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Introduction

The foundation of the theory of complex algebraic curves goes back to the
Nineteenth century, and most of this theory remains valid for curves defined over
a field of zero characteristic. Instead, there are significant differences between zero
and positive characteristic, especially in the properties of automorphism groups but
also in the behavior of the fundamental groups. Furthermore, when the constant
field if finite, new aspects of the algebraic curves arise depending on their Fq-
rational points, where Fq is a finite extension of the constant field. For instance,
this gives rise to a generalization of the Riemann zeta function which leads to an
analogue of the Riemann hypothesis. The intrinsic theoretical interest towards
algebraic curves over finite fields is boosted by interactions with Number Theory
and Finite Geometry as well as relevant applications to error-correcting codes and
cryptography.

Most of the results of the present work concern maximal curves over a finite
field, their automorphism groups, and applications to Algebraic-Geometric codes.

The fundamental result in this area is the Hasse-Weil bound on the number
Nq of Fq-rational points of a curve X of genus g defined over Fq,

q + 1− 2g
√
q ≤ Nq ≤ q + 1 + 2g

√
q.

Hasse proved the above bound for elliptic curves, although it was Artin to point
out the number of solutions of the congruence

y2 ≡ f(x) (mod p)

should satisfy the Hasse-Weil bound. For the general case the Hasse-Weil bound
was proved by Weil.

The curve X is Fq-maximal if it attains the Hasse-Weil upper bound, that is,
Nq = q + 1 + 2g

√
q; this requires q to be a square.

Computing the possible genera of Fq-maximal curves is an open problem, and
their spectrum is well understood only for large genera with respect to q.

By a result of Serre, a curve covered by an Fq-maximal curve through an Fq-
rational morphism is still Fq-maximal; in particular, automorphism groups defined

iii



iv INTRODUCTION

over Fq produce quotient curves which are Fq-maximal. This gives a strong moti-
vation for the study of automorphism groups of Fq-maximal curves.

For applications to Coding Theory, explicit equations of Fq-maximal curves
are needed. This may be challenging, and tools from Finite Field Theory and
Combinatorics are often required.

The present thesis consists of four chapters.

Chapter 1 collects the basic definitions and results about curves over a finite
field and their function fields. The background on Algebraic-Geometric codes is
also given in Section 1.1. In Section 1.2 remarkable examples of maximal curve over
finite fields are presented. They include classical examples such as the Deligne-
Lusztig curves (Hermitian, Suzuki, and Ree curves), as well as recent examples,
namely the Giulietti-Korchmáros, the Garcia-Güneri-Stichtenoth, and the Garcia-
Stichtenoth curves.

Chapter 2 contains our original contributions to maximal curves. In Section 2.1
we construct Galois subcovers of the Giulietti-Korchmáros curves; we determine
the corresponding Galois groups and compute explicits equations. We also show
that some of such Galois subcovers are not isomorphic to a Galois subcover (in some
cases, to any subcover) of the Hermitian curve. Sections 2.2 and 2.3 are about the
Garcia-Güneri-Stichtenoth and Garcia-Stichtenoth curves, and the smallest Suzuki
and Ree curves. We show that they are not isomorphic to a Galois subcover of
the Hermitian curve. We heavily rely on deeper results on the structure of the
linear group PGU(3, q) and the simple Suzuki and Ree groups. Section 2.4 is
concerned especially with certain cyclic covers S̃q and R̃q of the Suzuki and Ree
curves. We show that they are not Galois covered by the Hermitian curves Hq2

and Hq3 respectively, and determine their full automorphism groups. The contents
of this chapter are also found in [54, 56, 92, 55].

Chapter 3 contains our original contributions to Algebraic-Geometric codes.
Section 3.1 deals with Kummer extensions of the rational function field; we extend
known results on the Weierstrass semigroup at many totally ramified points, and
provide new families of so-called pure gaps at these points; this is then applied
to obtain Algebraic-Geometric codes with good parameters. In Section 3.2 we
construct Algebraic-Geometric codes from the Giulietti-Korchmáros curves and
compute their parameters. Our idea is to consider divisors left invariant by a large
automorphism group. This choice provides indeed codes with large automorphism
groups, hence useful for the applications. The contents of this chapter are also
found in [8, 9].

Chapter 4 contains our original contributions regarding applications of curves
in related areas, namely Finite Geometry and Permutation Polynomials. Sections
4.1 and 4.2 deals with (k, r)-arcs in PG(2, q). For r ∈ {3, 4}, we construct (k, r)-
arcs from Fq-rational points of a rational plane curve of degree r + 1. Their sizes
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turn out to be less than q; this significantly distinguishes them from the previ-
ously known families. Section 4.3 provides constructions and characterizations of
certain Complete Permutation Polynomials over a finite field. The characteristic
2 case is useful in Cryptography as they give rise to Bent-Negabent functions. We
characterize Complete Permutation Polynomials of Fqn of type fa(x) = axd with
d = (qn − 1)/(q − 1) + 1 in the case of n+ 1 prime, using the known partial clas-
sifications of exceptional polynomials. The contents of this chapter are the object
of three published papers [6, 7, 5] and one submitted paper [10].

Finally, I wish to thank my supervisor, Professor Massimo Giulietti, for his
guidance at each step of my PhD program. This work, as well as many other
things in these years, would not have been possible without his support.
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Chapter 1

Preliminary notions on curves

over a finite field and AG codes

1.1 Algebraic function fields and curves

1.1.1 Algebraic function fields

In this section we summarize some basic concepts about the theory of function
fields. For the proofs and a more detailed exposition, we refer to [107, Chapters
1–4].

Definition 1.1.1. Let K be a perfect field. A function field F over K is a tran-

scendental field extension F of K such that F is a finite extension of K(x), for

some (and hence for any) x ∈ F which is transcendental over K. The constant

field of F is the subfield of the elements of F which are algebraic over K.

Throughout this section, F will denote a function field over a perfect field K
of characteristic p ≥ 0, with constant field K.

Note that, if K is algebraically closed, then K is the constant field of F ; if K
is a finite field Fq, then K is the algebraic closure Fq = ∪∞i=1Fqi .

Definition 1.1.2. A valuation ring of F is a ring O ( F such that K ( O and,

for every z ∈ F , we have z ∈ O or z−1 ∈ O.

A valuation ring O of F is a local principal ideal domain, and not a field; hence,
the following definition is well-posed.

Definition 1.1.3. A place of F is the unique maximal ideal P of some valuation

ring OP of F . Any generator of P is called a local parameter at P . We denote

by P(F ) the set of places of F .

1



2 CHAPTER 1. PRELIMINARY NOTIONS ON CURVES AND CODES

Note that OP is uniquely determined by its maximal ideal P . Note also that
each z ∈ F \ {0} has a unique representation of the form z = tnu, where n ∈ Z, t
is a local parameter at P , and u ∈ O \ P ; the integer n does not depend on the
choice of u.

Being a local PID, OP is also a discrete valuation ring (DVR); the discrete
valuation of F associated with OP is the map vP : F → Z ∪ {∞} defined by

0 7→ ∞, 0 6= z = tnu 7→ n,

where t is a local parameter at P and u ∈ O\P . The discrete valuation vP satisfies
the following properties, for all x, y ∈ F and λ ∈ K:

• vP (xy) = vP (x) + vP (y).

• vP (x+ y) ≥ min{vP (x), vP (y)}.

• If vP (x) 6= vP (y), then vP (x+ y) = min{vP (x), vP (y)}.

• vP (λ) = 0.

The local parameters at P are exactly the elements t ∈ F such that vP (t) = 1,
while OP = {z ∈ F | vP (z) ≥ 0}.

Definition 1.1.4. The residue class field of a place P ∈ P(F ) is the field FP :=

OP/P . The degree of P is defined as deg(P ) = [FP : K]. If deg(P ) = 1, then P

is said to be a K-rational (or simply rational) place.

For any z ∈ OP , we denote by z(P ) the canonical image z + P ; if z ∈ F \ OP ,
we set z(P ) := ∞. Since K ⊂ OP and K ∩ P = {0}, K is canonically embedded
in FP .

Remark 1.1.5. ([107, Prop. 1.1.15]) If P is a place of F and 0 6= x ∈ P , then

deg(P ) ≤ [F : K(x)] ∈ N.

In particular, deg(P ) is finite.

If K is algebraically closed, then all places of F are rational, and for any z ∈ F
the map P 7→ z(P ) is a function P(F )→ K ∪ {∞}.

We define zeros and poles of a non-zero function z ∈ F .

Definition 1.1.6. Let z ∈ F \ {0} and P ∈ P(F ). If vP (z) = m > 0, then P is a

zero of z of order (or multiplicity) m; if vP (z) = −m < 0, then P is a pole of z

of order (or multiplicity) m;
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Example 1.1.7. An example of function field is the rational function field, that

is, the extension F = K(x) of K where x is transcendental over K. For any

irreducible monic polynomials p(x) ∈ K[x] we have a valuation ring, namely,

Op(x) =

{
f(x)

g(x)
| f, g ∈ K[x], p(x) - g(x)

}
,

whose associated place is

Pp(x) =

{
f(x)

g(x)
∈ Op(x) | p(x) | f(x)

}
;

we also have the valuation ring

O∞ =

{
f(x)

g(x)
| f, g ∈ K[x], deg(f) ≤ deg(g)

}
,

whose associated place is

P∞ =

{
f(x)

g(x)
| f, g ∈ K[x], deg(f) < deg(g)

}
.

The so-called infinite place P∞ is the only pole of x. The place Pp(x) has degree

1 if and only if p(x) = x − α with α ∈ K; this happens in particular when K is

algebraically closed. Hence, the places of degree 1 are in one-to-one correspondence

with K ∪ {∞}, that is, with the projective line PG(1, K).

In order to state the Riemann-Roch Theorem, we start by defining the divisors
of F .

Definition 1.1.8. A divisor D of F is an element of the free abelian group Div(F )

generated by the places of F , written additively. Namely,

D =
∑

P∈P(F )

nPP , with nP ∈ Z, nP = 0 for almost all P ∈ P(F ).

The support of D is supp(D) := {P ∈ P(F ) | nP 6= 0}; the degree of D is

deg(D) :=
∑

P∈P(F )

nP · deg(P ).

Let vP (D) := nP be the weight (or multiplicity) of P in D. Then the relation

D1 ≤ D2 ⇐⇒ vP (D1) ≤ vP (D2) for all P ∈ P(F )

defines a partial ordering on Div(F ). A divisor D is called effective (or positive)

if D ≥ 0.
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Any non-zero rational function z ∈ F has a finite number of zeros and poles.
Then the following definition is well-posed.

Definition 1.1.9. Let 0 6= z ∈ F , and let Z1 and Z2 denote the set of its zeros

and poles, respectively. Then we define

(z)0 :=
∑
P∈Z1

vP (z)P, (z)∞ :=
∑
P∈Z2

(−vP (z))P, div(z) = (z) := (z)0 − (z)∞,

which are called respectively the zero divisor, the pole divisor, and the principal

divisor of z.

The number of zeros of z is equal to the number of poles of z, both counted with
multiplicity; in particular, deg(z)0 = deg(z)∞ = [F : K(z)] ([107, Th. 1.4.11]).
Therefore, div(z) has degree zero.

The principal divisors of F are the elements of the normal subgroup

Princ(F ) := {div(z) | z ∈ F, z 6= 0}

of Div(F ). The divisor class group of F is the quotient group

Cl(F ) := Div(F )/Princ(F ).

Two divisors D1, D2 ∈ Div(F ) are said to be equivalent, D1 ∼ D2, if [D1] = [D2] ∈
Cl(F ).

Definition 1.1.10. For a divisor A ∈ Div(F ), the Riemann-Roch space associated

to A is the K-vector space

L(A) := {z ∈ F | div(z) ≥ −A} ∪ {0}.

The dimension of L(A) over K is denoted by `(A).

In other words, the function z ∈ F is an element of L(A) if and only if any
pole P of z is in the support of A and the order of z at P is less than or equal to
vP (A). The following properties hold (see [107, Sec. 1.4]):

• If A ∼ B, then L(A) ∼= L(B).

• If deg(A) < 0, then `(A) = 0.

• If A ≤ B, then L(A) ⊆ L(B) and dim(L(B)/L(A)) ≤ deg(B)− deg(A).

It can be shown ([107, Prop. 1.4.14]) that for any A ∈ Div(F ) we have deg(A)+
1− `(A) ≤ m for some m ∈ N independent from A. Hence, the genus of F is well-
defined as follows.



1.1. ALGEBRAIC FUNCTION FIELDS AND CURVES 5

Definition 1.1.11. The genus of F is

g(F ) := max{deg(A) + 1− `(A) | A ∈ Div(F )} ≥ 0.

Remark 1.1.12. The rational function field K(x) has genus zero.

We show how the genus of F is related to the divisors of F ; see [107, Sect. 1.5]
for more details. Let ΩF be the differential module of F , that is, ΩF := {zdx | z ∈
F}, where dx is the differential of a separating element x ∈ F . For any ω ∈ ΩF

and P ∈ P(F ) we can define the valuation vP (ω) of ω at P , and consequently the
well-defined divisor

div(ω) =
∑

P∈P(F )

vP (ω)P ∈ Div(F ).

The divisor div(ω) is a so-called canonical divisor.

Proposition 1.1.13. ([107, Cor. 1.5.16]) For any canonical divisor W of F ,

deg(W ) = 2g(F )− 2.

Riemann-Roch Theorem. ([107, 1.5.15]) Let W a canonical divisor of F . Then,

for any A ∈ Div(F ),

`(A) = deg(A) + 1− g(F ) + `(W − A).

One of the consequences of the Riemann-Roch Theorem is the Weierstrass Gap
Theorem about the divisors supported at one rational place.

Definition 1.1.14. Let P be a place of F . The subsemigroup

H(P ) := {n ∈ N | there exists z ∈ F with (z)∞ = nP}

of N is called the Weierstrass semigroup at P . The elements of H(P ) and G(P ) :=

N \H(P ) are called non-gaps and gaps at P , respectively.

Weierstrass Gap Theorem. Let g be the genus of F and P be a rational place

of F . Then there are exactly g gaps at P . The smallest gap is 1, and the greatest

gap is strictly smaller than 2g.

Now we recall some basic properties of extensions of function fields. In the
following, F ′ denotes another function field over K such that F ⊆ F ′ and F ′/F is
an algebraic extension.
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Definition 1.1.15. Let P and P ′ be places of F and F ′, respectively. If P ⊆ P ′,

we say that P lies under P ′ and P ′ lies over P ; in symbols, P ′ | P . In this case,

the relative degree of P ′ over P is f(P ′|P ) := [F ′P ′ : FP ].

The following properties hold (see [107, Sec. 3.1]):

• For any P ′ ∈ P(F ′), there exists exactly one place P ∈ P(F ) lying under P ′.

• If P ′ ∈ P(F ′) lies over P ∈ P(F ), then there exists a positive integer e(P ′|P ),
called the ramification idex of P ′ over P , such that vP ′(z) = e(P ′|P ) · vP (z)
for all z ∈ F .

• If F ′′ is another function field over K which is an algebraic extension of F ′

and P ′′ ∈ P(F ′′) lies over P ′, then

e(P ′′|P ) = e(P ′′|P ′) · e(P ′|P ), f(P ′′|P ) = f(P ′′|P ′) · f(P ′|P ).

The ramification of places is related to the degree of the extension.

Fundamental Equality. ([107, Th. 3.1.11]) If F ′ is a finite extension of F , P is

a place of F , and P ′1, . . . , P
′
m are all the places of F ′ lying over P , then

m∑
i=1

e(P ′i |P ) · f(P ′i |P ) = [F ′ : F ].

Definition 1.1.16. Let [F ′ : F ] = n ∈ N. The place P ∈ P(F ) is unramified (or

splits completely) in F ′/F if there are exactly n distinct places of F ′ lying over P ,

with ramification index 1; P is totally ramified in F ′/F if there is just one place

of F ′ lying over P , with ramification index n.

The genera of F and F ′ can be related by the Riemann-Hurwitz genus formula.
To this aim, we start by the definition of the Different divisor.

Definition 1.1.17. (see [107, Sections 3.4, 4.3]) Let P ∈ P(F ) and P ′ ∈ P(F ′)

with P ′ | P . The Different exponent of P ′ over P is defined by

dP ′ = d(P ′|P ) := −vP ′
(
dt

dt′

)
,

where t and t′ are local parameters at P and P ′, respectively. We have that

d(P ′|P ) ≥ 0, and d(P ′|P ) = 0 for almost all P ∈ P(F ). Therefore, the effec-

tive Different divisor of F ′/F is well-defined by

Diff(F ′/F ) :=
∑

P ′∈P(F ′)

dP ′P
′.
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The Different exponent d(P ′|P ) satisfies the following properties, known as
Dedekind’s Different theorem ([107, Th. 3.5.1]):

1. d(P ′|P ) = e(P ′|P )− 1 if and only if p - e(P ′|P );

2. d(P ′|P ) ≥ e(P ′|P ) if and only if p | e(P ′|P ).

In Case 1 P ′|P is said to be tamely ramified, in Case 2 P ′|P is wildly ramified.

Riemann-Hurwitz genus formula. ([107, Th. 3.4.13])

2g(F ′)− 2 = [F ′ : F ](2g(F )− 2) + deg(Diff(F ′/F )).

Now we define Galois extensions of function fields. Let G be the subgroup

G := Aut(F ′/F ) = {σ : F ′ → F ′ automorphism | σ(z) = z for all z ∈ F ′}

of the K-automorphism group Aut(F ) of F . The extension F ′/F is Galois if G
has finite order [F ′ : F ]. In this case we write F = Fix(G) = F ′G for the fixed
field of G and Gal(F ′/F ) := G for the Galois group of F ′/F .

If p - |G|, F ′/F is said to be a tame extension; otherwise, a wild extension.

Remark 1.1.18. ([107, Th. 3.7.1, Cor. 3.7.2]) The Galois group Gal(F ′/F ) acts

naturally on the places of F ′. For any place P of F , Gal(F ′/F ) acts transitively

on the places of F ′ lying over P , and vσ(P )(z) = vP (σ−1(z)) for all σ ∈ Gal(F ′/F ),

z ∈ F ′. This implies that places of F ′ lying over the same place of F have the

same ramification index and Different exponent.

Definition 1.1.19. Let F ′/F be a Galois extension with Galois group G, and P ′

be a place of F ′. For every i ∈ N the i-th ramification group of P ′ is

G
(i)
P ′ := {σ ∈ G | vP ′(σ(z)− z) ≥ i+ 1 for all z ∈ OP ′}.

The 0-th ramification group GP ′ := G
(0)
P ′ is the stabilizer of P ′ in G.

For the higher ramification groups the following hold ([107, Prop. 3.8.5]):

• GP ′ has order |GP ′| = e(P ′|P ).

• G(i)
P ′ ⊆ G

(j)
P ′ for i ≥ j, and G

(k)
P ′ = {id} for k sufficiently large.

• For any i ≥ 0, G
(i+1)
P ′ is a normal subgroup of G

(i)
P ′ .

• G(1)
P ′ is a p-group, and G

(0)
P ′ = G

(1)
P ′ o H, where H is a cyclic group of order

coprime to p.
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• For any i ≥ 1, G
(i)
P ′/G

(i+1)
P ′ is isomorphic to an additive subgroup of F ′P ′ ;

hence, if p > 0, then G
(i)
P ′/G

(i+1)
P ′ is an elementary abelian p-group.

The Different exponent is related to the ramification groups as follows.

Hilbert’s Different formula. ([107, Th. 3.8.7]) Let F ′/F be a Galois extension

with Galois group G, and P ′ be a place of F ′. Then

dP ′ =
∞∑
i=0

(∣∣G(i)
P ′

∣∣− 1
)
, and hence deg(Diff(F ′/F )) =

∑
P ′∈P(F ′)

∞∑
i=0

(∣∣G(i)
P ′

∣∣− 1
)
.

In particular, for tame extensions, we have

deg(Diff(F ′/F )) =
∑

P ′∈P(F ′)

(
|GP ′ | − 1

)
.

We present two special types of Galois extensions of function fields.

Kummer extensions. ([107, Prop. 3.7.3]) Let F be a function field over K,

where K contains a primitive n-th root of unity, with n > 1 and n coprime to p.

Suppose that u ∈ F is an element satisfying

u 6= wd for all w ∈ F and all divisors d > 1 of n.

Let

F ′ = F (y) with yn = u.

Then F ′ is said to be a Kummer extension of F . Moreover,

• T n−u ∈ F [T ] is the minimal polynomial of y over F ; hence [F ′ : F ] = n. The

extension F ′/F is Galois, with cyclic Galois group generated by σ : y 7→ ζy,

where ζ is a primitive n-th root of unity.

• If P ′ ∈ P(F ′) lies over P ∈ P(F ), then

e(P ′|P ) =
n

rP
and d(P ′|P ) =

n

rP
− 1, where rP := gcd(n, vP (u)) > 0.

• The genus of F ′ is

g(F ′) = 1 + n

g(F )− 1 +
1

2

∑
P∈P(F )

(
1− gcd(n, vP (u))

n

)
· deg(P )

 .
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Generalized Artin-Schreier extensions. ([107, Prop. 3.7.10]) Let F a function

field over K with p > 0. Let a(T ) ∈ K[T ] be an additive separable polynomial of

degree pn having all its roots in K. Let u ∈ F . Suppose that for each P ∈ P(F )

there is an element zP ∈ F such that

vP (u− a(zP )) ≥ 0, or vP (u− a(zP )) = −m with m > 0 and p - m.

Define mP := −1 in the former case, mP := m in the latter case. Then mP is

well-defined. Let

F ′ = F (y) with a(y) = u.

If there exists Q ∈ P(F ) with mQ > 0, then F ′ is said to be a generalized Artin-

Schreier extension of F . Moreover,

• a(T )−u ∈ F [T ] is the minimal polynomial of y over F ; hence [F ′ : F ] = pn.

The extension F ′/F is Galois, and the Galois group is an elementary abelian

p-group isomorphic to the additive group of roots of a(T ).

• Each P ∈ P(F ) with mP = −1 is unramified in F ′/F .

• Each P ∈ P(F ) with mP > 0 is totally ramified in F ′/F , and

d(P ′|P ) = (pn − 1)(mP − 1).

• The genus of F ′ is

g(F ′) = pn · g(F ) +
pn − 1

2

−2 +
∑

P∈P(F )

(mP + 1) · deg(P )

 .

1.1.2 Algebraic curves

In this section we recall some elementary facts about algebraic curves, and
relate them to function fields. For the proofs and a general exposition, we refer to
[40, 67].

Let K be a perfect field, K be its algebraic closure, and PG(n,K) be the
n-dimensional projective space over K. Let V ⊆ PG(n,K) be a projective alge-
braic set, that is, V is the set of points of PG(n,K) on which a certain subset
of K[X0, X1, . . . , Xn] vanishes. The ideal I(V ) of V is the homogeneous ideal of
K[X0, . . . , Xn] generated by all homogeneous polynomials vanishing on V . The set
V is irreducible over K if and only if I(V ) is a prime ideal in K[X0, . . . , Xn]; being
K algebraically closed, we also say that V is absolutely irreducible or geometrically
irreducible. If V is an absolutely irreducible projective algebraic set, then V is
called a (absolutely irreducible, projective, algebraic) variety.
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Definition 1.1.20. If I(V ) can be generated by polynomials in K[X0, . . . , Xn],

then the variety V is said to be defined over K. The K-rational points of V are

the points of V whose homogeneous coordinates can be chosen in K.

In the following, V will denote a variety over K in PG(n,K).

Definition 1.1.21. The homogeneous coordinate ring K[V ] of V is defined as

K[X0, . . . , Xn]/I(V ), and the function field K(V ) of V is the subfield of the field

of fractions of K[V ] defined by

K(V ) :=

{
F + I(V )

G+ I(V )
| F,G are homogeneous, deg(F ) = deg(G), G /∈ I(V )

}
.

Let f ∈ K(V ), f := (F + I(V ))/(G + I(V )), and P ∈ V . If G(P ) 6= 0, then
f(P ) := F (P )/G(P ) ∈ K and f is regular at P ; the local ring of V at P is

K[V ]P := {f ∈ K(V ) | f is regular at P}.

It is a local ring with maximal ideal MP := {f ∈ K[V ]P | f(P ) = 0}. The
K-rational function field of V can be defined in a similar way.

Let AG(n,K) be the n-dimensional affine space overK with coordinatesX1/X0,
. . ., Xn/X0. Then we can define in a similar way affine varieties of AG(n,K), their
coordinate rings, local rings, and function fields. If Va is the affine variety as-
sociated with V and Pa ∈ Va is the affine point corresponding to P ∈ V , then
there is a natural isomorphism K(Va) ∼= K(V ) which induces an isomorphism
K[Va]Pa

∼= K[V ]P .
The dimension of V is the transcendence degree ofK(V )/K; if V has dimension

1, it is a curve. Hereafter, X denotes a curve in PG(n,K) defined over K; we also
require that X is non-degenerate, that is, X is not contained in any hyperplane of
PG(n,K).

Clearly, K(X ) is generated over K by x1, . . . , xn, where xi := (Xi+I(V ))/(X0+
I(V )) is the i-th coordinate function. By [80, Th. X.1] there is a j ∈ {1, . . . , n}
such that the extension K(X )/K(xj) is finite and separable. By the Theorem
of the Primitive Element ([67, Th. A.1]) we have K(X ) = K(xj, y), where y ∈
K(X ) satisfies F (xj, y) = 0 with F ∈ K[X, Y ] such that F (xj, T ) ∈ K(xj)[T ] is
separable; since X is defined over K, we can also assume F ∈ K[X, Y ].

Note that K(X ) is a function field over K, in the sense of Definition 1.1.1.
Conversely, given a function field F over K, we argue as above to conclude that
F = K(x, y), where x is transcendent over K and y satisfies F (x, y) = 0 for some
F ∈ K[X, Y ] separable in Y ; hence, F is isomorphic to the function field of the
plane curve X defined by F (X, Y ) = 0.

The points of X are related to the places of its function field.
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Definition 1.1.22. A point P ∈ X is called non-singular (or simple) if the local

ring K[X ]P is a discrete valuation ring of K(X ).

Definition 1.1.22 is consistent with the Jacobi-criterion for plane curves and
with the usual definition of singularity. Moreover, the following holds.

Proposition 1.1.23. [67, Th. 4.32] For any DVR O of K(X ), there exists exactly

one point P ∈ X (called the center of O) such that K[X ]P ⊆ O and the maximal

ideal of K[X ]P is the restriction to K[X ]P of the place of O.

Proposition 1.1.23 implies that the points of a non-singular curve are in 1− 1
correspondence with the places of its function field. We shall always identify a
simple point P of X with the place of K(X ) centered at P . If a point is singular
with multiplicity m (in the usual sense), then it is the center of at most m places
([67, Th. 4.36]).

Remark 1.1.24. [67, Th. 8.29, 8.31] If a place is K-rational (i.e., it has degree

1 over K), then its center is K-rational; conversely, if a point is simple and K-

rational, then the corresponding place is K-rational.

Definition 1.1.25. The set of K-rational places of X is denoted by X (K).

If X is a plane curve and C is another plane curve (eventually reducible), then
we can define in a standard way the intersection multiplicity I(X ∩C, P ) of X and
C at a point P ∈ PG(2, K); see [67, Chapt. 3.1].

Proposition 1.1.26. ([67, Th. 4.36]) Suppose that X : F (X, Y ) = 0 is a plane

curve, P is a simple point of X , and α = G(x,y)
H(x,y)

∈ K(X ). Let G and H be the

plane curves defined by G(X, Y ) = 0 and H(X, Y ) = 0, respectively. Then

vP (α) = I(X ∩ G, P )− I(X ∩H, P ).

Recall that the order (or degree) of X is the number of intersections (counted
with multiplicity) of X with an hyperplane of PG(n,K); if X is a plane curve
defined by F ∈ K[X, Y ], then the order of X coincides with the degree of F .

Bézout’s Theorem. ([67, Th. 3.14]) If Y and Z are two (eventually reducible)

plane curves of order d1 and d2, then∑
P∈PG(2,K)

I(Y ∩ Z, P ) = d1d2.

The genus g(X ) of X is defined to be the genus of its function field K(X ).
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Proposition 1.1.27. ([67, Th. 5.57]) Let X be a plane curve of order d. Let

P1, . . . , Pk be the singular points of X with multiplicities m1, . . . ,mk. Then

g(X ) ≤ (d− 1)(d− 2)

2
− 1

2

k∑
i=1

mi(mi − 1). (1.1)

Equality in (1.1) holds if and only if all singular points of X are ordinary, i.e.

there are mi distinct tangent lines to X at Pi, i = 1, . . . , k.

Now we define rationals maps between curves and show that they correspond
to algebraic extensions of function fields.

Definition 1.1.28. A rational map of X into PG(r,K) is an element

ϕ = (F0 : F1 : . . . : Fr) ∈ PG(r,K(X )).

If ϕ ∈ PG(r,K(X )), then ϕ is said to be K-rational (or defined over K). The

rational map ϕ is defined (or regular) at P ∈ X if the image ϕ(P ) is defined,

that is, there exists ρ ∈ K(X )∗ such that ρFi ∈ K[X ]P for all i and ρFi(P ) 6=
0 for some i; in this case, ϕ(P ) is well-defined. We write ϕ(X ) for {ϕ(P ) |
ϕ is defined at P}. If ϕ is defined at every point of X , then ϕ is a morphism.

Remark 1.1.29. A rational map ϕ of X into PG(3, K) is defined at every simple

point of X [67, Th. 5.17]. If ϕ is non-constant, then there exists a unique curve Y
of PG(r,K) such that ϕ(X ) ⊆ Y [67, Th. 5.16]; in this case, we write ϕ : X → Y.

Definition 1.1.30. If ϕ : X → Y is a (K-)rational map, then we say that ϕ is a

(K-)covering, X is a (K-)cover of Y, and Y is a (K-)subcover of X .

Let ϕ = (F0 : . . . : Fr) : X → Y and ψ = (G0 : . . . : Gs) : Y → Z be two
rational maps. Then the composition is defined as

ψ ◦ ϕ : X → Z, ψ ◦ ϕ := (G0(F0, . . . , Fr) : . . . : Gs(F0, . . . , Fr)).

Suppose that F0 6= 0. For i = 1, . . . , r, let fi := Fi/F0 and let y1, . . . , yr be the
coordinate functions of Y . Then

ϕ∗ : K(Y)→ K(X ), ϕ∗
(
g(y1, . . . , yr)

h(y1, . . . , yr)

)
:=

g(f1/f0, . . . , gr/g0)

h(f1/f0, . . . , fr/f0)

is a well-defined field K-homomorphism, the pull-back of ϕ.
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Remark 1.1.31. Let G be the category of curves and rational maps, and A be

the category of function fields and field homomorphisms. Then the pull-back is a

controvariant functor of G into A.

Definition 1.1.32. If ϕ : X → Y is an invertible morphism in the category G
defined in Remark 1.1.31, then ϕ is called a birational map, and the curves X and

Y are said to be birationally equivalent; if the birational map ϕ is a morphism,

then X and Y are said to be isomorphic.

Corollary 1.1.33. The curves X and Y are birationally equivalent if and only if

their function fields K(X ) and K(Y) are K-isomorphic.

Remark 1.1.34. Since every function field is K-isomorphic to the function field

of a plane curve, we have that every curve is birationally equivalent to a plane

curve.

It can be also shown ([67, Remark 8.30]) that every curve is birationally equiv-

alent to a non-singular curve (in some possibly higher dimensional space), which

is said to be a non-singular model of the curve.

If ϕ : X → Y is a rational map and PX is a place of X , then there is exactly
one place PY of Y such that ϕ∗(PY) ⊆ PX ([67, Th. 5.18]). In this case, we define
ϕ̂(PX ) := PY .

Since no confusion arises, we will always indicate the maps ϕ, ϕ∗, and ϕ̂ with
the same symbol ϕ. We will also identify K(Y) with its K-isomorphic image
ϕ∗(K(Y)) ⊆ K(X ).

Therefore, the rational maps ϕ : X → Y will be studied through the the-
ory of algebraic extensions K(X )/K(Y) of function fields. In particular, the
K-automorphism group of the function field K(X ) will be identified with the
automorphism group Aut(X ) of the curve.

Definition 1.1.35. A rational map ϕ : X → Y is said to be a Galois covering if

K(X )/K(Y) is a Galois extension. If ϕ : X → Y is a Galois covering with Galois

group G, then Y is called the quotient curve of X over G and is denoted by X/G.

Clearly, if two automorphism groupsG,G′ ≤ Aut(X ) are conjugated in Aut(X ),
then the quotient curves X/G and X/G′ are isomorphic.

The following lemma for curves over finite fields will be useful.

Lemma 1.1.36. Let C be a curve defined over the finite field Fq and consider

the function field Fq(C) with constant field Fq. Suppose that f ∈ Fq(C)[T ] is a

polynomial irreducible over Fq(C)[T ] and z is a root of f . Then Fq is the full

constant field of Fq(C)(z).
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Proof. Let Fq′ be the constant field of Fq(C)(z) over Fq. Then

Fq(C) ⊆ Fq′(C) ⊆ Fq′(C)(z) = Fq(C)(z).

Since f is irreducible over Fq′(C), then [Fq′(C)(z) : Fq′(C)] = deg(f) = [Fq(C)(z) :

Fq(C)], hence [Fq′(C) : Fq(C)] = 1 and Fq′ = Fq .

1.1.3 Algebraic-Geometric codes

In this section we use the function field notation to introduce Algebric-Geometric
codes, briefly AG codes. They generalize several previously known families of lin-
ear codes; see [117] for an introduction to coding theory. AG codes were firstly
introduced by Goppa [57, 58], and thus are nowadays referred to also as Goppa
codes; see [113] for a detailed introduction to AG codes.

Definition 1.1.37. Let Fq be the finite field with q elements. A linear [n, k, d]q-

code is an Fq-vector subspace C of Fnq . The elements of C are called codewords,

n is the length of C, k is the dimension of C as an Fq-vector space, and d is

the minimum distance. This means that d is the minimum number of entries in

which any two distinct codewords differ; equivalently, d is the minimum number

of entries in which a codeword is non-zero. The Singleton defect is the integer

δ := n+ 1− k − d. The Singleton bound δ ≥ 0 holds. The dual code C⊥ of C is

the subspace of Fnq orthogonal to C with respect to the canonical inner product of

Fnq .

Let F be a function field of genus g over the finite field Fq with q elements and
characteristic p > 0. Let P1, . . . , Pn ∈ P(F ) be n distinct Fq-rational places of F ,
D be the divisor P1 + . . . + Pn, and G be another Fq-rational divisor such that
supp(G) ∩ supp(D) = ∅.

Consider the evaluation map

eD : L(G) → Fnq
f 7→ eD(f) = (f(P1), f(P2), . . . , f(Pn))

.

The map eD is Fq-linear. The functional AG code is CL(D,G) := eD(L(G)).

Proposition 1.1.38. ([107, Th. 2.2.2, Cor. 2.2.3]) The [n, k, d]q-code CL(D,G)

satisfies the following properties:

• k = `(G)− `(G−D), d ≥ n− deg(G).

• If n > deg(G), then eD is injective and k = `(G).
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• If n > deg(G) > 2g − 2, then k = deg(G) + 1− g.

The integer d∗ := n − deg(G) is called the designed minimum distance of
CL(D,G). The differential AG code is

CΩ(D,G) := {(resP1(ω), . . . , resPn(ω)) | ω ∈ ΩF (G−D)},

where ΩF is the differential module of F , ΩF (G − D) = {ω ∈ ΩF | div(ω) ≥
G−D} ∪ {0}, and resP (ω) is the residue of ω at P ; see [107, Section 8.1].

Proposition 1.1.39. ([107, Th. 2.2.7, 2.2.8]) The [n̄, k̄, d̄]q-code CΩ(D,G) satisfies

the following properties:

• CΩ(D,G) = CL(D,G)⊥.

• k̄ = i(G−D)− i(G), where i(A) = `(A)− deg(A) + g − 1.

• d̄ ≥ d̄∗ := deg(G)− (2g − 2).

• If deg(G) > 2g − 2, then k̄ = i(G−D) ≥ n̄+ g − 1− deg(G).

• If n > deg(G) > 2g − 2, then k̄ = n̄+ g − 1 deg(G).

In the construction of AG codes, the condition supp(D)∩ supp(G) = ∅ can be
removed as follows; see [113, Sec. 3.1.1]. For any Pi ∈ supp(D) let bi be the weight
of Pi in G and ti ∈ F be a local parameter at Pi. The map

e′D : L(G) → Fnq
f 7→ e′D(f) = ((tb1f)(P1), (tb2f)(P2), . . . , (tbnf)(Pn))

is linear. The extended AG code is Cext(D,G) := e′(L(G)). Note that e′D is not
well-defined since it depends on the choice of the local parameters; yet, different
choices yield extended AG codes which are equivalent. The code Cext(D,G) is a
lengthening of CL(D̂, G), where D̂ is the sum of the places in supp(D) \ supp(G).

Remark 1.1.40. For the [n′, k′, d′]q-code Cext(D,G) the following holds:

• k′ = `(G)− `(G−D), d′ ≥ n′ − deg(G).

• If n′ > deg(G), then e′D is injective and k′ = deg(G).

• If n′ > deg(G) > 2g − 2, then k′ = deg(G) + 1− g.

We present some results which improve the bounds on the parameters of the
differential code CΩ(D,G), through the concept of pure gaps at many places of F ;
see [21, 70] and the references therein. To this aim, we start by generalizing the
notion of Weierstrass semigroup.
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Definition 1.1.41. Let Q1, . . . , Qs be distinct Fq-rational places of F . The Weier-

strass semigroup at Q1 . . . , Qs is the subsemigroup

H(Q1, . . . , Ps) := {(n1, . . . , ns) ∈ Ns | ∃z ∈ F with (z)∞ = n1Q1 + · · ·+ nsQs}

of Ns, whose elements are the non-gaps at Q1 . . . , Qs; the elements of the comple-

ment G(Q1, . . . , Qs) = Ns \H(Q1, . . . , Qs) are the gaps at Q1 . . . , Qs.

From [21, Lemma 2.2], an s-tuple (n1, . . . , ns) ∈ Ns is a gap at Q1, . . . , Qs if
and only if `

(∑s
i=1 niQi

)
= `
(
(
∑s

i=1 niQi)−Qj

)
for some j ∈ {1, . . . , s}.

For s = 1 there are exactly g gaps at Q1, by the Weierstrass Gap Theorem.
For s ≥ 2 the number of gaps may vary depending on the choice of the places.
When s = 2 the size of G(Q1, Q2) was given in [70] in terms of G(Q1) and G(Q2),
as follows. Let 1 = a1 < a2 < · · · < ag and 1 = b1 < b2 < · · · < bg be the
gap sequences at Q1 and Q2, respectively. For i = 1, . . . , g, let γ(ai) := min{b ∈
G(P2) | (ai, b) ∈ H(Q1, Q2)}; by [76, Lemma 2.6], {γ(ai) | i = 1, . . . , g} = G(Q2).
Therefore, there is a permutation σ of the set {1, . . . , g} such that γ(ai) = bσ(i),
and

Γ(Q1, Q2) := {(ai, bσ(i)) | i = 1, . . . , g}

is the graph of a bijective map γ between G(Q1) and G(Q2). Define

r(Q1, Q2) := |{(x, y) ∈ Γ(Q1, Q2) | x < y, γ(x) > γ(y)}|.

Theorem 1.1.42 ([70, Th. 1]). Under the above notation, the number of gaps at

Q1, Q2 is

|G(Q1, Q2)| =
g∑
i=1

ai +

g∑
i=1

bi − r(Q1, Q2).

A characterization of Γ(Q1, Q2) is the following.

Lemma 1.1.43 ([70, Lemma 2]). Let Γ′ be a subset of (G(Q1)×G(Q2))∩H(Q1, Q2).

If there exists a permutation τ of {1, . . . , g} such that Γ′ = {(ai, bτ(i)) | i =

1, . . . , g}, then Γ′ = Γ(Q1, Q2).

The Weierstrass semigroup H(Q1, Q2) can be recovered from Γ(Q1, Q2) as fol-
lows. For x = (a1, b1),y = (a2, b2) ∈ N2, define the least upper bound of x and y
as lub(x,y) := (max{a1, a2},max{b1, b2}). By [76, Lemma 2.2],

H(Q1, Q2) = {lub(x,y) | x,y ∈ Γ(Q1, Q2)∪(H(Q1)×{0})∪({0}×H(Q2))}. (1.2)
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Definition 1.1.44. An s-tuple (n1, . . . , ns) ∈ Ns is a pure gap at Q1, . . . , Qs if

`
( s∑
i=1

niQi

)
= `
(( s∑

i=1

niQi

)
−Qj

)
for all j = 1, . . . , s.

The set of pure gaps at Q1, . . . , Qs is denoted by G0(Q1, . . . , Qs).

Clearly, a pure gap is always a gap.

Lemma 1.1.45 ([21, Lemma 2.5]). An s-tuple (n1, . . . , ns) is a pure gap at Q1, . . . , Qs

if and only if `
(∑s

i=1 niQi

)
= `
(∑s

i=1(ni − 1)Qi

)
.

Finally, the following results shows how pure gaps can be used to improve the
minimum distance of differential codes.

Theorem 1.1.46 ([21, Theorem 3.4]). Let Q1, . . . , Qs, P1, . . . , Pn be pairwise dis-

tinct Fq-rational places of F and (a1, . . . , as), (b1, . . . , bs) ∈ Ns be two pure gaps at

Q1, . . . , Qs. Consider the divisors D = P1 + · · ·+Pn and G =
∑s

i=1(ai + bi−1)Qi.

Suppose that ai ≤ bi for all i = 1, . . . , s, and that each s-tuple (c1, . . . , cs) ∈ Ns with

ai ≤ ci ≤ bi for i = 1, . . . , s is also a pure gap at Q1, . . . , Qs. Then the minimum

distance d of CΩ(D,G) satisfies

d ≥ deg(G)− (2g − 2) + s+
s∑
i=1

(bi − ai).

Now we define the automorphism group of CL(D,G); see [52, 74]. Here we
make use of algebraic curves, namely, of a curve X defined over Fq whose function
field Fq(X ) is equal to F .

Let Mn,q ≤ GL(n, q) be the subgroup of matrices having exactly one non-
zero element in each row and column. For γ ∈ Aut(Fq) and M = (mi,j)i,j ∈
GL(n, q), let Mγ be the matrix (γ(mi,j))i,j. Let Wn,q be the semidirect product
Mn,q oAut(Fq) with multiplication M1γ1 ·M2γ2 := M1M

γ
2 · γ1γ2, acting on Fnq by

Mγ(x1, . . . , xn) := ((x1, . . . , xn) ·M)γ. The automorphism group Aut(CL(D,G))
of CL(D,G) is the subgroup of Wn,q preserving CL(D,G). Let AutFq(X ) be the
Fq-automorphism group of X , and

AutFq ,D,G(X ) := {σ ∈ AutFq(X ) | σ(D) = D, σ(G) ≈D G},

where G′ ≈D G if and only if there exists u ∈ Fq(X ) such that G′ −G = (u) and
u(Pi) = 1 for i = 1, . . . , n, and let

Aut+
Fq ,D,G(X ) := {σ ∈ AutFq(X ) | σ(D) = D, σ(|G|) = |G|},

where |G| = {G + (f) | f ∈ L(G)} is the linear series associated with G. Note
that AutFq ,D,G(X ) ⊆ Aut+

Fq ,D,G(X ).
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Proposition 1.1.47. Let N ∈ N be such that any non-trivial element of AutFq(X )

fixes at most N Fq-rational places of X . If n > N , then Aut(CL(D,G)) contains

a subgroup isomorphic to

(AutFq ,D,G(X ) o Aut(Fq)) o F∗q.

Proof. Arguing as in the proof of [107, Proposition 8.2.3 (b)], we obtain for n > N

a subgroup of Aut(CL(D,G)) isomorphic to AutFq ,D,G(X ). As in [52], an auto-

morphism group of CL(D,G) isomorphic to (AutFq ,D,G(X )oAut(Fq))oF∗q is then

constructed via semilinear and scalar matrices.

Remark 1.1.48. Suppose that supp(D) ∪ supp(G) = X (Fq) and each place in

supp(G) has the same weight in G. Then

AutFq ,D,G(X ) = Aut+
Fq ,D,G(X ) = {σ ∈ AutFq(X ) | σ(supp(G)) = supp(G)}.

Theorem 1.1.49. ([52, Th. 3.4]) Suppose that the following conditions hold:

• G is effective;

• `(G− P ) = `(G)− 1 and `(G− P −Q) = `(G)− 2 for any P,Q ∈ X ;

• X has a plane model Π(X ) with coordinate functions x, y ∈ L(G);

• X is defined over Fp;

• supp(D) is preserved by the Frobenius morphism (x, y) 7→ (xp, yp);

• n > deg(G) · deg(Π(X )).

Then

Aut(CL(D,G)) ∼= (Aut+
Fq ,D,G(X ) o Aut(Fq)) o F∗q.

1.2 Maximal curves

In this section we present some important families of maximal curves, namely
the Hermitian, Suzuki, Ree, GK, GGS, and GS curves. We refer to [39, 41, 42, 44,
115, 116] and [67, Chapt. 10] for surveys on maximal curves and their applications
in Coding Theory.

We denote by Fq the finite field with q element where q is a power of a prime p,
and by K the algebraic closure of Fq. Also, PG(r, q) stands for the r-dimensional
projective space PG(r,Fq).

The most important result on the number of Fq-rational points of a curve
defined over a finite field is the Hasse-Weil bound.
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Hasse-Weil Bound. Let X be a non-singular curve of genus g defined over Fq.
Then the number X (Fq) of its Fq-rational points satisfies

||X (Fq)| − (q + 1)| ≤ 2g
√
q.

The Hasse-Weil bound is connected to the so-called zeta function of the curve
X . In particular, from the Hasse-Weil bound, the Riemann hypothesis for curves
over finite fields is deduced; see [67, Chapt. 9.2].

Definition 1.2.1. A non-singular curve X of genus g defined over Fq2 is Fq2-
maximal if it attains the Hasse-Weil upper bound, i.e.

|X (Fq2)| = q2 + 1 + 2gq.

A curve which is maximal over a certain finite field is also maximal over an
infinite number of field extensions, as the following result shows.

Proposition 1.2.2. ([67, Eq. (10.1)]) Let X be an Fq2-maximal curve and n be

a positive integer. If n is odd, then X is Fq2n-maximal. If n is even, then X is

Fq2n-minimal (i.e. |X (Fq2n)| = q2n + 1− 2gqn).

The following results recall various algebraic and geometric characterizations
of maximal curves.

Theorem 1.2.3. (see [67, Chapter 10]) Let X an Fq2-rational curve of genus g.

Then X is Fq2-maximal if and only if one of the following holds.

• The Lq2-polynomial of X over Fq2 is equal to Lq2(t) = (t+ q)2g.

• If X̃ ⊂ PG(r,K) is a non-singular model of X and P0 is an Fq2-rational

point of X̃ , then the divisors qP + Φq2(P ) and (q + 1)P0 are equivalent for

any P ∈ X̃ , where Φq2 is the Fq2-Frobenius collineation of PG(r,K).

• X is Fq2-birationally equivalent to an irreducible curve X̄ ⊂ PG(r,K) of

degree q + 1 lying on a non-degenerate Hermitian variety of PG(r, q2).

Starting from a maximal curve, other maximal curves can be obtained by the
following result, commonly attributed to Serre.

Theorem 1.2.4. ([79, Prop. 6]) Let X ,Y be two algebraic curves defined over Fq2
and suppose that there exists a non-constant rational map ϕ : X → Y defined over

Fq2. If X is Fq2-maximal, then Y is also Fq2-maximal.

In particular, if X is Fq2-maximal and G ≤ Aut(X ) is Fq2-rational, then the

quotient curve X/G is Fq2-maximal.
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The curves X that we present in Sections 1.2.1 and 1.2.2 are maximal over cer-
tain finite fields Fq2 . When a singular model of X is provided, the Fq2-maximality
is meant as the Fq2-maximality of a non-singular model of X . Equivalently, the
number of Fq2-rational places (rather than Fq2-rational points) attains the Hasse-
Weil upper bound.

1.2.1 The Hermitian, Suzuki, and Ree curves

We introduce the Hermitian, Suzuki, and Ree curves. Altogether, they are
known as Deligne-Lusztig curves and arise in algebraic geometry from the algebraic
groups 2A2(q), 2B2(q), and 2G2(q), respectively. For an introduction, see [29].

The most important example of an Fq2-maximal curve is the Hermitian curve
Hq; see [67, Chapter 12.3] and the references therein for a detailed introduction
and the proofs of the results of this section.

The curve Hq is defined as any Fq2-rational curve projectively equivalent to the
plane curve with affine equation

Xq+1 + Y q+1 + 1 = 0. (1.3)

The model (1.3) is a so-called Fermat model of Hq. This Fermat model is Fq2-
isomorphic to the Norm-Trace model of Hq, namely,

Y q+1 = Xq +X, (1.4)

and Fq3-isomorphic to the Singer model of Hq, namely,

XqY + Y q +X = 0. (1.5)

Many of the Fq2-maximal curves known in the literature are constructed as
Fq2-subcovers (often, Galois subcovers) of the Hermitian curve Hq; see [28, 47, 49].

Proposition 1.2.5. ([101],[72],[67, Chapter 12.3]) For the Hermitian curve the

following properties hold:

1. Hq has genus g(Hq) = q(q−1)/2, is non-singular and has |Hq(Fq2)| = q3 +1

Fq2-rational points.

2. If X is an Fq2-maximal curve, then g(X ) ≤ g(Hq), and g(X ) = g(Hq) if and

only if X is birationally equivalent to Hq.

3. The full automorphism group Aut(Hq) has order (q3 + 1)q3 and is defined

over Fq2.
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4. Aut(Hq) acts 2-transitively on Hq(Fq2).

5. A line of PG(2, q2) has either 1 or q + 1 common points with Hq(Fq2), that

is, it is either a 1-secant or a chord of Hq(Fq2).

6. A unitary polarity Π is associated with Hq(Fq2) whose isotropic points are

those of Hq(Fq2) and isotropic lines are the 1-secants of Hq(Fq2), that is, the

tangents to Hq at the points of Hq(Fq2).

7. Aut(Hq) is isomorphic to the group PGU(3, q) ≤ PGL(3, q2) of projectivities

which commute with Π. The action of Aut(Hq) on Hq(Fq2) is equivalent to

the action of PGU(3, q) in its natural 2-transitive permutation representa-

tion.

The group PGU(3, q) contains a subgroup PSU(3, q) of index gcd(3, q + 1),
the special subgroup arising from elements of PGL(3, q2) with determinant 1. We
present the classification of maximal subgroups of PSU(3, q), going back to Mitchell
[90] and Hartley [65].

Theorem 1.2.6. ([90, 65], see also [69],[67, Th. A.10]) Let q = pn and d =

gcd(3, q + 1). Up to conjugacy, the following is a coomplete list of maximal sub-

groups of PSU(3, q).

(i) The stabilizer of an Fq2-rational point of Hq, of order q3(q2 − 1)/d.

(ii) The stabilizer of an Fq2-rational point of PG(2, q2) \ Hq (equivalently the

stabilizer of a chord of Hq(Fq2)), of order q(q − 1)(q + 1)2/d.

(iii) The stabilizer of a self-polar triangle with respect to Π, of order 6(q+ 1)2/d.

(iv) The normalizer N of a cyclic Singer subgroup S, of order |N | = 3(q2 − q +

1)/d. The group N preserves a triangle in PG(2, q6)\PG(2, q2) left invariant

by the Frobenius collineation Φq2 : (X, Y, T ) 7→ (Xq2 , Y q2 , T q
2
) of PG(2,K)

and fixed pointwise by S.

Further, for p > 2:

(v) PGL(2, q) preserving a conic.

(vi) PSU(3, pm) with m | n and n/m odd.

(vii) Subgroups containing PSU(3, pm) as a normal subgroup of index 3, when

m | n, n/m is odd, and 3 divides both n/m and q + 1.
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(viii) The Hessian groups of order 216 when 9 | (q + 1), and of order 72 and 36

when 3 | (q + 1).

(ix) PSL(2, 7) when p = 7 or −7 is not a square in Fq.

(x) The alternating group A6 on six letters, when either p = 3 and n is even, or

5 is a square in Fq but Fq contains no cube root of unity.

(xi) The symmetric group S6 on six letters, when p = 5 and n is odd.

(xii) The alternating group A7 on seven letters, when p = 5 and n is odd.

Further, for p = 2:

(xiii) PSU(3, 2m) with m | n and n/m an odd prime.

(xiv) Subgroups containing PSU(3, 2m) as a normal subgroup of index 3, when

n = 3m with m odd.

(xv) A group of order 36 when n = 1.

Case (ii) of Theorem 1.2.6 is related with the automorphism group of the
projective line. Therefore, we present the classification of subgroups of PGL(2, q),
which is due to Dickson [31].

Theorem 1.2.7. ([31, Chapter XII], see also [67, Th. A.8]) Let q = pn, d =

gcd(q− 1, 2). Consider the group PGL(2, q) in its natural 3-transitive action on a

line ` ⊂ PG(2K). The following is the complete list of subgroups of PGL(2, q) up

to conjugacy:

(i) The cyclic group Ch of order h with h | (q ± 1). The group Ch fixes two

points P,Q ∈ ` and acts semiregularly on ` \ {P,Q}. If h | (q − 1), then

P,Q ∈ PG(2, q); if h | (q + 1), then P,Q ∈ PG(2, q2) \ PG(2, q).

(ii) The elementary abelian p-group Epf of order pf with f ≤ k. The group Epf

fixes an Fq-rational point P ∈ ` and acts semiregularly on ` \ {P}.

(iii) The dihedral group Dh of order 2h with h | (q ± 1), containing Ch.

(iv) The alternating group A4 for p > 2, or p = 2 and k even.

(v) The symmetric group S4 for 16 | (q2 − 1).

(vi) The alternating group A5 for p = 5 or 5 | (q2 − 1).
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(vii) The semidirect product EpfoCh with f ≤ k and h | (q−1), of order pf (h−1),

stabilizing the fixed point of Epf .

(viii) PSL(2, pf ) for f | k.

(ix) PGL(2, pf ) for f | k.

Now we present a second class of Deligne-Lusztig curves, namely the Suzuki
curves. For an exposition of results on the Suzuki curve and its quotients, we refer
to [108, 109, 111, 112, 53] and [67, Chapter 12.2].

Let s be a positive integer, q0 = 2s and q = 2q2
0 = 22s+1. The Suzuki curve Sq

over Fq is defined by the affine equation

Sq : Y q + Y = Xq0(Xq +X). (1.6)

Proposition 1.2.8. For the Suzuki curve Sq the following properties hold:

1. Sq has genus g(Sq) = q0(q − 1) and is Fq4-maximal.

2. Sq has q2 + 1 Fq-rational points. The unique singular point of Sq is the point

at infinity P∞. There is a unique place of Sq centered at P∞.

3. The full automorphism group S(q) := Aut(Sq) has order (q2 + 1)q2(q − 1)

and is defined over Fq.

4. S(q) has exactly 2 short orbits on Sq. One is non-tame of size q2 +1, consist-

ing of all Fq-rational points. The other is tame of size q2(q− 1)(q+ 2q0 + 1),

consisting of all Fq4-rational points which are not Fq-rational.

5. S(q) acts 2-transitively on Sq(Fq).

6. S(q) is isomorphic to the group Sz(q) ≤ PGL(4, q) of projectivities preserv-

ing the Suzuki-Tits ovoid OS in PG(3, q). The action of S(q) on Sq(Fq) is

equivalent to the action of Sz(q) on OS in its natural 2-transitive permutation

representation.

7. S(q) is generated by the stabilizer

S(q)∞ = {ψa,b,c : (x, y) 7→ (ax+ b, aq0+1y + bq0x+ c) | a, b, c ∈ Fq, a 6= 0}

of P∞, together with the involution φ : (x, y) 7→ (α/β, y, β), where α :=

y2q0 + x2q0+1 and β := xy2q0 + α2q0.
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The classification of maximal subgroups of S(q) is known.

Theorem 1.2.9. (see [67, Th. A.12]) Up to conjugacy, S(q) has the following

maximal subgroups:

(i) The stabilizer of an Fq-rational point, of order q2(q − 1).

(ii) The normalizer N+ of a cyclic Singer subgroup S+. The group S+ has order

q + 2q0 + 1 and fixes 4 Fq4-rational points of Sq, the group N+ has order

4(q + 2q0 + 1), and N+/S+ is a cyclic group permuting transitively the fixed

points of S+.

(iii) The normalizer N− of a cyclic Singer subgroup S−. The group S− has order

q − 2q0 + 1 and fixes 4 Fq4-rational points of Sq, the group N− has order

4(q − 2q0 + 1), and N−/S− is a cyclic group permuting transitively the fixed

points of S−.

(iv) The Suzuki subgroups S(q̃) where q = q̃m with m prime.

Further, the subgroups listed below form a partition of S(q):

(v) All subgroups of order q2.

(vi) All cyclic subgroups of order q − 1.

(vii) All cyclic Singer subgroups of order q + 2q0 + 1.

(viii) All cyclic Singer subgroups of order q − 2q0 + 1.

Finally we present the third class of Deligne-Lusztig curves, namely the Ree
curves. For an exposition of results on the Ree curve and its quotients, we refer
to [112, 99, 35, 81, 18, 19] and [67, Chapter 12.4].

Let s be a non-negative integer, q0 = 3s and q = 3q2
0 = 32s+1. The Ree curve

Rq over Fq is defined in PG(3,K) by the affine equations

Rq : Y q − Y = Xq0(Xq −X), Zq − Z = X2q0(Xq −X). (1.7)

Proposition 1.2.10. For the Ree curve Rq the following properties hold:

1. Rq has genus g(Rq) = 3
2
q0(q − 1)(q + q0 + 1) and is Fq6-maximal.

2. Rq has q3 +1 Fq-rational points. The unique singular point of Rq is the point

at infinity P∞. There is a unique place of Rq centered at P∞.
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3. The full automorphism group R(q) := Aut(Rq) has order (q3 + 1)q3(q − 1)

and is defined over Fq.

4. R(q) has exactly 2 short orbits on Rq. One is non-tame of size q3 + 1,

consisting of all Fq-rational points. The other is tame of size q2(q − 1)(q +

3q0 + 1), consisting of all Fq6-rational points which are not Fq-rational.

5. R(q) acts 2-transitively on Sq(Fq).

6. R(q) is isomorphic to the group Ree(q) ≤ PGL(7, q) of projectivities pre-

serving the Ree-Tits ovoid OR in PG(6, q). The action of R(q) on Rq(Fq) is

equivalent to the action of Ree(q) on OR in its natural 2-transitive permuta-

tion representation.

7. R(q) is generated by the stabilizer

R(q)∞ = {ψa,b,c,d | a, b, c, d ∈ Fq, a 6= 0},

ψa,b,c,d : (x, y, z) 7→ (ax+b, aq0+1y+abq0x+c, a2q0+1z−aq0+1bq0y+ab2q0x+d),

of P∞, together with the involution φ : (x, y, z) 7→ (w6/w8, w10/w8, w
9/w8),

for certain polynomial functions wi ∈ F3[x, y, z].

The classification of maximal subgroups of R(q) is known.

Theorem 1.2.11. (see [67, Th. A.14]) Up to conjugacy, R(q) has the following

maximal subgroups:

(i) The stabilizer of an Fq-rational point, of order q3(q − 1).

(ii) The centralizer of an involution ι ∈ R(q), isomorphic to ι × PSL(2, q), of

order q(q2 − 1).

(iii) The normalizer N+ of a cyclic Singer subgroup S+. The group S+ has order

q + 3q0 + 1 and fixes 6 Fq6-rational points of Rq, the group N+ has order

6(q + 3q0 + 1), and N+/S+ is a cyclic group permuting transitively the fixed

points of S+.

(iv) The normalizer N− of a cyclic Singer subgroup S−. The group S− has order

q − 3q0 + 1 and fixes 6 Fq6-rational points of Rq, the group N− has order

6(q − 3q0 + 1), and N−/S− is a cyclic group permuting transitively the fixed

points of S−.
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(v) A subgroup of order 6(q + 1), which normalizes a cyclic subgroup of order

q + 1.

(vi) The Ree subgroups R(q̃) where q = q̃m with m prime.

1.2.2 The GK, GGS, and GS curves

In this section we present three classes of maximal curves recently constructed.
The first curve is the so-called GK curve, named after Giulietti and Korchmáros
who constructed it in [50], which we refer to for an exposition of the results below.
The GK curve was the first Fq2-maximal curve shown not to be covered by the
Hermitian curveHq. This result motivated a new interest towards maximal curves,
subcover (or Galois subcovers) of the Hermitian curve, and subcovers of other
maximal curves. Examples of subcovers of the GK curve can be found in [38, 110].

Let n be a power of a prime p, and q = n3. The GK curve GKn is defined in
PG(3,K) by the affine equations

GKn :

{
Zn2−n+1 = Y Xn2−X

Xn+X

Y n+1 = Xn +X
. (1.8)

By direct checking, equivalent equations for GKn are

Zn2−n+1 = Y n2 − Y, Y n+1 = Xn +X.

Note that GKn has a unique infinite point P∞.

Proposition 1.2.12. ([50]) For the GK curve GKn the following properties hold:

1. GKn is non-singular.

2. GKn has genus g(GKn) = (n3+1)(n2−2)
2

+1 and has |GKn(Fn6)| = n8−n6+n5+1

Fn6-rational points. Hence, GKn is Fn6-maximal.

3. For n > 2, GKn is not covered by the Hermitian curve Hn3.

4. The full automorphism group Aut(GKn) has order n3(n3 + 1)(n2 − 1)(n2 −
n+ 1) and is defined over Fn6.

5. Aut(GKn) has exactly 2 short orbits on GKn. One is non-tame of size n3 +1,

consists of all Fn2-rational points of GKn, and is given by the intersection of

GKn with the plane Z = 0. The other is tame of size n3(n3 + 1)(n2 − 1),

consisting of all Fn6-rational points of GKn which are not Fn2-rational.
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6. Aut(GKn) has a normal subgroup of index d = gcd(3, n + 1) isomorphic

to SU(3, n) × C(n2−n+1)/d, where SU(3, n) is the special unitary group which

preserves GKn(Fn2) and C(n2−n+1)/d is cyclic of order (n2 − n + 1)/d. The

subgroup isomorphic to SU(3, n) is normal in Aut(GKn).

7. The stabilizer Aut(GKn)P∞ of P∞ has order n3(n2 − 1)(n2 − n + 1) and

constains a subgroup (Qn3 o Hq2−1) × C(n2−n+1)/d, where Qn3 is a Sylow p-

subgroup of Aut(GKn) and Hn2−1 is cyclic of order n2 − 1.

8. The action of SU(3, n) on GKn(Fn2) is equivalent to the action of PGU(3, n)

in its natural 2-transitive permutation representation. The group SU(3, n) is

normal in Aut(GKn), and Aut(GKn)/SU(3, n) acts trivially on GKn(Fn2).

9. The principal divisors of the coordinate functions x, y, z are

• (x) = (n3 + 1)P(0,0,0) − (n3 + 1)P∞,

• (y) = (n2 − n+ 1)
(∑

a:an+a=0 P(a,0,0)

)
− (n3 − n2 + n)P∞,

• (z) =
(∑

a,b∈Fn2 :an+a=bn+1 P(a,b,0)

)
− n3P∞,

where P(a,b,c) is the place centered at the affine point (a, b, c) ∈ GKn.

The GK curve was generalized to a broader class of maximal curves GGSn,m
by Garcia, Güneri, and Stichtenoth in [43], where the authors show the Fn2m-
maximality of GGSn,m. The automorphism group of GGSn,m was determined in
[60] and [61], and the quotient curves of GGSn,m are investigated in [3]. In [34] it
was shown that GGSn,m is not Galois covered by Hnm whenever n ≥ 3.

Let n be a power of a prime p and m ≥ 5 be an odd integer. The GGS curve
GGSn,m is defined in PG(3,K) be the affine equations

GGSn,m :

{
Z

nm+1
n+1 = Y n2 − Y

Y n+1 = Xn +X
.

Note that GGSn,m coincides with GKn when m = 3.

Proposition 1.2.13. For the GGS curve GGSn,m the following properties hold:

1. GGSn,m has a unique point at infinity P∞, which is Fn2m-rational and is the

center of a unique place of GGSn,m.

2. GGSn,m has genus g(GGSn,m) = (n− 1)(nm+1 +nm−n2)/2 and has n2m+2−
nm+3 + nm+2 + 1 Fn2m-rational places. Therefore, GGSn,m is Fn2m-maximal.
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3. For n ≥ 3, GGSn,m is not Galois covered by the Hermitian curve Hnm.

4. The full automorphism group Aut(GGSn,m) has order n3(n− 1)(nm + 1) and

is defined over Fn2m.

5. Aut(GGSn,m) fixes P∞, and P∞ is the unique fixed place of Aut(GGSn,m).

6. If n is a power of 2, then the number of Fn2m-rational places of GGSn,m is a

multiple of 3.

Finally we introduce the Garcia-Stichtenoth curves. Garcia and Stichtenoth
constructed in [45] the following curve in characteristic 3:

GS3 : Y 7 = X9 −X.

The authors proved that GS3 is not Galois covered by the Hermitian curve H27;
this was the first example of maximal curve shown not to be Galois covered by the
Hermitian curve. This curve was generalized in [1] to the curve

Y
nm+1
n+1 = Xn2 −X, (1.9)

which was shown to be maximal over Fn2m ; this also follows from the Fn2m-
maximality of the GGS curve GGSn,m, since the curve (1.9) is Fn2m-covered by
GGSn,m.

We restrict to the case m = 3, and consider the Garcia-Stichtenoth curve

GSn : Y n2−n+1 = Xn2 −X.

Note that GSn is an Fn6-subcover of the GK curve GKn, and hence GSn is Fn6-
maximal.

Proposition 1.2.14. (see [67, Chapter 12.1]) For the GS curve GSn the following

properties hold:

1. GSn has genus (n2−n)(n2−1)/2 and has n7−n5 +n4 +1 Fn6-rational places;

hence, GSn is Fn6-maximal.

2. GSn has a unique singular point, namely the point at infinity P∞. There is

a unique place of GSn centered at P∞.

3. P∞ is the unique fixed point of Aut(GSn).

4. GS2 is Galois covered by the Hermitian curve H8.

5. GS3 is not Galois covered by the Hermitian curve H27.



Chapter 2

Results on maximal curves

2.1 Maximal curves from subcovers of the GK

curve

In this section we construct and investigate families of Galois subcovers of the
GK curve GKn. In particular, we compute explicit equations and the genera for
a number of Galois subcovers of GKn. Also, we provide new examples of Fn6-
maximal curve that are not covered, or Galois covered, by the Hermitian curve
Hn3 . In several cases, such curves give new values in the spectrum of genera of
Fn6-maximal curves. The results obtained in this section are the object of [56].

Throughout this section, n is a power of a prime p, q = n3, and K is the
algebraic closure of Fp.

2.1.1 A new model of the GK curve

Let GKn be given by the equations (1.8). Let ρ ∈ Fn2 with ρ+ρn = 1. Consider
the Fn2-projectivity ϕ associated to the matrix A, where

A =


1 0 0 1− ρ
0 1 0 0
0 0 −1 0
1 0 0 −ρ

 .

Then X := ϕ(GKn) has equations

X :

{
Zn2−n+1 = Y Xn2−X

Xn+1−1

Y n+1 = Xn+1 − 1
.

29
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We will consider subgroups of the following tame Fq2-automorphism group G
of X of size (n+ 1)2(n2 − n+ 1):

G =
{
ga,b,λ : (X, Y, Z, T ) 7→ (aX, bY, λZ, T ) | an+1 = bn+1 = 1, λn

2−n+1 = ab
}
.

(2.1)
By conjugation, an Fq2-automorphism group GA = A−1GA of X is obtained:

GA =
{
gAa,b,λ | an+1 = bn+1 = 1, λn

2−n+1 = ab
}
, where

gAa,b,λ =


aρ+ ρn 0 0 aρ− aρ2 − ρn+1

0 b 0 0
0 0 λ 0

a− 1 0 0 a− aρ+ ρ

 .

According to the notation of [38], we compute the projection ḠA of GA over
PGU(3, n) and the intersection GA

Λ of GA with

Λ =
{
αλ : (X, Y, Z, T ) 7→ (X, Y, λZ, T ) | λn2−n+1 = 1

}
: (2.2)

GA
Λ = Λ, ḠA =

{
ḡa,b | an+1 = bn+1 = 1

}
, where

ḡa,b =

aρ+ ρn 0 aρ− aρ2 − ρn+1

0 b 0
a− 1 0 a− aρ+ ρ

 .

Note that ḠA = A−1GA = Ā−1ḠĀ, where Ā (resp. Ḡ) is obtained by deleting
the third row and column in A (resp. in the matrices of G). Let π be the plane
Z = 0. Then Aut(X ) has a non-tame short orbit

O := X (Fn2) = X ∩ π,

which is the image under ϕ of the non-tame short orbit of Aut(GKn) described
in Proposition 1.2.12. Hence, ḠA acts naturally on Ō = Hn(Fn2), where the
Hermitian curve Hq has the Fermat equation Y n+1 = Xn+1 − 1.

2.1.2 A family of Galois subcovers of X
In this section we find out equations and genera for a family of curves covered

by the curve X , depending on three parameters.
Let d1, d2, d3 be divisors of n+ 1, and consider the Fp-rational morphism

u = x
n+1
d1 , v = y

n+1
d2 , w = z

n+1
d3
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over the function field K(x, y, z) of X . Then for the subfield K(u, v, w) we have
the relations

wd3(n2−n+1) = ud1(ud1 − 1)

(
ud1(n−1) − 1

ud1 − 1

)n+1

, vd2 = ud1 − 1. (2.3)

Let G ≤ Aut(X ) as in (2.1) and L ≤ G be the following subgroup of G:

L =
{

(X, Y, Z, T ) 7→ (λ3bnX, bY, λZ, T ) | bn+1 = λn+1 = 1
}
.

Clearly, L has order (n+ 1)2, and the fixed field Fix(L) contains xn+1, yn+1, and
zn+1. Actually, Fix(L) coincides with K(xn+1, yn+1, zn+1), since K(xn+1, yn+1, zn+1)
coincides with K(xn+1, zn+1) and the degree of the extension K(x, y, z)|K(xn+1, zn+1)
is at most (n+1)2. Then Fix(L) ⊆ K(u, v, w) and we consider the double extension
of function fields

Fix(L) ⊆ K(u, v, w) ⊆ K(x, y, z).

Since K(x, y, z)|Fix(L) is a Galois extension, K(x, y, z)|K(u, v, w) is Galois as well,
that is, K(u, v, w) is the function field of the quotient curve of X over some auto-
morphism subgroup H ≤ L.

In order to provide irreducible equations for X/H, consider the rational func-
tion α ∈ K(u, v) defined as

α = ud1(ud1 − 1)

(
ud1(n−1) − 1

ud1 − 1

)n+1

.

By direct computation the principal divisor of α in K(u, v) is obtained:

div(α) = d1

∑d2
i=1 Q0,i + d2

∑d1
i=1Qαi

+(n+ 1)
∑d1(n−2)

i=1

∑d2
j=1Qβi,j −

d1d2n(n−1)
(d2,2d1)

∑(d2,2d1)
i=1 Q∞,i

, (2.4)

where Q0,i lies over the zero P0 of u, Qαi lies over the zero Pαi of ud1 − 1, Qβi,j lies
over the zero Pβi of (ud1(n−1) − 1)/(ud1 − 1), and Q∞,i lies over the pole P∞ of u.
Let

D = gcd

(
d1, d2, n+ 1,

d1d2n(n− 1)

(d2, 2d1)

)
,

M = gcd
(
D, d3(n2 − n+ 1)

)
= gcd

(
d1, d2, d3(n2 − n+ 1)

)
.

If M = 1, then K(u, v, w)|K(u, v) is a Kummer extension of degree d3(n2 − n+ 1)
from equations (2.3), and the quotient curve has irreducible equations

X/H :

{
W d3(n2−n+1) = Ud1V d2

(
Ud1(n−1)−1
Ud1−1

)n+1

V d2 = Ud1 − 1
.
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More generally, for M ≥ 1, both sides of the firs equation in (2.3) are a power of
M , and we can factor the equation to obtain an irreducible curve

X/H :

 w
d3
M

(n2−n+1) = u
d1
M v

d2
M

(
ud1(n−1)−1
ud1−1

)n+1
M

vd2 = ud1 − 1
. (2.5)

Remark 2.1.1. We compute the order of the group H, that is, the degree of the
extension [K(x, y, z) : K(u, v, w)]. By the Fundamental Equality after Definition
1.1.15, the zero divisor of x in K(x, y, z) has degree [K(x, y, z) : K(x)] = n3 + 1,
and

[K(x, y, z) : K(u)] = deg(x
n+1
d1 )0 =

(n+ 1)2(n2 − n+ 1)

d1
, [K(u, v) : K(u)] = d2.

Hence,

[K(x, y, z) : K(u, v)] =
(n+ 1)2(n2 − n+ 1)

d1, d2
, [K(u, v, w) : K(u, v)] =

d3(n2 − n+ 1)

M
.

Therefore

|H| = [K(x, y, z) : K(u, v, w)] =
M(n+ 1)2

d1d2d3

.

The general equations (2.5) of X/H have been obtained by working on d1, d2,
d3(n2− n+ 1)/M . If we start from d1/M, d2, d3, or from d1, d2/M, d3, then we get
irreducible equations for other quotient curves, respectively: W d3(n2−n+1) = U

d1
M

(
U

d1
M

(n−1) − 1
)(

U
d1
M

(n−1)−1

U
d1
M −1

)n
V d2 = U

d1
M − 1

,

{
W d3(n2−n+1) = Ud1

(
Ud1(n−1) − 1

) (
Ud1(n−1)−1
Ud1−1

)n
V

d2
M = Ud1 − 1

.

Over the function fields of these curves we can also consider the morphism

(u : v : w
n2−n+1

e : 1),

for any divisor e of n2 − n + 1. Then, for s = w
n2−n+1

e , K(u, v, s) is the function
field of new subcovers of X . The degree [K(x, y, z) : K(u, v, s)] of these coverings
is easily computed arguing as in Remark 2.1.1. To sum up, the following result is
obtained.
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Theorem 2.1.2. Let d1, d2, and d3 be divisors of n+1, e be a divisor of n2−n+1,

and M = gcd (d1, d2, d3(n2 − n+ 1)). The following equations define Fn6-maximal

curves which are Galois subcovers of X :

C1 :

 S
d3
M
e = U

d1
M V

d2
M

(
Ud1(n−1)−1
Ud1−1

)n+1
M

V d2 = Ud1 − 1
, (2.6)

C2 :

 Sd3e = U
d1
M

(
U

d1
M

(n−1) − 1
)(

U
d1
M

(n−1)−1

U
d1
M −1

)n
V d2 = U

d1
M − 1

, (2.7)

C3 :

{
Sd3e = Ud1

(
Ud1(n−1) − 1

) (
Ud1(n−1)−1
Ud1−1

)n
V

d2
M = Ud1 − 1

. (2.8)

The degree of the covering is (n2−n+1)M(n+1)2

ed1d2d3
for C1 and C3, and (n2−n+1)(n+1)2

ed1d2d3
for

C2.

Note that, when (n2−n+1)M(n+1)2

ed1d2d3
= 1 or (n2−n+1)(n+1)2

ed1d2d3
= 1, Theorem 2.1.2

provides models for the GK curve; in some cases they are plane models.

Now we compute the genera of the curves described in Theorem 2.1.2 for e =
n2 − n+ 1, i.e. for s = w. This is done via Kummer theory.

Theorem 2.1.3. Let e = n2 − n + 1. Then the genera of the curves C1, C2, and

C3 described in Theorem 2.1.2 are the following:

g(C1) = 1 + 1
2

[
d1d2

d3(n2−n+1)
M

(n− 1)− d2( d1
M
, d3(n2−n+1)

M
)

−d1( d2
M
, d3(n2−n+1)

M
) +−d1d2(n− 2)(d3(n2−n+1)

M
, n+1
M

)

−
(

(d1, d2)d3(n2−n+1)
M

, 2d1d2
M

) ] (2.9)

and, for i = 2, 3,

g(Ci) = 1 +
1

2
[hkr(n− 1)− k(h, r)− h(k, r)− hk(n− 2)(r, n+ 1)− ((h, k)r, 2hk)] ,

(2.10)

where

r = d3(n2 − n+ 1), h =

{
d1/M for C2

d1 for C3
, k =

{
d2 for C2

d2/M for C3
.
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Proof. We start with C1, and use the notation of (2.4) for

α = u
d1
M v

d2
M

(
ud1(n−1) − 1

ud1 − 1

)n+1
M

∈ K(u, v).

Since K(u, v)|K(u) is a Kummer extension of degree d2, we have

e(Qαi |Pαi) = d2, e(Q0,i|P0) = 1, e(Qβi,j|Pβi) = 1, e(Q∞,i|P∞) =
d2

gcd(d1, d2)
,

and K(u, v) has genus

g(K(u, v)) = 1 +
1

2
(d1d2 − d1 − d2 − gcd(d1, d2)).

Let P̄0 be the zero and P̄∞ the pole of v in K(v). Then the places lying over

P̄0 in K(u, v)|K(v) are Qα1 , . . . , Qαd1
, with ramification index 1. The places over

P̄∞ are Q∞,1, . . . , Q∞,(d1,d2), with ramification index d1/ gcd(d1, d2).
In the Kummer extension K(u, v, s)|K(u, v) of degree d3

M
(n2 − n+ 1),

vQαi (α) = e(Qαi |Pαi) · vPαi

u d1M (ud1(n−1) − 1

ud1 − 1

)n+1
M

+ e(Qαi |P̄0) · vP̄0

(
v
d2
M

)
=
d2

M
,

and hence

e(Rαi,j|Qαi) =
d3
M

(n2 − n+ 1)

gcd
(
d3
M

(n2 − n+ 1), d2
M

) ,
whereRαi,j is a place of K(u, v, s) lying overQαi . The theory of Kummer extensions

also gives the ramification indices

d3
M

(n2 − n+ 1)

gcd
(
d3
M

(n2 − n+ 1), vQ(α)
)

of the places of K(u, v, s) lying over Q, for all places Q of K(u, v). Then the
different divisor of K(u, v, s)|K(u, v) has degree ∆ equal to

∆ = d1

(
m−

(
m,

d2

M

))
+ d2

(
m−

(
m,

d1

M

))
+

+d1(n− 2)d2

(
m−

(
m,

n+ 1

M

))
+ (d1, d2)

(
m−

(
m,

d1d2(n2 − n)

M(d1, d2)

))
=

= d1

(
m−

(
m,

d2

M

))
+ d2

(
m−

(
m,

d1

M

))
+
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+d1(n− 2)d2

(
m−

(
m,

n+ 1

M

))
+ (d1, d2)

(
m−

(
m,

2d1d2

M(d1, d2)

))
,

where m = d3(n2 − n + 1)/M . Finally, the Riemann-Hurwitz formula applied to

the Galois extension K(u, v, s)|K(u, v) provides the genus of C1.

The curves C2 and C3 are both defined by equations of the form

Ci :

{
Sr = Ua

(
Ua(n−1) − 1

) (
Ua(n−1)−1
Ua−1

)n
V b = Ua − 1

.

The genus of K(u, v) is obtained as above:

g(K(u, v)) = 1 +
1

2
(ab− a− b− gcd(a, b)).

Similar computations yield the degree ∆ of the different divisor of the Kummer

extension K(u, v, s)|K(u, v):

∆ = a (r − gcd (r, b)) + b (r − gcd (r, a)) +

+a(n− 2)b (r − gcd (r, n+ 1)) + gcd(a, b)

(
r − gcd

(
r,

2ab

gcd(a, b)

))
,

and the Riemann-Hurwitz formula applied to K(u, v, s)|K(u, v) provides the genus

of Ci, for i = 2, 3.

Remark 2.1.4. The previous results provide new equations of Fq2-maximal curves

for many genera. Consider for instance the case n = 5. Then Theorem 2.1.2

provides new equations for the following genera:

37, 74, 109, 121, 148, 220, 242, 361, 442, 484, 724, 1450,

160, 233, 469, 478, 496, 737, 1477, 1486.

Up to our knowledge, the integers in the second row are new values in the spectrum

of genera of F56-maximal curves.

2.1.3 The Galois groups of some Galois extensions

In this section we assume that

gcd
(
d1, d2, d3(n2 − n+ 1)

)
= 1.

In some cases we are able to give an explicit description of the automorphism

groups H of order (n+1)2

d1d2d3
such that Fix(H) = K(u, v, w).
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We also provide an alternative computation of the genus of X/H, by means of
the Riemann-Hurwitz genus formula and [38, Prop. 3.2]. We use [38, Prop. 3.2] in
a slightly different form: in the original paper [38], the authors consider a model
X̃ of the GK curve lying on the cone K̃ over the Hermitian curve with equation
Y n + Y = Xn+1. It is not difficult to see that the same computations hold for the
curve X .

This relies on the fact that X̃ and X are projectively equivalent, with a projec-
tivity defined over Fn6 which maps the Hermitian cone K̃ to the Hermitian cone
over Y n + Y = Xn+1.

Proposition 2.1.5. [38, Prop. 3.2] Let L be a tame subgroup of Aut(X ), L̄ the
projection of L to PGU(3, n) and LΛ = L∩Λ, where Λ is defined in equation (2.2).
Assume that no non-trivial element in L̄ fixes a point in Hn \ Hn(Fn6), where Hn

is the Hermitian curve Y n+1 = Xn+1 − 1. Then:

gL = gL̄ +
(n3 + 1)(n2 − |LΛ| − 1)− |LΛ|(n2 − n− 2)

2|L|
,

where gL is the genus of the quotient curve Hn/L̄.

Case 2.1.6. Suppose that d1 divides 3d3 and gcd(d1, d2) = 1. Then K(u, v, w) is

the function field of the quotient curve of X with respect to the group

H =
{

(X, Y, Z, T ) 7→ (λ3bnX, bY, λZ, T ) | b
n+1
d1d2 = λ

n+1
d3 = 1

}
.

In fact, by Remark 2.1.1, the size (n+ 1)2/(d1d2d3) of H coincides with the degree

[K(x, y, z) : K(u, v, w)]. Also, u, v, and w are all fixed by H since

λ(n+1)/d3 = 1, b(n+1)/d2 = (b(n+1)/d2d1)d1 = 1,

and

(λ3bn)(n+1)/d1 = (λ(n+1)/d3)3d3/d1b−((n+1)/d1) = (b−((n+1)/d1d2))d2 = 1.

The projection H̄ of H on PGU(3, n) is

H̄ =
{

[λ3bn, b, 1] | b
n+1
d2d1 = λ

n+1
d3 = 1

}
with |H̄| = (n+ 1)2

d1d2d3 gcd
(
3, n+1

d3

) ,
where [λ3bn, b, 1] denotes the automorphism (X, Y, T ) 7→ (λ3bnX, bY, T ). No non-

trivial element in H̄ fixes a point in Hn \ Hn(Fn6), and

HΛ =
{

[1, 1, λ, 1] | λn2−n+1 = λ
n+1
d3 = 1

}
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has size gcd
(
n+1
d3
, 3
)
. Then by Proposition 2.1.5 the genus of X/H is

gH = gH̄ +
d1d2d3[(n3 + 1)(n2 − gcd(3, n+1

d3
)− 1)− gcd(3, n+1

d3
)(n2 − n− 2)]

2(n+ 1)2
,

where gH̄ is the genus of Hn/H̄. The only points of Hn that can be fixed by a

non-trivial element in H̄ are the fundamental points. It is easily seen that

(i) [λ3bn, b, 1] fixes Pi = (0, αi, 1), i = 1, . . . , n+ 1, if and only if b = 1;

(ii) [λ3bn, b, 1] fixes Qj = (βj, 0, 1), j = 1, . . . , n+ 1, if and only if λ3 = b;

(iii) [λ3bn, b, 1] fixes Rk = (βk, 1, 0), k = 1, . . . , n+ 1, if and only if λ3 = b2.

Let H̄P denote the stabilizer of P in H̄. We distinguish two cases.

(A) 3 does not divide (n + 1)/d3. Then λ 7→ λ3 is an automorphism of the

multiplicative group of the ((n+ 1)/d3)-th roots of unity.

(i) We have H̄Pi =
{

[λ3, 1, 1] | λ
n+1
d3 = 1

}
, and hence |H̄Pi | = n+1

d3
.

(ii) We have

H̄Qj =
{

[1, b, 1] | b
n+1
d2d1 = 1, b = λ3 for some λ with λ

n+1
d3 = 1

}
,

hence

|H̄Qj | = gcd

(
n+ 1

d3

,
n+ 1

d1d2

)
.

(iii) We distinguish two subcases.

– n+1
d1d2

is even. Then

H̄Rk =
{

[b, b, 1] | (b2)
n+1
d3 = 1, (b2)

n+1
2d1d2 = 1

}
and b 6= −b,

hence

|H̄Rk | = 2 gcd

(
n+ 1

d3

,
n+ 1

2d1d2

)
= gcd

(
2(n+ 1)

d3

,
n+ 1

d1d2

)
.

– n+1
d1d2

is odd. Then b 7→ b2 is an automorphism of the multiplicative

group of the ((n+ 1)/d1d2)-th roots of unity, and

H̄Rk =
{

[b, b, 1] | λ
n+1
d3 = b

n+1
d1d2 = 1, λ3 = b2

}
;

hence,

|H̄Rk | = gcd

(
n+ 1

d3

,
n+ 1

d1d2

)
= gcd

(
2(n+ 1)

d3

,
n+ 1

d1d2

)
.
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Therefore, if 3 - (n + 1)/d3 then the Hurwitz formula applied to the covering
H → H/H̄ provides the genus of H/H̄:

gH̄ = 1 + 1

2
(n+1)2

d1d2d3

[
n2 − n− 2− (n+ 1)(

n+1
d3

+ gcd( n+1
d1d2

, n+1
d3

) + gcd( n+1
d1d2

, 2(n+1)
d3

)− 3
)]
,

that is,

gH̄ = 1 +
d1d2d3

2(n+ 1)

[
n− 2− n+ 1

d3
−
(n+ 1

d1d2
,
n+ 1

d3

)
−
(n+ 1

d1d2
,
2(n+ 1)

d3

)
+ 3
]
,

hence

gH = 1 +
d1d2d3

2(n+ 1)

(
n+ 1− n+ 1

d3
−
(n+ 1

d1d2
,
n+ 1

d3

)
−
(n+ 1

d1d2
,
2(n+ 1)

d3

))
+

+
d1d2d3

(
n3 − 2n2 + n

)
2

. (2.11)

(B) 3 divides (n+ 1)/d3. Let λ′ = λ3, then

H̄ =
{

[λ′bn, b, 1] | (λ′)
n+1
3d3 = b

n+1
d1d2 = 1

}
.

The same arguments yield

gH = 1 +
3d1d2d3

2(n+ 1)

(
n+ 1− n+ 1

3d3
−
(n+ 1

d1d2
,
n+ 1

3d3

)
−
(n+ 1

d1d2
,
2(n+ 1)

3d3

))
+

+
d1d2d3

(
n3 − 2n2 − n+ 2

)
2

.

Case 2.1.7. Suppose that d1 divides d2, and (d1, d3(n2 − n + 1)) = 1. Then

K(u, v, w) is the function field quotient curve of X with respect to the group

H =
{

(X, Y, Z, T ) 7→ (λ3bnX, bY, λZ, T ) | b
n+1
d2 = λ

n+1
d1d3 = 1

}
.

This follows from

λ(n+1)/d3 = (λ(n+1)/d1d3)d1 = 1, b(n+1)/d2 = 1,

and

(λ3bn)(n+1)/d1 = (λ
n+1
d1d3 )3d3b−((n+1)/d1) = (b−((n+1)/d2))d2/d1 = 1.

Similar computations provide the genus of X/H:

gH = 1 +
d1d2d3m

2(n+ 1)

(
n+ 1− n+ 1

d1d3m
−
(n+ 1

d2
,
n+ 1

d1d3m

)
−
(n+ 1

d2
,
2(n+ 1)

d1d3m

))
+

+
d1d2d3

[
n3 − 2n2 + (2−m)n+m− 1

]
2

,

where m = gcd(3, (n+ 1)/(d1d3)).
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2.1.4 Another family of Galois subcovers of X

In this section we consider another subgroup of the group G given in (2.1). Let
c | (n+ 1), d | (n2 − n+ 1), and consider the following automorphism group K of
X of size (n3 + 1)/(cd):

K =
{

(X, Y, Z, T ) 7→ (b−1X, bY, λZ, T ) | b
n+1
c = 1, λ

n2−n+1
d = 1

}
.

By applying the Fp-rational morphism

u = x
n+1
c , v = xy, w = z

n2−n+1
d

over the function field K(x, y, z) of X , we have the following relations:

wd = v
(
1 + uc + u2c + . . .+ u(n−2)c

)
, vn+1 = u2c − uc. (2.12)

In the double field extension K(u, v, w) ⊆ Fix(K) ⊆ K(x, y, z) we have

[K(x, y, z) : K(u, v, w)] ≤ n3 + 1

cd
= [K(x, y, z) : Fix(K)],

which implies Fix(K) = K(u, v, w).

The equations (2.12) are irreducible. To show this, let P = (0, a) be an affine
point of the Hermitian curve Hn : Y n+1 = Xn+1 − 1, and let P̄ be a place of the
curveW : V n+1 = U2c−U c centered at the image ϕ(P ) of P under the Fp-rational
map

ϕ : Hn →W , ϕ(X, Y, T ) = (X
n+1
c , XY, T ).

The rational function β := xy(1 + xn+1 + x2(n+1) . . . + x(n−2)(n+1)) ∈ K(x, y) has
valuation vP (β) = 1 at P , hence the pull-back α = v(1 + uc + . . . + u(n−2)c) ∈
K(u, v) of β has valuation vP̄ (α) = 1 at P̄ , since vP (β) = e(P |P̄ ) · vP̄ (α). Hence
the equations (2.12) are irreducible, i.e. the quotient curve X/K has irreducible
equations:

X/K :

{
W d = V

(
1 + U c + U2c + . . .+ U (n−2)c

)
V n+1 = U2c − U c . (2.13)

From the Hurwitz formula applied to the tame covering X → X/K, we compute
the genus of X/K:

g(X/K) =
c

2

[
(d− 1)n2 + n− d− gcd

(
2,
n+ 1

c

)]
+ 1. (2.14)
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2.1.5 New examples of maximal curves not (Galois) cov-

ered by the Hermitian curve

Let a curve Y be a subcover of the Hermitian curve Hq by an Fq2-rational map

ϕ : H → Y .

Then for the degree deg(ϕ) of the covering we have the following bounds:

H(Fq2)
Y(Fq2)

≤ deg(ϕ) ≤ 2g(H)− 2

2g(Y)− 2
.

In particular, the lower bound LH,Y = H(Fq2)/Y(Fq2) and the upper bound UH,Y =
(2g(H)− 2)/(2g(Y)− 2) satisfy dLH,Ye ≤ bUH,Yc.

Therefore, a curve Y having dLH,Ye > bUH,Yc cannot be a subcover of the
Hermitian curve. By applying this argument to the curves given in Theorems
2.1.2 and 2.1.3, we get many new examples of curves which are not covered by the
Hermitian curve.

To exemplify this, we list in Table 2.1 below some genera of curves not covered
by the Hermitian curve. We remark that for such curves we have both the genus
and explicit equations.

Remark 2.1.8. Let Y be an Fq2-maximal curve of genus g which is Fq2-covered

by the Hermitian curve Hq. If g > f(q), where

f(q) =

√
q5 + 2q4 + q3 + q2 + 2q + 1− q2 − 1

2q
,

then the degree d of the covering Hq → Y is uniquely determined by

LH,Y ≤ d ≤ UH,Y .

Proof. By direct computation, g > f(q) is equivalent to UH,Y − LH,Y < 1, which

implies dLH,Ye = bUH,Yc.

Theorem 2.1.9. Let n ≥ 7 be a power of a prime p and k | (n + 1) with k <√
n+ 1 + 1. Define d1 = (n+ 1)/k, d2 = 1, and d3 = n+ 1. Then the curve C1 in

Theorem 2.1.2 is not Galois covered by the Hermitian curve Hn3.
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Table 2.1: New maximal curves not covered by the Hermitian curve
g n (d1, d2, d3) Reference

(1,18,6), (2,9,6), (2,18,3), (2,18,6),

233416 17 (3,18,6), (6,9,6), (6,18,3), (6,18,6), Th. 2.1.3

(9,2,6), (9,6,6), (9,18,2), (9,18,6), (2.9),(2.10)

(18,1,6), (18,2,3), (18,2,6), (18,3,6),

(18,6,3), (18,6,6), (18,9,2), (18,9,6)

233398 17 (9,18,2) Th. 2.1.3 (2.10)

(1,24,8), (8,3,8), (24,8,1), (24,1,8), Th. 2.1.3

1064701 23 (2,24,8), (3,8,8), (3,24,8), (4,24,8), (2.9),(2.10)

(6,8,8), (6,24,8), (8,3,8), (8,6,8),

(8,12,8), (8,24,1), (8,24,2)

1064689 23 (2,24,8), (4,24,8), (6,8,8), Th. 2.1.3 (2.10)

(6,24,8), (8,6,8), (8,12,8)

3206257 23 (2,24,24), (4,24,24), (6,24,24), Th. 2.1.3 (2.10)

(8,6,24), (8,12,24)

3402406 29 (30,10,1), (10,30,1), (10,15,2), Th. 2.1.3 (2.9)

(30,2,5), (10,6,5), (10,3,10)

5570731 32 (33,11,1), (11,33,1), (11,3,11) Th. 2.1.3 (2.9)
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Proof. Let Hn3 be given in the Norm-Trace form (1.4) and let P∞ be the point at

infinity of Hn3 . Suppose that C1 is Galois covered by Hn3 , so that C1
∼= Hn3/N for

some subgroup N of PGU(3, n3).

The genus of C1 can be computed from (2.11), whence LHn3 ,C1 > kn− 1 if and
only if

n8−k(k−2)n7−2n6 +n5− (k−1)[2k+ 1− (k, 2)]n4 + [2k−1− (k, 2)]n3−k2n+ 2k > 0,

while UHn3 ,C1 < kn+ 1 if and only if

n5−2kn4 + 2(k−1)n3− [k(k, 2)−k−1]n2− [(k, 2)(k+ 1) +k−1]n+ 2k− (k, 2)−1 > 0.

For n ≥ 7, both conditions are implied by the hypothesis k <
√
n+ 1 + 1. Then

|N | = kn.

Let S be a Sylow p-subgroup of N . The group S fixes an Fn6-rational point

P ∈ Hn3 by [67, Lemma 11.129]. Since all Sylow p-subgroups are conjugate, we

assume that S fixes P∞. Moreover, the action of S onH(Fn6)\{P∞} is semiregular,

i.e. each element of S has no fixed point but P∞. Hence the orbit O of P∞ under

N satisfies |O| ≡ 1 (mod n).

Suppose P∞ is not fixed by N , then |O| ≥ n+ 1. Hence, by the orbit-stabilizer

theorem, n divides the size of the stabilizer NQ of Q in N , for all Q ∈ O. Then

a Sylow p-subgroup MQ of NQ has size n. Since S is semiregular on Hn3 \ {P∞},
MQ and MR have trivial intersection for Q 6= R in O. Therefore N has at least

1 + (n+ 1)(n− 1) = n2 elements, thus k ≥ n, a contradiction.

Therefore the whole N fixes P∞. If k = 1, then C1 is isomorphic to the GK

curve X and the thesis holds. Otherwise, the genus of H/N can be computed by

[47, Th. 4.4]:

g(H/N) =
n3 − pw

2kn

(
n3 − (k − 1)pv

)
=
p5u − p3u−v − (k − 1)p3u−w + k − 1

2k
,

where n = pu and v, w are non-negative integers satisfying u = v + w.

On the other side, the genus of C1 as computed in (2.11) is

g(C1) =
n5 − 2n3 + n2 + 2k − 1− h

2k
, where h =

{
n+ 2 if k is even

1 if k is odd
.

Hence the equality g(H/N) = g(C1) reads

k =
2p3u + p3u−w − p3u−v − p2u + h

p3u−w + 1
.
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We have the following possibilities for v and w: either v = 0 and w = u, or

v ≤ u/2 and w ≥ u/2, or v > u/2 and w < u/2. By considering separately each

case, it is shown after some computation that(
p3u−w + 1

)
-
(
2p3u + p3u−w − p3u−v − p2u + h

)
,

which is impossible since k is integer.

Theorem 2.1.10. Let n > 3 be a power of a prime p, k a divisor of n + 1 such

that 3 - (n+ 1)/k and k <
√
n+ 1 + 1; if 3 | (n+ 1), assume also n ≥ 23. Define

d1 = (n + 1)/k, d2 = n + 1, and d3 = 1. Then the curve C1 in Theorem 2.1.2 is

not Galois covered by the Hermitian curve Hn3.

Proof. The genus of the curve C1 can be computed as in Case 2.1.7. Separating

the cases 3 | (n+ 1) and 3 - (n+ 1) and arguing as in the proof of Theorem 2.1.9,

it is proved that a putative Galois covering has degree kn.

Suppose that such a covering exists and C1
∼= H/N with N ≤ PGU(3, n3). The

same argument used in the proof of Theorem 2.1.9 allows to apply [47, Th. 4.4]

and yields the following expression for k:

k =
(1 + gcd(3, k)) p3u + p3u−w − p3u−v − p2u − gcd(3, k)pu

p3u−w − pu − 2
, (2.15)

where n = pu and v, w are non-negative integers satisfying u = v + w. A case-

analysis now shows that the fraction in (2.15) cannot be integer.

Theorem 2.1.11. Let n be a power of a prime p, γ a divisor of n+ 1, δ a divisor

of n2 − n + 1, c = (n + 1)/γ, and d = (n2 − n + 1)/δ. Suppose that one of the

following holds:

• n = 5, γ = 2, and δ = 1;

• n ≥ 7, γ ≤ 2, and δ ≤ (
√

2γn+ 1− 1)/2;

• n ≥ 7, γ > 2, and γδ(γδ − δ − 1) < n.

Then the curve X/K with equations (2.13) is not Galois covered by the Hermitian

curve Hn3.

Proof. By arguing as in the proof of Theorem 2.1.9, it is proved that a putative
Galois covering has degree γδn. Suppose that such a covering exists and X/K ∼=
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H/N with N ≤ PGU(3, n3). The same argument used in the proof of Theorem
2.1.9 allows to apply [47, Th. 4.4] and yields the following identity:

δ
[
p3u − γp3u−w + (gcd(2, γ)− 1) pu − γ + gcd(2, γ)

]
= −p3u + p3u−v − p3u−w + p2u,

(2.16)

where n = pu and v, w are non-negative integers with u = v + w. By a case-

analysis, it can be shown that (2.16) contradicts the hypothesis on the integers γ

and δ.

2.2 Maximal curves that are not quotients of the

Hermitian curve

In this section we prove the following result

Theorem 2.2.1. For any odd number m ≥ 5, the GGS curve GGS2,m is not Galois

covered by the Hermitian curve H2m.

Together with a result by Duursma and Mak [34, Theorem 1.1], this shows that
the GGS curve GGSn,m is not Galois covered by Hnm for any prime power n and
any odd m ≥ 5.

We also prove an analogous result for the GS curve.

Theorem 2.2.2. For any prime power q > 3, the GS curve GSq is not Galois

covered by the Hermitian curve Hq3.

By Proposition 1.2.14, this shows that GSn is not Galois covered by Hn3 for
any prime power n ≥ 3, while GS2 is Galois covered by H8.

In this section, we exploit the properties of the automorphism group PGU(3, q)
of the Hermitian curve Hq. Essentialy, we study the putative subgroups G ≤
PGU(3, q) realizing the isomorphism between the GGS curve (or the GS curve)
and the quotient curve Hq/G, and prove that the automorphism groups of the two
curves cannot be equivalent.

The results obtained in this section are the object of [54].

2.2.1 GGS2,m is not Galois covered by H2m, for any m ≥ 5

Through Section 2.2.1, m ≥ 5 is an odd integer and q = 2m. We rely on a
result by Duursma and Mak [34, Theorem 1.2].



2.2. MAXIMAL CURVES THAT ARE NOT QUOTIENTS OF HQ 45

Lemma 2.2.3. Let m ≥ 5 be odd. If GGS2,m
∼= H2m/G for some G ≤ Aut(H2m),

then G has order (2m + 1)/3 and acts semiregularly on H2m.

Proof. The order of G is equal to the degree of the covering ϕ : H2m → GGS2,m.

Hence, by [34, Theorem 1.2], G has order (2m + 1)/3. Also, by [34, Theorem 1.2],

ϕ is unramified. Since H2m is non-singular, this means that there are exactly |G|
points of H2m lying over each point of H2m/G, that is, every orbit of G is long.

By Lemma 2.2.3 only subgroups G ≤ Aut(Hq) of order (q+1)/3 acting semireg-
ularly on Hq need to be considered. We will also use the fact that Aut(GGS2.m)
has a unique fixed place P∞ ∈ GGS2.m, see Proposition 1.2.13.

Proposition 2.2.4. Let G ≤ Aut(Hq). If there exists Ḡ ≤ Aut(Hq) such that G

is a proper normal subgroup of Ḡ and Ḡ acts semiregularly on Hq, then GGS2,m 6∼=
Hq/G.

Proof. The claim follows from Proposition 1.2.13 5., taking into account that

Ḡ/G ≤ Aut(Hq/G) acts semiregularly on Hq/G.

The following well-known result about finite groups will be used (see [85, Ex.
16 Page 232]).

Lemma 2.2.5. Let H be a finite group and K a subgroup of H such that the index

[H : K] is the smallest prime number dividing the order of H. Then K is normal

in H.

Proposition 2.2.6. Let G ≤ PSU(3, q). If a maximal subgroup of PSU(3, q)

containing G is of type (ii) in Theorem 1.2.6, then GGS2,m 6∼= Hq/G.

Proof. Let ` be the (q + 1)-secant to Hq stabilized by G; we show that G is

isomorphic to a cyclic subgroup of PSL(2, q2). We can assume that ` is the line

at infinity T = 0; in fact, the group PGU(3, q) is transitive on the points of

PG(2, q2)\Hq, and hence also on the (q+1)-secant lines. The action of an element

g ∈ G on ` is given by (X, Y, 0) 7→ Ag · (X, Y, 0), where the matrix Ag = (aij)
j=1,2,3
i=1,2,3

satisfies a31 = a32 = 0; we set a33 = 1. By direct computation, the map

ϕ : G→ PGL(2, q2), ϕ(g) :

(
X

Y

)
7→
(
a11 a12

a21 a22

)
·
(
X

Y

)
,

is a well-defined group homomorphism. Moreover, ϕ is injective, since no non-

trivial element of G can fix the points of Hq ∩ `, by the semiregularity of G. Hence
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G is isomorphic to a subgroup of PGL(2, q2). Since |G| is odd, Theorem 1.2.7

implies that G is cyclic.

Let g ∈ G be an element of prime order d > 3; such a d exists, since it is easy

to check that 2m + 1 is a power of 3 only when m = 1 or m = 3. If we denote by

dh the highest power of d dividing (q + 1)/3, then d2h is the highest power of d

dividing

|PGU(3, q)| = q3(q3 + 1)(q2 − 1) = q3(q + 1)2(q − 1)(q2 − q + 1).

Let Hq be given in the Fermat form (1.3); then

D =
{

(X : Y : T ) 7→ (λX : µY : T ) | λdh = µd
h

= 1
}

is a Sylow d-subgroup of PGU(3, q). By Sylow theorems we can assume, up to

conjugation, that g ∈ D; therefore, the fixed points of the subgroup 〈g〉 generated

by g are the fundamental points P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), and P3 = (0 : 0 :

1). Since G is abelian, 〈g〉 is normal in G; hence, G acts on T = {P1, P2, P3}. As

|G| is odd, we have by the orbit-stabilizer theorem that the orbits of any h ∈ G
on T have length 1 or 3. If h has a single orbit on T , then h is either0 0 λ

µ 0 0

0 ρ 0

 or

0 λ 0

0 0 µ

ρ 0 0

 ; in both cases h3 =

λµρ 0 0

0 λµρ 0

0 0 λµρ

 ,

that is, h3 is the identity element of G and clearly G cannot be generated by h.

Therefore, a generator α of G has the form

α : (X : Y : T ) 7→ (θX : ηY : T ),

with θ
q+1
3 = η

q+1
3 = 1. If θ had order m < (q + 1)/3, then αm would fix the points

of Hq∩(Y = 0), against the semiregularity of G. Then θ is a primitive (q+1)/3-th

root of unity, and the same holds for η; hence

α = αθ : (X : Y : T ) 7→ (θX : θiY : T ),

with θ a primitive (q + 1)/3-th root of unity, and i coprime with (q + 1)/3. Let

ζ ∈ Fq6 with ζ3 = θ, and let Ḡ be the group generated by αζ : (X : Y : T ) 7→
(ζX : ζ iY : T ). Any element of Ḡ fixes only the fundamental points, hence Ḡ is

semiregular on Hq; moreover, G is normal in Ḡ of index 3. Then the thesis follows

from Proposition 2.2.4.
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Proposition 2.2.7. Let G ≤ PSU(3, q). If a maximal subgroup of PSU(3, q)

containing G is of type (iii) in Theorem 1.2.6, then GGS2,m 6∼= Hq/G.

Proof. Let Hq be given by the Fermat equation (1.3). Up to conjugation, the self-

polar triangle stabilized by G is the fundamental triangle T = {P1, P2, P3}, whose

vertices are not points of Hq. The elements of G stabilizing T pointwise form a

normal subgroup N of G, and G/N acts faithfully on T ; hence, either G = N or

[G : N ] = 3.

If G = N , then G fixes a fundamental point, say P1, and its polar line P2P3;

therefore, the thesis follows from Proposition 2.2.6.

If [G : N ] = 3, then N is cyclic, by the same argument used in the proof of

Proposition 2.2.6; say N = 〈αξ〉, where ξ is a primitive (q + 1)/9-th root of unity,

αξ : (X, Y, T ) 7→ (ξX, ξiY, T ), and i is coprime with (q + 1)/9. Let h ∈ G \ N .

By arguing as in the proof of Proposition 2.2.6, h has order 3. Moreover, G

is the semidirect product N o 〈h〉; in fact, N is normal in G, N and 〈h〉 have

trivial intersection, and |G| = |N | · |〈h〉|. Let N̄ be the cyclic group generated by

αθ : (X, Y, T ) 7→ (θX, θiY, T ), where θ ∈ Fq6 satisfies θ3 = ξ. Let Ḡ be the group

generated by N̄ and h. Then Ḡ is the semidirect product N̄ o 〈h〉. We want to

double count the size of the set

I =
{

(ḡ, P ) | ḡ ∈ Ḡ \ {id} , P ∈ Hq , ḡ(P ) = P
}
.

Since G and N̄ are semiregular on Hq, we consider only elements of the form

n̄h or n̄h2, with n̄ ∈ N̄ \N . Up to reordering of the fundamental points, we have

n̄ =

ρ 0 0

0 ρi 0

0 0 1

 and h =

0 λ 0

0 0 µ

1 0 0

 , (2.17)

where λq+1 = µq+1 = 1, gcd(i, (q+1)/3) = 1, and ρ = θ3j+u with 0 < j < (q+1)/3

and u ∈ {1, 2}. Hence

n̄h =

ρ 0 0

0 ρi 0

0 0 1

 ·
0 λ 0

0 0 µ

1 0 0

 =

0 A 0

0 0 B

1 0 0

 , (2.18)

where Aq+1 = Bq+1 = 1, and det(n̄h) = AB is not a cube in Fq6 , since n̄h /∈
PSU(3, q). Then n̄h has three distinct eigenvalues in a cubic extension of Fq6 ,
namely z, zx, and z(x+ 1), where x2 +x+ 1 = 0 and z3 = AB. Therefore, n̄h has
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exactly three fixed points, namely

Q1 =

(
z,
z2

A
, 1

)
, Q2 =

(
zx,

z2x2

A
, 1

)
, and Q3 =

(
z(x+ 1),

z2(x+ 1)2

A
, 1

)
;

it is easy to check that Q1, Q2, and Q3 are points of Hq. The same holds for n̄h2.

Therefore, any element n̄h or n̄h2 with n̄ ∈ N̄ \N has exactly three fixed points

on Hq; then

|I| = 2 ·
(
|N̄ | − |N |

)
· 3 = 2 ·

(
q + 1

3
− q + 1

9

)
· 3 = 4 · q + 1

3
. (2.19)

The orbit O of a point P ∈ Hq under Ḡ has size |O| ≥ |G| = (q + 1)/3. Then the

stabilizer S of P under Ḡ has size |S| ≤ 3; in particular, |S| ∈ {1, 3} since |Ḡ| is

odd. Hence, the number |S| − 1 of pairs in I having P in the second coordinate is

either zero or 2.

Therefore |I| = 2m, where m is the number of points of Hq fixed by some

non-trivial element of Ḡ. By (2.19), we get

m = 2 · q + 1

3
= 2 · |G|.

Hence, Ḡ/G has two fixed points R1, R2 ∈ Hq/G and acts semiregularly on

(Hq/G) \ {R1, R2}. By Proposition 1.2.13, either R1 or R2 is Fq6-rational. Then

the number |Hq/G(Fq2)| of Fq2-rational points of Hq/G satisfies

|Hq/G(Fq2)| ≡ |{P ∈ {R1, R2} | P is Fq2-rational}| (mod |Ḡ/G|) ,

that is, |Hq/G(Fq2)| is congruent to 1 or 2 modulo 3.

On the other side, the number |GGS2,m(Fq2)| of Fq2-rational points of GGS2,m

is a multiple of 3, by Proposition 1.2.13. Therefore, Hq/G 6∼= GGS2,m.

Proposition 2.2.8. Let G ≤ PGU(3, q), G 6⊆ PSU(3, q). If a maximal subgroup of

PSU(3, q) containing G∩PSU(3, q) is of type (ii) in Theorem 1.2.6, then GGS2,m 6∼=
Hq/G.

Proof. Let G′ = G∩PSU(3, q). Since PSU(3, q) has index 3 in PGU(3, q), we have

PGU(3, q) = G · PSU(3, q) and [G : G′] = 3; hence, G′ is normal in G by Lemma

2.2.5. Arguing as in the proof of Proposition 2.2.6, G′ is cyclic; moreover, G′ is

generated by αξ : (X : Y : T ) 7→ (ξX : ξiY : T ), where ξ is a primitive (q+1)/9-th

root of unity and i is coprime with (q + 1)/9. Then G stabilizes the fundamental

triangle T .
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If there exists h ∈ G \ G′ of order 3, then G = G′ o 〈h〉 by arguing as in the

proof of Proposition 2.2.7. Let θ ∈ Fq6 with θ3 = ξ, and define αθ : (X : Y : T ) 7→
(θX : θiY : T ). Let Ḡ′ be the cyclic group generated by αθ, and let Ḡ be the group

generated by Ḡ′ and h; then Ḡ = Ḡ′ o 〈h〉. Moreover, [Ḡ : G] = [Ḡ′ : G′] = 3;

hence, by Lemma 2.2.5, G′ is normal in Ḡ′ and G is normal in Ḡ. We can repeat

the same argument used in the proof of Proposition 2.2.7, after replacing N with

G′ and N̄ with Ḡ′; then |Hq/G(Fq2)| ≡ 1, 2 (mod 3), while |GGS2,m| ≡ 0 (mod 3).

This yields the thesis.

If there is no h ∈ G \ G′ of order 3, then G is made of diagonal matrices,

since G acts on T . By Theorem 1.2.7, G is cyclic; a generator of G has the

form αθ : (X : Y : T ) 7→ (θX : θjY : T ), with θ a primitive (q + 1)/3-th

root of unity and j coprime with (q + 1)/3. Let Ḡ be the group generated by

αζ : (X : Y : T ) 7→ (ζX : ζ iY : T ), where ζ ∈ Fq6 satisfies ζ3 = θ. Then G is

a normal subgroup of Ḡ of index 3, and Ḡ acts semiregularly on Hq. Proposition

2.2.4 yields the thesis.

Proposition 2.2.9. Let G ≤ PGU(3, q), G 6⊆ PSU(3, q). If a maximal subgroup of

PSU(3, q) containing G∩PSU(3, q) is of type (iii) in Theorem 1.2.6, then GGS2,m 6∼=
Hq/G.

Proof. As in the proof of Proposition 2.2.8, G′ = G ∩ PSU(3, q) is normal in G of

index 3. Arguing as in the proof of Proposition 2.2.7, it can be shown that there

are two possible cases for G′: (A) G′ is cyclic and generated by αξ : (X : Y : T ) 7→
(ξX : ξiY : T ), with ξ a primitive (q + 1)/9-th root of unity and i coprime with

(q + 1)/9; (B) G′ = 〈αη〉o 〈h〉, where αη : (X : Y : T ) 7→ (ηX : ηiY : T ) with η a

primitive (q + 1)/27-th root of unity and i coprime with (q + 1)/27, and h is an

element of order 3 acting with a single orbit on the fundamental triangle T , hence

having the form (2.17).

(A) Since G′ is normal in G, we have that G acts on T . If G fixes T pointwise,

then the elements of G are diagonal matrices whose diagonal coefficients are

(q + 1)/3-th roots of unity, hence cubes in Fq2 ; therefore G ≤ PSU(3, q),

against the hypothesis. Then G = G′ o 〈h〉, where h ∈ G \ G′ has order 3.

Let θ ∈ Fq2 with θ3 = ξ, and let Ḡ be the group generated by αθ : (X : Y :

T ) 7→ (θX : θiY : T ) and h; then Ḡ = 〈αθ〉 o 〈h〉. By arguing as in the

proof of Proposition 2.2.7, we have that |Hq/G(Fq2)| ≡ 1, 2 (mod 3), while

|GGS2,m| ≡ 0 (mod 3). This yields the thesis.
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(B) Any element of G′ \ 〈αη〉 has order 3; in fact, a matrix h of the form (2.17)

has the form (2.18), which has order 3. Therefore, 〈αη〉 is the only cyclic

subgroup of order (q + 1)/27 in G′; note that (q + 1)/27 6= 3 since q is a

prime power. Thus, 〈αη〉 is characteristic in G′, and hence normal in G.

Therefore, G acts on the set of points which are fixed by 〈αη〉, i.e. the

fundamental points. Let G′′ be the subgroup of G fixing T pointwise. The

group G′′ is abelian, as it is made of diagonal matrices; moreover, G′′ is

normal in G of index 3, and G = G′′ o 〈h〉. By the primary decomposition

of abelian groups, either G′′ = 〈αξ〉 with ξ3 = η and αξ : (X : Y : T ) 7→
(ξX : ξiY : T ), or G′′ = 〈αη〉 × 〈k〉, where k has order 3. In the latter case

det(k)3 = 1, as k3 is the identity element; hence, det(k) is a cube in Fq2 ,
and k ∈ G ∩ PSU(3, q) = G′. Therefore G′ = G′′, contradicting h ∈ G′ \G′′.
Then G′′ = 〈αξ〉 and G = 〈αξ〉 o 〈h〉. Let Ḡ = 〈αθ〉 o 〈h〉, with θ3 = ξ

and αθ : (X : Y : T ) 7→ (θX : θiY : T ). We can argue as in the proof of

Proposition 2.2.7, after replacing N with 〈αξ〉 and N̄ with 〈αθ〉; we get that

|Hq/G(Fq2)| ≡ 1, 2 (mod 3), while |GGS2,m(Fq2)| ≡ 0 (mod 3). This yields

the thesis.

Lemma 2.2.10. Let G ≤ PSU(3, q). If a maximal subgroup M of PSU(3, q)

containing G is neither of type (ii) nor of type (iii) in Theorem 1.2.6, then M is

of type (xiv); that is, G 6⊆ PSU(3, 2m/3) and M contains PSU(3, 2m/3) as a normal

subgroup of index 3.

Proof. With the notations of Theorem 1.2.6, we can exclude cases (ii) and (iii) by

hypothesis, case (i) by the semiregularity of G, and cases (iv) and (xv) since |G|
does not divide neither 3(q2 − q + 1) nor 36. The thesis will follow if we exclude

case (xiii). Assume by contradiction that M is of type (xiii); we apply Theorem

1.2.6 to M = PSU(3, 2s), where m = p′s with p′ an odd prime. Note that, since

m ≥ 5 is odd, either p′ ≥ 5, or p′ = 3 and s ≥ 3.

Case (i). G fixes an F22s-rational point P ∈ H2s . Since P /∈ Hq by the

semiregularity of G, M is of type (ii) in the list of maximal subgroups of PSU(3, q),

against the hypothesis.

Case (ii). The order (2p
′s + 1)/3 of G divides 2s(2s − 1)(2s + 1)2/3, which is

impossible.

Case (iii). The order of G divides 2(2s + 1)2, which is impossible.

Case (iv). The order of G divides 22s − 2s + 1, which is impossible.
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Case (xiii). G is contained in PSU(3, 2r), where s/r is an odd prime; hence

m/r ≥ 9. This is impossible, since the order of G is greater than the order of any

maximal subgroup of PSU(3, 2r).

Case (xiv). G is contained in a group K containing PSU(3, 2r) as a normal

subgroup of index 3, where r = s/3. If H is a maximal subgroup of K and

H 6= PSU(3, 2r), then H ∩ PSU(3, 2r) has index 3 in H; therefore, |H|/3 divides

the order of a maximal subgroup of PSU(3, 2r). This yields a contradiction, since,

by direct computation, the order of G does not divide three times the order of any

maximal subgroup of PSU(3, 2r).

Case (xv). The order of G divides 36, which is impossible.

Proposition 2.2.11. Let G ≤ PSU(3, q). If a maximal subgroup M of PSU(3, q)

containing G is of type (xiv) in Theorem 1.2.6, then GGS2,m 6∼= Hq/G.

Proof. The subgroup M contains PSU(3, 2s) as a normal subgroup of order 3,

where s = m/3 ≥ 3. As in the proof of Lemma 2.2.10, |G| divides three times the

order of a maximal subgroup of PSU(3, 2s). We apply Theorem 1.2.6 to PSU(3, 2s).

Case (i). The order (23s + 1)/3 of G divides 23s(22s − 1), which is impossible.

Case (ii). The order of G divides 2s(2s + 1)2(2s − 1), which is impossible.

Case (iii). The order of G divides 6(2s + 1)2, which is impossible.

Case (iv). The order of G divides 3(22s − 2s + 1); this happens if and only if

s = 3.

Cases (xiii) and (xiv). The order of G divides either 3 · |PSU(3, 2r)| or 3 ·
|PGU(3, 2r)|, where s/r is an odd prime. This is impossible, since |G| exceeds

three times the order of any subgroup of PGU(3, 2r).

Case (xv). The order of G divides 36, which is impossible.

Therefore, we have to consider only case (iv), with s = 3. In this case, G has

order 171 and G′′ = G ∩ PSU(3, 2s) has order |G|/3 = 57; moreover, G′′ coincides

with the normalizer in PSU(3, 2s) of a cyclic Singer group S. The fixed points of S

are three non-collinear points P1, P2, P3 whose coordinate are in a cubic extension

of F22s , hence in F22m . Since G is semiregular, we have that Pi /∈ Hq; therefore,

T = {P1, P2, P3} is a self-polar triangle with respect to Hq. Since G acts on T ,

the thesis follows as in the proof of Proposition 2.2.9, after replacing q with 2s and

G′ with G′′.

Theorem 2.2.12. GGS2,m is not a Galois subcover of the Hermitian curve Hq.

Proof. Suppose GGS2,m
∼= Hq/G. Then G 6⊆ PSU(3, q), by Propositions 2.2.6,

2.2.7, 2.2.11 and Lemma 2.2.10. Hence, G′ = G∩PSU(3, q) has index 3 in G. After
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replacing G with G′, we can repeat the proofs of Propositions 2.2.8 and 2.2.9, the

proof of Lemma 2.2.10, and the first part of the proof of Proposition 2.2.11. Then

m = 9, and any maximal subgroup M of PSU(3, 29) containing G′ contains also

PSU(3, 23) as a normal subgroup of index 3. Moreover, G′′ = G′ ∩ PSU(3, 23) is

contained in the normalizer N ′ of a cyclic Singer group with |N ′| = 57.

If G′ ≤ PSU(3, 23), then we argue as in the proof of Proposition 2.2.11, after

replacing G with G′. In this way we get a contradiction.

If G′ 6⊆ PSU(3, 23), then G′′ = G′∩PSU(3, 23) has order |G′|/3 = 19. By Sylow

theorems, G′′ is the only Sylow 19-subgroup of G′; hence, G′′ is a cyclic Singer

group. Therefore G′′ fixes a triangle T with coordinates in the cubic extension

F218 of F26 , and T is self-polar with respect to H29 . Since G′ acts on T , the thesis

follows from Proposition 2.2.9.

Now Theorem 2.2.1 follows.

2.2.2 GSq is not Galois covered by Hq3, for any q > 3

Throughout this section q > 3 is a power of a prime p. We rely on the following
bound by Duursma and Mak.

Proposition 2.2.13. ([34, Theorem 1.3]) If there exists a Galois covering Hq3 →
GSq of degree d, then

q2 + q ≤ d ≤ q2 + q + 2.

Therefore, we have to exclude three possible values of d.

Proposition 2.2.14. There is no Galois covering ϕ : Hq3 → GSq of degree q2 +

q + 2.

Proof. If such ϕ existed, then q2 + q + 2 would divide the order q9(q9 + 1)(q6 − 1)

of PGU(3, q3), hence q2 + q + 2 would divide 2128q − 1568. But this is impossible

for any prime power greater than 3.

Now we consider the case d = q2 + q + 1.

Lemma 2.2.15. Let G ≤ PGU(3, q3) with |G| = q2 +q+1. Then G ≤ PSU(3, q3).

Proof. If PSU(3, q3) 6= PGU(3, q3), then PSU(3, q3) has index 3 in PGU(3, q3) and

3 divides q3 + 1; hence, 3 does not divide |G|. Suppose G 6⊆ PSU(3, q3); then

PGU(3, q3) = G · PSU(3, q3), and G has a subgroup G ∩ PSU(3, q3) of index 3,

which is impossible.
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Proposition 2.2.16. There is no Galois covering ϕ : Hq3 → GSq of degree q2 +

q + 1.

Proof. Suppose by contradiction that such ϕ exists. Then GSq ∼= Hq3/G with

G ≤ PSU(3, q3) by Lemma 2.2.15, and Theorem 1.2.6 can be applied.

Case (i). Let Hq3 be given by the Norm-Trace equation (1.4). Up to conju-

gation, G fixes the ideal point P∞ of Hq3 . By [47, Section 4], the stabilizer S of

P∞ in PGU(3, q3) has order q9(q6 − 1). The group S is the semidirect product

Q o H, where Q is the unique Sylow p-subgroup of S, and H is a cyclic group

generated by αa : (X : Y : T ) 7→ (aq
3+1X : aY : T ), where a is a primitive

(q6 − 1)-th root of unity; moreover, H fixes two Fq3-rational points P∞, O ∈ Hq3

and is semiregular on Hq3 \ {P∞, O}. We have G ⊂ H, because Q is normal in

S, |Q| and |H| are coprime, and |G| divides |H|. In particular, G is generated

by αb : (X : Y : T ) 7→ (bq
3+1X : bY : T ), with b = a(q3+1)(q−1). Let Ḡ be the

group generated by αc : (X : Y : T ) 7→ (cq
3+1X : cY : T ), with c = aq−1; then

G is normal in Ḡ of index q3 + 1. The group Ḡ/G fixes two Fq6-rational points

of Hq3/G and acts semiregularly on the other points of Hq3/G. Therefore, the

number of Fq6-rational points of Hq3/G is congruent to 2 modulo q3 + 1. On the

other hand, the number of Fq6-rational points of Xq is q7 − q5 + q4 + 1, which is

congruent to q2 + 1 modulo q3 + 1.

Case (ii). Let Hq3 be given by the Fermat equation (1.3). Up to conjugation,

G fixes the affine point (0, 0) and the line at infinity ` : T = 0. The action of G on

` is faithful. In fact, if g ∈ G fixes ` pointwise, then g is a homology of the form

g : (X : Y : T ) 7→ (X : Y : λT ), whose order divides q3 + 1; since |G| and q3 + 1

are coprime, g is the identity element. Therefore, as in the proof of Proposition

2.2.6, G is isomorphic to a subgroup of PGL(2, q6); by Theorem 1.2.7, G is cyclic.

Moreover, since |G| divides q6 − 1, G has two fixed points P1, P2 ∈ ` and acts

semiregularly on ` \ {P1, P2}; see Theorem 1.2.7. As |` ∩ Hq3| is congruent to 2

modulo |G|, we have that P1, P2 ∈ Hq3 . Now the same argument used in case (i)

yields a contradiction.

Cases (iii) and (iv). The order of G does not divide the order of these maximal

subgroups.

Case (v). The group G acts on the q6+1 Fq6-rational points of a conic C defined

over Fq6 . As in case (ii), G is isomorphic to a cyclic subgroup Γ of PGL(2, q6)

acting on a line ` with no short orbits apart from two fixed Fq6-rational points.

The action of G on C is equivalent to the action of Γ on `, see [118, Chapt. VIII,

Thm. 15]; hence G has no short orbits on C apart from two fixed Fq6-rational

points P1, P2. If G has a fixed Fq6-point on Hq3 , then we get a contradiction
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by arguing as in case (i). Otherwise, P1, P2 /∈ Hq3 ; by [90, Par. 2] and [65,

Page 141], G fixes a third Fq6-rational point P3 ∈ Hq3 , and T = {P1, P2, P3} is

a self-polar triangle. Let now Hq3 be given by the Fermat equation (1.3); up to

conjugation, T is the fundamental triangle and a generator of G has the form

g : (X : Y : T ) 7→ (λX : µY : T ). Then the order |G| of g divides q3 + 1, which is

impossible.

Cases (viii) to (xii), and case (xv). The order of G does not divide the order

of these maximal subgroups.

Cases (vi), (vii), (viii), and (xiv). If K is a group containing PSU(3, 2m) as a

normal subgroup of index 3, then the order of any maximal subgroup of K divides

three times the order of a maximal subgroup of PSU(3, 2m). Hence, applying

Theorem 1.2.6 to PSU(3, pm), it can be checked that |G| does not divide neither

the order of any maximal subgroup of PSU(3, pm), nor the order of any maximal

subgroup of K.

Lemma 2.2.17. Let G ≤ PGU(3, q3) with |G| = q(q + 1). Then the number of

Sylow p-subgroups of G is either 1 or q + 1.

Proof. Let Q1, . . . , Qn be the Sylow p-subgroups of G. By [67, Theorem 12.25

(i),(ii)], for each i = 1, . . . , n there is a unique point Pi ∈ Hq3 fixed by Qi. More-

over, Pi is Fq6-rational, and Pi 6= Pj for i 6= j. If n > 1, then G has no fixed

points; hence, the length of the orbit OP1 of P1 under G is at least q + 1, since

Q1 is semiregular on Hq3 \ {P1}. On the other hand, the stabilizer of P1 in G has

length at least q, as it contains Q1. Therefore |OP1 | = q+ 1 by the orbit-stabilizer

theorem. If P ∈ OP1 , then the stabilizer of P in G has order q, hence P = Pi for

some i ∈ {2, . . . , n}. Then n = q + 1.

Proposition 2.2.18. Let G ≤ PGU(3, q3) with |G| = q(q + 1). If G has a unique

Sylow p-subgroup Q, then GSq is not birationally equivalent to Hq3/G.

Proof. Let Hq3 be given by the Norm-Trace equation (1.4). Since Q is normal

in G, we have that G fixes the unique fixed point of Q on Hq3 , which can be

assumed to be the ideal point P∞. The stabilizer of P∞ in PGU(3, q3) is solvable;

hence, by Hall’s theorem [64, Theorems 2.1-2.4], we have that, up to conjugation,

G = Qo 〈αλ〉, where αλ : (X : Y : T ) 7→ (X : λY : T ) and λ is a primitive (q+ 1)-

th root of unity. The genus g of Hq3/G is computed in [47, Theorem 4.4]. In the

terminology of [47, Theorem 4.4], g = g(GSq) implies q = pw, that is, the elements

of Q are involutions of the form βµ : (X : Y : T ) 7→ (X + µT : Y : T ), with

µq
3

+ µ = 0. Then there exists a p-linearized polynomial L ∈ Fq6 [X] of degree q
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dividing Xq3 +X, such that the set of roots of L coincides with {µ ∈ Fq6 | βµ ∈ Q}.
By [82, Theorem 3.62], there is also a p-linearized polynomial F ∈ Fq6 [X] of degree

q2 dividing Xq3 + X, such that F (L(X)) = Xq3 + X. Then it is easy to see that

the quotient curve Hq3/G is Fq6-birationally equivalent to the plane curve C with

equation V q2−q+1 = F (U).

Assume that there exists an Fq6-isomorphism ψ : C → GSq. We will show that

in this case F (U) cannot be a divisor of U q3 + U , which is a contradiction.
By [67, Theorem 12.11], the ideal points R∞ ∈ GSq and S∞ ∈ C are the unique

fixed points of the automorphism groups Aut(Xq) and Aut(C), respectively. Hence,
ψ(S∞) = R∞. Also, the coordinate functions have pole divisors

div(x)∞ = (q2−q+1)R∞, div(y)∞ = q2R∞, div(u)∞ = (q2−q+1)S∞, div(v)∞ = q2S∞,

and the Weierstrass semigroups at the ideal points are H(R∞) = H(S∞) =

〈q2−q+1, q2〉 (see [67, Lemmas 12.1, 12.2]). Then {1, u} is a basis of the Riemann-

Roch space L((q2−q+1)R∞) and {1, u, v} is a basis of L(q2R∞). Therefore, there

exist constants a, b, c, d, e ∈ Fq6 , a, d 6= 0, such that ψ∗(x) = au + b and ψ∗(y) =

cu + dv + e, where ψ∗ : Fq6(GSq) → Fq6(C) is the pull-back of ψ; equivalently,

ψ : (U, V, T ) 7→ (aU + b, cU + dV + e, T ).

Then the polynomial identity

(aU + b)q
2

− (aU + b)− (cU + dV + e)q
2−q+1 = k

(
F (U)− V q2−q+1

)
holds for some non-zero k ∈ K. By comparing the coefficients we get c = e = 0,

b ∈ Fq2 , and k = dq
2−q+1; this implies

F (U) = k−1aq
2

U q2 − k−1aU.

It is easily checked that the conventional p-associate of the p-linearized polynomial

F (X) is not a divisor of the conventional p-associate of U q3 + U , hence F (U) is

not a divisor of U q3 + U by [82, Theorem 3.62].

Lemma 2.2.19. Let G ≤ PGU(3, q3) with |G| = q(q + 1). If G has q + 1 distinct

Sylow p-subgroup Q1, . . . , Qq+1, then G ∼= (Zp′)s o Q1, where p′ is a prime and

(p′)s = q + 1.

Proof. By the proof of Lemma 2.2.17, the points P1, . . . , Pq+1, fixed byQ1, . . . , Qq+1,

respectively, form a single orbit O under the action of G. By Burnside’s Lemma

[17, Chapter VIII, Par. 118], G is sharply 2-transitive on O. Then, by [63, Theo-

rem 20.7.1], G is isomorphic to the group of affine transformations of a near-field
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F ; also, G has a regular normal subgroup N , and hence G = N oQ1. The order

f of F satisfies q(q + 1) = (f − 1)f , hence f = q + 1. This implies that F cannot

be one of the seven exceptional near-fields listed in [122] and then F is a Dickson

near-field; see [63, Theorem 20.7.2]. In particular, N is isomorphic to the additive

group (Zp′)s of a finite field.

Proposition 2.2.20. Let G ≤ PGU(3, q3) with |G| = q(q + 1). If G has q + 1

distinct Sylow p-subgroups, then GSq is not birationally equivalent to Hq3/G.

Proof. Suppose that q is odd. Then all involutions of PGU(3, q3) are conjugate,

and they are homologies of PG(2, q6); see [75, Lemma 2.2]. The maximum number

of pairwise commuting involutions is 3; in fact, two homologies commute if and

only if the center of one homology lies on the axis of the other (see [30, Theorem.

3.1.12]). Then q + 1 = 4 by Lemma 2.2.19, a contradiction to q > 3.

Suppose that q is even, and GSq ∼= Hq3/G. Let Q1, . . . , Qq+1 be the Sylow p

subgroups of G. The group Q1 is isomorphic to the multiplicative group of F ,

hence Q1 is metacyclic; see e.g. [20, Ex. 1.19]. Also, Q1 has exponent 2 or 4

by [75, Lemma 2.1]. Therefore, q ∈ {2, 4, 8, 16}. The case q = 2 is excluded. If

q = 16, then F has prime order 17 and F is a field; hence Q1 has exponent 16, a

contradiction.

For q ∈ {4, 8} we apply the Riemann-Hurwitz genus formula to the covering

Hq3 → GSq, in order to get a contradiction on the degree

∆ = (2g(Hq3)− 2)− |G| (2g(Xq)− 2)

of the different divisor. By [107, Theorem 3.8.7],

∆ =
∑

σ∈G\{id}

i(σ),

where i(σ) ≥ 0 satisfies the following conditions.

• If σ has order 2, then i(σ) = q3 + 2; if σ has order 4, then i(σ) = 2 (see [107,

Eq. (2.12)]).

• If σ has odd order, then i(σ) equals the number of fixed points of σ on Hq3 ,

see [107, Cor. 3.5.5]. Also, by [65, pp. 141-142], either σ has exactly 3

fixed points or σ is a homology. In the former case i(σ) ≤ 3, in the latter

i(σ) = q3 + 1.
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If q = 4, then ∆ = 470 and G = Z5 o Q1. If Q1
∼= Z2 × Z2, then G has 15

involutions, whose contributions to ∆ sum up to 990 > ∆. Then Q1
∼= Z4, and

the contributions of the Qi’s to ∆ sum up to 5 · 66 + 10 · 2 = 350. The remaining

four non-trivial elements of G are generators of Z5; then either all of them are

homologies, or all of them fix 3 points. In both cases, their contribution cannot

be equal to 120 = ∆− 350.

Let q = 8, hence ∆ = 7758 and G = (Z3 × Z3) oQ1. If Q1 has more than one

involution, then the involutions of G contribute to ∆ for at least 18 · 514 > ∆.

Hence, Q1 is the quaternion group, and the sum of Qi’s contributions to ∆ is

9 · 514 + 54 · 2 = 4734. The contribution to ∆ of the elements of Z3 × Z3 is either

513 or less than 4; hence, it cannot sum up to 3024 = ∆− 4734.

The following result follows rom Lemma 2.2.17 and Propositions 2.2.18 and
2.2.20.

Proposition 2.2.21. There is no Galois covering Hq3 → GSq of degree q2 + q.

From Propositions 2.2.13, 2.2.14, 2.2.16, and 2.2.21, Theorem 2.2.2 follows.

2.3 Some Ree and Suzuki curves are not quo-

tients of the Hermitian curve

The results of this section are the object of [92]. We prove that the Suzuki
and Ree curves over Fq for the smallest values of q, are not quotients of the
corresponding maximal Hermitian curves. We use the notation and results of
Section 1.2.

Theorem 2.3.1. The Suzuki curve S8 is not a quotient curve of H64.

Theorem 2.3.2. The Ree curve R3 is not a quotient curve of H27.

We note that Theorem 2.3.2 is an unpublished result due to Rains and Zieve.
In analogy with the Suzuki curves, we can define the plane curve

S2 : Y 2 + Y = X(X2 +X)

over F2. We prove the following proposition.

Proposition 2.3.3. The curve S2 is a quotient curve of H4.
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We classify the elements of PGU(3, q) in terms of their order and their action
on PG(2,K) and Hq. In this way, we get the contribution of any element σ ∈
PGU(3, q) to the degree of the different exponent of a Galois covering Hq →
Hq/G, where G ≤ PGU(3, q) contains σ; see Theorem 2.3.9. This is a result of
independent interest, which extends [34, Lemma 4.1].

In Section 2.3.1 we present some preliminary results on quotient curves of
the Hermitian curve and the proof of Proposition 2.3.3. Sections 2.3.2 and 2.3.3
contain the proofs of Theorems 2.3.1 and 2.3.2, respectively. Section 2.3.4 provides
the spectrum of genera of quotient curves of H27 and three examples of quotient
curves of R3 which are not quotient curves of H27.

2.3.1 Preliminary results

In our investigation it is useful to know how an element of PGU(3, q) of a given
order acts on PG(2,K), and in particular on Hq(Fq2). This can be obtained as a
corollary of Theorem 1.2.6, and is stated in Lemma 2.2 with the usual terminology
of collineations of projective planes; see [72]. In particular, a linear collineation
σ of PG(2, F̄q) is a (P, `)-perspectivity, if σ preserves each line through the point
P (the center of σ), and fixes each point on the line ` (the axis of σ). A (P, `)-
perspectivity is either an elation or a homology according as P ∈ ` or P /∈ `. A
(P, `)-perspectivity is in PGL(3, q2) if and only if its center and its axis are in
PG(2,Fq2).

Lemma 2.3.4. For a nontrivial element σ ∈ PGU(3, q), one of the following cases

holds.

(A) ord(σ) | (q+ 1). Moreover, σ is a homology whose center P is a point off Hq

and whose axis ` is a chord of Hq(Fq2) such that (P, `) is a pole-polar pair

with respect to the unitary polarity associated to Hq(Fq2).

(B) ord(σ) is coprime to p. Moreover, σ fixes the vertices P1, P2, P3 of a non-

degenerate triangle T .

(B1) The points P1, P2, P3 are Fq2-rational, P1, P2, P3 /∈ Hq and the triangle

T is self-polar with respect to the unitary polarity associated to Hq(Fq2).

Also, ord(σ) | (q + 1).

(B2) The points P1, P2, P3 are Fq2-rational, P1 /∈ Hq, P2, P3 ∈ Hq. Also,

ord(σ) | (q2 − 1) and ord(σ) - (q + 1).

(B3) The points P1, P2, P3 have coordinates in Fq6 \Fq2, and P1, P2, P3 ∈ Hq.

Also, ord(σ) | (q2 − q + 1).
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(C) ord(σ) = p. Moreover, σ is an elation whose center P is a point of Hq and

whose axis ` is a tangent of Hq(Fq2) such that (P, `) is a pole-polar pair with

respect to the unitary polarity associated to Hq(Fq2).

(D) ord(σ) = p with p 6= 2, or ord(σ) = 4 and p = 2. Moreover, σ fixes an

Fq2-rational point P ∈ Hq, and a line ` which is a tangent of Hq(Fq2), such

that (P, `) is a pole-polar pair with respect to the unitary polarity associated

to Hq(Fq2).

(E) p | ord(σ), p2 - ord(σ), and ord(σ) 6= p. Moreover, σ fixes two Fq2-rational

points P,Q, with P ∈ Hq, Q /∈ Hq.

Proof. Let p | ord(σ), ord(σ) 6= p, and (p, ord(σ)) 6= (2, 4). By [90, §2 p. 212]

and [65, pp. 141-142], the fixed elements of σ are two points P,Q, the line PQ,

and another line ` through P . Also, p2 - ord(σ). The Frobenius collineation

Φq2 : (X : Y : T ) 7→ (Xq2 : Y q2 : T q
2
) commutes with σ. Hence Φq2 acts on

{P,Q}, and P,Q are Fq4-rational. If R ∈ {P,Q} is the pole of PQ, then R ∈ Hq.

Since Hq has no points with coordinates in Fq4 \ Fq2 , R is Fq2-rational. Thus the

line PQ is a tangent of Hq(Fq2) at R. Hence the pole of ` is Fq2-rational and off `.

Therefore R = P and the assertions of Case (E) follow.

Let ord(σ) = p, and let Hq have Norm-Trace equation (1.4). Up to conju-

gation, σ is contained in the Sylow p-subgroup S of PGU(3, q) defined by S =

{τ1,b,c | b, c ∈ Fq6 , bq+1 = cq + c}, where

τ1,b,c =

1 bq c

0 1 b

0 0 1

 . (2.20)

Hence σ fixes the Fq2-rational point P∞ = (1 : 0 : 0) ∈ Hq and its polar line

`∞ : T = 0, which satisfies `∞∩Hq = {P∞}. If p = 2, then σ is of type τ1,0,c, and σ

is an elation with center P∞ and axis `∞, which is Case (C). If p 6= 2, then by [90,

§2 p. 212] σ = τ1,b,c satisfies either Case (C) or Case (D). By direct computation,

Cases (C) and (D) correspond to b = 0 and b 6= 0, respectively.

Let p - ord(σ). By [90, §2 p. 212] and [65, pp. 141-142], either σ fixes a point

P and a line ` pointwise, or σ fixes exactly three non-collinear points.

Assume that the former case holds. Then P and ` are fixed by Φq2 . Hence,

they are defined over Fq2 . We have P /∈ Hq. In fact, if P ∈ Hq, then the tangent

to Hq at P intersect ` at an Fq2-rational point Q /∈ Hq, and the Fq2-rational pole

R of ` lies on `, hence also on Hq. For any Fq2-rational point P̄ of `\{R}, we have
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that P̄ /∈ Hq and the polar line of P̄ intersects ` at another Fq2-rational point of `.

Since the line PQ is the polar line of P , this is a contradiction. Therefore, ` is the

polar line of P , and ` is a chord of Hq(Fq2). Now we show that ord(σ) | (q + 1).

Let Hq have Fermat equation (1.3). Up to conjugation, P = (0 : 0 : 1) and

` : T = 0. Hence σ is a diagonal matrix of the form diag(λ, 1, 1), which implies

ord(σ) = ord(λ) with ord(λ) | (q + 1). This shows that σ satisfies Case (A).

Now assume that σ fixes exactly the vertices P1, P2, P3 of a triangle T .

• Suppose that P1, P2, and P3 are Fq2-rational. If P1, P2, P3 /∈ Hq, then PjPk
is the polar line of Pi, for {i, j, k} = {1, 2, 3}. Let Hq have Fermat equation

(1.3). Up to conjugation P1, P2, and P3 are the fundamental points. Thus

σ is a diagonal matrix and ord(σ) | (q + 1), which is Case (B1). Assume

P2 ∈ Hq. Then the polar line `2 of P2 is either P1P2 or P2P3, say P1P2. The

polar line `3 of P3 is either P1P3 or P2P3, whence P3 ∈ `3 and P3 ∈ Hq. Then

`3 ∩ Hq = {P3}, and hence `3 is P1P3. This implies that P2P3 is the polar

line of P1 and P1 /∈ Hq. Let Hq have Norm-Trace equation (1.4). Up to

conjugation, P2 = (1 : 0 : 0) and P3 = (0 : 0 : 1). Thus P1 = (0 : 1 : 0) and

σ is the diagonal matrix diag(µq+1, µ, 1) for some µ ∈ F∗q2 . Since σ is not a

homology, ord(σ) = ord(µ) does not divide q + 1. This is Case (B2).

• Suppose that P1 has coordinates in Fq6 \ Fq2 . The orbit of P1 under Φq2 is

{P1, P2, P3}. Hence, P2 and P3 have coordinates in Fq6 \Fq2 as well. Assume

P1 ∈ Hq. Then the polar line `1 of P1 is tangent to Hq at P1 and `1 has

exactly another point P in common with Hq, which is then fixed by σ. Up to

reordering, P = P2. In the same way, P3 ∈ Hq and the polar line of P1, P2, P3

are P1P2, P2P3, P3P1, respectively. Let H ≤ PGU(3, q) be the Singer group

consisting of the elements of PGU(3, q) fixing the triangle T . Then H has

order q2 − q + 1 by Theorem 1.2.6. Since σ ∈ H, ord(σ) | (q2 − q + 1) and σ

satisfies Case (B3).

Elements satisfying Case (B3) do exist; see for instance [27, Lemma 4.4].

The number k of triangles T whose vertices Q1, Q2, Q3 are such that Qi ∈
PG(2, q6) \ PG(2, q2) and there exists some σ ∈ PGU(3, q) stabilizing T , is

equal to the index in PGU(3, q) of the normalizer N of H. By Case (iv) in

Theorem 1.2.6, |N | = 3(q2 − q + 1). Hence k = q3(q + 1)2(q − 1)/3. By

direct computation, k is equal to the number of triangles T ′ whose vertices

Q′1, Q
′
2, Q

′
3 are such that Q′i ∈ PG(2, q6) \ PG(2, q2) and Q′i ∈ Hq, i = 1, 2, 3.

Therefore, it is not possible that P1, P2, P3 have coordinates in Fq6 \ Fq2 and

P1 /∈ Hq.
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• The case that P1 has coordinates in Fq4 \Fq2 cannot occur. In fact, since Φq2

acts on {P1, P2, P3}, if P1 ∈ PG(2,Fq4) \ PG(2,Fq2), then up to reordering

P2 ∈ PG(2,Fq4) \ PG(2,Fq2) and P3 ∈ PG(2, q2). Let i, j ∈ {1, 2, 3}, i 6= j.

By [90, §2 p. 212] and [65, pp. 141-142], any power of σ either fixes the

line PiPj pointwise or has no fixed points on PiPj \ {Pi, Pj}. Thus σ has

long orbits on PiPj \ {Pi, Pj}. In particular, ord(σ) divides the number of

Fq2-rational points of both P1P2 and P1P3 \ {P3}, a contradiction.

Throughout the paper, a nontrivial element of PGU(3, q) is said to be of type
(A), (B), (B1), (B2), (B3), (C), (D), or (E), as given in Lemma 2.3.4. Moreover,
G always stands for a subgroup of PGU(3, q).

Lemma 2.3.5. Let H be a normal subgroup of G. Let A be the set of points of

PG(2,K) fixed by every element of H, and B = A ∩ Hq. Then G acts on B and

on A \B.

Lemma 2.3.6. Let H be a m-subgroup of PGU(3, q), where m /∈ {2, 3} is a prime

divisor of q + 1. Then H is abelian. Also, the nontrivial elements of H are either

of types (A) or (B1), and in the latter case the fixed triangle T is the same for

every element of H. In addiction, if H is a Sylow m-subgroup of PGU(3, q), then

the unique fixed points of H are the vertices of T and H is the direct product of

two cyclic groups whose nontrivial elements are of type (A).

Proof. Since p /∈ {2, 3}, the maximum power of m dividing |PGU(3, q)| is a square,
say m2s. Let Hq have Fermat equation (1.3), and define

K = {diag(λ, µ, 1) | λs = µs = 1} ∼= {diag(λ, 1, 1) | λs = 1} × {diag(1, µ, 1) | µs = 1}.
(2.21)

Then K is an abelian Sylow m-subgroup of PGU(3, q), whose fixed points are the

fundamental points. Also, the nontrivial elements of K are either of type (A) or

(B1). Up to conjugation, H is contained in K and the claim follows.

Lemma 2.3.7. Let H be a m-subgroup of PGU(3, q), where m is an odd prime

divisor of q−1. Then H is abelian and the unique fixed points of H are the vertices

of a triangle T .

Proof. Let Hq have Norm-Trace equation (1.4), and define

K = {diag(aq+1, a, 1) | a ∈ F∗q2}. (2.22)
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Then K is an abelian Sylow m-subgroup of PGU(3, q), and the nontrivial elements

of K fix exactly the fundamental points. Up to conjugation, H is contained in K

and the claim follows.

Lemma 2.3.8. Let p ∈ {2, 3}. If G has a nontrivial normal subgroup H of prime

order other than p, then p2 - |G|.

Proof. Assume by contradiction that p2 | |G| and let σ ∈ H. By Lemma 2.3.4, the

type of σ is either (A) or (B). Suppose that σ is of type (A). Then, since H = 〈σ〉,
all nontrivial elements of H are of type (A) and they have the same center P and

axis `. On the other hand, by Lemma 2.3.5, any p-element of G fixes P and acts

on `; a contradiction to Lemma 2.3.4. Suppose that σ is of type (B). Then, since

H = 〈σ〉, all nontrivial elements of H are of type (B) and they fix the same triangle

T . By Lemma 2.3.5, G preserves T . Hence, by the orbit-stabilizer theorem, the

elements of G fixing T pointwise form a subgroup M of index 1, 2, or 3. In all

cases, M contains a p-element of type (A) or type (B), a contradiction to Lemma

2.3.4.

Let G be a subgroup of PGU(3, q) and ∆ be the degree of the Different divisor
of the covering Hq → Hq/G, that is, ∆ = (2g(Hq)− 2)− |G|(2g(Hq/G)− 2). The
Hilbert’s Different formula can be written as

∆ =
∑

σ∈G\{id}

i(σ),

where
i(σ) =

∑
P∈Hq(F̄q) vP (σ(t)− t), (2.23)

with t a local parameter at P .
By analyzing the geometric properties of the elements σ ∈ PGU(3, q), it turns

out that there are only a few possibilities for i(σ). This is obtained as a corollary
of Lemma 2.3.4 and stated in the following proposition.

Theorem 2.3.9. For any nontrivial element σ ∈ PGU(3, q) the following holds.

1. If ord(σ) = 2 and 2 | (q + 1), then σ is of type (A) and i(σ) = q + 1.

2. If ord(σ) = 3, 3 | (q + 1) and σ is of type (B3), then i(σ) = 3.

3. If ord(σ) 6= 2, ord(σ) | (q + 1) and σ is of type (A), then i(σ) = q + 1.

4. If ord(σ) 6= 2, ord(σ) | (q + 1) and σ is of type (B1), then i(σ) = 0.
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5. If ord(σ) | (q2− 1) and ord(σ) - (q+ 1), then σ is of type (B2) and i(σ) = 2.

6. If ord(σ) 6= 3 and ord(σ) | (q2 − q + 1), then σ is of type (B3) and i(σ) = 3.

7. If p = 2 and ord(σ) = 4, then σ is of type (D) and i(σ) = 2.

8. If ord(σ) = p, p 6= 2 and σ is of type (D), then i(σ) = 2.

9. If ord(σ) = p and σ is of type (C), then i(σ) = q + 2.

10. If ord(σ) 6= p, p | ord(σ) and ord(σ) 6= 4, then σ is of type (E) and i(σ) = 1.

Proof. Suppose p - ord(σ). Then by [67, Theorem 11.74] i(σ) equals the number

of points of Hq fixed by σ. Also, for q odd all involutions are conjugated and are

of type (A), by [75, Lemma 2.2 (ii)]. Therefore Cases (1) - (6) follow from Lemma

2.3.4.

Suppose ord(σ) = p, or p = 2 and ord(σ) = 4. As in the proof of Lemma 2.3.4,

we can assume that σ has the form τ1,b,c defined in (2.20). By direct computation,

σ is of type (C) or (D) if and only if b = 0 or b 6= 0, respectively. By [47, Eq.

(2.12)], b = 0 or b 6= 0 if and only if i(σ) = q + 2 or i(σ) = 2, respectively. From

this, Cases (8) and (9) follow. Since (p, ord(τ1,b,c)) = (2, 4) implies b 6= 0, Case (7)

follows as well.

Suppose p | ord(σ), ord(σ) 6= p, and ord(σ) 6= 4. By [90, §2 p. 212] and [65,

pp. 141-142], σ is of type (E). Let P ∈ Hq be the unique fixed point of σ on Hq.

By [67, Theorem 11.74], σ is in the stabilizer of P but is not a p-element. Hence

i(σ) = 1. Since Cases (A) - (E) in Lemma 2.3.4 cover all nontrivial elements of

PGU(3, q), Cases (1) - (10) give a complete classification.

Theorem 2.3.9 extends [34, Lemma 4.1], where the result is for σ fixing an Fq2-
rational point of Hq. Groups fixing an Fq2-rational point of Hq are investigated in
[47].

Theorem 2.3.10. [47, Theorem 3.3 and Eq. (2.12)] Let p = 2. For a positive

integer g, the following assertions are equivalent.

1. There exists a 2-subgroup G ≤ PGU(3, q) such that g = g(Hq/G).

2. g = 2n−v−1(2n−w − 1) with 0 ≤ v ≤ n − 1 and 0 ≤ w ≤ n − 1, and there

exist additive subgroups V ⊆ Fq2 and W ⊆ Fq of order ord(V ) = 2v and

ord(W ) = 2w, such that V q+1 = {bq+1 | b ∈ V } is contained in W .
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Assume that assertions (1) and (2) hold, and let Hq have Norm-Trace equation
(1.4). Up to conjugation the unique point of Hq fixed by every element of G is
P∞ = (1 : 0 : 0), and the elements of G have the form (2.20). Then |G| = 2v+w and
the additive subgroups {b ∈ Fq2 | τ1,b,c ∈ G} ≤ Fq2 and {c ∈ Fq2 | τ1,0,c ∈ G} ≤ Fq
have order 2v and 2w, respectively. In particular, the number of involutions of G
equals 2w − 1.

Theorem 2.3.11. [47, Theorem 4.4 and Eq. (2.12)] Let G fix an Fq2-rational

point P ∈ Hq, and let |G| = m · pu with m > 1, m coprime with p. Then Hq/G

has genus

g(Hq/G) =
(q − pw) (q − (gcd(m, q + 1)− 1)pv)

2mpu
,

where v, w are non-negative integers such that v + w = u.

Assume that G satisfies the hypotheses of Theorem 2.3.11 and let Hq have
Norm-Trace equation (1.4). Up to conjugation P = (1 : 0 : 0) and the elements of
G have the form

τa,b,c =

aq+1 bq c
0 a b
0 0 1

 ,

with a, b, c ∈ Fq2 , a 6= 0, bq+1 = cq + c. Then the additive subgroups {b ∈ Fq2 |
τ1,b,c ∈ G} and {c ∈ Fq2 | τ1,0,c ∈ G} of Fq2 have order pv and pw, respectively.
In particular, the number of nontrivial elements σ ∈ G with i(σ) = q + 2 equals
pw − 1.

As a consequence of Theorem 2.3.9, the following result is obtained.

Proposition 2.3.12. S2 : Y 2 + Y = X(X2 +X) is Galois covered by H4.

Proof. The curve S2 has genus 1 and is F16-maximal. Let G ≤ PGU(3, 4) be

a cyclic group of order 4. By Theorem 2.3.9, the F16-maximal quotient curve

H4/G is elliptic. By [73, Theorem 77], there is only one F16-isomorphism class of

F16-maximal elliptic curves. Then S2 is F16-isomorphic to H4/G.

Throughout the rest of the paper, Cr stands for a cyclic group of order r, Sm
is a Sylow m-subgroup of G, and nm is the number of Sylow m-subgroups of G.

2.3.2 Proof of Theorem 2.3.1

By contradiction, let G ≤ PGU(3, 64) be such that S8
∼= H64/G. The order of

PGU(3, 64) is equal to 218 · 32 · 52 · 7 · 132 · 37 · 109. From the Riemann-Hurwitz
formula,

44 <
|H64(F84)|
|S8(F84)|

≤ |G| ≤ 2g(H64)− 2

2g(S8)− 2
≤ 155.
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Since |G| divides |PGU(3, 64)|,

|G| ∈ {45, 48, 50, 52, 56, 60, 63, 64, 65, 70, 72, 74, 75, 78, 80, 84, 90, 91, 96,

100, 104, 105, 109, 111, 112, 117, 120, 126, 128, 130, 140, 144, 148, 150}.

The different divisor has degree

∆ = (2g(H64)− 2)− |G|(2g(S8)− 2) = 4030− 26 · |G|. (2.24)

Case |G| = 45. By Sylow’s Third Theorem [100, Theorem 6.10] and Schur-
Zassenhaus Theorem [100, Theorem 9.19], G is the direct product G = S3 × C5.
Then G has 4 elements of order 5 and 40 elements of odd order multiple of 3. By
Theorem 2.3.9, ∆ ≤ 4 · 65 + 40 · 2, a contradiction (2.24).

Case |G| = 48. Any group of order 48 has a normal subgroup of order 8 or 16
(see [104, p. 154 Ex. 10]); hence G has a normal 2-subgroup N . By [67, Theorem
11.74], N has a unique fixed point P on H64, which is F642-rational. By Lemma
2.3.5, G fixes P . From Theorem 2.3.11,

14 =
(64− 2w)(64− (gcd(3, 65)− 1)2v)

2 · 48
,

with v + w = 4. By direct computation, this is not possible.
Case |G| = 50. By Sylow’s Third Theorem and Schur-Zassenhaus Theorem,

G is a semidirect product G = S5 o C2. By Theorem 2.3.9, ∆ = i · 65 + (24− i) ·
0 + n2 · 66 + (25 − n2) · 1 with 0 ≤ i ≤ 24 and n2 ∈ {1, 5, 25}. This contradicts
(2.24).

Case |G| = 52. By Sylow’s Third Theorem, n13 = 1, a contradiction to Lemma
2.3.8.

Case |G| = 56. By Sylow’s Third Theorem, n2 = 1 or n7 = 1. Suppose that
n2 = 1, so that G = S2 o C7. Then S2 fixes an F642-rational point P ∈ H64, and
G fixes P by Lemma 2.3.5. By Theorem 2.3.11,

14 =
(64− 2w)(64− (gcd(7, 65)− 1)2v)

2 · 56
,

with v+w = 2; this is impossible. The case n7 = 1 is impossible by Lemma 2.3.8.
Case |G| = 60. By [100, Problem 6.16], either n5 = 1 or G is isomorphic to

the alternating group A5. The case n5 = 1 is impossible by Lemma 2.3.8; hence
G ∼= A5. By Theorem 2.3.9, ∆ = 15 ·66+20 ·2+ i ·65+(24− i) ·0, with 0 ≤ i ≤ 24.
This contradicts (2.24).

Case |G| = 63. By Theorem 2.3.9, ∆ = 62 · 2, a contradiction to (2.24).
Case |G| = 64. By Theorem 2.3.10, 14 = 26−v−1(26−w − 1) with 0 ≤ v, w ≤ 5.

Hence, v = 4 and w = 3. Then, by Theorem 2.3.10 and Lemma 2.3.4, G has
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7 elements of type (C) and 56 elements of type (D). By Theorem 2.3.9, ∆ =
7 · 66 + 56 · 2. This contradicts (2.24).

Case |G| = 65. By Lemma 2.3.4, any nontrivial element σ ∈ G is either of
type (A) or of type (B1). If a generator of the cyclic group G is of type (A), then
any element is of type (A) and ∆ = 64 ·65 by Theorem 2.3.9, contradicting (2.24).
If the 48 generators of G are of type (B1), then ∆ ≤ 16 · 65 by Theorem 2.3.9.
This contradicts (2.24).

Case |G| = 70. By Sylow’s Third Theorem, n5 = n7 = 1 and n2 ∈ {1, 5, 7, 35};
hence, G = C35 o C2. By Theorem 2.3.9, ∆ = n2 · 66 + (35− n2) · 1 + 30 · 2 + i ·
65 + (4− i) · 0 with 0 ≤ i ≤ 4. This contradicts (2.24).

Case |G| = 72. By [91, Theorem 1], G has a characteristic 3-subgroup N . By
Lemma 2.3.7, the elements of N are of type (B2) with a common fixed triangle
T . By Lemma 2.3.5, G acts on T . By the orbit-stabilizer theorem, G contains a
2-element fixing T pointwise, contradicting Lemma 2.3.4.

Case |G| = 74. For any prime power q, PSU(3, q) has index gcd(3, q + 1)
in PGU(3, q). This implies that, for any maximal subgroup M 6= PSU(3, q) of
PGU(3, q), |M | divides three times the order of a maximal subgroup of PSU(3, q).
By Theorem 1.2.6, 74 does not divide three times the order of any maximal sub-
group of PSU(3, 64), a contradiction.

Case |G| = 75. By Sylow and Schur-Zassenhaus theorems, G is a semidirect
product G = S5 oC3. By Theorem 2.3.9, ∆ = i ·65 + (24− i) ·0 + j ·2 + (50− j) ·3
with 0 ≤ i ≤ 24 and 0 ≤ j ≤ 50. This contradict (2.24).

Case |G| = 78. By Sylow’s Third Theorem, n13 = 1; by Lemma 2.3.5, G
acts on the fixed points of S13. Every nontrivial element σ ∈ S13 generates S13

and is either of type (A) or (B1). Hence, all nontrivial elements of G either are
of type (A), or act on a common triangle T . In the former case, G contains a
2-element of type (A), contradicting Lemma 2.3.4. In the latter case, by the orbit-
stabilizer theorem, the subgroup H of G fixing T pointwise contains a 2-element
or a 3-element. This contradicts Lemma 2.3.4.

Case |G| = 80. By [91, Theorem 1], G has a characteristic 2-subgroup N . By
Lemma 2.3.5, G fixes the unique fixed point of N on H64, which is F642-rational.
By Theorem 2.3.11,

14 =
(64− 2w)(64− (gcd(5, 65)− 1)2v)

2 · 80

with v + w = 4, which is impossible.

Case |G| = 84. By Sylow’s theorems, n7 = 1, a contradiction to Lemma 2.3.8.

Case |G| = 90. Since |G| ≡ 2 (mod 4), G has a normal subgroup N of index 2
(see [96, Ex. 4.3]). By Sylow’s Third Theorem, N has a characteristic 5-subgroup
C5, so that C5 is normal in G and n5 = 1. Also, n3 = 1. Then G is a semidirect



2.3. R3 AND S8 ARE NOT QUOTIENTS OF H27 AND H64 67

product G = C5×S3oC2. By Theorem 2.3.9, ∆ = 4·i+40·2+n2 ·66+(45−n2)·1,
with i ∈ {0, 65} and 1 < n2 | 45. This contradicts (2.24).

Case |G| = 91. By Theorem 2.3.9, ∆ = 78 · 2 + 12 · i with i ∈ {0, 65},
contradicting (2.24).

Case |G| = 96. By [91, Theorem 1], G has a characteristic 2-subgroup N . By
Lemma 2.3.5, G fixes the unique fixed point of N on H64, which is F642-rational.
By Theorem 2.3.11,

14 =
(64− 2w)(64− (gcd(3, 65)− 1)2v)

2 · 91

with v + w = 5, which is impossible.
Case |G| = 100. By Sylow’s Third Theorem, n5 = 1. By Lemma 2.3.6, the

fixed points of S5 are the vertices of a triangle T . By Lemma 2.3.5, G acts on T .
By the orbit-stabilizer theorem, G contains a 2-element fixing T pointwise. This
contradicts Lemma 2.3.4.

Case |G| = 104. By Sylow’s theorems n13 = 1, contradicting Lemma 2.3.8.
Case |G| = 105. By Sylow’s Third Theorem, n5 ∈ {1, 21}. All elements of

a S5 are of the same type, either (A) or (B1). Then, by Theorem 2.3.9, ∆ =
4i · 65 + 4(n5 − i) · 0 + (104− 4n5) · 2, with 0 ≤ i ≤ n5. This contradicts (2.24).

Case |G| = 109. By Theorem 2.3.9, ∆ = 108 · 3. This contradicts (2.24).
Case |G| = 111. By Sylow and Schur-Zassenhaus theorems, n37 = 1, n3 ∈

{1, 37}, and G is a semidirect product G = C37 o C3. By Lemma 2.3.4, G has no
elements of order 37 · 3. Hence, n3 = 37. By Theorem 2.3.9, ∆ = 36 · 3 + 74 · 2.
This contradicts (2.24).

Case |G| = 112. By [91, Theorem 1], G has a characteristic 2-subgroup N . By
Lemma 2.3.5, G fixes the unique fixed point of N on H64, which is F642-rational.
By Theorem 2.3.11,

14 =
(64− 2w)(64− (gcd(7, 65)− 1)2v)

2 · 112

with v + w = 4, which is a contradiction.
Case |G| = 117. By Sylow and Schur-Zassenhaus theorems, G is a semidirect

product G = C13 o S3. Since 13 is prime, the nontrivial elements of C13 are of the
same type (A) or (B1). By Theorem 2.3.9, ∆ = 12 · i + 104 · 2 with i ∈ {0, 65}.
Then i = 65 by (2.24), i.e. the nontrivial elements of C13 are homologies, with
a common center P /∈ H64 and axis `. By Lemma 2.3.5, G fixes P and acts on
`. By Lemma 2.3.4, the nontrivial elements of S3 are of type (B2) and fix two
F642-rational points Q,R ∈ ` ∩ H64. Let H64 have Norm-Trace equation (1.4).
Since PGU(3, q) is 2-transitive on the F642-rational points of H64, we can assume
that Q = (1 : 0 : 0) and R = (0 : 0 : 1). Then C13 = {diag(1, λ, 1) | λ13 = 1} and
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S3 = {diag(a65, a, 1) | a9 = 1} = C9; see [47]. Hence, G is abelian and is the direct
product G = C13 × C9. Let Ḡ ≤ PGU(3, 64) be the group Ḡ = C65 × C9, where
C65 is generated by diag(1, λ̄, 1), with λ̄ a primitive 65-th root of unity. Then G is
a normal subgroup of Ḡ of index 5, so that Ḡ/G ≤ Aut(H64/G) has order 5. Also,
Ḡ/G has two F8-rational fixed places on H64/G, namely the ones lying under Q
and R. This is inconsistent with the structure of the automorphism group of S8.
In fact, by [67, Theorems 12.13 and A.12], any subgroup of Aut(S8) of order 5 is
a Singer group acting semiregularly on the F8-rational places of S8.

Case |G| = 120. By [96, Ex. 8.19], either n5 = 1, or G has a normal 2-
subgroup, or G is isomorphic to the symmetric group S5. The case n5 = 1 is
impossible by Lemma 2.3.8. Hence, n5 = 6. Suppose that G has a normal 2-
subgroup N . By Lemma 2.3.5, G fixes the unique fixed point of N on H64. Then
any 5-element of G is of type (A) by Lemma 2.3.4. By Theorem 2.3.9, ∆ ≥ 24 ·65;
this contradicts (2.24). Suppose that G ∼= S5. Then G contains 25 involutions.
By Theorem 2.3.9, ∆ ≥ 25 · 66. This contradicts (2.24).

Case |G| = 126. Since |G| ≡ 2 (mod 4), G has a normal subgroup N of
index 2. Then G is a semidirect product G = N o C2. By Theorem 2.3.9, ∆ =
62 · 2 + n2 · 66 + (63− n2) · 1. This contradicts (2.24).

Case |G| = 128. By Theorem 1.2.6, G fixes an F642-rational point of H64.
Then, by Theorem 2.3.10, 14 = 26−v−1(26−w− 1) with 0 ≤ v, w ≤ 5. Hence, v = 4,
w = 3. By theorem 2.3.10, G contains exactly 23 − 1 involutions. By Theorem
2.3.9, ∆ = 7 · 66 + 120 · 1. This contradicts (2.24).

Case |G| = 130. By Sylow’s Third Theorem, n13 = 1, n5 ∈ {1, 26}, and
n2 ∈ {1, 5, 13, 65}. By (2.24), ∆ = 650. Hence, by Theorem 2.3.9, the nontrivial
elements of S13 are of type (B1). We remark that if x is an element of type (C)
normalizing an element y of type (A) or (B1), then the element yx is of type (E).
If n5 = 1, then G is a semidirect product G = C65 o C2; hence, n2 = 1 by the
above remark. If n5 = 26, then G contains 12 elements of order 13, 4 · 26 elements
of order 5, and 12 elements of type (E) by the above remark. Hence, n2 = 1.
Therefore G contains a unique involution σ. By Lemma 2.3.5, S13 fixes the unique
fixed point of σ on H64. This contradicts Lemma 2.3.4.

Case |G| = 140. By Sylow’s theorems n7 = 1, contradicting Lemma 2.3.8.

Case |G| = 144. By Theorem 2.3.9, ∆ = i ·66+j ·1+k ·2 with i+j+k = 143.
Here, i is the number of involutions in G, j is the number of elements of order 6 or
18 in G, and k is the number of elements of order 3, 9, or 4 in G. Suppose i = 1.
Then, by Lemma 2.3.5, G fixes the unique fixed point of the involution on H64,
which is F642-rational. By Theorem 2.3.11,

14 =
(64− 2w)(64− (gcd(9, 65)− 1)2v)

2 · 144
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with v + w = 4, hence w = 0. By Theorem 2.3.11, G has no involutions, which
is impossible. Then i ≥ 2 and thus by (2.24), we have i = 2 and k = 13. This
implies that G contains 2 involutions and at most 13 elements of order 4. Hence,
G has a unique Sylow 2-subgroup S2. Then, by Lemma 2.3.5, G fixes the unique
fixed point of S2 on H64. As before, this yields a contradiction by Theorem 2.3.11.

Case |G| = 148. By Theorem 1.2.6, |G| does not divide three times the order
of any maximal subgroup of PSU(3, 64). Hence, G is not contained in any maximal
subgroup of PGU(3, 64), a contradiction.

Case |G| = 150. By Lemma 2.3.6, G contains 8 elements of type (A). Hence,
by Theorem 2.3.9, ∆ ≥ 8 · 65. This contradicts (2.24).

This completes the proof of Theorem 2.3.1.
It may be noticed in the above proof that the hypothesis g = 14 together

with the F642-maximality of S8 are sufficient to get a contradiction for |G| 6= 117.
Instead, a group G of order 117 with the required ramification exists, and we gave
an explicit construction. Such a group G is uniquely determined up to conjugation.
Using MAGMA [16], we found a plane model of H64/G over F2, as well as a non-
singular model of H64/G in PG(13, 2).

Proposition 2.3.13. Let X be an F642-maximal curve of genus 14. If X is Galois

covered by H64 then X ∼= H64/G where G is a cyclic group G ≤ PGU(3, 64) of

order 117, and a plane model of X over F2 is the (singular) plane curve

X7Y 5 +X + Y 5 = 0,

while a nonsingular model in P13 of X over F2 is the image of X under the mor-
phism

ϕ : X → P13, (x, y, 1) 7→ (x, y, xy, x2y, y2, xy2, x2y2, x3y2, y3, xy3, x2y3, x3y3, x4y3, 1).

2.3.3 Proof of Theorem 2.3.2

By contradiction, letR3
∼= H27/G forG ≤ PGU(3, 27). The order of PGU(3, 27)

is equal to 25 · 39 · 72 · 13 · 19 · 37. From the Riemann-Hurwitz formula,

12 <
|H27(F272)|
|R3(F272)|

≤ |G| ≤ 2g(H27)− 2

2g(R3)− 2
≤ 25.

Since |G| divides |PGU(3, 27)|,

|G| ∈ {13, 14, 16, 18, 19, 21, 24}.

The different divisor has degree

∆ = (2g(H27)− 2)− |G|(2g(R3)− 2) = 700− 28 · |G|. (2.25)
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Case |G| = 13. By Theorem 2.3.9, ∆ = 12 · 2. This contradicts (2.25).
Case |G| = 14. By Sylow and Schur-Zassenhaus theorems, G is a semidirect

product G = C7 oC2. All nontrivial elements of C7 are of the same type, which is
either (A) or (B1) by Lemma 2.3.4. Therefore, by Theorem 2.3.9, ∆ = 6 · i+7 ·28,
with i ∈ {0, 28}. This contradicts (2.25).

Case |G| = 16. PGU(3, 27) has just three conjugacy classes of subgroups of
order 16, which are isomorphic either to the Iwasawa group M16 = 〈x, y | x8 =
y2 = 1, yxy−1 = x5〉, or to the direct product C4 × C4, or to the central product
D8 ◦ C4 = 〈α, β, γ | α4 = β2 = 1, βαβ−1 = α−1, α2 = γ2, αγ = γα, βγ = γβ〉.

Suppose G ∼= M16. By MAGMA computation, the normalizer N of G in
PGU(3, 27) has order 224, and the quotient group N/G ≤ Aut(H27/G) is a cyclic
group of order 14. On the other hand, the subgroups of R(3) ∼= PΓL(2, 8) of order
14 are not abelian, a contradiction.

Suppose G ∼= C4 × C4. By MAGMA computation, the normalizer N of G in
PGU(3, 27) has order 4704. Hence, the group N/G ≤ Aut(H27/G) has order 294,
which does not divide the order of R(3). This contradicts H27/G ∼= R3.

Suppose G ∼= D8 ◦ C4. By MAGMA computation, the normalizer N of G in
PGU(3, 27) has order 672, and the group N/G ≤ Aut(H27/G) is isomorphic to
C21 o C2. On the other hand, the subgroups of R(3) of order 42 have no cyclic
subgroups of order 21, a contradiction.

Case |G| = 18. By Sylow’s Third Theorem, n3 = 1. By [67, Theorem 11.74],
S3 has a unique fixed point P on H27, which is F272-rational. By Lemma 2.3.5, G
fixes P . Then, by Theorem 2.3.11,

15 =
(27− 3w)(27− (gcd(2, 28)− 1)3v)

2 · 18

with v + w = 2, which is impossible.
Case |G| = 19. By Theorem 2.3.9, ∆ = 18 · 3. This contradicts (2.25).
Case |G| = 21. By Sylow and Schur-Zassenhaus theorems, G is a semidirect

product G = C7 o C3. All nontrivial elements of C7 are of the same type, which
is either (A) or (B1) by Lemma 2.3.4. Thus, by Theorem 2.3.9, ∆ = 6 · i + 2n3 ·
29 + (14− 2n3) · 1, with i ∈ {0, 28}. This contradicts (2.25).

Case |G| = 24. Since 3 divides |G|, we have ∆ ≥ 29 by Theorem 2.3.9. This
contradicts (2.25).

This completes the proof of Theorem 2.3.2.
It may be noticed in the above proof that the hypothesis g = 15 together with

the F272-maximality of R3 rule out all cases but |G| = 16. For this exception,
three cases are treated separately.

• G ∼= M16. Then G has 3 involutions, 4 elements of order 4, and 8 elements
of order 8. By Theorem 2.3.9, the quotient curve H27/G has genus 18.
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• G ∼= C4×C4. By the Riemann-Hurwitz formula, H27/G has genus 15. Also,
G has 9 elements of type (A) and 6 elements of type (B1). Hence, G fixes the
vertices of a triangle T . Let H27 have equation (1.3). Up to conjugation, T
is the fundamental triangle and G = {diag(λ, µ, 1) | λ4 = µ4 = 1}. Therefore
a (singular) plane model of H27/G is X7 + Y 7 + 1 = 0.

• G ∼= D8 ◦C4. By the Riemann-Hurwitz formula, H27/G has genus 15. Also,
G contains 9 elements of type (A) and 6 elements of type (B1). In particular,
the non-central involutions of D8 are non-commuting elements of type (A).
Thus, the generator y of the center C4 is not of type (B1). Hence, y is
of type (A). Let H27 have Fermat equation (1.3). Up to conjugation, the
generators of G are α : (X, Y, T ) 7→ (Y,−X,T ), β = diag(1,−1, 1), and
γ = diag(λ, λ, 1), where λ2 = −1. A plane model of H27/G is obtained by
MAGMA computation, as follows.

Proposition 2.3.14. Let X be an F272-maximal curve of genus 15. If X is Galois

covered by H27 then X ∼= H27/G where G ≤ PGU(3, 27) has order 16, and one of

the following cases occurs.

• G ∼= C4 × C4 and a plane model for X is given by the affine equation

X7 + Y 7 + 1 = 0 .

• G ∼= D8 ◦ C4 and a plane model for X is given by the affine equation

X28+X27+X26+2X23+2X22+X21+2X12Y 14+X10Y 14+2X7Y 14+Y 28 = 0.

2.3.4 Galois subcovers of H27

Theorem 2.3.15 shows the complete spectrum of genera of Galois subcovers of
H27, consisting of integers g which are the genera of a quotient curve H27/G with
G ranging on the set of all subgroups of PGU(3, 27).

Theorem 2.3.15. The spectrum of genera of Galois subcovers of H27 is

Σ27 = {0, 1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 17, 18, 19, 24, 25,

26, 27, 36, 39, 43, 51, 52, 78, 85, 108, 117, 169, 351}.

The proof relies on the results of Section 2.3.1. A case-by-case analysis of all
integers g with 1 < g ≤ g(H27) is combined with

19684

730 + 54g
=
|H27(F272)|
|H27/G(F272)|

≤ |G| ≤ 2g(H27)− 2

2g(H27/G)− 2
=

700

2g − 2
, (2.26)
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which bounds the order of a putative group G ≤ PGU(3, 27) such that H27/G
has genus g. This leads us to look inside the structure of the groups G satisfying
(2.26) and compute the genus ofH27/G, for g > 1. These results are summarized in
Theorem 2.3.15. For each g > 1 in Σ27, Tables 2.2 and 2.3 provide a classification
of the groups G for which H27/G has genus g.

Table 2.2: Quotient curves H27/G of genus g ≥ 17
g |G| structure of G

351 1 trivial group.

169 2 G = C2 = 〈σ〉, σ of type (A).

117 3 G = C3 = 〈σ〉, σ of type (D).

108 3 G = C3 = 〈σ〉, σ of type (C).

85 4 G = C4 = 〈σ〉, σ of type (B1).

78 4 G = C4 = 〈σ〉, σ of type (A).

52 6 G = C6 = 〈σ〉, σ of type (E).

G = Sym(3) = 〈α〉o 〈β〉, α of type (C), β of type (A).

51 7 G = C7 = 〈σ〉, σ of type (B1).

43 8 G = Q8 quaternion group, 1 element of type (A), 6 elements of type (B1).

39 7 G = C7 = 〈σ〉, σ of type (A).

8 G = C8 = 〈σ〉, σ of type (B2).

9 G = C3 × C3 = 〈α〉 × 〈β〉, α and β of type (D).

36 8 G = C4 × C2 = 〈α〉 × 〈β〉, α of type (B1), β of type (A).

8 G = D8 dihedral group, involutions of type (A), 2 elements of type (B1).

9 G = C3 × C3 = 〈α〉 × 〈β〉, α of type (C), β of type (D).

27 9 G = C3 × C3 = 〈α〉 × 〈β〉, α and β of type (C).

13 G = C13 = 〈σ〉, σ of type (B2).

26 12 G = Alt(4), involutions of type (A), other elements of type (D).

25 14 G = C14 = 〈σ〉, σ of type (B1).

24 12 G = C12 = 〈σ〉, σ of type (E).

19 14 G = C14 = 〈σ〉, σ of type (B1), σ2 of type (A).

18 16 G = M16, 5 elements of type (A),

2 elements of type (B1), 8 elements of type (B2).

18 19 G = C19 = 〈σ〉, σ of type (B3).

17 21 G = C7 o C3 = 〈α〉o 〈β〉, α of type (B1), β of type (B2).
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Table 2.3: Quotient curves H27/G of genus 3 ≤ g ≤ 16
g |G| structure of G

16 18 G = C3 × (C3 o C2) = 〈α〉 × (〈β〉o 〈γ〉),
α of type (C), β of type (D), γ of type (A).

15 16 G = C4 × C4 = 〈α〉 × 〈β〉, α and β of type (A).

16 G = D8 ◦ C4 = (〈α〉o 〈β〉) ◦ 〈γ〉, α of type (B1), β and γ of type (A).

13 14 G = C14 = 〈σ〉, σ of type (A).

18 G = C3 × (C3 o C2) = 〈α〉 × (〈β〉o 〈γ〉), α and β of type (D), γ of type (A).

18 G = C3 × (C3 o C2) = 〈α〉 × (〈β〉o 〈γ〉), α and β of type (C), γ of type (A).

26 G = C26 = 〈σ〉, σ of type (E).

27 G = (C3 × C3) o C3 = (〈α〉 × 〈β〉) o 〈γ〉, α, β, γ of type (D).

28 G = C28 = 〈σ〉, σ of type (B1), 1 element of type (A).

12 21 G = C21 = 〈σ〉, σ of type (E).

24 G = C3 o C8 = 〈α〉o 〈β〉, α of type (C), β of type (B2).

27 G = C3 × (C3 × C3) = 〈α〉 × (〈β〉 × 〈γ〉), α of type (C), β and γ of type (D).

28 G = C28 = 〈σ〉, σ of type (B1), 3 elements of type (A).

28 G = C14 × C2 = 〈α〉 × 〈β〉, α of type (B1), β of type (A), 3 elements of type (A).

10 24 G ∼= SL(2, 3), 1 element of type (A), 6 elements of type (B1),

8 elements of type (C), 8 elements of type (E).

9 37 G = C37 = 〈σ〉, σ of type (B3).

7 26 G = C13 o C2 = 〈α〉o 〈β〉, α of type (B2), β of type (A).

28 G = C28 = 〈σ〉, σ of type (B1), 14 elements of type (A).

52 G = C13 o C4 = 〈α〉o 〈β〉, α of type (B2), β of type (B1).

6 28 G = C14 × C2 = 〈α〉 × 〈β〉, α and β of type (A), 15 elements of type (A).

32 G = C4 o C2 = 〈α〉 o 〈β〉 wreath product,

13 elements of type (A), 10 elements of type (B1), 8 elements of type (B2).

52 G = C52 = 〈σ〉, σ of type (B2), 3 elements of type (A).

57 G = C19 o C3 = 〈α〉o 〈β〉, α of type (B3), β of type (D).

5 48 G = (C4 × C4) o C3 = (〈α〉 × 〈β〉) o 〈γ〉, α and β of type (A), γ of type (D).

4 42 G = C42 = 〈σ〉, σ of type (E).

48 G = (D8 ◦ C4) o 〈σ〉, σ of type (C).

54 G = (C3 × C3 o C3) o 〈σ〉, σ of type (A).

56 G = Q8 × 〈σ〉, σ of type (A).

72 G = C4 × C2 o (〈α〉 × 〈β〉), α and β of type (D).

81 G = C3 × C3 × C3 × C3 = 〈α〉 × 〈β〉 × 〈γ〉 × 〈δ〉, α of type (C), β, γ, δ of type (D).

3 49 G = C7 × C7 = 〈α〉 × 〈β〉, α and β of type (A).

56 G = 〈σ〉oD8, σ of type (A).

63 G = C7 × C3 × C3 = 〈α〉 × 〈β〉 × 〈γ〉, α of type (A), β and γ of type (C).

72 G = C3 × C3 o C8 = 〈α〉 × 〈β〉o 〈γ〉, α and β of type (C), γ of type (B2).

81 G = C3 × C3 × C3 × C3 = 〈α〉 × 〈β〉 × 〈γ〉 × 〈δ〉, α, β of type (C), γ, δ of type (D).

91 G = C91 = 〈σ〉, σ of type (B2).

104 G = C13 o C8 = 〈α〉o 〈β〉, α and β of type (B2), or G = C104 = 〈σ〉, σ of type (B2).

111 G = C37 o C3 = 〈α〉o 〈β〉, α of type (B3), β of type (D).

112 G = C7 × C4 × C4 = 〈α〉 × 〈β〉 × 〈γ〉, α of type (B1), β and γ of type (A).



74 CHAPTER 2. RESULTS ON MAXIMAL CURVES

Theorem 2.3.15 shows that some quotient curves of R3 happen not be Galois
subcovers of H27. A partial list of them is given in the following proposition.

Corollary 2.3.16. The quotient curves R3/G1, R3/G2, and R3/G3 are not Galois

subcovers of H27 for the groups G1, G2, G3 defined as follows.

• The maximal subgroups G1 ≤ R(3) of order 24 centralizing an involution

σ ∈ R(3), which are isomorphic to 〈σ〉 × A4.

• The groups G2 ≤ R(3) of order 6 which are isomorphic to S3.

• The cyclic groups G3 ≤ R(3) of order 6.

Proof. From previous work of Çakçak and Özbudak, each of the quotient curves

R3/G1, R3/G2, and R3/G3 has genus 2; see [18, Sec. 4.1.1, p. 150] for R3/G1,

[18, Sec. 4.2, pp. 163-164] for R3/G2, and [18, Sec. 4.4, pp. 171] for R3/G3. On

the other hand, Theorem 2.3.15 shows that no F272-maximal curve of genus 2 is a

Galois subcover of H27.

2.4 On certain Galois covers of the Suzuki and

Ree curves

The results of this section are the object of [55]. Notation and results of Section
1.2 are used. We consider two families of maximal curves S̃q and R̃q which are
cyclic covers of the Suzuki curve Sq and the Ree curve Rq, respectively. The curves
S̃q and R̃q are analogous to the GK cover GKq of the Hermitian curve Hq, and
have been constructed by Skabelund in [105], as follows.

Let q0 = 2s with s ≥ 1 and q = 2q2
0 = 22s+1. The curve

S̃q :

{
Wm = Xq +X
Y q + Y = Xq0 (Xq +X)

,

where m = q−2q0 +1, is Fq4-maximal ([105, Theorem 3.1]). Clearly, S̃q is a Galois
cover of the Suzuki curve Sq with equation (1.6).

Now let q0 = 3s with s ≥ 1 and q = 3q2
0 = 32s+1. The curve

R̃q :


Wm = Xq −X
Zq − Z = X2q0 (Xq −X)
Y q − Y = Xq0 (Xq −X)

,
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where m = q − 3q0 + 1, is Fq6-maximal ([105, Theorem 4.1]). Clearly, R̃q is a
Galois cover of the Ree curve Rq with equation (1.7).

In [105, Lemmas 3.3 and 4.2] the automorphism groups S(q) and R(q) of the
curves Sq andRq were lifted to subgroups of the full automorphism groups Aut(S̃q)
and Aut(R̃q) of the covers S̃q and R̃q, respectively. We show that the lifted groups
actually coincide with the full automorphism groups of the curves S̃q and R̃q. More
specifically, we prove the following theorems.

Theorem 2.4.1. The automorphism group of S̃q is a direct product S̃(q) × Cm,

where S̃(q) is isomorphic to S(q) = Aut(Sq) and Cm is a cyclic group of order

m = q − 2q0 + 1.

Theorem 2.4.2. The automorphism group of R̃q is a direct product R̃(q) × Cm,

where R̃(q) is isomorphic to R(q) = Aut(Rq) and Cm is a cyclic group of order

m = q − 3q0 + 1.

In the proofs of Theorems 2.4.1 and 2.4.2 we will use results on curves having
automorphism groups for which the classical Hurwitz bound does not hold.

We also prove the following results, which provide new families of maximal
curves which are Galois covered by the Hermitian curve.

Theorem 2.4.3. For any q, S̃q is not Galois covered by Hq2.

Theorem 2.4.4. For any q, R̃q is not Galois covered by Hq3.

Sections 2.4.1 and 2.4.2 prove Theorems 2.4.1 and 2.4.2, respectively, while
Section 2.4.3 proves Theorems 2.4.3 and 2.4.4.

2.4.1 The automorphism group of S̃q
Let S(q)∞ = {ψa,b,c | a, b, c ∈ Fq, a 6= 0} and φ be the generators of S(q), as

described in Proposition 1.2.8. By [105, Section 3], the automorphism group of S̃q
admits the following subgroups:

• A cyclic group Cm generated by the automorphism γλ : (x, y, w) 7→ (x, y, λw),
where λ ∈ Fq4 is a primitive m-th root of unity.

• A group LS(q) lifted by S(q) and generated by the automorphisms ψ̃a,b,c
(a, b, c ∈ Fq, a 6= 0) together with an involution φ̃. Here, ψ̃a,b,c(x, y) :=
ψa,b,c(x, y) and ψ̃a,b,c(w) := δw, where δm = a. Similarly, φ̃(x, y) := φ(x, y),
and φ̃(w) := w/β.

Lemma 2.4.5. The group LS(q) contains a subgroup S̃(q) isomorphic to S(q).
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Proof. Let ∆ := {(ψ̃a,b,c)m | a, b, c ∈ Fq, a 6= 0} ≤ LS(q). By direct checking, the

map ψa,b,c 7→ (ψ̃a,b,c)
m is an isomorphism between S(q)∞ and ∆. Moreover, the

action of ∆ on the set O of Fq-rational places of S̃q is equivalent to the action of

S(q)∞ on the non-tame short orbit of S(q). Let S̃(q) be the subgroup of LS(q)

generated by ∆ and φ̃. The action of S(q)∞ and φ on the non-tame short orbit of

S(q) is equivalent to the action of ∆ and φ̃ on O, respectively. Hence, ∆ coincides

with the stabilizer in S̃(q) of a point inO. This implies that S̃(q) acts 2-transitively

on O and the stabilizer in S̃(q) of two distinct places of O is cyclic. Since |O| is

not a power of 2, S̃(q) has no regular normal subgroups by [15, Theorem 1.7.6].

Therefore we apply [75, Theorem 1.1] to conclude that S̃(q) ∼= Aut(Sq).

Lemma 2.4.6. The normalizer of Cm in Aut(S̃q) is the direct product S̃(q)×Cm.

Proof. It is easily checked that γλ commutes with (ψ̃a,b,c)
m and with φ̃ on the

rational functions x, y and w. Therefore, S̃(q)×Cm is a subgroup of the normalizer

N of Cm in Aut(S̃q); in particular, N/Cm has a subgroup isomorphic to S(q).

Also, the quotient curve S̃q/Cm is birationally equivalent to Sq. Then N/Cm is

isomorphic to a subgroup of S(q). Therefore N/Cm ∼= S(q), whence the thesis.

Corollary 2.4.7. The group LS(q) coincides with the normalizer of Cm in Aut(S̃q).

Proof. The group Cm is contained in LS(q) as it is generated by ψ̃1,0,0. Also, Cm
commutes with LS(q). Hence, the claim follows from Lemma 2.4.6.

Being S̃q an Fq4-maximal curve, we can apply the results in [51] on zero 2-rank

curves. By direct computations |Aut(S̃q)| ≥ |LS(q)| ≥ 72(g(S̃q)− 1), thus by [51,
Theorem 5.1] we conclude that Aut(S̃q) is non-solvable. By [51, Theorem 6.1], the
commutator Aut(S̃q)′ of Aut(S̃q) is one of the following groups:

PSL(2, n), PSU(3, n), SU(3, n), S(n) with n = 2r ≥ 4.

Also, Aut(S̃q)′ contains G′ = S̃(q).

Lemma 2.4.8. Aut(S̃q)′ = S̃(q).

Proof. Since S̃(q) ≤ Aut(S̃q)′, we discard the cases PSL(2, 2r), PSU(3, 2r), SU(3, 2r):

i) S̃(q) has elements of order 4, while PSL(2, 2r) has not by Theorem 1.2.7.

Hence, Aut(R̃q)
′ 6= PSL(2, 2r).
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ii) By Theorem 1.2.9, S̃(q) has subgroups of type ΣoC4, where Σ is generated

by a tame element of order q + 2q0 + 1. On the contrary, in PSU(3, 2r) no

non-tame element σ of order 4 can normalize a tame element τ ; otherwise,

σ acts on the fixed points of τ and in particular σ fixes a point P and a line

` not through P , a contradiction to Lemma 2.3.4. Hence, G̃′ 6= PSU(3, 2r).

iii) If G̃′ = SU(3, 2r), then SU(3, 2r) has a subgroup of type Σ o C4, where Σ is

cyclic of order q + 2q0 + 1. This implies that PSU(3, 2r) has a subgroup of

type Σ̄ o C4, where Σ̄ is cyclic of order (q + 2q0 + 1)/ gcd(3, 2r + 1). This is

impossible as shown at point ii). Hence, G̃′ 6= SU(3, 2r).

Therefore Aut(S̃q)′ = S̃(2r). If 2r > q, then 2r ≥ q3 and by direct computation

|Aut(S̃q)′| > 8g(S̃q)3, a contradiction to [67, Theorem 11.116]. Hence, Aut(S̃q)′ =

S̃(q).

Finally we prove Theorem 2.4.1. By Lemma 2.4.8 and [51, Theorem 6.2], we
have that Aut(S̃q) ∼= S̃(q) × C, where C is a cyclic group of odd order. More
specifically, C is the subgroup of Aut(S̃q) fixing pointwise the set O of Fq-rational
places of S̃q. Then Cm ⊆ C, and hence C = Cm by Corollary 2.4.7. Therefore,
Theorem 2.4.1 is proved.

Remark 2.4.9. Theorem 2.4.1 shows that Aut(S̃q) is exactly the lifting LS(q)

obtained as a cyclic extension of the automorphism group of the Suzuki curve Sq.

2.4.2 The automorphism group of R̃q

Let R(q)∞ = {ψa,b,c,d | a, b, c, d ∈ Fq, a 6= 0} and φ be the generators of R(q),
as described in Proposition 1.2.10. By [105, Section 4], the automorphism group
of R̃q admits the following subgroups:

• A cyclic group Cm generated by the automorphism γλ : (x, y, w) 7→ (x, y, λw),
where λ ∈ Fq6 is a primitive m-th root of unity.

• A group LR(q) lifted by R(q) and generated by the automorphisms ψ̃a,b,c,d
(a, b, c, d ∈ Fq, a 6= 0) together with an involution φ̃. Here, ψ̃a,b,c,d(x, y, z) :=
ψa,b,c,d(x, y, z) and ψ̃a,b,c,d(w) := δw, where δm = a. Similarly, φ̃(x, y, z) :=
φ(x, y, z), and φ̃(w) := w/w8.

We recall some results on large automorphism groups of curves that will be
used in the proof of Theorem 2.4.2.
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Theorem 2.4.10. ([67, Theorems 11.56 and 11.116]) Let X be an irreducible curve

of genus g ≥ 2 such that |Aut(X )| > 84(g − 1). Then Aut(X ) has at most three

short orbits, as follows:

i) exactly three short orbits, two tame and one non-tame, and |Aut(X )| ≤ 24g2;

ii) exactly two short orbits, both non-tame, and |Aut(X )| ≤ 16g2;

iii) only one short orbit which is non-tame, and |Aut(X )| ≤ g(2g−2)(4g+2) (see

[67, page 515]);

iv) exactly two short orbits, one tame and one non-tame. In this case |Aut(X )| <
8g3, with the following exceptions (see [67, Theorem 11.126]):

• p = 2 and X is isomorphic to the hyperelliptic curve Y 2 + Y = X2k+1

with genus 2k−1 ;

• p > 2 and X is isomorphic to the Roquette curve Y 2 = Xq − X with

genus (q − 1)/2 ;

• p ≥ 2 and X is isomorphic to the Hermitian curve Y q+1 = Xq +X with

genus (q2 − q)/2 ;

• p = 2 and X is isomorphic to the Suzuki curve Y q + Y = Xq0(Xq + X)

with genus q0(q − 1) .

Remark 2.4.11. If X is the curve R̃q and Case iv) of Theorem 2.4.10 occurs,

then |Aut(R̃q)| < 8g3. In fact, since p = 3 and g = 3
2
q0(q − 1)(q + q0 + 1), R̃q

cannot satisfy any of the four exceptions.

Theorem 2.4.12 provides a deeper analysis of Case iv) in Theorem 2.4.10; the
bounds are taken from the proof of [67, Theorem 11.116].

Theorem 2.4.12. ([67, Theorem 11.116 and page 516]) Suppose that Case iv) in

Theorem 2.4.10 occurs. Then one of the following cases holds:

1. |Aut(X )| ≤ 8g(g − 1)(g + 1) (see [67, Eq. (11.169)]).

2. Aut(X ) contains p-elements stabilizing two distinct places.

3. |Aut(X )| ≤ 8(g + 1)(g − 1) (see [67, pages 524-525]).

4. The non-tame short orbit of Aut(X ) has length pk + 1 for some k (see [67,

Lemma 11.123]).
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Cases 1., 3., and 4. in Theorem 2.4.12 correspond to Case (iv1), (iv4), and
(iv5) in [67, page 516], respectively; Case 2. in Theorem 2.4.12 corresponds to
Cases (iv2) and (iv3) in [67, page 516].

In analogy with Section 2.4.1, the following results hold. The proofs of Lemma
2.4.13, Lemma 2.4.14, and Corollary 2.4.15 are analogous to the proofs of Lemma
2.4.5, Lemma 2.4.6, and Corollary 2.4.7 in Section 2.4.1.

Lemma 2.4.13. The group LR(q) contains a subgroup R̃(q) isomorphic to R(q).

Lemma 2.4.14. The normalizer of Cm in Aut(R̃q) is the direct product R̃(q)×Cm.

Corollary 2.4.15. The group LR(q) coincides with the normalizer of Cm in

Aut(R̃q).

Proposition 2.4.16. The group LR(q) has exactly two short orbits OT and ONT
in its action on R̃q. The orbit OT is tame of size (q3 + 1)q3(q − 1), consisting of

the places of R̃q of degree 6; the orbit ONT is non-tame, consisting of the q3 + 1

Fq-rational places of R̃q.

Proof. The set O of the Fq-rational places of R̃q is the non-tame short orbit ONT
under LR(q), since Cm acts trivially on O.

Let OT ⊆ R̃q be the set of places of degree 6; we prove that OT is a tame short

orbit under LR(q). Let P ∈ OT . Since Cm is defined over Fq6 , the place Q ∈ Rq

lying under P has degree 1, 2, 3, or 6. The places of Rq of degree 1 lie under a

place in ONT , and Rq has no places of degree 2 or 3; therefore, Q has degree 6.

By the Fundamental Equality 1.1.1, we conclude that there are exactly m places

of R̃q of degree 6 lying over a place of Rq of degree 6. By the Fq6-maximality of

R̃q, we have that |OT | = mq3(q− 1)(q+ 1)(q+ 3q0 + 1); hence, OT coincides with

the set of places of R̃q lying over a place of Rq of degree 6.

To show that LR(q) is transitive on OT , let P1, P2 ∈ OT with P1 6= P2. If P1

and P2 are in the same Cm-orbit, the claim is proved. Otherwise, let Q1 and Q2

be the distinct places of Rq lying under P1 and P2, respectively. Since Q1 and

Q2 are in the tame short orbit of Rq under R(q), there exists σ ∈ R(q) such that

σ(Q1) = Q2. Let σ̃ be the induced automorphism of R̃q, and let P3 := σ̃(P1). Then

P3 is in the Cm-orbit of P2, because Sq is S̃q/Cm. Let τ ∈ Cm with τ(P3) = P2;

then τ σ̃(P1) = P2.

Since R(q) acts semiregularly on the places of Rq of degree greater than 6,

LR(q) acts semiregularly on R̃q \ (OT ∪ ONT ), and the thesis is proved.

Let ÕNT be the non-tame short orbit of R̃q under Aut(R̃q) containing ONT .
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Lemma 2.4.17. The orbit ÕNT coincides with ONT .

Proof. Suppose by contradiction that ONT 6= ÕNT .

Firstly, suppose that ÕNT \ONT contains a long orbit under LR(q). Then, for

any Fq-rational place P ∈ R̃q we have

|Aut(R̃q)| = |ÕNT | · |Aut(R̃q)P | ≥ |LR(q)| · |LR(q)P |
≥ (q3 + 1)q3(q − 1)m · q3(q − 1)m > 8g3,

where g is the genus of R̃q and LR(q)P denotes the stabilizer of P in LR(q). This is

a contradiction to Theorem 2.4.10 and Remark 2.4.11, since |Aut(R̃q)| > 84(g−1).

Then ÕNT \ ONT contains a short orbit under LR(q) and ÕNT = ONT ∪ OT
by Proposition 2.4.16.

If Aut(R̃q)P 6= LR(q)P , then |Aut(R̃q)P | ≥ 2|LR(q)P |, and hence

|Aut(R̃q)| = |ÕNT | · |Aut(R̃q)P | ≥ |ÕNT | · 2|LR(q)P | ≥ |OT | · 2q3(q − 1)m > 8g3,

a contradiction to Theorem 2.4.10. Therefore, Aut(R̃q)P = LR(q)P . This implies

|Aut(R̃q)| = |ÕNT | · |LR(q)P | = (q3 + 1)q3(q − 1)(q − 3q0 + 1)(q4 − q3 + 1).

Note that the order of |Aut(R̃q)| is very close to 8g3.

Since |Aut(R̃q)| > g(2g − 2)(4g + 2), Cases i), ii), and iii) in Theorem 2.4.10

cannot occur, hence Case iv) holds and one of Cases 1. - 4. in Theorem 2.4.12

occurs.

• Since |Aut(R̃q)| > 8g(g − 1)(g + 1), Cases 1. and 3. cannot occur.

• Case 2. cannot occur; in fact, R̃q has zero p-rank, and hence any p-element

in Aut(R̃q) has exactly one fixed place ([67, Lemma 11.129]).

• Case 4. cannot occur, since |ÕNT | = (q3 + 1)(q4− q3 + 1) 6= 3k + 1 for any k.

The claim follows.

Finally we prove Theorem 2.4.2. Let α ∈ Aut(R̃q), and define T := {σ ∈
Aut(R̃q) | σ(P ) = P for all P ∈ ÕNT} and C ′m := αCmα

−1. Clearly, T contains
Cm and C ′m. By [67, Lemma 11.129], T is a tame subgroup of Aut(R̃q), which
implies that T is cyclic (see [67, Lemma 11.44]). Therefore C ′m = Cm, that is, Cm
is normal in Aut(R̃q). By Corollary 2.4.15, Theorem 2.4.2 follows.

Remark 2.4.18. Theorem 2.4.2 shows that Aut(R̃q) is exactly the cyclic extension

LR(q) of the automorphism group R(q) of the cyclic subcover Rq.
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2.4.3 Non-existence of certain Galois coverings

Firstly, we prove that Sq is not Galois covered by Hq2 for any q, as stated in
Theorem 2.4.3.

Proof. Suppose by contradiction that S̃q is a Galois subcover of Hq2 , that is, S̃q ∼=
Hq2/G with G ≤ PGU(3, q2). The different divisor has degree

∆ = (2g(Hq2)− 2)− |G|(2g(S̃q)− 2) = q4− q2− 2− |G|(q3− 2q2 + q− 2) . (2.27)

By the Riemann-Hurwitz formula,

q6 + 1

q5 − q4 + q3 + 1
=
|Hq2(Fq4)|
|S̃q(Fq4)|

≤ |G| ≤
2g(Hq2)− 2

2g(S̃q)− 2
=

q4 − q2 − 2

q3 − 2q2 + q − 2
,

hence q + 1 ≤ |G| ≤ q + 2.

Assume |G| = q + 1. By Theorem 2.3.9, we have ∆ = q · 2. This contradicts

Equation (2.27), which reads ∆ = q3 + q.

For q > 8, |G| 6= q + 2 because |G| divides |PGU(3, q2)| = (q6 + 1)q6(q4 − 1).

For q = 8, assume |G| = q + 2 = 10. By Lemma 2.3.4, the generator α of the

unique Sylow 5-subgroup C5 is either of type (A) or (B1); hence, α fixes a point P

and a line ` not through P . Since C5 is normal in G, the generator β of any Sylow

2-subgroup C2 of G fixes P and `. Therefore, β cannot be of type (D); thus, β is

of type (C). This implies that α is not of type (B1), and hence α is of type (A).

Then ∆ ≥ 4 · 65 by Theorem 2.3.9, a contradiction to Equation (2.27).

Now consider the curve R̃q. Suppose that R̃q
∼= Hq3/G for someG ≤ PGU(3, q3).

The different divisor has degree

∆ = (2g(Hq3)− 2)−|G|(2g(R̃q)− 2) = q6− q3− 2−|G|(q4− 2q3 + q− 2) . (2.28)

By the Riemann-Hurwitz formula,

q9 + 1

q7 − q6 + q4 + 1
=
|Hq3(Fq6)|
|R̃q(Fq6)|

≤ |G| ≤
2g(Hq3)− 2

2g(R̃q)− 2
=

q6 − q3 − 2

q4 − 2q3 + q − 2
,

hence
q2 + q + 1 ≤ |G| ≤ q2 + 2q + 4.

Lemma 2.4.19. If R̃q
∼= Hq3/G, then

|G| | |PGU(3, q3)| , q2 + q+1 ≤ |G| ≤ q2 +2q+4 , |G| /∈ {q2 + q+1, q2 +2q+1}.
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Proof. Case |G| = q2 + q + 1. Since |G| divides q3 − 1 and is coprime to q3 + 1,

we have by Theorem 2.3.9 that ∆ = 2(q2 + q), a contradiction to Equation (2.28).

Case |G| = q2 + 2q + 1 = (q + 1)2. By Theorem 1.2.6 it can be shown that

PGU(3, q3) contains only two conjugacy classes of maximal subgroups whose order

is divisible by |G|:

• The stabilizer M1 of a self-conjugate triangle T , of order |M1| = 6(q3 + 1)2.

• The stabilizer M2 of a non-tangent line `, of order |M2| = q3(q6 − 1)(q + 1).

The center Z of M2 has order q3 + 1 and is a cyclic group of homologies

acting trivially on `. The group M2/Z acts faithfully on ` as a linear group,

hence it is isomorphic to a subgroup of PGL(2, q6). M2/Z acts on the q3 + 1

points of `∩Hq3 . From the structure of M2, we have that M2
∼= PGL(2, q3),

and the action of M2 on ` ∩Hq3 is equivalent to the action of PGL(2, q3) in

its natural 2-transitive permutation representation.

Suppose that G ⊆M2. The group G/(Z∩G) acts faithfully on ` and is isomorphic

to a subgroup of PGL(2, q3). Since |G ∩ Z| is a divisor of q + 1, we have that

|G/(G ∩ Z)| = (q + 1)d, where d divides q + 1. We conclude that |G/(G ∩ Z)| is

equal to q+ 1 or 2(q+ 1), since |PGL(2, q3)| = q(q2− 1). Moreover, from Theorem

1.2.7, one of the following cases occurs:

• G/(Z ∩G) is a cyclic Singer group fixing two points P1, P2 on ` \ Hq3 . The

pole P3 of ` is also fixed by G. Hence, G fixes a self-conjugate triangle T .

• G/(Z ∩G) is a dihedral group normalizing a cyclic Singer group S of index

2, such that S fixes two points P1, P2 on ` \ Hq3 . Also, G/S interchanges

P1 and P2, and G fixes the pole P3 of P1P2. Then G fixes a self-conjugate

triangle T .

Therefore, G ⊆M1. Up to conjugation, Hq3 has the Fermat equation (1.3) and T

is the fundamental triangle, so that

M1 = {diag(λ, µ, 1) | λq3+1 = µq
3+1 = 1}o S3,

where the symmetric group S3 is given by the 3 × 3 permutation matrices. The

only subgroup of order (q + 1)2 in M1 is

G = {diag(λ, µ, 1) | λq+1 = µq+1 = 1} ∼= Cq+1 × Cq+1.
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With the notation of Lemma 2.3.4, G contains exactly 3q elements of type (A)

and q2 − q elements of type (B1). Then ∆ = 3q(q3 + 1) by Theorem 2.3.9. The

same value for ∆ is obtained by Equation (2.28), that is, the curves Hq3/G and

R̃q actually have the same genus.

The group G is normal in M1, thus M1/G is an automorphism group of Hq3/G

of order |M1/G| = 6(q2 − q + 1)2. Since |M1/G| is not a divisor of |Aut(R̃q)| =

(q3 + 1)q3(q − 1)(q − 3q0 + 1), we have Hq3/G 6∼= R̃q.

By the proof of Lemma 2.4.19 the following remark is obtained.

Remark 2.4.20. For any odd power q ≥ 27 of 3, let G ≤ PGU(3, q3) with |G| =
(q+ 1)2 (G is unique up to conjugation). Then the curves Hq3/G and R̃q have the

same genus but are not isomorphic, as they have different automorphism groups.

Finally, we prove that Rq is not Galois covered by Hq3 for any q, as stated in
Theorem 2.4.4.

Proof. Suppose by contradiction that Rq is Galois covered by Hq3 , that is, R̃q
∼=

Hq3/G with G ≤ PGU(3, q). By Lemma 2.4.19, the order of G satisfies q2 +q+2 ≤
|G| ≤ q2 + 2q + 4 and |G| 6= q2 + 2q + 1. By Equation (2.28) ∆ is a multiple of

q3 + 1. This fact, together with 3|G| < q3 + 1 and Theorem 2.3.9, implies that

i(σ) ∈ {0, q3 + 1} for any nontrivial σ ∈ G, that is, σ is of type (A) or (B1) and

the order of σ divides q3 + 1.

From Theorem 1.2.6 it can be deduced that G is contained in the stabilizer

N ≤ PGU(3, q3) of a self-conjugate triangle, hence G acts on three non-collinear

points {P1, P2, P3} of PG(2, q6) \ Hq3 . In fact, because of its order, G can be only

be contained in the following maximal subgroups of PGU(3, q3) other than N :

1. The stabilizer of one point P ∈ Hq3(Fq6). In this case, G cannot contain

any element of type (B1) by Lemma 2.3.4. Hence ∆ = (q3 + 1)(|G| − 1),

exceeding the value of ∆ in Equation (2.28).

2. The stabilizer of a point P1 ∈ PG(2, q6) \Hq3 and its non-tangent polar line

`. In this case, by Theorem 1.2.7, either G acts trivially on `, or G fixes two

points P2, P3 ∈ ` \Hq3 . In the former case, ∆ exceeds the value in Equation

(2.28). In the latter case, G acts on the self-conjugate triangle {P1, P2, P3}.

3. A group isomorphic to PGL(2, q3). In this case, by Theorem 1.2.7, G contains

a cyclic normal subgroup G′ of index 1 or 2 such that G′ exactly three points

{P1, P2, P3}, which are the vertices of a self-conjugate triangle T . Therefore

G acts on {P1, P2, P3}.
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4. A group isomorphic to PGU(3, q). This is impossible since G cannot divide

three times the order of any maximal subgroup of PSU(3, q), and hence the

order of any maximal subgroup of PGU(3, q).

Note that, since |G| is not divisible by 3, G fixes at least one point in {P1, P2, P3},
say P1, and acts on {P2, P3}. Let Z ≤ N be the subgroup of homologies (that is,

elements of type (A)) with center P1 and axis P2P3; Z is cyclic of order q3 + 1 and

is the center of N . By direct computation, there exists a divisor d > 2 of q + 1

which is coprime to |G|. Then the normalizer of G in PGU(3, q3) contains the

subgroup D of Z of order d. Therefore D induces a cyclic automorphism group D̄

of Hq3/G ∼= R̃q of order d which fixes at least one point of R̃q. The automorphism

group of R̃q has exactly two short orbits OT and ONT of size (q3 + 1)q3(q− 1) and

q3 +1; see Proposition 2.4.16. Then d divides |Aut(R̃q)|/|OT | or |Aut(R̃q)|/|ONT |.
By direct checking, this is impossible.



Chapter 3

Results on AG codes

In this chapter we investigate certain multi-point Algebraic-Geometric codes
associated to Kummer curves and GK curves.

In Section 3.1 we consider Kummer extensions of the rational function field
Fq(x), defined by ym = f(x), where the polynomial f(T ) ∈ Fq[T ] is separable
and has degree coprime to m. We compute the number of Weierstrass gaps at
two totally ramified places. Also, we give a criterion to find pure gaps at many
totally ramified places and present families of pure gaps. We then apply our results
to construct AG codes with good parameters and provide examples of Hermitian
codes. The results of Section 3.1 are the object of [9].

In Section 3.2 we investigate multi-point AG codes associated to the GK curves
GKq, starting from a divisor which is invariant under a large automorphism group
of GKq. In this way, we construct families of AG codes with large automorphism
groups. Using the Weierstrass semigroup at one Fq2-rational-point of GKq, the
dimension of the codes is determined. The results of Section 3.2 are the object of
[8].

3.1 Algebraic Geometric Codes on Many Points

from Kummer Extensions

Throughout this section, F is a function field over Fq defined as a Kummer
extension of the rational function field Fq(x) by ym = f(x), where f(x) ∈ Fq[x] is
a separable polynomial of degree r coprime to m.

We investigate the Weierstrass semigroup at many totally ramified places, ex-
tending results by Castellanos, Masuda, and Quoos ([24]) and by Matthews ([41,
Theorem 3.6]). In particular, we compute in Section 3.1.1 the number of gaps
at two totally ramified places, and we give in Section 3.1.2 an arithmetic char-
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acterization of pure gaps at many points which provides families of pure gaps.
We apply these results to improve the Singleton defect of certain differential AG
codes CΩ(D,G). In Example 3.1.12 we illustrate our achievements with AG codes
on many points from the the Hermitian function field, and observe that the best
improvements on the minimum distance with respect to the corresponding ones in
the MinT’s Tables [89] are obtained by two- or three-point codes.

3.1.1 The Weierstrass semigroup at two points

Let P1, P2 be places of F which are totally ramified in F |Fq(x). As pointed
out in Equation (1.2), the Weierstrass semigroup H(P1, P2) is related to the set
Γ(P1, P2), and [24, Theorem 4.3] yields

Γ(P∞, P1)=

{
(mr −mj − ri, i+m(j − 1))

∣∣1 ≤ i ≤ m− 1−
⌊m
r

⌋
, 1 ≤ j ≤ r− 1−

⌊
ri

m

⌋}
,

where P∞ 6= P1 is the unique pole of x.

Proposition 3.1.1. Let P1, P2 be two distinct places of F totally ramified in
F |Fq(x) and different from P∞. Then

Γ(P1, P2)=

{(
mi− j,m

(⌈
rj

m

⌉
− i
)
− j
) ∣∣∣1 +

⌊m
r

⌋
≤ j ≤ m− 1, 1 ≤ i ≤

⌈
rj

m

⌉
− 1

}
.

Proof. For ι ∈ {1, 2} let αι ∈ Fq be such that Pι is the unique zero of x − αι
in F . Let i, j be positive integers and k =

⌈
jr
m

⌉
− i, so that (i + k)m ≥ jr.

By [24, Prop. 3.1], the pole divisor of yj

(x−α1)i(x−α2)k
is (mi − j)P1 + (mk − j)P2.

Also, for j ∈
{

1 +
⌊
m
r

⌋
, . . . ,m− 1

}
and h ∈

{
1, . . . ,

⌈
rk
m

⌉
− 1
}

, we have that
(mh− j) ∈ G(P1) ∩G(P2) by [24, Th. 3.2]. Hence, the set

Γ′ =

{(
mi− j,m

(⌈
rj

m

⌉
− i
)
− j
) ∣∣∣ 1 +

⌊m
r

⌋
≤ j ≤ m− 1, 1 ≤ i ≤

⌈
rj

m

⌉
− 1

}
is a subset of G(P1)×G(P2) ∩H(P1, P2). The cardinality of Γ′ is

|Γ′| =
m−1∑

k=1+bmr c

(⌈
rk

m

⌉
− 1

)
=

 m−1∑
k=1+bmr c

⌈
rk

m

⌉− (m− ⌊m
r

⌋
− 1
)

=

(
m−1∑
k=0

⌈
rk

m

⌉)
−
⌊m
r

⌋
−
(
m−

⌊m
r

⌋
− 1
)

= −
m−1∑
k=0

⌊
−rk
m

⌋
−m+ 1

= − (m− 1) (−r − 1) /2−m+ 1 = (m− 1) (r − 1) /2 = g,

using [59, Page 94]. Therefore Γ′ = Γ(P1, P2) by Lemma 1.1.43.
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From Proposition 3.1.1 we are able to compute the number of gaps at two
totally ramified places in the case m ≡ 1 (mod r).

Theorem 3.1.2. Let P∞ be the pole of x in F and P1, P2 be distinct places of F

totally ramified in F/Fq(x) and different from P∞. If m = ur+ 1 for some integer

u, then

|G(P1, P2)| = ur(r − 1)(3ur2 − 5ur + 4r + 4u− 2)

12
, and

|G(P∞, P1)| = ur(r − 1)(3ur2 − 3ur + 2r + 2)

12
.

Proof. By Proposition 3.1.1,

Γ(P1, P2) =

{(
mi− j,m

(⌈
rj

m

⌉
− i
)
− j
) ∣∣∣ 1 + u ≤ j ≤ m− 1, 1 ≤ i ≤

⌈
rj

m

⌉
− 1

}
.

Setting (i0, j0) ∈ N2 with 1 + u ≤ j0 ≤ m− 1 and 1 ≤ i0 ≤
⌈
rj0
m

⌉
− 1; by Theorem

1.1.42, we need to count the number ri0,j0 of pairs (i1, j1) ∈ N2 such that

1 + u ≤ j1 ≤ ru, 1 ≤ i1 ≤
⌈
rj1
m

⌉
− 1, m (i0 − i1) < j0 − j1,

m
(⌈

rj1
m

⌉
−
⌈
rj0
m

⌉
+ i0 − i1

)
< j1 − j0.

(3.1)

For h ∈ {0, 1} write jh = khu + th with kh ∈ {1, . . . , r − 1} and th ∈ {1, . . . , u}.
Then

⌈
rjh
m

⌉
= kh + 1. We split ri0,j0 in a number of cases:

• j1 = j0. Then (3.1) implies i0 + 1 ≤ i1 ≤ k1.

• j1 > j0 and k1 = k0. Then (3.1) implies 1 ≤ t0 ≤ u − 1, t1 ≥ t0 + 1, and

i0 + 1 ≤ i1 ≤ k1.

• j1 > j0 and k1 > k0. Then (3.1) implies i0 + k1 − k0 ≤ i1 ≤ k1.

• j1 < j0 and k1 < k0. Then (3.1) implies 1 ≤ t0, t1 ≤ u, 1 ≤ i0 ≤ k1, and

i0 ≤ i1 ≤ k1.

• j1 < j0 and k1 = k0. Then (3.1) implies 2 ≤ t0 ≤ u, t1 ≤ t0 − 1, and

i0 + 1 ≤ i1 ≤ k1.
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By direct computation, this yields

r(P1, P2) =
∑

(i0,j0)∈Γ(P1,P2)

ri0,j0 =
r−1∑
k0=1

u∑
t0=1

k0∑
i0=1

(k0 − i0) +
r−1∑
k0=1

u−1∑
t0=1

u∑
t1=t0+1

k0∑
i0=1

(k0 − i0)

+
r−2∑
k0=1

u∑
t0=1

r−1∑
k1=k0+1

u∑
t1=1

k0∑
i0=1

(k0 − i0 + 1) +
r−1∑
k0=2

u∑
t0=1

k0−1∑
k1=1

u∑
t1=1

k1∑
i0=1

(k1 − i0 + 1)

+
r−1∑
k0=1

u∑
t0=2

t0−1∑
t1=1

k0∑
i0=1

(k0 − i0) =
u2(r − 2)(r − 1)r(r + 3)

12
.

Also, by [24, Theorem 3.2], we have

∑
n∈G(P1)

n =
∑

n∈G(P2)

n =
m−1∑
j=1+u

d rjme−1∑
i=1

(mi− j) =
r−1∑
k=1

u∑
t=1

k−1∑
i=1

((ur + 1)i− (ku+ t))

(3.2)

=
ur(r − 1)(2r2u− 2ru+ 2r − u− 1)

12
. (3.3)

Therefore we obtain

|G(P1, P2)| =
∑

n∈G(P1)

n+
∑

n∈G(P2)

n− r(P1, P2) =
ur(r − 1)(3r2u− 5ru+ 4r + 4u− 2)

12
.

By [24, Theorem 4.3],

Γ(P∞, P1)=

{
(mr −mj − ri,m (j − 1) + i)

∣∣∣1 ≤ i ≤ m− 1− u, 1 ≤ j ≤ r − 1−
⌊
ri

m

⌋}
.

For (i0, j0) ∈ N2 with 1 ≤ i0 ≤ m− 1− u and 1 ≤ j0 ≤ r− 1−
⌊
ri0
m

⌋
, as above we

need to count the number si0,j0 of pairs (i1, j1) ∈ N2 such that

1 ≤ i1 ≤ m− 1− u, 1 ≤ j1 ≤ r − 1−
⌊
ri1
m

⌋
,

m (j1 − j0) < r (i0 − i1) , m (j1 − j0) < (i0 − i1) .
(3.4)

For h ∈ {0, 1} write ih = khu + th, with kh ∈ {0, . . . , r − 2} and th ∈ {1, . . . , u}.
Then

⌊
rih
m

⌋
= kh. We split si0,j0 in a number of cases:

• i1 = i0. Then (3.4) implies 1 ≤ j1 ≤ j0 − 1.

• i1 > i0, k1 > k0, and t1 ≤ t0. Then (3.4) implies k1−k0 + 1 ≤ j0 ≤ r−1−k0

and 1 ≤ j1 ≤ k0 − k1 + j0.
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• i1 > i0, k1 ≥ k0, and t1 > t0. Then (3.4) implies k1−k0 + 2 ≤ j0 ≤ r−1−k0

and 1 ≤ j1 ≤ k0 − k1 − 1 + j0.

• i1 < i0 and k1 < k0. Then (3.4) implies 1 ≤ j1 ≤ j0.

• i1 < i0, k1 = k0 and t1 < t0. Then (3.4) implies 1 ≤ j1 ≤ j0.

By direct computation, this yields

r(P∞, P1) =
∑

(i0,j0)∈Γ(P∞,P1)

si0,j0 =
r−2∑
k0=0

u∑
t0=1

r−1−k0∑
j0=1

(j0 − 1)

+
r−2∑
k0=0

u∑
t0=1

r−2∑
k1=k0+1

t0∑
t1=1

r−1−k0∑
j0=k1−k0+1

(k0 − k1 + j0)

+
r−2∑
k0=0

u∑
t0=1

r−2∑
k1=k0

u∑
t1=t0+1

r−1−k0∑
j0=k1−k0+2

(k0 − k1 − 1 + j0)

+
r−2∑
k0=0

u∑
t0=1

k0−1∑
k1=0

u∑
t1=1

r−1−k0∑
j0=1

j0 +
r−2∑
k0=0

u∑
t0=1

t0−1∑
t1=1

r−1−k0∑
j0=1

j0

=
u(r − 1)r(ur2 + r − u− 5)

12
.

Also, by [24, Theorem 3.2], we have

∑
n∈G(P∞)

n =
m−1−u∑
i=1

r−1−b rimc∑
j=1

(mr −mj − ri)

=
r−2∑
k=0

u∑
t=1

r−1−k∑
j=1

(mr −mj − r(ku+ t)) =
ur(r − 1)(2ur2 − ur + r − 2)

12
,

and
∑

n∈G(P1) n was computed in 3.3. Therefore we obtain

|G(P1, P2)| =
∑

n∈G(P1)

n−
∑

n∈G(P2)

n+ r(P1, P2) =
ur(r − 1)(3r2u− 5ru+ 4r + 4u− 2)

12
.

Remark 3.1.3. If F = Fq(Hq) is the function field of the Hermitian curve, then

Theorem 3.1.2 was already obtained in [41, Theorem 3.6]. In fact, the places of

Fq(Hq) which are totally ramified in Fq(Hq)/Fq2(x) are Weierstrass places.
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3.1.2 Pure gaps at many points and codes

Let P∞, P1, . . . , Ps (s ≥ 1) be distinct places of F which are totally ramified in
F |Fq(x); here, P∞ is the pole of x. In this section we give arithmetic conditions
which characterize the pure gaps at P1, . . . , Ps and at P∞, P1, . . . , Ps. We use this
characterization to determine explicit families of pure gaps at many points and
apply it to construct AG codes with good parameters.

We start from a result by Maharaj. For any divisor D of F and a function field
E ⊆ F , write D =

∑
R∈P(E)

∑
Q∈P(F ), Q|R nQQ. We define the restriction of D to

E as

D
∣∣∣
E

=
∑

R∈P(E)

min

{⌊
nQ

e(Q|R)

⌋
: Q|R

}
R.

Theorem 3.1.4 ([86, Theorem 2.2]). For any divisor D of F that is invariant

under the action of Gal(F/Fq(x)), we have that

L(D) =
m−1⊕
t=0

L
([
D + (yt)

] ∣∣∣
Fq(x)

)
yt,

where [D + (yt)]
∣∣∣
Fq(x)

denotes the restriction of the divisor D + (yt) to Fq(x).

Proposition 3.1.5. Under the above notation, let s ≤ r. The s-tuple (a1, . . . , as) ∈
Ns is a pure gap at P1, . . . , Ps if and only if, for every t ∈ {0, . . . ,m− 1}, exactly

one of the following two conditions is satisfied:

i)
∑s

i=1

⌊
ai+t
m

⌋
+
⌊−rt
m

⌋
< 0;

ii)
∑s

i=1

⌊
ai+t
m

⌋
+
⌊−rt
m

⌋
≥ 0 and

⌊
ai+t
m

⌋
=
⌊
ai−1+t
m

⌋
, for all i = 1, . . . , s.

Proof. Let P1, . . . , Pr, be all the places of F which are totally ramified in F |Fq(x)

except P∞, that is, Pi is the zero of x − αi, where f(x) =
∏r

i=1(x − αi) is the

separable polynomial defining F by ym = f(x). Then the divisor of y in F is

(y) =
∑r

i=1 Pi − rP∞, and hence, for any t ∈ {0, . . . ,m− 1},
s∑
i=1

aiPi + (yt) =
s∑
i=1

(ai + t)Pi +
r∑

i=s+1

tPi − rtP∞ .

Let Q1, . . . , Qr, Q∞ be the places of Fq(x) lying under P1, . . . , Pr, P∞, respectively.

Then [
s∑
i=1

aiPi +
(
yt
)] ∣∣∣

K(x)
=

s∑
i=1

⌊
ai + t

m

⌋
Qi +

⌊
−rt
m

⌋
Q∞.
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Since

L(
s∑
i=1

aiPi) =
m−1⊕
t=0

L

([
s∑
i=1

aiPi +
(
yt
)] ∣∣∣

K(x)

)
yt,

by Theorem 3.1.4, we have

`

(
s∑
i=1

aiPi

)
=

m−1∑
t=0

`

(
s∑
i=1

⌊
ai + t

m

⌋
Qi +

⌊
−rt
m

⌋
Q∞

)
,

`

(
s∑
i=1

(ai − 1)Pi

)
=

m−1∑
t=0

`

(
s∑
i=1

⌊
ai − 1 + t

m

⌋
Qi +

⌊
−rt
m

⌋
Q∞

)
.

By Lemma 1.1.45, (a1, . . . , as) is a pure gap at P1, . . . , Ps if and only if

`

(
s∑
i=1

⌊
ai + t

m

⌋
Qi +

⌊
−rt
m

⌋
Q∞

)
− `

(
s∑
i=1

⌊
ai − 1 + t

m

⌋
Qi +

⌊
−rt
m

⌋
Q∞

)
= 0

for all t ∈ {0, . . . ,m− 1}. Since Fq(x) has genus 0, this happens if and only if, for

all t ∈ {0, . . . ,m− 1}, either

s∑
i=1

⌊
ai + t

m

⌋
+

⌊
−rt
m

⌋
< 0

or
s∑
i=1

⌊
ai + t

m

⌋
+

⌊
−rt
m

⌋
≥ 0 and

s∑
i=1

⌊
ai + t

m

⌋
=

s∑
i=1

⌊
ai − 1 + t

m

⌋
.

Proposition 3.1.6. Let s ≤ r, then an (s + 1)-tuple (a0, a1, . . . , as) ∈ Ns+1 is a

pure gap at P∞, P1, . . . , Ps if and only if, for every t ∈ {0, . . . ,m− 1}, exactly one

of the following two conditions is satisfied:

i)
∑s

i=1

⌊
ai+t
m

⌋
+
⌊
a0−rt
m

⌋
< 0;

ii)
∑s

i=1

⌊
ai+t
m

⌋
+
⌊
a0−rt
m

⌋
≥ 0,

⌊
a0−rt
m

⌋
=
⌊
a0−1−rt

m

⌋
and

⌊
ai+t
m

⌋
=
⌊
ai−1+t
m

⌋
for

i = 1, . . . , s.

Proof. The proof is omitted being analogous to the proof of Proposition 3.1.5.

We now present three families of pure gaps at two points for m ≡ 1 (mod r).

Proposition 3.1.7. Suppose that m = ur + 1 for some integer u. Then
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i) ((r − 1)m− 2r, 1) is a pure gap at P∞, P1;

ii) ((r − 2)m− r, b), with b ∈ {1, . . . , u+ 1} are pure gaps at P∞, P1;

iii) ((r − 3)m + 1 + α, 1 + β), with α ∈ {0, . . . , 2u − 1} and β ∈ {0, . . . , u − 1}
are pure gaps at P1, P2.

Proof. Let a = rm−m− 2r and t ∈ {0, . . . ,m − 1}. We have
⌊
a−rt
m

⌋
6=
⌊
a−1−rt
m

⌋
if and only if m divides a − rt = (r − 1)m − r(t + 2), that is t = m − 2. Also,

t = m − 2 implies
⌊
a−qt
q`+1

⌋
= −1. For any t ∈ {0, . . . ,m − 2} we have

⌊
1+t
m

⌋
=⌊

t
m

⌋
= 0. We conclude that for any t ∈ {0, . . . ,m−2} either

⌊
a−rt
m

⌋
+
⌊

1+t
m

⌋
< 0 or⌊

a−rt
m

⌋
+
⌊

1+t
m

⌋
=
⌊
a−1−rt
m

⌋
+
⌊
t
m

⌋
. For t = m−1,

⌊
a−rt
m

⌋
+
⌊

1+t
m

⌋
= −2+1 = −1 < 0.

By Proposition 3.1.6, (a, 1) is a pure gap at P∞, P1.

Now let a = rm − 2m − r, b ∈ {1, . . . , u + 1}, and t ∈ {0, . . . ,m − 1}. We

have that
⌊
b+t
m

⌋
∈ {0, 1}, and

⌊
b+t
m

⌋
= 1 if and only if t + b ≥ m, that is t ∈

{m− b, . . . ,m− 1}. In this case,⌊
a− rt
m

⌋
=

⌊
rm− 2m− r − rt

m

⌋
= −2 +

⌊
rm− r − rt

m

⌋
= −2,

since 0 ≤ rm− r− rt ≤ r(b− 1) ≤ ru < m. Hence, for all t ∈ {m− b, . . . ,m− 1},⌊
a− rt
m

⌋
+

⌊
b+ t

m

⌋
= −2 + 1 < 0.

For t ∈ {0, . . . ,m− b− 1}, we have that⌊
a− rt
m

⌋
+

⌊
b+ t

m

⌋
=

⌊
a− rt
m

⌋
=

⌊
a− 1− rt

m

⌋
=

⌊
a− 1− rt

m

⌋
+

⌊
b− 1 + t

m

⌋
.

By Proposition 3.1.6, (a, b) is a pure gap at P∞, P1.

Finally let t ∈ {0, . . . ,m − 1} and (aα, bβ) = ((r − 3)m + 1 + α, 1 + β) with

α ∈ {0, . . . , 2u − 1} and β ∈ {0, . . . , u − 1}. Note that
⌊
aα+t
m

⌋
6=
⌊
aα−1+t

m

⌋
if and

only if t = m−1−α, and
⌊
bα+t
m

⌋
6=
⌊
bα−1+t
m

⌋
if and only if t = m−1−β. Therefore,⌊

aα + t

m

⌋
+

⌊
bα + t

m

⌋
6=
⌊
aα − 1 + t

m

⌋
+

⌊
bα − 1 + t

m

⌋
if and only if t = m− 1− α or t = m− 1− β.

Suppose t = m− 1− α. Then⌊
−rt
m

⌋
= −r +

⌊
r(1 + α)

m

⌋
=

{
−r, α ≤ u− 1

−r + 1, α ≥ u
,⌊

aα + t

m

⌋
= r − 2,

⌊
bβ + t

m

⌋
= 1 +

⌊
β − α
m

⌋
=

{
1, for β ≥ α

0, for β < α
.
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If α ≥ u, then⌊
−rt
m

⌋
+

⌊
aα + t

m

⌋
+

⌊
bβ + t

m

⌋
= (−r + 1) + (r − 2) + 0 < 0;

if α ≤ u− 1, then⌊
−rt
m

⌋
+

⌊
aα + t

m

⌋
+

⌊
bβ + t

m

⌋
≤ −r + (r − 2) + 1 < 0.

Suppose t = m− 1− β. Then⌊
−rt
m

⌋
= −r +

⌊
r(1 + β)

m

⌋
= −r,⌊

aα + t

m

⌋
= r − 2 +

⌊
α− β
m

⌋
=

{
r − 3, for α < β

r − 2, for α ≥ β
,

⌊
bβ + t

m

⌋
= 1.

Hence, ⌊
−rt
m

⌋
+

⌊
aα + t

m

⌋
+

⌊
bβ + t

m

⌋
≤ −r + (r − 2) + 1 < 0.

The thesis follows from Proposition 3.1.5.

We provide two families of pure gaps at many points for m ≡ 1 (mod r).

Proposition 3.1.8. Suppose that m = ur + 1 for some integer u, s < r, and

αi ∈ {0, . . . , (s+ 1− i)u− 1} for i = 1, . . . , s. Then (a1, . . . , as) = ((r− s− 1)m+

1 + α1, 1 + α2, . . . , 1 + αs) is a pure gap at P1, . . . , Ps.

Proof. Suppose there exist t ∈ {0, . . . ,m−1} and j ∈ {1, . . . , s} such that
⌊
aj+t

m

⌋
6=⌊

aj−1+t

m

⌋
. Thus t = m − 1 − αj. Let h ∈ {0, . . . , r − 2} be such that hu ≤ αj <

(h+ 1)u. We have⌊
−rt
m

⌋
=

⌊
−r(m− 1− αj)

m

⌋
= −r +

⌊
r(1 + αj)

m

⌋
= −r + h,⌊

a1 + t

m

⌋
=

⌊
(r − s− 1)m+ 1 + α1 +m− 1− αj

m

⌋
=

{
r − s, α1 ≥ αj
r − s− 1, α1 < αj

,

and, for i > 1,⌊
ai + t

m

⌋
=

⌊
1 + αi +m− 1− αj

m

⌋
=

{
0, αi < αj
1, αi ≥ αj

.
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Since

|{i ∈ {2, . . . , s} : αi ≥ αj}| ≤ s− 1− |{i ∈ {2, . . . , s} : (s+ 1− i)h− 1 < uh}|
= s− 1− h,

this implies that⌊
−rt
m

⌋
+

⌊
a1 + t

m

⌋
+

m∑
i=2

⌊
ai + t

m

⌋
≤ (−r + h) + (r − s) + (s− 1− h) < 0.

Hence, the thesis follows by Proposition 3.1.5.

Proposition 3.1.9. Suppose that m = ur + 1 for some integer u, s < r − 1,

α ∈ {0, . . . , s}, and βi ∈ {0, . . . , iu− 1} for i ∈ {1, . . . , s}. Then (a0, a1, . . . , as) =

((r − s− 1)m− r + α, 1 + β1, . . . , 1 + βs) is a pure gap at P∞, P1, . . . , Ps.

Proof. Let t ∈ {0, . . . ,m − 2}, so that t = ku + z with k ∈ {0, . . . , r − 1} and

z ∈ {0, . . . , u− 1}.
Suppose

⌊
a0−rt
m

⌋
6=
⌊
a0−1−rt

m

⌋
. Then m | (a0 − rt) = (r − s − k − 1)m + α +

k − r(z + 1). Since |α + k − r(z + 1)| < m, this implies α + k = r(z + 1), whence

r | (α + k). As 0 ≤ α, k ≤ r − 1, and r(z + 1) > 0, we have that α + k = r and

z = 0. Hence, t = m− 1− αu. Then⌊
a0 − rt
m

⌋
= r − s− k − 1 = α− s− 1.

Also, 1+βi+t ≤ m−1−(α−j)u for all i. Thus aj+t ≤ m−1 for all j ∈ {1, . . . , α},
so

s∑
i=1

⌊
ai + t

m

⌋
≤ s− α.

Therefore,
s∑
i=1

⌊
ai + t

m

⌋
+

⌊
a0 − rt
m

⌋
< 0.

Now suppose
⌊
ai+t
m

⌋
6=
⌊
aj−1+t

m

⌋
for some j ∈ {1, . . . , s}. Since 1 ≤ aj+t < 2m,

this implies t = m− aj = m− 1− βj. Let h ∈ {0, r − 3} be such that hu ≤ βj <

(h+ 1)u. We have⌊
a0 − rt
m

⌋
= −s− 1 +

⌊
α + rβj
m

⌋
= −s− 1 + h
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and, for i > 0, ⌊
ai + t

m

⌋
= 1 +

⌊
βi − βj
m

⌋
=

{
0, βi < βj
1, βi ≥ βj

.

Since

|{i ∈ {1, . . . , s} : βi ≥ βj}| ≤ s− |{i ∈ {1, . . . , s} : ih− 1 < uh}| = s− h,

this implies that⌊
a0 − rt
m

⌋
+

m∑
i=1

⌊
ai + t

m

⌋
≤ (−s− 1 + h) + (s− h) < 0.

Finally, let t = m − 1. Then
⌊
a0−rt
m

⌋
= −s − 1 and

⌊
ai+t
m

⌋
= 1 for all i > 0.

Hence, ⌊
a0 − rt
m

⌋
+

m∑
i=1

⌊
ai + t

m

⌋
= (−s− 1) + s < 0.

The thesis follows by Proposition 3.1.6.

By means of Theorem 1.1.46, the results on pure gaps of this section can be
used in order to obtain AG codes with good parameters.

Remark 3.1.10. For a Kummer extension ym = f(x), where m = ur + 1 and

s ≤ r − 1, consider the pure gaps (a1, . . . , as) = ((r − s − 1)m + 1, 1, . . . , 1)

and (b1, . . . , bs) = ((r − s − 1)m + su, (s − 1)u, . . . , u). Define the divisors G =∑s
i=1(ai + bi − 1)Pi and D as the sum of n rational places of F different from

P1, . . . , Ps. Consider the [n, k, d]-code CΩ(D,G).

Suppose 2g − 2 < degG < n, then k = n + g − 1− degG. Since F has genus

g = ur(r−1)/2 we have by Proposition 3.1.8 and Theorem 1.1.46 that the Singleton

defect δ = n+ 1− k − d satisfies

δ ≤ ur(r − 1)− us(s+ 1)

2
.

Remark 3.1.11. For a Kummer extension ym = f(x), where m = ur + 1 and

s ≤ r − 2 consider the pure gaps (a0, a1, . . . , as) = ((r − s − 1)m − r, 1, . . . , 1)

and (b0, b1, . . . , bs) = ((r − s − 1)m − r + s, u, . . . , su). Define the divisors G =

(a0 + b0 − 1)P∞ +
∑s

i=1(ai + bi − 1)Pi and D as the sum of n rational places of F

different from P∞, P1, . . . , Ps and consider the [n, k, d]-code CΩ(D,G).
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Table 3.1: Results from Example 3.1.12

q2 s n k d ≥ improvement on d compared with [89]

16 1 64 48 12 1

16 2 63 55 6 0

25 1 125 97 20 1

25 2 124 106 12 1

49 2 342 295 30 3

49 3 341 307 20 1

64 1 512 430 56 1

64 2 511 445 42 3

64 3 510 459 30 2

64 4 509 472 20 0

81 3 727 656 42 3

81 4 726 671 30 0

Suppose 2g − 2 < degG < n, then k = n + g − 1− degG. Since F has genus

g = ur(r−1)/2 we have by Proposition 3.1.9 and Theorem 1.1.46 that the Singleton

defect δ satisfies

δ ≤ ur(r − 1)− us(s+ 1)

2
− s− 1.

We illustrate the results obtained with Hermitian codeson many points.

Example 3.1.12. We apply Remark 3.1.10 to construct [n, k, d]-codes CΩ(D,G)

from the Hermitian function field Fq(Hq). In this case we have r = q, u = 1, 1 ≤
s ≤ q − 1 and degG = 2(q − s − 1)(q + 1) + s(s + 1)/2. We choose s such that

2g − 2 < degG < n with n = q3 + 1− s. Then

k = n+ g − 1− degG = q3 − 3

2
q2 +

(
2s− 1

2

)
q − s2 − s

2
+ 2,

d ≥ degG− (2g − 2) + s+
s∑
i=1

(bi − ai) = q2 − (2s− 1)q + s2 − s.

Table 3.1 lists some AG codes from Example 3.1.12 with the same or better
parameters with respect to the corresponding ones in the MinT’s Tables [89].
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Table 3.2: Parameters of the constructed codes

Code n d m k

C
q8 − q6 + q5 − q3 d∗

[q2 − 1, q5 − q3 − 1] m(q3 + 1) + 1− g

(Sect. 3.2.1) [2, q2 − 1] k0

C̄ q8 − q6 + q5

≥ d∗

[
q5−2q3+q2−1

(s+1)q3+1
,

m(s+ 1)q3 +m+ 1− g
(Sect. 3.2.2) −(s+ 1)q3, q8−q6+q5−(s+1)q3−1

(s+1)q3+1

]
with s > 0

[
2, q

8−q6+q5−(s+1)q3

(s+1)q3(q3+1)

]
k̄0

C̃ q8 − q6 + q5

d∗

[
q5−2q3+q2−1

(s+1)q3
,

m(s+ 1)q3 + 1− g
(Sect. 3.2.2) −(s+ 1)q3 + 1 q5−q3+q2

s+1
− 1
]

[
2, q

5−q3+q2−(s+1)
(s+1)(q3+1)

]
k̃0

3.2 Multi-Point AG Codes on the GK Maximal

Curves

Curves with many Fq-rational places with respect to their genus may give to
AG codes with good parameters. For instance, AG codes with good parameters
have been constructed from the Hermitian curve or the Suzuki curve; see [77, 87].
One- and two-point AG codes from the GK curve have been recently investigated
by Fanali and Giulietti [37], and by Castellanos and Tizziotti [22].

In this Section we construct AG codes CL(D,G) associated to the GK curve
GKq from divisors G supported at many points. Choosing G to be invariant under
a large automorphism group of the curve, we obtain large automorphism groups
for the code. The results are summarized in Tables 3.2 and 3.3, which lists the
parameters of the [n, k, d]q6-codes constructed in the section. They depend on

non-negative integers m, s, and r := gcd
(
s, q2−q+1

gcd(3,q+1)

)
.

We make use of the results presented in Section 1.1.3 about the AG codes and
in Section 1.2.1 about the GK curves.
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Table 3.3: Automorphism groups of the constructed codes

Code m Automorphism group

C
[2, q2 − 1] (Aut(GKq) o Aut(Fq6)) o F∗q6

(Sect. 3.2.1)

C̄ [
2, q

8−q6+q5−(s+1)q3

(s+1)q3(q3+1)

] (
(SU(3, q)× Cr) o Aut(Fq6)

)
o F∗q6

(Sect. 3.2.2)

[
2, q

5−q3+q2−(s+1)
(s+1)(q3+1)

]
(
((Qq3 oHq2−1)× Cq2−q+1) o Aut(Fq6)

)
o F∗q6 ,

C̃ if s = 0

(Sect. 3.2.2)
(
((Qq3 oHq2−1)× Cq2−q+1) o Aut(Fq6)

)
o F∗q6 ,

if s > 0 and p - m

3.2.1 AG codes on the GK curves

Let m ∈ N and consider the sets

G := GKq(Fq2) , D := GKq(Fq6) \ G.

Note that G is the intersection of GKq with the plane Z = 0. Define the Fq6-divisors

G :=
∑
P∈G

mP and D :=
∑
P∈D

P ,

which have degree m(q3 + 1) and q8 − q6 + q5 − q3 , respectively. Denote by
C := CL(D,G) the associated functional AG code over Fq6 having length n =
q8 − q6 + q5 − q3, dimension k, and minimum distance d. The designed minimum
distance of C is

d∗ = n− degG = q8 − q6 + q5 − q3 −m(q3 + 1).

Lemma 3.2.1. There exist exactly q5 − q3 planes πa : X = a, a ∈ Fq6, containing

q3+1 distinct Fq6-rational points of GKq. Their affine points give rise to a partition

of GKq(Fq6) \ GKq(Fq2).

Proof. Let a ∈ Fq6 \ Fq2 be such that GKq contains an Fq6-rational point (a, b, c).

Then b, c 6= 0, and πa ∩ GKq has exactly q3 + 1 affine distinct points, namely
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πa∩GKq = {(a, ξb, ηc) | ξq+1 = ηq
2−q+1 = 1}. Now let a ∈ Fq2 . Then (a, b, c) ∈ GKq

if and only if b, c ∈ Fq2 satisfy bq+1 = aq +a and c = 0. In particular, πa∩GKq has

either 1 or q + 1 affine points, according to aq + a = 0 or aq + a 6= 0, respectively.

Therefore the number of planes πa intersecting GKq in exactly q3 + 1 Fq6-rational

points is |supp(D)|/|πa ∩ GKq| = q8−q6+q5−q3
q3+1

= q5 − q3.

Now we show that the designed minimum distance is attained by C.

Proposition 3.2.2. When d∗ > 0, C attains the designed minimum distance d∗.

Proof. Take m distinct elements a1 . . . , am ∈ Fq6\Fq2 such that |πa∩GKq| = q3+1,

and let

f :=
m∏
i=1

(
x− ai
z

)
. (3.5)

Then the pole divisor of f is (f)∞ = G, thus f ∈ L(G). The weight of eD(f) is

w(eD(f)) = n−m(q3 + 1) = d∗.

The dimension of C can be explicitly computed.

Proposition 3.2.3. If q2 − 1 ≤ m ≤ q5 − q3 − 1, then

k = m(q3 + 1)− 1

2
(q5 − 2q3 + q2 − 2).

Proof. Since n > degG > 2g − 2, then by the Riemann-Roch Theorem we obtain

k = degG+ 1− g.

Proposition 3.2.4. The code C is monomially equivalent to the one-point code

CL(D,G′), where G′ = m(q3 + 1)P∞.

Proof. By direct checking, G = G′+(zm), and hence L(G′) = {f · zm | f ∈ L(G)}.
The codeword of CL(D,G′) associated to f · zm is

((fzm)(P1), . . . , (fzm)(Pn)) = (f(P1), . . . , f(Pn)) ·M,

where M is the diagonal matrix with diagonal entries z(P1)m, . . . , z(Pn)m ∈ Fq6 .
This means that M defines a monomial equivalence between C and CL(D,G′).
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Corollary 3.2.5. If 1 ≤ m ≤ q2 − 2, then the dimension k of C is equal to

k0 =



1
6
(m+ 1)(m+ 2)(m+ 3) 1 ≤ m ≤ q − 1,

1
6
(q + 1)(3m2 − 3mq + 9m+ q2 − 4q + 6) q ≤ m ≤ q2 − q,

1
6

(
−m3 + 3m2q2 − 3mq4 + 6mq3 + 7m

+q6 − 3q5 + 6q3 − 4q2 + 6
)

q2 − q + 1 ≤ m ≤ q2 − 2.

Proof. By the assumptions on m, deg(G) < n; hence, k = `(G) by Proposition

1.1.38. From Proposition 3.2.4, k = `(G′) with G′ = m(q3 + 1)P∞. This means

that k is equal to the number k0 of non-gaps h ∈ H(P∞) at P∞ satisfying h ≤ mq3.

From [50, Proposition 2], k0 is the number of triples (j1, j2, j3) ∈ N3 such that

j2 ≤ q2 − q, j3 ≤ q − 1, j1(q3 − q2 + q) + j2q
3 + j3(q3 + 1) ≤ m(q3 + 1).

Then

k0 =

min{m,q−1}∑
j3=0

min{m−j3,q2−q}∑
j2=0

(⌊
(q3 + 1)(m− j3)− q3j2

q3 − q2 + q

⌋
+ 1

)

=

min{m,q−1}∑
j3=0

min{m−j3,q2−q}∑
j2=0

(⌊
m− j3 − j2

q
+

j2

q3 − q2 + q

⌋
+m− j3 − j2 + 1

)
.

We have j2
q3−q2+q

< 1
q
. Hence, if q | (m − j3 − j2), then

⌊
m−j3−j2

q
+ j2

q3−q2+q

⌋
=

m−j3−j2
q

; if q - (m− j3− j2), then m−j3−j2
q

+ j2
q3−q2+q

< m−j3−j2
q

+ 1
q
≤
⌈
m−j3−j2

q

⌉
. In

any case ⌊
m− j3 − j2

q
+

j2

q3 − q2 + q

⌋
=

⌊
m− j3 − j2

q

⌋
and therefore

k0 =

min{m,q−1}∑
j3=0

min{m−j3,q2−q}∑
j2=0

(⌊
m− j3 − j2

q

⌋
+m− j3 − j2 + 1

)
.

1. Case 1 ≤ m ≤ q − 1. Then

k0 =
m∑
j3=0

m−j3∑
j2=0

(m− j3 − j2 + 1) =
(m+ 1)(m+ 2)(m+ 3)

6
.
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2. Case q ≤ m ≤ q2 − q. Let m − j3 = uj3q + vj3 with 0 ≤ uj3 ≤ q − 1 and

0 ≤ vj3 ≤ q − 1. Then

m−j3∑
j2=0

⌊
m− j3 − j2

q

⌋
= (vj3 + 1)uj3 + q

uj3−1∑
i=0

i = (vj3 + 1)uj3 + q
uj3(uj3 − 1)

2

and

k0 =

q−1∑
j3=0

(
(vj3 + 1)uj3 + q

uj3(uj3 − 1)

2
+

m−j3∑
j2=0

(m− j3 − j2 + 1)

)

=

q−1∑
j3=0

(
(vj3 + 1)uj3 + q

uj3(uj3 − 1)

2
+

(m− j3 + 1)(m− j3 + 2)

2

)
.

Let m = xq + y with 1 ≤ x ≤ q − 1 and 0 ≤ y ≤ q − 1. Then

k0 =

y∑
j3=0

(
(y − j3 + 1)x+ q

x(x− 1)

2
+

(m− j3 + 1)(m− j3 + 2)

2

)

+

q−1∑
j3=y+1

(
(q + y − j3 + 1)(x− 1) + q

(x− 1)(x− 2)

2
+

(m− j3 + 1)(m− j3 + 2)

2

)
,

where the second summation is substituted by zero when y = q − 1. Then

k0 = x
(y + 1)(y + 2)

2
+ q

x(x− 1)

2
(y + 1) +

(m+ 1)(m+ 2)(m+ 3)

6

+(x− 1)
(q + y + 2)(q − y − 1)

2
+ q

(x− 1)(x− 2)

2
(q − 1− y)

−(m− q + 1)(m− q + 2)(m− q + 3)

6
.

From y = m− xq we obtain

k0 =
(q + 1)(3m2 − 3mq + 9m+ q2 − 4q + 6)

6
.

3. Case q2 − q + 1 ≤ m ≤ q2 − 2, that is m = (q − 1)q + α with 1 ≤ α ≤ q − 2.

Then

k0 =

m−q2+q∑
j3=0

q2−q∑
j2=0

(⌊
m− j3 − j2

q

⌋
+m− j3 − j2 + 1

)
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+

q−1∑
j3=m−q2+q+1

m−j3∑
j2=0

(⌊
m− j3 − j2

q

⌋
+m− j3 − j2 + 1

)
.

As above, let m− j3 = uj3q + vj3 with 0 ≤ uj3 ≤ q − 1 and 0 ≤ vj3 ≤ q − 1.

Then

k2 :=

q−1∑
j3=m−q2+q+1

m−j3∑
j2=0

(⌊
m− j3 − j2

q

⌋
+m− j3 − j2 + 1

)

=

q−1∑
j3=m−q2+q+1

(
(vj3 + 1)uj3 + q

uj3(uj3 − 1)

2
+

m−j3∑
j2=0

(m− j3 − j2 + 1)

)
.

We have j3 ∈ [m − q2 + q + 1, q − 1] if and only if uj3 = q − 2 and vj3 ∈
[α + 1, q − 1]. Therefore,

k2 =

q−1∑
vj3=α+1

(
(vj3 + 1)(q − 2) + q

(q − 2)(q − 3)

2

)
+

q−1∑
j3=m−q2+q+1

m−j3∑
j2=0

(m−j3−j2+1)

=
(q + α+ 2)(q − α− 1)(q − 2)

2
+

(q − 1− α)q(q − 2)(q − 3)

2

+
(q2 − q)(q2 − q + 1)(q2 − q + 2)

6
− (m− q + 1)(m− q + 2)(m− q + 3)

6

=
(q2 −m− 1)(m2 +mq2 −m+ q4 − 3q3 + 4q2 + 3q − 6)

6
.

k1 :=

α∑
j3=0

q2−q∑
j2=0

(⌊
m− j3 − j2

q

⌋
+m− j3 − j2 + 1

)

=
α∑

j3=0

q2−q+α−j3∑
i=α−j3

⌊
i

q

⌋
+

α∑
j3=0

q2−q∑
j2=0

(m− j3 − j2 + 1)

=

α∑
j3=0

(
(q − 1)(α− j3 + 1) +

q(q − 1)(q − 2)

2
+

(q2 − q + 1)(m− 2j3 + α+ 2)

2

)

=
(q − 1)(α+ 1)(α+ 2)

2
+

(α+ 1)q(q − 1)(q − 2)

2
+

(q2 − q + 1)(m+ 2)(α+ 1)

2

=
q(m− q2 + q + 1)(mq + q + 1)

2
.

Finally

k0 = k1 + k2 =
−m3 + 3m2q2 − 3mq4 + 6mq3 + 7m+ q6 − 3q5 + 6q3 − 4q2 + 6

6
.



3.2. MULTI-POINT AG CODES ON THE GK MAXIMAL CURVES 103

Let H be the Fq2-divisor defined by H =
∑

P∈G P , that is, G = mH.

Proposition 3.2.6. If m < q5 − q3 + q2 − 2, then the codes CΩ(D,G) and

CL(D, (q5 − q3 + q2 −m− 2)H) are monomially equivalent.

Proof. From [98, Chapter 12.17], CΩ(D,G) = CL(D,K+D−G) for any canonical

divisor K. The function z has valuation 1 at each affine Fq6-rational point of GKq,
hence z is a separating element for K(GKq)/K by [107, Prop. 3.10.2]. Then dz

is non-zero by [107, Prop. 4.1.8 (c)]. It is easily checked that (dz) is a one-point

divisor at P∞. Therefore, we may choose K = (dz) = (q3 + 1)(q2 − 2)P∞.

It suffices to prove that K +D −G ≡ (q5 − q3 + q2 −m− 2)H, that is,

K +D ≡ (q5 − q3 + q2 − 2)H.

Let πai , i = 1, . . . , q5−q3, be the q5−q3 planes described in Lemma 3.2.1. Consider

the function

f :=
( q5−q3∏

i=1

(x− ai)
)( ∏

P∈supp(G),P 6=P∞

τP (x, y)
)
,

where τP (x, y) ∈ Fq2 [x, y] has principal divisor (τP ) = (q3 + 1)P − (q3 + 1)P∞, that

is, τP (X, Y ) is the tangent plane to GKq at P . Then

K +D − (q5 − q3 + q2 − 2)H = div

(
f

zq5+q2−1

)
.

Hence the claim follows.

We determine the automorphism group of C. To this aim, we prove a prelimi-
nary Lemma.

Lemma 3.2.7. Let m ≥ 2. For any P,Q ∈ GKq, `(G − P ) = `(G) − 1 and

`(G− P −Q) = `(G)− 2.

Proof. When P and Q are affine points, we denote their coordinates by (a, b, c)

and (ā, b̄, c̄), respectively. We consider separately a number of cases and provide

f1 ∈ L(G) \L(G−P ) and f2 ∈ L(G−P ) \L(G−P −Q). The function z− c, for

c(q3+1)(q2−1) + c(q3+1)(q2−q) + 1 = 0, has exactly q3 + 1 zeros, which are simple and

Fq6-rational, and P∞ is its unique pole; see the proof of Lemma 3.2.12.

• Case P,Q /∈ supp(G), P 6= Q. If c 6= c̄, choose f1 = z−α
z

and f2 = z−c
z

with

α 6= c. If c = c̄, then a 6= ā; choose f1 = x−α
z2

and f2 = x−a
z2

with α 6= a.
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• Case P,Q /∈ supp(G), P = Q. Choose f1 = z−α
z

and f2 = z−c
z

with α 6= c.

• Case P ∈ supp(G), Q /∈ supp(G), P 6= P∞. Choose f1 =
(
z−c̄
z−c

)m
and f2 = 1.

• Case P = P∞, Q /∈ supp(G). Choose f1 =
(
x
z

)m
and f2 = 1.

• Case P,Q ∈ supp(G)\{P∞}, P 6= Q. Choose f1 =
(
x−α
z−c

)m
and f2 =

(
x−a
z−c

)m
with α 6= a.

• Case P = P∞, Q ∈ supp(G) \ {P∞}. Choose f1 =
(
x
z

)m
and f2 =

(
z−α
z−c̄

)m
with α 6= c̄.

• Case P = Q ∈ supp(G) \ {P∞}. Choose f1 = z−α
(z−c)m and f2 = z−α

(z−c)m−1 with

α 6= c.

• Case P = Q = P∞. Choose f1 =
(
x
z

)m
and f2 =

(
x
z

)m−1
.

Proposition 3.2.8. The automorphism group of C has a subgroup isomorphic to

(Aut(GKq) o Aut(Fq6)) o F∗q6 .

Proof. The supports of the divisors D and G are orbits of the Fq6-rational group

Aut(GKq); hence, AutFq6 ,D,G(GKq) is isomorphic to Aut(GKq).
By [50, Section 5], the number N of points of GKq fixed by a non-trivial element

of Aut(GKq) is at most q3 + 1. In fact, let σ ∈ Aut(GKq) be given as an element

of PGL(4, q6). If σ /∈ SU(3, q), then σ fixes the plane Z = 0 and no other plane

with equation Z = c; thus, N ≤ |GKq ∩ (Z = 0)| = q3 + 1. If σ ∈ SU(3, q) and σ

fixes no points of GKq out of the plane Z = 0, then N ≤ q + 1 by Lemma 2.3.4.

If σ ∈ SU(3, q) and σ fixes a point P ∈ GKq out of the plane Z = 0, then the

induced automorphism σ of the Hermitian curve Hq : Y q+1 = Xq +X in the plane

Z = 0 fixes a point P̄ ∈ Hq which is Fq6-rational but not Fq2-rational. By Lemma

2.3.4, σ fixes exactly 3 such points P̄ , Q̄, R̄ ∈ Hq, which correspond to at most

N = 3(q2 − q + 1) points of GKq.
Now the claim follows from Proposition 1.1.47, since deg(D) = n > N .

Proposition 3.2.9. If 2 ≤ m ≤ q2 − 1, then the automorphism group of C is

Aut(C) ∼= (Aut(GKq) o Aut(Fq6)) o F∗q6 .

In particular, Aut(C) has order 6q3(q+ 1)3(q− 1)2(q2− q+ 1)3(q2 + q+ 1) logp(q).
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Proof. The following properties hold.

• The divisor G is effective.

• By Lemma 3.2.7, `(G−P ) = `(G)− 1 and `(G−P −Q) = `(G)− 2 for any

P,Q ∈ GKq.

• Let Π(GKq) be the plane model of GKq given in [50, Theorem 4], which has

degree q3 + 1. The function field K(Π(GKq)) is generated by the coordinate

functions x and z, hence also by x′ := x/z2 and z′ := 1/z. The pole divisors

of x′ and z′ are

(z′)∞ =
∑

P∈G,P 6=P∞

P , (x′)∞ =
∑

P∈G,P 6=P∞,P 6=O

2P ,

where O = (0, 0, 0). Thus x′, z′ ∈ L(G).

• The curve GKq is defined over Fp.

• The Frobenius morphism ϕp : (x, z) 7→ (xp, zp) on Π(GKq) preserves GKq(Fq6)
and GKq(Fq2), hence also the support GKq(Fq6) \ GKq(Fq2) of D.

• The condition n > degG · deg(Π(GKq)) holds if and only if m ≤ q2 − 1.

Then by Theorem 1.1.49 we have

Aut(C) ∼= (Aut+
Fq6 ,D,G

(GKq) o Aut(Fq6)) o F∗q6 .

By Remark 1.1.48, Aut+
Fq6 ,D,G

(GKq) ∼= AutFq6 ,D,G(GKq), and both coincide with

AutFq6 (GKq). Since Aut(GKq) is defined over Fq6 , the claim follows.

We construct a lengthening of C by extending D to the support of G.
Define the Fq6-divisors G′ := G and D′ :=

∑
P∈GKq(Fq6 ) P having degree m(q3 +

1) and q8 − q6 + q5 + 1, respectively. Denote by C ′ := Cext(D
′, G′) the associated

extended AG code over Fq6 having length n′ = q8 − q6 + q5 + 1, dimension k′, and
designed minimum distance d′∗ = n′ − deg(G′) = q8 − q6 + q5 −mq3 −m+ 1.

Lemma 3.2.10. Whenever d′∗ > 0, C ′ attains the designed minimum distance

d′∗.

Proof. Let f ∈ L(G′) be defined as in (3.5). The codewords e′D′ ∈ C ′ and eD ∈ C
have the same number m(q3 + 1) of zero coordinates, hence the weight of e′D′ is

n′ − deg(G′) = d′∗.
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In particular, n′− d′ = n− d. The proof of the following result is analogous to
the one of Proposition 3.2.3.

Proposition 3.2.11. If q2− 1 ≤ m ≤ q5− q3, then k′ = m(q3 + 1)− 1
2
(q5− 2q3 +

q2 − 2).

Therefore, if q2− 1 ≤ m ≤ q5− q3− 1, then C and C ′ have the same Singleton
defect δ = n+ 1− k − d.

3.2.2 Some other constructions

For c ∈ Fq6 , let ζc be the plane with affine equation Z = c, and

Γ :=
{
c ∈ Fq6 | c(q3+1)(q2−1) + c(q3+1)(q2−q) + 1 = 0

}
, Γ0 := Γ ∪ {0}.

Lemma 3.2.12. The plane ζc contains q3 + 1 Fq6-rational points of GKq if and

only if c ∈ Γ0. The number of such planes is q5 − q3 + q2, and their affine points

form a partition of GKq(Fq6) \ {P∞}.

Proof. For any c, P∞ ∈ ζc. We prove that the equations

yq
2 − y − cq2−q+1 = 0 , xq + x− yq+1 = 0

have q3 solutions (x, y) ∈ F2
q6 if and only if c ∈ Γ0. By [66, Theorem 1.22], the

equation

yq
2 − y − cq2−q+1 = 0 (3.6)

has q2 distinct solutions y ∈ Fq6 if and only if

(cq
2−q+1)q

4

+ (cq
2−q+1)q

2

+ cq
2−q+1 = 0, (3.7)

and the equation xq + x− yq+1 = 0 has q distinct solutions x ∈ Fq6 if and only if

−yq+1 + (yq+1)q − (yq+1)q
2

+ (yq+1)q
3 − (yq+1)q

4

+ (yq+1)q
5

= 0. (3.8)

Using (3.6), Equation (3.8) reads

c(q3+1)q2 + c(q3+1)(q2−q+1) + cq
3+1 = 0. (3.9)

By direct computation, every solution c of Equation (3.9) is also a solution of

Equation (3.7); also, c ∈ Fq6 . Since the polynomial c(q3+1)(q2−1) + c(q3+1)(q2−q) + 1

is separable, the solutions are all distinct. By the Hasse-Weil bound, we have

|GKq(Fq6) \ {P∞}| = q3|Γ0|, and the claim follows.
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First construction

Let m̄, s̄ > 0 and take s̄ + 1 distinct elements c0 = 0, c1, . . . , cs̄ ∈ Γ0. Define
the sets

Ḡ :=
s̄⋃
i=0

(GKq ∩ ζci) , D̄ := GKq(Fq6) \ Ḡ,

and the Fq6-divisors

Ḡ := m̄
(
P∞ +

∑
P∈Ḡ,P 6=P∞

P
)
, D̄ :=

∑
P∈D̄

P,

which have degree m̄ + m̄(s̄ + 1)q3 and q8 − q6 + q5 − (s̄ + 1)q3, respectively.
Denote by C̄ := CL(D̄, Ḡ) the associated functional AG code over Fq6 having
length n̄ = deg D̄, dimension k̄, and minimum distance d̄. The designed minimum
distance of C̄ is

d̄∗ = n− deg Ḡ = q8 − q6 + q5 − (m̄+ 1)(s̄+ 1)q3 − m̄

Proposition 3.2.13. If q5−2q3+q2−1
(s̄+1)q3+1

≤ m̄ ≤ q8−q6+q5−(s̄+1)q3−1
(s̄+1)q3+1

, then

k̄ = m̄
(
1 + (s̄+ 1)q3

)
− 1

2

(
q5 − 2q3 + q2 − 2

)
.

Proof. The proof is analogous to the proof of Proposition 3.2.3.

Proposition 3.2.14. The code C̄ is monomially equivalent to the one-point code

CL(D̄, Ḡ′), where Ḡ′ = m̄[(s̄+ 1)q3 + 1]P∞.

Proof. The proof is analogous to the proof of Proposition 3.2.4, after replacing the

function zm with
∏s̄

i=0(z − ci)m̄.

Corollary 3.2.15. If 1 ≤ m̄ ≤ q5−2q3+q2−1
(s̄+1)q3+1

, then k̄ is equal to the number k̄0 of

triples (j1, j2, j3) ∈ N3 such that

j2 ≤ q2 − q, j3 ≤ q − 1, j1(q3 − q2 + q) + j2q
3 + j3(q3 + 1) ≤ m̄[(s̄+ 1)q3 + 1].

Proof. The proof is analogous to the proof of Corollary 3.2.5, using that k̄ = `(Ḡ′)

where Ḡ′ = m̄[(s̄+ 1)q3 + 1]P∞.

Lemma 3.2.16. Let m̄ ≥ 2. For any P,Q ∈ GKq, `(Ḡ − P ) = `(Ḡ) − 1 and

`(Ḡ− P −Q) = `(Ḡ)− 2.
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Proof. We argue as in the proof of Lemma 3.2.7. When P,Q 6= P∞, let P =

(a, b, c), Q = (ā, b̄, c̄). It is enough to prove the condition on two points, by

providing two Fq6-linearly independent functions f1, f2 ∈ L(Ḡ) such that f1, f2 /∈
L(Ḡ− P −Q) and f1 + λf2 /∈ L(Ḡ− P −Q) for any λ ∈ Fq6 .

• Case P /∈ supp(Ḡ) or Q /∈ supp(Ḡ). Argue as in the proof of Lemma 3.2.7.

• Case P,Q ∈ supp(Ḡ) \ {P∞}, P 6= Q. If c 6= c̄, assume without loss of

generality that c 6= 0 and choose f1 =
(
z−c
z

)m
, f2 =

(
z−α
z

)m
with α /∈

{c, 0}. If c = c̄, then a 6= ā and choose f1 = x−a
(z−ci)m , f2 = x−ā

(z−ci)m with

i ∈ {0, 1, . . . , s̄}, ci 6= c.

• Case P = P∞. Argue as in the proof of Lemma 3.2.7.

• Case P = Q ∈ supp(Ḡ) \ {P∞}. Choose f1 = z−α
zm

, f2 = z−β
zm

with α 6= β and

α, β /∈ {c0, c1, . . . , cs}.

Proposition 3.2.17. Let 2 ≤ m̄ ≤ q8−q6+q5−(s̄+1)q3

(s̄+1)q3(q3+1)
and r = gcd

(
s̄, q

2−q+1
δ

)
, where

δ = gcd(3, q + 1). Suppose that {c1, . . . , cs̄} is closed under the Frobenius map

ϕp : ci 7→ cpi and under the scalar map Λ : ci 7→ λci, where λr = 1. Then the

automorphism group of C̄ is

Aut(C̄) ∼= ((SU(3, q)× Cr) o Aut(Fq6)) o F∗q6 ,

of order rq3(q + 1)3(q − 1)2(q2 − q + 1)2(q2 + q + 1) logp(q
6).

Proof. We argue as in the proof of Proposition 3.2.9.

• The divisor Ḡ is effective.

• By Lemma 3.2.16, `(Ḡ − P ) = `(Ḡ) − 1 and `(Ḡ − P − Q) = `(Ḡ) − 2 for

any P,Q ∈ GKq.

• Let Π(GKq) be the plane model of GKq given in [50, Theorem 4], which has

degree q3 + 1. The function field K(Π(GKq)) is generated by the functions

x′ := x/z2 and z′ := 1/z. We have x′, z′ ∈ L(Ḡ).

• The curve GKq is defined over Fp.

• The Frobenius morphism ϕp : (x, z) 7→ (xp, zp) on Π(GKq) preserves the

support of Ḡ by our assumptions; hence, ϕp preserves also the support of D.
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• The condition n̄ > deg Ḡ·deg(Π(GKq)) holds if and only ifm ≤ q8−q6+q5−(s̄+1)q3

(s̄+1)q3(q3+1)
.

Then by Theorem 1.1.49 we have

Aut(C̄) ∼= (Aut+
Fq6 ,D̄,Ḡ

(GKq) o Aut(Fq6)) o F∗q6 .

By Remark 1.1.48, Aut+
Fq6 ,D̄,Ḡ

(GKq) ∼= AutFq6 ,D̄,Ḡ(GKq). Since Aut(GKq) is defined

over Fq6 , we have that Aut+
Fq6 ,D̄,Ḡ

(GKq) coincides with the subgroup S of Aut(GKq)
stabilizing the support of Ḡ. By the discussion after Lemma 8 in [50], S is contained

in the group M ∼= SU(3, q)×C(q2−q+1)/δ defined in [50, Lemma 8]. In particular, S

contains a subgroup SU(3, q)×Cr. Since s/r is coprime to (q2−q+1)/δ, S cannot

contain any subgroup SU(3, q)×Cr′ with r | r′ and r′ > r. The claim follows.

If we drop off the restriction on m̄, we still have a (possibly proper) subgroup
of Aut(C̄).

Proposition 3.2.18. Let r = gcd
(
s̄, q

2−q+1
δ

)
where δ = gcd(3, q+1). Suppose that

{c1, . . . , cs̄} is closed under the Frobenius map ϕp : ci 7→ cpi and under the scalar

map Λ : ci 7→ λci, where λr = 1. If s̄ ≤ q5 − q3 + q2 − 3, then the automorphism

group of C̄ contains a subgroup isomorphic to

((SU(3, q)× Cr) o Aut(Fq6)) o F∗q6 .

Proof. As in the proof of Proposition 3.2.17, we have

AutFq6 ,D̄,Ḡ(GKq) ∼= SU(3, q)× Cr.

Any non-trivial element of Aut(GKq) has at most N = q3 + 1 fixed points on GKq
(see the proof of Proposition 3.2.8). By the assumption on s̄, this implies that

n̄ > N . Therefore the claim follows from Proposition 1.1.47.

Second construction

Let m̃, s̃ ∈ N and take s̃ + 1 distinct elements c0 = 0, c1, . . . , cs̃ ∈ Γ0. Define
the sets

G̃ :=
( s̃⋃
i=0

(GKq ∩ ζci)
)
\ {P∞}, D̃ := GKq(Fq6) \ G̃,

and the Fq6-divisors

G̃ :=
∑

P∈G̃,P 6=P∞

m̃P, D̃ :=
∑
P∈D̃

P,
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which have degree m̃(s̃ + 1)q3 and q8 − q6 + q5 − (s̃ + 1)q3 + 1, respectively.
Denote by C̃ := CL(D̃, G̃) the associated functional AG code over Fq6 having

length ñ = deg D̃, dimension k̃, and minimum distance d̃. The designed minimum
distance of C̃ is

d̃∗ = ñ− deg G̃ = q8 − q6 + q5 − (m̃+ 1)(s̃+ 1)q3 + 1

Proposition 3.2.19. When d̃∗ > 0, C̃ attains the designed minimum distance d̃∗.

Proof. Since d̃∗ > 0, there exist m̃(s̃ + 1) distinct elements γ1, . . . , γm̃(s̃+1) ∈ Γ0 \
{c0, c1, . . . , cs̃}. Consider the function

f̃ :=
s̃∏
i=0

m̃∏
j=1

(
z − γim̃+j

z − ci

)
.

The pole divisor of f̃ is (f)∞ = G̃, thus f̃ ∈ G̃. The weight of eD̃(f̃) is

w(eD̃(f̃)) = ñ− m̃(s̃+ 1)q3 = d̃∗.

Proposition 3.2.20. If q5−2q3+q2−1
(s̃+1)q3

≤ m̃ ≤ q5−q3+q2

s̃+1
− 1, then

k̃ = m̃(s̃+ 1)q3 − 1

2

(
q5 − 2q3 + q2 − 4

)
.

Proof. The proof is analogous to the proof of Proposition 3.2.3.

Proposition 3.2.21. The code C̃ is monomially equivalent to the extended one-

point code Cext(D̃, G̃
′), where G̃′ = m̃(s̃+ 1)q3P∞.

Proof. By direct checking, G̃ = G̃′ + (w) where w =
∏s̃

i=0(z − ci)
m̃. Hence,

L(G̃′) =
{
f · w | f ∈ L(G̃)

}
.

The codeword of Cext(D̃, G̃
′) associated to f · w is(

(w−1fw)(P∞), (fw)(P2), . . . , (fw)(Pn)
)

= (f(P∞), f(P2), . . . , f(Pn)) ·M,

where M is the diagonal matrix with diagonal entries 1, w(P2), . . . , w(Pn) ∈ Fq6 .
This means thatM defines a monomial equivalence between C̃ and Cext(D̃, G̃

′).

Corollary 3.2.22. If 1 ≤ m̃ ≤ q5−2q3+q2−1
(s̃+1)q3

, then k̃ is equal to the number k̃0 of

triples (j1, j2, j3) ∈ N3 such that

j2 ≤ q2 − q, j3 ≤ q − 1, j1(q3 − q2 + q) + j2q
3 + j3(q3 + 1) ≤ m̃(s̃+ 1)q3.
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Proof. The proof is analogous to the proof of Corollary 3.2.5, where G′ is replaced

by the one-point divisor G̃′ = m̃(s̃ + 1)q3P∞, which is equivalent to G̃ since G̃ =

G̃′ + div
(∏s̃

i=0(z − ci)m̃
)

.

Lemma 3.2.23. If m̃ ≥ 2 and p - m̃, then for any P,Q ∈ GKq we have `(G̃−P ) =

`(G̃)− 1 and `(G̃− P −Q) = `(G̃)− 2.

Proof. As in the proof of Lemma 3.2.7, it suffices to provide two Fq6-linearly inde-

pendent functions f1, f2 ∈ L(Ḡ) such that f1, f2 /∈ L(Ḡ− P −Q) and f1 + λf2 /∈
L(Ḡ− P −Q) for any λ ∈ Fq6 .

• Case P,Q 6= P∞. Argue as in the proof of Lemma 3.2.16.

• Case P = P∞, P 6= Q. Choose f1 = z−α
z

and f2 = z−β
z

, with α, β 6= 0, α 6= β.

• Case P = Q = P∞. Choose f1 =
(
z−α
z

)m
and f2 =

(
z−β
z

)m
, with α, β 6= 0,

α 6= β. Since p - m̃, we have f1 + λf2 /∈ L(G̃− 2P∞).

Proposition 3.2.24. Let 2 ≤ m̃ ≤ q2−1
s̃+1
− s̃

(s̃+1)(q3+1)
with p - m̃, and r =

gcd
(
s̃, q

2−q+1
δ

)
where δ = gcd(3, q + 1). Suppose that {c1, . . . , cs̃} is closed un-

der the Frobenius map ϕp : ci 7→ cpi and under the scalar map Λ : ci 7→ λci, where

λr = 1. Then the automorphism group Aut(C̃) of C̃ is isomorphic to

(AutFq6 ,D̃,G̃
(GKq) o Aut(Fq6)) o F∗q6 . (3.10)

If s̃ = 0, then AutFq6 ,D̃,G̃
(GKq) has a normal subgroup N of index δ with

N ∼= (Qq3 oHq2−1)× C(q2−q+1)/δ .

If s̃ > 0, then

AutFq6 ,D̃,G̃
(GKq) ∼= (Qq3 oHq2−1)× Cr .

Here, Qq3 has order q3 and is the unique Sylow p-subgroup of Aut(C̃). The groups

Hi and Cj are cyclic of order i and j, respectively.

Proof. As in the proof of Proposition 3.2.9, the following facts hold.

• The divisor G̃ is effective.

• By Lemma 3.2.23, we have `(G̃−P ) = `(G̃)−1 and `(G̃−P −Q) = `(G̃)−2

for any P,Q ∈ GKq.
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• The functions x′ := x/z2, z′ := 1/z ∈ L(G̃) generate the function field of the

plane model Π(GKq) of GKq given in [50, Theorem 4].

• The curve GKq is defined over Fp.

• The Frobenius morphism ϕp : (x, z) 7→ (xp, yp) on Π(GKq) preserves the

support of D̃.

• Since m̃ ≤ q2−1
s̃+1
− s̃

(s̃+1)(q3+1)
, we have ñ > deg(G̃) · deg(Π(GKq)).

Then by Theorem 1.1.49 we have

Aut(C̃) ∼= (Aut+

Fq6 ,D̃,G̃
(GKq) o Aut(Fq6)) o F∗q6 .

By Remark 1.1.48, Aut+

Fq6 ,D̃,G̃
(GKq) ∼= AutFq6 ,D̃,G̃

(GKq). Since Aut(GKq) is defined

over Fq6 , we have that Aut+

Fq6 ,D̃,G̃
(GKq) coincides with the subgroup S of Aut(GKq)

stabilizing the support of G̃.

The claim follows by the properties of Aut(GKq) which have been proved in

[50]. In particular, suppose s̃ = 0. Then supp(G̃) ∪ {P∞} is a unique orbit of

Aut(GKq) by [50, Theorem 7]. Hence, S is the stabilizer of P∞ in Aut(GKq), and

the claim follows. Now suppose s̃ > 0. Then S is contained in the subgroup

(Qq3 oHq2−1)×C(q2−q+1)/δ of the group M ∼= SU(3, q)×C(q2−q+1)/δ defined in [50,

Lemma 8]. By the assumptions on Λ, S contains a subgroup (Qq3 oHq2−1)× Cr.
Since h is coprime to (q2 − q + 1)/δ, S does not contain any cyclic group Cr′ with

Cr ⊆ Cr′ and r′ > r. The claim follows.

Proposition 3.2.25. Let r = gcd
(
s̃, q

2−q+1
δ

)
where δ = gcd(3, q+1). Suppose that

{c1, . . . , cs̃} is closed under the Frobenius map ϕp : ci 7→ cpi and under the scalar

map Λ : ci 7→ λci, where λr = 1. If s̃ ≤ q5 − q3 + q2 − 3, then the automorphism

group Aut(C̃) of C̃ contains the subgroup

(AutFq6 ,D̃,G̃
(GKq) o Aut(Fq6)) o F∗q6

described in (3.10) and in the statement of Proposition 3.2.24.

Proof. The proof is analogous to the proof of Proposition 3.2.18 and is then omit-

ted.



Chapter 4

New applications of the

Hasse-Weil Bound in Finite

Geometry and Permutation

Polynomials

In this Chapter, the Hasse-Weil Bound and tools from the theory of algebraic
curves over finite fields are used to investigate interesting objects which arise in
other areas of discrete mathematics, namely in Finite Geometry and in Permuta-
tion Polynomials.

In the area of Finite Geometry, we construct in Section 4.1 complete (k, 3)-arcs
in PG(2, q) starting from subsets of the quartic curve with affine equation Y = X4,
for q a power of an odd prime p ≡ 2 (mod 3). The order of magnitude of k is
smaller than q. This property significantly distinguishes the complete (k, 3)-arcs
of Section 4.1 from the previously known infinite families, whose size differs from
q by at most 2

√
q. The results of Section 4.1 are the object of [6]. Analogously,

we construct in Section 4.2 complete (k, 4)-arcs in PG(2, q) starting from subsets
of the quintic curve Y = X5, whose size k has order smaller than q. The results
of Section 4.2 are the object of [10].

In the area of Permutation Polynomials, we investigate in Section 4.3 a partic-
ular class of complete permutation polynomials (shortly, CPPs) over finite fields,
namely the monomial CPPs axd of Fqn with degree d = (qn − 1)/(q − 1) + 1. The
CPPs are studied in connection with exceptional polynomials. We characterize
the CPPs axd of Fqn in the case n + 1 prime and n4 < q, proving in this way a
conjecture by Wu, Li, Helleseth, and Zhang. When n + 1 is a power of the char-
acteristic we provide some new examples of CPPs. The results of Section 4.2 are
the object of [5].
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4.1 Complete (k, 3)-arcs from quartic curves

A (k, r)-arc in PG(2, q) is a set of k points no (r + 1) of which are collinear
and such that there exist r collinear points; see [66, Chapter 12] for a general
introduction. A (k, 3)-arc is said to be complete if it maximal with respect to
set-theoretical inclusion.

From a Coding Theory point of view, complete (k, r)-arcs corresond to [k, 3, k−
3]q-codes which cannot be extended to a code with the same minimum distance. In
particular, (k, 3)-arc correspond to AMDS (Almost Maximum Distance Separable)
codes, i.e. codes having Singleton defect equal to 1, and to NMDS (Near Maximum
Distance Separable) codes, i.e. AMDS codes such that the dual is also AMDS; see
[32, 33].

In the case r = 2, the theory is well developed and quite rich of constructions;
see e.g. [66, Chapters 8-10]. On the other hand, for most r > 2, the only known
families consist of the set of Fq-rational points of some irreducible curve of degree
r, or arise from the theory of 2-character sets in PG(2, q). In particular, the unique
infinite families of complete (k, 3)-arcs known in literature come from cubic curves
and have roughly q points; see [68].

In this section we construct infinite families of complete (k, 3)-arcs in PG(2, q),
whose order of magnitude is asymptotically smaller than q. Our main result is the
following.

Theorem 4.1.1. Let σ be a non-square power of a prime p > 2, with p ≡
2 (mod 3). Define

τ(σ) =

{
p+5

4
if σ = p ,

2
(√

σ p−1√
p
− p+ 3

)
if σ > p .

.

Then, for all power q of σ with q ≥ 3600σ6, there exists a complete (k, 3)-arc in

PG(2, q) of size

k ≤ τ(σ)

σ
q + 6 .

Almost all the points of the (k, 3)-arcs constructed in this section belong to the
set of Fq-rational points of the curve Q : Y = X4. The proof of their completeness
is based on a classical idea going back to Segre [103] and Lombardo Radice [83].
We construct a curve HP over Fq describing the collinearity condition of three
points of Q and a point P ∈ PG(2, q) \ Q; we prove that HP has an absolutely
irreducible component defined over Fq, and deduce that P is collinear with three
points in the arc.

Throughout the section, p is an odd prime with p ≡ 2 (mod 3), σ = ph
′

with
h′ odd, q = ph with h′ < h, h′ | h, and K is the algebraic closure of Fp.
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4.1.1 (k, 3)-arcs from quartic curves

Let Q be the plane quartic curve over Fq with affine equation Y = X4. The
following propositions show the collinearity condition of three and four points of
the quartic Q.

Proposition 4.1.2. Let A = (u, u4), B = (v, v4), C = (w,w4) three distinct

points of Q. They are collinear if and only if u2 + v2 + w2 + uv + uw + vw = 0.

Proof. A,B,C are collinear if, and only if,

det

 u u4 1

v − u v4 − u4 0

w − u w4 − u4 0

 = (v−u)(w−u)(w−v)[u2+v2+w2+uv+uw+vw] = 0.

As A,B,C are distinct, the assertion follows.

Proposition 4.1.3. Let A = (u, u4), B = (v, v4), C = (w,w4), D = (t, t4) four

distinct points of Q. They are collinear if, and only if,{
u2 + v2 + w2 + uv + uw + vw = 0

u+ v + w + t = 0
.

Proof. By Proposition 4.1.2, the points A,B,C,D are collinear if and only if{
u2 + v2 + w2 + uv + uw + vw = 0

u2 + v2 + t2 + uv + ut+ vt = 0
.

Since w 6= t, this is equivalent to{
u2 + v2 + w2 + uv + uw + vw = 0

u+ v + w + t = 0
.

Next we construct a (k, 3)-arc contained in Q from a coset of an additive
subgroup of Fq. Let M be the following additive subgroup of Fq of order q/σ :

M := {(aσ − a) : a ∈ Fq}, (4.1)

and consider
Kt := {(v, v4) | v ∈M + t}, (4.2)

where t /∈M .

Proposition 4.1.4. The set Kt is a (k, 3)-arc.

Proof. By Proposition 4.1.3, if four distinct points (ai + t, (ai + t)4), ai ∈ M ,

i = 1, . . . , 4, are collinear then a1 + t + a2 + t + a3 + t + a4 + t = 0, hence

−4t = a1 + a2 + a3 + a4 ∈ M . Since p 6= 2 and M is closed under multiplication

by elements of Fσ, we have t ∈M , a contradiction.
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4.1.2 Points off Q are covered by Kt

Proposition 4.1.5. Three distinct points A = (u, u4), B = (v, v4), C = (w,w4)

of Q and P = (a, b) ∈ AG(2, q) \ Q are collinear if and only if

{
u2 + v2 + w2 + uv + uw + vw = 0

a(u2 + v2)(u+ v)− uv(u2 + uv + v2)− b = 0
.

Proof. The former equation is the collinearity condition for A,B,C, the latter is

the collinearity condition for A,B, P , since

det

 u u4 1

v v4 1

a b 1

 = (u− v)
[
a(u2 + v2)(u+ v)− uv(u2 + uv + v2)− b

]
.

In particular, if the points of Q have the form A = (u + t, (u + t)4), B =
(v + t, (v + t)4), C = (w + t, (w + t)4), the conditions in Proposition 4.1.5 read


w2 + w(u+ v + 4t) + 4t(u+ v)+
+6t2 + uv + u2 + v2 = 0

a(u2 + v2 + 2t2 + 2tu+ 2tv)(u+ v + 2t)
−(u+ t)(v + t)(u2 + v2 + uv + 3t2 + 3t(u+ v))− b = 0

.

Then the following result holds.

Corollary 4.1.6. A point P = (a, b) ∈ AG(2, q)\Q is collinear with three distinct
points of Kt if and only if there exists a Fq-rational affine point (x, y, z), with
xσ−x, yσ−y, zσ−z pairwise distinct, lying on the space curve HP with equation

(Zσ − Z)2 + (Zσ − Z)((Xσ −X) + (Y σ − Y ) + 4t) + 4t(Xσ −X + Y σ − Y )+

+6t2 + (Xσ −X)(Y σ − Y ) + (Xσ −X)2 + (Y σ − Y )2 = 0

a((Xσ −X)2 + (Y σ − Y )2 + 2t2 + 2t(Xσ −X) + 2t(Y σ − Y ))·
·(Xσ −X + Y σ − Y + 2t)− (Xσ −X + t)(Y σ − Y + t) · ((Xσ −X)2+

+(Y σ − Y )2 + (Xσ −X)(Y σ − Y ) + 3t2 + 3t(Xσ −X + Y σ − Y ))− b = 0

.

(4.3)
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Consider the following sequence of function field extensions:

σ

2

σ

σ

F5 = F4(z) : zσ − z = w

F4 = F3(w) :

{
w2 + w((xσ − x) + (yσ − y) + 4t) + 4t(xσ − x+ yσ − y)
+6t2 + (xσ − x)(yσ − y) + (xσ − x)2 + (yσ − y)2 = 0

F3 = F2(y) : yσ − y = v

F2 = F1(x) : xσ − x = u

F1 = Fq(u, v) :
a(u2 + v2 + 2t2 + 2tu+ 2tv)(u+ v + 2t)+
−(u+ t)(v + t)(u2 + v2 + uv + 3t2 + 3t(u+ v))− b = 0

We are going to show that each extension Fi : Fi−1 is well defined and that the
field of constants of each function field Fi is Fq. We will also estimate the genus
gi of Fi. Finally, by using the Hasse-Weil bound, we will show that if q is large
enough with respect to σ, then F5 has a large number of Fq-rational places. By
the equations defining F5, this implies that the curve HP possesses a large number
of Fq-rational points.

We will first show that F1 is a function field with genus 3 whose field of constants
is Fq; see Proposition 4.1.8 below. Equivalently, the plane quartic curve with
equation

H1 :
a(U2 + V 2 + 2t2 + 2tU + 2tV )(U + V + 2t)

−(U + t)(V + t)(U2 + V 2 + UV + 3t2 + 3t(U + V ))− b = 0
(4.4)

is non-singular. We start by investigating an auxiliary cubic curve.

Lemma 4.1.7. Let a, b ∈ Fq with b 6= 0, b 6= a4. The plane curve with equation

a(C2 + 2t2 + 2tC−2D)(C+ 2t)− (D+ tC+ t2)(C2−D+ 3t2 + 3tC)− b = 0 (4.5)

is absolutely irreducible and has genus g0 = 1

Proof. After the affine transformation ξ = D + tC + t2, ζ = C + 2t Eq. (4.5)

becomes h0(ξ, ζ) = 0 with

h0(ξ, ζ) = aζ3 − ξζ2 − 2aξζ + ξ2 − b.

Since ∂ξh
′
0(ξ, ζ) = −ζ2−2aζ+2ξ and ∂ζh

′
0(ξ, ζ) = 3aζ2−2ξζ−2aξ, we have that the

only three possibilities for an affine singular point are (a2(
√
−2∓ 1),±

√
−2a) and
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(0, 0), which satisfy h′0(ξ, ζ) = 0 if and only if b = a4 or b = 0. It is straightforward

to check that the ideal points (1 : 0 : 0), (a : 1 : 0) are non-singular. Then the

assertion follows.

Proposition 4.1.8. Let a, b ∈ Fq with b 6= 0, b 6= a4. Let Fq(c, d) be the function

field of the non-singular cubic curve with Eq. (4.5). Then the equations u+ v = c,

uv = d define a function field Fq(u, v) of genus 3, with equation

a(u2 + v2 + 2t2 + 2tu+ 2tv)(u+ v + 2t)+

−(u+ t)(v + t)(u2 + v2 + uv + 3t2 + 3t(u+ v))− b = 0

whose constant field is Fq.

Proof. Let µ = c2

4
− d ∈ Fq(c, d). We are going to show that µ is a non-square in

K(c, d). By substituting D = C2/4 in (4.5) we obtain

−3/16C4+(1/2a−3/2t)C3+(3at−9/2t2)C2+(6at2−6t3)C+4at3−b−3t4 = 0 (4.6)

Derivation with respect to C gives−3
4
(C+2t)2(C−2a+2t). Then, the only possible

multiple solutions of (4.6) are C = −2t and C = 2a − 2t. By straightforward

computation, this actually happens only if b = 0 or b = a4, which is impossible.

Therefore, there exist four distinct simple zeros of µ in K(c, d). Let P∞ and Q∞
be the placed centered at the ideal points (0 : 1 : 0) and (1 : a− t : 0), respectively.

It is easily seen that vP∞(c2 − 4d) = −2 and vQ∞(c2 − 4d) = −2.

Then the extension K(c, d, η)|K(c, d) with η2 = µ is a Kummer extension of

degree 2 with genus

g1 = 1 + 2(g0 − 1) +
1

2

∑
P∈P(K(c,d))

(2− gcd(2, vP (µ))) deg(P ) = 1 +
1

2
4 = 3.

Also, by Lemma 1.1.36, Fq is the constant field of Fq(u, v). To complete the

proof, we only need to show that actually K(c, d)(η) coincides with K(u, v). This

immediately follows from u = η + c/2 and v = −η + c/2.

Proposition 4.1.9. Let a, b ∈ Fq with b 6= 0, b 6= a4 and a 6= t. The equation

xσ − x = u defines an extension F2 = F1(x) with genus g2 = 5σ − 2 whose field of

constants is Fq.

Proof. Let H1 be as in (4.4). By Proposition 4.1.8, H1 is a non-singular curve

such that F1 = Fq(H1). Then places of K(u, v) can be identified with points of
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H1. The ideal points of H1 are P1 = (1 : 0 : 0), Q1 = (0 : 1 : 0), R1 = (1 : α : 0)

and S1 = (α : 1 : 0), with α2 + α + 1 = 0. The tangent lines at such points are

`P1 : V = (a− t), `Q1 : U = (a− t),
`R1 : U + (α + 1)V + (α+2)(a+3t)

3
= 0 `S1 : U − αV − (α−1)(a+3t)

3
= 0.

Here, the assumption a 6= t assures that U = 0 and V = 0 are not tangent lines at

the ideal points of H1; hence,

vP1(u) = vR1(u) = vS1(u) = −1, vQ1(u) = 0,

vQ1(v) = vR1(v) = vS1(v) = −1, vP1(v) = 0.
(4.7)

Consider the function field K(u, v)(x) = K(v, x) defined by u = xσ − x. For each
place centered at an affine point and for Q1 there exists ρ ∈ K(u, v) such that the
valuation of u − (ρσ − ρ) at that place is non-negative; in fact, it is sufficient to
consider ρ = 0. Hence K(x, v)|K(u, v) is a generalized Artin-Schreier extension
and [K(x, v) : K(u, v)] = σ. Moreover P1, R1, S1 are the only totally ramified
places;all other places are unramified. By Lemma 1.1.36, Fq is the full constant
field of F2 = Fq(x, v). The genus is given by

g2 = σg1+
σ − 1

2

(
−2+

∑
P∈P(K(H1))

(mP+1) deg(P )
)

= 3σ+
σ − 1

2
(−2 + 3(1 + 1)) = 5σ−2.

From now on, denote by P2, R2, S2 the places of K(x, y) lying over P1, R1, S1,
respectively. Also, let Q1

2, . . . , Q
σ
2 be the places lying over Q1.

Proposition 4.1.10. Let a, b ∈ Fq with b 6= 0, b 6= a4 and a 6= t. The equation

yσ − y = v defines an extension F3 = F2(y) with genus g3 = 6σ2 − 2σ − 1 whose

field of constants is Fq.

Proof. In K(x, v) we have

vP2(v) = 0, vQi2(v) = −1, vR2(v) = vS2(v) = −σ.

The element v − αu ∈ K(u, v) satisfies vR2(v − αu) = 0. Let A ∈ K be such that

Aσ = α and consider ρ = Ax; then

v − (ρσ − ρ) = v − αxσ + Ax = v − αxσ + αx− αx+ Ax = v − αu− αx+ Ax.

Since α2 +α+1 = 0, we have that A = α if and only if 3 | (σ−1). Then A 6= α by

the assumptions on σ; in fact, σ = ph
′

with h′ odd and p ≡ 2 (mod ) imply that

3 does not divide σ − 1. Thus, vR2((A− α)x) = −1 and hence

vR2(v − ((Ax)σ − Ax)) = vR2(x) = −1.
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By taking ρ = A−1x, the same argument yields vS2(v − (ρσ − ρ)) = −1. For the

places centered at affine points and at Qi
2, it is sufficient to choose ρ = 0. Then

K(x, y)|K(x, v) is a generalized Artin-Schreier extension with [K(x, y) : K(x, v)] =

σ and

g3 = σg2 +
σ − 1

2

(
− 2 +

∑
P∈P(K(x,v))

(mP + 1) deg(P )
)

= σ(5σ − 2) +
σ − 1

2
(−2(σ − 2)(1 + 1)) = 6σ2 − 2σ − 1.

By Lemma 1.1.36, Fq is the constant field of F3 = Fq(x, y).

In the extension K(x, y)|K(x, v) the only totally ramified places are Q1
2, . . . , Q

σ
2 ,

R2 and S2; let Q1
3, . . . , Q

σ
3 , R3 and S3 be the places lying over them. All other

places are unramified; denote by P i
3 the places lying over P2, i = 1, . . . , σ.

Proposition 4.1.11. Let a, b ∈ Fq with b 6= 0, b 6= a4 and a 6= t. The equation

w2 + w((xσ − x) + (yσ − y) + 4t) + 4t(xσ − x+ yσ − y)

+6t2 + (xσ − x)(yσ − y) + (xσ − x)2 + (yσ − y)2 = 0
(4.8)

defines an extension F4 = F3(w) with genus g4 ≤ 16σ2 − 4σ − 3 whose field of

constants is Fq.

Proof. By the substitution θ = w + (xσ − x+ yσ − y + 4t)/2 we have F4 = F3(θ).

By straightforward computations,

θ2 = −3

4
(u+v)2+uv−2t(u+v)−2t2 = −3

4

(
u−β1v+(1−β1)t

)(
u−β2v+(1−β2)t

)
,

(4.9)

where β1, β2 are the two distinct solutions of 3T 2 + 2T + 3 = 0. Let h1(U, V ) = 0

be the affine equation defining H1.

By straightforward computations, h1(β1V + (β1 − 1)t, V ) = 0 if and only if

r(V ) := (3 + 2β1)(V + t)4 + 2a(3− β1)(V + t)3 − b = 0.

The coefficients of r(V ) are non-zero by the assumptions on a, b and the charac-

teristic p; as

r′(V ) = 2(V + t)2 [2(3 + 2β1)V + 3a(3− β1)] ,

(u−β1v+(1−β1)t) provides at most one double zero of θ2 in K(u, v), so at least two

simple zeros; the same holds for the second factor. The two factors have at most

one common zero; then, there exists a zero P of θ2 in K(u, v) with multiplicity 1,
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and hence θ2 is not a square in K(u, v). Let P ′ be a place of K(x, y) lying over

P ; then vP ′(θ
2) ∈ {1, σ, σ2} is odd, hence θ2 is not a square in K(x, y). Therefore

K(x, y, θ)|K(x, y) is a Kummer extension. By (4.9), θ2 has valuation −2 at P1, Q1,

R1 and S1; hence

vP i3(θ2) = vQi3(θ
2) = −2σ , vR3(θ

2) = vS3(θ
2) = −2σ2 (i = 1, . . . , σ). (4.10)

The number of zeros of θ2 in K(x, y, θ) is σ2 times the number of its zeros in

K(u, v), so at most 8σ2. Then

g4 = 1 + 2(g3 − 1) +
1

2

∑
P∈P(K(x,y))

(2− rP ) deg(P )

≤ 1 + 2(6σ2 − 2σ − 2) +
1

2
8σ2 = 16σ2 − 4σ − 3.

Finally, by Lemma 1.1.36, Fq is the full constant field of K(x, y, θ) = F4.

Let P i,j
4 , Qi,j

4 , Rj
4 and Sj4 (j = 1, 2) be the places of K(x, y, θ) lying over the

unramified places P i
3, Qi

3, R3 and S3, respectively.

Proposition 4.1.12. Let a, b ∈ Fq with b 6= 0, b 6= a4 and a 6= t. The equation

zσ − z = w defines an extension F5 = F4(z) with genus g5 ≤ 30σ3− 12σ2− 4σ+ 1

whose field of constants is Fq.

Proof. Arguing as in the proof of Proposition 4.1.11, we have that K(u, v, θ) :

K(u, v) is a Kummer extension of degree 2. The unique ramified places are the

zeros of θ2 with odd multiplicity, and

g(K(u, v, θ)) ≤ 1 + 2(g(K(u, v))− 1) +
1

2
· 8 = 9.

Let P̃ j
1 , Q̃j

1, R̃j
1 and R̃j

1 (j = 1, 2) be the places of K(u, v, θ) lying over P1, Q1,

R1 and S1. Since vP̃ j1
(θ2) = −2, we have vP̃ j1

(θ) = −1 = vP̃ j1
(u) and we can write

θ = ku+ Φ, for some k ∈ K and Φ ∈ K(u, v, θ) with vP̃ j1
(Φ) ≥ 0. Thus,

vP̃ j1

(
θ2 − k2u2

)
= vP̃ j1

(
2kuΦ + Φ2

)
≥ −1.

On the other hand, from (4.9) we have

vP̃ j1

(
θ2 − k2u2

)
= vP̃ j1

((
−3

4
− k2

)
u2 − 3

4
v2 − 1

2
uv − 2t (u+ v)− 2t2

)
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and vP̃ j1
(u2) = −2, whereas, by (4.7), the other terms have valuation greater than

or equal to −1 at P̃ j
1 . Therefore the coefficient (−3/4− k2) must vanish. By our

assumptions on σ, −3 is not a square in Fσ (see Lemma 4.5 in [48]). Then k /∈ Fσ,

and there exists a σ-th root eσ ∈ K of k with eσ 6= k. Let ρ = eσx; then

θ−(ρσ−ρ) = k(xσ−x)+Φ−eσσxσ+eσx = (k−eσσ)xσ+(eσ−k)x+Φ = (eσ−k)x+Φ.

K(x, y, θ) is the compositum of K(u, v, θ) and K(x, y); hence, at the places P i,j
4

over P1 we have

vP i,j4
(Φ) = e(P i,j

4 | P̃
j
1 ) · vP̃ j1 (Φ) ≥ 0 , vP i,j4

(x) = e(P i,j
4 | P i

3) · vP i3(x) = −1.

Therefore

vP i,j4
(θ − (ρσ − ρ)) = −1. (4.11)

Now we prove that

µ θ 6= ξp − ξ for all ξ ∈ K(x, y, θ), µ ∈ Fσ.

On the contrary, assume µ θ = ξp − ξ with ξ ∈ K(x, y, θ), µ ∈ Fσ. From (4.11),

−1 = vP i,j4
(µθ − (µρσ − µρ)) = vP i,j4

(µθ − (wσ − w)),

with w = µρ ∈ K(x, y, θ). Since

wσ − w =
(
wσ/p + wσ/p

2

+ . . .+ w
)p
−
(
wσ/p + wσ/p

2

+ . . .+ w
)
,

we have

vP i,j4
(ξp − ξ − (λp − λ)) = −1,

where λ = wσ/p +wσ/p
2

+ . . .+w ∈ K(u, v, θ). But this is clearly impossible, since

the valuation of (ξp− ξ− (λp−λ)) must be either non-negative or a multiple of p.

Then we can apply Lemma 1.3 in [46] to conclude that T σ − T − θ is irreducible

over K(x, y, θ), and K(x, y, z)|K(x, y, θ) is a Galois extension of degree σ. Also, by

Lemma 1.1.36, Fq is the full constant field of Fq(x, y, z).

Finally we give a bound on g5. By Castelnuovo’s Inequality (see Theorem 3.11.3

in [107]),

g5 ≤ [K(x, y, z) : K(x, y)] · g(K(x, y)) + [K(x, y, z) : K(u, v, z)] · g(K(u, v, z))+

+ ([K(x, y, z) : K(x, y)]− 1) · ([K(x, y, z) : K(u, v, z)]− 1) .
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We have

[K(x, y, z) : K(x, y)] = [K(x, y, z) : K(x, y, θ)] · [K(x, y, θ) : K(x, y)] = 2σ ,

g(K(x, y)) = 6σ2 − 2σ − 1 .

Since {x, x2, . . . , xσ} is a basis of K(x, v, z) over K(u, v, z) and {y, y2, . . . , yσ} is a

basis of K(x, y, z) over K(x, v, z), then {xiyj | i, j = 1, . . . , σ} is a basis of K(x, y, z)

over K(u, v, z) and [K(x, y, z) : K(u, v, z)] = σ2. Since P1, Q1, R1, and S1 do not

ramify in K(u, v, θ)|K(u, v), then θ2 has valuation −2 at the places lying over them;

hence,

vP̃ j1
(θ) = vQ̃j1

(θ) = vR̃j1
(θ) = vS̃j1

(θ) = −1 , for j = 1, 2 ,

whereas θ has non-negative valuation at any other place of K(u, v, θ). Hence

K(u, v, z)|K(u, v, θ), with θ = zσ − z, is a generalized Artin-Schreier extension of

degree σ and

g(K(u, v, z)) = σ g(K(u, v, θ)) +
σ − 1

2

−2 +
∑

P∈P(K(u,v,θ))

(mP + 1) deg(P )

 ≤
≤ 9σ +

σ − 1

2
(−2 + 8(1 + 1)) = 16σ − 7 .

Therefore

g5 ≤ 2σ(6σ2 − 2σ − 1) + σ2(16σ − 7) + (2σ − 1)(σ2 − 1) = 30σ3 − 12σ2 − 4σ + 1 .

Theorem 4.1.13. Let Kt as in (4.2). If q ≥ 3600σ6 then Kt is a 3-arc which

covers all points of AG(2, q) \ Q except possibly those lying on the line Y = 0.

Proof. Let P = (a, b) ∈ AG(2, q) \ Q and assume that a 6= t and b 6= 0. We start

by counting the number Z1 of poles of xσ − x, yσ − y, and zσ − z in F5. The poles

of xσ − x are the places lying over P1, R1, and S1 in F5|F1, and hence over P i,j
4 ,

Rj
4, and Sj4 in F5|F4 (i = 1, . . . , σ, j = 1, 2). The extension F5|F4 has degree σ;

then, by the Fundamental Equality 1.1.1, xσ − x has at most σ(2σ + 4) poles in

F5. By similar arguments it can be shown that the number of poles in F5 is at

most σ(2σ + 4) for yσ − y and at most σ(4σ + 4) for zσ − z. Summing up,

Z1 ≤ σ(2σ + 4) + σ(2σ + 4) + σ(4σ + 4) = 8σ2 + 12σ.



124 CHAPTER 4. NEW APPLICATIONS OF THE HASSE-WEIL BOUND

Now count the number Z2 of zeros of (xσ − x)− (yσ − y) in F5. Clearly a place P5

is a zero of (xσ − x) − (yσ − y) = (x − y)σ − (x − y) if and only if it is a zero of

x− y − λ for some λ ∈ Fσ; then,

Z2 ≤
∑
λ∈Fσ

deg(x− y − λ)0 =
∑
λ∈Fσ

deg(x− y − λ)∞.

The poles of x− y − λ are the places lying over P1, Q1, R1, and S1. Then, by the

Fundamental Equality 1.1.1,

deg(x− y − λ)∞ = 4 · [F5 : F1] = 8σ3 for all λ ∈ Fσ ;

hence, Z2 ≤ 8σ4. Therefore, if the number Nq of Fq-rational places of F5 is greater

than

8σ4 + 8σ2 + 12σ,

then there exists an Fq-rational place P of F5 such that (x(P ), y(P ), z(P )) is a

well-defined affine point of HP with x(P )σ − x(P ), y(P )σ − y(P ), z(P )σ − z(P )

pairwise distinct. By Hasse-Weil bound we have

Nq ≥ q + 1− 2g5
√
q ≥ q + 1− 2(30σ3 − 12σ2 − 4σ + 1)

√
q.

From q ≥ 3600σ6 it follows that

q + 1− 2(30σ3 − 12σ2 − 4σ + 1)
√
q ≥ 8σ4 + 8σ2 + 12σ + 1,

and hence, by Corollary 4.1.6, the point P is collinear with three distinct points

of Kt.
Assume now that P = (t, b) with b 6= 0. Let t′ ∈ M + t, with t′ 6= t, and

consider the curve H′P obtained by replacing t with t′ in Eq. (4.3). Arguing as

above, Kt′ covers the point P . But clearly Kt = Kt′ , and the assertion follows.

4.1.3 Constructions of 4-independent subsets

We now want to construct complete (k, 3)-arcs from union of cosets Kt; to this
end, we will use the notion of a 4-independent subset of an elementary abelian
p-group.

Definition 4.1.14. Let G be a finite abelian group and let T be a subset of G. If

y1 + y2 + y3 + y4 6= 0 for all y1, y2, y3, y4 ∈ T ,

then T is said to be a 4-independent subset of G. An element g ∈ G\T is covered

by T if either g ∈ T or

there exist y1, y2, y3 ∈ T such that y1 + y2 + y3 + g = 0.
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In the remaining part of the section we construct 4-independent subsets of the
abelian group Zh′p , for h′ an odd integer and p ≥ 5. We distinguish the cases h′ = 1
and h′ ≥ 3. For a subset A of a group G, let s∧A denote the s-fold sumset of A,
that is,

s∧ = {y1 + · · ·+ ys | y1, . . . , ys ∈ A}.

In the following, let [a, b] denote the set of elements in Zp represented by integers
x with a ≤ x ≤ b.

Proposition 4.1.15. Let p ≥ 29 be a prime, with p ≡ 1 mod 4. Then

T = {−1, 2} ∪
[
4,
p− 1

4

]
is a 4-independent subset covering Zp \ {1}.

Proof. The sum of four elements of T ∗ = {2}∪
[
4, p−1

4

]
is contained in [8, p−1] and

therefore is different from 0. An easy check shows that if one or more of the four

elements is −1, then it is not possible to obtain 0. Note that p ≥ 29 guarantees

that the element 4 is in (−2 + T ∗). Then

3∧T = {−3} ∪ (−2 + T ∗) ∪ (−1 + 2∧T ∗) ∪ 3∧T ∗

= {−3}∪{0}∪
[
2,
p− 9

4

]
∪{3}∪

[
5,
p− 3

2

]
∪{6}∪

[
8, 3

p− 1

4

]
= {−3, 0}∪

[
2, 3

p− 1

4

]
.

Hence, the set of covered elements contains

−3∧T = {0, 3} ∪
[
p− 1

4
+ 1, p− 2

]
.

The non-covered element 1 cannot be added to T since 1 + 1− 1− 1 = 0.

Proposition 4.1.16. Let p > 29 be a prime with p ≡ 3 mod 4. Then

T = {−1, 2} ∪
[
4,
p− 3

4

]
is a 4-independent subset of Zp covering Zp \

{
1, p+1

4
, p+5

4

}
.

Proof. The sum of four elements of T ∗ = {2} ∪
[
4, p−3

4

]
is contained in [8, p− 3],

and therefore is different from 0. An easy check shows that if one or more of the
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four elements is −1, then it is not possible to obtain 0. From p > 29 it follows

that the element 4 is in (−2 + T ∗). Arguing as Proposition 4.1.15,

3∧T = {−3} ∪ (−2 + T ∗) ∪ (−1 + 2∧T ∗) ∪ 3∧T ∗ =

= {−3} ∪ {0} ∪
[
2,
p− 11

4

]
∪ {3} ∪

[
5,
p− 5

2

]
∪ {6} ∪

[
8, 3

p− 3

4

]
= {−3, 0} ∪

[
2, 3

p− 3

4

]
.

Then the the set of covered elements contains

−3∧T = {0, 3} ∪
[
p+ 9

4
, p− 2

]
.

Also, note that the non-covered elements 1, p+1
4
, p+5

4
cannot be added to T since

1+1−1−1 = 0,
p+ 1

4
+
p+ 1

4
+
p+ 1

4
+
p− 3

4
= p,

p+ 5

4
+
p+ 5

4
+
p− 3

4
+
p− 7

4
= p.

We now consider the case G = Zh′p for h′ ≥ 3. Clearly, G can be written as

G = A×B × C, with A = Zp, B = C = Z
h′−1

2
p . Let

T = T1 ∪ T2 ∪ T3, (4.12)

where T1 = {(a, 1, 1) | a ∈ A}, T2 = {(1, b, 1) | b ∈ B \ {−3}}, T3 = {(1, 1, c) | c ∈ C \ {−3}}.
Here, 1 and −3 are viewed as elements of the additive group of the finite field
F
p
h′−1

2
, which is isomorphic to B and C.

Proposition 4.1.17. Let h′ ≥ 3 and let T be as in (4.12). Then T is a 4-

independent subset of Zh′p of size 2p
h′−1

2 +p−4 not covering at most 2
(
p
h′+1

2 −ph
′−1
2

)
elements of Zh′p .

Proof. Consider four elements t1, t2, t3, t4 ∈ T . If t1, t2, t3, t4 belong either to the

same Ti or to exactly two distinct Ti’s, then they all share 1 in one of the coordi-

nates, and therefore t1 + t2 + t3 + t4 6= (0, 0, 0) holds. Assume then that t1, t2, t3, t4
belong to all the three Ti’s. If three of them belong to T1∪T2, then the remaining el-

ement has the third coordinate different from−3; therefore, t1+t2+t3+t4 6= (0, 0, 0)

holds. Otherwise, three of them belong to T1 ∪ T3, the remaining element has the

second coordinate different from −3, and their sum cannot be equal to (0, 0, 0).

This proves that T is a 4-independent subset of Zh′p . Now, let t = (x, y, z) ∈ Zh′p \T
with y 6= 1 and z 6= 1, Then

(x, y, z) + (−2− x, 1, 1) + (1,−2− y, 1) + (1, 1,−2− z) = (0, 0, 0),

and hence t is covered by T .
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4.1.4 Construction of (k, 3)-arcs from union of cosets of M

We first fix two (not necessarely distinct) subsets Kt1 and Kt2 , defined as in
(4.2), and a point P = (w,w4) in Q\(Kt1∪Kt2). Clearly P belongs to some subset
KtP for some tP ∈ Fq.

Let P1 = (xσ−x+t1, (x
σ−x+t1)4) ∈ Kt1 and P2 = (yσ−y+t2, (y

σ−y+t2)4) ∈
Kt2 . By Proposition 4.1.2, the three points P , P1, and P2 are collinear if and only
if

(xσ−x+t1)2+(yσ−y+t2)2+(xσ−x+t1)(yσ−y+t2)+w(xσ−x+t1+yσ−y+t2)+w2 = 0.
(4.13)

Proposition 4.1.18. Equation 4.13 defines a function field L = Fq(x, y) with

genus g = σ2 − 1 whose field of constants is Fq.

Proof. Consider first the plane curve Γ0 with equation

f0(U, V ) = (U + t1)2 + (V + t2)2 + (U + t1)(V + t2) +w(U + t1 + V + t2) +w2 = 0

The ideal points of Γ0 are the simple points R1 = (1 : α : 0) and S1 = (α : 1 : 0),

where α2 +α+ 1 = 0; all affine points are non-singular since w 6= 0. Then Γ0 is an

irreducible conic. Let L0 = Fq(u, v) be the function field of Γ0, where f0(u, v) = 0.

The rational function u ∈ K(u, v) has valuation −1 at R1 and S1, and non-negative

valuation at the placed centered at affine points of Γ0. Then K(x, v)|K(u, v), with

u = xσ − x, is a generalized Artin-Schreier extension, and

g(K(x, v)) = σ · g(K(u, v)) +
σ − 1

2

(
− 2 +

∑
P∈P(K(u,v))

(mP + 1) deg(P )
)

=
σ − 1

2
(−2 + 4) = σ − 1.

The places R1 and S1 are the unique totally ramified places; let R1 and S1 be the

places lying over them. The other places are unramified. By Lemma 1.1.36, Fq is

the constant field of Fq(u, v).

Now consider the element v ∈ K(x, v); we have vR1
(v − αu) = 0. For A ∈ K

such that Aσ = α, let ρ = Ax; then

v − (ρσ − ρ) = v − αxσ + Ax = v − αxσ + αx− αx+ Ax = v − αu− αx+ Ax.

Since α2 +α+1 = 0, we have that A = α if and only if 3 | (σ−1). Then A 6= α by

our assumptions on σ, so vR1
((A− α)x) = −1, and hence vR1

(v− (ρσ − ρ)) = −1.
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By taking ρ = A−1x, the same argument yields vS1
(v− (ρσ−ρ)) = −1. For the

places centered at affine points it is sufficient to choose ρ = 0. Then K(x, y)|K(x, v)

is a generalized Artin-Schreier extension with [K(x, y) : K(x, v)] = σ; in this ex-

tension the unique totally ramified places are R1 and S1 while the others are

unramified. Then,

g = σ · g(K(x, v)) +
σ − 1

2

(
− 2 +

∑
P∈P(x,v)

(mP + 1) deg(P )
)

= σ(σ − 1) +
σ − 1

2
(−2 + 4) = σ2 − 1.

By Lemma 1.1.36, Fq is the constant field of L.

Proposition 4.1.19. Assume that q ≥ 5σ4. Then P is collinear with two distinct

points P1 ∈ Kt1 and P2 ∈ Kt2.

Proof. We are going to show that there exist x0, y0 ∈ Fq such that (4.13) holds for

x = x0 and y = y0, and xσ0 − x0 6= yσ0 − y0. We start by counting the number of

poles of xσ−x = u and yσ− y = v in L. They are the places lying over the totally

ramified places R1 and S1 in L1|L0; hence, the number of such poles is 2. Next we

count the number Z of zeros of (xσ − x) − (yσ − y) in L. A place P is a zero of

(xσ − x)− (yσ − y) = (x− y)σ − (x− y) if and only if it is a zero of x− y − λ for

some λ ∈ Fσ; then

Z ≤
∑
λ∈Fσ

deg(x− y − λ)0 =
∑
λ∈Fσ

deg(x− y − λ)∞.

The poles of x− y − λ are the places lying over R1 and S1 in L1|L0; then, by the

Fundamental Equation 1.1.1,

deg(x− y − λ)∞ = 2 · [L : L0] = 2σ2

for all σ ∈ Fσ; hence, Z ≤ 2σ3.

Therefore, if the number Nq of Fq-rational places of Γ is greater than 2σ3 +

σ, then there exists an Fq-rational place P of L such that the point (x0, y0) =

(x(P ), y(P )) is well-defined and xσ0 − x0 6= yσ0 − y0. By the Hasse-Weil bound,

Nq ≥ q + 1− 2g
√
q = q + 1− 2(σ2 − 1)

√
q.

Our hypothesis q ≥ 5σ4 implies

q + 1− 2g
√
q ≥ 2σ3 + 2 + 1.

This completes the proof.
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Proposition 4.1.20. Assume that q ≥ 11σ4. Then P is collinear with three

distinct points P1 ∈ Kt1, P2 ∈ Kt2, and P3 ∈ Q.

Proof. By Proposition 4.1.19, P is collinear with two distinct points P1 ∈ Kt1 ,
P2 ∈ Kt2 . The line through P1, P2, and P can be a tangent line to the curve

Q. Note that there are at most four tangent lines through P to the curve Q;

in fact, imposing that P lies on the tangent to Q at the point (X,X4) gives an

equation in X of degree 4. Since each tangent line can be obtained from two

pairs, we need at least nine distinct pairs of points P i
1, P i

2 such that P i
1 and P i

2 are

collinear with P (i = 1, . . . , 9). Arguing as in the proof of Proposition 4.1.19, it

is sufficient to require that the number of Fq-rational places of L is greater than

9 · 2σ3 + 2 = 18σ3 + 2. This is implied by the Hasse-Weil bound, together with

q ≥ 11σ4.

Henceforth, T denotes a 4-independent subset of Fq/M , for M as in (4.1). Let

KT =
⋃

M+t∈T

Kt. (4.14)

Proposition 4.1.21. The set KT is a (k, 3)-arc.

Proof. By Proposition 4.1.3, the sum of the first coordinate of 4 collinear points

on Q is equal to 0. This is clearly impossible if the points belong to KT , since T
is a 4-independent subset of Fq/M .

Proposition 4.1.22. Assume that q ≥ 11σ4. Let Cov(T ) be the set of all the

elements of Fq/M covered by T as 4-independent subset. Then the points in⋃
M+t∈Cov(T )

Kt

are covered by KT .

Proof. Let P ∈ KtP with M + tP ∈ Cov(T ). Then there exist M + t1,M + t2,M +

t3 ∈ T such that tP + t1 + t2 + t3 ∈ M . Also, by Proposition 4.1.20, there exist

three distinct points P1 ∈ Kt1 , P2 ∈ Kt2 , and P3 ∈ Q which are collinear with P .

Let t′3 be such that P3 ∈ Kt′3 . By Proposition 4.1.3, tP + t1 + t2 + t′3 ∈ M . Then

M + t3 = M + t′3, that is, Kt3 = Kt′3 ; hence, P1, P2, P3 all belong to T and the

assertion follows.
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Theorem 4.1.23. Let T be a 4-independent subset of Fq/M of size n, not covering

at most m elements of Fq/M . Let KT be as in (4.14). Assume that q ≥ 3600σ6.

Then there exists a complete (k, 3)-arc K with KT ⊆ K ⊆ Q of size at most

(n+m)
q

σ
+ 6.

Proof. Fix a coset M + t in T . By Theorem 4.1.13 all the points of PG(2, q) \ Q
are covered by a Kt plus at most six points covering the lines Y = 0 and T = 0.

By Proposition 4.1.22, there are at most m q
σ

affine points of Q not covered by KT .

This shows that there exists a complete (k, 3)-arc K containing KT of size at most

|KT |+m
q

σ
+ 6 = (n+m)

q

σ
+ 6.

We are finally in a position to prove Theorem 4.1.1. Identify the additive
groups Zh′p and Fq/M . From Propositions 4.1.15, 4.1.16, and 4.1.17 the following
values of n and m occur in Theorem 4.1.23:

• for σ = p, p ≡ 1 (mod 4), p ≥ 29, we have n = p−5
4

and m = 1;

• for σ = p, p ≡ 3 (mod 4), p > 29, we have n = p−7
4

and m = 3;

• for σ ≥ p3, we have n = 2p
h′−1

2 + p− 4 and m = 2
(
p
h′+1

2 − ph
′−1
2

)
.

4.2 Complete (k, 4)-arcs from quintic curves

In this section we provide a new class of infinite families of complete (k, 4)-arcs
in PG(2, q). Our main result is the following.

Theorem 4.2.1. Let σ be a non-square power of a prime p > 3, with p ≡ 3

(mod 4). Define

τ(σ) =


p+4i−10

5
if σ = p ≥ 29, σ ≡ i ∈ {1, 2, 3, 4} (mod 5),

2
√

σ
p

+ p− 2 if σ ≥ p3.

Then, for each power q of σ with q ≥ 580644σ8, there exists a complete (k, 4)-arc

in PG(2, q) of size

k ≤ τ(σ)

σ
q + 8.
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The order of magnitude of the (k, 4)-arcs constructed in Theorem 4.2.1 is sig-
nificantly smaller than that of the previously known families. In fact, complete
(k, 4)-arcs arising from quartic curves have at least q+ 1−6

√
q points. The size of

the arcs of Theorem 4.2.1 is asymptotically smaller than q. For example, if σ = p3

with p > 83, then q = σ9 can be chosen and the bound on k is roughly q25/27.
This section is organized as follows. Section 4.2.1 shows how to construct

complete (k, 4)-arcs from quartic curves, with k ≥ q−6
√
q+1. In Section 4.2.2 we

construct a (q/σ, 4)-arc Ke lying on Q; it is associated to an additive subgroup M
with index σ in Fq. We show in Section 4.2.3 that under the conditions of Theorem
4.2.1, the 4-secants of Ke covers almost all points of PG(2, q) \ Q. To this end,
we thoroughly investigate the curve HP and its function field. A 5-independent
subset in the factor group Fq/M is constructed in Section 4.2.4. This allows us to
show in Section 4.2.5 how to cover the points of Q, for q large enough, by joining
more copies of Ke.

4.2.1 (k, 4)-arcs from quartic curves

An absolutely irreducible quartic curve is always a (k, 4)-arc. By the Hasse-
Weil bound its size is lower bounded by q − 6

√
q + 1. In the following we show

how to construct a complete (k, 4)-arc starting from a particular quartic curve.
Let q be a power of a prime p > 3 and C = {(x, x4) | x ∈ Fq} be the set of the

Fq-rational affine points of the plane curve with equation Y = X4. As usual, K
denotes the algebraic closure of Fq.

Proposition 4.2.2. Four distinct points A = (u, u4), B = (v, v4), C = (w,w4),

D = (t, t4) of C and P = (a, b) ∈ AG(2, q) \ C are collinear if and only if
u+ v + w + t = 0

w2 + (u+ v)w + u2 + uv + v2 = 0

a(u2 + v2)(u+ v)− uv(u2 + uv + v2)− b = 0

. (4.15)

Proof. The claim follows from Propositions 4.1.3 and 4.1.5.

Proposition 4.2.3. Let a, b ∈ Fq with b 6= a4. The equation `1(u, v) = 0, where

`1(u, v) = a(u2 + v2)(u+ v)− uv(u2 + uv + v2)− b, (4.16)

defines a function field E1 = Fq(u, v) with genus at most 3 whose field of constants

is Fq.

Proof. Let E1 be the plane quartic curve with affine equation `1(U, V ) = 0, with

`1 as in (4.16). If b = 0 then the affine point O = (0, 0) is an ordinary triple point
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and no lines through O are contained in E1. Therefore E1 is absolutely irreducible.

If b 6= 0 then it is easily seen that E1 is nonsingular, and hence irreducible with

genus 3. Since E1 is the function field Fq(E1) of E1, the claim follows.

Proposition 4.2.4. Let a, b ∈ Fq with b 6= a4. The equation

w2 + (u+ v)w + u2 + uv + v2 = 0 (4.17)

defines an extension E2 = E1(w) with genus at most 9 whose constant field is Fq.

Proof. By the substitution ψ = w + (u+ v)/2, we have E2 = E1(ψ). By straight-

forward computation,

ψ2 = −1

4

(
3u2 + 2uv + 3v2

)
= −3

4
(u− α1v) (u− α2v) ,

where α1, α2 are the two distinct solutions of 3T 2 + 2T + 3 = 0. From the

assumptions on a, b, and the characteristic p, it is easily seen that the poly-

nomial `1(α1V, V ) is not a square in K[V ]. Then ψ2 has at least one zero in

K(u, v) with odd multiplicity, and hence ψ2 is not a square in K(u, v). Therefore

K(u, v, w)|K(u, v) is a Kummer extension of degree 2. By Lemma 1.1.36, Fq is the

field of constants of E2 = Fq(u, v, w). Since ψ2 has at most 8 zeros in K(u, v) with

odd multiplicity, the genus of E2 is at most 1 + 2(3− 1) + 8/2 = 9.

Let E3 = Fq(u, v, w, t) with u+ v + w + t = 0. Since E3 = E2, we have shown
that E3 is a function field with genus at most 9 and field of constants Fq.

Theorem 4.2.5. Assume that q ≥ 431. Then there exists a complete (q+2, 4)-arc

A in PG(2, q) containing C.

Proof. Let a, b ∈ Fq with b 6= a4. We count the number of poles and zeros of u−v,

u − w, u − t, v − w, v − t, and w − t in K(u, v, w, t) = K(u, v, w). The poles lie

over the four unramified places of K(u, v) centered at the ideal points of E1. Since

[K(u, v, w, t) : K(u, v)] = 2, the number of poles of u− v, u−w, u− t, v−w, v− t,
and w− t in K(u, v, w, t) is 8. By [107, Th. 1.4.11], the number of zeros of u−v in

K(u, v, w, t) is at most 8; the same holds for u−w, u− t, v −w, v − t, and w− t.
Therefore, if the number Nq of Fq-rational places of E2 is greater than 8+6·8 =

56, then there exists an Fq-rational placeQ of E3 such that P = (a, b) ∈ AG(2, q)\C
is collinear with four distinct points (u(Q), u(Q)4), (v(Q), v(Q)4), (w(Q), w(Q)4),

(t(Q), t(Q)4) of C. By Hasse-Weil bound,

Nq ≥ q + 1− 2g(E3)
√
q ≥ q + 1− 18

√
q;
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thus, Nq > 56 by the hypothesis q ≥ 431. We have shown that C is a (q, 4)-arc

which covers all the points of PG(2, q), except possibly the ideal line. Consider

an ideal point P∞ = (1 : a : 0), with a 6= 0. The point P∞ is collinear with four

distinct points of C if and only if there exist u, v, w, t ∈ Fq pairwise distinct such

that 
u+ v + w + t = 0

w2 + (u+ v)w + u2 + uv + v2 = 0

u3 + u2v + uv2 + v3 = a

. (4.18)

Arguing as above and using the Hasse-Weil bound, it can be proved that conditions

(4.18) are satisfied for some distinct u, v, w, t ∈ Fq, for each a ∈ F∗q. On the other

side, the ideal points (0 : 1 : 0) and (1 : 0 : 0) are not collinear with four distinct

points of C. Therefore the claim is proved.

4.2.2 (k, 4)-arcs from quintic curves

Throughout the rest of Section 4.2, p is an odd prime with p > 5 and p ≡ 3
(mod 4), σ = ph

′
with h′ odd, and q = ph with h > h′ and h′ | h. Moreover,

Q = {(x, x5) | x ∈ Fq}

is the set of the Fq-rational affine points of the plane curve with equation Y = X5.

Proposition 4.2.6. Let A = (u, u5), B = (v, v5), C = (w,w5), D = (t, t5) be four

distinct points of Q. They are collinear if and only if{
w3 + w2(u+ v) + w(u2 + uv + v2) + (u+ v)(u2 + v2) = 0

t2 + t(u+ v + w) + u2 + v2 + w2 + uv + uw + vw = 0
.

Proof. A,B,C,D are collinear if and only if

det

 u u5 1

v − u v5 − u5 0

w − u w5 − u5 0

 = det

 u u5 1

v − u v5 − u5 0

t− u t5 − u5 0

 = 0,

that is{
(v − u)(w − u)(w − v)[w3 + w2(u+ v) + w(u2 + uv + v2) + (u+ v)(u2 + v2)] = 0

(v − u)(t− u)(t− v)[t3 + t2(u+ v) + t(u2 + uv + v2) + (u+ v)(u2 + v2)] = 0
.

As A,B,C,D are distinct, the assertion follows.
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Proposition 4.2.7. Let A = (u, u5), B = (v, v5), C = (w,w5), D = (t, t5),

E = (r, r5) be five distinct points of Q. They are collinear if and only if
w3 + w2(u+ v) + w(u2 + uv + v2) + (u+ v)(u2 + v2) = 0

t2 + t(u+ v + w) + u2 + v2 + w2 + uv + uw + vw = 0

u+ v + w + t+ r = 0

.

Proof. By Proposition 4.2.6, the points A,B,C,D,E are collinear if and only if
w3 + w2(u+ v) + w(u2 + uv + v2) + (u+ v)(u2 + v2) = 0

t2 + t(u+ v + w) + u2 + v2 + w2 + uv + uw + vw = 0

r2 + r(u+ v + w) + u2 + v2 + w2 + uv + uw + vw = 0

.

Since r 6= t, the assertion follows.

Now we construct a (k, 4)-arc contained in Q from a coset of an additive sub-
group of Fq. Let

M := {(aσ − a) | a ∈ Fq}, (4.19)

and
Ke := {(v, v5) | v ∈M + e}, (4.20)

with e /∈M .

Proposition 4.2.8. No five points of Ke are collinear.

Proof. By Proposition 4.2.7, if five distinct points (ai + e, (ai + e)4), ai ∈ M ,

i = 1, . . . , 5, are collinear then a1 + e + a2 + e + a3 + e + a4 + e + a5 + e = 0,

and hence −5e = a1 + a2 + a3 + a4 + a5 ∈ M. Since p 6= 5 and M is closed under

addition by elements of Fσ, we have e ∈M , a contradiction.

4.2.3 Points off Q are covered by Ke
Consider a point P = (a, b) ∈ AG(2, q)\Q. Arguing as in Proposition 4.2.7 we

can prove the following.

Proposition 4.2.9. Four distinct points A = (u, u4), B = (v, v4), C = (w,w4),

C = (t, t4) of Q and P = (a, b) ∈ AG(2, q) \ Q are collinear if and only if
w3 + w2(u+ v) + w(u2 + uv + v2) + (u+ v)(u2 + v2) = 0

t2 + t(u+ v + w) + u2 + v2 + w2 + uv + uw + vw = 0

b+ uv(u2 + v2)(u+ v)− a(u4 + u3v + u2v2 + uv3 + v4) = 0

.
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Proof. The first two equations are the collinearity conditions forA,B,C,D, whereas
the third is the collinearity condition for A,B, P , since

det

 u u5 1

v v5 1

a b 1

 = (v − u)
[
b+ uv(u2 + v2)(u+ v)− a(u4 + u3v + u2v2 + uv3 + v4)

]
.

In particular, if the points of Q have the form A = (u + e, (u + e)4), B =
(v + e, (v + e)4), C = (w + e, (w + e)4), D = (t + e, (t + e)4), then the conditions
in Proposition 4.2.9 read

w3 + w2(u+ v + 5e) + w [u2 + uv + v2 + 5e(u+ v) + 10e2]
+(u+ v)(u2 + v2) + 5e(u2 + uv + v2) + 9e2(u+ v) + 7e3 = 0

t2 + t(u+ v + w + 5e) + u2 + v2 + w2 + uv + uw + vw
+e [3(u+ v + w) + 2(uv + uw + vw)] + 10e2 = 0

b+ (u+ e)(v + e)(u+ v + 2e) [u2 + v2 + 2e(u+ v) + e2]− a
[
u4 + u3v + u2v2

+uv3 + v4 + 5e(u+ v)(u2 + v2) + 10e2(u2 + uv + v2) + 9e3(u+ v) + 4e4
]

= 0

.

Therefore, the following result holds.

Corollary 4.2.10. A point P = (a, b) ∈ AG(2, q)\Q is collinear with four distinct
points of Ke if and only if there exists an Fq-rational affine point (x, y, z, r), with
xσ−x, yσ−y, zσ−z, rσ−r pairwise distinct, lying on the curve HP with equations

HP :



(Zσ − Z)3 + (Zσ − Z)2(Xσ −X + Y σ − Y + 5e) + (Zσ − Z)
[
(Xσ −X)2

+(Xσ −X)(Y σ − Y ) + (Y σ − Y )2 + 5e(Xσ −X + Y σ − Y ) + 10e2
]

+(Xσ −X + Y σ − Y )
[
(Xσ −X)2 + (Y σ − Y )2

]
+ 5e

[
(Xσ −X)2

+(Xσ −X)(Y σ − Y ) + (Y σ − Y )2
]

+ 9e2(Xσ −X + Y σ − Y ) + 7e3 = 0

(Rσ −R)2 + (Rσ −R)(Xσ −X + Y σ − Y + Zσ − Z + 5e) + (Xσ −X)2

+(Y σ − Y )2 + (Zσ − Z)2 + (Xσ −X)(Y σ − Y ) + (Xσ −X)(Zσ − Z)

+(Y σ − Y )(Zσ − Z) + e
[
3(Xσ −X + Y σ − Y + Zσ − Z)

+2((Xσ −X)(Y σ − Y ) + (Xσ −X)(Zσ − Z) + (Y σ − Y )(Zσ − Z))
]

+ 10e2 = 0

b+ (Xσ −X + e)(Y σ − Y + e)(Xσ −X + Y σ − Y + 2e)
[
(Xσ −X)2

+(Y σ − Y )2 + 2e(Xσ −X + Y σ − Y ) + e2
]
− a
[
(Xσ −X)4 + (Xσ −X)3·

·(Y σ − Y ) + (Xσ −X)2(Y σ − Y )2 + (Xσ −X)(Y σ − Y )3 + (Y σ − Y )4

+5e(Xσ −X + Y σ − Y )
[
(Xσ −X)2 + (Y σ − Y )2

]
+ 10e2

(
(Xσ −X)2

+(Xσ −X)(Y σ − Y ) + (Y σ − Y )2
)

+ 9e3(Xσ −X + Y σ − Y ) + 4e4
]

= 0

(4.21)
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Consider the following sequence of function fields:

σ

2

σ

3

σ

σ

F7 = F6(r) : rσ − r = t

F6 = F5(t) :

t2 + t(xσ − x+ yσ − y + zσ − z + 5e) + (xσ − x)2 + (yσ − y)2

+(zσ − z)2 + (xσ − x)(yσ − y) + (xσ − x)(zσ − z) + (yσ − y)(zσ − z)
+e
[
3(xσ − x+ yσ − y + zσ − z) + 2

(
(xσ − x)(yσ − y)

+(xσ − x)(zσ − z) + (yσ − y)(zσ − z)
)]

+ 10e2 = 0

F5 = F4(z) : zσ − z = w

F4 = F3(w) :

w3 + w2(xσ − x+ yσ − y + 5e) + w
[
(xσ − x)2

+(xσ − x)(yσ − y) + (yσ − y)2 + 5e(xσ − x+ yσ − y) + 10e2
]

+(xσ − x+ yσ − y)((xσ − x)2 + (yσ − y)2) + 5e
(
(xσ − x)2

+(xσ − x)(yσ − y) + (yσ − y)2
)

+ 9e2(xσ − x+ yσ − y) + 7e3 = 0

F3 = F2(y) : yσ − y = v

F2 = F1(x) : xσ − x = u

F1 = Fq(u, v) :

b+ (u+ e)(v + e)(u+ v + 2e)
[
u2 + v2 + 2e(u+ v) + e2

]
−a
[
u4 + u3v + u2v2 + uv3 + v4 + 5e(u+ v)(u2 + v2)

+10e2(u2 + uv + v2) + 9e3(u+ v) + 4e4
]

= 0

We are going to show that each extension Fi : Fi−1 is well-defined and that the
field of constants of each function field Fi is Fq. We will also estimate the genus
gi of Fi. Finally, by using the Hasse-Weil bound, we will show that if q is large
enough with respect to σ, then F7 has a large number of Fq-rational places. This
implies that the curve HP possesses a large number of Fq-rational points.

First we show that F1 is a function field with genus 6 whose constant field is
Fq. Equivalently, the quintic curve H1 with affine equation G1(U, V ) = 0, where

G1(U, V ) = b+(U+e)(V +e)(U+V +2e)
[
U2 + V 2 + 2e(U + V ) + e2

]
−a
[
U4+U3V

+U2V 2 +UV 3 +V 4 +5e(U+V )(U2 +V 2)+10e2(U2 +UV +V 2)+9e3(U+V )+4e4
]
,

is absolutely irreducible and has genus 6.

Proposition 4.2.11. Let a, b ∈ Fq with b 6= 0 and b 6= a5. Then H1 is absolutely

irreducible and has genus 6.

Proof. The ideal points of H1 are P1 = (1 : 0 : 0), Q1 = (0 : 1 : 0), and Ri
1 = (1 :

ξi : 0), i ∈ {1, 2, 3}, where ξ is a primitive 4-th root of unity; being distinct, they
are simple points. We have

∂UG1(U, V )=(V − (a− e))
(
4(U + e)3 + 3(U + e)2(V + e) + 2(U + e)(V + e)2 + (V + e)3

)
,
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∂VG1(U, V )=(U − (a− e))
(
(U + e)3 + 2(U + e)2(V + e) + 3(U + e)(V + e)2 + 4(V + e)3

)
.

Since b 6= a5, no point (U, V ) ∈ H1 has either U = a − e or V = a − e.

Also, the resultant of ∂UG1(U, V )/ (V − (a− e)) and ∂VG1(U, V )/ (U − (a− e))
with respect to U is 2000(V + e)9 and 2000(U + e)9, respectively. Since p > 5,

∂UG1(U, V ) = ∂VG1(U, V ) = 0 if and only if (U, V ) = (−e,−e) /∈ H1. Therefore,

H1 is non-singular, and hence absolutely irreducible with genus 6.

Proposition 4.2.12. Let a, b ∈ Fq with b 6= 0, b 6= a5, and a 6= e. The equation

xσ − x = u defines an extension F2 = F1(x) with genus g2 = 9σ − 3 whose field of

constants is Fq.

Proof. By Proposition 4.2.11 H1 is non-singular with function field F1 = Fq(H1).

Thus, places of K(u, v) can be identified with points of H1. The tangent lines at

the ideal points of H1 are

`P1 : V = a− e, `Q2 : U = a− e, `Ri1 : V − ξiU = (ξi − 1)(a+ 4e)/4.

Here, the assumption a 6= e assures that U = 0 and V = 0 are not tangent lines

at the ideal points of H1; hence,

vP1(u) = vRi1(u) = −1, vQ1(u) = 0,

vQ1(v) = vRi1(v) = −1, vP1(v) = 0.
(4.22)

For each place centered at an affine point and for Q1 there exists ρ ∈ K(u, v)
such that the valuation of u − (ρσ − ρ) at that place is non-negative; in fact, it
is sufficient to consider ρ = 0. Hence, u = xσ − x defines a Kummer extension
K(u, v)(x) = K(v, x) of K(u, v) of degree σ. Moreover, P1 and Ri

1 (i = 1, 2, 3) are
the only totally ramified places; all other places are unramified. By Lemma 1.1.36,
Fq is the constant field of F2 = Fq(x, v). The genus is given by

g2 = σg1+
σ − 1

2

(
−2+

∑
P∈P(K(u,v))

(mP +1) degP
)

= 6σ+
σ − 1

2
(−2 + 4(1 + 1)) = 9σ−3.

Denote by P2, Ri
2 the places of K(x, v) lying over P1, Ri

1, respectively, and by
Q1

2, . . . , Q
σ
2 the places lying over Q1.

Proposition 4.2.13. Let a, b ∈ Fq with b 6= 0, b 6= a5, a 6= e, and a 6= −4e. The

equation yσ−y = v defines an extension F3 = F2(y) with genus g3 ≤ 10σ2−3σ−1

whose field of constants is Fq.
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Proof. In K(x, v) we have vP2(v) = 0, vQi2(v) = −1, and vRi2(v) = −σ. The element

v − ξiu ∈ K(u, v) satisfies vRi2(v − ξ
iu) = 0. Let ki ∈ K be such that kσi = ξi, and

consider ρi = kix; then,

v − (ρσi − ρi) = v − ξixσ + kix = v − ξixσ + ξix− ξix+ kix = v − ξiu+ (ki − ξi)x.

For i = 2, ξ2 = −1 and k2 = −1; hence, vR2
2
(v − (ρσ2 − ρ2)) = 0. For i ∈ {1, 3}, we

have that ki 6= ξi by the assumption 4 - (σ − 1); hence, vRi2((ki − ξ
i)x) = −1 and

vRi2(v− (ρσi −ρi)) = −1. For the places centered at affine points, at P2, and at Qi
2,

it is sufficient to choose ρ = 0. Then K(x, y)|K(x, v) is a generalized Artin-Schreier

extension with [K(x, y) : K(x, v)] = σ and

g3 = σg2 +
σ − 1

2

(
− 2 +

∑
P∈P(K(x,v))

(mP + 1) degP
)

≤ σ(9σ − 3) +
σ − 1

2
(−2 + (σ + 2)(1 + 1)) = 10σ2 − 3σ − 1.

Finally, by Lemma 1.1.36, Fq is the constant field of F3 = Fq(x, y).

In the extension K(x, y) : K(x, v) the only totally ramified places areQ1
2, . . . , Q

σ
2 ,

R1
2, and R3

2; let Q1
3, . . . , Q

σ
3 , R1

3, and R3
3 be the places lying over them. All other

places are unramified; denote by P i
3 and R2,i

3 (i = 1, . . . , σ) the places lying over
P2 and R2

2, respectively. Now we investigate an auxiliary function field.

Lemma 4.2.14. Let a, b ∈ Fq, with b 6= 0 and b 6= a5. The equations
η2 = −4µ3+5µ+5

4µ

64µ6λ5 − 64aµ6λ4 + 80µ4λ5 − 80aµ4λ4 + 76µ2λ5

+180aµ2λ4 − 256bµ2 − 25λ5 + 25aλ4 = 0

define a function field Fq(µ, λ, η) with genus at most 53 and constant field Fq.

Proof. We divide the proof in three steps.

1. We show that the equation C(ρ, λ) = 0, with

C(ρ, λ) = 64ρ3λ5 − 64aρ3λ4 + 80ρ2λ5 − 80aρ2λ4 + 76ρλ5

+180aρλ4 − 256bρ− 25λ5 + 25aλ4,

defines a function field Fq(ρ, λ) with genus at most 8 and constant field Fq.

Let P∞ = (1 : 0 : 0) and Q∞ = (0 : 1 : 0) be the ideal points of the

curve C : C(R,L) = 0. The point P∞ is singular with multiplicity 5; the
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tangent lines at P∞ are L = 0 with multiplicity 4 and L = a. The point

Q∞ is singular with multiplicity 3; the tangent lines at Q∞ have equation

R = 1/4, R = −3/4 +
√
−1, and R = −3/4 −

√
−1. The affine points of C

are non-singular.

The curve C has no linear components. In fact, assume by contradiction that

a line ` is a component of C. If P∞ ∈ `, then ` has equation L = k; hence,

either k = 0 or k = a, which implies either 256b = 0 or 256(a5 − b) = 0,

a contradiction to the hypothesis. If Q∞ ∈ `, then ` has equation R = k;

hence, either 256b = 0, or k = 0 and 25 = 0, impossible.

The curve C has no proper components of degree higher than one. In fact,

assume by contradiction that C splits into two proper components Ci and

C8−i, where Ci, C8.i have degree i, 8− i; the product of the leading terms of

Ci and C8−i equals 64ρ3λ5. By comparing the coefficients of Ci · C8−i and C
for each i ∈ {2, 3, 4} we obtain b = 0, a contradiction.

Therefore, C is absolutely irreducible. As C has two singular points of multi-

plicity 5 and 3, C has genus at most 8. Since Fq(ρ, λ) is the function field of

C and Fq is the constant field of Fq(ρ, λ) by Lemma 1.1.36, the claim follows.

2. We show that the equation µ2 = ρ defines a Kummer extension Fq(µ, λ) =

Fq(ρ, λ)(µ) with genus at most 18, whose constant field is Fq.

The function ρ has two zeros in K(ρ, λ), namely the simple zero Aa centered

at (0, a) and the zero A0 with multiplicity 4 centered at (0, 0). Hence, ρ

is a non-square in K(ρ, λ). Also, there are at least two places and at most

six places of K(ρ, λ) at which ρ has odd multiplicity; namely, the place Aa
and between one and five places lying over the pole P∞ of ρ in K(ρ). Then

Fq(µλ)|Fq(ρ, λ) is a Kummer extension with genus at most 1+2(8−1)+6/2 =

18. By Lemma 1.1.36, Fq is the field of constants of Fq(µ, λ).

3. We show that the equation η2 = −4µ3+5µ+5
4µ

defines a Kummer extension

Fq(µ, λ, η) = Fq(µ, λ)(η) with genus at most 53 and constant field Fq.

Let Aa be the place of K(µ.λ) lying over Aa; then vAa(η
2) = −1. Therefore

K(µ, λ, η)|K(µ, λ) is a Kummer extension, and Aa is ramified. There are

exactly five places of K(µ, λ) lying over P∞; they ramify in K(µ, λ, η)|K(µ, λ).

Let µ1, µ2, µ3 be the distinct solutions in µ of the equation 4µ3 + 5µ+ 5 = 0.

For i = 1, 2, 3, there are at most 10 places of K(µ, λ, η) which are ramified in

K(µ, λ, η) : K(µ, λ) and lie over the zero of ρ− µ2
i in K(ρ). All other places
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are unramified in K(µ, λ, η)|K(µ, λ). Then the genus of Fq(µ, λ, η) is at most

1 + 2(18− 1) + 36/2 = 53. By Lemma 1.1.36, Fq is the field of constants of

Fq(µ, λ, η).

Proposition 4.2.15. Let a, b ∈ Fq, with b 6= 0 and b 6= a5. The equations

b+ (u+ e)(v + e)(u+ v + 2e)
[
u2 + v2 + 2e(u+ v) + e2

]
− a
[
u4 + u3v + u2v2

+uv3 + v4 + 5e(u+ v)(u2 + v2) + 10e2(u2 + uv + v2) + 9e3(u+ v) + 4e4
]

= 0

w3 + w2(u+ v + 5e) + w
[
u2 + uv + v2 + 5e(u+ v) + 10e2

]
+(u+ v)(u2 + v2) + 5e(u2 + uv + v2) + 9e2(u+ v) + 7e3 = 0

(4.23)

define a function field Fq(u, v, w) with genus at most 53 and constant field Fq.

Proof. Let X be the space curve with affine equations C1(U, V,W ) = 0 and
C2(U, V,W ) = 0, where

C1(U, V,W ) = b+ UV (U3 + U2V + UV 2 + V 3)− a(U4 + U3V + U2V 2 + UV 3 + V 4),

C2(U, V,W ) = W 3 +W 2(U + V ) +W (U2 + UV + V 2) + (U3 + U2V + UV 2 + V 3).

Denote by u, v, w the coordinate functions of X . Consider the morphism

ϕ : (U, V,W, T ) 7→ (M,L,E, T ) = (U/W + V/W + 1/2,W, U/W − V/W, T ).

Then X is Fq-birationally equivalent to the curve Y = ϕ(X ) with affine equations

Y :


L3
(
E2 + 4M3+5M+5

4M

)
= 0

64M6L5 − 64aM6L4 + 80M4L5 − 80aM4L4 + 76M2L5

+180aM2L4 − 256bM2 − 25L5 + 25aL4 = 0

.

Since Y has no points (M,L,E, T ) with L = 0, equivalent equations for Y are

Y :


E2 = −4M3+5M+5

4M

64M6L5 − 64aM6L4 + 80M4L5 − 80aM4L4 + 76M2L5

+180aM2L4 − 256bM2 − 25L5 + 25aL4 = 0

.

By Lemma 4.2.14, X is absolutely irreducible and has genus at most 53. Also,

the function field Fq(u, v, w) of X has constant field Fq. Let u = u+ e, v = v + e,

and w = w + e. Then Fq(u, v, w) = Fq(u, v, w) and u, v, w satisfy the equations

(4.23). This yields the thesis.
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The function field F4 is the compositum of Fq(u, v, w) and F3. The extension
F4|F1 has degree [Fq(u, v, w) : F1] · [F3 : F1] = 3σ2, since 3 and σ2 are coprime.
Also, Fq is the field of constants of F4.

For i = 1, . . . , σ, we have by Equations (4.23) that in the extension F4|F3 there
are three distinct places P i,j

4 (j = 1, 2, 3) lying over P i
3. Also, there are three

distinct places Ri,j
4,2 and R`,j

4 (`, j = 1, 2, 3) lying over R2,i
3 and R`

3, respectively; let

Ri,1
4,2 be the place centered at the point (X : Y : 0 : 0) with W = 0.

Proposition 4.2.16. Let a, b ∈ Fq with b 6= 0, b 6= a5, a 6= e, and a 6= −4e. The

equation zσ − z = w defines an extension F5 = F4(z) with genus g5 ≤ 100σ3 −
24σ2 − 6σ + 1 whose field of constants is Fq.

Proof. Let P1 be the place of K(u, v) centered at (1 : 0 : 0). In the extension

K(u, v, w)|K(u, v) there are three distinct places lying over P1, namely the places

P̃ i
2 centered at (1, 0, ξi, 0), i = 1, 2, 3. Consider the place P̃ 1

2 . Then vP̃ 1
2
(u) =

vP̃ 1
2
(w) = −1, and w = ξu + Φ for some Φ ∈ K(u, v, w) with vP̃ 1

2
(Φ) ≥ 0. Since

σ ≡ 3 (mod 4), we have ξ /∈ Fσ; hence, there exists k ∈ K with kσ = ξ and k 6= ξ.

Let ρ = kx; then

w−(ρσ−ρ) = ξ(xσ−x)+Φ−kσxσ+kx = (ξ−kσ)xσ+(k−ξ)x+Φ = (k−ξ)x+Φ.

Choose i and j such that P i,j
4 lies over P̃ 1

2 . Then

vP i,j4
(Φ) = e(P i,j

4 | P̃ 1
2 ) · vP̃ 1

2
(Φ) ≥ 0 , vP i,j4

(x) = e(P i,j
4 | P i

3) · vP i3(x) = −1.

Therefore,

vP i,j4
(w − (ρσ − ρ)) = −1. (4.24)

Now we prove that

γ w 6= ζp − ζ for all ζ ∈ K(x, y, w), γ ∈ Fσ.

On the contrary, assume γ w = ζp − ζ with ζ ∈ K(x, y, w), γ ∈ Fσ. From (4.24),

−1 = vP i,j4
(γw − (γρσ − γρ)) = vP i,j4

(γw − (ασ − α)),

with α = γρ ∈ K(x, y, w). Since

ασ − α =
(
ασ/p + ασ/p

2

+ . . .+ α
)p
−
(
ασ/p + ασ/p

2

+ . . .+ α
)
,

we have

vP i,j4
((ζ − β)p − (ζ − β)) = vP i,j4

(ζp − ζ − (βp − β)) = −1,
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where β = ασ/p +ασ/p
2

+ . . .+α ∈ K(u, v, w). But this is clearly impossible, since
the valuation of ((ζ−β)p− (ζ−β)) must be either non-negative or a multiple of p.
Then we can apply Lemma 1.3 in [46] to conclude that T σ − T − w is irreducible
over K(x, y, w), and K(x, y, z)|K(x, y, w) is an Artin-Schreier extension of degree
σ. Also, by Lemma 1.1.36, Fq is the constant field of Fq(x, y, z). Finally, we give
a bound on g5. By Castelnuovo’s Inequality ([107, Theorem 3.11.3]),

g5 ≤ [F5 : F3]·g3+[F5 : Fq(u, v, z)]·g(Fq(u, v, z))+([F5 : F3]− 1)·([F5 : Fq(u, v, z)]− 1) .

We have [F5 : F3] = [F5 : F4] · [F4 : F3] = 3σ, and g3 ≤ 10σ2 − 3σ − 1. Since

{x, x2, . . . , xσ} is a basis of Fq(x, v, z) over Fq(u, v, z) and {y, y2, . . . , yσ} is a ba-

sis of F5 over Fq(x, v, z), we have that {xiyj | i, j = 1, . . . , σ} is a basis of F5

over Fq(u, v, z) and [F5 : Fq(u, v, z)] = σ2. By direct computations with Equa-

tions (4.23), the places P1, Q1, Ri
1 (i = 1, 2, 3) of K(u, v) are not ramified in

K(u, v, w)|K(u, v). Hence, vP̃ j2
(w) = vQ̃j2

(w) = vR̃i,j2
(w) = −1 for j = 1, 2, 3,

where P̃ j
2 , Q̃j

2, R̃i,j
2 are the places of K(u, v, w) lying over P1, Q1, Ri

1, respec-

tively. The valuation of w at any other place of K(u, v, w) is non-negative. Then

K(u, v, z)|K(u, v, w) is a generalized Artin-Schreier extension of degree σ, and

g(K(u, v, z)) ≤ 53σ +
σ − 1

2
(−2 + 15(1 + 1)) = 67σ − 14 .

Therefore g(Fq(u, v, z)) ≤ 67σ − 14, and

g5 ≤ 3σ(10σ2− 3σ− 1) +σ2(67σ− 14) + (3σ− 1)(σ2− 1) = 100σ3− 24σ2− 6σ+ 1.

The places R`,j
4 and Ri,1

4,2 are zeros of w, hence they are not ramified in the

Artin-Schreier extension F5|F4, whereas P i,j
4 is totally ramified. Denote by P i,j

5 ,
Rj,1

5,`, . . . , R
j,σ
5,` , and Ri,1,1

5,2 , . . . , R
i,1,σ
5,2 the places of F5 lying over P i,j

4 , R`,j
4 , and Ri,1

4,2,
respectively.

Proposition 4.2.17. Let a, b ∈ Fq with b 6= 0 and b 6= a5. The equation

t2 + t(u+ v + w + 5e) + u2 + v2 + w2 + uv + uw + vw

+e [3(u+ v + w) + 2(uv + uw + vw)] + 10e2 = 0
(4.25)

defines an extension Fq(u, v, w, t) = Fq(u, v, w)(t) with genus at most 150 whose

field of constants is Fq.
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Proof. Let K(u, v, w) be the function field defined by the equations C1(u, v, w) = 0

and C2(u, v, w) = 0, where

C1(u, v, w) = b+ uv(u3 + u2v + uv2 + v3)− a(u4 + u3v + u2v2 + uv3 + v4),

C2(u, v, w) = w3 + w2(u+ v) + w(u2 + uv + v2) + (u3 + u2v + uv2 + v3).

As shown in the proof of Proposition 4.2.15, K(u, v, w) has genus at most 53 and

constant field Fq. Let

t
2

= −3u2 + 3v2 + 3w2 + 2uv + 2uw + 2vw

4
. (4.26)

The zeros of t
2

are centered at common roots of the polynomials C1(U, V ,W ),

C2(U, V ,W ), and C3(U, V ,W ) = 3U
2

+ 3V
2

+ 3W
2

+ 2UV + 2UW + 2VW . The

resultant of C2 and C3 with respect to W is

C4(U, V ) = 16U
6

+ 24U
5
V + 35U

4
V

2
+ 50U

3
V

3
+ 35U

2
V

4
+ 24UV

5
+ 16V

6
,

which is homogeneous in U and V ; hence, C5 = C4/V
6

is an univariate polynomial

of degree 6 in the indeterminate Ũ = U/V . The discriminant of C5 with respect

to Ũ is −219510 6= 0, then C4(U, V ) splits into six distinct linear components

L1, . . . , L6 passing through O = (0, 0). For each i = 1, . . . , 6, C1 and Li have

at least one common zero Zi with odd multiplicity, and Zi 6= O. Let D be the

discriminant of C3 with respect to W . The resultant of D and C4 with respect

to V is 22854U
12

; hence, Zi is a simple zero of C3. Therefore, Equation (4.26)

defines a Kummer extension K(u, v, w, t) = K(u, v, w)(t), and there are at most

6 · 5 · 3 = 90 zeros of t
2

with odd multiplicity. The genus of K(u, v, w, t) satisfies

g(K(u, v, w, t)) ≤ 1 + 2(53− 1) +
1

2
· 90 = 150.

By Lemma 1.1.36, Fq is the constant field of Fq(u, v, w, t). By the substitutions

u = u+ e, v = v+ e, w = w+ e, t = t+ e+
1

2
((u+ e) + (v + e) + (w + e)) ,

we have Fq(u, v, w, t) = Fq(u, v, w, t); also, u, v, w, t satisfy Equations (4.23) and

(4.25). The thesis follows.

The function field F6 is the compositum of Fq(u, v, w, t) and F5. Since 6 and
σ3 are coprime, we have [F6 : F1] = 6σ3. Also, Fq is the constant field of F6.
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Proposition 4.2.18. Suppose that
√

2e− 1 /∈ Fσ, and let a, b ∈ Fq with b 6= 0,

b 6= a5, a 6= e, and a 6= −4e. The equation rσ − r = t defines an extension

F7 = F6(r) with genus g7 ≤ 381σ4 − 78σ3 − 12σ2 + 1 whose constant field is Fq.

Proof. Let R̃2,1
2 be the place of K(u, v, w) centered at (1 : −1 : 0 : 0). By Equation

(4.25), R̃2,1
2 is not ramified in K(u, v, w, t)|K(u, v, w); denote by R̃1,1

3,2 the place of

K(u, v, w, t) lying over R̃2,1
2 and centered at (1 : −1 : 0 : η : 0), where η2 = 2e− 1.

Similarly, Ri,1,j
5,2 is not ramified in K(x, y, z, t)|K(x, y, z); denote by Ri,1,j

6,2,1 the place

of K(x, y, z, t) lying over Ri,1,j
5,2 and centered at the ideal point (X : Y : Z : η : 0)

with T = η. Note that the assumption q ≥ σ2 allows to choose e such that e /∈M
and η /∈ Fσ, where M is as in (4.19).

Consider the place R̃1,1
3,2. Then vR̃1,1

3,2
(u) = vR̃1,1

3,2
(t) = −1, and t = ηu + Φ for

some Φ ∈ K(u, v, w, t) with vR̃1,1
3,2

(Φ) ≥ 0. Let k ∈ K with kσ = η and k 6= η, and

choose ρ = kx; then

t−(ρσ−ρ) = η(xσ−x)+Φ−kσxσ+kx = (η−kσ)xσ+(k−η)x+Φ = (k−η)x+Φ.

The place Ri,1,j
6,2,1 lies over R̃1,1

3,2 and Ri,1,j
5,2 , and

vRi,1,j6,2,1
(Φ) = e(Ri,1,j

6,2,1 | R̃
1,1
3,2)·vR̃1,1

3,2
(Φ) ≥ 0, vRi,1,j6,2,1

(x) = e(Ri,1,j
6,2,1 | R

i,1,j
5,2 )·vRi,1,j5,2

(x) = −1.

Therefore, vRi,1,j6,2,1
(t− (ρσ−ρ)) = −1. Arguing as in the proof of Proposition 4.2.16,

it is easily proved that γ t 6= ζp − ζ for all ζ ∈ K(x, y, t) and γ ∈ Fσ. Then we can

apply Lemma 1.3 in [46] to conclude that T σ − T − t is irreducible over K(x, y, t),

and K(x, y, z, r)|K(x, y, z, t) is an Artin-Schreier extension of degree σ. Also, by

Lemma 1.1.36, Fq is the constant field of Fq(x, y, z). Finally, we give a bound on

g7. By Castelnuovo’s Inequality,

g7 ≤ [F7 : F5] · g5 + [F7 : Fq(u, v, w, r)] · g(Fq(u, v, w, r))
+ ([F7 : F5]− 1) · ([F7 : Fq(u, v, w, r)]− 1) .

We have [F7 : F5] = [F7 : F6] · [F6 : F5] = 2σ and g5 ≤ 100σ3 − 24σ2 − 6σ + 1.

Since {x, x2, . . . , xσ} is a basis of Fq(x, v, w, r) over Fq(u, v, w, r), {y, y2, . . . , yσ}
is a basis of Fq(x, y, w, r) over Fq(x, v, w, r), and {z, z2, . . . , zσ} is a basis of F7

over Fq(x, y, w, r), we have that
{
xiyjz` | i, j, ` = 1, . . . , σ

}
a basis of F7 over

Fq(u, v, w, r); hence, [F7 : Fq(u, v, w, r)] = σ3.

Consider a place P̃ ∈ {P j
2 , Q̃

j
2, R̃

i,j
2 | i, j = 1, 2, 3} of K(u, v, w), and a place P

of K(u, v, w, t) lying over P̃ . Then vP (t) ∈ {−1,−2}; hence, vP (t) is negative and

coprime to σ. The valuation of t at any other place of K(u, v, w, t) is non-negative.
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Then K(u, v, w, r)|K(u, v, w, t) is a generalized Artin-Schreier extension of degree

σ with at most 2 · 15 ramified places, and

g(K(u, v, w, r)) ≤ 150σ +
σ − 1

2
(−2 + 30(1 + 1)) = 179σ − 29 .

Therefore g(Fq(u, v, z)) ≤ 179σ − 29, and

g7 ≤ 2σ(100σ3−24σ2−6σ+1)+σ3(179σ−29)+(2σ−1)(σ3−1) = 381σ4−78σ3−12σ2+1.

Theorem 4.2.19. Let Ke be as in (4.20), with e such that
√

2e− 1 /∈ Fσ. If

q ≥ 580644σ8, then Ke is a 4-arc covering all points of AG(2, q)\Q except possibly

those lying on the line Y = 0 .

Proof. Let P = (a, b) ∈ AG(2, q) \ Q and assume that a 6= t, a 6= −4e, and b 6= 0.

We start by counting the number Z1 of poles of xσ−x, yσ−y, zσ−z, and rσ−r in

K(x, y, z, r). Clearly, Z1 is the number of places lying over P1, Q1, R1
1, R2

1, or R3
1

in K(x, y, z, r)|K(u, v), hence over P i,j
5 , Qi,j

5 , Rj,i
5,`, or Ri,j,k

5,2 in K(x, y, z, r)|K(x, y, z)

(i, k = 1, . . . , σ, ` = 1, 3, j = 1, 2, 3). Since [K(x, y, z, r) : K(x, y, z)] = 2σ, we have

by the Fundamental Equality 1.1.1 that Z1 ≤ 2σ(3σ+3σ+6σ+3σ2) = 6σ3 +24σ2.

Now we count the number Z2 of zeros of (xσ − x) − (yσ − y) in K(x, y, z, r).

Clearly a place is a zero of (xσ − x)− (yσ − y) = (x− y)σ − (x− y) if and only if

it is a zero of x− y − λ for some λ ∈ Fσ, then

Z2 ≤
∑
λ∈Fσ

deg(x− y − λ)0 =
∑
λ∈Fσ

deg(x− y − λ)∞ .

The poles of x− y − λ are the places lying over P i,j
5 , Qi,j

5 , Rj,i
5,`, and Ri,j,k

5,2 . Then

deg(x− y − λ)∞ = (12σ + 3σ2) · [K(x, y, z, r) : K(x, y, z)] = 6σ3 + 24σ2

for all λ ∈ Fσ; hence, Z2 ≤ 6σ4 + 24σ3. Also, Z2 equals the number of zeros of

(xσ − x)− (zσ − z), (xσ − x)− (rσ − r), (yσ − y)− (zσ − z), (yσ − y)− (rσ − r),
and (zσ − z)− (rσ − r) in K(x, y, z, r).

Therefore, if the number Nq of Fq-rational places of F7 is greater than

6σ3 + 24σ2 + 6(6σ4 + 24σ3) = 36σ4 + 150σ3 + 24σ2 ,

then there exists an Fq-rational place P of F7 such that (x(P ), y(P ), z(P ), r(P )) is

a well-defined affine point of H with x(P )σ − x(P ), y(P )σ − y(P ), z(P )σ − z(P ),

r(P )σ − r(P ) pairwise distinct. By Hasse-Weil bound we have

Nq ≥ q + 1− 2g7
√
q ≥ q + 1− 2(381σ4 − 78σ3 − 12σ2 + 1)

√
q .
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From q ≥ 580644σ8 it follows that

q + 1− 2(381σ4 − 78σ3 − 12σ2 + 1)
√
q ≥ 36σ4 + 150σ3 + 24σ2 + 1 ,

and hence, by Corollary 4.2.10, P is collinear with four distinct points in Ke.
Assume now that P = (e, b) or P = (−4e, b) with b 6= 0. Let e′ ∈ M + e with

e′ 6= e, and consider the curve H′P obtained by replacing e with e′ in Equation

(4.21). Arguing as above Ke′ covers the point P . Clearly Ke′ = Ke, and the

assertion follows.

4.2.4 Constructions of 5-independent subsets

We want to construct complete (k, 4)-arcs from union of cosets Kt; to this end,
we will use the notion of a 5-independent subset of an elementary abelian p-group,
which is analogous to the notion of 4-independent subsets used in Section 4.1.

Definition 4.2.20. Let G be a finite abelian group and let E be a subset of G. If

y1 + y2 + y3 + y4 + y5 6= 0 for all y1, y2, y3, y4, y5 ∈ E ,

then E is said to be a 5-independent subset of G. An element g ∈ G is covered by

E if either g ∈ E or

there exist y1, y2, y3, y4 ∈ E such that y1 + y2 + y3 + y4 + g = 0.

In the remaining part of the section we construct 5-independent subsets of the
abelian group Zh′p , for h′ an odd integer and p ≥ 7. We distinguish the cases
h′ = 1 and h′ ≥ 3. For a subset S of a group G, s∧S denotes the s-fold sumset
{y1+. . .+ys | y1, . . . , ys ∈ S} and [a, b] denotes the set of elements in Zp represented
by integers x with a ≤ x ≤ b.

Proposition 4.2.21. Let p ≥ 25 + i be an integer, with p ≡ i mod 5, i = 1, 2, 3, 4.

Then

E = {−1, 1, 3} ∪
[
5,
p− i

5

]
is a 5-independent subset of Zp covering

Zp \
{
p− i

5
+ j

∣∣∣ 1 ≤ j ≤ i− 1

}
.
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Proof. The sum of five elements of E∗ = {1, 3} ∪
[
5, p−i

5

]
is contained in {5, 7} ∪

[9, p− i] and therefore is different from 0. An easy check shows that if one or more

of the five elements is −1, then it is not possible to obtain 0. Then

4∧E = {−4} ∪ (−3 + E∗) ∪ (−2 + 2∧E∗) ∪ (−1 + 3∧E∗) ∪ 4∧E∗
= {−4} ∪ {−2, 0} ∪

[
2, p−i−15

5

]
∪ {0, 2} ∪

[
4, 2p−2i−10

5

]
∪{2, 4} ∪

[
6, 3p−3i−5

5

]
∪ {4, 6} ∪

[
8, 4p−4i

5

]
= {−4,−2, 0} ∪

[
2, 4p−4i

5

]
for p > 25+i, and 4∧T = {−4,−2, 0, 2}∪

[
4, 4p−4i

5

]
for p = 25+i. Hence, the set of

covered elements not in E is −4∧E = {0, 2, 4} ∪
[
p+4i

5
, p− 2

]
, and the non-covered

elements are
{
p−i

5
+ j

∣∣ 1 ≤ j ≤ i− 1
}

.

We now consider the case G = Zh′p for h′ ≥ 3. We write G as G = A×B × C,

with A = Zp , B = C = Z
h′−1

2
p . Let

E = E1 ∪ E2 ∪ E3, (4.27)

where E1 = {(a, 1, 1) | a ∈ A \ {−4}}, E2 = {(1, b, 1) | b ∈ B \ {−4}}, and E3 =
{(1, 1, c) | c ∈ C \ {−4}}. Here, 1 and −4 are viewed as elements of the additive
group of the finite field F

p
h′−1

2
, which is isomorphic to A, B, and C.

Proposition 4.2.22. Let h′ ≥ 3, p > 5, and E be as in (4.27). Then E is a

5-independent subset of Zh′p of size 2p
h′−1

2 + p− 5 not covering 3 elements of Zh′p .

Proof. Consider five elements e1, e2, e3, e4, e5 ∈ E . If e1, e2, e3, e4, e5 belong either

to the same Ei or to exactly two distinct Ei’s, then they all share 1 in one of the

coordinates, and therefore e1 + e2 + e3 + e4 + e5 6= (0, 0, 0) holds.

Assume then that e1, e2, e3, e4, e5 belong to all the three Ei’s. This means that

there exists a Ei containing exactly one element ej. Since a, b, c are different from

−4, their sum cannot be equal to (0, 0, 0). This proves that E is a 5-independent

subset of Zh′p . Now, let e = (x, y, z) ∈ Zh′p \ E with y, z 6= 1. Then there exist

α, β ∈ A both different from −4 such that α + β + 2 + x = 0. Therefore

(x, y, z) + (α, 1, 1) + (β, 1, 1) + (1,−y − 3, 1) + (1, 1,−z − 3) = (0, 0, 0),

and hence e is covered by E . The same holds for e = (x, y, z) ∈ Zh′p \E with x, y 6= 1

or x, z 6= 1. The only noncovered elements are (−4, 1, 1), (1,−4, 1), (1, 1,−4).
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4.2.5 Construction of (k, 4)-arcs from union of cosets of M

We fix three (not necessarily distinct) subsets Ke1 , Ke2 , and Ke3 , defined as in
(4.20), and a point P = (t, t5) in Q\ (Ke1 ∪ Ke2 ∪ Ke3). Clearly P belongs to some
subset KeP for some eP ∈ Fq.

Let A1 = (xσ−x+e1, (x
σ−x+e1)5) ∈ Ke1 , A2 = (yσ−y+e2, (y

σ−y+e2)5) ∈ Ke2 ,
and A3 = (zσ − z+ e3, (z

σ − z+ e3)5) ∈ Ke3 . By Proposition 4.2.6, the four points
P , A1, A2, and A3 are collinear if and only if

t3 + t2 (xσ − x+ e1 + yσ − y + e2) + t
(
(xσ − x+ e1)2 + (xσ − x+ e1)(yσ − y + e2)

+(yσ − y + e2)2
)

+(xσ − x+ e1 + yσ − y + e2)
(
(xσ − x+ e1)2 + (yσ − y + e2)2

)
= 0,

(zσ − z + e3)2 + (zσ − z + e3) (xσ − x+ e1 + yσ − y + e2 + t) + (xσ − x+ e1)2

+(yσ − y + e2)2 +t2+(xσ − x+ e1)(yσ − y + e2)+(xσ − x+ e1)t+(yσ − y + e2)t = 0.

(4.28)

Consider the following sequence of function fields:

σ

2

σ

σ

L5 = L4(z) : zσ − z = w

L4 = L3(w) :

(w + e3)2 + (w + e3) (xσ − x+ e1 + yσ − y + e2 + t)

+(xσ − x+ e1)2 + (yσ − y + e2)2 + t2

+(xσ − x+ e1)(yσ − y + e2) + (xσ − x+ e1)t+ (yσ − y + e2)t = 0

L3 = L2(y) : yσ − y = v

L2 = L1(x) : xσ − x = u

L1 = Fq(u, v) :
t3 + t2 (u+ e1 + v + e2) + t

(
(u+ e1)2 + (u+ e1)(v + e2)

+(v + e2)2
)

+ (u+ e1 + v + e2)
(
(u+ e1)2 + (v + e2)2

)
= 0

We now show that each extension Li|Li−1 is well-defined and that the constant
field of each Li is Fq. We also estimate the genus of Li. Finally, by using the
Hasse-Weil bound, we show that if q is large enough, then L5 has a large number
of Fq-rational places, so that Equations (4.28) have a suitable solution.

Proposition 4.2.23. The equation f1(u, v) = 0, where

f1(u, v) = t3 + t2 (u+ e1 + v + e2) + t ((u+ e1)2 + (u+ e1)(v + e2) + (v + e2)2)

+ (u+ e1 + v + e2) ((u+ e1)2 + (v + e2)2) ,
(4.29)

defines a function field L1 = Fq(u, v) with genus 1 whose field of constants is Fq.
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Proof. Let Γ1 be the plane curve with equation f1(U, V ) = 0, whose function field
over Fq is L1. The curve Γ1 has three distinct ideal points; hence, they are simple
points. Since

∂Uf1(U, V ) = 3(U + e1)2 + 2(U + e1)(V + e2) + (V + e2)2 + 2t(U + e1) + t(V + e2) + t2 ,

∂V f1(U, V ) = (U + e1)2 + 2(U + e1)(V + e2) + 3(V + e2)2 + t(U + e1) + 2t(V + e2) + t2 ,

we have by direct computation that Γ1 has no singular affine points; here we use

that t 6= 0, p > 5, and σ ≡ 3 (mod 4). Therefore, Γ1 is non-singular. Then Γ1 is

absolutely irreducible with genus 1 and constant field Fq by Lemma 1.1.36.

Let ξ be a primitive 4-th root of unity. For i = 1, 2, 3, denote by P i
1 the point

of K(u, v) centered at the ideal point (1 : ξi : 0) of Γ1.

Proposition 4.2.24. The equation xσ − x = u defines an extension L2 = L1(x)

with genus g2 = 3σ − 2 whose field of constants is Fq.

Proof. The rational function u has valuation −1 at P i
1 (i = 1, 2, 3), and non-

negative valuation at the places centered at the affine points of Γ1. Then K(x, v)|K(u, v)

is a generalized Artin-Schreier extension with [K(x, v) : K(u, v)] = σ. Moreover,

P 1
1 , P 2

1 , and P 3
1 are the only totally ramified places, and

g2 = σ · 1 +
σ − 1

2
(−2 + 3(1 + 1)) = 3σ − 2 .

By Lemma 1.1.36, Fq is the constant field of L2 = Fq(x, v).

For i = 1, 2, 3, denote by P i
2 the unique place of K(x, v) lying over P i

1.

Proposition 4.2.25. The equation yσ − y = u defines an extension L3 = L2(y)

with genus g3 = 3σ2 − 2 whose field of constants is Fq.

Proof. For i ∈ {1, 2, 3}, we have vP i2(v−ξiu) ≥ 0. Let ki ∈ K be such that kσi = ξi,

and consider ρi = kix; then,

v − (ρσi − ρi) = v − ξixσ + kix = v − ξixσ + ξix− ξix+ kix = v − ξiu+ (ki − ξi)x.

For i = 2, we have ξ2 = −1 = k2; hence, vP 2
2
(v− (ρσi − ρi)) ≥ 0. For i ∈ {1, 3}, we

have ki 6= ξi since 4 - (σ−1); hence, vP i2((ki−ξi)x) = −1 and vP i2(v−(ρσi −ρi)) = −1.

For the places centered at affine points, it is sufficient to choose ρ = 0. Then

K(x, y)|K(x, v) is a generalized Artin-Schreier extension with [K(x, y) : K(x, v)] =

σ. Moreover, P 1
2 and P 3

2 are the only totally ramified places, and

g3 = σ(3σ − 2) +
σ − 1

2
(−2 + 2(1 + 1)) = 3σ2 − σ − 1.

Finally, by Lemma 1.1.36, Fq is the constant field of L3 = Fq(x, y).
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For i ∈ {1, 3}, denote by P i
3 the unique place of K(x, y) lying over P i

2. Also,
denote by P 2,1

3 , . . . , P 2,σ
3 the places lying over P 2

2 .

Proposition 4.2.26. The equation

(w + e3)2 + (w + e3) (u+ e1 + v + e2 + t) + (u+ e1)2

+(v + e2)2 + t2 + (u+ e1)(v + e2) + (u+ e1)t+ (v + e2)t = 0
(4.30)

defines an extension Fq(u, v, w) of Fq(u, v) with genus at most 4 whose field of

constants is Fq.

Proof. After the substitution θ = w + e3 + (u+ e1 + v + e2 + t)/2, we have

θ2 = Θ(u, v) =

−1
4

[
3(u+ e1)2 + 3(v + e2)2 + 3t2 + 2(u+ e1)(v + e2) + 2(u+ e1)t+ 2(v + e2)t

]
.

The poles of w and θ in K(u, v) are P 1
1 , P 2

1 , and P 3
1 ; θ2 has valuation 2 at each

of them. Hence, the number of zeros of θ2 in K(u, v) is at most 6. Let D1(U, V )

be the discriminant of Θ(U, V ) with respect to U , and let R ∈ K be the resultant

of D1(U, V ) and f1(U, V ) with respect to V , where f1(u, v) is defined in (4.29).

By direct computation, R 6= 0. Since f1(U, V ) has odd degree, this implies that θ

has a zero in K(u, v) with odd multiplicity. Then K(u, v, θ)|K(u, v) is a Kummer

extension with [K(u, v, θ) : K(u, v)] = 2. Moreover, the unique totally ramified

places are the zeros of θ2 in K(u, v) with odd multiplicity, and

g(Fq(u, v, w)) = g(Fq(u, v, θ)) ≤ 1 + 2(1− 1) +
1

2
· 6 = 4.

Finally, by Lemma 1.1.36, Fq is the constant field of Fq(u, v, w).

The function field L4 is the compositum of Fq(u, v, w) and L3. The extension
L4|L1 has degree [Fq(u, v, w) : L1] · [L3 : L1] = 2σ2, since 2 and σ2 are coprime.
Also, Fq is the field of constants of L4.

For i = 1, 2, 3 and j = 1, 2, denote by Q̃j
i the place of K(u, v, w) lying over Pi,

and by Qj
i the place of L4 lying over Q̃j

i . The places Q̃1
2, Q̃2

2 are centered at the
ideal points (1 : −1 : ξ : 0), (1 : −1 : −ξ : 0).

Proposition 4.2.27. The equation zσ − z = w defines an extension L5 = L4(z)

with genus g5 ≤ 21σ3 − 9σ2 − 6σ + 1 whose field of constants is Fq.

Proof. We have vQ̃1
2
(u) = vQ̃1

2
(w) = −1, and w = ξu + Φ for some Φ ∈ K(u, v, w)

with vQ̃1
2
(Φ) ≥ 0. Since σ ≡ 3 (mod 4), we have ξ /∈ Fσ; hence, there exists k ∈ K

with kσ = ξ and k 6= ξ. Let ρ = kx; then w − (ρσ − ρ) = (k − ξ)x + Φ. Since
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vQ1
2
(Φ) = e(Q1

2|Q̃1
2) · vQ̃1

2
(Φ) ≥ 0 and vQ1

2
(x) = e(Q1

2|P2) · vP2(x) = −1, we have

vQ1
2
(w− (ρσ − ρ)) = −1. Arguing as in the proof of Proposition 4.2.16, it is easily

proved that γ t 6= ζp − ζ for all ζ ∈ K(x, y, t) and γ ∈ Fσ. Then we can apply
Lemma 1.3 in [46] to conclude that T σ − T − w is irreducible over K(x, y, t), and
K(x, y, z)|K(x, y, w) is an Artin-Schreier extension of degree σ. Also, by Lemma
1.1.36, Fq is the constant field of Fq(x, y, z). Finally, we give a bound on g5. By
Castelnuovo’s Inequality,

g5 ≤ [L5 : L3]·g3+[L5 : Fq(u, v, z)]·g(Fq(u, v, z))+([L5 : L3]− 1)·([L5 : Fq(u, v, z)]− 1) .

We have [L5 : L3] = [L5 : L4] · [L4 : L3] = 3σ and g3 = 3σ2 − σ − 1. Since

{x, x2, . . . , xσ} is a basis of Fq(x, v, z) over Fq(u, v, z) and {y, y2, . . . , yσ} is a basis

of L5 over Fq(x, v, z), we have that {xiyj | i, j = 1, . . . , σ} is a basis of L5 over

Fq(u, v, z); hence, [L5 : Fq(u, v, z)] = σ2.

For i = 1, 2, 3, the place Pi does not ramify in K(u, v, w)|K(u, v); hence, by

(4.30), w has valuation −1 at the places Q̃j
i over Pi, whereas w has non-negative

valuation at any other place of K(u, v, w). Then K(u, v, z)|K(u, v, w) is a general-

ized Artin-Schreier extension with [K(u, v, z) : K(u, v, w)] = σ and

g(K(u, v, z)) = σ · 4 +
σ − 1

2
(−2 + 6(1 + 1)) = 9σ − 5.

Therefore,

g5 ≤ 3σ(3σ2 − σ − 1) + σ2(9σ − 5) + (3σ − 1)(σ2 − 1) = 21σ3 − 9σ2 − 6σ + 1.

Proposition 4.2.28. Assume that q ≥ 1764σ6. Then P is collinear with three

distinct points A1 ∈ Ke1, A2 ∈ Ke2, and A3 ∈ Ke3.

Proof. We are going to show that there exist x0, y0, z0 ∈ Fq such that (4.28) holds
for x = x0, y = y0, z = z0, and xσ0 − x0, yσ0 − y0, zσ0 − z0 are pairwise distinct. We
start by counting the number Z1 of poles of xσ−x, yσ−y, and zσ−z in K(x, y, z).
This is the number of places of K(x, y, z) lying over P 1

3 , P 3
3 , P 2,1

3 , . . . , P 2,σ
3 ; hence,

Z1 ≤ [K(x, y, z) : K(x, y)] · (σ + 2) = 2σ2 + 4σ. Next we estimate the number Z2

of zeros of (xσ − x) − (yσ − y) = (x − y)σ − (x − y) in L5, hence the number of
zeros of x− y − λ for some λ ∈ Fσ. We have

Z2 ≤
∑

λ∈Fσ deg(x− y − λ)0 =
∑

λ∈Fσ deg(x− y − λ)∞ = |{P 1
1 , P

2
1 , P

3
1 }|·[L5 : L1] = 6σ3.

By the same argument, also (xσ − x)− (zσ − z) and (yσ − y)− (zσ − z) have at

most 6σ3 zeros in L5. Therefore, if the number Nq of Fq-rational places of L5 is
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greater than 18σ3 + 2σ2 + 4σ, then there exists an Fq-rational place A of L5 such

that the point (x0, y0, z0) = (x(A), y(A), z(A)) is well defined and xσ0 −x0, yσ0 − y0,

zσ0 − z0 are pairwise distinct. By Hasse-Weil bound,

Nq ≥ q + 1− 2g5
√
q ≥ q + 1− 2(21σ3 − 9σ2 − 6σ + 1)

√
q.

The hypothesis q ≥ 1764σ6 implies Nq ≥ 18σ3 + 2σ2 + 4σ + 1.

Proposition 4.2.29. Assume that q ≥ 1764σ6. Then P is collinear with four

distinct points A1 ∈ Ke1, A2 ∈ Ke2, A3 ∈ Ke3, and A4 ∈ Ke4.

Proof. By Proposition 4.2.28, P is collinear with three distinct points A1 ∈ Ke1 ,
A2 ∈ Ke2 , and A3 ∈ Ke3 . The line through A1, A2, A3, and P can be a tangent line

to the curve Q. Note that there are at most five tangent lines through P to Q; in

fact, imposing that P lies on the tangent to Q at (X,X5) gives an equation in X

of degree 5. Therefore, we need at least six distinct triples {A1, A2, A3} such that

A1, A2, A3 are collinear with P . Arguing as in the proof of Proposition 4.2.28, it

is sufficient to require that the number of Fq-rational places of L5 is greater than

5 ·18σ3 +2σ2 +4σ = 90σ3 +2σ2 +4σ. This is implied by the Hasse-Weil bound.

Henceforth, E denotes a 5-independent subset of Fq/M , for M as in (4.19). Let

KE =
⋃

M+e∈E

Ke . (4.31)

Proposition 4.2.30. The set KE is a (k, 4)-arc.

Proof. By Proposition 4.2.7, the sum of the first coordinate of 5 collinear points

on Q is equal to 0. This is impossible if the points belong to KE , since E is a

5-independent subset of Fq/M .

Proposition 4.2.31. Assume that q ≥ 1764σ6. Let Cov(E) be the set of all the

elements of Fq/M covered by E as 5-independent subset. Then the points in⋃
M+e∈Cov(E)

Ke

are covered by KE .

Proof. Let P ∈ KeP with M + eP ∈ Cov(E). Then there exist M + e1,M +

e2,M + e3,M + e4 in E such that eP + e1 + e2 + e3 + e4 ∈M . Also, by Proposition

4.2.29, there exists four distinct points P1 ∈ Ke1 , P2 ∈ Ke2 , P3 ∈ Ke3 , and P4 ∈ Q
which are collinear with P . Let e′4 be such that P4 ∈ Ke′4 . By Proposition 4.2.7,

eP + e1 + e2 + e3 + e′4 ∈ M . Then M + e4 = M + e′4, that is, Ke4 = Ke′4 . Hence,

P1, P2, P3, P4 ∈ KE and the assertion is proved.
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Theorem 4.2.32. Let E be a 5-independent subset of Fq/M of size n, not covering

at most m elements of Fq/M , and let KE be as in (4.31). Assume q ≥ 580644σ8.

Then there exists a complete (k, 4)-arc K with KE ⊂ K ⊂ Q of size at most

(n+m)
q

σ
+ 8.

Proof. Fix a coset M + e in E . By Theorem 4.2.19, all the points of PG(2, q) \ Q
are covered by a Ke plus at most eight points covering the lines Y = 0 and T = 0.

By Proposition 4.2.31, there are at most m q
σ

affine points of Q not covered by KE .
This shows that there exists a complete (k, 4)-arc K containing KE of size at most

|KE |+m
q

σ
+ 8 = (n+m)

q

σ
+ 8.

We are finally in a position to prove Theorem 4.2.1. Identify the additive
groups Zh′p and Fq/M . From Propositions 4.2.21 and 4.2.22 the following values of
n and m occur in Theorem 4.2.32:

• For σ = p, p ≥ 29, p ≡ i ∈ {1, 2, 3, 4} (mod 5),

n =
p− 5− i

5
and m = i− 1;

• for σ ≥ p3,

n = 2p
h′−1

2 + p− 5 and m = 3.

4.3 Complete permutation polynomials from ex-

ceptional polynomials

Let q be a prime power. A permutation polynomial (or PP) of Fq is a polyno-
mial f(x) ∈ Fq[x] which is a bijection of Fq onto itself. A polynomial f(x) ∈ Fq[x]
is a complete permutation polynomial (or CPP), if both f(x) and f(x)+x are per-
mutation polynomials of Fq. A polynomial f(x) ∈ Fq[x] is said to be an exceptional
polynomial over Fq if f(x) is a permutation polynomial of Fqm for infinitely many
m. Both permutation polynomials and complete permutation polynomials have
been extensively studied also because of their applications to cryptography and
combinatorics; see for instance [23, 71, 95, 93, 102, 120] and the references therein.
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In particular, CPPs over fields of characteristic 2 give rise to bent-negabent boolean
functions, which are a useful tool in cryptography; see [106].

Some families of CPPs are obtained in [23, 71, 93, 97, 114, 120]. Nevertheless,
CPPs seem to be very rare objects, even if we restrict to the monomial case. It is
easily seen that a monomial axd is a CPP of Fq if and only if (d, q − 1) = 1 and
xd + x

a
is a PP of Fq. This motivates the investigation of permutation binomials

of type xd + bx for d = (q − 1)/m+ 1 with m a divisor of q − 1.

In [12, 11, 13, 120, 121] PPs of type fb(x) = x
qn−1
q−1

+1+bx over Fqn are thoroughly
investigated for n = 2, n = 3, and n = 4. For n = 6, sufficient conditions for fb
to be a PP of Fq6 are provided in [120, 121] in the special cases of characteristic
p ∈ {2, 3, 5}. The case p = n+ 1 is dealt with in [84].

In this section we discuss monomial CPPs of Fqn of degree d = qn−1
q−1

for general
n, in connection with exceptional polynomials. The starting point of our inves-
tigation is the observation that b−1xd ∈ Fqn [x] is a CPP of Fqn if and only if
b, bq, . . . , bq

n−1
are the roots of

vg(x) =
g(−x)− g(0)

−x
∈ Fq[x]

for some permutation polynomial g(x) of Fq of degree n + 1 such that the first-
degree term is not zero. If for a root b of vg(x) the monomial b−1xd is a CPP of
Fqn , then g(x) will be called a good PP of Fq; in this case, all roots of vg(x) have
the same property. Clearly, a PP g(x) of Fq is good if and only if the roots of
vg(x) in the algebraic closure K of Fq form a unique orbit under the action of the
Frobenius map x 7→ xq.

Our aim is to classify good permutation polynomials over Fq. Here we achieve
this goal for all n, n4 < q, with the exception of the cases n+ 1 = pr, with r > 1,
and n + 1 = pr(pr − 1)/2, with p ∈ {2, 3}. For n + 1 = pr we provide several
examples. Proposition 4.3.8 shows that, if q = pk and n + 1 is a prime different
from p satisfying gcd(n, k) = gcd(n + 1, p2 − 1) = 1, then there exists a CPP od
degree d = qn−1

q−1
+ 1 over Fqn . This solves a conjecture by Wu, Li, Helleseth, and

Zhang, see [121, Conjecture 4.18 and Proposition 4.19].
Note that since every permutation polynomial with degree less than q1/4 is

exceptional (see [94, Theorem 8.4.19]), condition n4 < q allows us to consider
only exceptional polynomials. A key tool is the classification of indecomposable
exceptional polynomials of degree different from pr, r > 1; see [94, Section 8.4].

If g(x) is a good PP over Fq then it is easily seen that c · g(c′x) + e is a good
PP over Fq for each c, c′, e ∈ Fq with cc′ 6= 0. In this paper two PPs g(x) and
h(x) over Fq will be called CPP-equivalent if there exist c, c′, e ∈ Fq with cc′ 6= 0
such that h(x) = c · g(c′x) + e. Note that for g(x) a PP over Fq and k ∈ Fq, the
permutation polynomials g(x + k) and g(x) are equivalent in the usual sense but
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not CPP-equivalent; in fact, it’s possible that one of them is good but the other is
not. When g′(x) ranges over the CPP-equivalence class of g(x), the roots of vg′(x)
range over the roots of vg(x) and their multiples by non-zero elements in Fq. We
will consider only one polynomial in a CPP-equivalence class. In particular, we
assume that g(x) is monic and that g(0) = 0. Since exceptional polynomials only
exist for degrees coprime with q − 1, when n is odd we assume that p = 2.

Our first result is that if g is decomposable, that is g is a composition of two
exceptional polynomials with degree grater than one, then g is not good.

If g(x) ∈ Fq[x] is a monic indecomposable exceptional polynomial of degree
n+ 1 with g(0) = 0, then, up to CPP-equivalence, one of the following holds [94,
Section 8.4].

A) n+ 1 is a prime different from p not dividing q − 1, and

A1) g(x) = (x+ e)n+1 − en+1, with e ∈ Fq, or

A2) g(x) = Dn+1(x+e, a)−Dn+1(e, a), where a, e ∈ Fq, a 6= 0, n+1 - q2−1,
and Dn+1(x, a) denotes a Dickson polynomial of degree n+ 1.

B) n+ 1 = p and g(x) = (x+ e)((x+ e)
p−1
r − a)r − e(e p−1

r − a)r, with r | p− 1,
a, e ∈ Fq, and ar(q−1)/(p−1) 6= 1.

C) n + 1 = s(s − 1)/2, where p ∈ {2, 3}, q = pm, r > 1, s = pr > 3, and
(r, 2m) = 1.

D) n+ 1 = pr with r > 1.

For the case n + 1 = pr, r > 1, Guralnick and Zieve conjectured in [62] that
there are no examples of indecomposable exceptional polynomials other than those
described in [94, Propositions 8.4.15, 8.4.16, 8.4.17].

The section is organized as follows. We classify good exceptional polynomials
of type A) and B) in Sections 4.3.2 and 4.3.5; see Theorems 4.3.5 and 4.3.9. We
describe some good exceptional polynomials of type C) and D) in Sections 4.3.6
and 4.3.7; see Propositions 4.3.10, 4.3.11, 4.3.12 and 4.3.13. Finally, we determine
all the exceptional polynomials of degree 8 and 9 (see Propositions 4.3.14 and
4.3.18); in this way we provide a proof of the above mentioned Guralnick-Zieve
conjecture for the special cases n = 8, 9. As a byproduct, we obtain all the CPPs
with n+ 1 = 8 and n+ 1 = 9; see Corollaries 4.3.17 and 4.3.22 in Section 4.3.8.

4.3.1 Preliminaries

Throughout Section 4.3, ζs denotes a s-th primitive root of unity, s ≥ 1, and
ϕ denotes the Frobenius map x 7→ xq. For b ∈ Fqn , let Ai(b) ∈ Fq denote the
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evaluation of the i-th elementary symmetric polynomial in b, bq, . . . , bq
n−1

, that is,

Ai(b) =
∑

0≤j1<j2<...<ji≤n−1

bq
j1+qj2+...+qji .

Let A0(b) = 1. Recall that b, bq, . . . , bq
n−1

are the roots of the polynomial

(−1)nAn(b) + (−1)n−1An−1(b)T + . . .+ (−1)n−iAn−i(b)T
i + . . .+ T n.

By [119, Lemma 5] we have the following result.

Proposition 4.3.1. Assume that n4 < q. The monomial b−1x
qn−1
q−1

+1 is a CPP of

Fqn if and only if gcd(n + 1, q − 1) = 1 and
∑n

i=0An−i(b)x
i+1 is an exceptional

polynomial over Fq.

Let g(x) =
∑n+1

i=0 λn+1−ix
i be an exceptional polynomial over Fq, and assume

that λn 6= 0 and λ0 = 1. Consider the polynomial

hg(x) =
g(x)− g(0)

x
=

∑n+1
i=1 λn+1−ix

i

x
=

n∑
i=0

λn−ix
i.

Then vg(x) := hg(−x) =
∑n

i=0(−1)iλn−ix
i. If n is even, hg(−x) can be written as∑n

i=0(−1)n−iλn−ix
i. If n is odd, then p = 2 and the same relation holds.

This means that, for any root b of vg(x), the monomial b−1x
qn−1
q−1

+1 is a CPP
over Fqn if and only if the roots of vg(x), or equivalently hg(−x), form a unique
orbit under the ϕq. This motivates the following definition.

Definition 4.3.2. An exceptional polynomial g(x) ∈ Fq[x] with g(0) = 0 and

g′(0) 6= 0 is said to be good if the roots of g(−x)
−x form a unique orbit under ϕq.

Therefore, the following has been proved.

Proposition 4.3.3. Assume that n4 < q. Then the elements b ∈ Fqn \Fq such that

b−1x
qn−1
q−1

+1 is a CPP over Fqn are the roots of polynomials g(−x)
−x , for g ranging over

good exceptional polynomials of degree n+ 1 over Fq, with g(0) = 0 and g′(0) 6= 0.

Note that hg(x) can be viewed as the bivariate polynomial g(x)−g(y)
x−y evalu-

ated at y = 0. So, assume that we know the factorization of g(x)−g(y)
x−y into abso-

lutely irreducible factors defined over the algebraic closure of Fq, say g(x)−g(y)
x−y =∏s

k=1 `k(x, y). Then

hg(x) =
s∏

k=1

`k(x, 0).
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Obviously, this can be extremely useful to establish whether an exceptional poly-
nomial g is good or not. Recall that an exceptional polynomial g(t) is decomposable
if there exist exceptional polynomials g1, g2 with degree greater than 1 such that
g(x) = g1(g2(x)).

Proposition 4.3.4. If g(x) is a good exceptional polynomial, then g(x) is not

decomposable.

Proof. Suppose that g(x) is decomposable and write g(x) = g1(g2(x)), with poly-

nomials g1, g2 such that deg(g1), deg(g2) > 1. Then

vg(x) =
g1(g2(−x))− g1(g2(0))

−x
=
g2(−x)− g2(0)

−x
λ(g2(−x)),

with

λ(g2(−x)) =

deg(g1)−1∏
i=1

(g2(−x)− βi)

for some βi ∈ K. Since g2(−x)−g2(0)
−x is a factor of positive degree defined over Fq,

the only possibility for the roots of vg(x) to form a unique orbit under ϕq is that

vg(x) is a power of g2(−x)−g2(0)
−x . Note that 0 cannot be a root of vg(x), since for

b = 0 the monomial bx
qn−1
q−1

+1 is not a CPP. On the other hand, any root of a factor

g2(−x)− βi must be a root of g2(−x)− g2(0), that is βi = g2(0). Therefore,

vg(x) =

(
g2(−x)− g2(0)

−x

)deg(g1)

(−x)deg(g1)−1,

which is impossible since deg(g1) > 1.

4.3.2 CPPs from exceptional polynomials of type A)

Throughout this section we assume that n+ 1 ≥ 3 is a prime different from p.
We denote by Tqn/2 the absolute trace map Fqn/2 → F2, x 7→ x + x2 + x4 + · · · +
x(qn/2)/2. We are going to prove the following result.

Theorem 4.3.5. Assume that n4 < q. For i ∈ {1, . . . , n/2} let

αi = ζ in+1 + ζ−in+1 and βi = ζ in+1 − ζ−in+1.

Then the monomial b−1x
qn−1
q−1

+1 is a CPP of Fqn precisely in the following cases:

• If p 6= 2:
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i) the order of q modulo n+ 1 is n and, up to multiplication by a non-zero

element in Fq, b is as follows:

(a) b = ζ in+1 − 1, for some i ∈ {1, . . . , n};
(b) for n/2 even, b = e(αi−2)±

√
β2
i (e

2 − 4a) for some i ∈ {1, . . . n/2},
a ∈ F∗q, and e ∈ Fq;

(c) for n/2 odd, b = e(αi−2)±
√
β2
i (e

2 − 4a) for some i ∈ {1, . . . n/2},
a ∈ F∗q, and e ∈ Fq s.t. e2 − 4a is a square in Fq.

ii) the order of q modulo n + 1 is n/2, n is not divisible by 4, and, up to

multiplication by a non-zero element in Fq, b = e(αi−2)±
√
β2
i (e

2 − 4a)

for some i ∈ {1, . . . n/2}, a ∈ F∗q, and e ∈ Fq s.t. e2 − 4a is 0 or a non-

square in Fq.

• If p = 2:

i) the order of q modulo n+ 1 is n and, up to multiplication by a non-zero

element in Fq, b = ζ in+1 for some i ∈ {1, . . . , n};

ii) the order of q modulo n+ 1 is n or n/2, and

b = zi := εδ2
i +(ε+ε2)δ4

i + · · ·+(ε+ε2 + · · ·+εqn/4)δ
qn/2
i or b = zi+1,

where ε ∈ Fqn satisfies Tqn/2(ε) = 1 and, for some i ∈ {1, . . . , n}, δi =
1
αi

+ a
e2

and Tqn/2(δi) = 1.

By Propositions 4.3.1 and 4.3.4, the determination of CPPs of type b−1x
qn−1
q−1

+1

over Fqn relies on the classification of indecomposable exceptional polynomials,
which is given in [94, Section 8.4]. In particular, by [94, Theorem 8.4.11], Theorem
4.3.5 is implied by the results of Sections 4.3.3 and 4.3.4.

4.3.3 CPPs from exceptional polynomials of type A1)

Throughout this subsection we also assume that n + 1 does not divide q − 1.
Note that for each e 6= 0 the polynomial g(x) = (x + e)n+1 − en+1 has a non-zero

term of degree one. Also, the n distinct roots of hg(−x) = (−x+e)n+1−en+1

−x are

−e(ζ in+1 − 1), i = 1, . . . , n.

Proposition 4.3.6. Assume that e ∈ F∗q. The polynomial (x + e)n+1 − en+1 is a

good exceptional polynomial over Fq if and only if q has order n modulo n+ 1.
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Proof. The roots of hg(−x) form a unique orbit under ϕq if and only if ζn+1 does

not belong to any proper subfield of Fqn . This is equivalent to the order of q

modulo n+ 1 being equal to n.

Corollary 4.3.7. Assume that q has order n modulo n+1. Then for b = e(ζ in+1−1)

the monomial b−1x
qn−1
q−1

+1 is a CPP of Fqn, for each e ∈ F∗q and i ∈ {1, . . . , n}.

4.3.4 CPPs from exceptional polynomials of type A2)

Throughout this subsection we further assume that n+1 does not divide q2−1.
We begin by considering Dickson polynomials Dn+1(x, a) ∈ Fq[x]. Recall that

Dn+1(x, a) =

n/2∑
k=0

n+ 1

n+ 1− k

(
n+ 1− k

k

)
(−a)kxn+1−2k .

Note that Dn+1(x, a) has a non-zero term of degree 1, for each a 6= 0. In [14,

Th. 7 and 8] Bhargava and Zieve provide the factorization of Dn+1(x+e,a)−Dn+1(y+e,a)
x−y ,

e ∈ Fq.

Proposition 4.3.8. The polynomial g(x) = Dn+1(x + e, a) − Dn+1(e, a), with

a, e ∈ Fq, a 6= 0 and D′n+1(e, a) 6= 0, is a good exceptional polynomial over Fq if

and only if one of the following cases occurs:

i) p 6= 2, n/2 is even and q has order n modulo n+ 1;

ii) p 6= 2, n/2 is odd and either e2−4a is a non-square in Fq and q has order n/2

modulo n+ 1, or e2 − 4a is a square in Fq and q has order n modulo n+ 1;

iii) p = 2, the order of q modulo n + 1 is n or n/2, and Tqn/2(δ1) = 1, where

δi = 1
αi

+ a
e2

.

In Cases i) and ii), the roots of hg(−x) are b = −1
2
·
(
e(αi − 2)±

√
β2
i (e

2 − 4a)
)

.

In Case iii), let ε ∈ Fqn with Tqn/2(ε) = 1. Then the roots of hg(−x) are

b = εδ2
i + (ε+ ε2)δ4

i + · · ·+ (ε+ ε2 + · · ·+ εq
n/4)δ

qn/2
i and b+ 1.

Proof. By [14, Theorem 7] we have

Dn+1(x+e, a)−Dn+1(y+e, a) = (x−y)

n/2∏
i=1

(
(x+ e)2 − αi(x+ e)(y + e) + (y + e)2 + β2

i a
)
,
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where αi = ζ in+1 + ζ−in+1 and βi = ζ in+1 − ζ−in+1. Then

hg(−x) =
Dn+1(−x+ e, a)−Dn+1(e, a)

−x
=

n/2∏
i=1

(
(−x+ e)2 − αie(−x+ e) + e2 + β2

i a
)
,

that is, since α2
i = β2

i + 4,

hg(−x) =

n/2∏
i=1

(
x2 + xe(αi − 2) + (αi − 2)((αi + 2)a− e2)

)
.

Note that the values e(αi − 2) are pairwise distinct for i = 1, . . . , n; hence, the

sets of roots of two distinct quadratic factors of hg(−x) are disjoint.

Assume p 6= 2. Since α2
i = β2

i + 4, the roots of hg(−x) are

−1

2
·
(
e(αi − 2)±

√
β2
i (e

2 − 4a)

)
.

Since (β2
i (e

2 − 4a))q
j

=
(
βiqj (mod n+1)

)2
(e2 − 4a), if the roots of hg(−x) form a

unique orbit under ϕq then the order ordn+1(q) of q in Z∗n+1 must be either n or

n/2. Thus, we check when β2
i (e

2−4a) is a non-square in Fqn/2 , so that the (n/2)-th

power of ϕq permutes the roots of hg(−x). Note that if ordn+1(q) = n/2, then

βq
n/2

i = βi and therefore β2
i is a square in Fqn/2 ; if on the contrary ordn+1(q) = n,

then βq
n/2

i = −βi and β2
i is a non-square in Fqn/2 . Also, n/2 even implies that

(e2 − 4a) is always a square in Fqn/2 , whereas if n/2 is odd then (e2 − 4a) is a

square in Fqn/2 if and only if it is a square in Fq.
If e2− 4a = 0, then hg(−x) is a square and its roots form a unique orbit under

Frobenius. This completes the proof for p 6= 2.

For p = 2, similar computations using the solutions of quadratic equations in

characteristic 2 provide the claim.

4.3.5 CPPs from exceptional polynomials of type B)

Throughout this section we assume that n + 1 = p. For p = 2, it is straight-
forward that there exist no exceptional polynomials of type B); hence, we assume
that p 6= 2. We denote by NFq/Fp the norm map Fq → Fp, x 7→ x1+p+p2+···+q/p.

Theorem 4.3.9. Assume that n4 < q. The monomial b−1x
qn−1
q−1

+1 is a CPP of Fqn
if and only if, for some divisor r of n, one of the following cases occurs:

i) b is an element of
{
−ζ irα | i ∈ {0, . . . , r − 1}, αr = ζjq−1, gcd(r, j) = 1

}
, or
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ii) b is an element of{
(v0 − λu0)r − e | λ ∈ F∗p, e, u

p−1
0 ∈ F∗q, u

q−1
r

0 6= 1,

vr0 = e, ord
(
NFq/Fp

(
up−1
0

e(p−1)/r

))
= p− 1

}
.

Proof. Up to CCP-equivalence, the only indecomposable exceptional polynomials

of degree p over Fq are the polynomials g(x) = (x + e) ((x+ e)r − a)k, where r is

a divisor of n and k = n/r, with a, e ∈ Fq, a
q−1
r 6= 1; see [94, Theorem 8.4.14].

Hence, hg(−x) = 1
−x

(
(−x + e) ((−x+ e)r − a)k − e (er − a)k

)
. We distinguish a

number of cases.

• a = 0. In this case the polynomial g(x) = (x+ e)p is not good.

• e = 0 and a 6= 0. We have that hg(−x) = ((−x)r − a)k has r distinct roots

with multiplicity k, namely −ζ irα, where αr = a and i = 0, . . . , k − 1. They

form a single orbit under ϕq if and only if xr−a is irreducible over Fq. By [82,

Theorem 3.75], this is equivalent to require that a = ζjq−1 with gcd(r, j) = 1.

• e 6= 0 and a 6= 0. Fix u0, v0 such that up−1
0 = a and vr0 = e. It is

straightforward to check that the set of roots of hg(−x) contains R ={
(v0 − λu0)r − e | λ ∈ F∗p

}
. Note that ek 6= a, since a

q−1
k 6= 1 =

(
ek
) q−1

k .

We show that R actually consists of the p − 1 distinct roots of hg(−x).

Assume on the contrary that (v0 − λu0)r − e = (v0 − λ′u0)r − e for some

λ 6= λ′. Then v0 − λu0 = µ(v0 − λ′u0) for some µ with µr = 1, and hence

v0(1 − µ) = u0(λ − µλ′). Since r divides p − 1, both µ and µ − 1 lies in

Fp. As λ 6= λ′ we have µ 6= 1 and hence 1 = (v0/u0)p−1 = e
p−1
r /a = ek/a, a

contradiction.

In the following we prove that the elements of R are in the same orbit under

ϕq if and only if

ord
(
NFq/Fp

( a

e(p−1)/r

))
= p− 1.

Let i ∈ {1, . . . , p−1} be the smallest positive integer such that ((v0−λu0)r−
e)q

i
= (v0− λu0)r − e, so that the elements of R are in the same orbit under

ϕq if and only if i = p − 1. Since uq
i

0 = u0a
(qi−1)/(p−1) and vq

i

0 = v0e
(qi−1)/r,

the condition (v0 − λu0)rq
i

= (v0 − λu0)r holds if and only if

(v0e
(qi−1)/r − λu0a

(qi−1)/(p−1))r = (v0 − λu0)r ,
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which is equivalent to(
v0 − λu0

a(qi−1)/(p−1)

e(qi−1)/r

)r

= (v0 − λu0)r ,

that is,

v0 − λu0
a(qi−1)/(p−1)

e(qi−1)/r
= ξ(v0 − λu0) ,

with ξr = 1. Suppose ξ 6= 1; then

v0/u0 = λ

a(q
i−1)/(p−1)

e(q
i−1)/r

− ξ
1− ξ

∈ F∗p ,

and hence (v0/u0)p−1 = 1; this implies a = e(p−1)/r = ek, impossible. This

means ξ = 1, that is
a(qi−1)/(p−1)

e(qi−1)/r
= 1 . (4.32)

Since

qi − 1

p− 1
≡ i(q − 1)

p− 1
(mod q − 1) and

qi − 1

r
≡ i(q − 1)

r
(mod q − 1) ,

Equation (4.32) is equivalent to

ai(q−1)/(p−1)

ei(q−1)/r
= 1 ,

that is, (
NFq/Fp

( a

e(p−1)/r

))i
= 1 .

Thus, i = p− 1 if and only if ord
(
NFq/Fp

(
a

e(p−1)/r

))
= p− 1.

4.3.6 CPPs from exceptional polynomials of type C)

In this section we deal with one of the three classes of exceptional polynomials
of type C), namely the third class in [94, Theorem 8.4.12], with e = 1.

Proposition 4.3.10. Let p = 3, s = pr > 3, gcd(r, 2m) = 1. The exceptional

polynomial

fe(x) = (x+ e)((x+ e)2 − a)(s+1)/4

(
((x+ e)2 − a)(s−1)/2 + a(s−1)/2

(x+ e)2

)(s+1)/2

,

where a is a non-square in F∗q, is not good over Fq.
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Proof. Following [123, Prop. 2], consider τ(y) = (Ey + F )/(Fy + E), with

E,F,E, F ∈ Fq2 and EE − FF = 1. The points (x, y) of the curve with equation
f0(x)−f0(y)

x−y are exactly the points such that x = τ(y), where the choice of (E,F ) is

unique up to replacing (E,F ) by (−E,−F ) and one of the following cases occurs:

• FF = −1/2 ;

•
(
EFEF

)(q−1)/2
= −1 and FF 6= −1/2 ;

•
(
EFEF

)(q−1)/2
= 1 .

For e ∈ Fq, a zero of hfe(−x) = fe(−x)−fe(0)
−x corresponds to the point (−x+e, e)

of the curve defined by f0(x)−f0(y)
x−y = 0, that is x = y− τ(y) for some τ as described

above. Since E,F,E, F ∈ Fq2 , we have (τ(y))q
2

= τ(y) and xq
2

= x. Therefore,

the roots of hfe(−x) are not in a unique orbit under ϕq.

4.3.7 CPPs from exceptional polynomials of type D)

Throughout this section we assume that n + 1 = pr with r > 1. No complete
classification of indecomposable exceptional polynomials of type D) is known. The
following propositions deal with the cases related to linearized polynomials.

Proposition 4.3.11. Let j, k ≥ 1 and H(x) ∈ Fq[x] such that L(x) = xjH(xk)

is a linearized polynomial of degree n + 1. For e ∈ Fq we have that Se(x) =

(x + e)jHk(x + e)− ejHk(e) is a good exceptional polynomial over Fq if and only

if the elements e− (e0 − `)k belong to a unique orbit under ϕq, where e0 is a fixed

k-th root of e and ` ranges over the roots of L(x) \ {0}.

Proof. Following [25, Theorem 2.1] we give the factorization of the curve defined

by S0(xk)− S0(yk) = 0. Let N := deg(H) = (n+1)−j
k

and write

H(t) =
N∏
h=1

(t− γh),

where γh ∈ K. Then the roots of H(t) and L(x) = xjH(xk) are H = {γh : h =

1, . . . , N} and L = {ζ ikγh : i = 0, . . . , k − 1, h = 1, . . . , N} ∪ {0}, respectively.

Since S0(xk) = (L(x))k, we have

S0(xk)− S0(yk) = (L(x))k − (L(y))k =
k−1∏
i=0

(
L(x)− ζ ikL(y)

)
=

k−1∏
i=0

L(x− ζ iky)
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=
(
xk − yk

)j d−1∏
α=0

d−1∏
β=0

N∏
h=1

(
y − ζαk x− ζ

β
k γh

)
.

Consider the curve CS defined by S0(x)− S0(y) = 0. Clearly, the points (x, y)

of CS satisfy y = ζαk x+ ζβk γh, where h ∈ {1, . . . , N}, α, β ∈ {0, . . . , k − 1}, xk = x,

yk = y. Now consider the polynomial hSe(−x) = Se(−x)−Se(0)
−x . The zeros of hSe(−x)

correspond to the points (−x + e, e) of CS, x 6= 0. Fix e0 such that ek0 = e; then

the zeros of h(−x) are
{
e− (e0 − `)k | ` ∈ L \ {0}

}
.

In general, it is not easy to establish when the elements e− (e0− `)k belong to
the same orbit under ϕq. The following propositions provide two families of good
exceptional polynomials arising from linearized polynomials.

Proposition 4.3.12. Let q = pm and L(x) = xp
r − ζq−1x ∈ Fq[x]. If r divides m,

then L(x) is good exceptional over Fq.

Proof. Let N = pr − 1, and let η ∈ FqN be a root of hL(−x) = xN − ζq−1. Then

the roots of hL(−x) are {λη | λ ∈ F∗pr}. The hypothesis r | m is equivalent to

require that N divides (q − 1), and this implies that N(q − 1) | qN − 1. Hence

we can choose η = ω
qN−1
N(q−1) , where ω is a primitive element of FqN . The thesis is

proved by showing that η is not an element of any proper subfield of FqN . Suppose

that η ∈ Fqk with k | N . Then ω
qN−1
N(q−1)

(qk−1) = 1, that is N | qk−1
q−1

; since q ≡ 1

(mod N), this is equivalent to N | k, and hence to N = k.

Proposition 4.3.13. If d = gcd(m, pr − 1) is a divisor of r, then there exists a

linearized polynomial L(x) ∈ Fq[x] of degree pr which is good exceptional over Fq.

Proof. Let d = gcd(m, pr − 1) and `(x) ∈ Fq[x] be a primitive polynomial of

degree r/d over Fpd , so that `(x) is irreducible over Fpd and has order pr − 1.

Let L(x) ∈ Fq[x] be the linearized pd-associate of `(x). Then, by [82, Theorem

3.63], the polynomial L(x)/x is irreducible over Fpd . Let α be a non-zero root of

L(x). Then the field extension Fpd(α)|Fpd has degree pr − 1, while the extension

Fq|Fpd has degree m/d. The field Fq(α) is the compositum of Fq and Fpd(α); since

gcd(m/d, pr − 1) = 1, we have that [Fq(α) : Fq] = pr − 1. Then L(x)/x = hL(−x)

is irreducible over Fq, and the thesis follows.
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4.3.8 The cases n+ 1 = 8 and n+ 1 = 9

The aim of this section is to study the cases n + 1 = 8 (with p = 2) and
n+ 1 = 9 (with p = 3), via the algebraic curve

Cf :
f(x)− f(y)

x− y
= 0 (4.33)

of degree n over Fq associated to a PP f(x) of Fq of degree n+ 1. If f(x) is a PP
of Fq and q is large enough with respect to n, then Cf splits into components not
defined over Fq (see [7]). Conversely, if Cf has no absolutely irreducible component
defined over Fq, then f(x) is exceptional over Fq; see [26] and [94, Chapter 8.4].

n+ 1 = 8, p = 2

Proposition 4.3.14. Let q = 2m, n + 1 = 8. The polynomial f(x) = x8 +∑7
i=1 Aix

7−i ∈ Fq[x] is exceptional over Fq if and only if A1 = A2 = A3 = A5 = 0

and the polynomial g(x) = x7 +A4x
3 +A6x+A7 has no roots in F∗q. Also f(x) is

good exceptional if and only if g(x) is irreducible over Fq.

Proof. The equation of the curve Cf reads

(x+ y)7 + A1(x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6)

+A2(x5 + x4y + x3y2 + x2y3 + xy4 + y5) + A3(x4 + x3y + x2y2 + xy3 + y4)

+A4(x+ y)3 + A5(x2 + xy + y2) + A6(x+ y) + A7 = 0.

Applying ϕq to the factors of Cf we conclude that, if the curve Cf does not have

absolutely irreducible components defined over Fq, then the curve contains either

two conics and three lines or seven lines. The unique ideal point of Cf is (1 : 1 : 0).

A line ` that is a component of the curve Cf has equation ` : y = x+ α and

A1 = 0

A2α + A3 = 0

A2α
3 + A5 = 0

A3α
2 + A5 = 0

α7 + A2α
5 + A3α

4 + A4α
3 + A5α

2 + A6α + A7 = 0.

If the line ` is not defined over Fq then α ∈ Fq \ Fq; this yields A2 = A3 = A5 = 0,

and the last equality becomes α7 + A4α
3 + A6α + A7 = 0. It is easily seen that

if A2 = A3 = A5 = 0 then the curve Cf contains the seven lines y + x + αi = 0,

i = 1, . . . , 7, where α7
i + A4α

3
i + A6αi + A7 = 0, and therefore Cf cannot split in

two conics and three lines.
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Thus, the only open case occurs when Cf splits in seven lines either not defined

over Fq or equal to x − y = 0. Thus f(x) is exceptional if and only if T 7 +

A4T
3 + A6T + A7 has no roots in Fq and it is good exceptional if and only if

T 7 + A4T
3 + A6T + A7 is irreducible over Fq.

Corollary 4.3.15. Let q = 2m, n+1 = 8 and suppose 3 divides m. The polynomial

x8 + A7x is the only good exceptional polynomial over Fq.

Proof. Since 3 divides m we have that ζ7 ∈ Fq. From Cyclic extensions theory,

T 7 +A4T
3 +A6T +A7 is irreducible over Fq if and only if A4 = A6 = 0. The thesis

follows from Proposition 4.3.14.

Remark 4.3.16. The exceptional polynomials of Proposition 4.3.14 are linearized,

and hence described in [94, Prop. 8.4.15]. Also, Proposition 4.3.14 confirms the

conjecture [94, Remark 8.4.18] for the special case n+ 1 = 8.

Corollary 4.3.17. Assume that q = 2r > 74. The monomial b−1x
q8−1
q−1

+1 is a

CPP of Fq8 if and only if b is, up to a scalar multiple in F∗q, a root of some

F (x) = x7 + αx3 + βx+ γ ∈ Fq[x], irreducible over Fq.

n+ 1 = 9, p = 3

Proposition 4.3.18. Let q = 3h. The polynomial

F (x) = x9 + A1x
8 + A2x

7 + A3x
6 + A4x

5 + A5x
4 + A6x

3 + A7x
2 + A8x

is exceptional over Fq if and only if one of the following cases occurs.

i)

F (x) = x9 + A3x
6 + A6x

3 (4.34)

and T 6 + A3T
3 + A6 ∈ Fq[T ] has no roots in F∗q;

ii)

F (x) = x9 + A6x
3 + A8x (4.35)

and T 8 + A6T
2 + A8 ∈ Fq[T ] has no roots in F∗q;

iii)

F (x) = x9 + A3x
6 + A4x

5 + A5x
4 +

(
A2

3 + A3
A3

5

A3
4

+
A2

5

A4

)
x3

+

(
2A3A4 + 2

A3
5

A2
4

)
x2 +

(
2A3A5 + A2

4 + 2
A4

5

A3
4

)
x, (4.36)

where A4 6= 0 and T 4 + 2A3T + 2A4 ∈ Fq[T ] has no roots in Fq;
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iv)

F (x) = x9 + A2x
7 + A3x

6 + A5x
4 +

(
A3

2 +
A3A5

A2

)
x3+(

2A2A5 + 2
A3

3

A2

)
x2 +

(
A4

2 + A3A5 +
A2

5

A2

+
A4

3

A2
2

)
x, (4.37)

where 2A2 is not a square in Fq.

Proof. • Suppose that the curve CF defined in (4.33) contains a line ` with

equation ` : y = x+α, where α = 0 or α /∈ Fq. Then, by direct computation,
A1 = A2 = A4 = 0

2α2A3 + A5 = 0

α2A5 + 2A7 = 0

α8A0 + α5A3 + α3A5 + α2A6 + αA7 + A8 = 0

.

– Assume α = 0. Then A5 = A7 = A8 = 0. The curve becomes

(x− y)2((x− y)6 + A3(x− y)3 + A6) = 0.

We require that the polynomial T 6 + A3T
3 + A6 has no roots in F∗q.

– Assume α 6= 0. If A5 = 0 then A3 = A7 = 0 and α8 + A6α
2 + A8 = 0;

hence, CF splits in 8 lines. They are not defined over Fq or equal to

x− y = 0 if and only if T 8 + A6T
2 + A8 = 0 has no roots in F∗q.

If A3 = 0 then A5 = A7 = 0 and α8 + A6α
2 + A8 = 0, as above.

Suppose now A3, A5 6= 0. Then A5 = A3α
2, A7 = A2

5/A3, and A8 =

2A5A6/A3 + 2A4
5/A

4
3. Since α2 = A5/A3, we have that A5/A3 is not a

square in Fq, otherwise the lines y = x+ ξ1 and y = x+ ξ2, where ξ2
i =

A5/A3, are Fq-rational lines and the polynomial F (x) is not exceptional.

Let a3, a5 ∈ Fq2 be such that a2
3 = A3 and a2

5 = A5. In this case,

CF : (a3x− a3y + a5)(a3x− a3y − a5)
(
a6

3(x− y)6 + a4
3a

2
5(x− y)4

+a8
3(x+ y)3 + a2

3a
4
5(x− y)2 − a6

3a
2
5(x+ y) + a6

3A6 + a6
5

)
= 0.

Since the sextic is defined over Fq, it must split either in three conics

or in two cubics. In the first case it is easily seen that all of them must

be fixed by ψ.

If a conic of equation (x−y)2+α(x+y)+β = 0 is contained in the sextic

then in particular A2
3 = α3 from which we get a32

3 a
12
5 = 0, impossible.
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Suppose now that the sextic splits in two cubics. If they are fixed by ψ

then they have equations

(x− y)3 + α1x
2 + α2xy + α1y

2 + β1x+ β1y + γ1 = 0,

(x− y)3 + α3x
2 + α4xy + α3y

2 + β2x+ β2y + γ2 = 0.

Then α4 = α3 = −α1, α2 = α1. If α1 = 0 then a2
3 = γ1 + γ2 and

a2
3 = −γ1 − γ2, which imply a3 = 0, impossible. If α1 6= 0 then β1 = β2

and again a2
3 = γ1 + γ2 and a2

3 = −γ1 − γ2, which imply a3 = 0,

impossible. If they are switched by ψ then they have equations

(x− y)3 + α1x
2 + α2xy + α3y

2 + β1x+ β2y + γ1 = 0,

λ((y − x)3 + α3x
2 + α2xy + α1y

2 + β2x+ β1y + γ1) = 0.

Then λ = −a6
3, α3 = α1. If α2 = −α1, then a2

3α
2
1 + a2

3β1 − a2
3β2 − a2

5 =

0 and α1 = 0, which implies a3 = 0, impossible. If α2 = α1, then

α1(β1 + β2) = 0. In both cases a3 = 0, impossible.

• Suppose that Cf splits in four absolutely irreducible conics. There are three

distinct possibilities, depending on the number of components fixed by ψ.

1. All the conics are fixed by ψ. In this case the four conics are defined by

Ci : (x− y)2 + αi(x+ y) + βi = 0, (4.38)

for i = 1, 2, 3, 4. This gives immediately A1 = A2 = 0. The condition

A4 = 0 implies A5 = A7 = 0 and A3A8 = 0, that is, the polynomial is

either of type (4.34) or (4.35). Now assume A4 6= 0. Then, by direct

computation, A6 = A2
3 + A3A

3
5/A

3
4 + A2

5/A4, A7 = 2A3A4 + 2A3
5/A

2
4,

A8 = 2A3A5 + A2
4 + 2A4

5/A
3
4; also, the αi’s are roots of `1(x) = x4 +

2A3x + 2A4, and βi = α2
i + A5/A4αi. On the other hand, if all these

conditions are satisfied, then the curve splits in the four conics defined

in (4.38). Finally, the four conics are not defined over Fq if and only if

the polynomial T 4 + 2A3T + 2A4 has no roots in Fq.

2. Two conics are fixed by ψ and two are switched. We can assume

C1 : (x− y)2 + α1(x+ y) + β1 = 0, C2 : (x− y)2 + α2(x+ y) + β2 = 0,

C3 : (x− y)2 +α3x+α4y+ β3 = 0, C4 : (x− y)2 +α4x+α3y+ β3 = 0.

By direct computation, A1 = A2 = A4 = A5 = A7 = 0 and A3A8 = 0,

and hence F (x) is of type (4.34) or (4.35).
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3. No conic is fixed by ψ. We can assume

C1 : (x− y)2 +α1x+α2y+ β1 = 0, C2 : (x− y)2 +α2x+α1y+ β1 = 0,

C3 : (x− y)2 +α3x+α4y+ β2 = 0, C4 : (x− y)2 +α4x+α3y+ β2 = 0.

Also in this case we get A1 = A2 = A4 = A5 = A7 = 0 and A3A8 = 0,

and hence F (x) is of type (4.34) or (4.35).

• Suppose that Cf splits in two absolutely irreducible quartics Q1 and Q2. The

automorphism ψ either switches or fixes the two components.

In the former case, Q1 and Q2 have the form

Q1 : (x−y)4+α1x
3+α2x

2y+α3xy
2+α4y

3+β1x
2+β2xy+β3y

2+γ1x+γ2y+δ = 0,

Q2 : (x−y)4+α4x
3+α3x

2y+α2xy
2+α1y

3+β3x
2+β2xy+β1y

2+γ2x+γ1y+δ = 0.

We obtain A1 = A2 = A3 = A4 = A5 = A7 = 0; hence, we have case (4.35).

In the latter case, Q1 and Q2 have the form

Q1 : (x−y)4+α1x
3+α2x

2y+α2xy
2+α1y

3+β1x
2+β2xy+β1y

2+γ1(x+y)+δ1 = 0,

Q2 : (x−y)4+α3x
3+α4x

2y+α4xy
2+α3y

3+β3x
2+β4xy+β3y

2+γ2(x+y)+δ2 = 0.

Since A1 = 0, we obtain A2A4 = 0.

– Assume A2 = 0 and A4 6= 0. Then A6 = A2
3 + A3A

3
5/A

3
4 + A2

5/A4,

A7 = 2A3A4 + 2A3
5/A

2
4, A8 = 2A3A5 + A2

4 + A4
5/A

3
4, and case (4.36)

holds.

– Assume A2 6= 0 and A4 = 0. Then A6 = A3
2 +A3A5/A2, A7 = 2A2A5 +

2A3
3/A2, A8 = A4

2 +A3A5 +A2
5/A2 +A4

3/A
2
2. Also, α2

1 = 2A2, α2 = α3 =

−α4 = −α1, β1 = −β3 = 2A3/α1, β2 = −A3/α1−α2
1, β4 = A3/α1−α2

1,

γ1 = A3 + α3
1, γ2 = A3 − α3

1, δ1 = A3α1 +A2
3/A2 + 2A5α1/A2 + 2α6

1/A2,

δ2 = −A3α1 + A2
3/A2 + A5α1/A2 + 2α6

1/A2. Note that αi, βi, γi, δi are

not defined over Fq if and only if 2A2 is not a square in Fq. The quartics

Q1 and Q2 read

(x−y)4 +α1x
3 +2α1x

2y+2α1xy
2 +α1y

3 +2A3/α1x
2 +2(A3/α1 +α2

1)xy

+2A3/α1y
2 +(A3 +α3

1)(x+y)+A3α1 +A2
3/A2 +2A5α1/A2 +2α6

1/A2 = 0,

(x− y)4 + 2α1x
3 +α1x

2y+α1xy
2 + 2α1y

3 +A3/α1x
2 + (A3/α1 + 2α2

1)xy

+A3/α1y
2 +(A3 +2α3

1)(x+y)+2A3α1 +A2
3/A2 +A5α1/A2 +2α6

1/A2 = 0;

hence, Q1 and Q2 are switched by ϕq.



170 CHAPTER 4. NEW APPLICATIONS OF THE HASSE-WEIL BOUND

– Finally, A2 = A4 = 0 implies A5 = A7 = 0 and A3A8 = 0. As above,

this yields types (4.34) or (4.35).

Remark 4.3.19. By direct computation, the exceptional polynomials of Proposi-

tion 4.3.18 are equivalent to exceptional polynomials described in [94, Prop. 8.4.15].

In fact, if F (x) satisfies Case i) or ii), then F (x) is a linearized polynomial.

If F (x) satisfies Case iii), then F (x) = L1 ◦ S ◦ L2(x), where L1(x) and L2(x)

are linear, and S(x) ∈ Fq[x] has the form x(a2x
4 + a1x+ a0)2.

If F (x) satisfies Case iv), then F (x) = L1 ◦ S ◦ L2(x), where L1(x) and L2(x)

are linear, and S(x) ∈ Fq[x] has the form S(x) = x(a2x
4 + a1x + a0)2 when

A2
2A5 + A3

3 6= 0, or S(x) = x(a2x
2 + a0)4 when A2

2A5 + A3
3 = 0.

This confirms the conjecture [94, Remark 8.4.18] for the special case n+ 1 = 9.

Proposition 4.3.20. Let q = 3h. The polynomial

F (x) = x9 + A1x
8 + A2x

7 + A3x
6 + A4x

5 + A5x
4 + A6x

3 + A7x
2 + A8x

is good exceptional over Fq if and only if one of the following cases occurs.

i)

F (x) = x9 + A6x
3 + A8x

and x8 + A6x
2 + A8 is irreducible over Fq;

ii)

F (x) = x9 + A3x
6 + A4x

5 + A5x
4 +

(
A2

3 + A3
A3

5

A3
4

+
A2

5

A4

)
x3

+

(
2A3A4 + 2

A3
5

A2
4

)
x2 +

(
2A3A5 + A2

4 + 2
A4

5

A3
4

)
x,

where A4 6= 0 and x8 + 2A3x
2 + 2A4 ∈ Fq[x] has no roots in Fq4;

iii)

F (x) = x9 + A2x
7 + A3x

6 + A5x
4 +

(
A3

2 +
A3A5

A2

)
x3+(

2A2A5 + 2
A3

3

A2

)
x2 +

(
A4

2 + A3A5 +
A2

5

A2

+
A4

3

A2
2

)
x,

where

(a) 2A2 is not a square in Fq,
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(b) h(−x) = (x4 + 2αx3 + 2A3/αx
2 + 2(A3 + 2αA2)x + A3α + A2

3/A2 +

2A5α/A2 +A2
2)(x4 + αx3 +A3/αx

2 + 2(A3 + αA2)x+ 2A3α+A2
3/A2 +

A5α/A2 + A2
2), where α2 = 2A2, is irreducible over Fq.

Proof. We use the classification obtained in Proposition 4.3.18.

• Let F (x) be as in Case i) of Proposition 4.3.18. Then A8 = 0; hence, F (x)

is not good.

• Let F (x) be as in Case ii) of Proposition 4.3.18. Then hF (−x) = x8 +A6x
2 +

A8; since hF (−x) cannot be a square in Fq[x], we have that F (x) is good if

and only if hF (−x) is irreducible over Fq.

• Let F (x) be as in Case iii) of Proposition 4.3.18. The factors of hF (−x) are

x2−αix+βi, i = 1, . . . , 4, where the αi’s are roots of `1(x) = x4 +2A3x+2A4

and βi = α2
i +A5/A4αi; hence, `1(x) must be irreducible over Fq in order for

F (x) to be good. Also, the roots of h(−x) are −αi ±
√
−A5/A4αi. Since

−A5/A4 is an element of Fq and hence a square in Fq4 , the roots of h(−x)

are in the same orbit under ϕq if and only if αi is not a square in Fq4 , that

is the polynomial x8 + 2A3x
2 + 2A4 ∈ Fq[x] has no roots in Fq4 .

• Let F (x) be as in Case iv) of Proposition 4.3.18. Then hF (−x) reads

(x4 + 2αx3 + 2A3/αx
2 + 2(A3 + 2αA2)x+ A3α + A2

3/A2 + 2A5α/A2 + A2
2)·

·(x4 + αx3 + A3/αx
2 + 2(A3 + αA2)x+ 2A3α + A2

3/A2 + A5α/A2 + A2
2),

where α2 = 2A2. Hence, the roots of hF (−x) are in a unique orbit under ϕq
if and only if hF (−x) is irreducible over Fq.

Remark 4.3.21. We give two families of good exceptional polynomials arising

from Proposition 4.3.20. Let q = 3h with h even, and d be an odd number; by [82,

Theorem 3.75], the polynomial x8 + 2ζdq−1 ∈ Fq[x] is irreducible over Fq. There-

fore, by Case i) in Proposition 4.3.20, the polynomial F (x) = x9 + 2ζdq−1x is good

exceptional over Fq. Also, by Case ii) in Proposition 4.3.20, the polynomial

F (x) = x9 + ζdq−1x
5 + ax4 +

a2

ζdq−1

x3 + 2
a3

ζ2d
q−1

x2 +

(
ζ2d
q−1 + 2

a4

ζ3d
q−1

)
x

is good exceptional over Fq, for any a ∈ Fq.
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Corollary 4.3.22. Assume that q = 3r > 84. The monomial b−1x
q8−1
q−1

+1 is a

CPP of Fq8 if and only if b is, up to a scalar multiple in F∗q, a root of some

(F (−x + e) − F (e))/(−x) ∈ Fq[x], where e ∈ Fq and F (x) ∈ Fq[x] satisfies Case

i), ii), or iii) in Proposition 4.3.20.
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[18] E. Çakçak and F. Özbudak, Subfields of the function field of the Deligne-
Lusztig curve of Ree type, Acta Arith. 115 (2004), 133–180.
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[78] G. Korchmáros and F. Torres, Embedding of a Maximal Curve in a Hermitian
Variety, Compositio Math. 128 (2001), 95–113.

[79] G. Lachaud, Sommes dEisenstein et nombre de points de certaines courbes
algbriques sur les corps finis, C.R. Acad. Sci. Paris 305 (1987), 729-732.

[80] S. Lang, Algebra, Addison-Wesley Publishing Company (1970).

[81] V.M. Levchuk and Y.N. Nuzhin, The structure of Ree groups, Algebra Logic
24 (1985), 16–26.

[82] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Appli-
cations, Cambridge University Press, Cambridge (1986).

[83] L. Lombardo-Radice, Sul problema dei k-archi completi in S2,q (q = pt, p
primo dispari), Boll. Unione Mat. Ital. 3(11) (1956), 178–181.

[84] J. Ma, T. Zhang, T. Feng, and G. Ge, New results on permutation polyno-
mials over finite fields. ArXiv: 1506.05525

[85] I.D. Macdonald, The Theory of Groups, Oxford University Press, Oxford
(1968).

[86] G.L. Matthews, The Weierstrass semigroup of an m-tuple of collinear points
on a Hermitian curve, in: Finite fields and applications, Lecture Notes in
Comput. Sci., vol. 2948, Springer, Berlin (2004), 12–24.

[87] G.L. Matthews, Codes from the Suzuki function field, IEEE Trans. Inf.
Theory 50(12) (2004) 3298–3302.



BIBLIOGRAPHY 179

[88] G.L. Matthews, Weierstrass Pairs and Minimum Distance of Goppa Codes,
Des. Codes Cryptogr. 22 (2001), 107–121.

[89] MinT, Tables of optimal parameters for linear codes, Univ. Salzburg,
Salzburg, Austria, 2009 [Online]. Available: http://mint.sbg.ac.at.

[90] H.H. Mitchell, Determination of the ordinary and modular ternary linear
groups, Trans. Amer. Math. Soc. 12(2) (1911), 207–242.

[91] V.S. Monakhov, Normal subgroups of biprimary groups, Mat. Zametki 18(6)
(1975), 877–886.

[92] M. Montanucci and G. Zini, Some Ree and Suzuki curves are not quotients
of the Hermitian curve. Submitted. ArXiv: 1511.05353

[93] G.L. Mullen and Q. Wang, Permutation polynomials: one variable, in: G.L.
Mullen and D. Panario (Eds.), Handbook of Finite Fields, Chapman and
Hall/CRC (2013).

[94] G.L. Mullen and D. Panario, Handbook of finite fields, Chapman and Hall
(2013).

[95] A. Muratovic-Ribic and E. Pasalic, A note on complete polynomials over
finite fields and their applications in cryptography, Finite Fields Appl. 25
(2014), 306–315.

[96] P.M. Neumann, G.A. Stoy, and E.C. Thompson, Groups and Geometry,
Oxford University Press, Oxford (1994).

[97] H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J.
Aust. Math. Soc. Ser. A 33 (1982), 197–212.

[98] O. Pretzel, Codes and Algebraic Curves, Oxford Lecture Series in Mathemat-
ics and its Applications 8, The Clarendon Press, Oxford University Press,
New York (1998).

[99] R. Ree, A family of simple groups associated with the simple Lie algebra of
type (G2), Amer. J. Math. 83 (1961), 432–462.

[100] H.E. Rose, A Course on Finite Groups, Springer Science and Business Media,
London (2009).

[101] H.-G. Rück and H. Stichtenoth, A characterization of the Hermitian function
fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.



180 BIBLIOGRAPHY

[102] S. Sarkar, S. Bhattacharya, and A. Cesmelioglu, On some permutation bi-
nomials of the form x(2h−1)/k+1 + ax over F2k : existence and count, in: In-
ternational Workshop on the Arithmetic of Finite Fields WAIFI 2012, in:
Lect. Notes Comput. Sci., vol. 7369, Springer (2012), 236–246.

[103] B. Segre, Ovali e curve σ nei piani di Galois di caratteristica due, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 32(8) (1962), 785–790.

[104] S. Singh and Q. Zameeruddin, Modern Algebra, 8th edn. Vikas Publishing
House, New Delhi (2006).

[105] D. Skabelund, New maximal curves as Ray Class Fields over Deligne-Lusztig
curves. ArXiv: 1605.05428v2

[106] P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gangopadhyay, and S.
Maitra, Investigation on bent and negabent functions via the nega-Hadamard
transform, IEEE Trans. Inf. Theory 58(6) (2012), 4064–4072.

[107] H. Stichtenoth, Algebraic function fields and codes, 2nd edn. Graduate Texts
in Mathematics, vol. 254, Springer, Berlin (2009).

[108] M. Suzuki, A new type of simple groups of finite order, Proc. Nat. Acad. Sci.
U.S.A. 46 (1960), 868–870.

[109] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75 (1962),
105–145.

[110] S. Tafazolian, A. Teheran-Herrera, and F. Torres, Further examples of max-
imal curves which cannot be covered by the Hermitian curve, J. Pure Appl.
Algebra 220(3) (2016), 1122–1132.

[111] J. Tits, Ovoides et groupes de Suzuki, Arch. Math. 13 (1962), 187–198.

[112] J. Tits, Les groupes simples de Suzuki et de Ree, Séminaire Bourbaki 6, Soc.
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(2001), 225–238.



BIBLIOGRAPHY 181

[116] G. van der Geer, Coding theory and algebraic curves over finite fields: a
survey and questions. In Applications of Algebraic Geometry to Coding The-
ory, Physics and Computation, NATO Sci. Ser. II Math. Phys. Chem. 36,
Kluwer, Dordrecht (2001), 139–159.

[117] J.H. van Lint, Introduction to Coding Theory, Graduate Texts in Mathemat-
ics, vol. 86, Springer, Berlin (1982).

[118] O. Veblen and J.W. Young, Projective Geometry, The Atheneum Press,
Boston (1910).

[119] G. Wu, N. Li, T. Helleseth, and Y. Zhang, More classes of Complete Permu-
tation Polynomials over Fq. ArXiv: 1312.4716

[120] G. Wu, N. Li, T. Helleseth, and Y. Zhang, Some classes of monomial com-
plete permutation polynomials over finite fields of characteristic two, Finite
Fields Appl. 28 (2014), 148–165.

[121] G. Wu, N. Li, T. Helleseth, and Y. Zhang, Some classes of complete permu-
tation polynomials over Fq, Sci. China Math. 58(10) (2015), 2081–2094.
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