus their joint distribution can be computed as: 
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then eqs. (5.4) and (5.5) become: 
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The classification is then determined by the largest between the two probabilities: 

1 1 1
,

arg max ( 1) ( 1),
NF

Nt t t FP tStat te P
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 x x . (5.12) 

 

This Bayesian approach to the problem is intrinsically evolutionary. At each step, the 

features extracted from the measurements are compared to the previous ones, 

transformed into the probability distributions of the parameters and of the states, in order 

to predict the most probable condition of the sensors. In this method, it is not possible 

to isolate a training phase from a validation phase, since it recursively trains on the 

available data to forecast the state observation that will be part of the training set in the 

next iteration. 

5.2.3 The binary classification trees 

As introduced in paragraph 4.3 among the elements characterizing the binary 

classification trees the most important are the splitting criterion used and the stopping 

criterion determining the degree of complexity of the tree. In this study the 

implementation of the binary trees for classification are based on the 'fitctree' 

function of the Matlab® Statistics and Machine Learning Toolbox™ using the ‘Gini 

diversity index’ (GDI) instead of the Shannon entropy of eq. (4.83) as a splitting 

criterion. This is a transformation of the ‘Simpson index’ Ȝ representing the probability 

that two elements randomly drawn from a dataset of interest share the same class; its 

complement 1 − Ȝ therefore is the probability that the two entities belong to different 

classes, and is known in ecology as the ‘Gini diversity index’ defining the probability 

of encounter of different species. Keeping the same notation of the paragraph 4.3, the 

expression of the GDI is: 
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where the sum is over the classes m at the node tb, and P(ωm|tb) is the probability that a 

vector in the subset Xtb, associated to the node tb, belongs to class the m-th class. Similar 

to the entropy measure, the GDI of a node leading to just one class is zero (P(ωα|tb) = 1 

if ωα is the one class), while is maximum (and positive) if all the classes are equally 

possible after the node. So, our decision trees are built choosing at each node the split 

that maximises the entropy (or impurity, as it is sometimes called) gain ΔGDI. 

As for the complexity of the decision trees it was decided to use a stopping criterion 

based on the maximum number of decision splits (or branch nodes). In order to test the 

effect on the classification performance in trees of diverse complexity, it was chosen to 

use two classifiers (Table 5.3), one of low complexity, stopping the growth at 4 splits, 

and the other of medium complexity, with a maximum of 20 nodes. 

Table 5.3 Characteristics of the classification trees implemented 

Classifier Splitting criterion Stopping criterion 

Simple binary classification tree max ΔGDI max 4 splits 

Medium binary classification tree max ΔGDI max 20 splits 

 

Following the same criteria of the previous methods, also in this case two separate 

classification trees were determined, one for the aerobic part and one for the anoxic one. 

The main differences of this approach, however, consists in a more explicit tackling of 

the fault detection in terms of classification problem and in the absence of updating of 

the classifiers. In fact, the decision trees are trained only once at the beginning using the 

historic data and are subsequently employed to detect the possible faulty state of the 

next phases as they are, without using the outcome of the past detections to update their 

structure. 

5.2.4 The support vector machine classifiers 

The potentials of the SVM method discussed in section 4.4 led us to test this approach 

in the fault detection task. As for the classification trees, the implementation of this 

method followed a detection approach oriented towards the classification task, aiming 

at finding the best classifier/predictor in a non-adaptive framework. Therefore, the SVM 

based classifiers for the anoxic and the aerobic phase (the same idea of separating the 

detection algorithms for the two phases is applied here) are first trained on a set of 

representative data and then used for the following phases without changes. 

Further, it was decided to test the efficiency of the SVM as a detection tool either in 

its classical form of linear classifier, i.e. assuming the faulty and normal state of the 
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process to be linearly separable, either removing this assumption and assessing the 

discrimination performance of the method when a cubic polynomial transformation is 

applied to the data. In both cases, to decrease the possibility of bias in the detection 

using features of different scales, the training sets used are standardized, i.e. each 

variable is centred and scaled as in eq.(4.7) according to their mean and variance 

respectively. The training of the SVM classifiers is achieved in the Matlab® 

environment using the 'fitcsvm' function of the Statistics and Machine Learning 

Toolbox™. 
Table 5.4 Characteristics of the SVM classifiers implemented 

Classifier Kernel function Kernel degree Standardized data 

Linear SVM Linear - yes 

Cubic ker. SVM Polynomial 3 yes 

 

5.2.5 The confusion matrix 

In order to allow an exhaustive and yet synthetic assessment of the results obtained 

by the different method used for the finer fault detection and facilitate the comparison 

among them, their performance will be summarized in the form of a confusion matrix 

(Figure 5.5) 

 

Figure 5.5 Example of confusion matrix. The elements on the secondary diagonal 
represent the misclassified instances and their percentage over the whole dataset 

indicates the global detection error εtot. The percentage of misclassified fault εF 
indicates instead the fault detection error 

On the confusion matrix diagram, the rows correspond to the output of the classifier, 

therefore they represent the detected/predicted instances, while the columns show the 

true class of the observations. The principal diagonal counts how many (and in what 

percentage) of the tested observations are correctly classified, while the off-diagonal 

cells show the instances which were incorrectly classified. The cell in the extreme south 

west position will report both the classification success and classification fail 

percentages. Moreover, the south-east cell contains the accuracy for each classified 

category and for each observed class respectively The column on the far right of the 
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matrix shows the accuracy for each predicted class, while the row at the bottom of the 

plot shows the accuracy for each true class. The terms ‘negative’ and ‘positive’ are here 

used putting the stress on the detection purpose of this research, therefore a ‘true 

positive’ detection means that the algorithm succeeded in the identification of a faulty 

event while a ‘false positive’ indicates when a normal state is wrongly classified as an 

anomaly. For the same reason, in the confusion matrix representation of the results it 

will be used ‘0’ to denote the normal class and ‘1’ to denote the fault category. 

5.3 Fault detection using the plant operational 

data 

In this paragraph are presented the fault detection performances of the RT-FD 

algorithms on the operational data of the Mantua plant following the scheme of Figure 

5.2. the detection methods used for this dataset are RT-MWPCA and the Bayesian 

classifier, implemented as described in the previous paragraph. For each phase the 

signals are parametrized as in the table below (same as Table 3.13). 

Table 5.5 Parameters extracted from the operational plant data of Mantua in each 
process phase 

Description Symbol 

Average ammonia concentration in the biological reactor m⋅,NH4+ 

Growth or decay rate of the ammonia concentration in the biological 
reactor (slope NH4

+
out) 

s⋅,NH4+ 

Average nitrates concentration in the biological reactor m⋅,NOx– 

Growth or decay rate of the nitrate concentration in the biological 
reactor (slope NOx

–
in) 

s⋅,NOx– 

 

The main characteristics of the dataset used are summarized in Table 5.6. 

Table 5.6 Characteristics of the operational plant measurements dataset 

Characteristics Value 
Length ~9 months 
Number of phases 4404 (2202 aerobic + 2202 anoxic) 
Number of phases with gross faults 391 (249 aerobic + 142 anoxic) 
Number of phases with finer faults 70 (45 aerobic + 25 anoxic) 

 

5.3.1 Preliminary screening 

As already mentioned, regardless the method used to detect the finer faults, a 

preliminary screening to detect the presence of gross faults is performed as soon as the 

measurements are available. Table 5.7 shows the detail of the faults detected by the 

preliminary screening: in the whole tested period a total of 391 phases interested by 

gross faults were detected, of which 249 are aerobic and 142 anoxic (Table 5.6). In these 

instances, at least one fault was detected by the preliminary screening described in 
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paragraph 3.4.2, though some phases tested positive for more than one kind of fault. 

Most of them consisted of excessive length, typically associated with a nitrate overload 

in the aerobic phase. In addition, a smaller number of long phases may occur during the 

anoxic phases, caused by an ammonium build-up. The equal number of no data detected 

for both the ammonia and the nitrate signal are due to electrical failures involving both 

probes. 

Table 5.7 Detailed partition of preliminary screening faults 
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No data 
NH4

+ 6 

NO3
– 6 

Constant signal 
NH4

+ 21 

NO3
– 39 

Anomalous duration  162 

Spikes 
NH4

+ 28 

NO3
– 18 

Inconsistent slope 
NH4

+ 58 

NO3
– 31 
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No data 
NH4

+ 6 

NO3
– 6 

Constant signal 
NH4

+ 9 

NO3
– 35 

Anomalous duration  32 

Spikes 
NH4

+ 26 

NO3
– 25 

Inconsistent slope 
NH4

+ 8 

NO3
– 53 

 

From the plant management viewpoint, it is important that the fault detection is as 

timely as possible. During the preliminary screening the detection may occur earlier, 

depending on the nature of the fault, since is not necessary to wait for the end of the 

phase to begin the detection task. Figure 5.6 and Figure 5.7 show the detection delay 

produced by the preliminary screening for both phases, which often yield a response 

before the end of the phase. In the worst case the alarm is raised after 3 hours since the 

beginning of the phase, having set that as the maximum allowable phase length. 



134 Implementation of the fault detection methods and performance assessment 
 

(a) 

 
(b) 

 
Figure 5.6 Percentage of alarm delay during the preliminary screening with respect 

to the phase duration 

 

(a) 

 
(b) 

 
Figure 5.7 Percentage of alarm delay during the preliminary screening with respect 

to the phase duration 
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5.3.2 Test of the real-time mowing window principal 

component analysis method 

The first step of the RT-MWPCA method as outlined in Figure 5.4 consists in the 

definition of the initial reference PCA models for the detection of the more subtle faults, 

which are here built using the first 100 samples for each phase starting from the 18th 

September 2012 and computing the reduced models retaining the most relevant 

components. For the plant data two components out of four were retained for each phase 

(Figure 5.8). 

(a) 

 
(b) 

 
Figure 5.8 Scree plot and explained variance of the principal components of the 

initial reference dataset for the aerobic (a) and anoxic (b) phases. The reduced model 
retains in both cases the first two PCs, whose eigenvalues are greater than the given 

threshold of 0.7, as suggested by (Dunteman, 1989) 

Once the reduced models are determined both the RT-MWPCA algorithm for the 

aerobic phase and for the anoxic phase are trained to maximize the detection 

performance over the remaining phases by computing the optimal threshold that 

minimize eq. (5.2). Of course, in this optimization only the phases that did not present 

any gross fault are considered. 

Table 5.8 shows the optimal values of the threshold coefficients for the two phases. 
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Table 5.8 Optimized thresholds for the two phases. 

 Aerobic phase Anoxic phase 

T2 

T2
lim 6.241 6.241 

kT 6.963 5.280 

Tth 43.456 32.952 

Q 

Qlim 0.332 0.510 

kQ 1.451 6.760 

Qth 0.481 3.448 

 

The calibrated thresholds are quite different: in general, it is possible to observe that 

the optimal threshold level falls between five and seven times the theoretical control 

limits, however the optimal level for the Q statistic in the aerobic phase is much lower, 

almost one and a half times the Qlim. 

5.3.2.1 Fault detection performances 

In this section are presented the detection results of the RT-MWPCA algorithm at 

first separately for the aerobic and the anoxic phase and subsequently the combined 

detection performance for a more comprehensive assessment. Table 5.9 summarizes the 

characteristics of the dataset after the initialization of the method. 

Table 5.9 Characteristics of the operational plant measurements dataset used to test 
the RT-MWPCA method 

Characteristics Value 
Length >9 months 
Number of phases (after initialization) 4187 (2094 aerobic + 2093 anoxic) 
Number of phases with gross faults (after initialization) 376 (243 aerobic + 133 anoxic) 
Number of phases with finer faults 70 (45 aerobic + 25 anoxic) 

 

(a) 

 

(b) 

 

Figure 5.9 Confusion matrices describing the performances of the RT-MWPCA 
method in the aerobic phases either limited to the detection of the finer faults (a) and in 

its complete form including the preliminary screening (b) 

The confusion matrices in Figure 5.9 show that globally the classification 

performances of the method are quite high, having a success above 98%. This result is 

however deeply influenced by the higher number of normal phases with respect to the 

anomalous phases. The algorithm is in fact tested on the 2094 aerobic phases that remain 

after the initialization phase of the method and comprise 1806 phases classified as 
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normal and 288 faults, of which 243 are ‘gross faults’ and 45 belong to the ‘finer’ 

category (Table 5.9). Considering only this last class of faults the algorithm shows poor 

detection performances, being able to identify only the 22% of them. However, counting 

also the contribution given by the preliminary screening to the detection task (Figure 

5.9b) the implemented method proves to be a valuable tool for the FD. 

A detailed assessment of the adaptive detection performances of RT-MWPCA 

method in time can be found in Figure 5.10 and. Here the solid lines represent the 

classification error over the number of phases investigated and the dotted line is the FD 

error, i.e. the classification error limited to the number of faults. We notice generally the 

algorithm has a low global classification error but as the time progressed it shows a 

positive trend. On the other hand, the identification error decreased in time, although it 

never steps below the 50%. 

 

Figure 5.10 Detection performance of the RT-MWPCA algorithm, aerobic part. The 
solid line (left axis) represents the global classification error, while the dashed line 

(right axis) is the fault identification error 

Similar considerations can be made for the RT-MWPCA algorithm designed to the 

anoxic phases. Out of the 2093 phases remaining after the initialization of the method 

and the early preliminary checks 1935 phases result ‘normal’, 133 present a gross fault 

and 25 finer faults (Table 5.9). 

(a) 

 

(b) 

 

Figure 5.11 Confusion matrices describing the performances of the RT-MWPCA 
method in the anoxic phases either limited to the detection of the finer faults (a) and in 

its complete form including the preliminary screening (b) 
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In this case also, the global classification performance of the method shows good 

results (Figure 5.11), even if the excellent score is affected by the same disproportion 

between normal and faulty phases. 

Despite that, even considering only the fault identification performance of the finer 

faults, the method has a better behaviour in the anoxic phase, decreasing the detection 

error to 48% by the end of the tested period (Figure 5.12). 

 

Figure 5.12 Detection performance of the RT-MWPCA algorithm, anoxic part. The 
solid line (left axis) represents the global classification error, while the dashed line 

(right axis) is the fault identification error 

Though separate algorithms were developed for each phase, the combined results are 

summarized in Figure 5.13 in order to draw the necessary remarks on the whole 

algorithm. In terms of global performance, the algorithm shows quite satisfying 

efficiency levels however the results in terms of detection of the quantities of interest 

are more disappointing. The majority of the observed malfunctions are spotted by the 

preliminary screening on the signal, while the subsequent MWPCA could globally 

identify less than half of the 70 faults and process anomalies observed. 

(a) 

 

(b) 

 

Figure 5.13 Confusion matrices describing the performances of the RT-MWPCA 
method in the anoxic phases either limited to the detection of the finer faults (a) and in 

its complete form including the preliminary screening (b) 

The comparatively underachievement of the RT-MWPCA method can be explained 

by considering the calibration formula used for the training, which is meant to minimize 

the sum of classification error and wrong fault detection. This favours the creation of a 
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detection method with a conservative approach, especially in case the number of 

elements belonging to one class is one order bigger than the other. Thanks to the cautious 

behaviour of the algorithms, though, the number of false positive detections is extremely 

low and the great majority of the detected faults are actual process anomalies. 

5.3.3 Testing of the Bayesian approach 

Given the not so exciting performances of the RT-MWPCA algorithm from the point 

of view of the fault identification, to was decided to test the Bayesian classifier 

previously described on the same set of data of the Mantua plant. As anticipated the 

algorithm is characterized by an initialization phase in which at least one sample from 

each ‘class’ must be collected in order to compute the initial prior and likelihood 

distributions. This could reveal a major shortcoming in a dataset where the examples of 

one class are much less than the other and they are not uniformly distributed along the 

direction of the training. In fact, in the dataset of the operational plant data used the 

initialization phase of the Bayesian predictor for the aerobic phase can end at phase 392 

(26th October 2012) when the first observed finer fault is encountered and can be used 

to compute the distributions of interests. For the anoxic phase, however, these conditions 

are met only at phase 1007 (21st January 2013). This is particularly evident from the 

plots in Figure 5.14 and Figure 5.15 where the prediction performances of the two 

algorithms are reported. 

 

Figure 5.14 Prediction performance of the Bayesian algorithm, aerobic part. The 
solid line (left axis) represents the global prediction error, while the dashed line (right 

axis) is the anomaly prediction error 
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Figure 5.15 Prediction performance of the Bayesian algorithm, anoxic part. The solid 
line (left axis) represents the global prediction error, while the dashed line (right axis) is 

the anomaly prediction error 

Despite the inconvenience of requiring a potentially long time for the initialization 

phase, this Bayesian approach proves to have a better detection performance than the 

RT-MWPCA method discussed in the previous paragraph. 

The preliminary screening on the signals identifies 249 faults in the aerobic phases 

and 142 in the anoxic ones, therefore of the 2202 observations composing each part of 

the available dataset the Bayesian method is used to investigate 1953 aerobic and 2060 

anoxic phases (Table 5.10). 

Table 5.10 Characteristics of the operational plant measurements dataset used to 
test the Bayesian method 

Characteristics Value 
Length ~9 months 
Number of phases (after initialization) 4404 (2202 aerobic + 2202 anoxic) 
Number of phases with gross faults (after initialization) 391 (249 aerobic + 142 anoxic) 
Number of phases with finer faults 70 (45 aerobic + 25 anoxic) 

 

However, since the detection of the gross faults is not the objective of this method 

the results reported in Figure 5.16 only concerns the identification of the finer faults. 

(a) 

 

(b) 

 
 

Figure 5.16 Confusion matrices describing the performances of the Bayesian 
method in both the aerobic (a) and the anoxic phases (b) limited to the detection of the 

finer faults 
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In both cases the algorithm shows a lower classification error than the RT-MWPCA, 

especially in terms of fault identification error. The global prediction error is quite 

similar to the other method, ~98% for the aerobic phase and ~99% for the anoxic, and 

this is certainly due to the higher number of ‘normal’ phases. In this case, however, the 

method is able, by the end of the tested period, to correctly identify more than 50% of 

the faults observed and at the same time the number of false alarms is kept very low, 

less than 30% of the total number of faults detected. This is more evident when the 

combined detection performance is considered, as in Figure 5.17. 

Figure 5.17 Confusion matrices describing the combined performances of the 
Bayesian methods 

5.3.4 Comparison between the real-time mowing 

window principal component analysis and the 

Bayesian algorithm. 

Considering the particular plant configuration, the proposed algorithms have been 

divided in two parts, one devoted to the detection of the aerobic phases and one for the 

anoxic ones. The two parts share the same principles: first some low-level controls are 

performed on the raw signals, in order to discriminate malfunctions like signals data 

interruptions, anomalous constant measurements and irregular duration of the phases, 

then for each investigated phase the portions of signal of both ammonia and nitrate are 

parametrized and four parameters are extracted: the two concentration growth or decay 

rates and the two averages of the measured concentrations. Other anomalies cannot be 

detected by simple controls on the data, therefore a more refined method is required. 

For this task two different approaches have been compared, one based on the PCA 

analysis and the other based on the Bayes’ theory. In the PCA-based method developed 

the parameters are projected onto a reference space that maximize the variance among 

them and two thresholds based on the Hotelling’s T2 and Q statistics are used to 

discriminate the phases with an irregular behaviour: if the tested parameters produce 

scores that are higher than the respective thresholds in both statistics the presence of a 

process anomaly in the phase is reported, otherwise it is considered “normal” and its 

3927 31 99.2%

97.9% 0.8% 0.8%

16 39 70.9%

0.4% 1.0% 29.1%

99.6% 86.7% 98.8%

0.4% 44.3% 1.2%

normal fault

Target class

Comb. Perf. (Bayesian pred.)

O
u

tp
u

t 
c
la

s
s

n
o
rm

a
l

fa
u
lt



142 Implementation of the fault detection methods and performance assessment 
 

parameters are used to update the reference space. In the Bayesian approach first two 

groups of parameters corresponding to the two possible states of the process are isolated 

and used to build the initial prior knowledge, then at each new step this prior knowledge 

is used to predict the most probable state of the process given the new parameters 

available. After comparing the prediction to the actual state of the process the results are 

used to update the prior knowledge. 

The algorithm was tested with a nine-month time series from the municipal 

wastewater plant of Mantua (Italy) and from the comparison of the two methods 

emerged that the Bayesian algorithm generally performs better than the PCA-related 

one, showing a higher number of identifications of faults.  

A direct comparison between the two approaches, simply putting together the 

previously shown results is not possible, mainly because their respective 

detection/prediction task starts at different times. Due to the differences in the 

initialization procedures the number of phases investigated by the two approaches is 

very different, nevertheless the objective of both methods is the same: to correctly 

identify the 70 observed fault events (45 among the aerobic phases and 25 in the anoxic 

part). Therefore Table 5.11 summarizes the performances of the two methods focusing 

on this one aspect of the detection task. 

Table 5.11 Global algorithm performance results for both approaches. We choose to 
keep the column headers of the RT-MWPCA algorithm for a more direct comparison 
although the Bayesian algorithm actually provides predictions instead of detections 

Observed 
faults 

Detected 
faults 

Identified 
faults 

False 
negatives 

False 
positives 

RT-MWPCA 

70 32 23 47 9 
Bayesian predictor 

70 55 39 76 11 

 

The PCA-based algorithm globally performs worse than the Bayesian one, returning 

a smaller number of detected anomalies, though most of them are actual malfunctions 

and the number of false alarms is lower. The Bayesian method, on the contrary, spots a 

higher number of anomalies, and correctly predicts nearly the 60% of the faults, which 

however is still too low. It is clear then that none of the methods tested has good results 

but one of the main reasons lies on the dataset used. These methods are mainly employed 

in the detection of probe progressive failures and process anomalies, which typically 

involve multiple aerobic and anoxic phases. The algorithm, however, is designed to 

investigate the presence of finer faults one phase at the time and this leads in most of 

the cases to a fragmented (discontinuous) detection in which, for example, a fault event 

interesting two consecutive aerobic or anoxic phases, one is correctly identified and the 
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other result negative to the statistical test. In these cases, of course, all the phases 

composing the fault event shall be counted in the manual observations, but the algorithm 

investigates one phase at the time, and this can very likely produce that of two 

consecutive aerobic or anoxic phases, one can be correctly identified and the other result 

negative to the statistical test. For this reason, perhaps a “low definition” method to 

assess the results can appear preferable, although this would imply waiting several hours 

or even days to have a report on the state of the process and that conflicts with the 

primary aim of the FD technique, which requires a timely detection of an anomaly from 

its very onset. Another aspect to be taken into account regards the dataset used, which 

includes a small number of fault examples, too little to properly train the methods and 

leading the adaptation of the models towards an excessively small rate of detected 

malfunctions. The extremely high variability of the data compared to the few number of 

anomalies observed, makes the calibrated RT-MWPCA model exceedingly 

conservative. The same scarce availability of observed anomalies, especially in the first 

half of the dataset, prevents the Bayesian approach to fully identify all the anomalies by 

the end of the available dataset. 

In the attempt to overcome these shortcomings and extend the assessment of the 

detection methods proposed, a dataset of synthetic measurements drawn from a ASM3-

like model has also been used. The results are presented in the following paragraph. 

5.4 Fault detection on synthetic measurements 

In the previous section we discussed the application of two fault detection methods, 

one based on the PCA and the other on the Bayes’ theorem, to a set of real-life data 

obtained from a small municipal WWTP. The data spanned approximately a none 

month-long period and were characterized by a limited number of observed variables 

(only the nitrate and ammonia concentrations in the aerobic tank) and a poorly 

commented set of reported anomalies. This produced unsatisfactory results, especially 

for the detection methods designed to identify the less evident faults, suggesting the use 

of a different and more comprehensive dataset. 

Driven by these consideration, a numerical model has been then developed, as 

described in Chapter 3. The model is based on the BSM protocol but the typical plant 

scheme has been adapted to the alternated cycles process configuration and a revisited 

and more detailed characterization of the nitrogen kinetics is included. Moreover, 

particular attention has been paid in modelling the sensors involved in the aerobic 

compartment, especially designing their deviance from the normal operating conditions 

(see paragraph 3.3.2). The use of a numerical model to generate the synthetic data and 
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simulate the malfunctions brought the possibility to create datasets of measurements 

where the state of the sensor that produced them is exactly known and therefore the 

separation of the training set in ‘normal’ and ‘faulty’ class is more coherent. Also, the 

number of observed variables is higher, resulting in an increased number of diagnostic 

parameters available (Table 3.15). 

In this new setting, it made sense to expand the range of methods used to identify the 

sensor failures by implementing four more classifiers, two decision trees of different 

complexity level and two SVM classifier (one linear, the other nonlinear). The 

characteristics of the new methods have been already presented in the previous 

paragraph. In the following part of the Chapter the main characteristics of the dataset 

used to train and validate the models will be discussed before presenting the results of 

the detection performances achieved by the different detection methods implemented. 

5.4.1 Characteristics of the synthetic dataset 

Before starting to analyse detection efficiency of the FD methods implemented in the 

synthetic dataset it is worth taking some time to discuss its structure. As mentioned in 

Chapter 3 the numerical model uses as input data the historical series of the BSM_LT, 

covering more than 1 year and a half. These results refer to a realization of the model 

where in the 608 simulated days the process controller alternates 1544 aerobic and 

anoxic phases. Despite they had not been explicitly modelled, a number of phases 

presented some artefacts on the signal compatible with the definition of gross faults 

given for the other dataset: typically, they are represented by excessively long phases 

(sometimes lasting several days) and steady signal (especially in correspondence with 

the simulated cleansing/recalibration of the sensors). The number of ‘gross faults’ 

reported was 45 for the aerobic phases and 32 for the anoxic, therefore the remaining 

1499 aerobic phases and 1512 anoxic phases were used for the finer faults (Table 5.12). 

As for what concerns the number of finer faults they alter the measurements in 491 of 

the aerobic phases and 495 of the anoxic ones and are the effect of the disturbances 

affecting the nitrate and ammonia sensors, modelled as in Chapter 3. 

Table 5.12 Characteristics of the complete synthetic measurements dataset 

Characteristics Value 

Duration ~1.5 years (608 days) 
Total number of phases 3088 (1544 aerobic + 1544 anoxic) 
Number of phases with gross faults 77 (45 aerobic + 32 anoxic) 
Number of phases with finer faults 986 (491 aerobic + 495 anoxic) 
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In Figure 5.18 and Figure 5.19 are reported the detail of the disturbances affecting 

the measurement instruments: the different components combine with the true value of 

the variable as in eq. (3.31). 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 5.18 Detail of the modelled disturbances affecting the NH4

+ sensor in the 
synthetic dataset. The measurement noise (a) together with the drift (b) and the fouling 

(c) combine in the global effect in (d) acting as an additive component on the signal. 
Beyond the band defined by the horizontal dashed lines in (d) the alteration of the 
measurement produced is considered relevant. The vertical dotted lines mark the 

periodical maintenance of the sensor 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 5.19 Detail of the modelled disturbances affecting the NOx

– sensor in the 
synthetic dataset. The measurement noise (a) together with the drift (b) and the fouling 

(c) combine in the global effect in (d) acting as an additive component on the signal. 
Beyond the band defined by the horizontal dashed lines in (d) the alteration of the 
measurement produced is considered relevant. The vertical dotted lines mark the 

periodical maintenance of the sensor 

The bottom-right element of both figures shows this combination of the three 

disturbances and represents the additive component that is going to be summed to the 

true concentration value and it is used to assess whether the distortion introduced in the 

measurements is acceptable or not. More precisely, it was chosen to consider as 

acceptable level of distortion only the white noise on the measurements, which is 

modelled as in eq.(3.14) using 0.5% as noise level and the values of Table 3.12 as 

measurement range for the sensors. Therefore, all the measurements violating the band 
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of ± 0.5% of the measurement range have been considered as affected by error. The 

faulty measurements affecting each sensor are reported in Figure 5.20. 

(a) 

 
(b) 

 
Figure 5.20 Time distribution over the whole simulated period of the faults affecting 

the ammonia (a) and the nitrates (b) sensors 

However, investigating the reliability of each single measurements on a sample-to-

sample basis is beyond the purpose of this research and, since a faulty instrument is 

likely to have a persistent effect on the measurements until it is fixed, we limit the 

reliability investigation to a single-phase level. For this reason, it was decided to 

consider all the phases where more than 50% of the nitrates and ammonia measurements 

as faulty, belonging to the ‘finer fault’ category. 

Nevertheless, the FD algorithm designed are provided, as we mentioned above, with 

a preliminary check on the consistency of the measurements so that the most evident 

outliers and signal disturbances can be discriminated before applying the more refined 

methods. Both Figure 5.20 and Figure 5.21 show where the ‘finer faults’ are located 

along the simulation window. It can be noticed that they are more equally distributed 

with respect to the faults observed in the Mantua plant. 

The availability of an extended set of measurements and the more even distribution 

of the anomalies in time allowed to set aside a portion of the dataset for the training, if 

required, and another portion for their validation. We recall that the RT-MWPCA 

method is composed of a first initialization phase, where a week-long set of fault-free 

measurements is used to build the starting PCA reference model, and a subsequent 

calibration phase, where a longer dataset, containing both normal and faulty phases, is 

used to determine the optimal value of the statistical thresholds. In order to compare the 

results of the different methods on datasets as similar as possible it was decided to train 
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and validate the binary classification trees and the SVM-based models respectively on 

the same calibration and validation sets used for the RT-MWPCA method, discarding 

the data used for the initialization of the algorithm, since those are the only ones 

containing the fault events. Thus, since in the synthetic dataset the initialization part of 

the RT-MWPCA is achieved using the first 26 observations of the dataset for each phase 

(~1 week), they will not be part of the set of data used to test the methods. 

(a) 

 
(b) 

 
(c) 

 
Figure 5.21 Time distribution over the whole simulated period of the faults affecting 

the ammonia and the nitrates sensors in the aerobic (a) and anoxic (b) phases and their 
combination (c). The blue shaded areas represent the aerobic phases and the red 

shaded areas the anoxic phases 

The algorithms have been tested on two different partitioning of the dataset generated 

by the numerical model. The one whose characteristics are synthetized in Table 5.13 

consists of a 6 months long data period reserved for the optimization of the statistical 

control limits (for the RT-MWPCA) or the training of the classification trees and SVM 

models; then another 6 months long data period (timely subsequent to the calibration 

one) has been used for the validation task. 
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Table 5.13 Characteristics of the dataset partitioning 1 for the calibration and 
validation of the RT-MWPCA, binary classification trees and SVMs methods 

 Calibration set Validation set 
Duration ~6 months 6 months 
Number of phases 
(after MWPCA init.) 

682 (337 aerobic + 345 anoxic) 1178 (592 aerobic + 587 anoxic) 

Finer faults 283 (140 aerobic + 143 anoxic) 375 (190 aerobic + 185 anoxic) 

 

The main findings of this research will be reported in the subsequent sections with 

reference to the partitioning of Table 5.14. In this calibration/validation setting the 

algorithms are first trained using the data of a period approximately long 1 year and then 

validated using the remaining part of the dataset (~9 months). This is the most 

appropriate partitioning of the dataset since the methods can be trained on a period that 

encompasses all the seasonal variations of one full year, but some interesting 

characteristics can also emerge from the methods trained on a shorter data set. 

Table 5.14 Characteristics of the dataset partitioning 2 for the calibration and 
validation of the RT-MWPCA, binary classification trees and SVMs methods 

 Calibration set Validation set 
Duration ~1 year ~9 months 
Number of phases 
(after MWPCA init.) 

1864 (931 aerobic + 933 anoxic) 1092 (540 aerobic + 552 anoxic) 

Finer faults 610 (304 aerobic + 306 anoxic) 364 (182 aerobic + 182 anoxic) 

 

Regarding the Bayesian method, however, learning and prediction are intertwined at 

each iteration and cannot be separated using the same criterion. The Bayesian approach 

was therefore tested on a period which is the sum of the training and validation dataset 

of Table 4.13 used for the other methods, and whose characteristics are shown in Table 

5.15. 

Table 5.15 Characteristics of the synthetic measurements dataset used to test the 
Bayesian method 

Characteristics Value 

Duration ~1 year 
Number of phases 
(without gross faults) 

1861 (929 aerobic + 932 anoxic) 

Number of phases with finer faults 986 (330 aerobic + 328 anoxic) 

 

Furthermore, as anticipated in the last paragraph of Chapter 3, the use of a synthetic 

dataset implied an extended number of observed variables, which reflected on a higher 

number of available diagnostic parameters. It was then decided to test different 

combinations of the parameters extracted from the observed variables related to the 

nitrification-denitrification process (ammonia, nitrates, DO, temperature, suspended 

solids, see Table 3.15) to test the different detection methods implemented. In other 

words, the diagnostic parameters have been grouped into five combinations, labelled 

from A to E and reported in Table 5.16 to Table 5.20; these combinations should be 
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intended as an example of the different descriptors that can be available to represent the 

samples tested with the different methods. 

Table 5.16 Combination A of the parameters extracted for each process phase from 
the data generated by the numerical model 

 Parameter Name 

C
o

m
b

in
a

ti
o

n
 A

 

m⋅,NH4+,out 'NH4_out average' 

s⋅,NH4+,out 'NH4_out slope' 

m⋅,NOx–,out 'NOx_out average' 

s⋅,NOx–,out 'NOx_out slope' 

 

Combination A represents the most basic configuration of the diagnostic parameters 

used and corresponds to the one used for the real data analysis. Despite it generally leads 

to poorer results in the training and testing of the FD methods, this combination allows 

the comparison of the results of the methods used for the synthetic dataset (the 

classification threes and the SVM models) with those obtained in the real plant dataset. 

Table 5.17 Combination B of the parameters extracted for each process phase from 
the data generated by the numerical model 

 Parameter Name 

C
o

m
b

in
a

ti
o

n
 B

 m⋅,NH4+,out 'NH4_out average' 

s⋅,NH4+,out 'NH4_out slope' 

m⋅,NOx–,out 'NOx_out average' 

s⋅,NOx–,out 'NOx_out slope' 

m⋅,Temp 'Temp average' 

 

Combination B is similar to Combination A, save for the addition of the temperature. 

Using this combination on the same datasets tested with Combination A it is possible to 

assess how much this additional information influences the performances of the 

algorithms. 

 

Table 5.18 Combination C of the parameters extracted for each process phase from 
the data generated by the numerical model 

 Parameter Name 

C
o

m
b

in
a

ti
o

n
 C

 m⋅,NH4+,in 'NH4_in average' 

m⋅,NH4+,out 'NH4_out average' 

s⋅,NH4+,out 'NH4_out slope' 

m⋅,NOx–,in 'NOx_in average' 

m⋅,NOx–,out 'NOx_out average' 

s⋅,NOx–,out 'NOx_out slope' 

m⋅,Temp 'Temp average' 
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Based on the previous combination, in this group of diagnostic parameters are also 

included the average concentrations of the nitrates and ammonia in the influent. 

Combination C is intended to represent the most essential set of ingredients from which 

the classifiers, especially the nonlinear ones, can derive some implicit mass balance of 

the process that can help the FD task. 

Table 5.19 Combination D of the parameters extracted for each process phase from 
the data generated by the numerical model 

 Parameter Name 
C

o
m

b
in

a
ti

o
n

 D
 

m⋅,NH4+,in 'NH4_in average' 

rg⋅,NH4+,in 'NH4_in range' 

m⋅,NH4+,out 'NH4_out average' 

rg⋅,NH4+,out 'NH4_out range' 

s⋅,NH4+,out 'NH4_out slope' 

m⋅,NOx–,in 'NOx_in average' 

rg⋅,NOx–,in 'NOx_in range' 

m⋅,NOx–,out 'NOx_out average' 

rg⋅,NOx–,out 'NOx_out range' 

s⋅,NOx–,out 'NOx_out slope' 

m⋅,Temp 'Temp average' 

m⋅,DO,in 'DO_in average' 

rg⋅,DO,in 'DO_in range' 

m⋅,DO,out 'DO_out average' 

rg⋅,DO,out 'DO_out range' 

m⋅,TSS,in 'TSS_in average' 

rg⋅,TSS,in 'TSS_in range' 

m⋅,TSS,out 'TSS_out average' 

rg⋅,TSS,out 'TSS_out range' 

 

Combination D is the combination that includes all the parameters extracted from the 

synthetic dataset (Table 3.15). This is the combination with the highest informative 

content and it will be seen that using this set of descriptors produces the most performing 

classifiers. It includes all the parameters of the previous combinations together with the 

average concentration of the dissolved oxygen and of the suspended solids, each both 

in the influent and inside the reactor. Combination D is also characterized by the 

presence of the parameters 'rg⋅,⋅' representing the difference between the maximum and 

minimum value measured in the time interval of the phase for each variable excluded 

the temperature. This easy-to-compute parameter is meant to help the assessment on the 

consistency of the measurements summarized in the other combination by the average 

values. 
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Table 5.20 Combination E of the parameters extracted for each process phase from 
the data generated by the numerical model 

 Parameter Name 

C
o

m
b

in
a

ti
o

n
 E

 

m⋅,NH4+,in 'NH4_in average' 

m⋅,NH4+,out 'NH4_out average' 

s⋅,NH4+,out 'NH4_out slope' 

m⋅,NOx–,in 'NOx_in average' 

m⋅,NOx–,out 'NOx_out average' 

s⋅,NOx–,out 'NOx_out slope' 

m⋅,Temp 'Temp average' 

m⋅,DO,in 'DO_in average' 

m⋅,DO,out 'DO_out average' 

m⋅,TSS,in 'TSS_in average' 

m⋅,TSS,out 'TSS_out average' 

 

Combination D can, however, be a very expensive way to describe the process since 

it dramatically increases the dimensionality of the datasets used. A lighter configuration 

has then been tested, Combination E, not including the range parameters. This reduction 

seems to only marginally affect the performances achieved with the more complex 

configuration and therefore can be considered a valuable compromise between the 

efficiency of the detection and the use of resources. 

In the following sub-sections the results will be presented in detail for the 

Combination A which corresponds to the combination used in the operational plant data, 

and Combination E, which is the one that provides the best performance. The results 

achieved with the other combinations will be however presented in an aggregate form 

for comparison. 

5.4.2 Results of the fault detection using the 

Bayesian approach 

The results for the Bayesian method are discussed separately, since in this case the 

training and prediction tasks alternate at each iteration along the whole year-long dataset 

of Table 5.15. 

The results in Figure 5.22 show that the performances of the Bayesian method as a 

general predictor using the diagnostic features of Combination A are quite satisfactory, 

predicting the correct class of the instances almost 60% of the times. Particularly 

disappointing are both the detection rate of faults and the false alarm rate, especially for 

the anoxic phase. With respect to the total number of faults occurred, in fact, the method 

is able to identify only a small portion of them, between 20% and 30%, while three on 

five of the anomalies highlighted correspond to false alarms. This behaviour contradicts 

the good results observed when the method is employed to dataset of real measurements 
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(Figure 5.16) and seem to express a limit of the method itself in treating this kind of 

problem. 

(a) (b) 

 

 
(c) (d) 

 
 

(Normal state = 0; Fault = 1) 

Figure 5.22 On the left column, the prediction performance of the Bayesian algorithm 
for the aerobic (a) and anoxic (c) part of the synthetic dataset using Combination A. The 
solid line (left axis) represents the percentage global prediction error, while the dashed 

line (right axis) is the percentage anomaly prediction error. On the right column, the 
confusion matrices describing the performances of the Bayesian method in both the 

aerobic (b) and the anoxic phases (d) 

Quite similar, in fact, are the performances of the Bayesian method when 

Combination E is used (Figure 5.23). The global classification success is here a little 

lower while both the false alarm rate and the fault identification error have similar 

percentage (~60%). 
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(a) (b) 

 
 

(c) (d) 

 
 

Figure 5.23 On the left column, the prediction performance of the Bayesian algorithm 
for the aerobic (a) and anoxic (c) part of the synthetic dataset using Combination E. The 
solid line (left axis) represents the percentage global prediction error, while the dashed 

line (right axis) is the percentage anomaly prediction error. On the right column, the 
confusion matrices describing the performances of the Bayesian method in both the 

aerobic (b) and the anoxic phases (d) 

The performances of the method in the discrimination of the finer faults seem to be 

unaffected by the combination of parameters used. As can be seen in Figure 5.24, 

changing the combination of parameters the global prediction performances of the 

method do not change much, remaining around 60%. 

 

Figure 5.24 Global prediction success of the Bayesian method for the different 
combinations of parameters of the synthetic dataset 

Some improvements on the prediction success of the fault events can instead be 

achieved using combinations with a higher number of diagnostic parameters but still the 

results are not satisfactory (Figure 5.25). 
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Figure 5.25 Fault prediction success of the Bayesian method for the different 
combinations of parameters of the synthetic dataset 

Also, the number of false alarms is high for all the combinations tested. Expressing 

its measure as its complementary, the degree of confidence in the faults predicted, i.e. 

the percentage of actual faults among all the predictions highlighted as fault, it can be 

observed that it hardly exceeds 40%, meaning that the prediction of the fault events 

cannot be trusted most of the times. 

 

Figure 5.26 Confidence rate on the fault predictions of the Bayesian method for the 
different combinations of parameters of the synthetic dataset 

5.4.3 Results of the fault detection using the real-

time mowing window principal component 

analysis method 

The test of the RT-MWPCA described in 5.2.1 on the measurements dataset 

generated by the numerical model is conducted, after the initialization phase, using the 

partitioning of Table 5.14. With reference to the scheme of Figure 5.4, the algorithm is 

at first initialized for each process phase using a one-week-long set of fault-free 

observations in order to compute the initial reference models of the retained PCs. With 

the synthetic dataset, this is achieved using the parameters of the first 26 observations 

for each phase (i.e. in the one-week set of measurements were counted 26 aerobic phases 

and the same number of anoxic phases). Subsequently, the optimal level positions of the 

threshold levels, used to discriminate the normal phases from those containing the finer 

faults, are calibrated by minimizing eq.(5.2) using the data from the calibration test of 
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Table 5.14 and finally, the following 6 months of parameters are used to validate the 

method. 

Table 5.21 shows the results of the optimization process of the statistical thresholds 

for the Combination A of the parameters, the same used for the operational plant data. 

Notice that in this case the number of components retained for the aerobic part is 3, one 

more than those used in the real measurements dataset. Moreover, the calibrated 

multiplying coefficient kQ of the Qth threshold for the anoxic phase is here smaller than 

one, suggesting that in order to achieve the best classification performance the method 

needs to adopt a more severe criterion for the violation of the Q statistics with respect 

to the theoretical threshold. 

Table 5.21 Optimized thresholds of the RT-MWPCA method for the calibration set of 
Table 5.14 using the parameters of Combination A 

 Aerobic phase Anoxic phase 

T2 

T2
lim 9.874 7.089 

kT 2.575 8.539 

Tth 25.423 60.540 

Q 

Qlim 0.119 0.560 

kQ 3.923 0.674 

Qth 0.467 0.377 

Total PCs 4 4 

Retained PCs 3 2 

 

The results of the calibration in terms of classifications are summarized in the 

confusion matrices of Figure 5.27. 

(a) 

 

(b) 

 
Figure 5.27 Confusion matrices describing the detection performances of the finer 

faults for the RT-MWPCA method in both the aerobic (a) and the anoxic phases (b) of 
the calibration set of Table 5.14 using the parameters of Combination A 

The results obtained in calibration for both phases are similar. In both cases the 

methods fail to recognise the presence of faults (only one fault is detected, but it is 

correct just in the aerobic phase). Despite the overall classification success is greater 

than 60%, then, the RT-MWPCA method is once again unable to produce the required 

discrimination power. 
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As to the validation of the models obtained using the Combination A, we observe 

that the general classification efficiency is maintained but unfortunately so are the fault 

detection rates (Figure 5.28). 

(a) 

 

(b) 

 

Figure 5.28 Confusion matrices describing the detection performances of the finer 
faults for the RT-MWPCA method in both the aerobic (a) and the anoxic phases (b) of 

the validation set of Table 5.14 using the parameters of Combination A 

The same conservative detection behaviour emerged when the method was applied 

to the synthetic dataset. Moreover, the detection performances of the RT-MWPCA 

method are only marginally affected by the choice of the combination of the diagnostic 

parameters. Using Combination E, for example, the performances marginally improve 

but are still far from being satisfactory (the results of the optimization of the diagnostic 

threshold position for the Combination E are reported in Table 5.22). 

Table 5.22 Optimized thresholds of the RT-MWPCA method for the calibration set of 
Table 5.14 using the parameters of Combination E 

 Aerobic phase Anoxic phase 

T2 

T2
lim 15.981 15.981 

kT 4.158 2.686 

Tth 66.458 42.939 

Q 

Qlim 0.543 0.594 

kQ 2.866 6.884 

Qth 1.557 4.092 

Total PCs 11 11 

Retained PCs 5 5 

 

Figure 5.29 show that even if the general classification error is, in this case too, 

around 67%, just a couple of finer faults are identified in the aerobic phases and the 

number of anomalies spotted in the anoxic one is only a small percentage of those 

observed. 
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(a) 

 

(b) 

 
Figure 5.29 Confusion matrices describing the detection performances of the finer 

faults for the RT-MWPCA method in both the aerobic (a) and the anoxic phases (b) of 
the calibration set of Table 5.14 using the parameters of Combination E 

Worse performances are then displayed for the validation set (Figure 5.30), where no 

anomalies are highlighted in the aerobic phase part of the algorithm and just a few in 

the anoxic phase, most of which, however, are false positives. 

(a) 

 

(b) 

 

Figure 5.30 Confusion matrices describing the detection performances of the finer 
faults for the RT-MWPCA method in both the aerobic (a) and the anoxic phases (b) of 

the validation set of Table 5.14 using the parameters of Combination E 

 

Some more general considerations on the results achieved with the RT-MWPCA 

method for the different combination of parameters can be made by commenting Table 

5.23 and Table 5.24, where the combined (aerobic + anoxic) results of the three 

performance indexes we have been focusing on (the global classification success rate, 

the fault identification rate and the detection reliability) are presented for all five the 

combinations of the diagnostic parameters tested. 

Table 5.23 Global classification success, fault detection success and reliability of 
the detection of the RT-MWPCA method for the different combinations of parameters in 

the calibration set of Table 5.14 

 Comb. A Comb. B Comb. C Comb. D Comb. E 

Global class. success [%] 67.3% 67.2% 67.2% 68.0% 67.5% 

FD success [%] 0.1% 0.0% 0.0% 3.6% 2.3% 

Detection confidence [%] 49.9% 0.0% 0.0% 73.4% 77.2% 
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Table 5.24 Global classification success, fault detection success and reliability of 
the detection of the RT-MWPCA method for the different combinations of parameters in 

the validation set of Table 5.14 

 Comb. A Comb. B Comb. C Comb. D Comb. E 

Global class. success [%] 66.8% 66.8% 66.8% 66.1% 66.4% 

FD success [%] 0.3% 0.3% 0.3% 0.3% 0.6% 

Detection confidence [%] 50.5% 50.5% 50.5% 10.1% 14.5% 

 

As anticipated, the influence of the particular choice of descriptors used for the 

instances is modest but still when more observed variables are available, as in 

Combination D and Combination E, this allow to have some detected faults at least in 

the calibration set. This is however no more true for the validation set. Regardless the 

combination of diagnostic features, in fact, the RT-MWPCA method seems unable to 

detect the anomalies and the reassuring 66% of the classification success here just 

actually reflects the proportion of normal phases on the whole dataset. 

To better investigate the reasons of this poor outcome of the method let us present 

the performances of this when a different calibration/validation framework is used. With 

the partitioning of the dataset of synthetic measurements of Table 5.13, that is a one 

year-long subset of the data and using the first half of it for the training and the other 

half for the validation, the RT-MWPCA method shows quite different results. The 

calibration of the method using Combination A, for example, returns the results 

summarized in the confusion matrices of Figure 5.27. 

(a) 

 

(b) 

 
Figure 5.31 Confusion matrices describing the detection performances of the finer 

faults for the RT-MWPCA method in both the aerobic (a) and the anoxic phases (b) of 
the calibration set of Table 5.13 using the parameters of Combination A 

The position of the statistical thresholds determined in this case (Tth = 4.3 and Qth = 

0.86 for the aerobic part and Tth = 3.6 and Qth = 0.78 for the anoxic) are way lower than 

those of Table 5.21, thus more frequently crossed by the instances. Therefore, the 

algorithms appear to be better able to detect the anomalies. In terms of global 

classification success nearly 60% of the phases are assigned to their correct class and 

one out of three of the finer faults observed is correctly identified in the anoxic phase. 

Moreover, the detection results reliable most of the times, at least in the calibration part, 
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since the number of false alarm is lower than the faults correctly identified. As for the 

validation of the models obtained using the Combination A we observe that the general 

classification efficiency is maintained but a substantial decrease of the accuracy of the 

fault detection is instead observed, and most of the anomalies detected in this section of 

the dataset are actually misclassified normal phases (false positives). 

When the Combination E is used the RT-MWPCA methods trained on the calibration 

set of Table 5.13 display results that are on the same page of the results observed for the 

dataset of Table 5.14. The confusion matrices of Figure 5.29, reporting the performance 

of the method on the calibration set, show that even if the general classification success 

is in this case too, around 60%, not even one fault is identified in the aerobic phases and 

the number of anomalies spotted in the anoxic one is only a small percentage of those 

observed. 

(a) 

 

(b) 

 

Figure 5.32 Confusion matrices describing the detection performances of the finer 
faults for the RT-MWPCA method in both the aerobic (a) and the anoxic phases (b) of 

the calibration set of Table 5.13 using the parameters of Combination E 

 

The same considerations apply to the validation of the models where the confidence 

in the detected faults during the anoxic phase is even worse. 

Some more general considerations on the results achieved with the RT-MWPCA 

method for the different combination of parameters can be made by commenting Figure 

5.33, Figure 5.34 and Figure 5.35, where the compared results of the three performance 

indexes we have been focusing on (the global classification success rate, the fault 

identification rate and the detection reliability) are presented. 

The classification efficiencies in Figure 5.33 show no particular influence of the 

diagnostic parameters set chosen, remaining around 60% also in validation. This is can 

be regarded as a positive aspect that proves the robustness of the general classification 

capabilities of the method even when a suboptimal set of observed variables is available. 
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(a) 

 
(b) 

 
Figure 5.33 Global classification success of the RT-MWPCA method for the different 

combinations of parameters in the calibration (a) and validation (b) set of Table 5.13 

 

Conversely, regarding the ability to correctly identify and isolate the faulty state of 

the phases the RT-MWPCA demonstrates that if the thresholds are calibrated with the 

reduced dataset it can detect some anomaly but with some generally poor results (Figure 

5.34). Varying the combination of the diagnostic features it is possible to achieve in the 

calibration phase almost the same identification success observed in 5.3.2 for the real 

measurements dataset, between 30% and 50% (Combination B and Combination C) 

which is however insufficient, especially since this index almost halves in the validation 

set. Moreover, as observed in Figure 5.29 and Figure 5.30, the use of Combination E do 

not produce the identification of any fault event in the aerobic phase, neither in the 

calibration set nor in the validation one. The same behaviour is displayed in calibration 

also by Combination D, but a small number of faults are anyway detected in validation. 

The alarms provided by this method (Figure 5.35) result generally as trustworthy as 

those provided by the Bayesian method. Despite, in fact, the reliability on the faults 

detected is generally acceptable (50-60%) in calibration, this confidence drops in the 

validation phase, hardly scoring more than 30% in some of the combinations tested. 
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(a) 

 
(b) 

 
Figure 5.34 Fault identification success of the RT-MWPCA method for the different 

combinations of parameters in the calibration (a) and validation (b) set of Table 5.13 

 

(a) 

 
(b) 

 
Figure 5.35 Confidence rate on the faults identified by the RT-MWPCA method for the 
different combinations of parameters in the calibration (a) and validation (b) set of 

Table 5.13 
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combination of diagnostic parameters the configuration that seems to work better for 

this algorithm is provided by Combination C, where despite a higher global 

classification error most of the fault events are identified and the reliability on the alarms 

generated results a little higher than using other combinations. 

 

Figure 5.36 Comparison of the performance indexes for the RT-MWPCA method 
under the different combinations of parameters in validation set of Table 5.13 

Contrary to what was expected, from these comparisons emerge that the RT-

MWPCA method seems to produce a better performance when the statistical thresholds 

used to discriminate the state of the phases are determined by minimizing the error on a 

shorter set of observations and using a reduced number of diagnostic parameters. In fact, 

as the combination of observed parameters gets more complex the method exhibits 

increasingly worse performances, ultimately resulting in no faults detected at all. 

Furthermore, the tests on the algorithm conducted on the dataset of Table 5.14 revealed 

that when a larger dataset is used to determine the optimal detection thresholds these are 

generally placed in a way to display an excessively conservative behaviour of the 

detection, so that almost all the instances tested are classified as normal. 

5.4.4 Results of the fault detection using the simple 

binary tree 

The same dataset partition of Table 5.14 has been also used to train and assess the 

performances of the classification trees of lower complexity (first row of Table 5.3) 

implemented as in paragraph 5.2.3. In the spirit of the framework of Figure 5.2 two 

classifiers have been trained, one for the anoxic process phases and one for the aerobic 

ones. Figure 5.37 shows that when the basic combination of diagnostic parameters is 

used (Combination A, the same available for the real plant data) the most important 

features, the roots of the tree, are associated with the nitrates: the nitrate concentration 

growth rate saero,NOx– ,out in the aerobic phase (Figure 5.37.a) and the slope sanox,NOx– ,out in 

the anoxic (Figure 5.37.b). After the split of the root node in the aerobic phase all 

subsequent classifications of the state of the process are based on the concentration 

average of the ammonia, as in the anoxic phase. 
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(a) 

 
(b) 

 
(Normal state = 0; Fault = 1) 

Figure 5.37 Structure of the classification trees of medium complexity trained on the 
calibration set described in Table 5.14 for the aerobic (a) and anoxic (b) phase using the 

Combination A of the diagnostic parameters 

From the point of view of the performances achieved in the calibration phase using 

Combination A we observe (Figure 5.38) that also in this case the global classification 

error is above 60% for both the aerobic and anoxic process phase. A fair detection 

accuracy is obtained: 67% in the aerobic phase (Figure 5.38.a) while in the anoxic phase 

no false alarm is generated (Figure 5.38.b). The number of faults detected however is 

only a small part of those observed and the whole detection is off balanced in favour of 

the ‘normal’ class. 
(a) 

 

(b) 

 
Figure 5.38 Confusion matrices describing detection performances of the finer faults 

for the simple binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the calibration set of Table 5.14 using the parameters of Combination A 

In validation the performances drop considerably (Figure 5.39). While, in fact, the 

global classification error is still around 66%, the number of faults identified is almost 

zero for the aerobic phase (it is exactly zero for the anoxic phase) and the accuracy of 
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the detection is scarce. In can be observed that also in the validation set the detection 

tends to classify most of the observations as well-behaved. 

(a) 

 

(b) 

 
Figure 5.39 Confusion matrices describing detection performances of the finer faults 

for the simple binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the validation set of Table 5.14 using the parameters of Combination A 

Training the classification trees on the dataset of Table 5.13, instead, the outcome in 

terms of shape of the tree and ranking of the descripting features is almost the same as 

in Figure 5.37 but they set of rules cut the features space in different points and the 

resulting performances are very different. Quite satisfying are in this case the detection 

rates, especially in the aerobic phase (Figure 5.40.a) where the 81% of the faults are 

identified. The algorithm trained on the anoxic phase data (Figure 5.40.b), instead, 

isolates a little less than half of the faults observed but its results are more reliable in 

60% of the times. 
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Figure 5.40 Confusion matrices describing detection performances of the finer faults 

for the simple binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the calibration set of Table 5.13 using the parameters of Combination A 

As expected, in validation the performances drop (Figure 5.41), but less than with 

the previous case. While the global classification error, in fact, is around 50% and the 

accuracy of the detection drops to 30%, but the tree is able to identify more than a half 

of the observed anomalous phases. 
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(a) 

 

(b) 

 
Figure 5.41 Confusion matrices describing detection performances of the finer faults 

for the simple binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the validation set of Table 5.13 using the parameters of Combination A 

Contrary to what was expected, in this case we observe that the use of a reduced 

number of training samples seems to generate classifiers that have more general 

classification capabilities. 

 

Changing the combination of parameters and introducing some observed variables 

not available in the real measurements dataset, the performances of the binary tree and 

the relative importance of the diagnostic parameters change. 
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(Normal state = 0; Fault = 1) 

Figure 5.42 Structure of the classification trees of medium complexity trained on the 
calibration set described in Table 5.14 for the aerobic (a) and anoxic (b) phase using the 

Combination E of the diagnostic parameters 

Using Combination E on the training set of Table 5.14, for example, it can be noticed 

that the most important parameter to discriminate the state of the process is now the 
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temperature (Figure 5.42). This is not surprising since all the kinetics of the biological 

processes, including nitrification and denitrification, are deeply influenced by the 

temperature, therefore enabling a consistency check on the average concentrations and 

most of all the nitrification and denitrification rates. 

As for what concerns the performances of the calibrated models, with respect to the 

results shown in Figure 5.38 the new combination brings some improvements under all 

three of the aspects we are focusing on (Figure 5.43). A general increase can be observed 

in the global classification success rate, which reaches 69% of the tested aerobic phases 

and 71% of the anoxic ones. Moreover, the confidence in the detection is boosted, 66% 

in the aerobic (Figure 5.43.a) and even more in the anoxic phase (Figure 5.43.b). 

(a) 

 

(b) 

 
Figure 5.43 Confusion matrices describing detection performances of the finer faults 

for the simple binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the calibration set of Table 5.14 using the parameters of Combination E 

A general detection performance decrease can be observed in the validation set 

(Figure 5.44), where the classification results unreliable in the anoxic phase and has less 

than 50% accuracy in the anoxic case. Moreover, the number of detected faulty events 

is extremely small. In both the aerobic and the anoxic phase the trained classifiers show 

the same tendency observed with Combination A and exhibit a tendency to 

underestimate the anomalous phase of the tested samples. 
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Figure 5.44 Confusion matrices describing detection performances of the finer faults 

for the simple binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the validation set of Table 5.14 using the parameters of Combination E 
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From the comparative analysis of the classification success rate for the different sets 

of parameters presented in Figure 5.45 in the dataset partitioning of Table 5.14 it is 

evident that a more populated set of observed variable has a small influence on the 

performances. The introduction of the average temperature value in Combination B to 

E improves the classification by no more than 2%. 

(a) 

 
(b) 

 
Figure 5.45 Global classification success of the simple binary classification tree 

method for the different combinations of parameters in the calibration (a) and validation 
(b) set of Table 5.14 

The detection accuracy benefits from a wider range of descriptors in the calibration 

phase (Figure 5.46.a), and in validation is just some percent point below 50%, at least 

in the anoxic phase (Figure 5.46.b). The result is however biased by the insufficient 

detection performances of the models generated for the aerobic part. 
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(a) 

 
(b) 

 
Figure 5.46 Confidence rate on the faults identified by the simple binary 

classification tree method for the different combinations of parameters in the 
calibration (a) and validation (b) set of Table 5.14 

As mentioned above, the trained classification trees tend to underestimate the faulty 

states and therefore a very small number of anomalies are identified. Figure 5.47 

synthetizes the performance indexes of interest for all the combinations of diagnostic 

features tested using the partitioning of Table 5.14. It is clear that the so determined 

simple classification trees, given the generally poor detection results, cannot be a 

valuable candidate for the FD of the finer faults. 

 

Figure 5.47 Comparison of the performance indexes for the simple binary 
classification tree method using the different combinations of parameters in the 

validation set of Table 5.14 

 

One can now wonder whether reducing the size of the training set, for example using 

the dataset partitioning of Table 5.13, and limiting the number of the observed variables, 

the performances could improve, as it is the case with the RT-MWPCA method. The 
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comparative analysis of the classification success rate in Figure 5.48 reveal that a larger 

set of observed variable leads to better results in the calibration of the models. The 

introduction of the average temperature value in Combination B to E seems however to 

produce a significant loss in the generalization capabilities of the trained classifiers, 

reflected in lower classification efficiencies (Figure 5.48.b). 

(a) 

 
(b) 

 
Figure 5.48 Global classification success of the simple binary classification tree 

method for the different combinations of parameters in the calibration (a) and validation 
(b) set of Table 5.13 

A similar behaviour is reflected in the detection accuracy rates. While the aerobic 

and anoxic classifiers produce quite high reliability levels on the calibration set (Figure 

5.49.a), they seems to improve when a broader and more diversified spectrum of 

parameters is used, particularly for the anoxic processes, the same cannot be said for the 

validation set (Figure 5.46.b). 
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(a) 

 
(b) 

 
Figure 5.49 Confidence rate on the faults identified by the simple binary 

classification tree method for the different combinations of parameters in the 
calibration (a) and validation (b) set of Table 5.13 

The effect of the different combinations of diagnostic parameters on the number of 

observed faults correctly identified is also very different in the calibration and in the 

validation set, but in an opposite fashion. While, in fact, in the calibration phase (Figure 

5.50.a) the trained model for the aerobic processes is able to isolate most of the 

anomalous phases (but on the anoxic side the results are more disappointing), in the 

validation set most of the finer faults observed are identified by the method (Figure 

5.50.b). However, this appears to be just a side effect of a fault-oriented detection, where 

the different conditions of the dataset used for the evaluation of the performances with 

respect to those of the calibration set are interpreted as indication of an anomalous 

behaviour. In both the aerobic and the anoxic case the classifiers show the tendency to 

overestimate the faulty state of the process and this is a probable shortcoming of having 

selected the temperature as a diagnostic variable in the calibration phase of the model. 

The climatic conditions in the validation phase are in fact different and the models seems 

to lack of the necessary generalization capability. 
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(a) 

 
(b) 

 
Figure 5.50 Fault identification success of the simple binary classification tree 

method for the different combinations of parameters in the calibration (a) and validation 
(b) set of Table 5.13 

As a consequence, the binary classification trees trained using a the shorter 

calibration set of Table 5.13 seems to only apparently benefit from the availability of a 

wider range of diagnostic features (Figure 5.51), since the increased information is 

exploited to create classifiers too much tailored on the specific features of the dataset 

they are trained on, lacking the necessary generalization capabilities. In this case too, 

but for opposite reasons than in Figure 5.47, it is not advisable to use these classifiers 

for the real-time FD due to the high number of false alarms and the relatively low global 

classification rate. 

 

Figure 5.51 Comparison of the performance indexes for the simple binary 
classification tree method using the different combinations of parameters in the 

validation set of Table 5.13 
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5.4.5 Results of the fault detection using the medium 

binary tree 

In order to assess whether the concerns emerged in the previous paragraph are related 

or not to the limitations imposed to the tree growth, the same tests have been conducted 

building for the same datasets partitioning some more complex classification trees 

(second row of Table 5.3). 

From the point of view of the relative importance of the diagnostic variable we 

observe that for Combination A the preference that the simpler trees granted to the 

features associated to the nitrate it is here maintained: saero,NOx– ,out is still the root node 

for the classifier determined in the aerobic phase (Figure 5.37.a) and the slope 

sanox,NOx– ,out provides the first splitting in the anoxic (Figure 5.37.b). This is a 

confirmation that a more detailed set of rules for the classification should not alter the 

general importance ranking of the antecedents used. 

(a) 

 
(b) 

 
(Normal state = 0; Fault = 1) 
Figure 5.52 Structure of the classification trees of medium complexity trained on the 

calibration set described in Table 5.14 for the aerobic (a) and anoxic (b) phase using the 
Combination A of the diagnostic parameters 

The models calibrated for each of the process phases using the training set described 

in Table 5.14 show better results than those in Figure 5.38. The increased level of 

sophistication of the detection process allows to train two classifiers that score above 

70% of the classification success either in the aerobic (Figure 5.53.a) and in the anoxic 
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phase (Figure 5.53.b). Moreover, the general good classification rate comes together 

with an actual good discrimination capability, since despite a low detection rate index 

the reliability of the detection is quite high. 

(a) 

 

(b) 

 
Figure 5.53 Confusion matrices describing detection performances of the finer faults 

for the medium binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the calibration set of Table 5.14 using the parameters of Combination A 

The results in the validation set (Figure 5.54) display the same behaviour observed 

for the simpler classification trees with this partitioning of the dataset. The classifiers 

tend to label the vast majority of the tested instances as ‘normal’, leading to a scarce 

identification rate of the anomalies. The accuracy of the detection also drops in the 

validation, touching 40% for the aerobic phase and 22% for the anoxic. 

(a) 

 

(b) 

 
Figure 5.54 Confusion matrices describing detection performances of the finer faults 

for the medium binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the validation set of Table 5.14 using the parameters of Combination A 

The same considerations made for the Combination A apply also when the 

Combination E of the diagnostic parameters is used to train the trees. Both the classifiers 

calibrated on the data from the aerobic and anoxic phases (Figure 5.55), in fact, consider 

the temperature as most important parameter, followed by the average DO 

concentration. The higher number of branches and nodes brings as a consequence that 

all the other parameters now play some role. 
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(a) 

 
(b) 

 
(Normal state = 0; Fault = 1) 
Figure 5.55 Structure of the classification trees of medium complexity trained on the 

calibration set described in Table 5.14 for the aerobic (a) and anoxic (b) phase using the 
Combination E of the diagnostic parameters 

Good classification results are displayed by the trained trees on the calibration set for 

both the process conditions, with an extremely limited number of wrong assignments 

and an acceptable fault identification efficiency (Figure 5.56). 

(a) 

 

(b) 

 
Figure 5.56 Confusion matrices describing detection performances of the finer faults 

for the medium binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the calibration set of Table 5.14 using the parameters of Combination E 

These models, however, show the tendency of overlooking the anomaly of the tested 

observations. Both in the calibration and in the validation set the number of instances 

assigned with the ‘normal’ class are the majority and only ¼ of them are classified as 

faults. The accuracy of the detection in the validation set is however higher than in the 

previous cases, being 53% for the aerobic phase and 40% for the anoxic. 
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(a) 

 

(b) 

 
Figure 5.57 Confusion matrices describing detection performances of the finer faults 

for the medium binary classification tree method in both the aerobic (a) and the anoxic 
phases (b) of the validation set of Table 5.14 using the parameters of Combination E 

The comparative analysis of the classification success rates for the different 

combinations of diagnostic parameters presented in Figure 5.58 is almost identical to 

the one reported in Figure 5.45. In terms of global classification efficiency, the results 

on the calibration set are slightly better as the number of variables composing the dataset 

increases and this behaviour is basically maintained in the validation phase. 

(a) 

 
(b) 

 
Figure 5.58 Global classification success of the medium binary classification tree 

method for the different combinations of parameters in the calibration (a) and validation 
(b) set of Table 5.14 

As already observed for the Combination A and Combination E, also for the other 

combinations of diagnostic variables the classifiers trained on the calibration set of 

Table 5.14 favour the ‘normal’ class. This naturally reflects on the generally poor rate 

of faults identified both in the calibration (Figure 5.59.a) and in the validation (Figure 

5.59.b) phase. It is evident however that the increased complexity of the tree benefits 
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from an equally increased complexity in the number of antecedents used to represent 

the observations. 

(a) 

 
(b) 

 
Figure 5.59 Fault identification success of the medium binary classification tree 

method for the different combinations of parameters in the calibration (a) and validation 
(b) set of Table 5.14 

The same correspondence between the dimensionality of the descriptors and the FD 

performance, can be observed in the assessment of the detection accuracy of the faults 

(Figure 5.60). In fact, the increase in the diversity of the diagnostic parameters’ 

combinations used is proportional to the reliability of the detection, and the 

combinations which include most of the observed parameters are the same that score 

higher both in the calibration and in the validation set. 
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(a) 

 
(b) 

 
Figure 5.60 Confidence rate on the faults identified by the medium binary 

classification tree method for the different combinations of parameters in the 
calibration (a) and validation (b) set of Table 5.14 

From the histograms in Figure 5.61, which summarize the performances of the 

classification tree emerges that despite the low identification rate the Combination E is 

the one that provides better results, also in terms of general classification capability and 

in accuracy of the finer faults detected. 

 

Figure 5.61 Comparison of the performance indexes for the medium binary 
classification tree method under the different combinations of parameters in the 

validation set of Table 5.14 

Testing the method on the reduced training and validation sets of Table 5.13 as before 

does not bring any improvement in the detection. The models present a slightly different 

feature ranking than the ones in Figure 5.55, having the average concentration of 

suspended solids as second most important parameter instead of the DO, but also in this 

case the classifiers result too much tailored on the calibration data, off-balancing the 

detection in favour of the ‘fault’ class when tested with a different dataset. This is 
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particularly evident from the results summarized in Figure 5.62. By relaxing the 

limitations on the number of rules used to describe the classification process, the method 

produces classifiers that are extremely accurate in sorting the elements of dataset with 

close similarities to the ones used for the training. However, when tested on datasets 

with different characteristics, the models calibrated using the dataset partitioning of 

Table 5.13 reveal poor generalization capabilities and are more likely to classify the 

instances in the ‘fault’ category than in the ‘normal’ one. 

 

Figure 5.62 Comparison of the performance indexes for the medium binary 
classification tree method under the different combinations of parameters in the 

validation set of Table 5.13 

 

This more refined category of decision trees seems to be better suited for the 

detection of the finer faults, provided it can be trained with sufficiently well-described 

observation and the training set includes examples that encompass as much as possible 

of the variability of the process. 

5.4.6 Results of the fault detection using the linear 

support vector machine method 

The dataset defined in Table 5.14 has also been tested for the presence of finer faults 

using the SVM methods described in Chapter 4. The first test considered the 

performances of the SVM method as a linear classifier, i.e. under the assumptions that 

the ‘fault’ and ‘normal’ class are linearly separable in their features space. Extracting 

from the calibration set the Combination A of diagnostic parameters the optimal 

separation hyperplanes found for the aerobic and the anoxic phases have the 

characteristics shown in Table 5.25. 
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Table 5.25 Characteristics of the linear SVM model trained on the calibration set of 
Table 5.14 for the Combination A of the diagnostic parameters 

Property Aerobic phase Anoxic phase 

Number of training instances (N) 931 933 
Number of support vectors (Ns) 682 681 
Kernel linear linear 
Bias (w0) - - 

w = [m⋅,NH4+,out 

s⋅,NH4+,out 

m⋅,NOx–,out 

s⋅,NOx–,out] 

5.226e–06 
3.231e–06 
–1.571e–05 
2.773e–05 

1.917e–06 
3.638e–06 

–2.120e–05 
5.818e–06 

 

Using just the four parameters of Combination A the method is not able to determine 

a satisfying decision surface. The optimal separation planes found for the aerobic and 

anoxic phases, in fact, do not lead to the detection of any fault event, not even in the 

calibration set, as it is shown in Figure 5.63. 

(a) 

 

(b) 

 
Figure 5.63 Confusion matrices describing detection performances of the finer faults 
for the linear SVM method in both the aerobic (a) and the anoxic phases (b) of the 

calibration set of Table 5.14 using the parameters of Combination A 

The same behaviour is displayed by the confusion matrices presenting the 

performances in the validation set in Figure 5.64. Here too the calibrated linear 

classification models are unable to identify any anomaly neither in the aerobic nor in 

the anoxic phase. 

(a) 

 

(b) 

 
Figure 5.64 Confusion matrices describing detection performances of the finer faults 
for the linear SVM method in both the aerobic (a) and the anoxic phases (b) of the 

validation set of Table 5.14 using the parameters of Combination A 
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The same result is obtained when a wider range of variables is used. Using the 

Combination E the classifiers for each process phase have the characteristics reported 

in Table 5.26. 

Table 5.26 Characteristics of the linear SVM model trained on the calibration set of 
Table 5.14 for the Combination E of the diagnostic parameters 

Property Aerobic phase Anoxic phase 
Number of training instances (N) 931 933 
Number of support vectors (Ns) 669 621 
Kernel linear linear 
Bias (w0) –1.01 –0.993 

w = [m⋅,NH4+,in 

m⋅,NH4+,out 

s⋅,NH4+,out 

m⋅,NOx–,in 

m⋅,NOx–,out 

s⋅,NOx–,out 

m⋅,TSS,in 

m⋅,TSS,out 

m⋅,DO,in 

m⋅,DO,out 

m⋅,Temp] 

0.001 
0.001 

–0.001 
0.001 

–0.002 
–0.001 
0.000 
0.001 

–8.999e-05 
–4.782e–06 

0.000 

0.0541 
0.0138 
–0.042 
0.005 

–0.0128 
–0.010 
–0.015 
0.097 

–0.001 
–0.006 
0.004 

 

This time too the decision surfaces are unable to discriminate the anomalies in the 

aerobic phase (Figure 5.65a) and just two faults are detected in the anoxic phase. 

(a) 

 

(b) 

 

Figure 5.65 Confusion matrices describing detection performances of the finer faults 
for the linear SVM method in both the aerobic (a) and the anoxic phases (b) of the 

calibration set of Table 5.14 using the parameters of Combination E 
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(a) 

 

(b) 

 

Figure 5.66 Confusion matrices describing detection performances of the finer faults 
for the linear SVM method in both the aerobic (a) and the anoxic phases (b) of the 

validation set of Table 5.14 using the parameters of Combination E 

Considering the results just shown, it makes little sense to compare the performances 

of the method when varying the combination of descriptors by focusing on the 

performance indexes of interest separately as we did for the other methods. Figure 5.67 

compares the indexes describing the performances of the combined aerobic and anoxic 

classifiers both on the calibration and on the validation phase. Of course, the high 

percentage global classification rates in light of the absence of instances assigned to the 

‘fault’ class here merely assume the meaning of the frequencies of occurrence of the 

phases containing correct measurements in the whole dataset. Using a higher number of 

descriptors the method is able to recognise some faults but just in the calibration dataset. 

(a) 

 
(b) 

 
Figure 5.67 Comparison of the performance indexes for the linear SVM method 

under the different combinations of parameters in the calibration (a) and validation (b) 
set of Table 5.14 
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Better results can be obtained when the linear classifier is trained on the calibration 

dataset of Table 5.13 and a high number of features is available. From the comparison 

of the histograms of Figure 5.68 with those of Figure 5.67 is evident that the models 

trained with just the 6 months dataset are able to detect, except for Combination A and 

Combination B, a fair number of faults even though the accuracy of the detection, 

particularly high in calibration, drops below 40% in the validation set. 

(a) 

 
(b) 

 
Figure 5.68 Comparison of the performance indexes for the linear SVM method 

under the different combinations of parameters in the calibration (a) and validation (b) 
set of Table 5.13 

It is then clear that the assumption of linearly separable classes, although it was 

expected, is not suited for this problem and a separation surface with good 

discrimination properties and generality cannot be found in the feature space. 

5.4.7 Results of the fault detection using the cubic 

kernel support vector machine 

The search for the optimal separation phase suggested to expand the feature space 

with a polynomial of order 3 as kernel function. The characteristics of the SVM 

classification models trained using the Combination A of diagnostic features on the 

calibration set defined in Table 5.14 are reported in Table 5.27. 
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Table 5.27 Characteristics of the cubic kernel SVM model trained on the calibration 
set of Table 5.14 for the Combination A of the diagnostic parameters 

Property Aerobic phase Anoxic phase 

Number of training instances (N) 931 933 
Number of support vectors (Ns) 891 882 
Kernel Polynomial (cubic) Polynomial (cubic)r 
Bias (w0) –2.570 –2.715 

 

The FD performance on the calibration set, visualised by the confusion matrices of 

Figure 5.69, shows that the method can identify a relatively small number of faults with 

little more than 40% of accuracy, which is a better result compared to the linear kernel, 

but still far from satisfactory. Moreover, the same conservative behaviour displayed by 

the linear SVM models trained on the same dataset can be observed also in this nonlinear 

setting, assigning more faulty instances to the ‘normal’ class than to the other. 
(a) 

 

(b) 

 
Figure 5.69 Confusion matrices describing detection performances of the finer faults 

for the cubic kernel SVM method in both the aerobic (a) and the anoxic phases (b) of 
the calibration set of Table 5.14 using the parameters of Combination A 

The same considerations apply to the validation of the models (Figure 5.70): both the 

model for the aerobic and the one for the anoxic phase tend to classify the faulty 

instances as “normal”, reducing the percentage of detected faults. 

(a) 

 

(b) 

 

Figure 5.70 Confusion matrices describing detection performances of the finer faults 
for the cubic kernel SVM method in both the aerobic (a) and the anoxic phases (b) of 

the validation set of Table 5.14 using the parameters of Combination A 

The effect of a different combination of the descriptors used to represent the instances 

produces better results, especially in the calibration set. For example using Combination 
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E the optimal separation hyperplane can be determined using a lower number of support 

vectors (Table 5.28) and the results obtained are better than in Figure 5.70. 

Table 5.28 Characteristics of the cubic kernel SVM model trained on the calibration 
set of Table 5.14 for the Combination E of the diagnostic parameters 

Property Aerobic phase Anoxic phase 

Number of training instances (N) 931 933 
Number of support vectors (Ns) 505 509 
Kernel Polynomial (cubic) Polynomial (cubic)r 
Bias (w0) –0.532 –1.334 

 

Figure 5.71 reports the results obtained on the calibration set and they are quite good. 

Most of the observed anomalies are detected and the accuracy exceeds 85%. The general 

classification efficiency is also of the same entity. 

(a) 

 

(b) 

 

Figure 5.71 Confusion matrices describing detection performances of the finer faults 
for the cubic kernel SVM method in both the aerobic (a) and the anoxic phases (b) of 

the calibration set of Table 5.14 using the parameters of Combination E 

The results on the validation set, however, show a lower rate of detected faults 

compared to the real ones and a lower accuracy of their identification (Figure 5.72). 

However, the performance of the models as general classifiers are still satisfying as they 

score over 60% in both the anoxic and the aerobic phase. 

(a) 

 

(b) 

 

Figure 5.72 Confusion matrices describing detection performances of the finer faults 
for the cubic kernel SVM method in both the aerobic (a) and the anoxic phases (b) of 

the validation set of Table 5.14 using the parameters of Combination E 

Of all the method tested, the kernel SVM is the one that better responds to the 

increment of available information provided by the use of a larger number of parameters 

by delivering higher performing models in the calibration set. As shown in Figure 5.73.a 
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the global classification success is higher when more comprehensive descriptors sets, as 

Combination D and Combination E, are used. At the same times this does not translate 

in overfitted classifiers as in the validation sets the global classification efficiency does 

not drop below 50% in any of the tested combinations. 

(a) 

 
(b) 

 
Figure 5.73 Global classification success of the cubic kernel SVM method for the 

different combinations of parameters in the calibration (a) and validation (b) set of 
Table 5.14 

As shown in Figure 5.74, the number of detected faults is another index deeply 

influenced by the choice of parameters, even more than the global classification success 

rate. In fact, the improvement provided by the use of larger number of descriptors in 

both the calibration and the validation sets is considerable if compared to the results 

obtained with the basic configuration of features of the Combination A. None of the 

tested combinations, however, is able to achieve in the validation set a detection rate 

similar to the one obtained in the calibration, and even if with Combination D the 

classifiers detect over the 80% of the faults, in validation this value decreases to 30%. 
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(a) 

 
(b) 

 
Figure 5.74 Fault identification success of the cubic kernel SVM method for the 

different combinations of parameters in the calibration (a) and validation (b) set of 
Table 5.14 

Regarding the accuracy of the detection of the anomalous events in the calibration 

dataset, this is also linked to the combination of diagnostic parameters (Figure 5.75). 

For Combination C, Combination D and Combination E, in fact the optimized classifiers 

return a very low number of false positives. In the validation set, instead, the accuracy, 

although higher than in other methods exceeds the 50% threshold only for the 

Combination B. 
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(a) 

 
(b) 

 
Figure 5.75 Confidence rate on the faults identified by the cubic kernel SVM method 

for the different combinations of parameters in the calibration (a) and validation (b) set 
of Table 5.14 

The aggregated results of the three performance indexes reported in Figure 5.76 are 

quite similar to those obtained with the medium classification tree and shown in Figure 

5.61. The high performance as a classifier also in the validation set and the accuracy, 

generally higher with respect to the other trained methods, make this method a good and 

fairly reliable fault detection tool, especially if a high number of observed variables is 

available. 

 

Figure 5.76 Comparison of the performance indexes for the cubic kernel SVM 
method under the different combinations of parameters in the validation set of Table 

5.14 
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used on datasets with different characteristics it is possible that most of the instances are 

misclassified. We tested for example the method using the reduced calibration set of 

Table 5.13 achieving very good results in all the performance indexes, even higher than 

those reported for the calibration in Figure 5.73, Figure 5.74 and Figure 5.75. The results 

for the validation set shown in Figure 5.77, however, reveal the poor generalization 

capability of the trained classifiers. The observed high detection success rate, compared 

to the other indexes, must be seen as an indication that most of the samples of the 

validation dataset are interpreted as anomalies, since they are much different from the 

example the models have been trained on. Acceptable performances as general classifier 

are only displayed by the most basic combinations of features. 

 

Figure 5.77 Comparison of the performance indexes for the cubic kernel SVM 
method under the different combinations of parameters in the validation set of Table 

5.13 

Thus, if a proper and diversified training set is available the kernel SVM method can 

be trained using and a sufficient number or of diagnostic features and it will be a good 

fault detection tool, due to the relatively good degree of confidence that can be put on 

its detection. If, however, the dataset available is small or the example contained only 

represent a part of the full variability of the process, it is preferable to use a reduced 

number of descriptors for the instances otherwise the risk is to overfit the training set. 

5.5 Comparative assessment of the of the 

methods 

In this paragraph we provide a comparative assessment of the performances obtained 

by the different methods used to detect the presence of the finer faults and tested with 

the five combinations of diagnostic parameters. Finally, some conclusions on their 

reliability as FD tools is drawn. 

Since the PCA-based method, the classification trees and the SVM methods tested 

basically share the same calibration/validation settings, in order to facilitate the 

comparison for each dataset partition their performances will be evaluated together. 
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Regarding the Bayesian method, instead, it is not possible to exactly separate the 

calibration and the validation part on the basis of the dataset partitioning, because in the 

real-time-like setting implemented each observation is first used to predict the state 

based on the knowledge acquired by the previous observations (so it is used to validate 

the current model) then contributes to update the predictive model used in the following 

iteration (thus becoming part of the training). For these reasons, the results for the 

Bayesian method will be assessed separately. 

5.5.1 The naïve Bayesian predictor 

The naïve Bayesian method, implemented as described in 5.2.2, has been tested on 

the 1 year-long dataset described in Table 5.15, which is basically the same as the 

calibration set of Table 5.14 used to train the other methods. The performance indexes 

reported in Figure 5.78, displaying the performances achieved by the method at the end 

of the dataset under the different combinations of parameters used to represent the 

observations, reveal that the method is quite robust with respect to the specific 

combination adopted. All the three performance indexes monitored are only marginally 

affected by it: with respect to the case in which the state is only described in terms of 

the average concentrations and the slopes of the nitrogen and the ammonia, the number 

of faults detected by the Bayesian predictor slightly increases as more parameters are 

introduced. Unfortunately, none of the combinations tested allow to identify more than 

38% of the faults observed. The general prediction capabilities and the reliability of the 

prediction are conversely almost unaffected by the descriptors selection and the success 

rate is around 60% for each tested combination. 

 

Figure 5.78 Comparison of the performance indexes for the Bayesian method using 
the different combinations of parameters for the dataset of Table 5.15 

The statistics on the synthetic dataset are not as good as those shown in Figure 4.17 

for the real measurements and are generally worse than those achieved in the calibration 

phase with most of the other methods, especially regarding the number of identified 

finer faults, however the robustness of the prediction accuracy with respect to the 
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variables used to describe the process, together with the capability of improving the 

prediction at each step, make this method a valuable FD instrument. 

5.5.2 Comparison of the results for the different 

classifiers 

A first general assessment of the goodness of the tested methods can be achieved by 

comparing their global classification success rate, i.e. the portion of instances correctly 

assigned to their right class. This is a complementary measure of the global classification 

error, the cost minimized by the training of the models. We recall from Table 5.14 that 

of the 1864 instances composing the combined aerobic/anoxic training dataset most of 

them (~67%) represent normal phases and only 610 contain a finer fault. Then any 

method that assigns the instances only to the normal class would still have the 67% of 

global classification efficiency. As seen in the previous paragraphs that is what 

happened with the RT-MWPCA method using Combination B and Combination C and 

with the linear SVM method in Combination A. Combination B and Combination C, 

where the models, even in calibration phase, failed to find an optimal solution that allow 

them to discriminate the samples in two different classes instead of one. As can be 

observed from the histograms shown in Figure 5.79.a, the only calibrated models able 

to reach a higher classification efficiency are the medium size classification tree and the 

polynomial kernel SVM (and the simple tree, but the improvement is marginal) but only 

when a detailed set of descriptors for the instances is provided.  

The global classification success in the validation set (Figure 5.79.b) is instead very 

similar for all the methods and the combinations tested, generally scoring more than 

60%. 
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(a) 

 
(b) 

 
Figure 5.79 Global classification success of the cubic kernel SVM method for the five 

combinations of parameters in the calibration (a) and validation (b) set of Table 5.14 

Figure 5.80 shows the global classification success in case the methods are trained 

and tested on smaller and less diversified datasets as those of Table 5.13. High 

classification rates can be achieved in calibration also in this case, especially using 

Combination D and Combination E, but the drop of the performance in the validation 

set is dramatic. Except for the RT-MWPCA and the linear SVM methods, all the others 

produce a general classification error higher than 50%. 
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Figure 5.80 Global classification success of the cubic kernel SVM method for the five 

combinations of parameters in the calibration (a) and validation (b) set of Table 5.13 

The general good results observed in terms of global classification success, though, 

must be weighed considering of the number of faults detected by the method and the 

accuracy that can be reached in their detection. As displayed in Figure 5.81 the RT-

MWPCA or the linear SVM method are able to detect only a very small part (if any) of 

the observed anomalies. Such poor results are surprising, especially for the calibration 

of the RT-MWPCA method, since when it was trained on the real measurements 

successful detection was achieved in more than 30% of the faults and with a fairly 

limited number of false alarms (Figure 4.13). Also, the method trained with the dataset 

of Table 5.13 showed better detection rates (Figure 5.34). The only methods presenting 

good identification performances in the training set are the classification tree of medium 

complexity (but only using Combination C and Combination E it is able to identify 

almost half of the anomalies), and the cubic kernel SVM, which with Combination C, 

Combination D and Combination E detects more than 50% of the faults observed in the 

training set. Similar, but lower, detection performances are observed in the validation 

set, where both methods score between 20% and 30% using the more refined 

combinations of the diagnostic parameters. 
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Figure 5.81 Fault identification success of the cubic kernel SVM method for the five 

combinations of parameters in the calibration (a) and validation (b) set of Table 5.14 

Higher rates of detection, both in training and in validation, are observed when the 

models are calibrated on a less diversified dataset as the one in Table 5.13. In this case, 

however, the higher number of faults identified in the validation set (see Figure 5.82) is 

biased by a generally off-balanced detection, where the trained models tend to assign to 

the ‘fault’ category the instances of the validation set since they are much different from 

the ones they have been trained on. 
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Figure 5.82 Fault identification success of the cubic kernel SVM method for the five 

combinations of parameters in the calibration (a) and validation (b) set of Table 5.13 

The accuracy of the detection is a key aspect to consider when choosing the most 

appropriate method to implement. The results in terms of confidence in the detection of 

fault events observed for the dataset partitioning of Table 5.14 are shown in Figure 5.83. 

(a) 

 
(b) 

 
Figure 5.83 Confidence rate on the faults identified by the cubic kernel SVM method 

for the five combinations of parameters in the calibration (a) and validation (b) set of 
Table 5.14 
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It can be observed that the reliability of the fault detection in the calibration set is 

above 50% for most of the methods tested and the wider is the set of descriptors, the 

more reliable is the detection. This is especially true for the medium classification tree 

and the polynomial kernel SVM method. The latter, for example, is able to achieve more 

than 80% of accuracy when Combination C, D or E are used. On the validation set the 

performances are quite different and the confidence that the detected faults are actual 

anomalies generally becomes less than half of the training (Figure 5.83.b). The RT-

MWPCA method is the one showing the higher accuracy (little more than 50%) when a 

reduced number of variables are used (Combination A, B, C) but the performance with 

the more complex set of descriptors is worse. The classification tree of medium 

complexity and the cubic kernel SVM methods instead have similar performances on 

the same combinations, while the medium tree performs slightly better with a high 

number of descriptors and the SVM achieves the highest accuracy of all the other 

methods and combinations when Combination B is selected. The usual comparison with 

the performances achieved using the dataset partitioning described in Table 5.13 

displays that in the calibration phase all the methods have a higher degree of reliability 

(Figure 5.84.a) but in the validation phase none of the methods tested is able to achieve 

an accuracy higher than 30%, revealing the lack of generalization capability of the 

models trained with a less diversified dataset. 

(a) 

 
(b) 

 
Figure 5.84 Confidence rate on the faults identified by the cubic kernel SVM method 

for the different combinations of parameters in the calibration (a) and validation (b) set 
of Table 5.13 
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Chapter 6 Conclusions 

The fault detection algorithms investigated in this research have been conceived to 

detect the possible faults of the instruments measuring the nitrate and ammonia 

concentrations in alternate cycles wastewater treatment plants. In this process 

configuration the nitrogen removal is obtained through alternate oxic and anoxic cycles 

by switching on and off the aeration in the oxidation tank. In this way the ammonium-

N is oxidized to nitrate-N in the aerobic phase, while in the anoxic phase this is reduced 

to dinitrogen, provided that enough organic carbon is available. The fault detection (FD) 

algorithms are designed to operate as a real-time tool operating under the supervision of 

the plant supervisory control and data acquisition (SCADA) system. The future role of 

this component is to enable the plant manager to adapt the control strategies to 

compensate for the possible loss in quality of the treatment or cost efficiency and enact 

the necessary countermeasures, whenever a sensor fault is detected. The choice of the 

optimal remedial action according to the different anomalies in the measurements 

quality is however beyond the scope of this research. 

The FD procedure proposed in this study is composed of two hierarchically organized 

phases: a preliminary screening of gross failures and a further, more refined search of 

finer faults. The first part consists of some low-level controls performed on the raw 

signals, in order to detect gross malfunctions, like signals data interruptions, anomalous 

constant measurements and irregular duration of the phases. This preliminary screening 

is performed as soon as the measurements are acquired and provide an immediate alert 

to the plant manager. In the second phase, more sophisticated detection methods are 

implemented to identify finer faults that cannot be detected by the simple screening of 

the first phase. This class of anomalies may be caused by the presence of faults that 

cause the measurements to diverge from their true value. The progressive drift 

introduced by these malfunctions cannot be easily discriminated from the natural 

variability of the process by analysing one sample at the time. Considering the particular 

configuration of the treatment process based on alternate cycles, the second phase was 

split in two parts: one for the aerobic phase and one for the anoxic phase. 

A preliminary operation is however the parametrization of the fault, as described in 

Chapter 3, based on the choice of a number of process variables, selected as fault 

indicators. The influence of the process variables on the performance of the FD 

algorithms have been assessed in Chapter 5. 

In order to quantify the relationships among the variables for each investigated phase 

the portions of signals of the observed quantities are parametrized and a number 
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diagnostic features are extracted. It this context, it is clear that the response to a finer 

fault can only be obtained when the phase ends and its parameters have been extracted. 

Moreover, it should be underlined that although sharing the same principles, the FD 

methods applied to the different process phases have been trained separately minimizing 

the global classification error (number of misclassified instances over the whole 

dataset). 

The algorithms have been tested in Chapter 5 using different measurement datasets 

and applying different parametrizations to the signals. The operational data used in the 

present work were provided by the plant managing society of the municipal treatment 

facility of Mantua, in Italy, and consisted of a nearly nine month-long set of 

measurements of ammonia and nitrates concentrations measured by the ion-specific 

probe installed in one of the four reactors composing the WWTP. This dataset, more 

extensively discussed in section 3.2, is composed by the concentrations values of the 

nitrates and ammonia in the aerobic reactor (and by the activation/deactivation Boolean 

signal of the aeration), thus four parameters are extracted: the ammonia and nitrate 

concentrations rate of change and their average values over each phase. 

Due to the fairly limited information that could be extracted from this set of 

measurements and a relatively poor characterization of the fault events occurred, a 

further set of synthetic data was then generated using the numerical AC model described 

in section 3.3. Based on the standard Benchmark simulation protocol and an ASM3-like 

kinetics, this numerical model included an improved nitrogen kinetics including the 

seasonal temperature variation. To this end the model has been fed with the synthetic 

input data of the BSM_LT protocol. Detailed sensor models were also included, so that 

the occurrence of finer faults could be totally controlled, reproducing the combined 

effect of the main anomalies observed in the operational data: measurements noise, drift, 

and fouling. The occurrence of the ‘gross faults’, instead, was not simulated. The 

numerical model provided a broader spectrum of possible observed variables but, since 

it was intended as a surrogate of the real plant, we chose to use only those related to the 

nitrification/denitrification process and having an actual physical meaning, i.e. the 

concentrations of suspended solids, dissolved oxygen, the temperature, in addition to 

the concentration of nitrate and ammonia. This extended choice expanded therefore the 

set of features that can be extracted for each phase for FD purposes. Five combinations 

of diagnostic parameters, one of which containing the same four features available from 

the real plant dataset, have been used to parametrize the synthetic dataset. These 

combinations are intended to reflect the possible different availability of observed 

variable, and therefore of parameters used to describe the processes. 
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The performance of the algorithms has then been assessed by comparing the 

anomalies detected with those actually observed, either in case of real operational data, 

or produced by the numerical model, and using the different combinations of diagnostic 

features available. The FD problem has been treated either in terms of classification 

problem, testing different algorithms based on classification techniques such as binary 

trees, support vector machines (SVM) and principal component analysis (PCA), or as a 

forecasting problem, using an approach based on the Bayesian theory to predict the 

faulty or normal state of the process based on the previous records. 

In the PCA-based algorithm, the classification method was improved by redefining 

new variable thresholds based on the classical statistical indicators, like the Hotelling’s 

T2, and a moving window of fixed length to keep track of the normal variability of 

WWTP operation due to seasonality or varying loading conditions in a real-time setting. 

In this context, the moving window is used to overcome the limitations of the static PCA 

method by defining an adaptive reference model of the good behaved observations. In 

the real-time-moving window PCA method (RT-MWPCA) the parameters extracted are 

projected onto this reference space and the Hotelling’s T2 and Q statistics are used to 

discriminate the phases with an irregular behaviour: if the tested parameters produce 

scores that are greater than the newly defined thresholds in both statistics the 

corresponding phase is reported as fault, otherwise it is considered “normal” and its 

parameters are used to update de reference space. 

The Bayesian method also is intrinsically an adaptive one. Here the occurrence of a 

fault in the tested phase is predicted at each iteration based on the previous history of 

the system. In other words, by means of the Bayes’ theorem the conditional probability 

of experiencing, or not, a fault given the current parameters is estimated at each iteration, 

and this is a function of which value of parameters were associated to the fault events 

in the previously tested sample and which to the normal state. Thus, contrary to the RT-

MWPCA method, here all the previous history contributes to the definition of the fault 

model and not just the finite number of samples included in the last window. Moreover, 

the Bayesian method actually consists of two predictors, one assessing the probability 

of having a fault and the other the probability of not having one, and the outcome is 

assigned to the most probable of the two. 

As for the classification trees, we decided to test two versions of the method. First, 

by imposing a strong limitation to the number of nodes, a simple tree was tested. Then 

this limitation has been relaxed letting the method to learn an increased number of rules. 

Also for the SVM two different approaches have been tested. In one, under the strong 

assumption of linearly separable classes a simple linear kernel SVM has been trained, 
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to separate the normal and faulty instances on the space spanned by the features. The 

other approach consisted in searching the optimal separation surface in a more complex 

space defined by a polynomial transformation of order three of the features. 

The tests on the nine-month time series of the real plant measurements revealed 

excellent performances for the pre-processing screenings that are able to identify the 

majority of the malfunctions observed in the analysed period. Only a small part (70) of 

the anomalies occurred in the analysed period belong to the ‘finer fault’ category and 

their detection has been tested using both the Bayesian predictor and RT-MWPCA 

method, although for the latter it has only been possible to perform the calibration, due 

to the limited quantity of faults observed. The performances achieved by the two 

methods are very similar, both in terms of general classification success (number of 

correctly assigned instances on the total number of observations) and accuracy of the 

prediction limited to the finer faults (share of correctly identified faults on the whole 

number of instances classified as fault by the method). The number of faults 

identified/predicted by the Bayesian method, however, is higher and it succeeds in 

identifying most of the observed anomalies. 

A more than one year and a half-long set of synthetic measurements has been 

generated by a numerical model based on the ASM3 kinetics, from which several 

differing sets of process variables were used to derive five possible combinations of 

diagnostic parameters. It contains a small number of ‘gross fault’ which are promptly 

and effectively detected by the preliminary checks devised. For the assessment of the 

detection of finer faults two different datasets were used, the first consisting in a one 

year-long calibration set and an almost nine-month long validation set, the other 

obtained by splitting one year of data into a six-month training set and an equally long 

validation set. Each dataset partitioning has been tested under all the five possible 

combinations of the diagnostic parameters. We chose to use these two dataset 

partitioning strategies in order to better investigate the responses of the tested methods 

either in case a limited and poorly diversified dataset is available (the six-month long 

calibration set) and in the opposite case in which it is possible to use a longer set of 

measurements, encompassing all the seasonal variability of the variables. This 

partitioning does not apply of course to the Bayesian predictor since for this method the 

calibration and validation phase intermittently switch at each iteration. The resulting 

performances of the Bayesian method tested on one year of synthetic data are essentially 

independent from the particular choice of descriptors used and, despite the number of 

observed faults does not exceed 30% for any of the combinations, both the global 

classification success rate and the reliability of the fault detection are around 60%. These 
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results are not as high as those achieved in the real plant dataset but still the robustness 

of the prediction accuracy displayed varying the variables used to describe the process, 

combined with the possibility to improve the prediction model at each step, make this 

method a valuable FD instrument also in this dataset. 

The other methods provided mixed results. Overall, the calibrated methods produced 

high performing classifiers for the training dataset, with high performance indexes for 

almost all the combinations of diagnostic parameters. The only exception is represented 

by the linear SVM classifiers, which was unable to detect any fault for most of the 

combinations. Conversely the cubic kernel SVM and the more complex classification 

tree are the methods that scored higher, especially when the observations included a 

high number of parameters. It is interesting to notice that the calibration results on the 

six-months training set are usually better but this can be explained considering that the 

data are less diversified, therefore more easily separable. 

Opposite results are obtained in validation. The methods that are trained on the short-

period calibration set suffer from the scarce variability of the data and display poor 

generalization capabilities. Except for the RT-MWPCA method, which in calibration 

had the worst performances, all other classification techniques tend to label as faulty 

most of the instances of the validation, which makes sense since they have been trained 

on examples having very different characteristics. The lack of generalization is 

especially confirmed by the high misclassification rate achieved with the short 

parametrizations and by the generally low accuracy of the fault detections. Conversely, 

the classifiers trained on the longer dataset, when tested on the instances from the 

validation set, report comparatively higher scores in terms of accuracy and general 

classification success, despite the detection performances is between 20% and 30% for 

the most performing methods (which are also in this case the medium classification tree 

and the cubic kernel SVM, but only in case more populated combinations of diagnostic 

features can be extracted from the signals). The RT-MWPCA, among all methods, is 

the one showing the higher accuracy when a reduced number of variables are used but 

the performances with the more complex set of descriptors are worse. The classification 

tree of medium complexity and the cubic kernel SVM methods, instead, have similar 

accuracy if tested on the same combinations, with the medium tree performing slightly 

better with a high number of descriptors but the number of faults identified by the SVM 

in this case is higher. 

These considerations lead to the conclusion that the optimal choice of an FD method 

depends on the characteristics of the training dataset and the number of observed 

variables available. If the historical data series used to train the models cover a short 
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time period and it is known to be only partially representative of the whole seasonal 

variability of the investigated process then the RT-MWPCA is preferable, since thanks 

to its built-in adaptive framework it is more able to keep track of the changing loading 

and environmental conditions than the other methods. On the contrary, when an 

exhaustive amount of data is available and the number of monitored variables is large 

enough to allow fora higher number of diagnostic features, the nonlinear SVM method 

prevails as it exploits the increased information available and as a consequence has 

better generalization capability. However, despite a low number of detected faults, the 

Bayesian predictor is the tested method that returned the higher accuracy of the detection 

and a substantial independence of its performance from the parametrization chosen. 

6.1 Key aspects of this research 

The malfunction of the measuring instruments can introduce disturbances in the 

signals that influence the control of the process, possibly deteriorating the efficiency of 

the treatment. A complete real-time fault detection algorithm is then provided, with 

characteristics specifically designed for the application to a wastewater treatment plant 

employing the alternate aeration process configuration to improve the nitrogen removal 

efficiency. The algorithm takes into consideration the various malfunctions that can 

affect the monitored signals, dealing with the detection of the most gross malfunctions 

testing each measurement as soon as it is acquired and on a larger time scale 

investigating the presence of the finer faults in each process phase as soon as it is 

concluded. In this context, a parametrization of the portions of signals in each process 

phase is performed to extract meaningful diagnostic parameters. 

Several fault detection algorithms were devised and tested either using the 

measurements of a medium-sized municipal plant in the north of Italy and a more 

exhaustive synthetic dataset generated by a numerical model of an alternated cycles 

plant based on the benchmark simulation model protocol. The latter included fairly 

detailed models of the sensors and their disturbances. Mainly developed in the Matlab 

environment, at the earlier stage of the research the algorithm was ported in LabView 

for its application on the treatment plant in Mantua from which the field dataset was 

obtained. 

Using different parametrizations for the two the process phases and different 

partitioning of the available dataset, the feasibility of the different methods was 

investigated, with special attention to the detection of the finer faults. The approaches 

to the fault detection task tested in this work on one hand treated the problem in terms 

of a classification problem, comparing a method based on a technique traditionally 
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employed for the fault detection in WWTPs such as principal component analysis (PCA) 

with other classification techniques less popular in this field such as binary trees and support 

vector machines (SVM), on the other hand the fault detection was tackled as a forecasting 

problem, using an approach based on the Bayes’ theory to predict the faulty or normal state 

of the process based on the previous records. 

The main findings and contributions of this research are listed below: 

– The main contribution of this thesis lies in the proposal of a framework for the 

fault detection on wastewater treatment plants where the problem of the 

detectability of the gross and most evident faults, such as spikes and constant 

signals, is separated from the one related to more serious and persistent 

malfunctions of the measurement instruments. This division was motivated by 

the fact that the first class of faults is generally easier to promptly detect using 

simpler screening tools, while the second class of anomalies, whose occurrence 

is more likely to produce long-lasting effect on the quality of the treatment 

process, is more difficult to identify in a dynamic system, especially in an AC 

wastewater treatment plant, therefore more sophisticated monitoring methods are 

required; 

– The results showed a very high performance of the methods investigating the 

presence of the first class of faults, which were able to identify the majority of 

the observed anomalies; 

– As for the detection of the finer faults, the PCA-based algorithm showed a good 

compromise between fault detection performance and reliability of the 

identification when trained with a relatively short and moderately diversified 

dataset and when a small number of observed variable is provided. Conversely, 

when a larger set of instances covering all the seasonal variability of the process 

and a relatively higher number of signals are available for the training, the use of 

a nonlinear support vector machine emerged as the most performing choice; 

– On the other hand, the fault detection provided by the Bayesian predictor, 

although generally identifying a lower number of fault events, is the method that 

provides the highest accuracy for the two datasets and under all the different 

combinations of diagnostic parameters. 

6.2  Outlook 

Several insights for further research are provided by the results and the experience 

gained during this work. The different machine learning techniques applied to the 

identification of the finer faults under different conditions of data availability and 
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parametrization strategies revealed that none of them, except perhaps the Bayesian 

predictor, can be considered the optimal method in absolute terms. An interesting further 

development could be represented by the testing of a FD algorithm involving different 

and independently trained methods working at the same time and each reporting their 

estimation on the state of the system. A polling system could then determine with some 

criteria the final classification of the tested phase. 

From the operational point of view an extensive testing of the methods devised on 

one or more real treatment plants is required, together with the development of a 

framework for the definition of the paradigm of the fault events. Especially in the 

historical series used for the initial training of the algorithms this aspect was in fact one 

of the main reasons of the poor results achieved using the real measurements dataset: no 

laboratory concentration measurements were available to provide a comparison with the 

measurement values and often from the expert judgement used to identify the fault 

events it was not possible to distinguish the anomalies associated to an instrument fault 

from those related to the input concentrations. 

Particularly interesting are the possible research topics arisen from the Bayesian 

approach. In fact, the use of a probabilistic approach and the quantification of the 

uncertainties in the WWTPs models, either regarding the inputs or the constituent 

parameters, seems a promising field that could lead to a new class of better performing 

fault detection algorithms. 
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