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Introduction

A surge of advances in both experimental and theoretical techniques, has allowed
in recent years to develop useful mathematical tools for the modeling of interesting
systems in applied sciences.
The validation of models is generally based on their ability to predict realistic phe-
nomena at a qualitative level. An appropriate quantitative analysis is of course
required as well, through a comparison with reliable empirical data, whenever
such data are available. To this end the equations describing the system have to
be inclusive of suitable parameters whose values have to be fixed according to the
experimental evidence.
The models discussed in this thesis are related to two important aspects of life-
and-material science which require different mathematical techniques. Namely, in
the following we discuss some mathematical models related to biological and med-
ical applications.
A common aspect in the description of real-life phenomena is the emergence of
an intrinsic nonlinearity which from a technical point of view cannot be studied
through perturbation expansions about small amplitude linear approximation to
the true solutions. Indeed, since the mid-1970s it has become increasingly evident
that the assumption of quasi-linearity leads the theorist to miss qualitatively sig-
nificant aspects.
The present thesis is divided in two parts. We first consider the description of
complex living systems. Such description relays on a kinetic theory formalism,
called kinetic theory of active particle (KTAP theory) which, as we explain later
was developed to describe systems characterized by a large number of interacting
”individuals” whose state is described not only by mathematical variables, but also
by a new scalar variable called ”activity”. This new variable indicates the ability
of each individual (active particle) to express a specific strategy. The macroscopic
behavior of the whole system is a non-deterministic result of the nonlinear inter-
actions among the active particles.
In the second chapter of the thesis the KTAP theory is described and two appli-
cations of the theory to ”population dynamics” problems are presented. Namely,
after general considerations related to the fundamental aspects of the mathemati-

1



2 INTRODUCTION

cal framework, we discuss the case of a discrete vehicular traffic model and of an
epidemics-spread model. The results presented are original contributions obtained
in [20, 21, 32].
The third chapter of the thesis is instead devoted to the application of boundary
value problems techniques to the modeling of a nonlinear diffusion phenomenon
in medicine. More precisely, we first introduce a well known nonlinear diffusion-
convection equation (Rosen - Fokas - Yorstos model) of great applicative relevance,
and discuss the construction of the Dirichlet-to-Neumann map obtained in [17].
Next, we present recent results obtained in [19] where the phenomenon of drug
diffusion in arterial tissues, after the drug is released by an arterial stent, is mod-
eled through a moving boundary problem on a finite domain.
Finally, in Appendix A and Appendix B, we show some technical details of rigorous
proofs related to theorems reported in the thesis.



Chapter 2

Complex systems

Complex living systems are systems constituted by a large number of individual
components characterized at microscopic level by nonlinear interactions. The out-
come of such interactions is described by stochastic games. The behavior of the
system can thus be seen as the collective action of a large number of components
that through their interactions give rise to a global outcome for the complex sys-
tem. All of this happens without a central control or a leader. Moreover, all the
components change their behavior through evolutionary processes in order to im-
prove their chances of success or survival. Thus, the modeling of complex living
systems requires to take into account all the interactions among the elements that
compose the system under study, in order to determine the macroscopic evolu-
tion. This is achieved by the use of various models that adopt different methods
corresponding to different scales. These models can be classified into:

Microscopic models: used to study, through ordinary differential equations, the
dynamics of each individual particle.

Macroscopic models: used to study, through partial differential equations, the
averages of the state of a large number of elements, to develop some locally
averaged quantities suitable to describe the system.

Kinetic models: used to study, through integral differential equations, the be-
havior of groups of interacting particles through suitable probability distri-
butions over the microscopic state. Macroscopic quantities in such models
can be obtained by computing averages over the microscopic state space.

In this work we concentrate our attention on a mathematical framework adapt to
describe kinetic models.

3



4 CHAPTER 2. COMPLEX SYSTEMS

2.1 Kinetic theory

The statistical mechanics framework was first introduced by Ludwig Boltzmann
in order to overcome the continuum approach in the study of fluid-dynamics.

2.1.1 The Boltzmann equation

Following the idea of Boltzmann we introduce the one-particle distribution func-
tion:

f = f (t,x,v) : R+ × Ω× R3 → R+

under the hypothesis that f is locally integrable. Ω ⊂ R3 is the domain where the
particles are free to move in all directions. Then, the number of particles in the
volume [x,x + dx]× [v,v + dv] at the time t is defined with f (t,x,v) dvdx.
Moreover, for a system of only one kind of particle, integrating over the velocity,
we define the number density:

n(t,x) =

∫
R3

f (t,x,v) dv;

on the other hand, integrating over the space and over the velocity, we obtain the
total number of the particles:

N =

∫
R3×R3

f (t,x,v) dx dv.

Under the additional hypothesis that vf and v2f are integrable we can define:

the mass density
ρ (t,x) = mn(t,x)

where m is the mass of the particle, and

the mass velocity

U (t,x) =
1

n (t,x)

∫
R3

vf (t,x,v) dv.

In order to derive the evolution equation for the distribution function in the case
of Boltzmann equation, we assume to be significant only the interactions between
pairs of particles. This collisions are elastic and preserve mass, momentum and
energy. Then the evolution equation is obtained trough the mass conservation
equation. Along this way the Boltzmann equation in the case of absence of an
external force is:

df

dt
(t,x,v) =

(
∂

∂t
+ v · ∇x

)
f = J [f, f ] = G [f, f ]− L [f, f ],
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where G [f, f ] and L [f, f ] are respectively the gain and loss term that emerge due
to the collision between a couple of particles:

G [f, f ] (t,x,v) =

∫
R3×S2+

B (n,q) f (t,x,v′) f (t,x,w′) dn dw

and

L [f, f ] (t,x,v) = f (t,x,v)

∫
R3×S2+

B (n,q) f (t,x,w) dn dw.

In these equations:

v,w are the pre-collision velocities of the two interacting particles with
q = w − v,

v′,w′ are the post-collision velocities of the two interacting particles with
q′ = w′ − v′, v′ = v + n (n · q) and w′ = w − n (n · q).

n is the versor along the bisector of the angle between q and q′,

S2
+ = {n ∈ R3 : |n| = 1, n · q ≤ 0},

B (n,q) is the collision kernel, see [25].

In this Subsection we have described a system of particles that interact in absence
of external force fields. Boltzmann equation, indeed, is able to characterize also
the case where external actions occur. Moreover, the mathematical framework
provided takes into account only short range interactions. On the other hand, var-
ious physical systems involve long range interactions. In this case the appropriate
model is given by Vlasov equation [70].

2.1.2 Kinetic theory of active particle

In the kinetic theory the particles taken into account are indistinguishable from
each other. To overcome this problem, in recent years a mathematical approach
has been developed to describe complex systems belonging to the domain of life
sciences. A description of such systems requires the use of appropriate techniques
and mathematical methods that differ substantially from those used for the de-
scription of the inert matter. The mathematical formalism is called Kinetic Theory
of Active Particles (KTAP Theory); indeed in such formalism the complex system
is characterized by a large number of interacting entities named ”active particles”.
This means that the physical state of the particles belonging to the complex sys-
tem is characterized not only by geometric and mechanics variables but also by
a new variable named ”activity”. This variable characterizes the type of strategy
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and the type of interactions that the particles of the complex system are able to
develop. Indeed the ”activity” has the role to differentiate the behavior of each
particle; it takes a different meaning depending on the model.
The KTAP theory, reviewed in [10, 28], allows the derivation of evolution equations
suitable to describe the time and space dynamics of appropriate probability dis-
tributions over the micro-scale state of a large system of interacting entities. The
derivation of the said equations is based on suitable developments of the methods
of the mathematical kinetic theory, while interactions are modeled by theoretical
tools of the evolutionary game theory [62, 63]. The KTAP theory allowed the
derivation of various models of practical interest in life science such as the descrip-
tion of crowds [69], the formulation of models of social and immune competition
[12, 14, 39], the modeling of vehicular traffic flow [13] and of the spread of epi-
demics contrasted by immune defense [31].
Following [10] we now derive the mathematical framework for this theory.

Mathematical frameworks for continuous systems

Let us consider a system constituted by n subsystems labeled with the index
i = 1, . . . , n where the activity variable describe, for each subsystem, the main
properties of its respective particles. Then the one-particle distribution function
of the i-th subsystem is defined by

fi = fi (t,x,v,u), i = 1, . . . , n,

where x, v and u indicate respectively the position, the velocity and the activ-
ity of the particle and fi (t,x,v,u) dxdvdu denotes the number of active parti-
cles belonging to the i-th subsystem that at time t are in the elementary volume
[x,x + dx] × [v,v + dv] × [u,u + du] = Dx × Dv × Du. We point out that the
distribution function for all subsystems is denoted by f = {f1, . . . , fn}.
In this way, under suitable integrability hypothesis we can define some important
quantities like:

the local size of the i-th subsystem

ni [fi] (t,x) =

∫
Dx×Dv

fi (t,x,v,u) dv du, (2.1)

the total density

n [f ] (t,x) =
n∑
i=1

ni [fi] (t,x), (2.2)
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the total size of the subsystem at t = 0

n0 [f0] (x) =
n∑
i=1

ni0 (x), (2.3)

where ni0 is the local initial size of the i-th subsystem and f0 = f (t = 0),

the total size of the i-th subsystem

Ni (t) =

∫
Dx

ni (t,x) dx (2.4)

and

the total size of all subsystems

N (t) =
n∑
i=1

Ni (t). (2.5)

Moreover, under suitable integrability properties, we can also calculate some macro-
scopic quantities like:

marginal densities of the distribution over the mechanical state

fmi (t,x,v) =

∫
Du

fi (t,x,v,u) du,

marginal densities of the distribution over the activity

fai (t,u) =

∫
Dx×Dv

fi (t,x,v,u) dx dv,

mass velocity of particles

U [fi] (t,x) =
1

ni [fi] (t,x)

∫
Dv×Du

vfi (t,x,v,u) dv du, (2.6)

local activation

aij = aj [fi] (t,x) =

∫
Dv×Du

ujfi (t,x,v,u) dv du, (2.7)

local activation density

adij =
aj [fi] (t,x)

ni [fi] (t,x)
=

1

ni [fi] (t,x)

∫
Dv×Du

ujfi (t,x,v,u) dv du, (2.8)
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global activation

Aij = Aij [fi] (t) =

∫
Dx

aij (t,x) dx (2.9)

and

global activation density

Ad
ij = Ad

ij [fi] (t) =

∫
Dx

adij (t,x) dx. (2.10)

Now we are ready to characterize the microscopic interactions between the parti-
cles. In this treatment we describe only the case of conservative interactions,
namely interactions that don’t modify the size of the subsystem but only the state
of the particles. Moreover, we take into account only the case of short range
binary interactions. In the interest of providing fuller information we should
remark that this theory can be extended also to the case of proliferative or de-
structive interactions which generate the birth or the death of active particles.
Furthermore, like in the continuous case, a mathematical framework appropriate
to describe long range mean field interactions exists in the literature (see [10]).

In order to provide the dynamics of the interactions we consider the microscopic
state of active particles w = {x,v,u} ∈ Dw = Dx×Dv×Du and we define three
kind of particles: the candidate active particle with state w∗, the test active
particle with state w and the field active particle with state w∗.
Moreover we consider the encounter rate between a particle belonging to the
i-th subsystem with state w∗ and a particle belonging to the j-th subsystem with
state w∗

ηij = cijδ (x∗ − x∗) |v∗ − v∗|

where cij is a constant and δ is the Dirac’s function.
Finally we define the transition probability density

ϕij (w∗,w
∗; w) : Dw ×Dw ×Dw → R+,

namely the probability that a candidate active particle belonging to the i-th sub-
system with state w∗, interacting with the field particle belonging to the j-th
subsystem with state w∗ falls into the state w of the test particle (remaining in
the same subsystem). The latter definition requires an additional hypothesis:∫

Dw

ϕij (w∗,w
∗; w) dw = 1, ∀w∗,w∗, ∀i, j. (2.11)
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The evolution equations of the system are the following:

dfi
dt

=
∂fi
∂t

+ v · ∇xf = Gi [f ]− Li [f ]

where

Gi [f ] (t,x,v,u)=
n∑
j=1

∫
(Dv×Du)

2
cij |v∗ − v∗|ϕij (w∗,w

∗; w)

×fi (t,x,v∗,u∗) fj (t,x,v∗,u∗) dv∗ dv
∗ du∗ du

∗

and

Li [f ] (t,x,v,u)= fi (t,x,v,u)
n∑
j=1

∫
Dv×Du

cij |v − v∗|

×fj (t,x,v∗,u∗) dv∗ du∗

are the gain and the loss terms respectively.

Remark 2.1.1. There is a particular case when the candidate particle belonging
to the h-th subsystem with state u∗ interacting with a particle belonging to the
k-th subsystem with state u∗ falls in i-th subsystem with state u. In this case the
encounter rate is defined by:

η0ij =

∫
Dv×Dv

cij |v − v∗|Pj (v∗)Pi (v) dv∗dv

where P (v) is the distribution function over the velocity variable, satisfying the
normalization condition ∫

Dv

Pi (v) dv = 1.

Moreover we indicate by Bi
hk (u∗,u

∗; u) the transition probability density and
the additional hypothesis (2.11) becomes:

n∑
i=1

∫
Du

Bi
hk (u∗,u

∗; u) du = 1, ∀u∗,u∗, ∀h, k.

Assuming that:
fi (t,v,u) = fai (t,u)Pi (v),

the gain term takes the form:

Gi [f ] (t,x,v,u)=
n∑
h=1

n∑
k=1

η0hk

∫
Du×Du

Bi
hk (u∗,u

∗; u)

×fah (t,u∗) f
a
k (t,u∗) du∗ du

∗
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and the loss term takes the form:

Li [f ] (t,x,v,u) = fai (t,u)
n∑
k=1

η0ik

∫
Du

fak (t,u∗) du∗.

Mathematical frameworks for discrete systems

Let us now consider the mathematical framework for discrete systems suitable
to describe some particular models that require a specific discretization of the
variables.
We take into account a system constituted by n subsystems labeled with the index
i = 1, . . . , n where the activity variable describes, for each subsystem, the main
properties of its respective particles. In this case, the activity of the particles is
expressed by a discrete grid:

Iu = {u1, . . . , ur, . . . , uR}.

Then the distribution function of the particles belonging to the i-th subsystem
with state ur is defined by

fir = fir (t,x,v) = fi (t,x,v;ur) : [0, T ]×Dx ×Dv → R+, i = 1, . . . , n,

In this way we can obtain a mathematical framework for a discrete activity sys-
tem and in (2.1)-(2.5), by replacing integrals with sums, we recover the quantities
previously defined:

the local size of the i-th subsystem

ni [fi] (t,x) =
R∑
r=1

∫
Dv

fir (t,x,v) dv,

the total density

n [f ] (t,x) =
n∑
i=1

ni [fi] (t,x),

the total size of the subsystem at t = 0

n0 (x) = n (t = 0,x),

where ni0 (x) = ni (t = 0,x),
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the total size of the i-th subsystem

Ni (t) =

∫
Dx

ni (t,x) dx

and

the total size of all subsystems

N (t) =
n∑
i=1

Ni (t).

Moreover, along the same lines, from (2.6)-(2.10) we can calculate also some macro-
scopic quantities:

mass velocity of particles

U [fi] (t,x) =
1

ni (t,x)

R∑
r=1

∫
Dv

vf ri (t,x,v) dv,

activation at time t in position x

air = air [fir] (t,x) = ur

∫
Dv

fir (t,x,v) dv,

activation density

dir = dir [fi] (t,x) =
air [fir] (t,x)

ni [fi] (t,x)
,

global activation

Air = Air [fir] (t) =

∫
Dx

air (t,x) dx

and

global activation density

Dir = Dir [fi] (t) =

∫
Dx

dir (t,x) dx.

If motivated by a specific application, we can discretize also the velocity variable:

Iv = {v1, . . . , vs, . . . , vS}
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or the space variable:
Ix = {x1, . . . , xl, . . . , xL}.

The respectively distribution functions are:

fikr (t,x) = fi (t,x, vk, ur)

and
filkr (t) = fi (t, xl, vk, ur).

Like in the case of a discrete activity system, if we replace integrals with the sums
in (2.1)-(2.5) and (2.6)-(2.10) we recover the quantities previously defined.
Now we are ready to characterize the microscopic interactions between the parti-
cles. Also in this treatment we describe only the case of conservative interactions.
In particular, we take into account a mathematical framework for models where
the microscopic state is identified by activity only. However, we underline that the
other frameworks can be obtained following the same lines.

In order to provide the dynamics of the interactions we define three kind of par-
ticles: the candidate active particle with state up the test active particle with
state ur and the field active particle with state uq.
Moreover, we consider the encounter rate ηpqij between a particle belonging to
the i-th subsystem with state up and a particle belonging to the j-th subsystem
with state uq:

ηpqij = ηij [f ] (up, uq)

We then define the transition probability density:

Bpq
ij (r) = Bij (up, uq;ur)

namely the probability that a candidate active particle belonging to the i-th sub-
system with state up, interacting with the field particle belonging to the j-th
subsystem with state uq falls into the state ur of the test particle (remaining in
the same subsystem). The latter definition requires an additional hypothesis:

R∑
r=1

Bpq
ij (r) = 1, ∀i, j, ∀p, q.

The evolution equations of the system have the form:

dfhi
dt

= Gih − Lih.

where

Gih =
n∑
j=1

R∑
p,q=1

ηpqij Bpq
ij (r) fipfjq
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and

Lih = fih

n∑
j=1

R∑
q=1

ηhqij fjq

are the gain and the loss terms respectively.

Remark 2.1.2. Like in the continuous systems there is a particular case where
the candidate particle belonging to the h-th subsystem with state up interacting with
a particle belonging to the k-th subsystem with state uq, falls in the i-th subsystem
with state ur. In this case we indicate by Bpq

hk (r, i) the transition probability
density under the hypothesis

R∑
r=1

n∑
i=1

Bpq
hk (r, i) = 1, ∀h, k, ∀p, q.

The gain term takes the form:

Gir =
n∑

h,k=1

R∑
p,q=1

ηpqhkB
pq
hk (r, i) fhpfkq

and the loss term takes the form:

Lir = fir

n∑
k=1

R∑
q=1

ηrqik fkq.

In the next two Sections we present two models described through the KTAP
theory approach. More precisely in Section 2.2 an epidemic model adapt to study
the spread of epidemics under the influence of risk perception obtained by De
Lillo, Prioriello and myself is presented [32]. Section 2.3 is instead dedicated to a
discrete vehicular traffic model influenced by the ability of the drivers, obtained
by Burini, De Lillo and myself [20, 21].
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2.2 Modeling of epidemics under the influence

of risk perception

Modeling the epidemics of infectious diseases, motivated in the past a very ex-
tended literature, starting from the early studies of Kermack and McKendrick
[53]. In [58] the authors present an interesting survey of mathematical models and
analytical results, to be compared with laboratory data in order to understand
epidemiological trends and to control the spread of infection and disease within
human communities. On the other hand, in [24] the author analyzes and classifies
epidemic models according to their mathematical structure. Two main classes are
identified: one of them related to order preserving dynamical systems, the other
one related to Lyapunov methods. The mathematical models discussed in [24, 58]
are deterministic; however as pointed out also in [24], spontaneous stochastic fluc-
tuations have to be taken into account in order to get a more realistic model, able
to fit experimental data. Indeed, more recently several studies were devoted to the
development of stochastic epidemic models, mainly in the framework of random
networks [4, 7, 8, 16, 40, 48, 57, 71]. The present model proposes some new ideas
developed in the context of the model discussed in [31]. In particular we focalize
our attention on two fundamental issues:

• Nonlinear interactions: recent studies [28, 33] have introduced new con-
cepts concerning nonlinear additivity of interactions. In our model the evo-
lution of the system is ruled by nonlinear interactions between the active
particles. The outcome of such interactions is described by stochastic games.

• Risk perception: it is assumed in this model that susceptible individuals
may be aware of the risk to contract the infection [6]. According to the level
of awareness they can take the necessary precautions.

In Subsection 2.2.1 is presented the mathematical structure able to describe the
spread of epidemics. Subsection 2.2.2 describes the transitions probability densities
with particular attention to the role of the risk perception awareness among healthy
individuals. Subsection 2.2.3 is dedicated to the qualitative analysis of the model.
Finally, Subsection 2.2.4 develops some simulations in order to show the evolution
of the epidemics, starting from an initial situation.

2.2.1 Mathematical structure

Let us consider a large system of many interacting entities, called active particles,
grouped into several different functional subsystems. Within the same subsystem,
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each individual is characterized by a microscopic state called activity, with a dif-
ferent meaning in each functional subsystem.
The number of particles in the whole system is assumed to be constant.
The evolution of the system is determined by interactions between pairs belonging
to the same subsystem or to different ones.
The system consists of four subsystems, also called populations, labelled by the
index i ∈ {1, . . . , 4}:

• i=1: doctors;

• i=2: susceptible individuals;

• i=3: individuals affected by the disease;

• i=4: healed individuals (these individuals cannot be infected again).

The activity is a discrete scalar variable u ∈ [0, 1] describing, for each i-th popula-
tion, the main properties of its respective individuals. In particular, it represents
in the four distinct subsystems:

• i=1: the ability and the experience of doctors to treat the disease;

• i=2: the susceptibility (to contract the infection);

• i=3: the progression of the pathological state;

• i=4: getting back in shape.

Remark 2.2.1. We assume that in the disease under consideration the severity
of the pathological state is highest in the first stage of the disease. Specifically, for
the third subsystem u = 0 and u = 1 correspond, respectively, to the highest and
to the lowest levels of severity of the pathological state.
We assume that the infectivity is constant, i.e. it is the same for all individuals of
the third population.

In the following we assume that the activity of individuals is heterogeneously
distributed in each functional subsystem and we introduce the set:

Iu = {u1 = 0, ..., ur, ..., um = 1} .

The overall state is described by the probability distributions:

fir = fi(t, u = ur) : [0, T ] → R+ i ∈ {1, ..., 4} , r = 1, . . . ,m.

The interaction terms are defined as follows:
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• ηpqhk = ηhk [f ] (up, uq) is the encounter rate between the active particle of the
h-th functional subsystem with state up and the active particle of the k-th
functional subsystem with state uq, where h, k ∈ [1, . . . , 4] and
p, q ∈ [1, . . . ,m].

• Bi
hk(r) = Bi

hk [f ] (up → ur | up, uq) is the probability that an active particle
of the h-th subsystem, with state up ends up into the i-th subsystem with
state ur, after interacting with the active particle of the k-th subsystem, with
state uq.

Then, for i = 1, . . . , 4 and for r = 1, . . . ,m, the evolution equations are given by:

d

dt
fir(t)= Qir [f ] (t) =

4∑
h,k=1

m∑
p,q=1

ηhk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq)

×fhp(t)fkq(t)− fir(t)
4∑

k=1

m∑
q=1

ηik [f ] (ur, uq)fkq(t) (2.12)

where f denotes the set of all fir components of the probability density. In order
to model the encounter rates we introduce a distance between the probability
densities:

d (fh, fk) [f ] (t) =
m∑
r=1

m∑
r∗=1

|fhr(t)− fkr∗(t)|, h, k ∈ {1, ..., 4} .

The encounter rates are modeled according to:

ηpq22 = ηpq14 = ηpq41 = ηpq24 = ηpq42 = ηpq44 = α1, (2.13)

ηpq11 = α2, (2.14)

ηpq12 = e
1

1+(α3uq) , (2.15)

ηpq21 = e
1

1+(α3up) , (2.16)

ηpq13 = e
1

1
2+(α3uq) , (2.17)

ηpq31 = e
1

1
2+(α3up) , (2.18)

ηpq23 = e−β(1+up)(1+d(f2,f3)), (2.19)

ηpq32 = e−β(1+uq)(1+d(f2,f3)), (2.20)

ηpq33 = ηpq34 = ηpq43 = α4, (2.21)

where α1,α2,α3,α4 are positive constants and 0 < β < 1 denotes the risk percep-
tion.
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The above choice for the encounter rates, indicates that the encounter rate ηpq12
doctor/susceptible, increases when the value of the activity uq decreases: indeed
people at a low level of susceptivity are more induced to get immunized. On the
other hand, the risk perception induces susceptible individuals to stay away from
infected ones, which explains the encounter rates in (2.19) and (2.20) that are
exponentially decreasing as the distance between the distribution is increasing.
Finally the encounter rates in (2.17) and (2.18), corresponding to the interactions
doctor/infected, tend to increase in the first stage of the illness, when the doctors
are more invoked to prescribe the cure. In all other cases the encounter rates are
assumed to be constant.

2.2.2 Transition probability density

Interactions modeled by the terms Bi
hk(r), are called stochastic games since the

microscopic state of the active particles is known in probability and the output is
identified by a transition probability density. The set of the transition probability
densities is called table of games.
In order to describe the tables of games we need to introduce the following param-
eters:

doctors ability: 0 ≤ δ ≤ 1

intensity of the vaccine reaction: 0 ≤ γ ≤ 1

infectivity: 0 ≤ χ ≤ 1.

Moreover, we consider the first order moment for i = 1, ..., 4 which we identify
with the mean value:

E1
i [fi](t) =

m∑
r=1

urfir(t),

and
Bp
i

(
E1
i [fi]

)
= εi

∣∣E1
i [fi]− up

∣∣ ,
which is proportional to the distance between the activity of the interacting particle
p and the mean value E1

i [fi], with p = 1, ...,m and 0 < εi ≤ 1.
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Tables of games for Bi
1k(r), for k = 1, ..., 4. (doctors)

Bi
11(r) = Bi

11 [f ] (up → ur | up,uq)

When a doctor with state up interacts with another doctor with state uq, he can
change his state, according to the following rules:

up < uq



up ≥ E1
1[f1]


B1

11(r = p− 1) = 0

B1
11(r = p) = Bp

1

B1
11(r = p+ 1) = 1−Bp

1

B1
11(r 6= p− 1, p, p+ 1) = 0

up < E1
1[f1]



B1
11(r = p− 1) = 0

B1
11(r = p) = 1− (δ1 |uq − up|+Bp

1)

2

B1
11(r = p+ 1) =

δ1 |uq − up|+Bp
1

2
B1

11(r 6= p− 1, p, p+ 1) = 0

The above rules imply that when the ability of the doctor up is less then the abil-
ity of the doctor uq, then if up is above the mean value, the transition up → up+1

will be ruled by the comparison between the two terms (1 − Bp
1) and Bp

1 . When
instead up is below the mean value, the transition up → up+1 will be ruled by a
comparison of terms involving a linear combination of Bp

1 and the activity distance.

up ≥ uq


B1

11(r = p− 1) = 0

B1
11(r = p) = 1

B1
11(r = p+ 1) = 0

B1
11(r 6= p− 1, p, p+ 1) = 0

When the ability up is greater or equal to the ability uq the only possibility is that
the value up does not change.
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Bi
13(r) = Bi

13 [f ] (up → ur | up,uq)

When a doctor with state up interacts with an individual with state uq of the third
subsystem, he can change his state, according with the following rules:

uq < E1
3[f3]



p < m


B1

13(r = p− 1) = 0

B1
13(r = p) = 1− (δ1B

q
3)

B1
13(r = p+ 1) = δ1B

q
3

B1
13(r 6= p− 1, p, p+ 1) = 0

p = m

{
B1

13(r = m) = 1

B1
13(r 6= m) = 0

uq ≥ E1
3[f3]


B1

13(r = p− 1) = 0

B1
13(r = p) = 1

B1
13(r = p+ 1) = 0

B1
13(r 6= p− 1, p, p+ 1) = 0

The above table corresponds to the realistic assumption that doctors learn by
taking care of their patients, indeed the ability of a doctor up, when the level of
illness uq is below the average, can only increase or remain the same according to
the distance of uq from the mean value.
For the case when the level of illness is above he mean value, the doctor ability
up does not change anymore (because the doctor already knows which therapy is
appropriate).

Bi
1k(r) = Bi

1k [f ] (up → ur | up,uq), for k = 2,4

The interaction between an individual of the first subsystem with state up and an
individual with state uq of the second or fourth subsystems brings no change:

B1
1k(r = p− 1) = 0

B1
1k(r = p) = 1

B1
1k(r = p+ 1) = 0

B1
1k(r 6= p− 1, p, p+ 1) = 0

The above table refers to interactions doctors/susceptile and doctors/healed, this
kind of interactions do not imply any change of the activity up for the doctors.



20 CHAPTER 2. COMPLEX SYSTEMS

Tables of games for Bi
2k(r), for k = 1, ..., 4. (susceptible indi-

viduals)

Bi
2k(r) = Bi

2k [f ] (up → ur | up,uq), for k = 2,4

The interaction between an individual of the second subsystem with state up and an
individual with state uq of the second or fourth subsystem (susceptible/susceptible,
or susceptible/hill) brings no change:

B2
2k(r = p− 1) = 0

B2
2k(r = p) = 1

B2
2k(r = p+ 1) = 0

B2
2k(r 6= p− 1, p, p+ 1) = 0

Bi
21(r) = Bi

21 [f ] (up → ur | up,uq)

We now consider the table referring to interactions between a susceptible and a
doctor: we describe separately the case when a susceptible first encounters a doctor
and takes the vaccine. We then have the following cases:

up < E1
2[f2]


B4

21(r = m) = 1

B2
21(r = p) = 0

B4
21(r 6= m) = 0

B2
21(r 6= p) = 0

When the activity up (susceptivity) is below the average then the susceptible in-
dividual becomes immunized and he makes a transition to the state m of the last
class.
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Let us now consider the case when the susceptivity is above the mean value.
We have the following table:

up ≥ E1
2[f2]



p < m



B4
21(r = m) = 1−

((
1− tanh

(
1

(1− γ)

))
Bp

2

)
B2

21(r = p+ 1) =

(
1− tanh

(
1

(1− γ)

))
Bp

2

B2
21(r 6= p+ 1) = 0

B4
21(r 6= m) = 0

p = m



B4
21(r = m) = 1−

((
1− tanh

(
1

(1− γ)

))
Bp

2

)
B3

21(r = 1) =

(
1− tanh

(
1

(1− γ)

))
Bp

2

B4
21(r 6= m) = 0

B3
21(r 6= 1) = 0

From the above table we see that if the susceptivity is greater than the mean value,
then up → up+1 in the case of a small γ; when γ increases instead, the susceptible
individual will be driven toward the healed class.
In the special case p = m for small γ, the individuals will be driven to the first
stadium of the third class (illness).

Bi
23(r) = Bi

23 [f ] (up → ur | up,uq)

up ≥ E1
2[f2]



p < m


B2

23(r = p− 1) = 0

B2
23(r = p) = 1− eχ−1

B2
23(r = p+ 1) = eχ−1

B2
23(r 6= p− 1, p, p+ 1) = 0

p = m


B2

23(r = m) = 1− eχ−1

B3
23(r = 1) = eχ−1

B2
23(r 6= m) = 0

B3
23(r 6= 1) = 0

up < E1
2[f2]


B2

23(r = p− 1) = 0

B2
23(r = p) = 1− e((1−B

p
2 )χ)−1

B2
23(r = p+ 1) = e((1−B

p
2 )χ)−1

B2
23(r 6= p− 1, p, p+ 1) = 0
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The above table refers to the interactions susceptible/ infected. When the suscep-
tivity is above the mean value, the probability transition up → up+1 increases as
χ increases. For p = m the transition refers to the first stadium of the third class.
When up is below the mean value, the transition up → up+1 is again driven by
infectivity χ but now there is a dumping effect due to the distance from the mean
value.

Tables of games for Bi
3k(r), for k = 1, ..., 4. (individuals af-

fected by the disease)

Bi
3k(r) = Bi

3k [f ] (up → ur | up,uq), for k = 2,3,4

up ≥ E1
3[f3]



p < m


B3

3k(r = p− 1) = 0

B3
3k(r = p) = 1−Bp

3

B3
3k(r = p+ 1) = Bp

3

B3
3k(r 6= p− 1, p, p+ 1) = 0

p = m


B3

3k(r = m) = 0

B4
3k(r = 1) = 1

B3
3k(r 6= m) = 0

B4
3k(r 6= 1) = 0

up < E1
3[f3]


B3

3k(r = p− 1) = 0

B3
3k(r = p) = 1

B3
3k(r = p+ 1) = 0

B3
3k(r 6= p− 1, p, p+ 1) = 0

When we consider individuals affected by the disease (above table) we observe that
when the level of illness is below the mean value, the activity up does not change.
In all other cases the probability transition up → up+1 increases as the distance
Bp

3 from the mean value increases. We point out that in the special case p = m,
the individuals end up in the healed individuals population.
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Bi
31(r) = Bi

31 [f ] (up → ur | up,uq)

up ≥ E1
3[f3]



p < m



uq ≥ E1
1[f1]


B3

31(r = p− 1) = 0

B3
31(r = p) = 0

B3
31(r = p+ 1) = 1

B3
31(r 6= p− 1, p, p+ 1) = 0

uq < E1
1[f1]


B3

31(r = p− 1) = 0

B3
31(r = p) = Bq

1(1−Bp
3)

B3
31(r = p+ 1) = 1−Bq

1(1−Bp
3)

B3
31(r 6= p− 1, p, p+ 1) = 0

p = m


B3

31(r = m) = 0

B4
31(r = 1) = 1

B3
31(r 6= m) = 0

B4
31(r 6= 1) = 0

up < E1
3[f3]



uq ≥ E1
1[f1]


B3

31(r = p− 1) = 0

B3
31(r = p) = 0

B3
31(r = p+ 1) = 1

B3
31(r 6= p− 1, p, p+ 1) = 0

uq < E1
1[f1]


B3

31(r = p− 1) = 0

B3
31(r = p) = 1− (1−Bq

1)(1−Bp
3)

B3
31(r = p+ 1) = (1−Bq

1)(1−Bp
3)

B3
31(r 6= p− 1, p, p+ 1) = 0

The above table describes the interactions between the individuals affected by the
disease and the doctors. In the first case the degree of illness is above the mean
value. Then the output of interaction depends both on the doctors ability and
on the distance Bp

3 of the activity up from the mean value. The illness will tend
to evolve toward the healed state as rapidly as Bp

3 increases and the distance Bq
1

decreases. In the second case, when up is below the mean value, we have the
opposite behavior.
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Tables of games for Bi
4k(r), for k = 1, ..., 4. (healed individu-

als)

Bi
4k(r) = Bi

4k [f ] (up → ur | up,uq), for k = 1,2,3,4

p 6= m


B4

4k(r = p− 1) = 0

B4
4k(r = p) = 0

B4
4k(r = p+ 1) = 1

B4
4k(r 6= p− 1, p, p+ 1) = 0

p = m


B4

4k(r = m− 1) = 0

B4
4k(r = m) = 1

B4
4k(r = m+ 1) = 0

B4
4k(r 6= m− 1,m,m+ 1) = 0

The last above table describes the interactions between healed individuals and
individuals belonging to the other populations. As expected, the healed individuals
proceed in their complete recovery and this is independent by the index i.

2.2.3 Qualitative analysis

In this Subsection the initial value (I.V.) problem for equation (2.12) is formulated.
It is shown that the solution of such I.V. problem exists, it is unique and is a
positive, regular function of time, of class C1([0, T ]).
We point out that the proof carried out in the following is different from the one
reported in [28] which refers to a (I.V.) problem for a system where there are no
migration phenomena between different classes.
In order to obtain the time evolution of the distribution functions fir(t),
i ∈ {1, . . . , n}, we consider the I.V. problem:

d

dt
fir(t) = Qir [f ] (t), i = 1, . . . , n, r = 1, . . . ,m,

fir(0) = fi(0, ur),
(2.22)

where, due (2.12) we write:

d

dt
fir(t)= Qir [f ] (t) =

n∑
h,k=1

m∑
p,q=1

ηhk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq)

×fhp(t)fkq(t)− fir(t)
n∑
k=1

m∑
q=1

ηik [f ] (ur, uq)fkq(t).
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We introduce the space:

X =
{
fi : [0, T ]→ R, fi ∈ C1([0, T ]), i = 1, . . . , n, T > 0

}
characterized with the norm:

‖fi (t) ‖X =
m∑
r=1

|fir(t)|. (2.23)

Moreover, we define the space X = Xn with the corresponding norm:

‖f (t) ‖X =
n∑
i=1

‖fi(t)‖X , (2.24)

and introduce:
X+ = {f ∈ X | fi ≥ 0, i = 1, . . . , n}

The following theorem states a result of local existence and uniqueness for the
solution of the I.V. problem (2.22).

Theorem 2.2.2. Consider the I.V. problem (2.22) with
f0 = {f1(0, u), . . . , fn(0, u)} ∈ X+. Assume that

ηp,qh,k ≥ 0, Bi
hk(r) ≥ 0,

n∑
i=1

m∑
r=1

Bi
hk [f ] (up → ur | up, uq) = 1 ∀f . (2.25)

holds, together with the following hypotheses:

• The encounter rate ηpqhk satisfies the following condition:

m∑
r=1

ηhk [f ] (up, uq) ≤ C, ∀ h, k = 1 . . . , n ∀ p, q ∈ {1, . . . ,m} and ∀f ∈ X

with C a positive constant;

• ∀f , g ∈ X the probability Bi
hk(r) and the encounter rate ηpqhk are Lipschitz

continuous in X, that is, ∀ p, q ∈ {1, . . . ,m} it results
n∑

h,k,i=1

m∑
r=1

| Bi
hk [f ] (up → ur|up, uq)−Bi

hk [g] (up → ur|up, uq) |

≤ L1‖f − g‖X,
n∑

h,k=1

m∑
r=1

| ηhk [f ] (up, uq)− ηhk [g] (up, uq)| ≤ L2‖f − g‖X,

with L1, L2 positive constants.
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Then, there exist T > 0 and a unique solution f(t) in X for the I.V. problem (2.22)
on the time interval [0, T ]. Moreover f(t) ∈ X+, t ∈ [0, T ].

Proof. We start observing that, since the interactions are assumed number con-
servative, see (2.25), it results that:

d

dt

n∑
i=1

m∑
r=1

fir(t) = 0,

which implies:
‖f(t)‖X = ‖f(0)‖X, for any t ≥ 0. (2.26)

Therefore the solution of (2.22), if it exists, remains bounded in X for any time
t ≥ 0. The latter observation assures that the operator Qi [f ] (t) in the right hand
side of (2.22) is a closed map in X.
Let us now prove that Qi [f ] (t) is Lipschitz continuous in X, i.e. given ‖f‖X and
‖g‖X ≤M it follows that:

‖Qi [f ] (t)−Qi [g] (t)‖X ≤ L‖f − g‖X, (2.27)

with L a positive constant depending on M. Indeed, when (2.12) is used together
with (2.23) and (2.24), for the right hand side of (2.27) we can write:

n∑
i=1

m∑
r=1

∣∣∣∣∣
[

n∑
h,k=1

m∑
p,q=1

ηhk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq)fhp(t)fkq(t)

−fir
n∑
k=1

m∑
q=1

ηik [f ] (uruq)fkq(t)

]

−

[
n∑

h,k=1

m∑
p,q=1

ηhk [g] (up, uq)B
i
hk [g] (up → ur | up, uq)ghp(t)gkq(t)

−gir
n∑
k=1

m∑
q=1

ik [g] (uruq)gkq(t)

]∣∣∣∣∣
≤

n∑
i=1

m∑
r=1

{
n∑

h,k=1

m∑
p,q=1

∣∣ hk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq) [fhp(t)fkq(t)

−ghp(t)gkq(t)] + ghp(t)gkq(t)
[
ηhp [f ] (up, uq)B

i
hk [f ] (up → ur | up, uq)

−ηhp [g] (up, uq)B
i
hk [g] (up → ur | up, uq)

]∣∣
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n∑
k=1

m∑
q=1

|ηik [f ] (ur, uq) [fir(t)fkq(t)− gir(t)gkq(t)]

+gir(t)gkq(t) [ηik [f ] (ur, uq)− ηik [g] (ur, uq)]|

}

≤
n∑
i=1

m∑
r=1

{
n∑

h,k=1

m∑
p,q=1

∣∣ηhk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq)fhp(t) [fkq(t)

−gkq(t)]|+
n∑

h,k=1

m∑
p,q=1

∣∣ηhk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq)gkq(t) [fhp(t)

−ghp(t)]|
n∑

h,k=1

m∑
p,q=1

∣∣ghp(t)gkq(t)ηhp [f ] (up, uq)
[
Bi
hk [f ] (up → ur | up, uq)

−Bi
hk [g] (up → ur | up, uq)

]∣∣
n∑

h,k=1

m∑
p,q=1

∣∣ghp(t)gkq(t)Bi
hk [g] (up → ur | up, uq) [ηhk [f ] (up, uq)

−ηhk [g] (up, uq)]|

+
n∑
k=1

m∑
q=1

|ηik [f ] (ur, uq)fir(t) [fkq − gkq]|

+
n∑
k=1

m∑
q=1

|ηik [f ] (ur, uq)gkq(t) [fir − gir]|

+
n∑
k=1

m∑
q=1

|gir(t)gkq(t) [etaik [f ] (ur, uq)− ηik [g] (ur, uq)]|

}

≤ 2m2n3CM‖f − g‖X +m2n3M2CL1‖f − g‖X + n2m2M2L2‖f − g‖X

+2n2mCM‖f − g‖X + nmM2L2‖f − g‖X ≤ L‖f − g‖X,
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that proves (2.27). Then, there follows the existence of a unique solution f(t) in
X of (2.22) local in time. Next, the non negativity of the solution, in its domain
of existence, is easily obtained along the same lines of the proof reported in [28].
Observing that the components fir(t) of the solution satisfy the condition:

fir(t) ≥ 0 ∀i = 1, . . . , n and ∀j = 1, . . . ,m (2.28)

when f(0) ∈ X+. We set:

Ri(f, f)(t) =
n∑

h,k=1

m∑
p,q=1

ηhk [f ] (up, uq)B
i
hk [f ] (up → ur | up, uq)fhp(t)fkq(t),

Si(f)(t) =
n∑

h,k=1

m∑
p,q=1

ηik [f ] (ur, uq)fkq(t).

Equation (2.12) can be rewritten as

d

dt
fir(t) + fir(t)S

i(f)(t) = Ri(f, f)(t). (2.29)

Now we call

λi(t) =

∫ t

0

Si(f)(t
′
)dti.

If fir is solution of (2.29), it then follows

d

dt
(exp(λi(t))fir(t)) = exp(λi(t))R

i(f, f)(t)

which implies

fir(t) = exp(−λi(t))fir(0) +

∫ t

0

[
exp(λi(t

′
))Ri(f, f)(t

′
)
]
dt
′
. (2.30)

The relation (2.30) allows us to conclude that, given f(0) ∈ X+ and the positivity
of the integral function, the function fir(t) satisfies the condition of non-negativity
(2.28) in its domain of existence. Moreover, when (2.28) is used together with
(2.26), we obtain that the solution of (2.22) is uniformly bounded on any compact
time interval [0, T ], T > 0. This latter observation leads immediately to the
following result of global existence and uniqueness of the solution in X+

Theorem 2.2.3. Consider the I.V. problem (2.22) under the assumptions of the
theorem 2.2.2. Then the solution f(t) exists and is unique for any finite time t ≥ 0.
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2.2.4 Numerical simulations

The results of numerical simulations are shown in Figs.2.1, 2.2, 2.3, 2.4, where
initial configurations for the populations distribution among the different activity
classes (m = 6) are shown versus final and also intermediate Fig.2.1 configurations.
In our simulations we used realistic initial values of the parameters, coming from
the CIRI database [72] (Interuniversity Center Flu Research).

In Figures 2.1 - 2.4 we represent the different populations from top to bottom, re-
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Figure 2.1: Initial (left) and intermediate (right) configurations for the populations

distribution among the different activity classes. Here the parameters are fixed as

α1 = 0.9, α2 = 2.5, α3 = 0.5, α4 = 0.7, γ = 0.94, δ = 0.9, χ = 0.9, β = 0.23.

porting on the left the initial values and on the right the final (asymptotic) values
or intermediate values. The αj parameters concerning the encounter rates (2.13)
- (2.21) are fixed as α1 = 0.9, α2 = 2.5, α3 = 0.5, α4 = 0.7. Moreover, in Figures
2.1, 2.2, 2.3, we keep fixed the intensity of vaccine reaction γ = 0.94, the infectivity
χ = 0.9 and the doctors ability δ = 0.9; we wish to observe how the evolution of
the system changes by changing the risk perception parameter β.
In Fig.2.1,2.2 we put β = 0.23. The initial distribution for doctors, susceptible
individuals and infective individuals are chosen to be uniform. In Fig.2.1 we look
at the configuration taken at an intermediate time, while in Fig.2.2 we look at the
configuration taken at the final (asymptotic) time. In Fig.2.1 we can follow the
evolution of the epidemics, and see how the doctors progressively migrate to the
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Figure 2.2: Initial (left) and asymptotic (right) configurations for the populations

distribution among the different activity classes. Here the parameters are fixed as

α1 = 0.9, α2 = 2.5, α3 = 0.5, α4 = 0.7, γ = 0.94, δ = 0.9, χ = 0.9, β = 0.23.
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Figure 2.3: Initial (left) and asymptotic (right) configurations for the populations

distribution among the different activity classes. Here the parameters are fixed as

α1 = 0.9, α2 = 2.5, α3 = 0.5, α4 = 0.7, γ = 0.94, δ = 0.9, χ = 0.9, β = 0.34.
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Figure 2.4: Initial (left) and asymptotic (right) configurations for the populations

distribution among the different activity classes. Here the parameters are fixed as

α1 = 0.9, α2 = 2.5, α3 = 0.5, α4 = 0.7, γ = 0.94, δ = 0.9, χ = 0.1, β = 0.25.

last class, while the susceptible individuals became part infected and part suscepti-
ble to the last stage. Also, the infected people start to migrate toward the removed
population. In Fig.2.2 as expected, all the doctors migrate eventually in the last
class. They learn from experience by treating many different cases and become
expert both in prevention and in the handling of the epidemics. When we look
at the second population, we see that there are no susceptible individuals in the
corresponding final states. The same happens with the individuals affected by the
disease. On the other hand, all the individuals of the two populations, susceptible
+ infective, make a migration in the last class of the removed population, which
constitutes their final (asymptotic) state. In other words, the risk perception in
this case is not big enough to prevent susceptible individuals from exposing them-
selves to the infection. It appears that all of them contract the disease, and then,
as time goes on they end up in the removed population.
The situation is instead different in Fig.2.3 where the risk perception parameter β
is higher (β = 0.34). The first population (doctors) has the same behavior as in
Fig.2.2. Also the third population (infected individuals) has the same behavior as
in Fig.2.2: all the individuals eventually end up in the last class of the removed
population. More interesting is the evolution of the second population: looking
carefully at the final values for the different classes of the susceptible population,
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it appears that there are two migration phenomena. First of all, there are indi-
viduals with a low level of susceptibility which get immunized (vaccinated) and
migrate into the removed population; then there are those who migrate to a dif-
ferent class (higher level of susceptibility) and either stay there or contract the
disease and then, as time goes on, end up in the removed population. In our last
figure we take now the risk perception at a lower level, β = 0.25, with a low level
of infectivity χ = 0.1 and a high reaction to the vaccine γ = 0.94. We start with
uniform initial distribution for the different populations. When we look at the final
(asymptotic) configuration we find a situation which is almost identical to the one
corresponding to high risk perception β = 0.34, with high infectivity χ = 0.9 and
the same reaction to the vaccine γ = 0.94, shown in Fig.2.3. In other words, from
the comparison of Fig.2.3 and Fig.2.4, it appears that a variation in χ (infectivity)
of order 8 · 10−1 has the same effect as a variation in β (risk perception) of order
9 · 10−2. This implies that the evolution of the system toward the asymptotic con-
figuration is much more influenced by the risk perception than by the infectivity
of the disease.
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2.3 Influence of drivers ability in a discrete ve-

hicular traffic model

Traffic flow problems have been the subject of several investigations in the past
due to their relevance in everyday-life applications [11, 50, 54]. From the math-
ematical point of view, traffic flow phenomena can be modeled at three different
scales: microscopic [49], macroscopic [5, 26] and kinetic [11, 27, 42]. The micro-
scopic description refers to vehicles individually identified and leads to system of
ODEs, while continuum mechanics assumptions lead to macroscopic models stated
in terms of PDEs corresponding to fluid dynamic equations [59, 68]. The approach
offered by the kinetic theory, developed after the pioneer contribution by Prigogine
and Herman [65], uses Boltzmann and/or Vlasov-type equations to model the com-
plex system under consideration. The kinetic approach is indeed suitable for an
aggregate representation of the distribution of vehicles, not necessarily focused on
single car, while still allowing for a detailed characterization of the microscopic
vehicle-to-vehicle dynamics.
Classically, in the kinetic representation of vehicular traffic along one-way road, the
spatial position and speed of vehicles are assumed to be continuously distributed
over the spatial and speed domains. However, this does not reflect correctly the
physical reality of vehicular flow. Indeed, the number of vehicles along a road is
normally not large enough for the continuity of the distribution function over the
microscopic states to be an acceptable approximation (like in the classical kinetic
theory of gases). Vehicles do not span continuously the whole set of admissible
speeds and the actual distribution of vehicles in space, as well as that of their
speeds, is strongly granular. Recently, discrete velocity models have been intro-
duced [13, 27, 42], relaxing the hypothesis that the speed distribution is continuous,
by introducing a lattice of discrete speeds.
In the present paper we make a step further, taking into account the activity vari-
able u. This new variable is a measure of the driver ability to adapt to the traffic
conditions and to elaborate his own strategy (in order to avoid collisions with other
vehicles). Following the ideas of Daganzo [30] we define a discrete set of activity
classes to differentiate the behavior of each driver.
In the next Subsection the mathematical framework of the KTAP theory suitable
to describe a traffic model is introduced; the nonlinear interactions characterizing
the system are discussed in Subsection 2.3.2, where the transition probability den-
sities is also derived. Subsection 2.3.3 is dedicated to the qualitative analysis of
the model; finally some numerical examples illustrating the behavior of our model
are presented in Subsection 2.3.4. Our results show that the ability of the drivers
influences the behavior both of the average velocity and of the flux as functions
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of the density of the vehicles. Moreover, it influences also the asymptotic con-
figuration of the velocity distribution obtained for different values of the density.
Finally, we underline that our model not only reproduces qualitatively the traffic
phases already observed in previous studies, but also allows to get quantitative
agreement with experimental evidence. Indeed, in the case of intermediate road
conditions, we obtain an estimate of the critical density ρc corresponding to the
transition from free to congested traffic flow, coincident with the one measured on
the Venezia-Mestre highway [15].

2.3.1 Mathematical representation and structures

Let us consider a large system of interacting entities, called active particles, each
active particle is the pair vehicle-driver which has its own driving ability, called
activity.
Starting from the discrete kinetic model introduced by Delitala -Tosin [38], the hy-
pothesis of granular traffic allow us to discretize the velocity variable v introducing
in Dv = [0, 1] a grid Iv = {vi}ni=1 of the form

0 = v1 < v2 < · · · < vn−1 < vn = vmax ,

where vmax is the maximum speed allowed along the road.
The activity is represented by the discrete variable u ∈ Du = [0, 1] and it is
heterogeneously distributed over each velocity class vi. Let us define in Du a grid
of activities Iu = {ur}mr=1 of the form

u1 < u2 < · · · < um−1 < um ,

where u1 and um represent respectively the class of incapable and experienced
drivers. The physical system is then described by the distribution functions

fir = fi(t, ur) : R+ → R+,

∀i = 1, . . . , n; r = 1, . . . ,m

that, at time t, denote the number of vehicles which travel with velocity vi and
possess activity ur. Moreover, we denote by Nir the total number of vehicles with
speed vi and activity ur, while the total number Ni of vehicles in the velocity class
vi is

Ni =
m∑
r=1

Nir.

Similarly, the total number Nr of cars in the activity class ur is

Nr =
n∑
i=1

Nir.
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According to this mathematical structure we can define the following macroscopic
quantities:

• the vehicles density

ρ(t) =
n∑
i=1

m∑
r=1

fir(t),

• the vehicles flux

q(t) =
n∑
i=1

m∑
r=1

vifir(t),

• the average velocity

v(t) =
q(t)

ρ(t)
=

∑n
i=1

∑m
r=1 vifir(t)∑n

i=1

∑m
r=1 fir(t)

,

• the velocity variance

∆(t) =
1

ρ(t)

n∑
i=1

m∑
r=1

(vi − v(t))2fir(t).

2.3.2 Modeling interactions

The relevant interactions are now considered at microscopic level: they involve
three types of particles.

• Test particle whose state is ideally targeted by a hypothetical observer;

• Candidate particle, with velocity vh and activity up. It is likely to change its
current state to that of the test particle as a consequence of an interaction;

• Field particle, with velocity vk and activity uq. It is a generic particle of the
system interacting with the candidate particle.

The test particle loses its state after the interaction.
The encounters among the vehicles are described in an essentially stochastic way,
introducing the probability that a velocity transition occurs after an interaction
between the candidate vehicle and the field vehicle located in front of it. We point
out that such interactions are nonlinearly additive. Indeed, the outcome depends
not only on the state of the two interacting vehicles, but also, as we will see in the
following, on the state of all the other vehicles in the surrounding domain. Vehicles
do not interact mechanically, they simply see each other and adjust their velocity
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according to the behavioral rules coded in the transition probability density. The
following evolution equation yield the overall description of the dynamics

d

dt
fir(t) = Qir [f ] (t)

=
n∑

h,k=1

m∑
p,q=1

[
ηhk [f ] (up, uq)B

i
hk [f ] (up → ur | up, uq)fhp(t)fkq(t)

]
− fir(t)

n∑
k=1

m∑
q=1

ηik [f ] (ur, uq)fkq(t) , (2.31)

∀i = 1, . . . , n; r = 1, . . . ,m ,

where f is the set of all the probability distributions and

• ηhk [f ] (up, uq) is the encounter rate, which gives the number of interactions
between a candidate vehicle with velocity vh and activity up and a field one
with velocity vk and activity uq;

• Bi
hk [f ] (up → ur | up, uq) = Bi

hk(r) is the transition probability density that
a candidate vehicle adjusts its velocity to vi after an interaction with a field
vehicle.
Accordingly, it must fulfill the following requirements:

Bi
hk[f ] ≥ 0,

n∑
i=1

m∑
r=1

Bi
hk[f ] = 1,

∀h, k = 1, . . . , n ; ∀p, q = 1, . . . ,m , for all f .

The transition probability density

The transition probability density Bi
hk(r) models the microscopic interactions

among the vehicles. Here we not only consider the probability that a candidate
particle changes its velocity after an interaction [38], but also that it changes its
driving ability (activity). In the modeling of microscopic interactions important
roles are played by the density ρ, intended as an indicator of the macroscopic local
conditions of the traffic, and by the road conditions. This latter aspect is incor-
porated in the transition probability density via the parameter α ∈ [0, 1], whose
lowest and highest values are related to bad and good road conditions respectively.
Technically, the functional dependence of ηhk on f is achieved via
ρ =

∑n
i=1

∑m
r=1 fir; therefore, in the following we explicitly write η[ρ] instead of

ηhk[f ]. In particular, we consider an encounter rate inversely proportional to the
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mean free space locally found along the road. Observing that ρ = 1 represents the
road capacity, we write

η [ρ] =
1

1− ρ
, with ρ ∈ [0, 1) ;

which implies that the local encounter rate increases as the density increases toward
its limit threshold fixed by the road capacity.
In our model, let us consider:

• equally spaced velocity grid Iv of the form

vi =
i− 1

n− 1
, i = 1, . . . , n;

• equally spaced activity grid Iu of the form

ur =
r

m
, r = 1, . . . ,m.

Three cases need to be dealt with, corresponding to candidate vehicles h traveling
more slowly, or at the same speed, or faster than fields vehicles k.
In all three cases the variation of velocity depends both on the quality of the road
α and on the density ρ. The relevant transition probability densities are shown
below:

Case I: vh < vk

If up < uq:

p 6= m



Bh
hk(r = p) = [1− α(1− ρ)] (1− |up − uq|)

Bh
hk(r = p+ 1) = [1− α(1− ρ)] |up − uq|

Bh+1
hk (r = p) = α(1− ρ)(1− |up − uq|)

Bh+1
hk (r = p+ 1) = α(1− ρ)|up − uq|

0, otherwise

p = m


Bh
hk(r = m) = 1− [α(1− ρ)]

Bh+1
hk (r = m) = α(1− ρ)

0, otherwise.

In the above case we see that when the distance between the activities |up − uq|
increases, then the candidate vehicle tends to increase its activity up → up+1. At
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the same time its velocity tends to increase vh → vh+1 as the road conditions
improve and as the density decreases.
In all other cases, the candidate vehicle tends to preserve its own velocity vh and
activity up.
If up ≥ uq:

p 6= 1



Bh
hk(r = p− 1) = [1− α(1− ρ)] |up − uq|

Bh
hk(r = p) = [1− α(1− ρ)] (1− |up − uq|)

Bh+1
hk (r = p− 1) = α(1− ρ)|up − uq|

Bh+1
hk (r = p) = α(1− ρ)(1− |up − uq|)

0, otherwise

p = 1


Bh
hk(r = m) = 1− [α(1− ρ)]

Bh+1
hk (r = m) = α(1− ρ)

0, otherwise.

In this case we observe the opposite behavior for what concerns the activity vari-
able: as the distance |up− uq| increases the activity of the candidate vehicle tends
to decrease up → up−1. We observe instead the same behavior as before for what
concerns the velocity: vh → vh+1 as α increases and ρ decreases. In the limiting
cases p = 1 and p = m the probability densities only depend on α and ρ.

Case II: vh = vk

If up < uq, h 6= 1, h 6= n:

p 6= m



Bh−1
hk (r = p) = αρ(1− |up − uq|)

Bh−1
hk (r = p+ 1) = αρ|up − uq|

Bh
hk(r = p) = (1− α)(1− |up − uq|)

Bh
hk(r = p+ 1) = (1− α)|up − uq|

Bh+1
hk (r = p) = α(1− ρ)(1− |up − uq|)

Bh+1
hk (r = p+ 1) = α(1− ρ)|up − uq|

0, otherwise

p = m


Bh−1
hk (r = m) = αρ

Bh
hk(r = m) = (1− α)

Bh+1
hk (r = m) = α(1− ρ)

0, otherwise.
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From the above table we can deduce that as the road conditions improve (α in-
creases) and the density decreases, the velocity of the candidate vehicle tends
to increase vh → vh+1. As for the activity change as before, when the distance
|up − uq| increases, the candidate vehicle tends to increase its activity up → up+1,
and viceversa.
Along the same lines is possible to discuss the tables corresponding to the limiting
cases h = 1 and h = n which are shown below.

h = 1 :

p 6= m



B1
11(r = p) = [1− α(1− ρ)] (1− |up − uq|)

B1
11(r = p+ 1) = [1− α(1− ρ)] |up − uq|

B2
11(r = p) = α(1− ρ)(1− |up − uq|)

B2
11(r = p+ 1) = α(1− ρ)|up − uq|

0, otherwise

p = m


B1

11(r = m) = 1− [α(1− ρ)]

B2
11(r = m) = α(1− ρ)

0, otherwise,

h = n :

p 6= m



Bn−1
nn (r = p) = αρ(1− |up − uq|)

Bn−1
nn (r = p+ 1) = αρ|up − uq|

Bn
nn(r = p) = (1− αρ)(1− |up − uq|)

Bn
nn(r = p+ 1) = (1− αρ)|up − uq|

0, otherwise

p = m


B1

11(r = m) = αρ

B2
11(r = m) = 1− αρ

0, otherwise.

In the limiting case p = m the probability densities only depend on α and ρ.
If up ≥ uq the probability densities Bi

hk(r) depend also on the activity of the field
vehicle:
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h 6= 1, h 6= n:

p 6= 1



Bh−1
hk (r = p− 1) = αρuq|up − uq|

Bh−1
hk (r = p) = αρuq(1− |up − uq|)

Bh
hk(r = p− 1) = (1− α)uq|up − uq|

Bh
hk(r = p) = (1− α)uq(1− |up − uq|)

Bh+1
hk (r = p− 1) = α(1− ρ)uq|up − uq|

Bh+1
hk (r = p) = α(1− ρ)uq(1− |up − uq|)

0, otherwise

p = 1


Bh−1
hk (r = 1) = αρuq

Bh
hk(r = 1) = 1− αuq

Bh+1
hk (r = 1) = α(1− ρ)uq

0, otherwise.

h = 1 :

p 6= 1



B1
11(r = p− 1) = [1− α(1− ρ)]uq|up − uq|

B1
11(r = p) = [1− α(1− ρ)]uq(1− |up − uq|)

B2
11(r = p− 1) = α(1− ρ)uq|up − uq|

B2
11(r = p) = α(1− ρ)uq(1− |up − uq|)

0, otherwise

p = 1


B1

11(r = 1) = 1− [α(1− ρ)uq]

B2
11(r = 1) = α(1− ρ)uq

0, otherwise,

h = n :

p 6= 1



Bn−1
nn (r = p− 1) = αρuq|up − uq|

Bn−1
nn (r = p) = αρuq(1− |up − uq|)

Bn
nn(r = p− 1) = (1− αρ)uq|up − uq|

Bn
nn(r = p) = (1− αρ)uq(1− |up − uq|)

0, otherwise

p = 1


B1

11(r = 1) = αρuq

B2
11(r = 1) = 1− αρuq

0, otherwise.
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The above table shows that as the distance |up − uq| increases, the activity of the
candidate vehicle tends to decrease up → up−1. For what concerns the velocity,
instead, as α increases and ρ decreases, vh → vh+1. In the limiting case p = 1 the
probability densities not only depend on α and ρ, but also on the activity of the
field vehicle uq.

Case III: vh > vk

If up < uq:

p 6= m



Bh
hk(r = p) = α(1− ρ)(1− |up − uq|)

Bh
hk(r = p+ 1) = α(1− ρ)|up − uq|

Bk
hk(r = p) = [1− α(1− ρ)] (1− |up − uq|)

Bk
hk(r = p+ 1) = [1− α(1− ρ)] |up − uq|

0, otherwise

p = m


Bh
hk(r = m) = α(1− ρ)

Bk
hk(r = m) = 1− [α(1− ρ)]

0, otherwise.

If up ≥ uq the variation of velocity depends also on the activity of the field vehicle:

p 6= 1



Bh
hk(r = p− 1) = α(1− ρ)uq|up − uq|

Bh
hk(r = p) = α(1− ρ)uq(1− |up − uq|)

Bk
hk(r = p− 1) = [1− α(1− ρ)uq] |up − uq|

Bk
hk(r = p) = [1− α(1− ρ)uq] (1− |up − uq|)

0, otherwise

p = 1


Bh
hk(r = 1) = α(1− ρ)uq

Bk
hk(r = 1) = 1− [α(1− ρ)uq]

0, otherwise.

The above transition probability densities show the same behavior as in Case
I for what concerns the activity change. Indeed when the distance between the
activities |up−uq| increases, then the candidate vehicle tends to increase its activity
up → up+1, and viceversa. As for the velocity change instead, the candidate vehicle
tends to uniform its velocity to vk as the road conditions get worse (α decreases)
and the density ρ increases. In the limiting cases p = 1 and p = m we refer to
Case II.
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2.3.3 Qualitative analysis

In this Subsection the initial value (I.V.) problem for Eq.(2.31) is considered. It
is shown that the solution of such I.V. problem exists is unique and is a positive,
regular function of time, of class C1([0, T ]).
We start with

d

dt
fir(t) = Qir [f ] (t), i = 1, . . . , n; r = 1, . . . ,m,

fir(0) = fi(0, ur),
(2.32)

where

d

dt
fir(t)= Qir [f ] (t) = η(ρ)

[
n∑

h,k=1

m∑
p,q=1

(Bi
hk [f ] (up → ur | up, uq)

×fhp(t)fkq(t)− fir(t)
4∑

k=1

m∑
q=1

fkq(t)

]
. (2.33)

We introduce the space:

X =
{
fi : [0, T ]→ R, fi ∈ C1([0, T ]), i = 1, . . . , n, T > 0

}
equipped with the norm:

‖fi‖X =
m∑
r=1

|fir(t)|. (2.34)

Moreover, we introduce the space X = Xn equipped with the norm:

‖f‖X =
n∑
i=1

‖fi(t)‖X , (2.35)

and set:
X+ = {f ∈ X | fi ≥ 0, i = 1, . . . , n} .

The following theorem states a result of local existence and uniqueness for the
solution of the I.V. problem (2.32).

Theorem 2.3.1. Consider the I.V. problem (2.32) with
f0 = {f1(0, u), . . . , fn(0, u)} ∈ X+. Assume that

η(ρ) ≥ 0, Bi
hk(r) ≥ 0,

n∑
i=1

m∑
r=1

Bi
hk [f ] (up → ur | up, uq) = 1 ∀f . (2.36)

holds, together with the following hypotheses:
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• The encounter rate η(ρ) satisfies the following condition:

η(ρ) ≤ C,

∀f , g ∈ X the probability Bi
hk(r) and the encounter rate ηpqhk are Lipschitz

continuous in X, that is, ∀ p, q ∈ {1, . . . ,m} it results
n∑

h,k,i=1

m∑
r=1

| Bi
hk [f ] (up → ur|up, uq)−Bi

hk [g] (up → ur|up, uq) |

≤ L1‖f − g‖X,
with L1 a positive constant.

Then, there exist T > 0 and a unique solution f(t) in X for the I.V. problem (2.32)
on the time interval [0, T ]. Moreover f(t) ∈ X+, t ∈ [0, T ].

Proof. We start observing that, since the interactions are assumed number con-
servative, see (2.36), it results that:

d

dt

n∑
i=1

m∑
r=1

fir(t) = 0 ,

which implies:
‖f(t)‖X = ‖f(0)‖X, for any t ≥ 0. (2.37)

Therefore the solution of (2.32), if it exists, remains bounded in X for any time
t ≥ 0. The latter observation assures that the operator Qi [f ] (t) in the right hand
side of (2.32) is a closed map in X.
Let us now prove that Qi [f ] (t) is Lipschitz continuous in X, i.e. given ‖f‖X and
‖g‖X ≤M it follows that:

‖Qi [f ] (t)−Qi [g] (t)‖X ≤ L‖f − g‖X (2.38)

with L a positive constant depending on M. Indeed, when (2.33) is used together
with (2.34) and (2.35), for the right hand side of (2.38) we can write:

η(ρ)

{
n∑
i=1

m∑
r=1

∣∣∣∣∣
[

n∑
h,k=1

m∑
p,q=1

Bi
hk [f ] (up → ur | up, uq)fhp(t)fkq(t)

−fir
n∑
k=1

m∑
q=1

fkq(t)

]

−

[
n∑

h,k=1

m∑
p,q=1

Bi
hk [g] (up → ur | up, uq)ghp(t)gkq(t)− gir

n∑
k=1

m∑
q=1

gkq(t)

]∣∣∣∣∣
}
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≤ η(ρ)

{
n∑
i=1

m∑
r=1

{
n∑

h,k=1

m∑
p,q=1

∣∣Bi
hk [f ] (up → ur | up, uq) [fhp(t)fkq(t)

−ghp(t)gkq(t)] + ghp(t)gkq(t)
[
Bi
hk [f ] (up → ur | up, uq)

−Bi
hk [g] (up → ur | up, uq)

]∣∣+
n∑
k=1

m∑
q=1

|[fir(t)fkq(t)− gir(t)gkq(t)]|

}}

≤ η(ρ)

{
n∑
i=1

m∑
r=1

{
n∑

h,k=1

m∑
p,q=1

∣∣Bi
hk [f ] (up → ur | up, uq)fhp(t) [fkq(t)− gkq(t)]

∣∣
+

n∑
h,k=1

m∑
p,q=1

∣∣Bi
hk [f ] (up → ur | up, uq)gkq(t) [fhp(t)− ghp(t)]

∣∣
+

n∑
h,k=1

m∑
p,q=1

∣∣ghp(t)gkq(t) [Bi
hk [f ] (up → ur | up, uq)

−Bi
hk [g] (up → ur | up, uq)

]∣∣
+

n∑
k=1

m∑
q=1

|fir(t) [fkq − gkq]|+
n∑
k=1

m∑
q=1

|gkq(t) [fir − gir]|

}}

≤ 2m3n3CM‖f − g‖X +m2M2CL1‖f − g‖X + 2n2m2CM‖f − g‖X,

≤ L‖f − g‖X

that proves (2.38). Then, the existence of a unique solution f(t) in X, local in time,
to (2.32) follows. Non negativity of such a solution is easily obtained observing
that the components fir(t) of the solution satisfy the condition:

fir ≥ 0 ∀i = 1, . . . , n and ∀r = 1, . . . ,m (2.39)

when f(0) ∈ X+. We set:

Ri(f, f)(t) = η(ρ)
n∑

h,k=1

m∑
p,q=1

Bi
hk [f ] (up → ur | up, uq)fhp(t)fkq(t),

S(f)(t) = η(ρ)
n∑

h,k=1

m∑
p,q=1

fkq(t).
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Equation (2.33) can be rewritten as

d

dt
fir(t) + fir(t)S(f)(t) = Ri(f, f)(t). (2.40)

Now we call

λ(t) =

∫ t

0

S(f)(t
′
)dt

′
.

If fir is solution of (2.40), it then follows

d

dt
(exp(λ(t))fir(t)) = exp(λ(t))Ri(f, f)(t)

which implies

fir(t) = exp(−λ(t))fir(0) +

∫ t

0

[
exp(λ(t

′
))Ri(f, f)(t

′
)
]
dt
′
. (2.41)

The relation (2.41) allows us to conclude that, given f(0) ∈ X+ and the positivity
of the integral function, the function fir(t) satisfies the condition of non-negativity
(2.39) in its domain of existence. Moreover, when (2.39) is used together with
(2.37), we obtain that the solution to (2.32) is uniformly bounded on any compact
time interval [0, T ], T > 0. This latter observation leads immediately to the
following result of global existence and uniqueness of the solution in X+

Theorem 2.3.2. Consider the I.V. problem (2.32) under the assumptions of the
theorem 2.3.1. Then the solution f(t) exists and is unique for any finite time t ≥ 0.

2.3.4 Simulations

Numerical simulations of Eq.(2.31) have been carried out in order to analyze
the behavior of the average velocity v, the flux q and the velocity variance ∆
as functions of the density ρ. Time integration has been performed via a stan-
dard fourth-order Runge-Kutta scheme, using a uniform velocity grid Iv = {vi}5i=1

where v1 = 0, . . . , v5 = 1 and a uniform activity grid Iu = {ur}5r=1 where
u1 = 1/5, . . . , u5 = 1.
Figs.2.5, 2.6 show the diagrams of the average velocity, of the flux and the ve-
locity variance as functions of the density, for three different values of the road
conditions. In particular Fig.2.5 shows the behavior of driver-vehicle pairs with
average driving ability, Fig.2.6 shows instead the behavior of pairs with maxi-
mum driving ability. Considering in particular the cases of intermediate and good
road conditions (α = 0.7 and α = 1, respectively) Fig.2.5 and Fig.2.6 indicate
that for low density the flux q is almost linearly increasing, in agreement with
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Figure 2.5: Diagrams for the average velocity (left), the macroscopic flux (right)

and the velocity variance (bottom) as functions of the macroscopic density, ob-

tained under various road conditions α = 0.3, α = 0.7, α = 1 respectively. In

this case the activity of the particles is uniformly distributed over each class.
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Figure 2.6: Diagrams for the average velocity (left), the macroscopic flux (right)

and the velocity variance (bottom) as functions of the macroscopic density, ob-

tained under various road conditions α = 0.3, α = 0.7, α = 1 respectively. In

this case the activity of the all particles is u5 = 1.
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experimental observations reported by Kerner [54] under free flow conditions. The
subsequent flux behavior is then nonlinearly decreasing to zero, which suggests a
critical change in the traffic regime for high density. Following [55], we define the
congested traffic regime as the one characterized by average vehicle velocity lower
then the minimum possible average velocity corresponding to free flow. In this
respect the behaviors shown in Fig.2.5 and Fig.2.6 describe the well known phase
transition from free to congested traffic flow, taking place once the vehicle density
increases exceeding a critical value.
Such transition was mathematically studied in [26]. The ability of the model to
reproduce qualitatively the observed traffic phases, is confirmed when we note that
the maximum of the velocity variance ∆ is located in correspondence of a density
value very close to the critical one for which the change in the flux behavior is
observed. The average velocity v in turn, for low densities takes values very close
to the maximum allowed one, then drastically decreases approaching zero once the
density exceeds the critical threshold value.
A comparison between Fig.2.5 and Fig.2.6 indicates that the decrease of the av-
erage velocity as the density increases is much faster for average driving ability
(Fig.2.5) than for maximum ability (Fig.2.6). Similar considerations of course,
apply to the comparison between the corresponding two diagrams of the flux as
function of the density. Moreover, looking at the data reported in Fig.2.6 we can
obtain an estimate of the critical density in the range ρc ∈ [0.15, 0.2] for the case
of intermediate road conditions (α = 0.7) and maximum class of activity (u5 = 1).
This estimate is in agreement with experimental measurements of traffic flow made
on the Venezia-Mestre highway [15].
In Fig.2.7 we report the initial and asymptotic configurations of the vehicle distri-
bution in the velocity classes for three different values of the density. We observe
that in the three cases taken into account, the initial distribution of the vehicles
over the classes of velocity is uniform, but asymptotically the concentration of the
vehicles Ni is different for low, intermediate and hight density. In particular, if
ρ = 0.6 (the density is higher than the critical value ρc = 0.28) the highest con-
centration of the vehicles is in the lowest velocity classes (N1 > N2 > N3). If the
density is close to the critical value (ρ = 0.29) the concentration of the vehicles is
in the central class (normal distribution type); if ρ = 0.2 the vehicles end up in
the highest velocity classes (N5 > N4 > N3).
To explain the role of the activity, Fig.2.8 shows the initial and asymptotic con-
figurations of the distribution of the vehicles in the velocity/activity classes for
ρ = 0.6 in the case of a uniform initial distribution. In the asymptotic configura-
tions the vehicles are all in the intermediate activity class and this means that the
drivers have the ability to adapt to the congested traffic conditions.
Fig.2.9 shows initial and asymptotic configurations of the vehicle activity, respec-
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Figure 2.7: The asymptotic configuration of the velocity is shown for three possible

values of the density (from bottom to top: ρ = 0.2, ρ = 0.29, ρ = 0.6) and α = 1.

0
1/4

1/2
3/4

1

1/5
2/5

3/5
4/5

1

0

0.2

0.4

v
i

u
r

N
ir

0
1/4

1/2
3/4

1

1/5
2/5

3/5
4/5

1

0

0.2

0.4

v
i

u
r

N
ir

Figure 2.8: On the left the initial configuration and on the right the asymptotic

configuration of the vehicles in the velocity/activity class, is shown for density

ρ = 0.6 and good road conditions α = 1.



50 CHAPTER 2. COMPLEX SYSTEMS

1/5 2/5 3/5 4/5 1
0

0.5

Activity − initial configuration
N

r

u
r

1/5 2/5 3/5 4/5 1
0

0.5

N
r

u
r

1/5 2/5 3/5 4/5 1
0

0.5

N
r

u
r

1/5 2/5 3/5 4/5 1
0

0.5

Activity − asymptotic configuration

N
r

u
r

1/5 2/5 3/5 4/5 1
0

0.5

N
r

u
r

1/5 2/5 3/5 4/5 1
0

0.5

N
r

u
r

Figure 2.9: The asymptotic configuration of the activity is shown for the value of

the density ρ = 0.6 and α = 1.

tively. In this case we consider only one value of the density (ρ = 0.6) because the
activity doesn’t depend on ρ. The results show that asymptotically, the driving
abilities tend to uniform to each other, converging in a single intermediate final
class, in the case of a uniform initial distribution.



Chapter 3

Free boundary value problems

Initial Boundary Value Problems (IBV) for nonlinear partial differential equations
(PDEs) have been the object of several studies in the past. Indeed such problems
have great relevance both from a mathematical point of view and from the point
of view of applications.
In the following, two main classes of nonlinear PDEs are identified, according to
their integrability properties.
The first class is the class of S-integrable equations. Such equations are integrable
via the spectral method also called inverse scattering method [3]. Important non-
linear models belonging to this class are:

• the nonlinear Schrödinger equation

iψt + ψxx |ψ|2 ψ = 0, ψ ≡ ψ (x, t),

whose principal application is the propagation of light in nonlinear optical fibers;

• the Korteweg-de Vries equation

ψt + 6ψψx + ψxxx = 0, ψ ≡ ψ (x, t),

originally used to describe the propagation of shallow water waves and

• the Sine-Gordon equation

ψtt − ψxx + sinψ = 0, ψ ≡ ψ (x, t),

which has several applications in solid state physics.
The second class is the class of C-integrable equations. Such equations are lin-
earizable through an appropriate change of variables. Important examples in this
class are:

51
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• the Burgers equation

ψt + ψψx = νψxx ψ ≡ ψ (x, t),

which is a fundamental model for turbulence phenomena and nonlinear dis-
sipative phenomena;

• the nonlinear diffusion-convection equation

ψt = ψ2 (ψxx − ψx) ψ ≡ ψ (x, t), (3.1)

suitable to investigate the flow of two immiscible fluids through porous media. It is
worth noticing that, according to [22], S-integrability is a weaker requirement than
C-integrability i.e. C-integrable equations can be considered to be S-integrable
equation but not viceversa. For example, the Nonlinear Schrödinger equation in
1 + 1 dimensions is S-integrable but not C-integrable.
It is the object of this chapter to discuss Free Boundary Problems (FBP) for the
nonlinear diffusion convection equation (3.1).
FBPs arise in several physical and biological applications. Indeed they occur in
different contexts, e.g. surface dynamics in water waves, the internal evolution
of the boundary between immiscible liquids, the motion of the boundary between
two phases (Stefan problems) [41, 47]. In general, flow through porous media is an
important source of FBP, frequently in connection with the filtration phenomena
that occur in nature [29].
From the mathematical point of view, FBP are boundary value problems defined
over a domain with a moving boundary [34, 35, 43]. The motion of such a boundary
is unknown and has to be determined as part of the solution [45, 66].
The underlying difficulty in most of the mentioned FBP is that they require one
to solve a nonlinear system. In some cases, for nonlinear evolution equations of
diffusive type, it was possible to prove existence and uniqueness of solutions (at
least for short time) and also to obtain some special explicit solutions such as an
exact travelling wave in the case of the Burgers equation [1].
In the following Section we review the result obtained by Burini and De Lillo in
[17] where an inverse IBV problem on a moving boundary for (3.1) is studied.
Section 3.2 is instead devoted to the presentation of new results [19] (obtained by
Burini, De Lillo and myself). We consider a model of drug propagation in the
arterial tissues after the drug has been released by a stent expansion. Such model
is described through a FBP on a finite interval for equation (3.1).

3.1 An inverse problem

Let us consider an IBV problem associated with the nonlinear diffusion-convection
equation (3.1), over the domain −∞ < x < s(t), t > 0, where s(t) is known
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(s(0) = b > 0), with the initial datum

ϑ(x, 0) = ϑ0(x) > 0, −∞ < x < b

ϑ0(b) = β2 > 0

and boundary conditions:

ϑ(s(t), t) = f(t), t > 0, f(0) = β2 (3.2a)

ϑ(−∞, t) = β1, ϑx(−∞, t) = 0, t ≥ 0. (3.2b)

In the present case we assume β1 and β2 to be positive constants with β1 > β2
and the initial datum ϑ0(x) to be a regular, bounded function of its argument
(β2 ≤ |ϑ0(x)| ≤ β1). The moving boundary s(t) is assumed to be a continuously
differentiable function of time, with ṡ(t) bounded (|ṡ(t)| ≤ α , α a positive con-
stant). In (3.2a), f(t) is the Dirichlet datum defined as a given, integrable function
of time.
The aim is to determine the unknown Neumann datum at the boundary, g (t):

ϑx(s(t), t) = g(t), t ≥ 0. (3.2c)

The Neumann datum has to be reconstructed from the knowledge of the Dirichlet
datum f (t) (Dirichlet-to-Neumann map).
This problem is a typical inverse moving boundary problem where the unknown
boundary datum g(t) has to be determined in order to be suitable with the motion
of the boundary s(t).
We start our analysis by introducing a change of the independent variable called
hodograph transform

ϑ(x, t) = ψ(z, t), z ≡ z(x, t) (3.3a)

and

zx =
1

ϑ
, zt = ϑ− ϑx. (3.3b)

Under this change of variables, the equation (3.1) becomes:

ψt = ψzz − 2ψzψ −∞ < z < z(t), (3.4)

which is the Burgers equation for the dependent variable ψ (z, t) characterized by
the initial datum

ψ(z, 0) = ψ(z0) = ϑ0(x) (3.5a)

where

z0 ≡ z0(x) =

∫ x

0

1

ϑ0(x′)
dx′. (3.5b)
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In the virtue of (3.3b) the moving boundary z(t), a-priori unknown, takes the form

z(t) ≡ z(s(t), t) =

∫ t

0

[ϑ(s(τ), τ)− ϑx(s(τ), τ) +
ṡ(τ)

ϑ(s(τ), τ)
]dτ

which, when (3.2a) and (3.2c) are used, becomes:

z(t) =

∫ t

0

[f(τ)− g(τ) +
ṡ(τ)

ϑ(s(τ), τ)
]dτ. (3.6)

Moreover the boundary conditions (3.2a) and (3.2b) take the form:

ψ(z(t), t) = ϑ(s(t), t) = f(t), (3.7a)

ψz(z(t), t) = f(t)g(t), (3.7b)

ψ(−∞, t) = β1, ψz(−∞, t) = 0. (3.7c)

The above relations (3.5a),(3.5b) and (3.7a)-(3.7c) imply that the the problem of
constructing the Dirichlet-to-Neumann map for the nonlinear diffusion-convection
equation (3.1) has now been mapped into a Neumann problem for the Burgers
equation (3.4) on a moving boundary z(t). The motion of the boundary z (t) is
unknown and has to be determined as part of the solution.
The approach to solve this problem is the same used in [1] to determine the solution
of a Burgers-Stefan problem.
The first step is to introduce the generalized Hopf-Cole transformation

ψ(z, t) =
ϕ(z, t)(

C(t)−
∫ z
z(t)

ϕ(z′, t) dz′
) , (3.8a)

ϕ(z, t) = C(t)ψ(z, t)exp

[
−
∫ z

z(t)

ψ(z′, t) dz′
]

(3.8b)

with

C(0) = 1. (3.8c)

Under the above transformation the Burgers equation (3.4) is mapped into the
linear heat equation

ϕt = ϕzz, (3.9)

with the compatibility condition

Ċ(t) = −ϕz(z(t), t). (3.10)
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Moreover, from (3.5a) and (3.7a),(3.7b) equation (3.9) is characterized by the
initial datum

ϕ(z, 0) = ψ(z0)exp

[
−
∫ z

0

ψ(z′, 0) dz′
]
≡ ϕ0(z), (3.11)

and by the boundary data

ϕz(z(t), t) = C(t)
[
f(t)g(t)− f 2(t)

]
≡ h(t), (3.12a)

ϕ(z(t), t) = C(t)f(t). (3.12b)

The second step is to solve the Neumann problem for equation (3.9) on the domain
−∞ < z < z(t), with initial datum (3.11) and Neumann boundary datum (3.12a).
Through the Laplace Transform

L(ϕ(z, t)) ≡ ϕ̂(z, s) =

∫ ∞
0

e−stϕ(z, t) dt,

we obtain from (3.9) and (3.11) the equation

ϕ̂zz − sϕ̂ = −ϕ0(z). (3.13)

The boundary condition (3.12a) then becomes

L(ϕz(z(t), t)) =

∫ ∞
0

e−sth(t) dt = ϕ̂z(z(t), s) ≡ H(s). (3.14)

If (3.13) is solved with the boundary condition (3.14) one has

ϕ̂(z, s) =
H(s)√
s
e−
√
s(z−z) +

1

2
√
s
e−
√
s(z−z)

∫ z(0)

−∞
e−
√
s(z−z′)ϕ0(z

′ dz′

− 1

2
√
s

[∫ z

−∞
e−
√
s(z−z′)ϕ0(z

′) dz′ +

∫ z(0)

z

e−
√
s(z′−z)ϕ0(z

′) dz′

]

which, through the inverse Laplace transform, gives the solution of the linear
equation (3.9) as

ϕ(z, t) =
1

2
√
πt

∫ 0

−∞
e−

(z−z′)2
4t ϕ0(z

′) dz′

− 1

2
√
πt

∫ 0

−∞
e−

(2z−(z+z′))2
4t ϕ0(z

′) dz′ +
1√
π

∫ t

0

e
− (z−z)2

4(t−t′)

√
t− t′

h(t′) dt′. (3.15)
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From Eq.(3.15) we can note that ϕ (z, t) is known once the Neumann datum h(t)
of the Burgers equation, is known.
We then introduce the fundamental Kernel of the heat equation

K(z − z′, t− t′) =
1

2
√
π

1√
t− t′

e
− (z−z′)2

4(t−t′) . (3.16)

By taking the z-derivative of both sides in (3.15) and evaluating it as z → z(t),
the result is

h(t) = −2ϕ0(0) e−
z2

4t

√
πt

+ 4

∫ 0

−∞
K(z(t)− z′, t)ϕ′0(z′) dz′

+ 4

∫ t

0

Kz(z(t)− z(t′), t− t′)h(t′) dt′. (3.17a)

where, due to (3.6), (3.7a), (3.10) and (3.12a), we can write

z(t) =

∫ t

0

ṡ(t′)

f(t′)
dt′ −

∫ t

0

h(t′)

C(t′)f(t′)
dt′. (3.17b)

The solution of the Neumann problem for the linear heat equation (3.9) has then
been reduced to the solution of the nonlinear integral equation (3.17a), (3.17b).
Once existence and uniqueness of the functions h(t) is established for small time,
0 ≤ t < σ, existence and uniqueness of ϕ (z, t) for 0 ≤ t < σ then follows via
(3.15). As a consequence, ψ (z, t) via (3.8a), exists and is unique for 0 ≤ t < σ, to-
gether with the solution of the original FBP for the nonlinear diffusion-convection
equation (3.1).
Existence and uniqueness of h (t) (0 ≤ t < σ) are established through the following

Theorem 3.1.1. We denote by SM the closed sphere ||g1|| ≤ M (M > 0) in the
Banach space of functions h (t) continuous for 0 ≤ t < σ with the uniform norm
||h|| = l.u.b.|h (t) |. On the sphere SM we define the transformation

w(t) = Th(t),

where Th (t) coincides with the right hand side of (3.17a).
Then h(t) = Th (t) exists and is the unique fixed point of T in SM for 0 ≤ t < σ.

The detailed proof of the above Theorem is reported in Appendix A.
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3.2 A Free Boundary Problem on a Finite Do-

main in Nonlinear Diffusion

In this Section we formulate and solve a free boundary problem for a nonlinear
diffusion convection equation (Rosen - Fokas - Yorstos equation) [44, 67], defined
on a finite interval. Such equation describes fluid diffusion with convective effects
in porous media and is suitable for the modeling of drug propagation in the arterial
tissues, after the drug has been released by a stent expansion. Experimental and
numerical studies on the modeling of drug release from arterial stents [60, 61], in-
deed indicate that the drug filtration process in the arterial wall takes place under
the effect of convective and diffusive forces, and is influenced by the porosity of the
medium [52, 64]. Moreover, sharp variations of the drug concentration, indicate
the presence of nonlinear effects [51].
Such observation motivates the present study, which is based on a nonlinear evo-
lution equation of diffusive type. This aspect constitutes a novelty with respect to
previous analysis carried out in the framework of linear diffusive equations.
In the next Subsection we introduce the model and through a hodograph transform
we map the FBP for the nonlinear diffusion-convection equation into a FBP for the
Burgers equation. In Subsection 3.2.2 we reduce the FBP for the Burgers equation
to a system of coupled nonlinear integral equations; existence and uniqueness of
the solution for a small interval of time 0 ≤ t < σ, are proven in Subsection 3.2.3.
Finally, in the last Subsection we show that the problem admits an exact solution
corresponding to a travelling wave of the Burgers equation, moving at the same
velocity as the two free boundaries of the interval.

3.2.1 The problem

We consider the nonlinear diffusion-convection equation

θt = θ2 (Dθxx − θx) , θ = θ(x, t), t > 0 (3.18)

over the finite interval x ∈ [s0 (t) , s1 (t)], s0 (0) = 0, s1 (0) = L with initial datum

θ (x, 0) = θ0 > 0 (3.19)

and boundary conditions

θ (s0 (t) , t) = α, (3.20a)

Dθx (s0 (t) , t)− θ (s0 (t) , t) = −ṡ0 (t) , (3.20b)

θ (s1 (t) , t) = β, (3.20c)
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Dθx (s1 (t) , t)− θ (s1 (t) , t) = −ṡ1 (t) . (3.20d)

Equation (3.18) is a well known model for fluid diffusion with convective effects
in porous media [44, 67]; one and two-phase free boundary problems were solved
for (3.18) and the Dirichlet-to-Neumann map on a moving boundary was recently
obtained [17, 36, 37].
In the present case, using dimensionless variables, θ (x, t) denotes the concentration
of the drug, which is assumed to be in a percolated phase, that propagates in the
arterial wall after it has been released by a drug eluting stent; D is the coefficient
of diffusivity of the drug in the medium.
Following the literature [52, 60, 61, 64] the initial concentration is assumed to be
constant; we also assume the concentration to be constant at the two ends of the
interval, with α > β > 0. The constant β could be very small or even zero due to
the flux loss during the propagation. On the other hand, the boundary data (3.20b)
and (3.20d) are the ones usually associated with free-boundary problems. Indeed,
they are flux boundary conditions streaming from energy balance considerations[1,
37]. The functions s0 (t) and s1 (t) describe the motion of the free boundaries
due to the profile of the fluid drug concentration moving in the arterial tissue.
Such functions are unknown and have to be determined together with the solution
θ (x, t).
In order to solve the Initial/Boundary Value (IBV) problem given by (3.18) with
(3.19) and (3.20a)-(3.20d), we start our analysis by introducing the change of
independent variables

θ (x, t) = ψ (z, t) , z = z (x, t) (3.21a)

with
∂z

∂x
=

1

θ (x, t)
,

∂z

∂t
= θ(x, t)−Dθx(x, t), (3.21b)

whose compatibility
∂2z

∂x∂t
=

∂2z

∂t∂x
is guaranteed by (3.18).

Under the above tranformation, the IBV problem for Eq.(3.18), specified by con-
dition (3.19) and (3.20a),(3.20b), takes the form:

ψt = Dψzz − 2ψψz, z0 (t) ≤ z ≤ z1 (t), (3.22)

which is the Burgers equation for the dependent variable ψ(z, t), with the initial
datum

ψ (z, 0) ≡ ψ0 ≡ θ0 (3.23a)



3.2. A FBP ON A FINITE DOMAIN IN NONLINEAR DIFFUSION 59

and in the virtue of (3.21b),

z0 (t) = b0 +

∫ s0(t)

0

dx′

θ(x′, t)
, z1 (t) = b1 +

∫ s1(t)

0

dx′

θ(x′, t)
. (3.23b)

where b0 and b1 are arbitrary positive constants.
Moreover, under the change of variable (3.21a) and (3.21b), the boundary condi-
tions (3.20a) and (3.20b) take the form:

ψ (z0 (t) , t) = α, (3.24a)

Dψz (z0 (t) , t) = −αṡ0 (t) + α2, (3.24b)

ψ (z1 (t) , t) = β, (3.24c)

Dψz (z1 (t) , t) = −βṡ1 (t) + β2. (3.24d)

The above relations (3.23a),(3.23b) and (3.24a)-(3.24d) imply that the IBV prob-
lem for the nonlinear diffusion-convection equation (3.18) has now been mapped
into a one-phase FBP for the Burgers equation (3.22) on the finite interval
z ∈ [z0 (t) , z1 (t)]; the motion of the boundaries z0 (t) and z1 (t) is unknown and
has to be determined as part of the solution.

It is now expedient to use the Galilean Transformation{
z → z − 2βt

ψ → ψ − β

which leaves (3.22) invariant while changing (3.24a)-(3.24d) into

ψ (F0 (t) , t) = α− β, (3.25a)

Dψz (F0 (t) , t) = −αṡ0 (t) + α2, (3.25b)

ψ (F1 (t) , t) = 0, (3.25c)

Dψz (F1 (t) , t) = −βṡ1 (t) + β2, (3.25d)

where

F0 (t) = z0 (t)− 2βt, F1 (t) = z1 (t)− 2βt. (3.25e)

In the next Subsection we will reduce the FBP for the Burgers equation (3.22)
with boundary conditions (3.25a)-(3.25e) to a system of coupled nonlinear integral
equation in one variable (time), which admit a unique solution for small time.
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3.2.2 The Linear Heat Equation

Let us now introduce the generalized Hopf-Cole transformation [1, 23]

ψ (z, t) =
ϕ (z, t)(

C (t)− 1
D

∫ z
F1(t)

ϕ (z′, t) dz′
) , (3.26a)

ϕ (z, t) = C (t)ψ (z, t) exp

[
− 1

D

∫ z

F1(t)

ψ (z′, t) dz′
]
, (3.26b)

with the initial condition
C (0) = 1. (3.26c)

Under the above transformation the Burgers equation (3.22) is mapped into the
linear heat equation

ϕt = Dϕzz (3.27)

with the compatibility condition [18]

Ċ (t) = −ϕz (F1 (t) , t). (3.28)

Moreover, from (3.23a) and (3.25a)-(3.25d), we obtain the following set of initial
and boundary data for eq. (3.27)

ϕ0 (z) = ψ0 exp

[
−ψ0

D
(z − F1 (0))

]
, (3.29a)

ϕ (F0 (t) , t) = C (t) (α− β) exp

[
− 1

D

∫ F0(t)

F1(t)

ψ (z′ (t)) dz′

]
, (3.29b)

ϕ (F1 (t) , t) = 0, (3.29c)

Dϕz (F0 (t) , t) = C (t)
(
2αβ − β2 − αṡ0 (t)

)
×exp

[
− 1

D

∫ F0(t)

F1(t)

ψ (z′, t) dz′

]
, (3.29d)

Dϕz (F1 (t) , t) = C (t)
(
−βṡ1 (t) + β2

)
. (3.29e)

We now use (3.28) together with (3.29e) and the initial conditions s1 (0) = L,
C1 (0) = 1; we get

C (t) = exp
β

D
(s1 (t)− βt− L), (3.30a)

which can be readily inverted as

s1 (t) = L+ βt+
D

β
ln

[
1−

∫ t

0

ϕz (F1 (t′) , t′) dt′
]
. (3.30b)
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Let us now introduce the auxiliary function

B (t) =
ϕ (F0 (t) , t)

ψ (F0 (t) , t)
, (3.31a)

which, due to (3.29b) and (3.26a) satisfies

B (t) = C (t) exp

[
− 1

D

∫ F0(t)

F1(t)

ψ (z′, t) dz′

]
, (3.31b)

B (t) = C (t)− 1

D

∫ F0(t)

F1(t)

ϕ (z′, t) dz′. (3.31c)

From (3.31b) we get the initial condition

B (0) = exp

[
− 1

D

∫ F0(0)

F1(0)

ψ0 (z′, t) dz′

]
= exp

(
ψ0
L

D

)
, (3.32a)

where (3.25e) has been also used; from (3.31c) we obtain the time evolution

Ḃ (t) = −ϕz (F0 (t′) , t′). (3.32b)

From (3.32b), when we use (3.31b) and (3.29d), we finally obtain

s0 (t) = 2βt+
1

α

[
−β2t− ψ0L+D ln

(
exp

(
ψ0L

D

)
−
∫ t

0

ϕz (F0 (t′) , t′) dt′
)]
. (3.32c)

We are now ready to solve the FBP for the linear heat equation (3.27), with initial
datum (3.29a) and boundary conditions (3.29b)-(3.29e).
In the following we put

ϕz (F0 (t) , t) ≡ G0 (t)

ϕz (F1 (t) , t) ≡ G1 (t).

We now introduce the fundamental kernel of the heat equation (3.27)

K (z, t) =
1

2
√
π

1√
Dt

exp

(
− z2

4Dt

)
,

and consider the Green’s function on the half-plane z > 0:

H (z, t; ξ, τ) = K (z, t; ξ, τ)−K (−z, t; ξ, τ).

Integrating the Green’s identity
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∂

∂ξ

(
H
∂ϕ

∂ξ
− ϕ∂H

∂ξ

)
− ∂

∂τ
(Hϕ) = 0

over the domain F0 (τ) ≤ ξ ≤ F1 (τ), 0 < ε < τ < t − ε and letting ε → 0, after
using K (z − ξ, 0) = δ (z − ξ) and ϕ (F1 (t) , t) = 0 we get the solution of the heat
equation as:

ϕ (z, t) =

∫ L

0

H (z − ξ, t)ϕ0 (ξ) dξ + (α− β)

∫ t

0

Hξ (z − F0 (τ) , t− τ)B (τ) dτ

−
∫ t

0

H (z − F0 (τ) , t− τ)G0 (τ) dτ +

∫ t

0

H (z − F1 (τ) , t− τ)G1 (τ) dτ ; (3.33)

where (3.31a) and (3.25a) have also been used.
Eq.(3.33) is telling us that ϕ (z, t) is known once the boundary data G0 (t) and
G1 (t) are known; indeed the function B (t) in the second integral in the r.h.s. of
(3.33) is related to G0 (t) via (3.32b). We then take the z-derivative of both sides
in (3.33) and evaluate it once as z ↘ F0 (t) and a second time as z ↗ F1 (t).
By using the following results [46]

lim
z→Fi(t)

∂

∂z

∫ t

0

K (z − Fj (τ) , t− τ)Gj (τ) dτ

=
1

2
Gj (t) +

∫ t

0

Kz (Fi (t)− Fj (τ) , t− τ)Gj (τ) dτ , i = 0, 1, j = 0, 1

after introducing the Neumann function for the half plane z > 0,

N (z, t, ξ, τ) = K (z, t, ξ, τ) +K (−z, t, ξ, τ), (3.34)

we finally obtain the integral equation:

G0 (t)=
2

3

[
ϕ0 (0)− (α− β)B (0)

]
N (F0 (t) , t) +

2

3

[∫ L

0

ϕ′0 (ξ)N (F0 (t)− ξ, t) dξ

+ (α− β)

∫ t

0

G0 (τ)N (F0 (t)− F0 (τ) , t− τ) dτ

−
∫ t

0

G0 (τ)Hz (F0 (t)− F0 (τ) , t− τ) dτ

+

∫ t

0

G1 (τ)Hz (F0 (t)− F1 (τ) , t− τ) dτ +
1

2
G1 (t)

]
, (3.35a)
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where
F0 (t) = z0 (t)− 2βt, (3.35b)

and z0 (t) is given by (3.23b) and (3.32c). Similarly, we obtain for G1 (t) the
nonlinear integral equation:

G1 (t)= 2

[
ϕ0 (0)− (α− β)B (0)

]
N (F1 (t) , t) + 2

[∫ L

0

ϕ′0 (ξ)N (F1 (t)− ξ, t) dξ

+ (α− β)

∫ t

0

G0 (τ)N (F1 (t)− F0 (τ) , t− τ) dτ

−
∫ t

0

G0 (τ)Hz (F1 (t)− F0 (τ) , t− τ) dτ

+

∫ t

0

G1 (τ)Hz (F1 (t)− F1 (τ) , t− τ) dτ − 1

2
G0 (t)

]
,

(3.36a)

with
F1 (t) = z1 (t)− 2βt, (3.36b)

where z1 (t) is given by (3.23b) and (3.30b).
The above equations (3.35a),(3.35b) and (3.36a),(3.36b) form a system of coupled
nonlinear integral equations. The solution of the FBP for the linear heat equation
(3.27) on the finite interval F0 (t) ≤ z ≤ F1 (t), has been reduced to the solution
of the system (3.35a),(3.35b) and (3.36a),(3.36b). We point out that (3.35b) and
(3.36b) imply, via (3.32c) and (3.30b) respectively, that in the present case the
relation between the motion of the boundaries Fi (t) (i = 0, 1) and the functions
Gi (t) (i = 0, 1) is nonlinear. This is different from what usually happens in clas-
sical Stefan problems for the linear heat equation [46] where the corresponding
relation is linear. The difference is of course due to the fact that the starting point
of our analysis is a FBP for a nonlinear evolution equation.
Once existence and uniqueness of the functions G0 (t) and G1 (t) is established for
small time, 0 ≤ t < σ, existence and uniqueness of ϕ (z, t) for 0 ≤ t < σ then
there follows via (3.33). As a consequence, ψ (z, t) via (3.26a), exists and is unique
for 0 ≤ t < σ, together with the solution of the original FBP for the nonlinear
diffusion-convection equation (3.18).

3.2.3 Contraction mapping

Next we outline a method to prove the existence and uniqueness for G0 (t) and
G1 (t), for 0 ≤ t < σ. We denote by SM the closed sphere ‖Gi‖ ≤M in the Banach
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space of functions Gi (t) (i = 0, 1) continuous for 0 ≤ t < σ, with the uniform norm
‖Gi‖ = l.u.b. |Gi (t)| (i = 0, 1).
The proof is obtained in two steps:
Step 1
On the sphere SM define the transformation

wi (t) = TiGi (t) i = 0, 1 (3.37)

where TiGi, i = 0, 1, coincides with the right-hand side of (3.35a) and (3.36a)
respectively.
Then, the first step is to prove that T is a closed mapping:

‖Gi‖ ≤Mi =⇒ ‖wi‖ ≤Mi i = 0, 1.

In order to prove that Ti (i = 0, 1) is a mapping of SM into itself, we consider the
case i = 0 and first we evaluate some relevant bounds in the right hand side of
(3.35a).
By using (3.29a), (3.32a), (3.25e), (3.23a) and (3.23b), we get

|ϕ0 (0) | < ‖ψ0‖e
(
|ψ0|L
D

)
and |B0 (0) | ≤ e

(
|ψ0|L
D

)
.

Moreover, from (3.32c) we obtain

|s0 (t)− s0 (τ) |≤ (2αβ − β2)

α
|t− τ |

+

∣∣∣∣Dα ln

(
1− e−

αs0(t)+ψ0L+β2αt
D

+ 2αβt
D

∫ t

τ

G0 (t′) dt′
)∣∣∣∣

≤ (2αβ − β2)

α
|t− τ |+ 2

D

α

∣∣∣∣∫ t

τ

G0 (t′) dt′
∣∣∣∣ ≤ A1|t− τ |, (3.38)

A1 ≡
(2αβ − β2)

α
+ 2

M0D

α
(3.39)

where we take 0 < t < σ1, with σ1 : e
2αβ
D
σ1 ≤ 1.

When (3.38) is used together with (3.35b) and (3.21b), we can also write

|F0 (t)− F0 (τ) | ≤ A1

β
|t− τ |+ 2β|t− τ | ≡ A2|t− τ | (3.40)

where A2 ≡
A1

β
+ 2β.
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Next, we estimate the bounds on the terms in the right hand side of (3.35a).
First, we consider∣∣∣∣23

∫ L

0

ϕ′0 (ξ)N (F0 (t)− ξ, t) dξ
∣∣∣∣ ≤ 2

3
‖ϕ′0‖ |Erf (F0 (t))− Erf (F0 (t)− L)|

where Erf (z) denotes the Error function

Erf (z) =
2√
π

∫ z

0

e−y
2

dy.

For the above term we then get∣∣∣∣23
∫ L

0

ϕ′0 (ξ)N (F0 (t)− ξ, t) dξ
∣∣∣∣ ≤ 4

3
‖ϕ′0‖ ≡ A0. (3.41)

For the estimate of the first term in (3.35a), we can write

∣∣∣∣∣23 (ϕ0 (0))− (α− β)B (0)

∣∣∣∣∣
∣∣∣∣∣N (F0 (t) , t)

∣∣∣∣∣
<

2

3

(
‖ψ0‖e

(
‖ψ0‖L
D

)
+ (α− β) e

‖ψ0‖L
D

)
1√
πDt

e−
F2
0 (t)

4Dt

≤ 4

3
e

(
‖ψ0‖L
D

)
(‖ψ0‖+ (α− β))

e−
F2
0 (t)

4Dt

√
πDt

≤ A3

√
σ2, (3.42)

with σ2 : A3

√
σ2 ≤ 1, 0 < t < σ2,

where A3 ≡
16

3
e

(
‖ψ0‖L
D

)
(‖ψ0‖+ α− β)

√
D

π

1

b20
The third term in the right hand side of (3.35a) can be estimated as

∣∣∣∣23 (α− β)

∫ t

0

G0 (τ)N ((F0 (t)− F0 (τ)) , t− τ) dτ

∣∣∣∣
≤ 4

3
(α− β)

M0√
πD

∣∣∣∣∣∣
∫ t

0

e−
(F0(t)−F0(τ))

2

4(t−τ)D

2
√
t− τ

dτ

∣∣∣∣∣∣ ≤ A4

√
σ3, (3.43)

with σ3 : A4

√
σ3 ≤ 1,

where A4 ≡
4

3

(α− β)√
D

M0.

Next, we evaluate
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∣∣∣∣23
∫ t

0

G0 (τ)Hz (F0 (t)− F0 (τ) , t− τ) dτ

∣∣∣∣
≤ 1

6
M0

1√
π

1

D3/2

A2

∣∣∣∣∣∣
∫ t

0

exp
(
− (F0(t)−F0(τ))

2

4D(t−τ)

)
√
t− τ

∣∣∣∣∣∣
+4D

∣∣∣∣∫ t

0

1√
t− τ

dτ

(F0 (t) + F0 (τ))

∣∣∣∣] ≤ A5

√
σ4, (3.44)

A5 ≡
M0

3
√
πD

(
A2

D
+

2

b0

)
where (3.40) has been used and we take 0 < t < σ4, with σ4 : A5

√
σ4 < 1.

We finally evaluate

∣∣∣∣∫ t

0

G1 (τ)Hz (F0 (t)− F0 (τ) , t− τ) dτ

∣∣∣∣
≤ M1

6

1√
π

1

D3/2

A2

∣∣∣∣∣∣
∫ t

0

exp
(
− (F0(t)−F1(τ))

2

4D(t−τ)

)
√
t− τ

dτ

∣∣∣∣∣∣
+4D

∣∣∣∣∫ t

0

1√
t− τ

dτ

(F0 (t) + F1 (τ))2

∣∣∣∣] ≤ A6

√
σ5, (3.45)

A6 ≡
M1

3
√
πD

(
A2

D
+

4

b0 + b1

)
where the bound |F0 (t) − F1 (τ) | ≤ A2|t − τ | has been used, with A2 given by
(3.40). Moreover in (3.45) we take 0 < t < σ5, with σ5 : A6

√
σ5 ≤ 1. When the

above estimates (3.41), (3.42), (3.43), (3.44) and (3.45) are taken into account, we
finally obtain from (3.37) the following estimate

‖w0‖ < A0 +
1

3
M1 + A3

√
σ2 + A4

√
σ3 + A5

√
σ4 + A6

√
σ5. (3.46a)

We now define M0 as M0 = A0 +
1

3
M1 + 1 and get from (3.46a)

‖w0‖ < A0 +
1

3
M1 + A

√
σ (3.46b)

with A =
6∑
i=3

Ai and σ ≤ min (σ2, σ3, σ4, σ5) : A
√
σ < 1. We can therefore con-

clude
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‖w0‖ < M0.

Thus the map is closed. The proof that is ‖w1‖ ≤M1, is of course analogous.
Step 2
We now prove that Ti, defined by (3.37), is a contraction mapping: i.e. given two
solutions of (3.37) with ‖Gi−Gi‖ = δ, δ < 2M , it follows that ‖Ti

(
Gi −Gi

)
‖ = θδ

with 0 ≤ δ < 1.
We consider (3.32c) and evaluate the following estimate

|s0 (t)− s0 (t) |≤ D

α

∣∣∣∣ln(1− e−
s0(t)α+ψ0L+β2t

D
+ 2αβt

D

∫ t

0

G0 (t′)−G0 (t′) dt′
)∣∣∣∣

≤ D

α
2e

2αβ
D
σ1δt ≤ B1δt, B1 ≡

2D

α
(3.47)

where we take 0 < t < σ1, with σ1 : e
2αβ
D
σ1 ≤ 1.

Also, when (3.47) is used, we can evaluate via (3.25e) the estimate

|F0 (t)− F 0 (t) | = |z0 (t)− z0 (t) | ≤ λB1δt, (3.48)

with λ =

∣∣∣∣∣∣∣∣1θ
∣∣∣∣∣∣∣∣.

Next, we evaluate the following bounds:

2

3

∣∣∣∣∣ϕ0 (0)− (α− β)B (0)

∣∣∣∣∣ 1√
πtD

∣∣∣∣e−F2
0 (t)

4Dt − e
F
2
0(t)

4Dt

∣∣∣∣
<

4

3
e

(
‖ψ0‖L
D

) |‖ψ0‖+ α− β|√
πDt

|F0 (t)− F 0 (t) ||F0 (t) + F 0 (t) |
|F0 (t) |2

≤ 8

3
e

(
‖ψ0‖L
D

) |‖ψ0‖+ α− β|√
πD

2R

b2
λB1δ

√
t ≤ B2δ

√
σ6, (3.49)

B2 ≡
8

3
e

(
‖ψ0‖L
D

)
(‖ψ0‖+ α− β)√

πD

2Rλ

b2
B1

where we made use of (3.42) and (3.47); moreover the mean value theorem has
also been applied and in (3.49) R ≡ max

{
|F0 (t) |, |F 0 (t) |

}
.

Next, we put

H1 =
2

3

∫ L

0

ϕ′0 (ξ)
(
N (F0 (t)− ξ, t)−N

(
F 0 (t)− ξ, t

))
(3.50)
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where N denotes the Neumann function (3.34).
For the estimate of H1 we put ξ0 = F0 (t) − 2t‖ψ0‖ and ξ0 = F 0 (t) − 2t‖ψ0‖ in
the integral in the right hand side of (3.50) getting

|H1|≤
4

3

‖ϕ′0‖√
πDt

∣∣∣∣∣
∫ L−ξ0

−ξ0
e−

ϕ2

4Dtdϕ−
∫ L−ξ0

−ξ0
e−

ϕ2

4Dtdϕ

∣∣∣∣∣ ≤ A0
2√
πtD

∣∣∣∣∣ξ0 − ξ0
∣∣∣∣∣

=
2A0√
πDt
|F0 (t)− F 0 (t) | ≤ B3δ

√
σ7, B3 ≡

2A0√
πD

λB1 (3.51)

where A0 is given by (3.41) and (3.48) has also been used. Moreover, in (3.51) we
choose σ7 : B3

√
σ7 < 1.

We now put

H2 =
2

3
(α− β)

∫ t

0

[
G0 (τ)N (F0 (t)− F0 (τ) , t− τ)

−G0 (τ)N
(
F 0 (t)− F 0 (τ)

)
, t− τ

]
dτ

and write

H2=
2

3
(α− β)

[∫ t

0

[(
G0 (τ)−G0 (τ)

)
N (F0 (t)− F0 (τ) , t− τ)

]
dτ

+

∫ t

0

[
G0 (τ)

(
N (F0 (t)− F0 (τ) , t− τ)−N

(
F 0 (t)− F 0 (τ) , t− τ

))]
dτ

]
. (3.52)

For the first integral in the right hand side of (3.52), we obtain the estimate

∣∣∣∣∫ t

0

(
G0 (τ)−G0 (τ)

)
N (F0 (t)− F0 (τ) , t− τ) dτ

∣∣∣∣
≤ 4δ√

πD

∣∣∣∣∫ t

0

dτ

2
√
t− τ

∣∣∣∣ ≤ 4δ√
πD

√
σ. (3.53)

For the second integral in the right hand side of (3.52), we write

∣∣∣∣∫ t

0

G0 (τ)
(
N (F0 (t)− F0 (τ) , t− τ)−N

(
F 0 (t)− F 0 (τ) , t− τ

))
dτ

∣∣∣∣
≤ 2M√

πD

∫ t

0

1√
t− τ

e−
(F0(t)−F0(τ))

2

4D(t−τ)

∣∣∣∣1− e (F0(t)−F0(τ))
2

4D(t−τ) − (F0(t)−F0(τ))
2

4D(t−τ)

∣∣∣∣ dτ. (3.54a)
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We now define

Q = −

[
(F0 (t)− F0 (τ))2 −

(
F 0 (t)− F 0 (τ)

)2]
4D (t− τ)

(3.54b)

and obtain the estimate

|Q|≤ 1

4D|t− τ |
∣∣(F 0 (t)− F0 (t)

)
−
(
F 0 (τ)− F0 (τ)

)∣∣
×
∣∣(F0 (t)− F0 (τ)) +

(
F 0 (t)− F 0 (τ)

)∣∣ ≤ λB1

2D|t− τ |
A2δσ|t− τ |

≤ B4δσ, B4 ≡
λB1A2

2D
(3.54c)

where (3.40) and (3.48) have been used.
From (3.54a) we now have

∣∣∣∣∫ t

0

G0 (τ)
(
N (F0 (t)− F0 (τ) , t− τ)−N

(
F 0 (t)− F 0 (τ) , t− τ

))
dτ

∣∣∣∣
≤ 2M√

πD

∫ t

0

dτ√
t− τ

|Q|e|Q| ≤ 2M√
πD

B4δσ
3/2. (3.54d)

we finally obtain from (3.52), (3.53) and (3.54d) the following estimate

|H2| ≤
2

3
(α− β)

[
4√
πD

δ
√
σ +

2M√
πD

B4δσ
3/2

]
≤ B5δ

√
σ8 (σ8 ≤ 1) (3.55)

B5 ≡
2

3
(α− β)

[
4 + 2MB4√

πD

]

In order to evaluate the next estimate, we put
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H3=
2

3

∫ t

0

[G0 (τ)Hz (F0 (t)− F0 (τ) , t− τ)

−G0 (τ)Hz

(
F 0 (t)− F 0 (τ) , t− τ

)]
dτ

= V1 + V2, (3.56a)

V1=
1

6

1√
πD3/2

∫ t

0

(
G0 (τ)−G0 (τ)

) (F0 (τ)− F0 (t))

(t− τ)3/2
e−

(F0(t)−F0(τ))
2

4D(t−τ) dτ

+
1

6

1√
πD3/2

∫ t

0

G0 (τ)

[
(F0 (τ)− F0 (t))

(t− τ)3/2
e−

(F0(t)−F0(τ))
2

4D(t−τ)

−
(
F 0 (τ)− F 0 (t)

)
(t− τ)3/2

e−
(F0(t)−F0(τ))

2

4D(t−τ)

]
dτ , (3.56b)

V2= −
1

6

1√
π

1

D3/2

∫ t

0

(
G0 (τ)−G0 (τ)

) (F 0 (t)− F 0 (τ)
)

(t− τ)3/2
e−

(F0(t)+F0(τ))
2

4D(t−τ) dτ

−1

6

1√
π

1

D3/2

∫ t

0

G0 (τ)

[(
F 0 (t)− F 0 (τ)

)
(t− τ)3/2

e−
(F0(t)+F0(τ))

2

4D(t−τ)

−(F0 (t) + F0 (τ))

(t− τ)2
e−

(F0(t)+F0(τ))
2

4D(t−τ)

]
dτ . (3.56c)

In order to get an estimate for |V1|, we use (3.40) in the right hand side of (3.56b)
and write

|V1|≤
1

6

A2√
πD3/2

δ

∫ t

0

∣∣∣∣∣∣e
− (F0(t)−F0(τ))

2

4D(t−τ)

√
t− τ

∣∣∣∣∣∣ dτ
+

1

6

A2√
π

M0

D3/2

∫ t

0

∣∣∣∣∣∣e
− (F0(t)−F0(τ))

2

4D(t−τ)

√
t− τ

− e−
(F0(t)−F0(τ))

2

4D(t−τ)

√
t− τ

∣∣∣∣∣∣ dτ
which in turn implies

|V1| ≤
1

3

A2√
πD3/2

δ
√
t+

1

6

A2M0√
πD3/2

∫ t

0

∣∣∣∣∣∣e
− (F0(t)−F0(τ))

2

4D(t−τ)

√
t− τ

∣∣∣∣∣∣
∣∣∣1− e−|Q|∣∣∣ dτ , (3.57)

where Q is given by (3.54b).

Using |1− e−Q| ≤ Qe|Q|, together with (3.54c), from (3.57) we get
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|V1| ≤
1

3

A2√
πD3/2

(
δ
√
σ +M0B4δσ

3/2
)
, 0 < t < σ.

From the above relation we can write

|V1| ≤ B6δ
√
σ9, B6 ≡

1

3

A2√
πD3/2

(1 +M0B4) (3.58)

with σ9 : B6
√
σ9 ≤ 1.

The estimate of V2 is somewhat more cumbersome; a detailed analysis is given in
the Appendix B (see (B.1)-(B.4)). There obtains

|V2| ≤ B7δ
√
σ10, B7

√
σ10 ≤ 1. (3.59)

When we go back to (3.56a), from (3.58) and (3.59) we finally obtain

|H3| ≤ B8δ
√
σ∗ B8 = B6 +B7 (3.60)

with σ∗ = min {σ9, σ10} : B0

√
σ∗ < 1.

Our last task is to evaluate an upper bound for:

|H4|=
2

3

∣∣∣∣∫ t

0

[
G1 (τ)Hz (F1 (t)−F1 (τ) , t− τ)−G1 (τ)Hz

(
F 1 (t)−F 1 (τ) , t− τ

)]
dτ

∣∣∣∣.
Such bound can be obtained along the same lines followed to get the estimate
on |H3|. The only difference being that G0 (t)

(
G0 (t)

)
in (3.56a) is replaced by

G1 (t)
(
G1 (t)

)
and F0 (t)

(
F 0 (t)

)
is replaced by F1 (t)

(
F 1 (t)

)
. We can therefore

write:

|H4| ≤ B9δ
√
σ∗, (3.61)

where B9 is an appropriate constant.
We now go back to (3.37) and consider

|w0 − w0| = |T0
(
G0 −G0

)
|,

with T0G0 given by the right-hand side of (3.35a).
We put together the esimates given by (3.49), (3.51), (3.55), (3.60) and (3.61),
obtaining

|w0 − w0|
δ

< B
√
σ +

1

3
; B = B2 +B3 +B5 +B8 +B9
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where σ satisfies σ < min (σ6, σ7, σ8, σ
∗) with B

√
σ ≤ 2

3
.

We can therefore conclude that

|w0 − w0| ≤ δθ, θ < 1, θ = B
√
σ

which in turn implies that T0 is a contraction operator in δM . Thus, there exists
a unique fixed point G0 (t) = T0G0 (t) in δM for 0 ≤ t < σ. The proof for the case
i = 1 of course follows along the same lines.
We have then proven existence and uniqueness of the solutions G0 (t) and G1 (t)
(see (3.35a) and (3.36a)) for a small interval of time 0 ≤ t < σ.
In the next Subsection we concentrate our attention on a particular solution θ (x, t)
of our original problem. Namely, we show that there exists a solution θ (x, t) cor-
responding to a travelling wave solution of the FBP for the Burgers equation (3.22).

3.2.4 A particular solution

We now turn our attention to a particular solution θ (x, t) of our problem. Namely,
we show that there exists a solution θ (x, t) of the FBP for equation (3.18) corre-
sponding to a travelling wave solution of the Burgers equation (3.22) specified by
the boundary conditions (3.24a)-(3.24d).
The usual travelling wave solution of equation (3.22) reads

ψ (z, t) = u1 +
(u2 − u1)[

1 + exp 1
D

(
(u2 − u1) (z − V t− z0)

)] (3.62a)

with

V = u1 + u2, u2 > u1. (3.62b)

In the following we use the above solution on the interval z0 (t) ≤ z ≤ z1 (t),
determining the two constants u1 and u2; we assume both of them to be positive
(u2 > u1 > 0).
When we require the solution (3.62a) to satisfy the boundary condition (3.24a),
we get

z0 (t)− V t− z0 = k1, (3.63)

k1 arbitrary constant. Without loss of generality we put k1 = 0 and then get from
(3.24a)

2α = u1 + u2; (3.64)
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which is the first constraint on u1 and u2. The boundary condition (3.24c) in turn
gives

z1 (t)− V t− z0 = k2, (3.65)

k2 arbitrary constant. Once we fix the value of k2, we get from (3.24c) the second
constraint to determine the constants u1 and u2:

β − u1 =
(u2 − u1)[

1 + exp

(
k2
D

(u2 − u1)
)] . (3.66)

Moreover, we observe that (3.63) and (3.65) imply

ż0 (t) = ż1 (t) = V .

The above relation is telling us that the travelling wave and the two free boundaries
are all moving to the right with the same constant velocity.
Let us now consider the two flux boundary conditions (3.24b) and (3.24d). For
simplicity we put in the following k2 = 1.
When the solution (3.62a) is used, together with (3.64), in (3.24b), there obtains

ṡ0 (t) = 2α− u1u2
α

, (3.67a)

which is the constant velocity corresponding to the motion of the free boundary
s0 (t).
The boundary condition (3.24d), when (3.66) is also used, in turn gives

ṡ1 (t) = 2α− u1u2
β

, (3.67b)

which is the constant velocity of the free boundary s1 (t). Due to the condition
α > β, (3.67a) and (3.67b) imply

ṡ0 > ṡ1.

Then, in the physical space s0 (t) ≤ x ≤ s1 (t), the moving front solution is com-
patible with a constant velocity motion of the two boundaries, but s0 (t) is moving
faster then s1 (t). This is not surprising, since in the modeling of drug propagation
in the arterial tissues, one expects the diluted drug concentration to move faster
close to the point where the drug has been released.
After a finite time the position of s0 (t) coincides with s1 (t), indicating that the
moving front has spanned the whole interval of existence of the solution.
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Finally, the solution of the FBP for the nonlinear diffusion-convection equation
(3.18) is given in parametric form by

θ (x, t) =

(
∂z

∂x

)−1
,

where, in virtue of (3.21b), z solves

x =

∫ z

z0

ψ (z′, t) dz′,

with ψ (z, t) given by (3.62a) together with (3.64) and (3.66).
In Fig.3.1 the moving front profile (3.62a) is shown at different times (dimen-

0 5 10 15 20 25 30 35 40

z

0

0.5

1

1.5

2

ψ

 t=1

 t=10

 t=20

Figure 3.1: Nondimensional concentration profiles at three times: t = 1, t = 10,

t = 20 (from the left to the right).

sionless units). Its behavior is in qualitative agreement with the corresponding
concentration profiles reported in Fig.5 of [61].



Chapter 4

Conclusions

As pointed out in the Introduction, the aim of the present thesis is to discuss
the applications of some useful mathematical techniques to problems which are
relevant in life-and-material science. The models considered here all share the
common feature of nonlinearity, which indeed characterizes the behavior and the
time evolution of several real-life phenomena.
We first considered two applications related to population dynamics in the frame-
work of the Kinetic Theory of Active Particles.
We started our analysis with a mathematical model suitable to describe the onset
and the evolution of epidemics. The model is characterized by three fundamental
parameters: the risk perception, the infectivity and the vaccine reaction. Our re-
sults show how such parameters influence both the onset and the evolution of the
infective disease. In particular, as expected, the epidemic spread can be controlled
by increasing the risk perception. At the same time we observe that an increase
of the infectivity induces and promotes the diffusion of the infection.
The approach presented here can be further developed in order to include some
important aspects. In particular:

• we believe that the mathematical structure should be generalized to open
systems, incorporating birth and death processes;

• a space dependance of the model could be possibly derived through an
asymptotic analysis of the microscopic model described by the kinetic the-
ory approach. This would open the way to the description of propagation
phenomena with finite velocity and also to relate the spread of epidemics to
space dynamics of individuals affected by the pathology.

Next, we considered a traffic flow model based on microscopic interactions be-
tween active particles composed by a vehicle-driver pair. The outcome of such
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interactions is stochastic and is called ”Table of games”. At the macroscopic scale
we obtained physical quantities such as the average velocity and the flux, whose
behavior is consistent with experimental evidence.
A further development of the ideas presented here includes of course the analysis
of a traffic flow model on a network of interconnected roads, in order to obtain a
more realistic mathematical description. Work along this lines is in progress.
Finally in the last model we studied a free boundary value problem for a nonlinear
diffusion/convection model. From the mathematical point of view we proved ex-
istence and uniqueness of the solution for nonlinear evolution equation on a finite
domain characterized by free boundaries. From the applicative point of view we
developed a model suitable to describe drug diffusion in arterial tissues after the
drug is released by an arterial stent.
Our proposal is to extend the diffusion/convection model developed in 2016. The
previous analysis will be in the next future extended to the modeling of two layers
system, with the first layer describing the drug dissolution-diffusion process which
takes place in the coating of polymeric drug delivery devices.



Appendix A

In the following we report the proof of the of existence and uniqueness for the
IBV problem associated with the nonlinear diffusion-convection equation (3.1),
obtained in [17]. To analyze the existence properties of h(t) for 0 ≤ t < σ we
first denote by SM the closed sphere ||g1|| ≤ M (M > 0) in the Banach space of
functions h(t) continuous for 0 ≤ t < σ with the uniform norm ||h|| = l.u.b.|h(t)|.
On the sphere SM define the transformation

w(t) = Th(t), (A.1)

where Th(t) coincides with the right hand side of (3.17a).
The proof is obtained in two steps, the first step is to prove that T is a mapping
of SM into itself. By using (3.17b) we obtain

|z(t)| ≤ ασ

β2
+

1

β2
+
Mσ

β2
= σ

α +M

β2
+

1

β2
≡ σ B1+

1

β2
,

(
B1 =

α +M

β2

)
; (A.2)

moreover from (3.17b) we also obtain

|z(t)− z(t′)| ≤ α

β2
|t− t′|+ 2

β2
(1 +Mσ) γ |t− t′| = |t− t

′|
β2

[α + 2 (1 +Mσ) γ]

≤ |t− t
′|

β2
[α + 2 (1 +M) γ] ≡ B2|t− t′|,

(
B2 =

α + 2 (1 +M) γ

β2

)
, (A.3)

with γ : γ|t− t′| > 1.
Now we evaluate some relevant bounds in the right hand side of (A.1). We first
consider∣∣∣∣∣2ϕ0(0) e−

z2(t)
4t

√
πt

∣∣∣∣∣ ≤ 2 ||ϕ0||
∣∣∣∣A1 z

2(t)

4t
√
πt

∣∣∣∣ < ||ϕ0||
A1

2
√
π

(
B1 σ +

1

β2

)2√
σ, (A.4)

with A1 > 0 : A1
z2(t)

4t
> 1.

In the following we denote by Ai and by Bi, i > 1, appropriate positive constants
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which do not depend on σ. For the estimate of the integral terms in the right hand
side of (A.1), using (3.16), we can write

4

∣∣∣∣∫ 0

−∞
K(z(t)− z′, t)ϕ′0(z′) dz′

∣∣∣∣ ≤ 2||ϕ′0||
∣∣∣∣∫ 0

−∞

1√
πt
e−

(z(t)−z′)2
4t dz′

∣∣∣∣
≤ 4 ||ϕ′0|| ≡ A2, (A.5a)

and

4

∣∣∣∣∫ t

0

Kz(z(t)− z(t′), t− t′)h(t′) dt′
∣∣∣∣ ≤ 2M√

πt

(
α + 2 (1 +Mσ) γ

β2

)
σ (A.5b)

where (A.3) has been used.

Using the inequalities (A.4), (A.5a) and (A.5b) in the right hand side of (A.1) we
have the following bound

|w(t)| ≤ A2 +
A1

2
√
π

(
B1σ +

1

β2

)2

||ϕ0||
√
σ+

2M√
π

(
α + 2 (1 +Mσ)γ

β2

)√
σ, (A.6)

with M = A2 + 1.

Finally if we choose σ = min(σ1, σ2) with σ1 : A1

(
B1σ1 +

1

β2

)2

||ϕ0||
√
σ1 < 2

√
π

and σ2 : 2M

(
α + 2 (1 +Mσ)γ

β2

)
√
σ2 <

√
π, from (A.6) we can therefore con-

clude
|w(t)| < M.

Thus the mapping is closed.

The second step is to prove that T is a contraction mapping; i.e. given two solu-
tions of (A.1) with ||h− ĥ|| = δ it follows that ||Th− T ĥ|| ≤ ϑδ with 0 < ϑ < 1.
For this purpose we take into account the function P (t) defined as

P (t) =
1

C(t)
.

Using the properties of C(t) we find

||P ||∞ = sup
t>0
|P (t)|.

From (3.17b), the following relevant bound is obtained:

|z(t)− ẑ(t)| ≤

∣∣∣∣∣
∫ t

0

ṡ(t′)

f(t′)
+

˙̂s(t′)

f(t′)
dt′

∣∣∣∣∣+

∣∣∣∣∣
∫ t

0

Ċ(t′)

C(t′)f(t′)
+

˙̂
C(t′)

Ĉ(t′)f(t′)
dt′

∣∣∣∣∣
≤ 2

α

β2
N1δt+

2M

β2
||P ||∞N1δt ≡ (A3 + A4)δt (A.7)



79

with N1 : N1δ > 1, A3 =
2αN1

β2
, A4 =

2M ||P ||∞N1

β2
.

Moreover we obtain ∣∣∣ż(t)− ˙̂z(t)
∣∣∣ ≤ (A3 + A4)δ. (A.8)

From (A.1) and (3.17a) we can write

w − ŵ = H1 +H2 +H3, (A.9a)

where,

H1 =− 2ϕ0(0)

(
e−

z2(t)
4t − e−

ẑ
2
(t)
4t

)
√
πt

, (A.9b)

H2 =
2√
πt

∫ 0

−∞
ϕ′0(z

′)

[
e−

(z(t)−z′)2
4t − e−

(ẑ(t)−z′)2
4t

]
dz′, (A.9c)

H3 =− 2

∫ t

0

h(t′)
(z(t)− z(t′))

(t− t′)
K(z(t)− z(t′), t− t′) dt′

+ 2

∫ t

0

ĥ(t′)
(ẑ(t)− ẑ(t′))

(t− t′)
K(ẑ(t)− ẑ(t′), t− t′) dt′, (A.9d)

with K(z − z′, t− t′) given by (3.16).
From (A.9b) we obtain the estimate

|H1| ≤ 2||ϕ0||
1√
πt

∣∣∣∣e− z2(t)4t − e−
ẑ
2
(t)
4t

∣∣∣∣ . (A.10)

Now the exponentials in the right hand side of (A.10), can be expanded in Taylor
series:

∣∣∣∣e− z2(t)4t − e−
ẑ
2
(t)
4t

∣∣∣∣ ≤ +∞∑
n=1

∣∣∣∣∣∣∣
(
z2(t)
4t

)n
−
(
ẑ
2
(t)
4t

)n
n!

∣∣∣∣∣∣∣
≤

∣∣∣∣∣z2(t)4t
− ẑ

2
(t)

4t

∣∣∣∣∣
+∞∑
n=1

(
1

2

)n
< 2

∣∣∣∣∣z2(t)4t
− ẑ

2
(t)

4t

∣∣∣∣∣ . (A.11)

To get an estimate for |H1| we use (A.11) in the right hand side of (A.10), together
with (A.7), and write

|H1| ≤
2||ϕ0|| (A3 + A4)√

π
δ
√
σ ≡ B3 δ

√
σ. (A.12)
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From (A.9c) we can write

|H2| ≤2
||ϕ′0||√
πt

∣∣∣∣∫ 0

−∞

[
e−

(z(t)−z′)2
4t − e−

(ẑ(t)−z′)2
4t

]
dz′
∣∣∣∣

≤2
||ϕ′0||√
πt

∣∣∣∣∣
∫ −z(t)
−ẑ(t)

e−
y2

4t dy

∣∣∣∣∣ ≤ 2
||ϕ′0||√
πt
|z(t)− ẑ(t)|. (A.13)

In order to evaluate the estimate of H2 we use (A.7) in the right hand side of
(A.13) and immediately recover

|H2| < 2
||ϕ′0||√
π

(A3 + A4) δ
√
σ ≡ B4 δ

√
σ. (A.14)

Our last task is to evaluate an upper bound for H3:

|H3| ≤ 2(|V1|+ |V2|+ |V3|), (A.15a)

where,

V1 = −
∫ t

0

(h(t)− ĥ(t′))
(z(t)− z(t′))

(t− t′)
K(z(t)− z(t′), t− t′) dt′, (A.15b)

V2 = −
∫ t

0

ĥ(t′)

[
(z(t)− z(t′))

(t− t′)
− (ẑ(t)− ẑ(t′))

(t− t′)

]
K(z(t)− z(t′), t− t′) dt′, (A.15c)

V3 = −
∫ t

0

ĥ(t′)

[
ẑ(t)− ẑ(t′)

(t− t′)

]
K(z(t)− z(t′), t− t′)

×
[
1− e−

(ẑ(t)−ẑ(t′))2−(z(t)−z(t′))2
4(t−t′)

]
dt′s . (A.15d)

From (A.15b) and (A.3) we obtain

|V1| ≤
δ

2
√
π β2

[α + 2(1 +Mσ)γ]

∣∣∣∣∫ t

0

1√
t− t′

e
− (z(t)−z(t′))2

4(t−t′) dt′
∣∣∣∣

≤ δ
√
σ√

πβ2
[α + 2(1 +Mσ)γ] <

δ
√
σ√

πβ2
[α + 2(1 +M)γ] ≡ B4 δ

√
σ. (A.16a)

In order to evaluate the estimate of |V2| we take into account (A.15c), together
with (A.2) and (A.8)

|V2| ≤
M

2
√
π

∫ t

0

∣∣∣∣∣(z(t)− ẑ(t))− (z(t′)− ẑ(t′))

(t− t′)

∣∣∣∣∣ dt′√
t− t′

.
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Now, using the mean value theorem, we obtain

|V2| ≤
M

2
√
π

∫ σ

0

|ż(θ)− ˙̂z(θ)| dt′√
t− t′

<
M√
π

(A3 + A4) δ
√
σ ≡ B5 δ

√
σ. (A.16b)

For the estimate of V3, we put in (A.15d)

Q =− [(ẑ(t)− ẑ(t′))2 − (z(t)− z(t′))2]

4(t− t′)

=− 1

4(t− t′)
[(ẑ(t)− z(t))− (ẑ(t′)− z(t′))][(ẑ(t)− ẑ(t′))− (z(t)− z(t′))]

and using (A.3) and (A.7) we get

|Q| ≤ 1

4|t− t′|
[2(A3 + A4) δt]

[
2
|t− t′|
β2

(α + 2(1 +M σ) γ)

]
<

(A3 + A4)[α + 2(1 +M) γ]

β2
δ σ = (A3 + A4)B2 δ σ.

On the other hand, from (A.3) it also follows that

|Q| ≤ 4B2
2 |t− t′|2

4|t− t′|
< B2

2 σ < B2, (B2 σ < 1) .

From (A.15d), using the inequality |1− e−Q| ≤ |Q|e|Q| [2] together with (A.3), we
then obtain

|V3| ≤
1

2
√
π
M

∫ t

0

∣∣∣∣∣ ẑ(t)− ẑ(t′)

t− t′

∣∣∣∣∣
∣∣1− e−Q∣∣
√
t− t′

dt′

<
MB2√
π
|Q|e|Q| σ < MB2

2√
π

(A3 + A4) e
B2 δ σ

√
σ,

which gives :

|V3| < B6 δ
√
σ, (A.16c)

where

B6 = B2
2 (A3 + A4) and

M√
π
eB2 σ < 1.

From (A.15a) and (A.16a)-(A.16c) we then get:

|H3| < 2(B4 +B5 +B6) δ
√
σ ≡ B7 δ

√
σ. (A.17)
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Finally, we go back to (A.9a) and put together the estimates given by (A.13),
(A.14) and (A.17) obtaining

||w − ŵ||
δ

< (B3 +B4 +B7)
√
σ ≡ B8

√
σ.

We can therefore conclude that T is a contraction operator in SM . By the fixed
point theorem in a Banach space [9, 56], there exists a unique fixed point
h(t) = Th(t) in SM for 0 ≤ t < σ.
We now observe that existence of the Neumann datum h(t) of the linear heat
equation for small times, imply existence and uniqueness of both the solution of
the linear problem ϕ(z, t) and of the function C(t) (see (3.10)). From (3.12a), the
Neumann datum g(t) of the nonlinear diffusion-convection equation is therefore
determined in terms of the Dirichlet datum f(t) as

g(t) =
h(t)

C(t)f(t)
+ f(t),

which is the explicit form of the Dirichlet-to-Neumann map for (3.1).
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From (3.56c) we easily get

|V2|≤
2

3

δ√
πD

∣∣∣∣∣
∫ t

0

1√
t− τ

dτ(
F 0 (t) + F 0 (τ)

)∣∣∣∣∣
+

2

3

M0√
πD

∣∣∣∣∣
∫ t

0

1√
t− τ

[
1(

F 0 (t) + F 0 (τ)
) − 1

(F0 (t) + F0 (τ))

]
dτ

∣∣∣∣∣. (B.1)

The above relation implies

|V2|≤
2

3

δ√
πD

1

b

√
t

+
2

3

M0√
πD

∫ t

0

1√
t− τ

(
|F0 (t)− F 0 (t) |+ |F0 (τ)− F 0 (τ) |

)
|F 0 (t) + F 0 (τ) ||F0 (t) + F0 (τ) |

dτ . (B.2)

By using (3.48) in the second term of (B.2), we get

|V2| ≤
2

3

1√
πD

1

b

(
δ
√
σ +

M0λ

b
B1δσ

3/2

)
, (B.3)

where is 0 ≤ τ < t < σ.
From (B.3) we can therefore conclude

|V2| ≤ B7δ
√
σ10, B7 =

2

3

1√
πD

1

b

(
1 +

M0λB1

b

)
(B.4)

with σ10 : B7
√
σ10 ≤ 1, which coincides with (3.59).
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