
DOTTORATO DI RICERCA IN FISICA

CICLO XXVII

COORDINATORE Prof. R. Livi

THE DARK SECTOR AS A METROLOGY
EFFECT

effects of the trace of the extrinsic curvature of
3-space on the dark side of the Universe

Settore Scientifico disicplinare: FIS/02

Dottorando

Dott. Mattia Villani

Tutore

Prof. Ruggero Stanga

Co-Tutore

Prof. Luca Lusanna

Coordinatore

Prof. Roberto Livi

Anni 2012/2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301573102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Per chi viaggia in direzione ostinata e contraria,

col suo marchio speciale di speciale disperazione

che tra il vomito dei respinti muove gli ultimi passi

per consegnare alla morte una goccia di splendore,

di umanità,
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ABSTRACT

We consider the hypothesis that Dark Matter (or at least part of it)

could be explained as an effect of conventions used on the choice of the

spacetime foliation into hyperplanes (the 3-space) and time and therefore

on the convention used for clock synchronization.

In recent works by L. Lusanna and D. Alba on ADM tetrad gravity and

its post-Minkowskian and post-Newtonian expansion, it was found that the

non local York time 3K̃p1q gives a 0.5 PN correction (i.e. at order Opc�1q)
to the particle equation of motion which can be interpreted as a correction

to the particle mass depending on the foliation used (and therefore on the

convention used on the clock synchronization).

In the introduction we review the modern hypothesis on Dark Matter,

ADM tetrad gravity and IAU conventions.

In the following chapters we work out the effects of 3K̃p1q on Pulsar

Timing Array (PTA), Very Long Baseline Interferometry (VLBI) and on

redshift measurements.

Exploiting some similarities between the PN form of ADM tetrad gravity

metric and of fpRq theories, we make the ansatz that the spatial part of
3K̃p1q has a Yukawa form. Many different guesses can be made for the

time-dependent part, we discuss three in particular: the time-free ansatz

(in which there is no time dependece), the linear ansatz (in which the time

dependence is assumed linear) and finally we consider the case in which the

time dependece is left completely free.

In order to have an idea of the order of magnitude of the parameters
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iv Abstract

involved and how big is the effect on PTA, VLBI and redshift we fit the

rotation curve of M31 (the Andromeda galaxy) which is similar to ours: in

this way we will have also an idea of how much Dark Matter can be explained

as an inertial effect and which of our models best describe the data.

In the last chapter, we consider other consequences of the use of ADM tg

on the Tully-Fisher relation and and finally we ask ourselves if it is possible

to explain also Dark Energy in terms of relativistic metrology fitting the 3rd

order Taylor expansion of non homogeneous Family II Szekeres cosmological

models to SNe data and confronting the results with the ΛCDM one.
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INTRODUCTION

That is the question

Hamlet, Act III, Scene I, W. Shakespeare

Modern cosmology must address an embarrassing question: according

to observations, baryonic matter (the one we are all made of) amounts to

about 5% of the energy-mass balance of the Universe and radiation to about

0.05% (see [1] and figure I.1), so:

“What is the missing 94.5% made of?”

What we “know” is that this dark side of the Universe is made of two

different elements: dark energy and dark matter.

Dark Energy It amounts to about 68% of the energy-mass content of the

Universe [1].

The existence of Dark Energy (DE) is necessary to explain why the

expansion of the Universe is accelerating (see [2, 3]); it should behave as a

fluid with negative pressure in order to overcome gravity, which would, on

the contrary, slow it down, and eventually, make the Universe recollapse.

What could DE be?

In the most widely accepted (and most succesful)1 cosmological model

(the ΛCDM model2), the Universe is assumed homogeneous and isotropic

1Its success is somewhat suprising given its simplicity.
2Also known as Concordance Model or Standard Model of Cosmology.

3



4 Introduction

Figure I.1: Upper chart The content of the Universe: dark matter (DM, dark

green) amounts to 26.7%, dark energy (DE, blue) amounts to 68.25%, baryons

and radiation combined (the ‘Kown’ Sector in red) to 5.05% [1]: we only know

what the 5.5% of the universe is, the rest is the dark side of the universe.

For clarity, in the lower pie chart the ‘Known’ Sector is further subdivided

in Neutrinos (yellow), Stars (green) and Other (blue) (the baryons) and

Radiation (yellow).

Neutrinos. Their actual density depends on their mass: it ranges from 0.1

to 1 % [4]: we chose 0.87% in the figure, corresponding to a total mass of the

three neutrinos of
°
ν mν c

2 � 0.39 eV (see [5]).

Other Contains gas (ionized or not), planets and all other form of baryonic

matter known so far (luminous or not).

All the luminous Stars in the universe amount to only 0.5 % of the total mass

(this can be estimated using the mass-to-light ratio in the local universe of from

simulation [6]).



Introduction 5

and gravity is described by General Relativity: these two hypothesis restrict

the choice of the spacetime metric to the FLRW models 3; Dark Energy is

identified with the cosmological constant Λ, whose value should be given by

the energy of void, but the Standard Model particle physics predicts a value

which is 10121 times bigger than the observed dark energy density (see [16],

for example).

On the other hand, an unbroken SuperSymmetry4 gives Λ � 0, in fact,

for each contribution due to a Standard Model fermion there is a contribu-

tion, equal but with opposite sign, due to the corresponding bosonic partner,

and viceversa, so the net effect on the void energy is zero [16, 18].

Nevertheless, if the SuperSymmetry is broken, it is possible to have a non

null cosmological constant and ease the tension with observations, see [19–

22] ([20], for example, reduces the tension between theory and observation

by about 60 orders of magnitude).

This is not the only problem with the cosmological constant: there are

also

� The coincidence problem. The acceleration starts only in a very recent

past5 and it is very difficult to explain why whitin ΛCDM model [16,

23, 24];

� The initial conditions problem. One would expect that matter, ra-

diation and DE to have comparable initial density, but matter and

radiation had a much higher initial density shortly after the Big Bang:

this requires a fine tuning in the initial conditions of the Universe [24].

Other than using the cosmological constant, one could tackle the DE

problem in, essentially, two different ways while keeping the hypothesis that

the Universe is homogeneous and isotropic [16]: one could modifie the right

hand side of the Einstein Equation and introduce a modified form of matter

in the stress-energy tensor (scalar fields, such as quintessence or k-essence),

or modifie the left hand side and the action of gravity (for example using

3The 3-space in FLRW models is maximally symmetric (it has the highest number of

Killing vectors compatible with the dimension of the manifold, corresponding to rotational

and translational symmetry): see the historical articles [7–12] and the books [13–15].
4SuperSymmetry is an attempt to extend the Standard Model of particle physics with

the aim to resolve its issues (see [17] for an introductry review).
5In fact, it seems that the acceleration starts at redshifts z � 0.65: approximately

when large voids start to from [23].
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extended theories of gravity, with the Galileon field or the Chamaleon effect,

see the recent review [25]).

In many recent works, DE and accelerated expansion are considered

just a mirage (see [23, 24, 26–45] among the others, but literature on this

argument is vast and fast growing).6

ΛCDM model is based on the hypothesis that the Universe is homoge-

neous and isotropic at least at large scales,7 but we can see that it is definitely

not true at small scales: matter is clamped in galaxies and galaxies are usu-

ally found in clusters and superclusters separated by voids ([47, 48]). These

inhomogeneities can be the cause of an apparent accelerated expansion (see

[32], among the others): for example, since voids (regions whose density is

lower than the average) expand at a faster rate than other regions, a local

void could explain the accelerated expansion without the need of DE ([29–

31, 45], which would just be a consequence of us observers insisting on using

a wrong homogeneous and isotropic model of the Universe (on this topic

see, eg. [27] and references therein and [35, 36], but the literature on the

argument is vast). We notice that this is, essentially, a metrology problem.

We will come back on this topic in chapter 4.

Dark Matter It amounts to about 26% of the mass-enegy balance of the

Universe [1] and is the main topic of this work.

Dark Matter (DM) is thought to be a non-baryonic form of matter that

doesn’t emit radiation, which is necessary to explain some observations such

as the rotation curve of spiral galaxies, the speed of the galaxies in clus-

ters of galaxies (and therefore cluster’s mass) and some aspects of structure

formation.

All these topics and some of the hypothesis on DM nature are reviewed

in following sections.

6Studies on inhomogeneous cosmology started many years ago: see [46] and references

therein for an older review on the topic.
7How large is debated, but usually one considers ¡ 300 Mpc [42, 43].
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I.1 Why do we need Dark Matter?

The most important “proofs”8 of the existence of a form of matter that

does not interact with electromagnetic radiation are: the mass of galaxy

clusters, spiral galaxies rotation curves, gravitational lenses and structure

formation, as discussed in the following.

I.1.1 Virial mass of clusters of galaxies

The first evidence of the existence of some dark component of the Uni-

verse came in the 1933 when Zwicky esimated the mass of the Coma Cluster

using the virial theorem, under the hypothesis that the cluster has a spher-

ical symmetry and that it has reached equilibrium (see [49] for the original

paper in german and [50] for a later review in english).

It can be shown, under those hypothesis, that a lower limit for the virial

mass of the cluster M is given by:

M ¡ 3

5

Rv2

G
(I.1)

where R is the virial radius and v2 is the mean square velocity on the line of

sight of the galaxies (the double overbar, , stands for a mean both in time

and galaxy mass, see [49, 50]).

For the Coma Cluster, Zwicky used the measured mean squared line-of-

sight velocity v2 � 5 � 1011 km2s�2 and R � 2 � 106 lyr for the radius of

the cluster and found:

M ¡ 4.5 � 1013 M@ (virial mass). (I.2)

Since there are about 1000 galaxies in Coma Cluster, using the mean

value of 8.5 � 107 M@ for the mass of the single galaxy, Zwicky found:

M� � 8.5 � 1010 M@ (luminous matter) (I.3)

for the visible mass of the cluster: a value about 500 times smaller that the

virial mass. This means that if only the luminous matter is considered, the

8We use the quotation marks, because these are not actual proofs of the existence of

DM (the smoking gun would be an unambiguous direct detection of a WIMP, for example,

see section I.2), they are an indication that our understanding of the physics involved in

these phenomena is not complete.
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cluster couldn’t exist, since the speed of the galaxies would be too high for

them to be gravitationally bound; therefore, this was his conclusion, there

must be some matter in the cluster other than the visible one.

Modern measurements that include in the mass balance also the Intra-

Cluster Medium (diffuse hot gas with a temperature of the order of 106 K,

visible in the X band of the electromagnetic spectrum) give a baryonic to

dark matter ratio of the order of about 1 : 6 (see for example [51], where it

is found that ρbar{ρDM � 0.17).9

I.1.2 The rotation curve of spiral galaxies

Considering only the visible matter present in a spiral galaxy and calling

vrotpRq the velocity of a star at a radius R, from Newtonian gravity, one

expects the following behavior for vrot: a linear growth up to a radius Rmax

at which most of the matter is contained, and then one expects vrot 9 R�1{2

(in a Keplerian fashion).

Since the works by Vera Rubin and co-workers in the 70’s and 80’s on the

Andromeda galaxy [52] and on other spirals [53, 54], it is known that vrot

is actually constant, or grows at large R:10 this means that the luminous

matter is not the only one in the galaxy, there must be a dark component

structured in a (almost) spherical halo that surrounds the whole galaxy and

extends for hundrends of kiloparsecs, much more than the visible radius of

the galaxy itstelf.

Many analytical forms for the density profile and the potential of the

DM halo have been proposed in literature: we report here, for later use, the

Navarro-Frenk-White (NFW) density profile and the relative potential [55]:$'''''&'''''%
ρpRq � ρ0

�
R

Rs

�
1� R

Rs


2
��1

ΦpRq � �4πGρ0R
3
s

ln rR�Rss
R

(I.4)

where ρ0 is a parameter with the dimensions of a density and Rs is the scale

9This esimate is in agreement with the one given by the Plank mission [1], done using

the CMB.
10See our figure 3.1 (page 76), for an example of rotation curve: blue squares and

relative errors are the measured values of vrot for the Adromeda Galaxy up to about 35

kpc and they show a quasi-constant behavoir at large radii (the red line is our fit).
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legth of the halo. The NFW profile is in good agreement with the halos

obtained in N-body simulations [56].

This profile diverges for R Ñ 0; another profile that does not diverge,

but is still in good agreement with N-body simulation, is the Einasto profile

[56, 57]:

ρpRq � ρ0 exp

�
�
�

R

kR0


1{N
�

where again ρ0 is the central value of the density, R0 is the scale length, k

is a dimensionless normalizing constant.

I.1.3 Gravitational lenses

According to General Relativity, matter can act as a lense, bending light

from a straight path and deforming the image of background objects [58]; if

the image of a background source is highly distorted, magnified or multiplied,

we have the strong gravitational lensing, if the background object is only

slightly deformed (usually elongated) we have weak gravitational lensing [58,

59]. Microlensing is also possible: when a foreground object passes in front

a background one (a star or a quasar), the luminosity of the latter spikes,

due to the bending of light ray caused by the mass of the former body.

Both strong and weak lensing have been observed and both call for the

existence of DM: visible matter is not enough to explain observations.

Microlensing has been observed too, but has other applications such

as the discovery of very faint compact objects in our galaxy (the so-called

MACHOs [60] and note 13 on page 10).11

I.1.4 Structure formation - Hot and Cold Dark Matter

Last, but not least, the mere existence of large scale structures (LSS) calls

for the existence of DM, in the form of cold matter (already non-relativisitc

when the LSS formation started).

The problem with LSS formation is twofold. On the one hand, when the

collapse of the promordial H-He gas started, it was still too hot: in these

conditions the collapse is not efficient and takes too much time, therefore

LSS should not yet exist today; moreover, form CMB data, we know that

11It is also used to discover extrasolar planets.
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the inhomogeneities were of the order of 10�5 at time of recombination, two

orders of magnitude too small to explain the LSS we observe today.

Since DM does not interact with radiation, at the time of collapse, it

was colder than baryonic matter and it worked as a potential well allowing

visible matter to collapse faster.

LSS formation can also tell if the DM is cold (non relativistic) or hot

(relativistic).

N-body simulations such as the Millennium Run (in 2005, [61])12 and

the Bolshoi Cosmological Simulation (in 2011, [64]) show that LSS evolved

through a bottom-up process: first galaxies, then clusters and super-clusters;

for this to happen, DM must be cold, since hot DM favors the top-bottom

process (structures are born through successive fragmentations of the pri-

mordial gas nebula [65]).

I.2 What is Dark Matter?

What could DM be? That’s a good question.

Of course, there are black holes, brown dwarves, planets, molecular hy-

drogen clouds and other forms of ordinary matter that do not emit radiation

or that we cannot (yet?) see,13 but observations cannot be explained with

just those objects: according to the general consensus some new form of

matter has to be considered, a form of matter that does not interact with

electromagnetic radiation, or it would observable.

This is were particle physics, in particular SuperSymmetry (SUSY) the-

ories, comes at handy, suggesting the existence of particles, called WIMPs

(Weakly Interacting Massive Particles), that only interact with other parti-

cles through weak or gravitational force (see the reviews [66–68], for example

and section 3.4 of [69]).

Depending on which particular SUSY theory is considered, WIMPs could

be a gravitino (the supersymmetric partner of the graviton), a neutralino

(the supersymmetric neutral partner of the Higgs boson) or a sneutrino

(the supersymmetric partner of the neutrino).

Other possible candidates are the axions; originally proposed as a solu-

12And its evolutions the Millennium II in 2009 [62] and Millennium XXL in 2010 [63]
13Indeed, in our galaxy, compact objects were observed in the halo, the so-called

MACHOs (MAssive Compact Halo Objects) through the microlensing effect [60].
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tion to the strong CP problem (see [70] for an introductory review), theory

predicts that if axions had low mass, the Universe would be filled by these

particles produced in the first moments of life of the Universe.

The existence of sterile neutrinos (right handed, neutral leptons that

only interacts with other particles through gravity [71–73])14 was also con-

sidered as a possible dark matter candidate, but from Planck data it seems

that there is no evidence for the existence of additional neutrinos of any kind

[1].15

Many experiments have been carried out in order to find signals of those

particles both in underground facilities or in satellites in orbit around the

Earth.

Among the others we cite DAMA/NaI and DAMA/LIBRA [74], CDMS

[75], PICASSO [76], PAMELA [77], AMS01 and AMS02 [78], AGILE [79],

FERMI-LAT [80], LUX [81] and ICECUBE [82].

In the literature there are some claim of observations, but none of the

particles supposed to constitute DM has ever been observed directly (nor in-

directly) in an unambiguous way.

DAMA/NaI (at National Laboratory of Gran Sasso), in particular,

found a highly debated signal 6.3σ over the bakground, compatible with

a neutralino-antineutralino annihilation in the DM halo of our Galaxy [83],

but some believe that it might be an effect due to the seasonal expansion

and contraction of the atmosphere (see for example [84, 85]).

The satellite PAMELA found an excess of positrons at energy 1.5   E  
100 GeV that cannot be explained with the usual theory of primary cosmic

rays [86]; this excess was confirmed by AMS02 [87] up to 350 GeV;16 in

[91] authors considered the possibility that the annihilation of neutralinos

throught different (leptonic) channels in the DM halo could be the cause

of the observed excess, but in [92] the same data are explained considering

the emission of positrons from two nearby pulsars (Geminga and Monogem)

finding that ‘no additional exotic source is required to fit the data’, as they

write.

The search for SuperSymmetric particles (not just WIMPs) and new

physics is also one of the scientific aim of the LHC at CERN (but nothing

14The can also mix with other neutrinos and interact with the Higgs boson [71–73].
15The number of neutrinos is found to be 3.30� 0.27 [1].
16Similar results were found also by the baloon-borne experiment ATIC in the spectrum

of e� and e� [88] and by the satellites AMS01 [89] and FERMI-LAT [90].
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has been found up to now [93]).

Another possible explanation for what we call Dark Matter might come

from the following question:

“Is it possible that our understanding of gravity is wrong or incomplete?”

Following this line of thought, MOdified Newtonian Dynamics (MOND)

have been proposed in 1983 by M. Milgrom[94–98] (see [99] for a relativistic

version of the theory, so-called TeVeS, from Tensor-Vector-Scalar).

This theory suggests that Newtonian gravity is only effective at large

accelerations and must be modified at small ones; the scale of acceleration

at which modification to Newtonian gravity are effective is of the order of

10�8 cms�2, see [95]. MOND theories are in agreement with the great part

of the observations [98], but predict too high clusters densty [100].

One could also think of extended theory of gravitation, which include

General Relativity as a special case (see [101] for a recent review).

In this work we choose:

none of the above.

We explore the idea, first suggested in [102] that what we call DM (or at

least part of it) could be a relativistic inertial effect due to the choice of the

splitting of spacetime into space and time (3+1 slicing), i.e. on the choice of

clock synchronization.

A review of ADM Tetrad Gravity (ADM tg) is given in the following

sections.

I.3 ADM tetrad gravity

ADM tetrad gravity (ADM tg, [102–109], first developed in [110]) is

an Hamiltonian reformulation of General Relativity based on the formalism

first developed by R. Arnowitt, S. Deser and C. Misner (hence the acronym

ADM) in 1962 [111] (see also the chapter 21 of [112] and chapter 4 of [113],

on the hamiltonian formalism for Gauge Systems see [114, 115]); unlike the

latter, ADM tg considers tetrads as dynamical quantities, not the 4-metric.

We recall that in the following we use this convention for the signs of the

metric: p�;�,�,�q; we refer to page 129 for other conventions used in this

work.
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I.3.1 Generalities

ADM formalism is based on a 3+1 splitting of spacetime, i.e. one foliates

the spacetime into “well behaved” hypersurfaces (3-space) parametrized by

a function (time); we call them Στ .

As a consequence of the 3+1 splitting, the Einstein Equations also

split17 into a set of 6 dynamical equations (these are the space-space

components and actually evolve the metric)18 and 4 constraints called

the Super-Hamiltonian (time-time component) and Super-Momentum con-

straints (time-space component) ; in addition to these, in both ADM and

ADM tg there are 4 more primary constraints given by the conjugate mo-

ments to lapse (1 constraint) and shift (3 constraint) connected to the gauge

freedom of the choice of the hypersurface of simultaneity (see [103, 116];19

other (secondary) constraints arise imposing the conservation in time of the

primary ones [114, 115].

In ADM tg, the four dimensional spacetime [103, 105]:

� must be globally hyperbolic: in this way the Cauchy problem is well

posed (if the initial conditions on a hypersurface Στ0 at a time τ0 are

given, it is possible, at least in principle, to calculate at every following

time τ all the parameters that specify Στ );

� must be asymptotically Minkovskian (flat);

� must not admit supertranslations; this implies that at spatial infinity,

the conserved ADM 4-momentum is orthogonal to Στ : this naturally

defines a family of asymptotic inertial observer which can be identified

with“fixed stars” (in practice far away objects whose position is known

with great accuracy).

� must be topologically trivial (no singularities, no closed time-like

geodetics . . . ) and diffeomorfic to R3;

� must not admit any kind of symmetry (Killing vector), since the Killing

equations, in the Hamiltonian formalism, pose new constraints that no

one has been able to solve yet.

17On this point see also [103, 112, 113].
186 equations for the ten components of the metric, so there is a fourfold ambiguity:

the choice of coordinate.
19These are called primary constraints in Hamiltonian formalism.
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On Στ , radar coordinates σA � pτ ;~σq are defined;20 the map σA ÞÑ xµ

(where xµ are cartesian coordinates in spacetime) gives the embedding of

the hypersurfaces into the spacetime manifold.

Στ -adapted cotetrads, 4E̊pαq
A
pτ, σrq, are defined by:

4gAB pτ, σrq � 4E̊pαq
A
pτ, σrq 4ηpαqpβq

4E̊pβq
B
pτ, σrq (I.5)

and are given by:$''&''%
4E̊p0q

A
pτ, ~σq �

�
1� npτ, ~σq

	 �
1;~0

	
� lApτ, ~σ q

4E̊paq
A
pτ, ~σq �

�
npaqpτ, ~σq; 3epaqrpτ, ~σq

	
.

(I.6)

Tetrads are given by:$'''&'''%
4E̊Ap0qpτ, ~σq �

1

1� npτ, ~σq
�

1;�npaqpτ, ~σq3erpaqpτ, ~σq
	
� lApτ, ~σq

4E̊Apaqpτ, ~σq �
�

0; 3erpaqpτ, ~σq
	
.

(I.7)

In the previous equations, lApτ, ~σq and its covariant version are the unit

vector normal to Στ .

I.3.2 The York canonical basis and the 3-orthogonal gauge

ADM tg phase space has 32 dimensions (16 configurational variables

and their conjugate momenta, see [105]), but the degrees of freedom are

only 4: the two gravitons’ polarizations and their conjugate momenta; all

other variables are Hamiltonian constraints and gauge variables.

The two gravitons polarizations and their conjugate momenta degrees of

freedom are hidden in the triads 3erpaq and one can extract them using the

canonical transformations described in [106]; at the end of the procedure the

new variables are:

ϕpaq αpaq n n̄paq θr rφ Rā

π
paq
ϕ � 0 π

paq
α � 0 πn � 0 π

paq
n̄ � 0 π

pθq
r π

rφ
Πā

where:

20Not all coordinates are admissible: see [107, 117, 118].
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� The gauge variables are:

– ϕpaq and αpaq: they describe the arbitrariness in the choice of

the tetrad to be associated to the observer (they fix, respectively,

the velocity of the observer and the orientation of the associated

tetrad in the spacetime);

– θr: it describes the arbitrariness in the choice of the 3-coordinates

on Σ;

– n: it is a measure of the packing of the 3-dimensional slices into

spacetime;

– n̄paq specifies which points on two different slices have the same

coordinates;

* π
rφ
9 3K: it is the trace of the extrinsic curvature tensor. It de-

scribes the arbitrariness in the choice of clock synchronization on

Σ;2122

� rφ (the square root of determinant of the 3-metric) and π
pθq
r (the con-

jugate momenta of the Euler angles θr) are solutions, respectively of

the Super-Hamiltonian and Super-Momentum constraints;

� Rā are the two (non-linear) gravitons and Πā are their conjugate mo-

menta;

� All the other variables (they are only conjugate momenta) are con-

straints (this is indicated as � 0).

The natural gauge in this formalism is the so-called 3-orthogonal

Schwinger time gauge [121], where one imposes [108]:

ϕpaq � 0; αpaq � 0; θr � 0. (I.8)

No natural gauge is known for the extrinsic curvature, but we shall see

in chapter 2 that at a Post-Newtonian (PN) level it is possible to make an

ansatz for the mathematical form of its spatial part.

As we shall see, we cannot say anything about the time dependence so

we shall make different guesses and explore their cosequences.

21This is also the York extrinsic internal time, hence the name of the canonical trans-

formation (on the York time and on the problem of time in General Relativity, see [103,

106] and [119, 120]).
22The fact that this is the only momentum among gauge variables is a consequence of

the Lorentzian signature of the metric.
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I.3.3 Linearization of ADM tg - Weak field approximation

Usually, in General Relativity, the weak field approximation is carried

out by postulating a metric of the form [13, 112, 122]:

4gµν � 4ηµν � 4hµν ;
�
|hµν | ;

��Bα 4hµν
�� ; ��BαBβ4hµν

�� 	 ! 1, (I.9)

where 4hµν is a small perturbation of the flat background.

One usually simplifies the form of the Einstein Field Equations by ex-

ploiting the gauge transformation:

4h̄µν ÞÑ 4h̄µν � Bµξν � Bνξµ (I.10)

and requiring that:

2 ξµ � 0, Bµ 4h̄µν � 0, (I.11)

where 4h̄µν is the transverse traceless perturbation. This gauge is called

harmonic or de Donder gauge.

In ADM tg, the weak field approximation is equivalent to a linear ap-

proximation of the theory and can be implemented imposing [108]:

4gAB � 4ηAB � 4hAB , (I.12)

where now 4ηAB is the asymptotic flat Minkowsky metric and, if ζ ! 1 is a

smallness parameter:

4hAB � Opζq and 4hAB ÝÑ 0 at spatial infinity. (I.13)

It can be shown (see [108]) that the metric components are given by:

4gττ � 1� 2np1q; (I.14)

4gτr � �n̄p1qprq; (I.15)

4grs � �δrs
�
1� 2

�
Γp1qr � 2φp1q

	�
. (I.16)

In paper [108] the weak field approximation was used to study charged

particles (with a Grassmannian cut-off of self energy) with electromagnetic

field in a curved spacetime: all the standard results were reproduced.
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I.3.4 Post-Newtonian expansion

Whitin the weak field approximation one can study the slowly moving

particle approximation (v ! c): this is a Post-Newtonian (PN) approxima-

tion, [102].

Considering only uncharged particles and no electromagnetic field, in

[102] it was shown that at order Opc�2q, the first PN order, one has:

np1q � �U
c2
� 1

c

B
Bt

3 rKp1q; (I.17)

n̄p1qprq �
B
B σr

3 rKp1q; (I.18)

φp1q �
U

2c2
; (I.19)

Γp1qr � Opc�4q, (I.20)

where 3Kp1q is the PM approximation (at order Opζ)) of the non-local trace

of the extrinsic curvature, given by:23

3Kp1qpτ, ~σq �
3K

∆
� � 1

4π

»
d3σ1

3Kpτ, ~σ1q
|~σ1 � ~σ| ; (I.21)

and at first order in the PN approximation, one sets [102]:

3Kp1qpτ, ~σq ÞÑ 3 rKp1qpt, ~σq. (I.22)

The equations of motion of the i-th particle with mass mi at the 0.5 PN

order are:

mi~ai � �mi

Ý~∇U �mi
~vi
c

d2

dt2
3 rKp1q, i � 1, . . . , N. (I.23)

The 0.5 PN term (the one at order Opc�1q) is a damp or anti-damp force,

depending on the sign of the total derivatives.

Equation (I.23) can also be recasted in the following, more evocative,

form:
d

dt

�
mi

�
1� 1

c

d

dt
3 rKp1q



vi

�
� �mi

Ý~∇U. (I.24)

This means that the particle has a (position and velocity dependent)

mass whose value depends also on the non local extrinsic curvature 3 rKp1q.

Hence the particle’s mass depends on the choice of the 3+1 splitting and

23∆ is the Laplacian in flat metric, ∆�1 its Green function. It is possible to use the

flat operator, since 3 rKp1q is already at first order in PM expansion (linearization).
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on the choice of the clock synchronization: this leads to a violation of the

equivalence principle only in 3-space, not in the spacetime [102, 109].

The additional 0.5 PN term can therefore be interpreted as DM, which

would be, in this case, only an inertial relativistic effect [109].

I.3.5 DM signatures in ADM tg

In paper [102], some of the observational signatures of DM were studied.

� One can show that the Virial theorem, used, for example, by Zwicky

in his estimate becomes:

1

2
m xv2y � �1

2
xUy � m

2c

B
p~r � ~v q d2

dt2
3 rKp1q

F
. (I.25)

This leads to:

M �Mbaryon �MDM , MDM � RG
c2

B
p~r � ~v q d2

dt2
3 rKp1q

F
. (I.26)

Here, x. . . y stands for a time average over a time longer than any

internal dynamical time scale.

� Weak gravitational lensing The deviation angle is given by:

α �M
4G

c2

~ξ

|ξ| , (I.27)

where ~ξ is the impact parameter of the light ray. This equation leads

to:

M �Mbaryon �MDM , MDM � �2
c2

G
Bt3 rKp1q |~σ|. (I.28)

� Rotation curve of spiral galaxies24 From the equation of motion (I.23),

under the hypothesis that the particle is moving on a circular orbit

(R � constant), we can get the rotation curve of the galaxy by equating

(I.24) to the cetrifugal force and imposing:

v � v0 � v
p1q
,

24This is different from the procedure used in [102], which leads to a formula (equation

(6.16) section VI.D) valid only at large distance R ¡ Rmax where Rmax is the distance

of the farthest particle. Our equation (I.30), on the contrary, is valid for every galactic

distance.
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where v0 is given by the gravitational potential and vp1q is a first order

(i.e. vp1q{v0 ! 1) correction.

The final result is:25

v2 � v2
0

�
1� R

v0

1

c

d2

dt2
rKp1q



; (I.29)

v � v0

�
1� 1

2

R

v0

1

c

d2

dt2
rKp1q



, (I.30)

where in the second line we took the square root and used the fact

that the second term between parethesis is small.

As seen in section I.3.4, the conventions used in astronomy and metrology

are of paramount importance, since the function 3 rKp1q and the amount of

DM depend on them, therefore in the following section we review the current

conventions.

I.4 A review on relativistic metrology

In General Relativity, there is no preferred coordinate system, but as-

tronomy, astrophysics, satellite tracking and high precision positioning ask

questions like ‘Where is this planet right now?’, Where will it be in ten years

from now?, ‘Where is the ISS?’ (the International Space Station), and so

on. To answer this kind of questions one is forced to introduce a definite

coordinate system and this procedure necessarily involves the use of conven-

tions defining the reference system (axis orientation and their origin) and

the reference frame (the practical realization of the reference system, i.e. a

set of objects whose position is known with great accuracy).26

In recent years, General Relativity has become important in high pre-

cision positioning (in missions like GAIA27 for example, in which microar-

25As proven in [108], 3 rKp1q has the dimension of a distance, so the dimensional analysis

is correct.
26In Newtonian theory the problem of choosing a reference system does not exist since

there are preferred systems and observables are easily related to it.
27GAIA (Global Astrometric Interferometer for Astrophysics) is an ESA satellite de-

voted primarily to the creation of a catalogue of about 109 stars, measuring with high

precision their position and its change in time (i.e. the peculiar motionof the star), brigth-

ness and other astrophysical parameters [123].

GAIA was launched on December 2013, but the first data won’t be available until 2017.
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cosecond precision can be achieved) and in high precision time measurements

(Pulsar Timing Array, PTA [124], and Very Long Baseline Interferometry,

VLBI [125], see also chapter 1), therefore it is necessary to give an explicit

definition of the metric, the gauges and the coordinate system to be used

and tranformation functions between different coordinate systems.

It is also necessary to specify what to measure, since, when General

Relativity is involved, great care must be used, and, especially in time and

velocity measurements, one has to be careful to point out which quantity

is referred to which observer and reference system: observer independent

quantities are, therefore, to be preferred.

The International Astronomical Union (IAU28) is in charge of these con-

ventions; here we review their resolutions on reference systems and frames

and the convention on measurements (the resolutions reviewed here were

adopted in 2000 [126] and updated in 2006 [127]).

I.4.1 Reference systems and frames

ICRS The International Celestial Reference System. A kinematically non-

rotating reference system (its axis are fixed with respect objects whose

position is known with great accuracy); its origin is set in the Solar

System Barycenter.

Its realization is the ICRF (International Celestial Reference Frame):

until 2009 the ICRF1 was used (it was a catalogue of 608 extragalactic

radio sources evenly distributed on the celestial vault [125]) and since

2009 the ICRF2 (a caltalogue of 3414 compact radio sources) is used

[128].

ICRS is the reference system to be used in cosmological observations

and, for example, tests on the Cosmological Principle.

BCRS BariCentric Reference System. A kinematically non rotating reference

system whose origin is set at the Solar System Barycenter.

28http://www.iau.org/

http://www.iau.org/
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Its metric is defined as follows:

4g00 � 1� 2
w

c2
� 2

w2

c4
;

4gi0 � �4
wi

c3
; (I.31)

4gij � �δij
�

1� 2
w

c2

	
;

with:

wpt, xq � G

»
d3x1

σpt, x1q
|x� x1| �

G

2c2

B2

Bt2
»
d3x1 σpt, x1q ��x� x1

��, (I.32a)

wipt, xq � G

»
d3x1

σipt, x1q
|x� x1| , (I.32b)

where σ and σi are, respectively, the mass density and current density.

Time is coordinate time, and is denominated TCB.

The de Donder gauge has to be used.29

BCRS is the reference system used for ephemeris measurements, satel-

lite tracking within the Solar System, . . .

Moreover, IAU recommends that all measurements (of position, veloc-

ity, . . . ) are to be referred to this reference system.

Its axes are directed as the ICRS’ ones [127].

In BCRS Solar System is supposed to be isolated, but one can show

that the acceleration due to the galaxy is negligible and so are cosmo-

logical effects (see [129, 130]).

GCRS GeoCentric Reference System. BCRS is not convenient for the mod-

elling of the Earth and its surroundings since in this reference system

the Earth moves, and therefore it experiences a Lorentz contraction in

the direction of the motion; moreover the Earth’s speed is not constant

during the year (because the orbit is not circular and because of the

interaction with other planets) so the contraction changes: this means

that the distance between two point would change with time30 and the

description of satellite orbits would be a very, very hard task. This is

why a new reference is introduced: the GCRS.31

29Because, quoting, ‘considerable work has been done with this gauge’ [126].
30As we will see this is important for VLBI.
31Similar reference systems are introduced also for other planets and are used, mostly,

when describing the orbits of deep space satellites.



22 Introduction

GCRS is a kynematically non-rotating reference system with respect

to BCRS and whose origin is set at the center of the Earth.

Its metric is defined to be:

G00 � 1� 2
W

c2
� 2

W 2

c4
;

Gi0 � �4
W i

c3
; (I.33)

Gij � �δij
�

1� 2
W

c2



;

where the potential W is split into a terrestrial component WE (due

only to the Earth mass) and an external tidal component due to the

presence of the rest of the Solar System Wext:

W �WE �Wext. (I.34)

The same goes for W i; Earth potentials are defined in the same way

as (I.32).

Time is coordinate time and is denominated TCG.

The de Donder gauge has to be used.

GCRS is a local reference system for Earth-based measurements.

Its axes are oriented as the BCRS’ one.

One goes from TCG to TCB, using the formula (valid at first PN order):

T � t p1� LCq � 1

c2

�
~vE � ~rE �

»
dt1
�

1

2
v2
E � wext


�
(I.35)

where:

LC � TCG

TCB
;

it is a constant that is a combination of Earth rotational speed and of the

gravitational potential WE at its surface (see section 1.6 for details).

Last, but not least, if the observer is a satellite with a negligible mass,

one has to consider a different reference system, called the Local one. Again

the metric is similar in form to the previous two, but in the potentials one

has to consider only the external (tidal) term in (I.34).
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I.4.2 Conventions on measurements

Six quantities are needed to define the phase space of an object: its

position and its velocity.

If, in the BCRS, the position of an object is written as:

~r� � pu r�,
the astrometric parameters are [131]:

� The position of the object on the celestial sphere (the direction of pu)

given by two angles: the right ascension, α and the declination, δ;32

� Parallax Π � A

r�
, where A is the Astronomical Unit (the mean radius

of Earth orbit).

Parallax gives the third spatial coordinate;

� The proper motion of the object ~µ � dpu
dtB

(where tB is the time in the

BCRS);

� The astrometric radial velocity is the last of component of the velocity

of the object and is defined as ρ � dr�
dtB

� d

�
A

Π



{dtB.

The case of spettroscopy

Often, the radial velocity is measured using spettroscopic techniques,

measuring the redshift of the object and inverting the formula (valid in the

BCRS, [131]):

1� z �
�

1� ρ

c

	 �
1� U

c2
� 1

2

v2

c2



. (I.36)

At first order, one has, indeed:

ρ � cz, (I.37)

but there are too many unknowns in the higher order terms (see references

[131–134])33: the potential U at the source position is given by numeric

simulations of stellar dynamics and gives corrections of the order of 100 m/s

32They are respectively a ‘longitude’ and a ‘latitude’.
33Gaining control over these unknows is highly desirable (but not feasiblein the near

future [131]) if the spectroscopic measurements of the radial velocity have to rival with

the astrometric ones, which can have an accuracy of the order of 1 m{s [131].
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(gravitational redshift), but one should also consider the effects of convective

motions on the surface of the star which gives corrections of the order -1000

m/s (it is a blueshift, but its actual value strongly depends on the source),

atmospheric oscillations and other phenomena34; the v2 term, which contains

transverse Doppler effect, is not well known either [133].

All those unknowns are summed up in a X�term, and (I.36) is rewritten

as [133]:

1� z �
�

1� ρ

c

	 �
1� U

c2
� 1

2

v2

c2



p1�Xq (I.38)

Because of the X�term, typically, the spectroscopically determined ra-

dial velocity differs from the correct astrometric one by several hundrends

of m/s [132].

34See [131, 132] for the exaustive list of all the phenomena that contribute to the

uncertainty of the radial velocity
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I.5 This work & ADM tg vs IAU conventions

In this work we will use the PN metric defined by eqs. (I.14) to (I.20)

given in section I.3.4; it has the from:

4gττ � 1� 2

c
Bt 3 rKp1q �

2

c2
U (I.39)

4gτr � �Br 3 rKp1q (I.40)

4grs � �δrs
�

1� 2
U

c2



(I.41)

This metric is the one to be used to define the reference systems within the

ADM tg formalism.

Confronting this one with the metric of IAU conventions, we have addi-

tional terms depending on the the non-local extrinsic curvature 3 rKp1q and

its derivatives: this correspond to a redefinition of the proper time of the

observer and to the introduction of frame dragging effects.35

Usually it is assumed that a metric of the form:

ds2 �
�

1� 2
U

c2



c2 dt2 �

�
1� 2

U

c2



dxi dxj (I.42)

where U is the potential, will describe the propagation of light in the galaxy

at order Opc�2q. One can show that this metric has an extrinsic curvature

tensor of order Opc�3q, so the metric is, at the considered order, flat.

We will calculate explicitly the extrinsic curvature tensor of our metric

in chapter 2 and we will see that it has additional terms at the highest order:

we will see, in fact that it has the form:

3Krs � BrBs 3 rKp1q � δrs

�
1

3
3Kp1q



�Opc�3q

where 3Kp1q is the trace of the extrinsic curvature, while 3 rKp1q �
3Kp1q

∆
is

the non-local York time.

We notice that using a Constant Mean Curvature-like gauge (CMC-like),

in which 3Kp1q � constant,36 in particular 3Kp1q � 0, we recover the metric

35The frame dragging effect is present also in the usual formalism but apperas at the

order Opc�3q.
36This is not an “exact” CMC gauge, since we are only fixing the first order of 3K.
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and the results of the usual treatment (losing at the same time the chance

to explain the DM phenomenon as a relativistic inertial effect).

We are not using the de Donder gauge, but the 3-orthogonal one, be-

cause, as explained in section I.3.2 the 3-orthogonal gauge is the natural one

in ADM tg.

Astrometric quantities do not depend on the extrinsic curvature, and

therefore are carried over in ADM tg without modifications.

On the contrary, we will see that additional terms depending on deriva-

tives of 3K will appear (see chapter 2): in a perfect world, confronting the

spectroscopic radial velocity and the one predicted by ADM tg would give

an idea of the mathematical form of 3 rKp1q, but as we saw in section I.4.2

there are too many unknowns in the redshift formula, so this is not feaseble

(at least in the near future), in contrast to what was stated in [102], section

IV.A.1.
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I.6 Plan of the work

In the following chapter, we will calculate analytically at the first PN

order the effects of the extrisic curvature on Pulsar Time Array (PTA) and

on Very Long Baseline Interferometry (VLBI) and on redshift.

Since we are not using all of the IAU conventions, in particular, since our

metric is different than the recommended one, we shall also give an explicit

expression of the Lorentz transformations that link two different coordinate

system: this is necessary since measurements are often done on the Earth

within the GCRS system, but, conventionally, have to be reported in the

BCRS.

In chapter 2 we shall exploit some similarities between our PN metric

and the one given by PN expansion of fpRq theories in order to guess the

spatial part of 3 rKp1q. Time dependence is still unknown, so we shall discuss

different ansatz for the time-dependent part and, finally, we shall rewrite

the results of chapter 1 using these ansatz.

In chapter 3, we shall fit the rotation curve of M31 and estimate the

value of the parameters involved: in this way we can have an idea of how

much DM can be explained as an inertial effect under different hypothesis

on the time dependence.

With these values, we shall calculate the order of magnitude of the ex-

pected delay in the time of arrival of light from some of the isolated pulsars

quoted in [124].

In chapter 4 we shall study the effect of the non-local York time on

the Tully-Fisher relation (we shall find that it changes the behavior of the

relation at small velocities, as is often observed) and we will ask if it is

possible to explain also the acceleration of the universe and the DE in terms

of relativistic metrology.





CHAPTER 1

CALCULATIONS

In the introduction, we gave our definition of the metric at the PN order:

the presence of 0.5 PN terms proportional to 3 rKp1q will affect the propagation

of light in the spacetime; therefore, in this chapter we shall give the general

expression of the null geodetics in PN ADM tg metric.

Looking for some observational signature of the effects of our additional

0.5 PN term, we shall calculate the correction to Pulsar Timing Array

(PTA), Very Long Baseline Interferometry (VLBI) and to redshift due to

the presence of 3 rKp1q.

Finally, measurements are usually carried out on the Earth (or on satel-

lites), but, by convention, they must be referred to the BCRS (see [126, 127]

and section I.4.1); since we are not using the metric recommended by the

IAU, we shall also calculate our transformation law between two different

inertial reference systems (at PN order) and compare it to equation (I.35)

as given by IAU.

29
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1.1 The embedding of the hypersurface

As said in the introduction, section I.3.1, on the hypersurface Στ , we de-

fine radar coordinates σA;1 the embedding of Στ into the spacetime manifold

is given by the map:

σA ÞÑ xµ � zµpτ, ~σq.
Now, if we define the 4-coordinates xµ to be centered on the world line

xµpτq �
�
x0pτq;~0

	
, the world line of a time-like observer fixed at position 0,

Στ is given by the condition x0pτq � const: in this way Στ are hypersurfaces

of simultaneity.

Finally, if the aforementioned world line is the one of an asymptotic

observer, the embedding of Στ into the spacetime manifold is given by [102]:

zµpτ,Ý~σq � xµ0 � εµ
A
σA, (1.1)

where:

εµτ � p1; ~0q and εµr � p0; δirq (1.2)

are the flat asymptotic tetrads.

Equations (1.1) and (1.2) define the embedding that we shall use in the

following.

1.2 Null geodetics

In this section we shall give the expression of the Post-Newtonian ex-

pansion of the null geodetics, written as yµpsq � εµA σ
Apsq � y µp0q.

We call s the affine parameter; it is defined in such a way that the

observer is at s � 1 and the source is at s � 0.

We define pApsq � dσApsq{ds, and we set bA � pAp0q, in this way kµpsq �
εµA p

Apsq is the (null) tangent vector to the geodetic.

Geodesic equations are [102, 112, 122]:

dpApsq
ds

� d2σApsq
ds2

� �4ΓABC p
B pC . (1.3)

The relevant PM Christoffel symbols can be calculated with the formula

[102, 112, 122]:

ΓABC �
1

2
4ηAD

�
4gp1qDB,C � 4gp1qDC,B � 4gp1qBC,D

�
1With the caveats described in [107, 117, 118].
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where 4gp1qAB is the first PM order of the metric; their explict expression is

given in [102], section 2.F.

1.2.1 Post Minkowskian expansion

Post Minkowskian null geodesics in ADM tg were first calculated in [102],

here we briefly review the result: in the following subsection we shall calcu-

late the Post Newtonian expansion.

We have to impose the condition that the geodetics are light-like, so we

have to write:

4gAB b
A bB � 0, (1.4)

where the PM metric 4gAB is given in (I.14)-(I.16). This means that only

three of the four components of bA are free parameters: we choose the spatial

ones, which represent the direction of emission of the light ray.

Substituting the definition of the metric (eqs. (I.14) to (I.16)) in equation

(1.4) leads, therefore, to a condition on bτ , which, at PM order, can be

written as:2

bτ � �
a
~b2 � c�p1qpτ0, ~σ0q, (1.5)

cp1q�pτ0, ~σ0q� 	
a
~b2
�
np1qpτ0, ~σ0q �

°
rpbrq2

�
Γ
p1q
r � 2φp1q

	
pτ0, ~σ0q

�
�

�
¸
r

br n̄p1qprqpτ0, ~σ0q,
(1.6)

where the plus sign is for future oriented geodetics, while the minus sign is

for past oriented ones.

In the following we will only consider future oriented geodesics (as seen

from the source).

2We take the opportunity to correct the wrong formula (4.1) for the definition of

cp1q�pτ0, ~σ0q in [102].
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Integrating equation (1.3), we find:

σrpsq � σrp0q � brs� (1.7)

�
» s

0
ds1

» s1
0

ds2
~b2
�Br np1q � Bτ n̄p1qprq

� pσ0 � b0s2q�

�
» s

0
ds1

» s1
0

ds2 2
a
~b2
¸
u

bu
�
δur Bτ

�
Γp1qr � 2φp1q

	
�

� 1

2

�Br n̄p1qpuq � Bu n̄p1qprq
� �pσ0 � b0 s2q�

�
» s

0
ds1

» s1
0

¸
uv

bu bv
�
2δru Bv

�
Γp1qr � 2φp1q

	
�

� δuv Br
�

Γp1qu � 2φp1q

	 �
pσ0 � b0s2q

for space components, while for the time one, we have:

τpsq � τ0 �
�a

~b2 � cp1q�pτ0, ~σ0q
	
s� (1.8)

�
» s

0
ds1

» s1
0

ds2

�
~b2 Bτnp1q � 2

a
~b2
¸
u

bu Bunp1q
�
pσ0 � b0 s2q�

�
» s

0
ds1

» s1
0

¸
uv

bubv
�
�1

2

�Bu n̄p1qpvq � Bv n̄p1qpuq
�� pσ0 � b0s2q�

�
» s

0
ds1

» s1
0

ds2
~b2 Bτ

�
Γp1qr � 2φp1q

	
pσ0 � b0s2q.

1.2.2 Post Newtonian expansion

Substituting eqs. (I.17) to (I.20) in (1.6), we find:

cp1q�pτ0, ~σ0q � 	
a
~b2

�
� 1

c
Bt 3 rKpτ0, ~σ0q � U pτ0, ~σ0q

c2
�

�
¸
r

pbrq2 U pτ0, ~σ0q
c2

�
�
¸
r

br Br 3 rKpτ0, ~σ0q
(1.9)

while equation (1.7) gives:

σrpsq � σrp0q � brs� 2

c2

» s
0
ds1

» s1
0

ds2
~b2 pBrUq pσ0 � b0s2q� (1.10)

� 2

c2

» s
0
ds1

» s1
0
ds2 b

r bv pBvUq pσ0 � b0 s2q.

Multiplying the last equation by br,3 integrals simplify, so we can find

a simple relation between the affine parameter s (and its differential and

3br are constant vectors and can go in and out of the integrals.
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derivative) and σr:

br rσrpsq � σrp0qs � ~b2 s
ó

s � br
~b2

rσrpsq � σrp0qs , (1.11)

ds � br
~b2
dσr, (1.12)

br
B
Bσr � br

Bs
Bσr

B
Bs �

d

ds
. (1.13)

More over, at the highest order one finds:4

~σpsq � ~σp0q
|~σpsq � ~σp0q| �

~p psq
|~p psq| �

~b

|~b |
�Opζ; c�2q, (1.14)

so �pppsq � �pb is the unit vector that gives the direction of observation and

all previous equations (1.9)-(1.13) simplify:

cp1q�pτ0, ~σ0q � �1

c
Bt 3 rKp1qpτ0, ~σ0q �

¸
r

br Br 3 rKp1qpτ0, ~σ0q; (1.15)

σrpsq � σrp0q � brs� 2

c2

» s
0
ds1

» s1
0

ds2 pBrUq pσ0 � b0s2q� (1.16)

� 2

c2

» s
0
ds1

» s1
0
ds2 b

r bv pBvUq pσ0 � b0 s2q;

s � br rσrpsq � σrp0qs ñ s � |~σpsq � ~σp0q| ; (1.17)

ds � br dσ
r � dσ; (1.18)

br
B
Bσr � br

Bs
Bσr

B
Bs �

d

ds
. (1.19)

The time component of the future oriented geodetics at a generic point

4The notation Opζ; c�2q stands for term at the first PM order further expanded at the

first PN order.
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s becomes:

τpsq � τp0q � τ3K � s
�a

~b2 � cp1q�

	
0
� (1.20)

� 2

» s
0
ds1

» s1
0

ds2

a
~b2 br BrU �

� � |~σpsq � ~σp0q| �1	 cp1q�
�

0
�

� 2

c2

» s
0
ds1

» s1
0
ds2 pbr Br Uq pσ0 � b0 s2q

where (see [102]):

τ3Kpsq �
» s

0
ds1

» s1
0
ds2

�
1

c2
B2
t

3 rKp1q



pσ0 � b0 s2q� (1.21)

� 2

c

» s
0
ds1

» s1
0
ds2

�
br BrBt3 rKp1q

	
pσ0 � b0s2q�

�
¸
uv

bubv
» s

0
ds1

» s1
0

ds2

�
BuBv3 rKp1q

	
pσ0 � b0s2q

is a term that collects all the integral contributions due to 3 rKp1q.

Using the embedding given in section 1.1 (equations (1.1) and (1.2)), we

define:

ri :� εir σ
rp1q, (1.22)

the observer position (with respect to the origin of the coordinates),

Ri :� εir σ
rp0q, (1.23)

the source position (with respect to the origin of the coordinates), and:

pkr
C

:� �εrs pspsq � �εrs bs, (1.24)

the direction of observation.

One now has to integrate the last line of (1.20); each body will give a

logarithmic contribution; only the bodies which are close to the geodetic will

give a non negligible contribution, and this will be maximum at the distance

of maximum approach
���~di��� (on this point, see also [135, 136]).
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With all this, we find the equation of Time Of Arrival (TOA) of a signal

in PN ADM tg:

c t � c t0 � τ3K �
�

1�
�

1

c
Bt3 rK �

¸
r

pkr
C
Br3 rK��

0

���~R� ~r
���� (1.25)

� 2
G

c2

¸
i

log

�� p~r � ~diq � pkC � ���~di � ~ri ����
~R� ~di

	
� pk
C
�
���~di � ~R

���
�� mi.

Where mi is the mass of the i� th body.

Equation (1.25) will be the basis for the future calculations.

The usual formulation gives (see [135, 136], for example):

c t � c t0 �
���~R� ~r

���� 2
G

c2

¸
i

log

�� p~r � ~diq � pkC � ���~di � ~ri ����
~R� ~di

	
� pk
C
�
���~di � ~R

���
�� mi. (1.26)

In both equations eqs. (1.25) and (1.26), the logarithmic term is the

Shapiro time delay [137]; in the first line of equation (1.25) we have two

corrections given by the presence of the extrinsic curvature:

A local one, to be calculated at the source position:

1

c
Bt3 rKp1q �

¸
r

pkr
C
Br3 rKp1q

This is due to the modification of the proper time due to the choice of

the 3+1 splitting of spacetime.

And an integral one, τ3K , whose expression is given in (1.21), its value

depends on the actual path of the light ray in the spacetime and on

the extrinsic curvature of the hypersufaces.

In a Euclidean hypersurface, all these corrections are zero.

In this section we used a general argument and we didn’t specify which

reference system we were using. In the following, unless otherwise specified,

we assume that the observer is set on the Earth and that the reference

system is the BCRS, following the IAU convention [126, 127].
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1.3 Pulsar Timing Array - PTA

1.3.1 Generalities

A Pulsar is a neutron star which emits very regular pulses in the radio

range with a short period (from millisecond to seconds) [138, 139].

It is thought that the pulses are beams of radiation emitted along the

magnetic axis of the pulsar and that their regular and fast emission is due to

the star’s rotation: every time the magnetic axis is oriented in our direction

we register a pulse.5

In Pulsar Timing Array (PTA), one measures the time of arrival for many

pulses for each one of the pulsar in the considered set evenly distributed

on the celestial vault; then one fits the signal with a theoretical function

derived from a model for the astrometric properties of the pulsar (position

and velocity) and of the details of the propagation of the pulse in the galaxy.

Using this model it is possible to calculate the TOA of future pulses; this

expectation is confronted again with the actual pulse: deviations between

the two are called residuals; if these residuals are not a white noise (for

example if the model is constantly ahead the measured TOA), something is

not modeled correctly.

For many pulsars, in the measurement process, one can reach a precision

of the order of 100 ns and residuals are of the same order [140], but for the

millisecond pulsars it is possible to reach a precision of the order of a few

tens of nanoseconds [141].6

There are three main aspects that can be investigated with the PTA:

* Check the stability and the presence of errors in the reference system;

in this case the signature is a monopole: if the reference time is runnig

fast, pulses will be running slow, and vice versa [124];

� Check for errors in ephemeris: if the Earth position is wrong there will

be a dipole-like effect in the time of arrival of the pulses in the array

[124];

5Neutron star are the collapsed nucleus of a star exploded as a Supernova: the high

rotation speed comes from the conservation of angular momentum (this is not valid for

the recicled pulsars, pulsars in binary systems whose spin rate has been speeded up by

accretion of matter from the companion).
6For pulsar PSR J0437-4715 the TOA is known with a precision of 30ns and (root

mean squared) residuals are 200ns [140, 141].
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� Detection of gravitational waves (GWs): in this case the signature is

a quadrupole, due to the GW nature [124, 140, 141].

In this work, we are only interested in the first point, marked with a

star: since the effects of the choice of the 3-space hypersurface on the time

of propagation is always ignored, this should appear as a monopole signature

in the time of arrival.

We notice that in principle, if all the parameters in the time of arrival

equation are known with acceptable accuracy, it is possible to test different

mathematical form for the 3 rKp1q (see chapter 2).

We shall try to esimate at least the order of magnitude of the effect of

the non-local York time in PTA in chapter 3.

1.3.2 Mathematical derivation of the time of arrival of the

pulse

Usually (see [135, 136, 142] for example), it is assumed that the pulsar

has constant velocity
Ý~V , so its position at time tn of the emission of the

n�th pulse is given by:

Ý~Rn �
Ý~R0 �

Ý~V pt̄n � t̄0q (1.27)

where
Ý~R0 and t̃0 are reference initial position and time. Moreover it is

assumed that the pulsar is very far from the observer, so:���Ý~V ��� ptn � t0q !
���Ý~R0

��� . (1.28)

One now has to substitute equation (1.27) in (1.25) for the ADM tg time

of arrival, or (1.26) for the usual one, and expand the logarithmic term and

the distance term keeping in mind (1.28): since in this calculation the extrin-

sic curvature is not involved, nothing changes from the usual calculation.7

The direction of observation

The direction of observation becomes:

pk
C
�

Ý~R0���Ý~R0

��� (1.29)

7See also figure 2.1 for the definitions of the vectors.
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The logarithmic term

Nothing changes in the numerator; in the denominator on the contrary,

one has:

pk
C
�
�Ý~R0 �

Ý~V ptn � t0q
�
�
���Ý~R0 � ~V ptn � t0q

��� �
� R0 �R0

�����1� V

R0
ptn � t0q �

~di
R0

����� � 2R0

where we used the definition of pk and the fact that di ! R0.

So we have:

� 2
G

c2

¸
i

log

�� p~r � ~diq � pkC � |~di � ~ri|�
~R� ~di

	
� pk
C
� |~di � ~R|

�� mi �

� �2
G

c2

¸
i

log
�
~r � pk

C
� |~di � ~r|

�
mi � 2

G

c2

¸
i

mi log r2R0s

Modulo term

We have to substitute equation (1.27) in
���Ý~R� ~r

���:
����Ý~R0 �

Ý~V ptn � t0q � ~r
	 ��� � |R0|

gffe�pk
C
�

Ý~V
|R0| ptn � t0q

�2

�
�

~r

|R0|

2

and expand it in Taylor series.

Only the inner product in the 3-space is needed because of the smallness

of the terms involved, therefore the extrinsic curvature is not involved in

this calculations and Euclidean approximation is enough at this order (see

eqs. (I.16), (I.19) and (I.20)).

This all means that the standard result as quoted in [135, 136, 142] is

still valid.
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Final result

Putting it all togheter, we have the PTA time of arrival in ADM tg :

c ptn � t0q � c
�
t̃n � t̃0

�� 2
G

c2

¸
i

log
�
~r � pk

C
� |~di � ~r |

�
mi�

� τ3K �
�

1� 1

c
Bt3 rK �

¸
r

pkr
C
Br3 rK�

sor

�

�
#��pk

C
� Ý~V
	

∆tn �
�pk

C
� ~r
	�

� 1

2R0

�
r2 �

�pk � Ý~V 	2
�
�

� 1

R0

�Ý~V � ~r �
�pk

C
� Ý~V
	 �pk

C
� ~r
	�

p∆tnq�

� 1

2R0

�
V 2 �

�pk
C
� Ý~V
	2
�

∆t2n

+
(1.30)

where we set:

t0 � t̃0 � 2
G

c3

¸
i

mi log r2R0s � R0

c
, (1.31)

the reference ‘initial’ time.

The usual treatment gives the expression (see [135, 136, 142]):

c ptn � t0q � c
�
t̃n � t̃0

�� 2
G

c2

¸
i

log
�
~r � pk

C
� |~di � ~r |

�
mi�

�
��pk

C
� Ý~V
	

∆tn �
�pk

C
� ~r
	�

� 1

2R0

�
r2 �

�pk
C
� Ý~V
	2
�
�

� 1

R0

�Ý~V � ~r �
�pk

C
� Ý~V
	 �pk

C
� ~r
	�

p∆tnq�

� 1

2R0

�
V 2 �

�pk
C
� Ý~V
	2
�

∆t2n.

(1.32)

Again, confronting (1.30) and (1.32), we have the local and integral cor-

rections (second line of equation (1.30)) coming from the extrinsic curvature.



40 CHAPTER 1. CALCULATIONS

Time

Source

pt0, ~r0pt0qq

Station 1

pt1, ~r1pt1qq

Station 2

pt2, ~r2pt2qq

Barycenter

ptB;~0q
~kC

Figure 1.1: Scheme for VLBI in the BCRS with the definition of the various

quantities needed in equation (1.33).

Vertical lines represent schematically the line of universe of the object they pass

through.

The baseline vector in the BCRS is ~b � ~x1pt1q � ~x2pt2q.

The unit vector pn is not drawn: it is the unit vector from the Solar System

Barycenter to the center of the Earth.

1.4 Very Long Beseline Interferometry - VLBI

In Very Long Baseline Interferometry, one measures the time of arrival

from the same source in two different, Earth-based and far away stations

and subtracts the results (see figure 1.1): in this way it is possible to obtain

very accurate measurements of position of celestial bodies that can be used

for the construction of reference frames (see [125, 128] for the construction of

the ICRF1 and ICRF2 with this technique). At the same time, VLBI gives

unmatched informations on the Earth orientation and position and also on

plate tectonics [143].

VLBI are interesting also in Black Hole physics: the Event Horizon Tele-

scope is the project to use existing and planned VLBI structures to study

the environment of a black hole, its spin, its accretion rate and more [144].

For each station, one gets a result similar to equation (1.30) (or (1.32)

in the usual treatment) and, after subtracting, various terms simplify, in

particular, in our case, the local correction drops out, since it has to be

calculated at the source position in both cases.

As far as the integral correction is concerned, the limits of integration are

not the source and the Earth anymore, but the positions of the two stations:

so this corrective term is completely negligible, since the integral has to be
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made only on continental distances.

This means that in ADM tg there is no substatantial corrections due to

the extrinsic curvature and the equation of time delay is the usual one as

given, for example, in [135, 136]:

c pT1 � T2q � �
�pk

C
� ~b
	 �

1�
pk
C
� p~ve � ~ω2q

c

��1

�

�
�
1� 2U � 1

2

xv2
C
y

c2

�
�

� ~vC �~b
c

� 1

2

�pk
C
� ~vC

	 �
~b � ~vC

	
c2

�

� 2
GM@
Ac2

�pk
C
� pn	 � ~b

1� pk
C
� pn

(1.33)

where ~b is the baseline vector, pk
C

is the direction of observation, ~ω2 is the

geocentric rotational speed of the second antenna, ~vC is the BCRS Earth

speed, U is the potential of the Solar System at the center of the Earth plus

the potential of the Earth at the equator and pn is the Sun-Earth unit vector

(see figure 1.1).8

1.5 Redshift

Redshift can be calculated from the definition:

1� z :� drtobs
drtsor , (1.34)

where, rtobs and rtsor are, respectively the proper time at the observer and at

the source position. This must be expanded in the following way:

1� z � drtobs
dtobs

dtobs
dtsor

dtsor

drtsor (1.35)

where the tobs and tsor are the coordinate time at the source and observer

position.

In PN ADM tg metric, the proper time (at PN order) is given by (see

(I.14)):

drti � dti

�
1� U

c2
� 1

c
Bti 3 rKp1q



i = {obs, sor}, (1.36)

8Only the Sun is considered because other bodies in the Solar System give corrections

that are too small.
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and tobs is given by equation (1.25), while tsor is linked to the latter by [131]:

tobs � tsor � R

c
� log

�
2R

A



2GM

c3
. (1.37)

where R is the distance between source and observer and A is a reference

distance ([131] uses the astronomical unit).

Substituting everything in (1.34), we find (ρ is the radial velocity of the

source, and v is the magnitude of its velocity):

1� z �
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rK � vr

c
Br3 rK


sor

�

�
�

1� dτ3k

dt

1

c
� ρ

c



�

�
�

1� v
C

c

	
�

�
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rK � vr

c
Br3 rK


C

(1.38)

where we omitted the derivative of the logarithmic term of (1.37) since,

tipically it gives correction of the order 0.3 mm/s [131] while stellar velocities

are of the order of hundrends of km/s and modern measurements precision

is about 1m/s [131];9.

The usual formula for redshift as measured by an observer on the Earth

is [131]:

1� z �
�

1� 1

2

v2

c2
� U

c2



sor

�
1� ρ

c

	
�

�
�

1� v
C

c

	 �
1� 1

2

v2

c2
� U

c2



C

(1.39)

In order to get the redshift at the Solar System barycenter, one just

has to repeat the whole procedure with an observer fixed in the barycenter

where the potential is zero by definition, see [133]; the results, respectively

9Nevertheless, there are cases in which this term might become important: for example

when microlensing is involved [133].
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on ADM tg and in the usual case are:10

1� z �
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rK � vr

c
Br3 rK


sor

�

�
�

1� dτ3k

dt

1

c
� ρ

c



(1.40)

1� z �
�

1� 1

2

v2

c2
� U

c2



sor

�
1� ρ

c

	
p1�Xq (I.36)

Confronting equation (1.38) and (1.39) (or (1.40) and (I.36)), we see

that we have various corrections coming from the extrinsic curvature, both

at the source and at the observer position (first and last line of (1.38)): these

corrections arise from the change in the definition of the proper time and

from the frame dragging effect due to the 4g0r term; furthermore, we have a

correction in the second line of (1.38) (or (1.40)), coming from the integral

term τ3K (see equation (1.21)), that directly influences the radial velocity of

the source.

All these corrections are currently “hidden” in the X�term of equation

(I.36), and won’t be observable until all the other sources of uncertanties

(convective motion at the surface of the star, atmospheric oscillations, . . . ,

see [131–134] for the exhaustive list) will be under control.

10In the last case we include all the unknown in the X�term (see section I.4.2) and

references [131–134].
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1.6 Lorentz transformation

Measurements are usually carried out on Earth (using GCRS), while

IAU recommends to report them in BCRS, so we need a the Lorentz trans-

formation between the two reference systems; the transformation of time

coordinate between the two systems is of course of utmost importance for

the arguments of the previous sections.11

Here ~v is the relative speed between the two reference systems (the ve-

locity of the Earth in the BCRS); pT, ~ξq are the GCRS, while pt, ~xq are the

BCRS one; the metrics of the reference systems have the form described in

sections I.3.3 and I.3.4 other conventions used here are listed in the table at

page 129.

All calculations will be at the order Opc�2q.

1.6.1 Calculations

We start by considering the following coordinate transformation from

the BCRS and a primed system in which the metric is (locally) flat (see

[112] and also [135, 136]):12

$''''&''''%
dt1 �

�
1� U

c2
� 1

c

B
Bt

3 rKp1q



dt� 1

c
Br 3 rKp1q dx

r

dx1r �
�

1� U

c2



dxr

(1.41)

At order Opc�2q, the Lorentz transformation between the primed refer-

ence system and the Earth one is given by:$'''''''&'''''''%

dT �
�

1� 1

2

v2

c2


 �
dt1 � vr

c2
dx1r




dξr � dx1r � 1

2

vr vs

c2
dx1s �

�
1� 1

2

v2

c2



vr dt1

(1.42)

Substituting the definition of primed coordinates (1.41) in the Lorentz

transformation (1.42), we find the transformation from GCRS coordinates

11See also [145] on this topic.
12This primed coordinate system is actually a (co)tetrad, since it transforms the metric

given by eqs. (I.14) to (I.16) into a flat metric (see [112], section 39.10, on this point).
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to BCRS ones:$''''''''''''''''''''''&''''''''''''''''''''''%

dT �
�

1� 1

2

v2

c2


 ��
1� U

c2
� 1

c
Bt3 rKp1q



dt�

� 1

c
Br3 rKp1q dx

r � vr
c

�
1� U

c2



dxr

�

dξr �
��

1� U

c2



δrs �

1

2

vr vs
c2

� 1

2

v2

c2
Bs3 rKp1q

vr

c

�
dxs�

�
�

1� 1

2

v2

c2



vr

c
Bs3 rKp1q dx

s�

�
�

1� 1

2

v2

c2


 �
1� U

c2
� 1

c
Bt3 rKp1q



vr dt

(1.43)

At order Opc�2q, we have the transformation rule from the BCRS�
T, ~ξ

	
to the GCRS pt, ~x q in ADM-tg:

$''''''''''''''''&''''''''''''''''%

dT �
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rKp1q



dt�

�
1

c
Bs3 rKp1q �

vs
c2



dxs

dξr �
��

1� U

c2



δrs �

1

2

vr vs
c2

� 1

2

v2

c2
Bs3 rKp1q

vr

c

�
dxs�

�
�

1� 1

2

v2

c2



vr

c
Bs3 rKp1q dx

s�

�
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rKp1q



vr dt

(1.44)

Inverting the relations (1.43) and keeping only terms linear in U and

at most at order Opc�2q, we have the transformation rule from the GCRS

pt, ~x q to the BCRS
�
T, ~ξ

	
in ADM-tg:

$'''''''&'''''''%

dt �
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rKp1q �

vs

c
Bs3 rKp1q


 �
dT � vs

c
dξs
	

dxr �
�

1� U

c2


 ��
δrs �

1

2

vr vs
c2



dξs � vr

�
1� 1

2

v2

c2



dT

�
.

(1.45)
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We notice that, at this order, in the transformation from the GCRS to the

BCRS only the time-time transformation involves the non-local York time
3 rKp1q, while in the inverse relation 1.44 it is involved in a more complicated

way.

With the usual treatment, the Lorentz transformation from the GCRS

to the BCRS is [145]:$'''''''&'''''''%

dt �
�

1� 1

2

v2

c2
� U

c2


 �
dT � vs

c
dξs
	

dxr �
�

1� U

c2


 ��
δrs �

1

2

vr vs
c2



dξs � vr

�
1� 1

2

v2

c2



dT

�
.

(1.46)

1.6.2 Time transformation rule

For a clock at rest on the Earth, we have dξr � 0 pr � t1, 2, 3uq, therefore,

the time-transformation from GCRS to BCRS and the inverse from the

BCRS to GCRS are given respectively by:

dt �
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt3 rKp1q �

vs

c
Bs3 rKp1q



dT (1.47)

dT �
�

1� 1

2

v2

c2
� U

c2
� 1

c
Bt 3 rKp1q �

vs

c
Bs 3 rKp1q



dt (1.48)

The difference with respect the usual transformation rule (see [145]) arise

from the modification of the proper time and from the frame dragging efffect

given by 4g0r.

Now, following closely the usual treatment of [135, 136], the potential

at the clock position on the Earth, Up~ξC q, can be split into a component

due to the Earth mass wEp~ξC q and one due to the rest of the Solar System

wextp~ξC q; the latter can be further decomposed with a Taylor series, into:13

wext � wextp~ξC q � ~∇wext
���
~ξ
C

� ~ξC � wextp~ξC q � ~aC � ~ξC . (1.49)

More over, one needs to take into account the rotation of the Earth, so:

~v � ~vrot � ~vC ñ v2 � v2
rot � v2

C
� 2~v

C
� ~vrot (1.50)

13~a
C

is the acceleration of the Earth in the BCRS.
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Substituting back into (1.47), we find:

dt � dT

�
1� LC � ~a

C
� ~ξ
c2

� wext
c2

� 1

2

v2
C

c2
�

� 1

c
BT 3 rKp1q �

�
vrrot
c

� vr
C

c



Br 3 rKp1q

� (1.51)

where:

LC :� wE
c2

� 1

2

v2
rot

c2
(1.52)

this must be compared with the one given by IAU, which we rewrite here

(I.35) (see also [135, 136]):

dt � dT

�
1� LC � ~v

C
� ~ξ
c2

� wext
c2

� 1

2

v2
C

c2

�
In the second line of (1.51), we separated out the additional terms due

to the extrinsic curvature. LC is the same in both equations (see page 129).



48 CHAPTER 1. CALCULATIONS

1.7 Summary of the chapter and discussion

In this chapter we calculated the time of arrival (TOA) of a light signal

from a source to the Earth and found that there are two different contribu-

tions due to the extrinsic curvature (see equations (1.26), (1.25)): a local one

(to be valuated at the source position) coming from the redefinition of the

proper time in ADM tg and an integral one given by equation (1.21) which

depends on the path followed by the light and by the extrinsic curvature of

the 3-hypersurface (all these corrections are zero for an Euclidean 3-space).

Then, in order to find some observational signature for the effects of the

0.5 PN terms, we applied our formula to the case of PTA and VLBI:

� We found no (significant14) contribution in the VLBI due to the ex-

trinsic curvature: this means that the catalogues already in use are

not affected by the choice of the hypersurface and can still be used to

define a reference frame.

Even if the reference frame built through VLBI does not depend on

the convention used for the splitting, the reference system it defines,

does: a careful choice of this latter can be used to get rid of part of

the DM and possibly DE (see also [109]).

� We found two different contributions in the PTA depending on the

extrinsic curvature: in principle one could use our formula (1.30) to

calculate the time delay and compare it with the measured one to gain

some information on 3 rKp1q.

Usually the needed astrometric parameters for the pulsars (position

and velocity) are fitted with the time delay formula, but in [146], au-

thors suggest the use of VLBI to determine the astrometric parameters

of pulsars, since it would improve dramatically the precision of the pro-

cedure and reduce the time of observation.15

The problem, here, is that VLBI measurements are done in ICRS,16

while the PTA measurements are done in BCRS, so a tranformation

14We remind that the integral correction survives, but the integration limit are the

positions of the two receivers on the Earth.
15A pulsar has to be observed for many years before the errors on parameters and the

residuals become accepatble (in [147], authors use observations made over a span of 10

years).
16They actually define it! (see [125] and section 1.4)
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function between the two reference systems has to be defined. In [146]

this is done supposing that the two systems are simply rotated by a

small angle, so one can define a tranformation matrix of this kind:

Ω � I�

��� 0 Az �Ay
�Az 0 Ax

Ay �Ax 0

��

where I is the identity matrix and the parameters Ai are fitted with

a minimization procedure. It is possible to show that the error on the

rotation parameters scales as 9 1?
N

, where N is the number of the

pulsars considered, so the bigger the sample the smaller the statistical

error.

In our case, since the VLBI does not depend on 3 rKp1q, one should rather

use this method to deduce astrometric parameters for the pulsars, then

try to fit the other parameters, in particular the non-local York time,

keepeng the astrometric ones fixed, since this might resolve possilbe

degeneracy among 3 rKp1q and other parameters.

One should, nevetheless, be careful in this process, since even if the

VLBI measurements do not depend on the choice of 3 rKp1q, the PTA

measurements do, so in the transformation matrix Ω there is a hidden

dependence on the non-local York time and on the choice of hypersur-

face of simultaneity.

We also showed that the redshift formula is modified by the non-local

York time (equation (1.38)), in particular the (derivative of the) integral cor-

rection directly affects the definition of radial velocity: in a perfect world,

confronting the radial velocity as measured with spectroscopy with the as-

trometric one, would be a very good and clean way to determine the effects

of the non-local York time, but, as we discussed in the introduction (section

I.4.2, see also references [131–134]), there are too many uncertanties in the

redshift formula for it to be useful in the determination of the 3 rKp1q: our

correction must be added to the error budget.

Finally, IAU recommends that all measurements must be referred to the

BCRS [126], but many are done on the Earth in the GCRS, therefore the

Lorentz transformation between the two reference system is needed and we

calculated it in section 1.6. Since we are not using the IAU-recommended
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metric, the transformation is different from the one reported in [126], in

particular, we found that for a clock fixed on the Earth17 only the time

transformation depends on 3 rKp1q, and we explicitly gave its expression in

equation (1.51).

We explicitly considered the case of an observer on the Earth, when the

observer is a satellite (GAIA, for example), another level of transformation

must be added to connect the local reference system to the GCRS and then

to the BCRS: equations (1.45) and (1.44) are completely general and can be

used to derive the needed transformations, remembering that the satellite

has negligible mass and so it gives no contribution to the potential; it is now

easy to show that the transformation between the satellite time Tsat and the

GCRS one, T , is given by an epression similar to (1.47) and (1.48):

dTsat �
�

1� 1

2

v2
sat

c2
� Uext

c2
� 1

c
BT 3 rKp1q �

vssat
c
Bs 3 rKp1q



dT (1.53)

where now Uext is only the tidal potential on the satelltite and ~vsat is the

satellite orbital velocity.

Without an explicit mathematical form for the 3K̃p1q, one can only go

this far.

In the next chapter we will make the guess that its spatial part has a

Yukawa-like form along with different ansatz for the time dependent part

and study their effect.

Later on (chapter 3) we shall estimate the order of magnitude of the

effects of 3 rKp1q.

17This is the case for PTA measurements , for example.



CHAPTER 2

AN ANSATZ FOR 3
rKp1q

In this chapter we shall make the guess that the spatial part of 3 rKp1q

has a Yukawa-like form and then rewrite the results of the previous chapter

using this function in section 2.4

This ansatz comes from a similarity between our PN metric and the PN

metric of fpRq theories, so we shall first briefly review these modified gravity

theories in section 2.1.

Our guess only fixes the spatial part of the non-local York time, but the

time-dependence is left unknown so we will discuss two different possible

choices (the most straightforward ones) for this part and their effects on PTA

and redshift: we will consider a linear ansatz in which the time dependence

is linear and a time free ansatz in which there is no time dependence (3 rKp1q

is constant in time).

The consequences of a general time dependence will be explored in chap-

ter 3 when we shall fit the rotation curve of the Andromeda galaxy, M31,

with the intent to estimate how much DM can be considered as a relativistic

inertial effect under different hypothesis on 3 rKp1q.

In section 2.3 we shall also give an analytical expression for the tensor

of extrinsic curvature 3Krs at order Opc�3q.

51
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2.1 fpRq Post Newtonian expansion

fpRq theories, where R is the Ricci scalar, are extended theories of gravity

whose lagrangian is given by:

Lf � c4

16πG

»
d4σ

?�g fpRq. (2.1)

This is meant to replace the Hilbert-Einstein one:

LHE � c4

16πG

»
d4σ

?�g R (2.2)

that gives the usual Einstein Field Equations (see [13, 112, 122]. In both

the previous equation �g is the determinat of the spacetime metric.

From the theoretical point of view, the function f is constrained by the

fact that the above lagrangian (2.1) must contain the Hilbert-Einstein one,

so:1

fpRq � R� R2

2
f2p0q � . . . ; (2.3)

more over, the Principle of Equivalence must be respected, but fpRq is other-

wise completely free. fpRq is nevertheless constrained from the experimental

point of view, in particular the Solar System and stellar dynamics impose

strong constraints on its derivatives (see for example the review [148]).

Recent reviews on fpRq and extended theories of gravity can be found

in [101, 149–153]; we are primarily interested in its PN expansion; this can

be found in [148] (see also the references therein).

The metric (written in spherical coordinates) in the PN approximation

1If one considers a Taylor expansion of the type:

fpRq � a�R� R2

2
f2p0q � . . . ;

the constant a behaves like a cosmological constant: this can be seen by comparing the

former equation with the action:

LHE Λ � c4

16πG

»
d4σ

?�g pR� 2 Λq

which gives the correct Einstein Equations with a cosmological constant Λ.
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can be written as [148]:

gtt � 1� 2
GM

c2

1

r p1� δq � 2
GM

c2

δ

1� δ

1

r
exp

�
� r

L

	
; (2.4)

grr� �
�
1� 2GM

c2 r p1� δq � 2
GM

c2 r

�
1

L
� 1

r



exp

�
�1

r


 �
δ

1� δ


�
; (2.5)

gθθ � �r2; (2.6)

gϕϕ � �r2 sin2 θ. (2.7)

Yukawa-like terms appear in equations (2.4) and (2.5);2 we notice they

are of the same order as the usual Newtonian potential (Opc�2q). In partic-

ular, from the former equation, one can read off a new effective gravitational

potential:

Φeff prq � � GM

p1� δq

�
1� δ exp

�
� r

L

	� 1

r
. (2.8)

In this potential, the mass is corrected in the following way:

M ÞÑ M

1� δ
(2.9)

and δ is a measure of the importance of the Yukawa-like term (if δ � 0 one

recovers the usual Newtonian potential; in [148, 152], δ � 1{3 is used when

fitting rotation curves of spiral galaxies or the profile of clusters of galaxies

respectively).

δ is actually an arbitrary function of time (see [148]), but is assumed

constant: in this way M and L are a constants too; as a consequence, in

particular, L can be interpreted as a lenght scale of the additional Yukawa

interaction.

In [148], the authors review the effect of the Yukawa term on Jeans

instability and stellar structure, rotation curves of spiral galaxies and on

the dynamics of elliptical galaxies and study the observational constraint

imposed by the Equivalence Principle and the Solar System.

2They are a consequence of the presence of quadratic term in the action(2.1) (see

[148]).
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In particular they show that it is possible to explain the behavior of

rotation curves without a DM halo, using only the Yukawa term and the

modified potential (2.8).3

2.2 An ansatz for 3
rKp1q

First of all, we assume that 3 rKp1q can be separated into an explicitly

time-dependent and a space-dependent functions:

3 rKp1qpt, ~rq � ∆ptqY p~rq. (2.10)

We will now explain our ansatz for the two functions.

2.2.1 The spatial part Y p~rq

Our ansatz for the spatial function Y p~rq, comes from a comparison be-

tween the time-time component of the metric (2.4) and ours as given in

equation (I.14) with the lapse given in (I.17); we rewrite them both here:

gττ � 1� 2
U

c2
� 2

c
Bt 3 rKp1q; (1.51)

gtt � 1� 2
GM

c2

1

r p1� δq � 2
GM

c2

δ

1� δ

1

r
exp

�
� r

L

	
. (2.4)

So we impose that the time derivative of the non-local York time has a

Yukawa-like form:

Bt 3 rKp1q ÞÑ Bt ∆ptq 1

|~r | exp

�
�|~r |
L



� δptqY p~rq. (2.11)

2.2.2 The time-dependent part ∆ptq

We have no information on the time-dependent term ∆ptq; we can any-

way make different choices:

(a) We make no real hypothesis and leave ∆ptq as a free function. We will

not consider this in this chapter, but only in chapter 3, when we will fit

the rotation curve of the M31 galaxy.4

It can be seen that r∆ptqs � rLs2.

3They use simulated galaxies.
4Only time averaged values of the derivatives of δ can be found in this way, as we shall

see in chapter3.
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(b) δptq is quasi constant or constant,5 so that B2
t

3 rKp1q � 06 and ∆ � τ δ � c t δ.

With this choice, the non-local York time becomes:

3 rKp1qpt, rq � τ
δ

r
exp

�
� r

L

	
�

� c t
δ

r
exp

�
� r

L

	
.

(2.12)

As shown in [108], 3 rKp1q has the dimension of a length: simple dimen-

sional analysis shows that: rδs � rLs.
We will call this ansatz the “linear ansatz”.

(c) The ansatz:

3 rKp1qpt, rq �
δ1

r
exp

�
� r

L

	
, (2.13)

in which the time does not appear at all, would simplify greatly the

calculations and the interpretation of our results,7 but we remind that,8

for example, the weak lensing formula depends on Bt 3 rKp1q which would

be zero in this ansatz and therefore, in this case, weak gravitational

lensing would be a real effect of actual DM.

We shall also see in chapter 3 that the fit of the M31 (the Andromeda

galaxy) rotation curve is much worse in this case and a greater amount

of “real” DM is needed (actually almost all of it is needed, see table 3.7).

It can be shown that rδ1s � rLs2.

We will call this ansatz the “time free ansatz”.

We shall see in chapter 3 that, depending on which of the previous hy-

pothesis on the time dependent part we choose, different amounts of DM

can be described as an inertial effect.9

5This is similar to what authors did in [148, 152], fixing δ � 1{3 when fitting rotation

curves and density profile of clusters with fpRq theories.
6This derivative appears in τ3K (1.21) and on the rotation curve (I.30).
7We shall see that time appears in rotation curves and in redshift expression using the

linear ansatz and in the general case: this will require a time average.
8See the introduction, section I.3.5, equation (I.28).
9In fact, we will see in chapter 3, that, in the case (a) with no hypothesis on the

mathematical form of ∆ptq, one can dispense with the DM halo in the case of M31, while

in case (c), only about 3% of DM can be eliminated (at least for radii   35 kpc), see table

3.7.
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2.2.3 A consideration on the space coordinate

We notice here that, since our aim is to give an explanation to the

phenomenon of DM, the ‘r’ that appears in (2.11) must be the distance

from the source to the galactic center, and not from the the barycenter of

the Solar System, so in our reference system (the BCRS), we must actually

write (we use a generic time dependence):

3 rKp1qpt, Rq � Y pRq∆ptq �

� ∆ptq����~R� ~r
	
� ~R@

��� exp

���
����~R� ~r

	
� ~R@

���
L

�� (2.14)

at the source position, while at the Earth position we have:

3 rKp1qpt, rq � Y prq∆ptq �

� ∆ptq���~r � ~R@

��� exp

���
���~r � ~R@

���
L

�� �

� ∆ptq���~R@ ��� exp

���
���~R@ ���
L

��
(2.15)

where ~R and ~r are the positions of the source and of the Earth in BCRS, and
~R@ is the distance of the Solar System from the galactic center (� 7.6 kpc

[154], see the figure 2.1 for all the definitions); it is usually directed as the y

axis both in ICRS and BCRS (see [131], for example).

One last note: modules in the previous equation can be calculated in the

usual (Euclidean) fashion, since 3 rKp1q is already at PM order; we will see

that this will be useful in the next chapters, when we will need to calculate

angles between vectors, since trivial geometry and trigonometric relations

such as the Law of Cosines will be the only things needed.10

Before we move to the calculation of the effect of our ansatz on the PTA

and on redshift, we give the analytical expression of the extrinsic curvature

tensor.

10At higher orders, this will not do, since we are not making any hypothesis on the

geometry of the 3-space.
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Solar System

Barycenter

Earth

Source
p~ R

�
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q�

~ R
@
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~r
~RC � ~R@ pk

C

~R@

θ

Figure 2.1: Scheme and definitions for the calculations that follow.
~R@, the distance of the Solar System barycenter from the galactic center, and
~RC, the distance of the Earth from the galactic center, are approximately equal,

the difference being 1 astronomical unit over distances of the order of 10 kpc

(one astronomical unit is about 5 � 10�9 Kpc).

2.3 Analytical form of the tensor of extrinsic cur-

vature at 1st PN order and its trace 3Kp1q

From the definition of the non-local York time 3 rKp1q, we can calculate the

analytical form of the trace of the extrinsic curvature of the hypersurfaces

at the first PN order:11

3 rKp1q �
3Kp1q

∆
ñ 3Kp1q � ∆ 3 rKp1q. (2.16)

This gives (we consider a generic time dependence, the case (a) in section

2.2.2):

3Kp1q �
∆ptq
L2

Y prq. (2.17)

With trivial dimensional analysis, it can be checked that in all of the

cases considered in the previous section,
�
3Kp1q

� � rLs�1, as was stated in

[108].

The extrinsic curvature tensor of the hypersurfaces at the first PN order

is [102]:

3Krs � Br Bs 3 rKp1q � δrs

�
1

3
3Kp1q



�Opc�3q

� ∆ptq
�
Br Bs Y prq � 1

3
δrs

Y prq
L2



�Opc�3q.

(2.18)

11∆ is the flat Laplacian and ∆�1 is its Green function, see [102, 108, 109].
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As we mentioned in the introduction (section I.5), while the usual met-

ric gives 3Krs � Opc�3q, in our case we have additional terms at the

higher order; only in the particular CMC-like gauge 3Kp1q � 0, we have
3Krs � Opc�3q (we remind that in this gauge all the usual results are recov-

ered).

This (extrinsic) curvature of the 3-manifold is the source of the Dark

Matter phenomenon: we conventionally impose that the 3-space is flat and,

as a consequence, we see the DM; instead, if we changed the conventions,

we could get rid of it.

2.4 Reformulation of previous results

In this section we rewrite the results of chapter 1 using the ansatz given

in the previous section.

We will only consider the linear and the time free ansatz.

We notice that, since we interpret the 0.5PN terms depending on the

non-local York time as ‘Dark Matter’, when calculating these terms we are

basically trying to evaluate the effect of DM on both the PTA and the redshift.

In the next chapter’s section 3.5.2, we shall estimate the effect of “ac-

tual” DM distributed in a halo with the profile described in [155] (see our

equation (3.24)) and of the average potential of the galactic disc on this kind

of measurements in order to have a comparison between the two different

interpretations.12

2.4.1 The integral correction τ3K

We found in section 1.2.2 that the integral correction was given by:

τ3Kpsq �
» s

0
ds1

» s1
0
ds2

�
1

c2
B2
t

3 rKp1q



pσ0 � b0 s2q�

� 2

c

» s
0
ds1

» s1
0
ds2

�
br BrBt3 rKp1q

	
pσ0 � b0s2q� (1.21)

�
¸
uv

bubv
» s

0
ds1

» s1
0

ds2

�
BuBv3 rKp1q

	
pσ0 � b0s2q

12We shalll find that the effect of actual Dark Matter is actually negligible (it is of the

order of 10�15 � 10�12 s), unlike our 0.5 PN correction (which is of the order of 10 ns),

see section 3.5.
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In order to calculate the previous integrals, one should remember the

relations given in section 1.2.2: section 1.2.2):

d

ds
� br Br ds � dσ.

More over, the following formulae prove to be useful:» s
a
ds1

» s1
a
ds2

d2 F ps2q
ds 2

2

� �F paq � F psq � pa� sq dF
d s

(2.19)

d

ds

» s
a
ds1

» s1
a
ds2

d2 F ps2q
ds 2

2

� �dF
ds

���
a
� dF

ds

���
s

(2.20)

The linear ansatz

If we consider the first case of the previous section (the linear ansatz),

the first line of equation (1.21) is null, while for the third line one should

use the equation (2.19); at the end we have:

τ3KpRq � 2 δ

» |R�r|
|r|

Y prq dr�

� δ τ

�
Y pRq � Y prq �

����~R� ~r
���� |~r |

	 �pkr
C
BrY prq

	
sor

�
.

(2.21)

The first line comes from the mixed derivative Bt Br, while the second from

the double derivative in space; integration always start at the Earth position

in BCRS since measurements are done on the Earth.

At the highest order,13 τ �
���~R� ~r

���, so:

τ3KpRq � 2 δ

» |R�r|
|r|

Y prq dr� (2.22)

� δ
���~R� ~r

��� �Y pRq � Y prq �
����~R� ~r

���� |~r |
	 �pkr

C
BrY prq

	
R

�

The time-free ansatz

If we use the time-free ansatz, both the first and the second line in (1.21)

are zero, and we are left with:

τ3KpRq � �δ1
�
Y pRq � Y prq �

����~R� ~r
���� |~r |

	 �pkr
C
BrY prq

	
R

�
(2.23)

13We consider only the highest order, since 3 rKp1q � δ Y pRq is already at PM order (see

equations (1.8) and (1.20)).
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2.4.2 Redshift and radial velocity

The linear ansatz

In our redshift formula (1.38), we had the time derivative of the integral

correction. Going back to equations from (1.16) to (1.20), in section 1.2.2,

we have (at the highest order):

1

c

d

dt
� 1

c

B s
B t

d

ds
� �

�
~vsor
c

� ~v
C

c



� pk

C

d

ds
(2.24)

where the minus sign comes from equation (1.24) so we can use (2.20) in the

third line of (1.21), and then transform back to the ~R and ~r variables. The

result is:14

1

c

dτ3K

dt
� 2pk

C
�
�
~vsor
c

� ~v
C

c



δ Y pRq�

� δ

�
~vsor
c

� ~v
C

c



� pk

C

�
Y pRq � Y prq�

�
�
τ pk

C
� Ý~∇Y

	
R
�
�
τ pk

C
� Ý~∇Y

	
r

�
�

� 2pk
C
�
�
~vsor
c

� ~v
C

c



δ Y pRq�

� δ

�
~vsor
c

� ~v
C

c



� pk

C

�
Y pRq � Y prq�

�
���~R� ~r

���
�� 1���~R� ~R@

��� � 1

L

�
Y pRq pk
C
� pksor�

� |~r |
�� 1���~r � ~R@

��� � 1

L

�
Y prq pk
C
� pkobs

�

The first lines comes from the second line of (1.21), while all the others come

from the third line; ~vsor and ~v
C

are respectively the velocity of the source

and of the Earth with respect the BCRS, and where we put:

pksor � ~R� ~R@���~R� ~R@

��� pkobs � ~r � ~R@���~r � ~R@

��� �
~R@���~R@ ��� . (2.25)

14In the last two lines the terms
���~R� ~r ��� and |~r | arise from the time dependence of the

3 rKp1q and the fact that at the highest order τ �
���~R� ~r ���.
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the direction of the source and of the Earth with respect the Galaxy canter;pk
C

is the direction of observation and is given in (1.24).

In the case the observer is set in the barycenter of the Solar System,

~v
C
� 0 and ~r � 0, so:14

1

c

dτ3K

dt
� 2pk

C
� ~vsor

c
δ Y pRq�

� δ
~vsor
c

� pk
C

�
Y pRq � Y p0q �

���~R ��� pk
C
� Ý~∇Y

���
R

�
1

c

dτ3K

dt
� 2pk

C
� ~vsor

c
δ Y pRq�

� δ
~vsor
c

� pk
C

�
Y pRq � Y prq�

�
���~R ���

�� 1���~R� ~R@

��� � 1

L

�
Y pRq pk
C
� pksor

�
(2.26)

We notice that, in the first and in the second lines, ~vsor � pk � ρ, the

radial velocity of the source with respect the BCRS.

We can finally write the redshift in the Solar System barycenter with the

linear ansatz as:

1� z �
�

1� 1

2

v2

c2
� U

c2
� δ

c
Y prq � δ

τ

c
vr Br Y prq



sor

�

�
�

1� ρ

c

�
1� δ Y pRq � δ Y p0q �

���~R ��� δ Y 1pRq
	� (2.27)

where we used the notation:

Y 1paq � pk
C
� Ý~∇Y

���
a

(2.28)

We see that the integral correction gives rise to a direct correction to

the radial velocity (second line) depending on the value of the Yukawa-like

function at the source position and its derivative evaluated both at the source

and at the observer position; there is also a correction in the first line given

by the change in the definition of proper time.

For completeness, the redshift as measured on the moving Earth is given
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by:

1� z �
�

1� 1

2

v2

c2
� U

c2
� δ

c
Y prq � δ

τ

c
vr Br Y prq



sor

�

�
�

1� ρ

c

�
1� δ Y pRq � Y prq �

���~R� ~r
��� δ Y 1pRq � |~r | δ Y 1prq

	
�

� δ pk
C
� ~vC
c

�
Y pRq � Y prq �

���~R� ~r
��� Y 1pRq � |~r | Y 1prq

	�
�

�
�

1� 1

2

v2

c2
� U

c2
� δ

c
Y prq � δ

τ

c
vr Br Y prq



C

(2.29)

We notice that in the third line there is a correction depending on the Earth

motion proportional to the Yukawa-like function and its derivatives: these

kind of term is absent in the usual redshift function.

We notice further that in both cases there is an explicit dependence on

time τ : we can get rid of it if we remember that at the highest order, we

have τ �
���~R� ~r

��� at the source (first line of both (2.27) and (2.29)) and |~r |
at the Earth position (last line of (2.29)).

The time free ansatz

With the time free ansatz, we can repeat all the previous calculations

using equations (1.21) and (2.20), keeping in mind that in the former only

the last line is non null.

For an observer in the Solar System barycenter, we have (using again

the notation (2.28)):

1� z �
�

1� 1

2

v2

c2
� U

c2
� δ1

vr

c
Br Y prq



sor

�

�
�

1� ρ

c

�
1� δ1 Y 1pRq � δ1 Y 1p0q

	� (2.30)

while for an observer on the Earth:

1� z �
�

1� 1

2

v2

c2
� U

c2
� δ1 vr Br Y prq



sor

�

�
�

1� ρ

c

�
1� δ1 Y 1pRq � δ1 Y 1prq

	
� δ pk

C
� ~vC
c

�
Y 1pRq � Y 1prq

	�
�

�
�

1� 1

2

v2

c2
� U

c2
� δ1 vr Br Y prq



C

(2.31)

In both cases, no difficult to explain residual time dependence is left.
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2.4.3 PTA

Linear ansatz

In order to show the effect of our ansatz on the equation for PTA in the

case of the linear ansatz, we have to substitute (2.22) in (1.30), and expand

the term
���~R� ~r

��� like we did in section 1.3.2. The result is:15

c ptn � t0q � c
�
t̃n � t̃0

�� 2
G

c2

¸
i

log
�
~r � pk

C
� |~di � ~r |

�
mi�

� 2 δ

» |R�r|
|r|

Y pr1q dr1�

�
�

1� δ Y prq � δ
�

1�
���~R� ~r

���� |~r |
	
Y 1pRq

�
�

�
#��pk

C
� Ý~V
	

∆tn �
�pk

C
� ~r
	�

� 1

2R0

�
r2 �

�pk � Ý~V 	2
�
�

� 1

R0

�Ý~V � ~r �
�pk

C
� Ý~V
	 �pk

C
� ~r
	�

p∆tnq�

� 1

2R0

�
V 2 �

�pk
C
� Ý~V
	2
�

∆t2n

+
(2.32)

Time free ansatz

In this case, we have to substitute equation (2.23) in (1.30), remembering

that in this case Bτ 3 rKp1q � 0; the result is:

c ptn � t0q � c
�
t̃n � t̃0

�� 2
G

c2

¸
i

log
�
~r � pk

C
� |~di � ~r |

�
mi�

� δ1
�
Y pRq � Y prq �

����~R� ~r
���� |~r |

	
Y 1pRq

�
�

�
�

1� δ1 Y 1pRq
�
�

�
#��pk

C
� Ý~V
	

∆tn �
�pk

C
� ~r
	�

� 1

2R0

�
r2 �

�pk � Ý~V 	2
�
�

� 1

R0

�Ý~V � ~r �
�pk

C
� Ý~V
	 �pk

C
� ~r
	�

p∆tnq�

� 1

2R0

�
V 2 �

�pk
C
� Ý~V
	2
�

∆t2n

+
(2.33)

15One should also remember that at the highest order τ � |~R� ~r |
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2.5 Summary of the chapter and discussion

In this chapter, we exploited a similarity between the form of the ADM

tg PN expansion of the metric and the PN expansion of the metric in fpRq
theories making the ansatz that the spatial part of the 3 rKp1q has a Yukawa

form.

We notice that even if the two metrics (1.51) and (2.4) have a similar form

(at least in the time-time component), the interpretation of the Yukawa-like

terms and the origin of Dark Matter is completely different:

� In the fpRq theories, the Yukawa correction comes as a consequence

of the modification of the Hilbert-Einstein action, in particular as a

consequence of the quadratic terms in the Taylor expansion of fpRq
(see [148] and reference therein, where it is shown that the length scale

L of the Yukawa interaction is proportional to the second derivative

of the fpRq function): this is an actual potential that modifies the

Newtonian action (they are of the same order, Opc�2q).
The consequence of this additional real potential is DM: when fitting

the rotation curves using Newtonian gravity,16 we are using the wrong

theory of gravity and as a consequence we see DM;

� In our case, the Yukawa-like term is a choice for the gauge fixing of

the trace of the extrinsic curvature of the 3-space in the 3+1 splitting

formalism.17 This is not a true potential, but a relativistic inertial

effect, and so is DM.

In all the present measurements, even if it is never mentioned explicitly,

we conventionally use a flat 3-space and as a consequence we see DM.

We notice that the choice we made of the Yukawa-like 3 rKp1q is just

a possibility among others: as pointed out in [102, 109] one should

choose the form that cancels out most of the DM.

Since we have no clue of its actual form, we made two different guesses

for the time dependent part ∆ptq:
16According to the general consensus Newtonian gravity is enough when describing the

dynamics of galaxy (see also [155]).
17We mentioned in the introduction, section I.3.2, that the 3K is the only gauge variable

for which there isn’t a natural gauge fixing.
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(b) The linear ansatz :

3 rKp1q � c t δ
1

|~r | exp

�
�|~r |
L



(2.12)

(c) The time free ansatz:

3 rKp1q � δ1
1

|~r | exp

�
�|~r |
L



(2.13)

We also mentioned that it is possible to consider the more general case

in which we make no hypothesis on the form of ∆ptq, but we will do this in

the next chapter when fitting the Andromeda rotation curve.

As was stressed in subsection 2.2.3, in the two equations (2.12) and

(2.13), the spatial coordinate ~r is the distance from the center of the galaxy,

since the 0.5 PN term is meant to describe (at least part) of the Dark matter.

Using (2.12) and (2.13), we recalculated the TOA for the PTA and the

redshift formula:

� In the redshift formulae (equations (2.27) and (2.30)) there are two

corrections: the one in the first line due to the change in the definition

of proper time and then there is a direct contribution to the radial

velocity coming from the derivative of τ3K .

In the case of the linear ansatz, in the next chapter we will see that the

direct contributions to the radial velocity is of the order of few percent,

so the absolute effect is of the order of a few kilometers per second (we

notice that this is of the same order of magnitude of the effects due

by the convective motions on the star surface [132–134] and, therefore,

are hidden by the latters).18

� In PTA The results for the linear and the time free ansatz are given in

equations (2.32) and (2.33); the usual form is given in (1.32). In both

equations the 0.5PN corrections are in the second and third line.

We shall see in the next chapter that the contribution of the 0.5 PN

terms in the case of the linear ansatz are of the order of � 10 ns19 and

possibly observable in the future using millisecond pulsars (see section

1.3 and references [140, 141]).

18The time free ansatz gives results out of scale: see chapter 3.
19Also in this case the time free ansatz gives corrections out of scale, see chapter 3.
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Enough with calculations!

In the next chapter we shall use the ansatz described i this chapter to fit

the rotation curve of the Andromeda galaxy: we shall try to find out wich

ansatz best describes the data and how much Dark Matter can be eliminated

and considered a relativistic inertial effects.

Then we will come back to our Galaxy and estimate the effects of the

0.5 PN terms on PTA and redshift.



CHAPTER 3

FITS AND NUMBERS

In this chapter we shall fit the rotation curve of M31 (the Andromeda

galaxy) with our function (I.30).

Using the three different hypothesis for the time dependence of 3K̃p1q

described in section 2.2, we shall find in section 3.2 which form fits better

the data and how much DM can be considered as an inertial effect in M31.

In order to do this, we fit 7 different models:

� The “usual model”, mutuated from [156], in which there is an actual

Dark Matter halo and no Yukawa-like terms (we use this as a basis for

comparison with the other models);

� Three models in which there is no DM halo at all (and accordingly

called “no DM ”): we use the ansatz described in the previous chapter

to substitute it;

� Three “hybrid models” in which we admit the possible existence of an

actual DM halo along side with the Yukawa terms: these are a mix of

the previous two.

Our models of rotation curve are fitted to data taken from [157] using a

Markov Chain MonteCarlo (MCMC) code.

We then come back to our galaxy in section 3.5 and, only for the linear

and time free ansatz, we use parameters estimated before to have at least

an idea of the order of magnitude of the effect of the 0.5PN term on PTA

67
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and on redshift measurements. We shall also use the thick disk + bulge +

actual DM halo models for our Galaxy described in [155] to calculate the

effect of the average galactic potential and “actual” DM on PTA.

The rationale for using M31 also in the estimate of the 0.5PN effects on

the PTA and redshift in our Galaxy is that M31 is similar to ours and this

should suffice for an order of magnitude estimate.

3.1 M31 rotation curve

In this section we build the model for the M31 rotation curve given by

the formula (I.30), which we rewrite here:1

vpRq � v0pRq
�

1� 1

2

R

v0pRq
1

c

d2

dt2
K̃p1q



3 rKp1q �

∆ptq
r

exp
�
� r

L

	
under one of the three guesses for ∆ptq discussed in the previous chapter

(section 2.2.2):

(a) No hypothesis on the form of ∆ptq;

(b) The linear ansatz (2.12);

(c) The time free ansatz (2.13).

As already said in the introduction of this chapter, at the end we will

have 7 models:

1. The “usual model”, mutuated from [156], in which there is an actual

NFW halo of DM (we use this as a basis for comparison with the other

models);

2. Three models in which there is no DM halo at all. We use the ansatz

described in the previous chapter. We will call these models “no DM”

(a), (b) and (c) depending on which guess for the non-local York time

we are considering (see the list above);

3. Three “hybrid models” ((a), (b), (c), depending on which guess for

the ∆ptq we are using) in which we admit the possible existence of

an actual DM halo together with the Yukawa terms: these are an

intermediate case between the previous two.

1v0pRq is the usual “Newtonian” rotational velocity, see the introduction I.3.5 and the

following sections.
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We use the usual case estimate for comparison when calculating how

much DM can be explained as an inertial effect in the hybrid case and to fix

the disk and bulge parameters.

In the next subsections, we first present the mathematical functions we

used for Bulge, Disk and DM halo (mutuated from [156]) and for the 0.5PN

term.

3.1.1 The bulge, the disk and the Dark Matter halo

For the bulge, we consider a Hernquist profile [155, 156]:2

MbpRq �Mb
R2

pLb �Rq2 (3.1)

ΦbpRq � � GMb

Lb �R
(3.2)

v2
b pRq � GMb

R

pLb �Rq2 �
GMb

Lb

R

Lb

�
R

Lb
� 1


�2

(3.3)

where Mb is the bulge total mass and Lb is its scale length.

For the disk, we consider a flat disk model [155, 156]:

MdpRq � 2πΣ0 L
2
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�
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2A central black hole is usually considered too, but its mass, estimated to be

p5.6 � 0.7q � 107[158] is important for the dynamics of the galaxy only at radii   20

pc [156], so we neglect it in the following.
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where Σ0 is the disk superficial mass density, Ld is the disk scale length and

In and Kn are the modified Bessel functions, respectively of the first and

second kind of order n.

We estimated the four parameters of bulge and disk only in the case of

the usual model: in all the other cases they were kept fixed at the value we

obtained (we only want to compare the ‘DM halos’).

We consider a DM halo with a NFW profile (see equation (I.4) in the

introduction) whose squared-velocity field is given by:

v2
hpRq �

4πGρh L
3
h

R

�
� R

R� Lh
� ln

�
R� Lh
R


�
(3.7)

The parameters are the density of the halo ρh and its scale length Lh.

3.1.2 The 0.5 PN term

We can write the 0.5PN term as:

d2

dt2
3K̃p1q � :∆ptq Y pRq � 9∆ptq v0

u Bu Y pRq �∆ptq v0
u vs

0
Bu Bs Y pRq (3.8)

where Y pRq is the Yukawa function.

We need to average over time to eliminate the explicit dependence over

t:3 B
d2

dt2
3K̃p1q

F
� δ1 Y pRq � δ2 v0

u Bu Y pRq � δ3 v0
u vs

0
Bu Bs Y pRq (3.9)

This is for the “no prior” (a) case.

For the linear (case (b)) and the time free ansaz (case (c)), we have,

respectively:4B
d2

dt2
3K̃p1q

F
� δ c v0

u Bu Y pRq � δ4c v0
u vs

0
Bu Bs Y pRq (3.10)

d2

dt2
3K̃p1q � δ1 v0

u vs
0
Bu Bs Y pRq (3.11)

The velocity ~v0 that appears in these equations is the speed at order

zero, given only by the total Newtonian potential:

v0
2 � vb

2pRq � vd
2pRq � vh

2pRq (3.12)

3We have to consider a time scale much longer than the typical dynamical time scale

(longer than the galactic year, for example).
4No time average is needed for the time free ansatz.
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3.1.3 Data for the M31 rotation curve

The rotational velocity as a function of the galactic radius up to about

35 kpc used in this work is listed in table 3.1.

Data are taken from [157], where the authors measure the rotational

velocity of the Andromeda Galaxy using HI regions assuming an angular

distance of 780 kpc from the Sun5 and a bulk velocity of -300 km/s.6

Table 3.1: Rotation curve of M31 up to 35 kpc, data from [156].

R Vrot δVrot R Vrot δVrot

(kpc) km/s km/s (kpc) km/s km/s

5.68 235.5 17.8 21.45 227.6 28.8

6.81 242.9 0.8 22.47 226.0 28.8

7.95 251.1 0.7 23.50 225.7 28.8

9.08 262.0 2.1 24.52 227.5 28.8

10.22 258.9 6.9 25.54 227.4 28.8

11.35 255.1 5.7 26.56 225.6 28.8

12.49 251.8 5.7 27.58 224.4 28.8

13.62 252.1 7.4 28.60 222.3 28.8

14.76 251.0 18.6 29.62 222.1 28.8

15.89 245.5 28.8 30.65 224.9 28..8

17.03 232.8 1.0 31.67 228.1 28.8

18.16 232.0 14.2 32.69 231.1 28.8

19.30 235.7 4.6 33.71 230.4 28.8

20.43 229.3 13.8 34.73 226.8 28.8

5In photometric measurements, distances between two objects are given by the sepa-

ration angle: if one knows the (angular diameter) distance from the two objects and the

receiver, one can calculate the actual distance (in kpc) of the two objects.
6The bulk velocity of the whole galaxy must be subtracted from the measured velocity

of the HI region if one wants its rotational velocity.
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3.2 The Markov Chain MonteCarlo (MCMC)

In every case, the fit is done with a random-walk Metropolis-Hastings

MCMC (Markov Chain Monte Carlo with gaussians priors on parameters

[159, 160]), written with Python 2.7: see appendix B for a description of

MCMC method and generalities on Bayesian approach.

In each model, we considered two chains 1.5 � 106 elements long78. In

MCMC simulations, there is a so-called burn in phase in which the code is

looking for the region of the parameter space where the maximum of the

likelihood lies, therefore the initial part has to be eliminated from the final

chains: it is just a matter of choice how long the burn in phase is, therefore

we eliminated 90% of elements (in this way we were in the maximum area and

also we could deal with much smaller files): our final chains were therefore

3 � 105 elements long.

We used the Gelman and Rubin test to check the convergence of our

parameters: in every model and for each parameter the index R � 1 less

then 0.01, only in the no DM (c) model we had R � 1 � 0.1 for the δ1 and

δ1 parameters.

The acceptance rate for our models was between 0.2 and 0.4 (if the

acceptance rate is too high, the code does not sweep fast enough through

the parameter space, if it is too low, then the convergence is too slow; this

is just rule of thumb, but in random walk MCMC code an acceptance rate

between 0.2 and 0.5 is considered desiderable [159, 160].)

3.2.1 Our likelihood

We now call Vrot the vector of the measured rotational velocities as a

function of the galactic radius (from table 3.1) and Vthpparq the vector of

our rotational velocities as calculated with equation (I.30) depending on the

parameters par that define our model. We also introduce the (covariance)

matrix:

C � pdiag tδVrotuq2

7The convergence was very slow for models other than the usual one: we did not

investigate this issue: using other MCMC codes instead of the Metropolis-Hastings, such

as the Gibbs sampler [159, 160] could solve this problem.
8Even if the convergence was much faster then the other cases, we used 1.5 � 106

elements long chains also in the usual case.
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where the δVrot are given in table 3.1. Then, for each model, our likelihood

is given by:

L9 exp

�
�1

2
pVrot �VthqT � C�1 � pVrot �Vthq

�
where n is the number of parameters and T stands for vector trasposition.

Likelihood are defined less than a multiplicative constant (the normal-

ization factor): Central Limit Theorem guarantees that in many cases (and

ours is one of them) it is well approximated by a multivariate Gaussian [161],

so we set:

L � 1a
p2πqn det C

exp

�
�1

2
pVrot �VthqT � C�1 � pVrot �Vthq

�

3.2.2 Constraints on parameter space

Since MCMC sweeps the whole parameter space, we have to impose some

constraint in order to avoid non physical results. The number of constraints

cannot be greater than the number of parameters.

In the ‘usual case’, we impose that all the parameters are positive defi-

nite, since they are densities and length scales.

In all the other cases, we impose that the lenght scale L of the Yukawa

function, the central density of actual DM halo and its scale length (when

considered) are all positive definite. Since we know nothing on δ, δ1 . . . , in

these cases we are free to set other constraints: we choose to impose that

v2
rot ¡ 0.

3.2.3 Error estimate

We estimate the errors on parameters assuming each element (cj) of our

final chains is an independent measurement of the parameter; in this way

the (aspectation) value of the parameter pi is given by the average:

pi � 1

N

Ņ

j�0

cj (3.13)

where N is the length of ou final chains (3 � 105 elements); the relative

error is given by the square root of the variance:

δpi �
gffe 1

N � 1

Ņ

j�0

ppi � cjq2 (3.14)
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3.3 Results

In this section, we describe the results of our fits.

First, we consider the usual case and we make a comparison between

this and the model by [156] calculating the masses of the various M31 com-

ponents.

Then we discuss separately the cases (a), (b) and (c); for the hybrid

models we also use our halo parameters to calculate the mass of the Dark

Matter component within 35 kpc (these values are summed up in table 3.7

and in figure 3.10, we plot the halo masses for each model in function of the

galactic radius).

A comparison among the models is done in the following section 3.4.

3.3.1 The usual case

In table 3.2 we list the parameters obtained in our fit; for comparison,

in the same table, we write the results of the fit by [156] (authors do not

consider the same dataset as our: they use velocity dispersion from [162],

rotational velocity data from [163] and surface brightness data from [164]).

Figure 3.1 displays the fitted rotation curve for this case as a full black

line together with the separated contribution given by the bulge (purple

dash-dotted line), the disk (red dash-dotted line) and the halo (blue dash

dotted line); finally, the thick red line is the model from [156].

The total Dark Matter inside a sphere of radius R is given by the equa-

tion:

Mp  Rq �
» R

0
4π ρhprq r2 dr (3.15)

where ρh is given in (I.4).

With the parameters given in table 3.2, we find:

Musp  35q � 1.75 � 1011M@. (3.16)

In figure 3.2 we plot the mass of the luminous part (bulge+disk, respec-

tively from equations (3.1) and (3.4)), the halo and of the total mass of M31

as a function of the radius, for our model (thick lines) and for the [156] one

(dashed lines); in figure 3.3, we plot the ratio between the total mass in the

two models extrapolated up to 300 kpc.

A few comments on the table 3.2 and on figures 3.2 and 3.3:
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� The two bulges are about of the same dimensions;

� Our disk is more dense then in [156], but we have a smaller length

scale; as a result:

� The luminous part of the galaxy has the same dimension in both the

models (see the almost overlapping red thick and red dashed lines in

figure 3.2);

� Our Halo is less dense and has a longer length scale; as a result:

� Within a radius of 35 kpc, our halo is about 20% smaller then the one

obtained in [156] (see the purple thick and dashed lines in 3.2).

� Considering the total mass within a radius of 35 kpc, our M31 is about

25% smaller than in [156] (see figure 3.3);

� Up to 300 kpc the mass of the two models differ of about 17 %.
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Table 3.2: Results from our fit for the usual case and comparison with the fit

done by [156].

OUR FIT

Mb Lb Σ0 Ld ρh Lh

(�1010 M@) (kpc) (108 M@ kpc
�2) (kpc) (107 M@ kpc

�3) (kpc)

3.3� 0.1 0.7� 0.1 5.00� 0.03 5.1� 0.1 2.6� 0.04 8.65� 0.07

FIT BY GEEHAN ET AL. [156]a

Mb Lb Σ0 Ld ρh
b Lh

(�1010 M@) (kpc) (108 M@ kpc
�2) (kpc) (107 M@ kpc

�3) (kpc)

3.3 0.61 4.6 5.4 3.8 8

a Authors report the confidence ellipses for the parameters, but do not write explicitely the

errors.

, a The authors actually write ρh � ρcr δh, where ρcr � 277.72h2M@ kpc
�3 is the critical

density and δh � 27.0 � 104 is a dimensionless parameter (they use the value h � 0.71

km/s/Mpc).

Figure 3.1: The fit of the rotational velocity of the M31 galaxy in the usual

case. The black thick line is the result of the fit, the dot-dashed lines are the

single contributions of bulge (purple), disk (red) and halo (blue). The blue dots

with their errors bars are the data reported in table 3.1. Finally, the red thick

line is the fit from[156].
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Figure 3.2: Mass of the various components of M31 and the total mass as

a function of R, up to 35 kpc: in red the luminous components (bulge+disk),

in purple the halo and in blue the total mass of the galaxy; thick lines are our

model, dahed lines are [156] model.

Figure 3.3: Difference between the total masses of our model and the one

from [156] as a function of the galactic radius.
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3.3.2 No priors on δ (case (a))

In table 3.3 we list the parameters obtained in our fits for the case (a)

(no priors on ∆ptq) both in the “no DM” and in the “hybrid” case.

Figure 3.4 displays the fitted rotation curves: the full black line is for

the hybrid case, the dashed black line is for the case of no ‘real’ DM.

In the hybrid case, the total DM within 35 kpc is:

Mpaqp  35kpcq � 2.5 � 1010M@. (3.17)

Table 3.3: Results from our fit with no priors on ∆ptq.We list the results of our fit

for the case in which no DM is considered (first line) and the case in which the DM

halo is considered (second line).

Model

0.5 PN term DM

δ1a δ2a δ3a L ρh Lh
(105 kpc2/s2) (105 kpc2/s) (104 kpc2) (kpc) (�107 M@) (kpc)

No DM (a) 5.8� 37.1 1.02� 0.29 0.98� 0.08 117.3� 20.8 // //

Hybrid (a) �7.8� 45.0 1.00� 0.05 0.99� 0.01 85.9� 20.3 0.95� 0.27 5.8� 2.9

a Time dependence is a consequence of the derivations and the time average.

Figure 3.4: We report here our fit of the M31 rotation curve for the case (a),

calculated with the parameters listed in table 3.3. The thick black line is the

hybrid case (a), the dashed black line is the ‘no DM’ case. The blue dots and

relative errors are the measured rotation curve (from table 3.1).
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3.3.3 The linear ansatz (case (b))

In table 3.4 we list the parameters obtained in our fit for the case (b)

(time free ansatz) both in the “no DM” and in the “hybrid” case.

Figure 3.5 displays the fitted rotation curves: the full black line is for

the case with the ‘real’ DM halo, the dashed black line is for the case of no

‘real’ DM.

In the hybrid case, the total DM within 35 kpc is:

Mpbqp  35kpcq � 1.0 � 1011M@. (3.18)

Table 3.4: Results from our fit for the linear ansatz, with and without DM halo.

We list the results of our fit for the case in which no DM is considered (first line)

and the case in which the DM halo is considered (second line).

Model

0.5 PN term DM

δ δ4
a L ρh Lh

(kpc) (kpc s) (kpc) (�107 M@) (kpc)

No DM (b) 0.057� 0.004 0.46� 0.02 16.7� 1.3 // //

Hybrid (b) 0.031� 0.004 0.23� 0.03 8.6� 1.3 3.3� 0.2 6.2� 0.4

a Time dependence is a consequence of the time average.

Figure 3.5: We report here our fit of the M31 rotation curve for the case (b),

calculated with the parameters listed in table 3.4. The thick black line is the

hybrid case (b), the dashed black line is the ‘no DM’ case. The blue dots and

relative errors are the measured rotation curve (from table 3.1).
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3.3.4 The time free ansatz (case (c))

In table 3.5 we list the parameters obtained in our fit for the case (c)

(time free ansatz) both in the “no DM” and in the “hybrid” case.

Figure 3.6 displays the fitted rotation curve: the full black line is for the

case with the ‘real’ DM halo, the dashed black line is for the case of no ‘real’

DM.

In the hybrid case, the total DM within 35 kpc is:

Mpcqp  35kpcq � 1.7 � 107M@. (3.19)

Table 3.5: Results form our fit for the time free ansatz, with and without DM

halo. We list the results of our fit for the case in which no DM is considered

(first line) and the case in which the DM halo is considered (second line).

Model

0.5 PN term DM

δ1 L ρh Lh

(kpc2) (kpc) (�107 M@) (kpc)

No DM (c) p�1.77� 0.02q � 104 82.3� 13.5 // //

Hybrid (c) 664� 247 10.2� 1.4 3.3� 0.1 8.0� 0.2

Figure 3.6: We report here our fit of the M31 rotation curve for the case (c),

calculated with the parameters listed in table 3.4. The thick black line is the

hybrid case (c), the dashed black line is the ‘no DM’ case. The blue dots and

relative errors are the measured rotation curve (from table 3.1..
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3.4 Models comparison and comments on the re-

sults of our fits

In this section we will make a comparison between our models and then

consider the hybrid cases to see how much actual Dark Matter is still needed.

3.4.1 Model comparison

Since we are not dealing with nested models,9 the comparison between

the models cannot be done with the usual likelihood-ratio test,10 therefore

we use the Akaike test (see [165, 166]): among a set of models i describing

the same data set,11 each with maximum likelihood Li and pi parameters,

the model for which the quantity (the Akaike Information Criterion):

AICi � �2 lnLi � 2pi (3.20)

is a minimum is the best one to describe the considered data set.

As pointed out in [165], this is not a null hypothesis test : it says that

the model describes the data better thant the others, no confidence level is

given.12

In table 3.6 we sum up the number of parameters, the logarithm of the

maximum likelihood and the AIC value for each model and in the figure 3.7,

we report the results of our test.

We see that the one with the minimum AIC value is the hybrid (b) (linear

ansatz with a NFW halo). The second and third best are the No DM (a)

and hybrid (a) (no hypothesis on the ∆ptq function). It must be said that

9Two models A and B are nested if, say, all the parameters A are contained in the set

of parameters B.

In our case this is true for the hybrid and no DM models (the latter is nested in the

former), but this is not true in the other cases: .
10In this test, one calculates the ratio B the likelihood of the considered model with a

reference model (the null hypothesis, which in our case would be the Usual model), then

the quantity �2 lnB behaves approximately as a χ2 distribution with a number of degrees

of freedom equal to the difference of the paramters of the two models (see [161, 165]).

In our case, the null hypothesis would be the usual case and it is not nested with the

others, this is why we cannot use the test ratio.
11This is fundamental [165].
12This is on contrast to the ratio test, which gives selects the model which best describes

the data and gives information on the confidence levels.
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these three model describe quite well data at small radii, but describe quite

poorly the data at larger radii.

We notice further that the case No DM (c) (the time free ansatz) is the

worst (its AIC is 3386, while the AIC of the best model is 53, see table 3.6).

The fact that the usual case gives such a bad result in confront with

our models (except the cases (c)) might be a hint that the NFW halo was

too näıve a choice: more complicated models might give better results and

challenge ours.

Table 3.6: In this table we sum up number of parameters pi, the maximum

likelihood Li ant the AIC value for each model cosidered in this chapter.

Since we are only interested in the DM models, the maximum likelihood for the

Usual case is the one after the marginalization over bulge and disk parameters.

Model pi lnLi AIC Model pi lnLi AIC

Usual 2 -49.85 111.7

No DM (a) 4 -28.2 64.4 Hybrid (a) 6 -28.2 68.4

No DM (b) 3 -33.75 73.5 Hybrid (b) 5 -21.6 53.2

No DM (c) 2 -1692.65 3386.3 Hybrid (c) 4 -46.05 100.1

Figure 3.7: In this graphics we report the value of the AIC for each model

considered in this work (see also table 3.6). We cut out of the plot the AIC for

the No DM case (c), since it is too far from the others.
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3.4.2 Amount of actual Dark Matter in hybrid models

In table 3.7 we sum up the mass of the DM halo in the hybrid models and

the percentage of actual DM needed in each model up to 35 kpc, calculated

as the ratio of the hybrid model over the usual case.

We notice that the case (a) (which we remind is our third best model) is

the one that needs the less actual DM (only � 15%), case (b) (the one that

best describes our data) needs 58.6% of DM, while the case (c) basically

needs all of it.

In figure 3.8 we plot the mass of the halos as a function of R for the hybrid

models and the usual case, while in 3.9 we plot respectively the percentage

of total mass of the galaxy as a function of R: interestingly the (c) case

requires more DM at smaller radii (  15 kpc) than the usual case.

Finally we extrapolate our models up to 300 kpc and in 3.10, we plot

the percentage of the total mass of the galaxy up to 300 kpc: we see that in

the case (c) the total mass is about 97% of the usual case, in the case (b)

about 60% and in case (a) about 30%.

Table 3.7: The mass of DM halo up to 35 kpc from our fits and % with respect

the usual case.

Type of fit With ‘real’ DM %

(Hybrid models) (� 1011M@)

Time free ansatz (c) 1.69 96.7%

Linear ansatz (b) 1.03 58.6%

No priors (a) 0.25 14.6%

Usual case 1.75 (100%)
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Figure 3.8: Mass of the halo as a function of the galactic radius R up to 35

kpc for the hybrid cases and the usual case. In blue the Usual case, in green

the case (c), in olive-green the case (b) and in purple the case (a).

Figure 3.9: Mass of the halo as a function of the galactic radius R up to 35

kpc for the hybrid cases and the usual case. In blue case (c), in purple case (b)

and in in olive green the case (a).
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Figure 3.10: Percentage of total mass of the galaxy as a function of the

galactic radius R up to 300 kpc for the hybrid cases and the usual case. In blue

the Usual case, in green the case (c), in olive-green the case (b) and in purple

the case (a).
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3.5 Effects on PTA

In this section, we estimate the effect of our 0.5 PN term on the PTA

using our time free and linear ansatz.

Then we estimate the effect of the average potential of the Milky Way

on PTA, assuming that in the Sun neighborhood it is given, essentially, by

the stellar disk and the DM halo.

3.5.1 ADM tg

We numerically integrate with Mathematica 8�equation (1.30) with the

parameters given in tables 3.4 (for the linear ansatz) and 3.5 (for the time

free ansatz): we consider the hybrid models (b) and (c) (the actual DM

effects are treated in the next section: we will see that they are completely

negligible) and the No DM (b).

In this integration one has to keep in mind that the ‘r’ in the Yukawa-

like function is the distance from the center of the Galaxy, while we need to

integrate over the distance from the Solar System barycenter ‘R’ (see equa-

tion (1.30) and section 2.2.3); since we are dealing with functions already at

PN order, we can use the Euclidean Geometry and, in particular, the Law

of Cosines (see figure 2.1 for the definitions):

r �
b
R2
@
�R2 � 2Rr cos θ. (3.21)

In figures 3.11, 3.12 and 3.13, we plot, as a function of the observa-

tion angle, the corrections to the PTA given by our linear and time free

ansatz respectively: the source is in the galactic plane and at distances

R � t0.5, 1, 1.5, 2u kpc.

We see that in the linear ansatz, both in the hybrid 3.11 and in the No

DM case 3.13, the integral correction is of the order tens of nanoseconds,

while the second correction is of the order of percent.

In the time free case 3.12 corrections are completely out of scale (integral

correction is of the order of seconds!): one more reason to consider this model

wrong.
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Figure 3.11: Corrections to the time of arrival in PTA with our hybrid linear

ansatz: in the upper four plots the integral correction, in the lower four, the

part between parenthesis.
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Figure 3.12: Corrections to the time of arrival in PTA with our hybrid time

free ansatz: in the upper four plots the first correction, in the lower four, the

part between parenthesis.
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Figure 3.13: Corrections to the time of arrival in PTA with our linear ansatz

in the No DM case: in the upper four plots the integral correction, in the lower

four, the part between parenthesis.
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3.5.2 Effect of DM halo and disk average potential

We consider the effect of the Milky Way DM halo and disk potential on

PTA. To do this we have to make a step back to equation (1.20): we now

assume that the potential can be written as:13

� U � ΦpR, zq � ΦpR, zq � ΦbodypR, zq (3.22)

where Φ is the average (Newtonian) potential of the Galaxy, while Φbody is

the (Newtonian) potential of a body. If we neglect the average potential, we

go back to equations (1.30) and (1.32); if we consider it, we have another

correction of the form:

2

c2

» R
0
dR1

» R1

0
dR2

pkr
C
Br Φ (3.23)

We need a model for the average potential of the Galaxy. Following [155]

(chapter 2), we consider a DM halo with a profile of the form:

m �
d
R2 � z2

q2
h

(3.24a)

ρhpRq � ρh0

�
m

ah


�αh �
1� m

ah


αh�βh
(3.24b)

where ρh0 is the central value of the density, ah is the scale length.

We also assume, always following [155], that the average potential of the

disk is given by a superposition of a thick and a thin disk profile (we assume

it is negligible in the neighborhood of a massive body):

ρdpR, zq � Σd exp

�
� R

Rd


 �
α0

2z0
exp

�
�|z|
z0



� α1

2z1
exp

�
�|z|
z1


�
(3.25)

where α0 � α1 � 1, they are a measure of the importance, respectively of

the thin and thick disk: we will consider the case α0 � α1 � 0.5.

We further assume that the bulge has negligible effect nearby the Sun.

[155] considers two extreme models: Model I, in which the stellar disk

still dominates the potential at the solar radius and beyond, and Model II in

which DM dominates at all radii (we can say that Model I is disk dominated

and Model II is halo dominated, [155]): we use them both for our estimate;

the value of the parameters are listed in 3.8 and are taken from [155].

13As customary (see [13, 112, 135, 136]) in those paragraphs and in the introduction

too, the potential U is actually minus the Newtonian potential Φ.
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Table 3.8: Values of the parameters in (3.24b) for both Model I and Model II.

Parameter Model I Model II

ρh0 (M@pc
�3) 0.711 0.266

αh -2 1.63

βh 2.96 2.17

qh 0.8

ah (kpc) 3.83 1.90

Σd (M@ pc
�2) 1905 536

Rd (kpc) 2 3.2

z0 0.3

z1 1

The potentials of the two components are calculated following [155]

(chapter 2), then we impose:

ΦpR, zq � ΦdpR, zq � ΦhpR, zq. (3.26)

and substitute this potential in equation (3.23) and integrate it numerically

using Mathematica 8�: we only consider the case z � 0, since the disk is

only few parsec thick.

Just like in the previous section, we have to use the Cosines Law and

equation (3.21) to find the correct integration variable. The result of the

calculation is reported in figure 3.14 in the case of stars on the galactic

equator (z � 0).

We see that the effect is negligible being at most ofthe order of 10�15 s

(10�6 ns) for distances up to 2 kpc from the Sun.
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Figure 3.14: Corrections to the time of arrival in PTA due to the average

potential of the Milky Way: upper four plots the Model I, lower four plot Model

II.
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3.6 Estimate of the effect of the 0.5 PN term on

the radial velocity

In this section we estimate the effect of our 0.5PN correction on the

radial velocity using the formulae (2.27) and (2.30) calculated in chapter 2,

respectively for the linear and the time free ansatz; we rewrite here those

equations for convenience:

1� z �
�

1� 1

2

v2

c2
� U

c2
� δ

c
Y prq � δ

|~R |
c
vr Br Y prq

�
sor

�

�
�

1� ρ

c

�
1� δ Y pRq � δ Y p0q �

���~R ��� δ Y 1pRq
	�

; (2.27)

1� z �
�

1� 1

2

v2

c2
� U

c2
� δ1

vr

c
Br Y prq



sor

�

�
�

1� ρ

c

�
1� δ1 Y 1pRq � δ1 Y 1p0q

	�
(2.30)

we want estimate the terms between parentheses in the second lines.

We remind that we use the notation:

Y 1prq � pk
C
� Ý~∇Y

���
r

where pk
C

is the direction of observation.

We use the values for δ and δ1 and L, given in tables 3.4 for the linear

anstz and the hybrid case of 3.5 for the time free ansatz.14

Results are shown in figures 3.15 ad 3.16, where we plot the direct cor-

rection as a function of the angle of observation θ (see figure 2.1) for the

distances from the Solar System barycenter of R � t0, 0.5, 1, 1.5, 2u kpc (the

source is in the galactic plane)

In the hybrid linear ansatz case 3.15(a), corrections are of the order of

0.3 � 0.6%, corresponding to hundrends of m/s while in the No DM case

3.15(b) are of the order of 1� 1.5%, correspondig to � 1 km/s.15

Once again, the time free ansatz gives corrections completely out of scale

3.16.
14The No DM time free ansatz describes the results too poorly.
15Radial velocity are of the order of 100 km/s [131].
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(a)

(b)

Figure 3.15: We plot the direct corrections to the radial velocity as a function

of the angle of observation θ (right ascension) both in the linear (the upper four

plots) and in the time free ansatz (the lower four plots) for the distances from

the Solar System barycenter equal to R � t0.5, 1.0, 1.5, 2.0u kpc (we consider

the case in which the source is in the galactic plane).
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Figure 3.16: We plot the direct corrections to the radial velocity as a function

of the angle of observation θ (right ascension) both in the linear (the upper four

plots) and in the time free ansatz (the lower four plots) for the distances from

the Solar System barycenter equal to R � t0.5, 1.0, 1.5, 2.0u kpc (we consider

the case in which the source is in the galactic plane).
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3.7 Summary of the chapter and discussion

In this chapter we considered the three ansatz described in the previous

chapter and used them to fit the rotation curve of the M31 galaxy with 7

models:

� The usual model in which the DM is described by a NFW profile;

� Three ‘No DM’ models in which there is no Dark matter at all its

effects are provided by our 0.5PN terms using the three ansatz (no

prior, linear ansatz and time free ansatz) described in the previous

chapter;

� Three ‘Hybrid’ models in which there is a DM halo and we also consider

the effect of our 0.5PN term.

The results of our fits are described in section 3.3, while in section 3.4

we use the Akaike method [165, 166] to choose the model that best fits our

data: it is the Hybrid (b), in which we still need an actual Dark Matter halo,

but only about 58% of the usual model and the linear ansatz of chapter 2 is

used.

The second and the third best are respectively the No DM (a) and the

Hybrid (a): in the former, all the real DM is excluded by hypothesis, while

in the latter we need only about 15% of the total Dark Matter halo (up to

35 kpc).

The time free ansatz always gives the worst result.

As already pointed out, the fact that the usual model gives such bad

results, might be an indication that the NFW profile is a näıve choice: more

complicated models might give better results.

In figure 3.10, we extrapolate the total mass of our hybrid models up to

300 kpc: we find that in the case (a) (no prior on ∆) the total mass is only

about 30 % of the mass of the usual case; in the case (b) the total mass is

about 60% and in the case (c) the total mass is about 97%.

Regardless of which of our models best describes data, the most important

result of this chapter (and of this thesis) is that we can dispense with at least

42% of Dark Matter (and of all of it in the No DM case (a)).

We then calculated the effects of the 0.5PN term on the PTA (section

3.5) and on redshift (section 3.6).
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In the PTA case, we considered equations (2.27) for the linear ansatz and

(2.30) for the time free ansatz and numerically calculated the integral and

the second corrections for the hybrid and No DM case (b) (linear ansatz)

and for the hybrid case (c).16 Results are given in figures 3.11, 3.12 and 3.13

respectively for the Hybrid (b), Hybrid (c) and No DM (b) models.

As a result of the numerical integration, we find that in case (b) the

integral correction is of the order of � 5 � 30 ns for the hybrid model (our

best model fo M31) and � 14 � 70 ns in the No DM model. We notice that

this is about of the same order of magnitude of the precision one can get

in PTA with millisecond pulsars (see section 2.30 and references [140, 141]),

therefore this effect might be observable in the future.

For PTA we considered also the effect of the average galactic potential.

We considered the two extreme models described in [155]: Model I, which is

disk dominated and Model II which is halo dominated. We found out that

these corrections are of the order of 10�7 � 10�6 ns; we also notice that

these are upper bounds, since we are considering a full Dark Matter halo,

so they are completely negligible: all the effects measured in the PTA must

be ascribed to the 0.5PN (if any will ever be found).

We already diffusely talked about the problems of spectroscopy and the

merits of astrometry in the introduction (see section I.4.2): in chapters 1

and 2, we introduced another direct correction to the radial velocity in the

redshift formula; in this chapter we estimated the amount of the correction

for the hybrid and No DM case (b) and for the hybrid case (c): results are

given in fugures 3.15(a), 3.15(b) and 3.16 respectively.

We see that for the linear ansatz the direct correction to the radial ve-

locity is at most of the order of 1% in the hybrid case (our best model),

while in the No DM model they are of the order of 1 � 1.5 %: this means

that the correction on the radial velocity are of the order of 100 � 1000 m/s.

We notice that they are comparable the other corrections mentioned in the

introduction (see also [131–134]): ruling out the possibility of extracting

informations on the 0.5PN term from the redshift as was stated in [102].

In the case (c) all corrections on PTA and redshift are completely out of

scale: one more reason to rule out this model.

16We didn’t consider the No DM case (c) because of its poor description of our data:

see table 3.6.
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One last note on the use of results of fits of M31 in our Galaxy.

The effects of the 0.5PN term on the spectroscopic measurements are not

visible for external galaxies (because of the errors: as can be seen in table

3.1 they are of the order of 1 � 30 km/s, much higher then the corrections

that we estimated for the radial velocity); the precision in measurements in

our galaxy make it potentially observable, so these data should be treated

carefully. This is true not just for stars, but also for HI regions et similia:

in these cases there are no corrections due to the convective motions and

so on, but our 0.5PN term is linked to the propagation of the light in the

galaxy and its effects are unavoidable.

One should therefore use Cepheides and astrometric measurements (such

as the Hypparcos catalogue of 180000 stars or GAIA’s when it will be avail-

able in 2020) when fitting the rotation curve of our Galaxy.

BUT THIS IS WAY OUT OF MY LEAGUE!

So we choose the Andromeda galaxy becase it is similar to ours both in

mass and shape (they are both spirals).



CHAPTER 4

OTHER EFFECTS OF 0.5PN

In this chapter we study the effects of the trace of the extrinsic curvature

on other observables: the Tully-Fisher relation.

We will then move on to consider a possible connection of the 3K1 with

DE.

4.1 The Tully-Fisher relation

The Tully-Fisher relation expresses the link between luminosity L of a

spiral galaxy and the velocity v of its stars (usually measured at the optical

radius). It was first suggested by R.B. Tully and R.J. Fisher in 1977 [167].

It has the form:

4 log10 v � log10 L� α. (4.1)

The Tully-Fisher relation has many applications in astrophysics and cos-

mology: it can be used to measure the Hubble constant (see [69, 167]) and

to measure the peculiar motion of galaxies [168].

It is possible that this relation might be only valid at large velocities,

since a non-linearity is often observed at small ones (see [169–173], [169],

for example fits also quadratic terms in log10 v): this non-linearity is usually

ascribed to the DM halo [170].

1Not the PN version!

99
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4.1.1 Derivation of the Tully Fisher relation

The physical basis of the Tully-Fisher relation are the following.

If we assume that the galaxy dynamics is described by Newtonian

Physics, then we can write:

Fcfg � FGr ùñ v2

r
� GM

r2
;

simplifying the r and taking the square of both members, we have:

v4 � G2M2

r2
.

If we define b the surface brightness of the galaxy, then:

b � L

4π r2
; (4.2)

therefore, defining Υ the mass-to-light ratio, we have:

v4 � p4πΥ2G2 bqL � 10log10 α L

Taking the logarithm on both sides of the previous equation, we find the

linear relation (4.1).

In ADM-tg, we have:

v2

r
� GM

r2
� v

c

d2

dt2
3 rKp1q.

We bring the 0.5PN term on the LHS, take the square, and retain only

Opc�1q terms, obtaining:2

v4

�
1� 2r

c

1

v

d2

dt2
rKp1q



� p4πΥ2G2 bqL.

Taking the logarithm, we find:

4 log10 v � log10

�
1� 2r

c

1

v

d2

dt2
rKp1q



� log10 L � α (4.3)

So the Tully-Fisher relation is not linear anymore, in particular at small

velocities. The red curve in figure 4.1 describes the qalitative behavoir of

this modified Tully-Fisher relation as a function of log10 v.

In the usual interpretation (see [170]) the non linearity arises from the

DM halo, here they are a consequence of the chosen hypersurface used to

describe the 3-space.

2In the RHS we proceed as before.
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Figure 4.1: Qualitative form of the Tully Fisher relation: in blue the original

one (4.1), in orange the modified, Taylor expanded one (4.4), while in red the

non expanded one (4.3). In each case, we set to zero the off-set α.

If the 0.5PN term is small enough, we can Taylor expand the second

logarithm on the LHS, obtaining:

4 log10 v �
2r

c

d2

dt2
rKp1q

1

v
� log10 L � α

4 log10 v �
2r

c

d2

dt2
rKp1q 10� log10 v � log10 L � α

(4.4)

The qualitative behavoir of this equation as a function of log10 v is given in

figure 4.1 (the orange line).

In (4.4), the non-linear term is proportional to r
d2

dt2
rKp1q: given a math-

ematical form for the 3 rKp1q (of the type described in chapter 2), one could,

in principle, use the Tully-Fisher relation to fit the needed parameters.

4.1.2 Radial Tully-Fisher

Usually, one measures the velocity at defined radial galactic distance,

typically the optical radius Ropt.
3

3The optical radius is the radius which contains about 83% of the light emitted by a

spiral galaxy: it is about 3.2 times the scale length of the disk [174].
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Following [175], given a model for the spiral galaxy (and therefore, for

its velocity field), one can calculate a whole set of Tully-Fisher like relations

for different galactic radii, instead of only r � Ropt (hence the name radial

Tully-Fisher) which can be written as:

log10 v � βr log10 L� αr (4.5)

In our case, we could consider a model of a spiral galaxy with no DM

halo (similar to our Andromeda galaxy model 2 of chapter 3) and study the

effect of different ansatz for the 0.5PN term. In principle this too could help

constraining the mathematical form of 3 rKp1q.

4.1.3 The Hubble parameter

Since when it was proposed in 1977, the Tully-Fisher relation was used

for the determination of the Hubble parameter (see [69, 167, 176]: one way

for this determination goes as follows [69].4

One starts measuring the doppler widening of the Lyα lines5 in HI re-

gions6; the doppler widening is linked to the velocity field of the galaxy,

which in turn is linked to the luminosity by the Tully-Fisher relation. From

this, one can fit the distance modulus7

It might be intersting to study the effects (if any) of the 0.5PN term on

the Hubble parameter using the Tully-Fisher relation.

4After a suitable calibration (for example, see [13, 69] for a discussion on the cosmoc

distance ladder).
5The Lyman α (Lyα) lines are the transition line from the n � 2 level to the n � 1 level

in an hydrogen atom (the wavelenght is 1251.67 Å, in the UV part of the electromagnetic

spectrum).
6Nebulae made of atomic hydrogen.
7The distance modulus is given by the difference of the apparent and the absolute

magnitude of an object.

The apparent magnitude is the measured (logarithm of the) luminosity, while the absolute

magnitude is the (logarithm of the) luminosity of an object one would measure if it were

at the distance of 10pc.
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4.2 3K8 and Dark Energy

We saw that it is possible to describe Dark Matter as a metrology prob-

lem: can we do the same with Dark Energy? Yes, as we will now see.9

First, one has to notice that ADM tg formalism does not directly apply

in the cosmological case,10 but one could rewrite all the results using kine-

matical quantities such as expansion (θ), shear (σµ ν) and rotation (ωµν)

defined through the congruence of the observers and calculated in [107].

These quantities can also be defined in usual ADM gravity: in this way it

is possible to extend the ADM tg formalism also to a cosmological context

(see [109]).

4.2.1 The link between 3K and the Hubble parameter

It is known (see for example [177]) that in cosmological context the

Hubble parameter H is proportional to the expansion parameter and it turns

out that in ADM tg and in ADM formalism the 3K is proportional to the

expansion too:11

3K � θ � 3H (4.6)

so the 3K is proportional to the Hubble parameter and therefore contains

informations about the DE.

4.2.2 The case of Szekeres metrics

As suggested in [109], since ADM tg cannot be used with metric that

have some Killing vectors, one should use inhomogeneous and anisotropic

models which are generalizations of the FLRW ones, such as the Szekeres

and Szekeres-Szafron ones (see [14, 15, 26, 45, 46, 178–182] and also our

appendix A). One can show, see [14, 26, 46, 181, 182], that these models

describe non-linear perturbations of a homogeneous and isotropic FLRW

model and reduce to the latter when the inhomogeneities are zero.

8In this section we are not using a PN expansion: this is the full trace of the extrinsic

curvature.
9We already mentioned this possibility in the introduction, page 6.

10This is because cosmological metrics are not asymptotically flat (see section I.3.1 and

paper [105] for the conditions on the hypersurface in ADM tg).
11On the use of the extrinsic curvature tensor and its trace in cosmology, see also [112]

exercise 21.16 “Poor man’s way to do cosmology”.
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Using the Goode-Wainwright representation of the models (see [181] and

appendix A), one can show that the extrinsic curvature tensor and its trace

in ADM formalism are given respectively by:12

3Krs � 1

2N

��3∇rNs � 3∇sNr � pBτ � LNrq 3grs
� � 1

2
Bt 3grs � (4.7)

�

����
9S S 0 0

0 9S S 0

0 0 W 2
�

9S S H2 � S2H 9H
	
���


3K � 3grs 3Krs � 3
9S

S
�

9H

H
(4.8)

Following, [45, 182] among the others, one can define the density contrast

δ (ρ is the density field, see the appendix A):

ρ � 6M
S3

�
1� F

H



� 6M

S3
p1� δq (4.9)

Now, substituting everything in (4.8) and remembering equations (4.6)

and(A.3), one finds:

3K �
c

3M
S3

� κ

S2
� 1

3

9δ

1� δ
(4.10)

� H �
c

ρ

S3
� κ

S2
� Λ

3

so, by comparison, the additional
9δ

1� δ
term is what in homogeneous models

is called Dark Energy: it is linked to the inhomogeneities and their time

evolution (see also [183]).

Here is were relativistic metrology comes into play: insisting on the use

of homogeneous and isotropic metrics brings up the universe acceleration13

and, consequently, the DE phenomenon.

On this topic see also [26, 184–188] and references therein.

Within this framework, it is possible to fit also other forms of DE, not

just a cosmological constant. Following [189], in [190], authors show that

12LNr is the Lie derivative along the shift, while 3∇ is the covariant derivative defined

in the hypersurface.
13In the Szekeres models, the expansion of the universe is regulated by equation (A.3),

a Friedman-like equation with no cosmological constant and, therefore, no acceleration.
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inhomogeneities can mimick not just the cosmological constant, but also an

evolving DE: an underdensity can mimick a phantom DE, while an overden-

sity mimicks a quintessence DE (see also [28, 191] on this point).

We shall now calculate the confdence level of the flat ΛCDM model and

of Szekeres Family II model. To do so, we need the luminosity distance of

these models at least at order Opz3q (calculated in [45]).

4.2.3 Luminosity distance of Family II models

Following [45], one can calculate the Taylor expansion of the luminosity

distance and study the cosmographic parameters. Here we only consider the

case of the Family II Szekeres model in the hypothesis that at the observer

position the structure growth is over:

9δp0q � 0 ñ 3

2
σp0q �

9δp0q
1� δp0q � 0 (4.11)

In [45], we used the Sachs equations as a starting point:$''&''%
d2DA

dλ
� �

�
|Σ|2 � 1

2
Rαβ k

α kβ


DA

dΣ

dλ
� 2

�
d

dλ
lnDA



Σ � Cαβµν ε

�α kβ ε�µ kν
(4.12)

where Σ is the shear of the light bundle, Rαβ is the Ricci tensor, Cαβµν is the

Weyl tensor, kµ is the null vector tangent to the light path, εµ is a space-like

vector orthogonal to kµ (the � indicates complex conjugation) and, finally λ

is the affine parameter of the null geodesics.

In equation (4.12), we substitute the expansion:

DApzq � z

HO
� z2

2

A

HO
� z3

6

B

HO
�Opz4q (4.13)

for the angular diameter distance; finally, using equations (A.31) and (A.32)

the luminosity distance is given by:

DLpzq � DApzq p1� zq2

� z

HO
� z2

2HO
p4�Aq � z3

6HO
p6� 6A�Bq �Opz4q

(4.14)

in this way we can find the coefficients A and B.
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At the end of the calculations (carried out in detail in [45]), we find that

the luminosity distance is given by [45]:

DLpzq �
D
p1q
L

HO
z � D

p2qII
L

2HO
z2 � D

p3qII
L

6HO
z3 �Opz4q, (4.15)

where:

D
p1q
L � 1; (4.16a)

D
p2qII
L � 1� qO �

�
3

2

σ1

H

���
O



cos2 α

� 1� qIIeff ;

(4.16b)

D
p3qII
L � 3 pqIIeff q2 � qIIeff � jO � ΩO �

�
3

2

σ1

H

���
O



�
�

3

2

σ1

H

���
O



cos2 α�

� 4

�
3

2

σ1

H

���
O



cos2 α

1

δ

�
cosβ sinα

B
Bx δ � sinα sinβ

B
By δ

�
O

,

(4.16c)

where we defined:

� HO, the Hubble parameter at the observer;

� qO � �
:S

S

1

H2

�����
O

the deceleration parameter at the observer position;

� jO �
9

:S

S

1

H3

�����
O

the jerk parameter;

� ΩO � 1� Ωk;

� We used polar coordinates and the angle α is the angle between the

direction of propagation of the light ray and the r�axis, while β is the

angle with the x�axis (see [45]);

� And a prime 1 stands for the redshift-derivative.

In equation (4.16b), we defined the effective deceleration parameter:

qIIeff � qO �
�

3

2

σ1

H



O

cos2 α

and we can also define an effective jerk parameter:

jIIeff � jO �
�

3

2

σ1

H



O

�
�

3

2

σ1

H



O

cos2 α�

� 4

�
3

2

σ1

H



O

cos2 α
1

δ

�
cosβ sinα

B
Bx δ � sinα sinβ

B
By δ

�
O
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Following [45], we can relate σ1p0q to the local density contrast in the

following way:

σ1
����
O

� Bσ
Bz

�����
O

� Bλ
Bz

Bσ
Bλ

�����
O

� Bλ
Bz

Bxα
Bλ

Bσ
Bxα

�����
O

(4.17)

using the definition of σ given in the appendix A and the fact that

F � F pt, rq, we have:

Bσ
Bx � �σ Bx lnH Bσ

By � �σ By lnH (4.18)

Since these equations must be evaluated at the observer position (see the

definition of the effective jerk parameter), and since we imposed that the

growth of structure is over at the observer position (σp0q9 9δp0q � 0), they

are all null; on the contrary, the time and r-derivatives are not, and using

the Raychauduri equation (see the appendix, equation (A.6)), we have [45]:

3

2
σ1p0q � �ΩmHO δp0q � B

Br
9F

H

k3

k0

�����
O

�

� �ΩmHO δp0q � 3

2

9δ,rp0q
1� δp0q

k3

k0

�����
O

�

� �ΩmHO δp0q � 3

2

9δ,rp0q
1� δp0q cosα

(4.19)

where Ωm is the matter density at the observer position and 9δ,r is the deriva-

tive in the r�direction of the local growing rate of structures at present time:

we assume this is 0.

In this way we can rewrite the effective cosmographic parameters as:

qIIeff � qO � 3

2
ΩmHO δp0q cos2 α

jIIeff � jO � ΩO � 3

2
Ωm δp0q

�
1� cos2 α

��
� 6 Ωm cos2 α

�
cosβ sinα

B
Bx δ � sinα sinβ

B
By δ

�
O

Since in the following we are going to use SNe Ia data, we need the

distance modulus [13, 192]:

µthpyq � 25� 5 log10

�
HO

c



� 5

ln p10q
�

ln pyq � 1

2
p3� qeff q y�

� 1

24

��21� 2 qeff � 9 q2
eff � 4 jeff � 4 ΩO

�
y2
�
�Opy3q

(4.20)
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were we used the redshift (see [193, 194] for example):14

y � z

1� z
(4.21)

It can be shown (see [194]) that the ΛCDM distance modulus has the same

form as the one given above but with the effective cosmographic parameters

substituted by the usual ones.

In the following we shall also use [192, 196]:

µ̂thpyq � µthpyq �
�
25� 5 log10

�
HO

c


�
(4.22)

4.2.4 Confidence level

With the luminosity distance given by equations (4.15) and (4.16), one

can test the hypothesis that this model is the model that describes the

(local)15 Universe against the null hypothesis that the Universe is described

by the flat ΛCDM model.16

In order to do this, we fit the luminosity distance (4.15)-(4.16) with the

Union 2.1 SuperNova Compilation, than calculate the confidence level of

our model.

References for the Union2.1 Compilation can be found in [197], were also

the SNe data are provided; see also papers [198–214] and the NED database

[215] for the position of the SNe in the sky. One has to notice that we

used polar coordinates, while in astronomy equatorial coordinates are used,

therefore one should remember that:

declination from literature � π

2
� α. (4.23)

Following [192, 193, 196], using again a Metropolis-Hastings MCMC, we

14We use this redshift instead of the usual z, because, as has been pointed out in [195],

the z redshift Taylor expansion has a convergence radius of 1 (while we will consider

SNe with z redshift up to 3): this problem disappears when using the redshift y, since

y � 1 ÞÑ z � 8 (other choices are possible).
15Only the local Universe, because of the Taylor expansion in redshift.
16I thanks the anonimous referee of [45] for this suggestion. See also [26] for an anal-

ogous treatment of the Lamâıtre-Tolman-Bondi spherical symmetric model (they find a

confidence level of about 31% for LTB model and 26% for the ΛCDM model.
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maximized the likelihood:17

L9 exp

�
�1

2

�
c1� c22

c3


�
(4.24a)

where (µ is the measured distance modulus, µ̂th is the theoretical one (4.22)

and σ2
i are the squared errors of the measured distance modulus):18

c1 �
580̧

i�1

pµi � µ̂thpiqq � pµi � µ̂thpiqq
σ2
i

(4.24b)

c2 �
580̧

i�1

pµi � µ̂thpiqq
σ2
i

(4.24c)

c3 �
580̧

i�1

1

σ2
i

(4.24d)

In our MCMC, we imposed the constraints DLpyq ¡ 0 and δp0q ¡ �1

in the case of the Szekeres model and also H2 ¡ 0 in ΛCDM model.

In this case, we considered 20 � 103 elements long chain and we elim-

inated 25% of the elements at the beginning for the burn in phase, so our

final chain was 30 � 103 elements long. The acceptance rate was about

0.3. Again we used the Gelman-Rubin test for the convergence: the R � 1

parameters were   0.002

The errors on parameters are estimated with the Fisher matrix method

[161, 216, 217].

If L is the likelihood and pi are the considerd parameters, one first cal-

culates the Fisher information matrix Fij at the best fit point (were the

likelihood is maximum):

Fij � � B2 lnL
Bpi Bpj

then one inverts it to find the covariance matrix Cij . Finally, the errors on

parameters are given by:

∆pi �
a
Cii,

17As shown in [196], this likelihood is a likelihood marginalized over the Hubble pa-

rameter; this sholud be preferred because of the non homogeneous origin of the Union2.1

catalogue [196].
18In the following summations, 580 is the total number of SNe in the Union2.1 Compi-

lation.
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the squared root of the diagonal elements of the Covariance matrix.19

Fit results

The results of our fits are listed in table 4.1:for each model we give the

fitted parameters and the corresponding error together with the logarothm

of the likelihood.

We see that Szekeres models favours a local underdensity (in accordance

with [26, 29–31], but we notice that we did not consider a particular model

for the denstiy field). Nevertheless this void is too shallow to erase the

acceleration, which has a value consistent with the ΛCDM one.20

If we use the value Ωm � 0.31622 � 0.0062 (see [1]), we find that the

underdensity is about 30%.

We make some comments on the value of the parameter jO � ΩO: in a

flat ΛCDM it has to be � 2,21 and our best fit value for a Flat ΛCDM is

in accordance with the the predicted one (this is in line with other findings

[218] that use SNe data, but not with others that also use Gamma Ray

Bursts [219–221]); in the Szekeres case, the presence of the (inhomogeneities

induced) angular dependence changes the value of jO � ΩO taking it to the

value of 0.63� 0.98 about 1.5σ far from the value of 2:22 this might suggest

that our model prefers different forms of Dark Energy (or a curved spacetime

see [37, 222]).

It is known that SNe data alone cannot constraint the value of the space-

time curvature: to solve this issue and find out the value of Ωk, we have to

integrate SNe with, at least, CMB data.

To estimate the confidence level of our model, we use the likelihood-ratio

19Non diagonal elements of the covariance matrix, Cij are related to the correlation

between parameters pi and pj .
20The fact thtat the void is shallow also justifies a posteriori the use of the distance mod-

ulus calculated by the Union SNe collaboration supposing an homogeneous and isotropic

universe: in a more complete work one should recalculate the distances of the SNe using

the Szekeres metric starting anew with the light curve of the SNe.
21This is a prediction of the model: ΩO � 1 � Ωk � 1 for the flat metric and jO � 1

for a Dark Energy described by a cosmological constant.
22Starting from the definition of jO and the Friedmann-like equaiton (A.1), it is easy

to show that also Λ-Szekeres models (with a cosmological constant as DE) also predict

jO � 1 and jO � ΩO � 2; for a curved spacetime, we have jO � ΩO � 2� 2 Ωk.



4.2. 3K AND DARK ENERGY 111

test (this time models are nested):

R � �2 plnLΛCDM � lnLSzek.q (4.25)

R behaves like a chi-squared distribution with a number of degrees of free-

dom (d.o.f.) given by the difference of the d.o.f. of the two models. In our

case:

R � 2 ∆pd.o.f.q � 3. (4.26)

Assuming (see [165]) that R follows a χ2 distribution with 3 d.o.f, we

find a probability of 19% for the ratio R to be smaller than 2 (for the correct

model to be closer to the null hypothesis): so we are led to favour our model

over the ΛCDM with a CL of 81%.

The confidence level for excluding our model is 19%, so there is a strong

evidence that our model describes SNe data better than the flat ΛCDM.

Table 4.1: Results of the fit of the Family II Szekeres cosmological model with

arbitrary curvature and for the flat ΛCDM model.

We also list the logarithm of the likelihood and degrees of freedom (d.o.f.).

Szekeres Family II up to third order

qO jO � ΩO ΩM δ ΩM δx ΩM δy

�0.44� 0.11 0.63� 0.98 �0.08� 0.09 0.03� 0.37 �0.52� 0.36

lnLSzek. -280.35 d.o.f. 575

Flat ΛCDM

qO jO � ΩO ΩM δ ΩM δx ΩM δy

�0.34 � 0.09 2.18 � 0.51 // // //

lnLΛCDM -281.50 d.o.f. 578
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4.3 Summary of the chapter and discussion

In this chapter, we considered the effects of the 0.5PN terms on the Tully-

Fisher relation and found that it gives a deviation from linearity at small

velocities; deviations from linearity are often found in observations and are

interpreted as an effect of the DM halo: in our case they become an effect

of the extrinsic curvature of the 3-space. We postulated that the study of

the radial Tully-Fisher relation might give hints on the mathematical form

of the 3 rKp1q.

We also considered the possibility to explain Dark Energy as an effect

of metrology. In line with the literature, we found that the problem is the

use of homogeneous and isotropic metric to describe a Universe that is not

(at least at small scales) neither homogeneous or isotropic: local structures

and their evolution might mimick a Dark Energy driven expansion and/or

influence the nature of the Dark Energy itself.

To verify this hypothesis, we considered non-homogeneous and non-

isotropic Szekeres Family II cosmological models and calculated the Taylor

series expansion of its luminosity distance and fitted the result with SNe

data taken from the Union2.1 compilation.

We found that our model has a confidence level of about 80%, indicating

that the use of an homogeneous and isotropic metric might be too näıve.

We also found (in accordance to the literature) that we live in an unden-

dense region about 25 � 30% less dense than the average: this value is not

enough to get rid of the Dark Energy, in fact the deceleration parameters

of Sekeres and ΛCDM have the same values (within the errors), but it can

influence our interpretation of the nature of Dark Energy. We see in fact

that the jerk parameter is different between the flat ΛCDM and the Szekeres

model because of the introduction of angular dependence (due to the inho-

mogeneities) indicating that the value measured in ΛCDM is contaminated

by the presence of the inhomogeneities and so is the equation of state of

Dark Energy.



SUMMARY AND OVERALL

CONCLUSION

Cos̀ı la donna cannone, quell’enorme mistero volò

tutta sola verso un cielo nero, nero si incamminò;

tutti chiusero gli occhi nell’attimo esatto in cui spar̀ı

altri giurarono e spergiurarono che non erano mai stati l̀ı

Francesco de Gregori - La donna cannone

Despite the fact that we have a model, the ΛCDM, that is in excellent

agreement with the observational data, our understanding of the Universe is

quite poor: only about 5.5% of it (made of baryonic matter and radiation) is

known, the rest is the dark side of the universe: about 26 % is Dark Matter

–a form of matter that does not interact with electromagnetic radiation, but

has gravitational effect on the rest of the matter –and about 68% is Dark

Energy –which is responsible for the acceleration of the expansion of the

universe.

In the introduction we made a review on the possible nature of these

forms of matter-energy:

The most widely accepted hypothesis for the nature of DM is that it is

made of WIMPs (Weakly Interactive Massive Particle); modified form

of gravity can also be an explanation (MOND, fpRq theories);

The hypothesis that DE is a consequence of a Cosmological constant

due to vacuum energy is the most widely accepted (but has some

113
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flaws); in litterature it is suggested that the accelleration might be due

to extended theory of gravity (through scalar fields such as Galileon or

Chamaleon), but also that it is the consequence of the inhomogeneities

of the universe.

In this work we did not follow any of those theories: we followed [102,

109], instead, where it is shown that (at least part of the) Dark Matter can

be a consequence of the choice of the hypersurface that describes the 3-space

embedded in the spacetime: the DM problem becomes a metrology problem.

More specifically, in this work we used the ADM tg formalism, introduced

in [102–110]: an Hamiltonian reformulation of General Relativity based on

a 3+1 foliation of spacetime using the (co)tetrads as fundamental variables

(instead of the metric of the 3�D hypersurface as in ADM gravity). In this

formalism it was found that the equations of motion of a massive particle ac-

quires a new term at 0.5PN order (Opc�1q) dependending on the derivatives

of the (non-local) trace of the extrinsic curvature tensor at the PN order
3 rKp1q and therefore on the choice of the 3+1 foliation. This additional term

can be put in the form of a mass term (the Dark Matter) depending on the

choice of the foliation; this means that DM becomes an inertial relativistic

effect depending on the conventions used in the measurements: the conven-

tional use of a flat Euclidean spacetime is the source of the effects known as

Dark Matter.

The aim of this thesis was to study how much Dark Matter can be

interpreted as an inertial effect and study other possible (observable) effects

of the 0.5PN terms on the propagation of light. We also considered the

hypothesis that also the Dark Energy phenomenon might be a metrology

problem. All in the hypothesis (contrary to what is generally assumed) that

the 3-space is non-Euclidean.

To do that, we started from the Time Of Arrival (TOA) of a light ray

using the Post Newtonian (PN) expansion of the ADM tg metric given in

the introduction (equation (1.25)) with a non null 3 rKp1q (thus with a non

Euclidean 3-hypersurface) and from that we derived the TOA for a pulsar

signal (used in Pulsar Timing Array, PTA), for Very Long Baseline Inter-

ferometry (VLBI) and the redshift formula.

We found that the effect of the non-local 3 rKp1q on the TOA is twofold:

it affects the propagation of the light ray through an integral correction τ3K
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which only depends on the non-local York time and its derivatives and a

second correction coming from the redefinition of the proper time in the

non-Euclidean 3-space (see equation (1.25)).

These corrections propagate in the PTA and in the redshift (and in the

radial velocity) not in VLBI, because of its definition:23 this means that the

catalogue already in use for the definition of ICRF are not affected by our

0.5PN term.

We then asked which analytical form for 3 rKp1q might be used: we ex-

ploited the similarity between ours and fpRq PN metric and made the ansatz

that the space dependent part has a Yukawa-like form; for the time depen-

dent part we considered three possibilities:

(a) We made no hypothesis at all on the time dependence and let it be a

free function;

(b) We considered a linear ansatz;

(c) We considered a time free ansatz.

As noted in chapter 2, the interpretation of the Yukawa term (and of

Dark Matter) is very different in ADM tg and fpRq theories: in the former

it is linked to the 3-space curvature and Dark Matter is a relativistic inertial

effect, while in the latter the Yukawa term is a real potential wich corrects

the Newtonian (they are both of order Opc�2q) one and Dark Matter is a

consequence of the use of a wrong theory of gravity.

We used the three ansatz we made, to fit the rotation curve of the An-

dromeda (M31) galaxy in order to find out how much real Dark Matter is

actiually needed. We modeled the luminous part of the Andromeda galaxy

as a Hernquist bulge+thin disk and considered 7 models for the Dark Matter:

� An actual DM halo with a NFW profile and no Yukawa terms;

� No DM halo, but only Yukawa terms with the three ansatz described

above;

� Three hybrid models with both an actual DM halo described by a

NFW profile and one of the three ansatz for the Yukawa term.

23We remind that one has to subtrac the TOA od the same sources measured in two

different and distant stations: this subtraction eliminates the dependence on the non-local

York time.



116 Summary and overall Conclusions

As a result, we found that the model that best describes the data we

used is the hybrid model with a linear ansatz which still requires about 58%

of actual Dark Matter.

The second best model is the model with No DM and no hypothesis

on the form of the time dependent part of 3 rKp1q and the third best is the

correspondig hybrid model with only 15% if actual Dark Matter.

Thus, we see that it is possible to eliminate the need for great part of the

Dark Matter.

With the values for the parameters we derived for M31, we estimated

also the effects of the 3 rKp1q on PTA and redshift; we found that for the

linear ansatz (both in the no DM and in the hybrid models) the correction

for the PTA are of the order of tens of nanoseconds (possibly observable

in the future) and are at the percent level for the redshift (correspondig to

corrections to the radial velocity of the order of 100 � 1000 m/s).

Corrections for the time free ansatz are completely out of scale (they are

of the order of seconds for the PTA!) and therefore rule out these models

(which also fitted quite poorly the data of the rotation curve).

On the use in our Galaxy of parameters obtained from a fit of M31: this

obviously a questionable choice, but one should not use lightly data from

HI regions or obtained spectroscopically in our galaxy, since, as we saw,

the propagation of a light ray in a non-flat 3-space implies the appearence

of corrections still not well understood (we made a choice for the 3 rKp1q,

but other my be possible and results way change); one should, instead, use

Cepheides and astrometrical data.

BUT THIS IS OUT OF MY LEAGUE

Finally, we asked ourselves if also the dark Energy can be an effect due

to relativistic metrology. In agreement with literature, we found that the

problem is that the ΛCDM is homogeneous and isotropic, while the actual

Universe is not (at least at small scales): the use of an isotropic and homo-

geneous model might affect the measurement giving rise to the DE effects.

Anisotropies and inhomogeneities also affects the nature of DE: it might

appear to be evolving while it is actually not.

In order to test this hypothesis, we considered the 3rd order Taylor ex-

pansion of the Luminosity distance of Szekeres Family II models and used

it to fit the SNe data from the Union2.1 compilation.
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We found that we live in underdense region, but it is not enough to

eliminate the need for Dark Energy (it is too shallow), in fact the deceleration

parameter has the same value both in our fit of ΛCDM model and in the

Szekeres one; the presence of the inhomogeneities, nevertheless, affects the

value of the jerk parameter and through it the equation of state and the

nature of the Dark Energy, since the introduction of the angular dependence

(induced by the inhomogeneities) changes the value of the jerk paramter;

actually this might also suggest that the spacetime is –locally –curved, but

SNe data are not sensible to the value of Ωk: to settle this issue other

cosmological data are needed, particurarly CMB data.

We also found that the Szekeres family II cosmological model describes

SNe data better that the ΛCDM model with a confidence level of 81%.

At the end of this work, we reached the following conclusions:

� Dark Matter can be interpreted as a metrology effect: by considering

a non Euclidean 3-space, with our anstaz we could get rid of 42% of it

in our best model and of all of it in the second best (this is our most

important result);

� The curvature of the 3-space gives (possibly observable) correction to

TOA of a pulsar signal and to the redshift and radial velocity of a

source (probably not observable: there are too many unknown in the

redshift formula at the present);

� In the Dark Energy case, we found that we live in a underdense region

of the Universe: this can influence our understanding of the nature of

Dark Energy but it value is too small to eliminate the need for it, so

the use of a homogeneuos and isotropic model (such as the ΛCDM one)

inflluences the nature of DE, not the need for it. Work is still needed

on this topic to understand the effects of the curvature of spacetime

You are gonna carry that weight

Cowboy Bebop ep. 26

The real folk blues (part 2)





APPENDIX A

THE SZEKERES

COSMOLOGICAL MODELS

In this Appendix we give a review on the Szekeres cosmological models

and report some long formulae needed in chapter 4.

Other reviews on this subjet are: [14, 15, 26, 45, 46].

A.1 The model

Szekeres cosmological models are solutions of the Einstein’s Field equa-

tions of the type:

ds2 � dt2 � e�2α dr2 � e�2β pdx2 � dy2q (A.1)

with irrotational dust as a source (see [14, 15, 26, 46, 178]). One can also

include a cosmological constant as a source (see for example [14] and [223,

224]); Szafron [179] (see also [14, 26, 46]) considered radiation and dust as

sources.

In their most general form they have no killing vectors [180] and are

therefore inhomogeneous.1

1Particular choices for the arbitrary functions can, nevertheless, lead to models with

symmetries
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There are two families of this metric: the one with β,r � 0 (Family I)

and the one with β,r � 0 (Family II). The function α always depends on all

of the variables.

All Friedmann-Lemâıtre-Robertson-Walker and Lemâıtre-Tollman-Bondi

models can be obtained from the Szekeres ones: in [46], see figures 2.1 and

2.2 for all the subcases of Family II and figure 2.4 for the subcases of Family

I models (on this topic see also [14]); also, one should notice that, as proven

in [14], for example, Family II can be obtained as the limit for β,r Ñ 0 of

the Family I.

In literature, there are at least three commonly used representation of

the Szekeres models (see [14, 26, 46]): we will consider the Goode and

Wainwright one.

Goode and Wainwright’s is a representation of the metric for the case

Λ � 0 in which it is evident that the models describe non linear perturbations

of the FLRW metrics; it also encompasses properties of both families [181].

In this representation, he metric is given by:

ds2 � dt2 � S2
�
H2W 2 dr2 � e2ν

�
dx2 � dy2

��
. (A.2)

The function Spt, rq is the solution of the equation:�
9S

S

�2

� 2M
S3

� κ

S2
κ � t0,�1u, (A.3)

where Mprq is an arbitrary function linked to the matter density (see later);

in case a cosmological constant is present, we have [14, 46, 223, 224]:�
9S

S

�2

� 2M
S3

� Λ

3
� κ

S2
, κ � t0,�1u. (A.4)

With or without a cosmological constant, we have:

Hpt, x, y, rq � Apt, x, y, rq � F pt, rq �
� Apt, x, y, rq � rβ�prq f�ptq � β�prq f�ptqs ,

(A.5)

where f�ptq are independent solutions of the (Raychaudhuri) equation:2

:F � 2
9S

S
9F � 3M

S3
F � 0 (A.6)

2See [14] for their analytical expression in case there is no cosmological constant, and

[224] for the case κ � 0 and Λ � 0.
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and the β�prq functions are arbitrary: the choice β� � 0 leads to Robertson-

Walker models (see [14]).

In every case, the density field is given by:

ρ � 6M
S3

�
1� F

H



� 6M

S3
p1� δq (A.7)

where we defined the density contrast δ.

Another relation involving the density contrast needed in the calculation

in chapter 4 is:
9F

H
� �

9H

H
�

9δ

1� δ
(A.8)

Finally, we calculate the shear tensor; it is given by[45]:

σrr � 2

3

9δ

1� δ
:� σ; (A.9)

σxx � σyy � �1

2
σ (A.10)

where we defined σ � 2

3

9δ

1� δ
� 2

3

9F

H
.

These were the common relations between the two families; the two

families are defined as follows (in the case there is no Cosmological Constant

among the sources):

Family I pβ,r � 0q
M,2r �T,2r � 0, and S � Spt, rq.3 Moreover:

eν � fprq
aprq px2 � y2q � 2 bprqx� 2 cprq y � dprq (A.11)

f is arbitrary and:

ad� b2 � c2 � ε

4
, ε � t0,�1u; (A.12)

W 2 � pε� κf2q�1; (A.13)

β� � �κfM,r
3M

, β� � f T,r
6M

; (A.14)

A � f ν,r �κβ�. (A.15)

3T prq is the, position dependent, time of the big bang, see [14].
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The seven functions f , a, b, c, d, M and T are arbitrary, but one should

remember that there is the freedom to make a change of coordinates of the

form r ÞÑ gprq, so, keeping in mind condition (A.12), there are actually five

arbitrary functions (see also [181]).

Family II pβ,r � 0q

M and T are constants, S � Sptq and W � 1. Moreover:

eν � 1

1� κ

4
px2 � y2q

κ � t0;�1u (A.16)

A �

$''&''%
eν

!
aprq

�
1 �

κ

4

�
x2 � y2

��
� bprqx� cprq y

)
� κβ�prq κ � �1;

aprq � bprqx� cprq y �
β�prq

2

�
x2 � y2

�
κ � 0;

a, b, c are arbitrary.

The five function a, b, c, β� are arbitrary, but, with the coordinate

freedom reported above, one can see that there are actually four arbitrary

functions (see [181]).

A.1.1 Null geodesics and redshift

We will now calculate the null geodesics for the Szekeres models.

If λ is the affine parameter along the geodesics (the observer is set at

λO), we define the tangent vector:

kα � d xα

d λ
(A.17)

then, the definition of null geodesics (for both families) is:

0 � kα kα

0 � pk0q2 � e2ν S2
�
pk1q2 � pk2q2

�
� pHWSq2 pk3q2

(A.18)

dkα

dλ
� �Γαβγ k

β kγ (A.19)

where the first and second line are the null condition.

Using the Christoffel symbols given in [45], we find that the null geodesics

are:
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Family I

d k0

dλ
� �H pk0q2 �

3

2
σ pHWS k3q2; (A.20)

d

dλ

�
k1peν Sq2

�
�

1

2

B

Bx
pe2νS2q

��
k0
�2

� pHWSq2 pk3q2
�
� (A.21)

� e2νS2
�
k3
�2 B

Bx
ln pHq;

d

dλ

�
k2 peν Sq2

�
�

1

2

B

By
pe2νS2q

��
k0
�2

� pHWSq2 pk3q2
�
� (A.22)
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Family II
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lnpSq k0 �
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Redshift

We define, as usual, the redshift with the relation:

1� z � k0pλq
k0pλOq (A.30)
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Finally, from equation (A.24) and the definition of redshift we just gave,

we find the following equation needed in chapter 4:

d z

dλ
� �H k0p0q p1� zq2 � 3

2
σ pHS k3q2; (A.31)

d2z

dλ2
� �dH

dλ
k0p0q p1� zq2 � 2 p1� zq �Hk0p0q� dz

dλ
� (A.32)
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APPENDIX B

MCMC

In this appendix we review some generalities about Bayesian statistics,

MCMC codes and the Gelman-Rubin criterion.

B.1 Bayesian statistics and Likelihood

There are two diferent interpretation of statistics: the Frequentis inter-

pretation and the Bayesian one.

In the frequentist approach the probability is defined as the limit of the

frequency of an event:

Pr � lim
NÑ8

n

N

where n is the number of positive outcomes and N is the number of the

trials.

In the Bayesian approach, instead, the probability is a distibution and

its calculation is based on the Bayes theorem: the probability that our

hypothesis H is true given the data the data is1

PrtH|datau � Prtdata|HuPrtHu
Prtdatau (B.1)

where:

1We use the standard notation where P tA|Bu is the conditional probability of having

A when B already happened.
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� PrtHu is the prior distribution of H;

� PrtH|datau is the posterior probability (this tells what we want to

know: the probability of H given the data);

� Prtdata|Hu is the likelihood : the probability of observing the data

given H.

B.2 MCMC codes

A Markov Chain Monte Carlo, shortened by MCMC, is a method to

obtain the posterior distributions.

A Markov Chain is a chain of elements genereted with a process with no

memory (Markovian), i.e. a process in which the n-th element is generated

knowing only the pn � 1q-th element. The Monte Carlo part of these kind

of codes constitutes the Markovian process.

These methods are guaranteed to converge to an equilibrium distribution

(see [159]).

In the Metropolis-Hastings code we used, one samples the n-th element

of the chain from a prior distribution in which the pn�1q-th element is taken

to be the mean value (this is a Markovian process, since all information from

all the previous elements is lost).

Prior distribution often used in MCMC codes are the Normal distribu-

tions (random walk MCMC) and the Uniform distribution.

B.3 Gelman Rubin criterion

The main problem in MCMC codes is to find out if the Markov Chain

has converged to the equilibrium distribution and if the code has swept all

the region around the maximum of thelikelihood. Many tests are avaliable,

we used the Gelman-Rubin one.

The Gelman and Rubin criterion tests whether a chain has converged or

not to the equilibrium distribution using a parameter called R (to be defined

later in equation (B.2)): if R is close to 1 we have convergence.

It is a matter of convention how close to 1 R should be: usually one

takes R � 1   0.1 [159]. In our models we had R � 1 � 0.01 except for the

case of the no DM (c) where we had R� 1 � 0.1 for δ1.
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B.3.1 The R parameter

This test must be done independetly for each parameter of the model: in

the following we will consider the case of a model with a single parameter;

the general case is a straightforward extension of this one.

For the application of this criterion one needs a number of chains n ¡ 2,

each with length m; the whole test, basically, is meant to confront the vari-

ance within a chain W and the variance between the chains B.

The within and between chains variance are given respectively by (we

define cj,i the j-th element of the i-th chain, and c̄i is the average value of

the i-th chain):

W � 1

m

m̧

j�1

�
1

n� 1

ņ

i�1

pcj,i � c̄iq2
�

;

B � n

m� 1

m̧

j�1

�
c̄j � 1

m

m̧

i�1

c̄i

�2

.

Finally one defines:

ˆvar �
�

1� 1

m



W � 1

m
B

and then sets:

R �
c

ˆvar

W
(B.2)

At the beginning of the sampling (the burn in phase), R " 1, since the

code is far from the equlibrium distribution and B " 0; when the equilibrium

is approached, B � 0 and R � 1.





CONVENTIONS

We gather here the convenctions and definitions used in this work. Metric

signs p�;�,�,�q.

Object Definition

M@ Solar mass (1.9 1030 kg)

R@ Distance of the Sun from the center ofthe Galaxy (7.6 kpc)

G Gravitational constant (6.67 10�11 m3kg�1s�2)

LC 1.48086826741 10�8 � 2 10�17

η Flat Minkowsky metric

xµ Cartesian coordinates

σA Radar coordinates

µ Index of cartesian coordinates; it runs form 0 to 3

A Index for radar coordinates; it is split into a time coordinate (τ)

and space coordinates (r � t1, 2, 3u)
pαq tetrad index; it runs from (0) to (3).

Latin letters (a), (b), . . . ={1,2,3}
ā Index for graviton’s polarization; it has values 1 and 2;

4gAB Spacetime metric in radar coordinates

n Lapse function

nr Shift function
3erpαq Triad
3epαqr Cotriad

Γr Combination of the Rā: Γr � γār Rā

continued . . .
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. . . continued

Object Definition

γār Set of coefficients such that:$''&''%
°
ā γār γās � δrs � 1

3°
r γār γb̄r � δā b̄°
r

°
ā γār � 0

Στ Hypersurface at time τ

� In Hamiltonian formalism it means that the equality holds only

weakly (when all constraint are considered)

pt, ~xq Coordinates for BCRS

pT, ~ξq Coordinates for GCRS
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14. J. Plebanski, A. Krasiński, An introduction to General Relativity and

cosmology (Cabridge University Press, Cambridge, ed. 1, 2006).

15. H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers, E. Helrt,

Exact solutions of Einstein’s Field Equations (Cambridge University

Press, Cambribge, ed. 2, 2003).

16. L. Amendola, S. Tsujikawa, Dark Energy Theory and observations

(Cambribge University Press, Cambridge, ed. 1, 2010).

17. I. J. Aitchinson, Supersymmetry and MSSM: an elementary introduc-

tion (2005; arXiv:hep-ph/0505105).

18. S. Hawking, Physics Letter B 134, 403 (1984).

19. J. Yokoyama, Physical Review Letter 88, 151302 (2002).

20. J. Mukohyama, L. Randall, Physical Review Letter 92, 211302 (2004).

21. G. Kane, M. Perry, A. Zytkow, Physical Letter B, 7 (2005).

22. A. Dolgov, F. Urban, Physical Review D 77, 083503 (2008).

23. T. Mattson, General Relativity and Gravitation 42, 567 (2010).

24. V. Marra, PhD thesis, Università di Padova, Dipartimento “Galileo
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