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Riassunto 

 

Parole chiave: batteri Gram-negativi, malattie delle piante, estratti polifenolici, peptidi anti-

virulenza, peptidi anti-microbici, Sistema di Secrezione di Tipo III, proteina HrpA, Quorum 

Sensing, pompe di efflusso.    

Obiettivi: Analizzare possibili alternative ecocompatibili rispetto a quelle attualmente 

disponibili da applicare nella lotta alle malattie delle piante causate da batteri fitopatogeni 

Gram-negativi. Lo studio è articolato in modo da perseguire i seguenti obiettivi principali: I) 

analizzare i sistemi di patogenicità e virulenza dei batteri fitopatogeni Gram-negativi come il 

Sistema di Secrezione di Tipo III (TTSS) e in particolare la proteina strutturale del pilus HrpA, 

quali bersagli ideali contro i quali allestire molecole in grado di bloccare la 

patogenicità/virulenza di tali batteri senza interferire con la loro vitalità; II) verificare 

l’efficacia in vitro and in vivo di potenziali molecole anti-infettive, quali piccoli oligopeptidi 

ed estratti vegetali ad alto contenuto in polifenoli ottenuti in un contesto di economia circolare, 

nel limitare o bloccare lo sviluppo dei sintomi legati a malattie delle piante ad eziologia 

batterica; infine, come obiettivo futuro è stato posto quello di analizzare una possibile 

correlazione fra sistemi di virulenza, fitness e pompe implicate nell’efflusso di composti 

xenobiotici nei batteri fitopatogeni per individuare bersagli, ancora poco esplorati, contro i 

quali allestire molecole innovative.  

Metodi e risultati: La ricerca è stata effettuata utilizzando come sistemi modelli batteri 

appartenenti al gruppo di Pseudomonas syringae quali; P. savastanoi pv.nerii (Psn), P. 

syringae pv.tabaci (Ptab) e pv.actinidiae (Psa) insieme alle relative piante ospiti Nerium 

oleander, Nicotiana tabacum and Actinidia chinensis. La prima fase della ricerca ha permesso 

di rilevare la presenza di un “punto debole” nel pilus del Sistema di Secrezione di Tipo III 

dove poter disegnare e progettare oligopeptidi in grado di bloccare la formazione di questo 

condotto indispensabile nei batteri Gram-negativi per espletare la loro azione di patogenicità 

e virulenza. Il “punto debole” di tale condotto è stato identificato nella proteina strutturale del 

pilus denominata HrpA dei batteri appartenenti al gruppo di P. syringae, i cui monomeri 

interagiscono gli uni con gli altri attraverso interazioni di tipo coiled-coils. Dalle analisi in 

silico attraverso specifici strumenti bioinformatici è stato possibile evidenziare in posizione 

C-terminale della proteina HrpA la presenza di amminoacidi fondamentali per l’instaurarsi di 

tali interazioni e la loro importanza è stata confermata da prove di mutagenesi sito-specifica, 

dove è stato rilevato un fenotipo non patogeno o ipovirulento dei mutanti batterici allestiti. Un 

protocollo per la sintesi biotecnologica della proteina HrpA è stato messo a punto su scala di 

laboratorio ed utilizzato nella fase di scale-up per la produzione dell’anticorpo primario 

utilizzato nei saggi immunoenzimatici appositamente allestiti. Sulla base di questi primi 

risultati sono stati progettati una serie di piccoli oligopeptidi (17-27 amminoacidi) in grado di 

impedire il legame fra i singoli monomeri della proteina HrpA, impedendone di fatto 

l’assemblaggio del pilus stesso. L’assenza di un effetto fitotossico aspecifico così come la 

capacità di inibire la risposta ipersensibile (HR) da parte di questi oligopeptidi sono state 

preventivamente accertate mediante infiltrazioni artificiali su foglie di Tabacco. L’assenza di 

un effetto battericida è stato valutato attraverso misure spettrofotometriche del batterio in 

coltura liquida addizionato a concentrazioni calibrate dell’oligopeptide. Infine, la specificità 
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di azione di tali oligopeptidi diretta contro il TTSS è stata analizzata e confermata attraverso 

saggi molecolari in vitro basati su misure di fluorescenza mediante l’utilizzo di batteri 

trasformati con vettori contenenti il gene reporter per la green fluorescent protein (gfp), saggio 

di colorazione con il Congo red e allestimento di mutanti “auto-produttori” in grado di 

sintetizzare in maniera endogena l’oligopeptide. L’efficacia di tali molecole nel ridurre o 

sopprimere lo sviluppo della malattia è stata accertata in vivo attraverso la produzione di piante 

in grado di esprimere in maniera transiente l’oligopeptide ed infine saggi di patogenicità su 

piante ospiti. Il peptide con maggior attività anti-infettiva, denominato AP17, è stato inserito 

all’interno del vettore d’espressione pCAMBIA1305.2 e per il tramite di Agrobacterium 

tumefaciens veicolato a livello dell’apoplasto della cellula vegetale di N.tabacum come 

confermato dal saggio istochimico GUS (attività β-glucuronidasica). Tali piante transgeniche 

infettate con P. syringae pv. tabaci si sono rivelate molto più resistenti rispetto alle piante di 

controllo. Saggi in vitro ed in vivo sono stati effettuati anche con il peptide denominato Psa21, 

progettato e disegnato sul dominio coiled-coil identificato nella sequenza amminoacidica della 

proteina HrpA di Psa, con risultati positivi. Un protocollo di trasformazione genetica su piante 

generalmente recalcitanti alla trasformazione come quelle legnose/arboree è stato sviluppato 

sulla varietà di kiwi Hayward trasformate con il peptide Psa21. Con lo stesso approccio 

adottato per gli oligopeptidi è stata valutata l’attività anti-infettiva ed esclusa un’attività 

antimicrobica di estratti polifenolici prototipati ottenuti da residui vegetali di Olea europaea, 

Vitis vinifera e Cynara scolymus in un contesto di economia circolare. Attraverso saggi 

appositamente progettati quali Congo red, ELISA e analisi di espressione genica mediante 

real time PCR è stato possibile evidenziare come tali estratti esercitino un’azione inibitoria 

altamente specifica nei confronti del TTSS e parziale nei confronti del Quorum Sensing. La 

loro efficacia nel contrastare lo sviluppo della malattia è stata valutata attraverso inoculazioni 

artificiali su sezioni di piante adulte. Infine, l’assenza di tossicità a livello delle membrane 

cellulari così come a livello di bersagli subcellulari universalmente presenti in organismi e 

microrganismi (come la pompa Ca2+-ATPase) è stata dimostrata attraverso specifiche analisi 

bioelettrochimiche.  

Conclusioni: Lo studio bioinformatico condotto sulla proteina HrpA di P. syringae ha 

permesso di rilevare la presenza di un motivo coiled-coil rilevatosi fondamentale per 

l’assemblaggio del pilus del TTSS nei batteri utilizzati come sistemi modello nella presente 

ricerca quali P. savastanoi pv. nerii, P. syringae pv. tabaci e pv. actinidiae. Su queste regioni 

sono stati progettati dei piccoli oligopeptidi in grado di ostacolare l’assemblaggio del pilus e 

dunque la patogenicità e virulenza di tali batteri sulle relative piante ospiti. L’efficacia anti-

infettiva dei peptidi e degli estratti polifenolici verificata in vitro e in vivo sui sistemi modello 

utilizzati nella presente tesi di dottorato, insieme al carattere ecocompatibile e all’assenza di 

tossicità, depone fortemente a favore di una possibile applicazione di tali molecole nel settore 

fitoiatrico. La loro specificità di azione diretta contro sistemi non deputati alla vitalità batterica 

e conservati fra i patogeni Gram-negativi, non solo di piante ma anche di umani e animali, fa 

presupporre una scarsa se non assente pressione selettiva nella popolazione batterica 

garantendo una loro efficacia a più lungo termine.   

Significato ed impatto dello studio: La globalizzazione dei mercati agroalimentari da una 

parte insieme ai cambiamenti climatici in atto stanno contribuendo in maniera sostanziale alla 
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possibile e rapida diffusione di fitopatogeni alieni ed invasivi in aree dalle quali finora erano 

assenti, oppure aggravando l’incidenza e la severità di quelli endemici, contribuendo in 

maniera sostanziale ad aumentare le possibili minacce per il settore agricolo. Del resto la 

scarsa disponibilità di efficaci presidi fitosanitari alternativi ai composti rameici, i cui effetti 

negativi sia sulla salute umana che sulla salvaguardia ambientale da troppo tempo trascurati, 

insieme alla necessità di adeguamento alla legislazione Europea, ha portato gli operatori nel 

settore fitoiatrico a riflettere sulla urgente necessità di mettere in atto una rivoluzione culturale 

nella quale sono richiesti importanti sforzi di innovazione. È proprio in questo contesto che il 

lavoro svolto nella presente tesi di dottorato apre delle prospettive significative di lotta verso 

i batteri Gram-negativi ed in particolare del genere Pseudomonas agenti di malattie di 

numerose specie di interesse agrario, che meritano di essere ulteriormente approfondite.   
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Summary 

 

Key words: Gram-negative bacteria, plant diseases, polyphenolic extracts, anti-virulence 

peptides, anti-microbial peptides, Type Three Secretion System, HrpA protein, Quorum 

Sensing, efflux pumps. 

 

Objectives: Analysing environmentally friendly alternatives that could be applied in plant 

disease control caused by phytopathogenic Gram-negative bacteria. The study was carried out 

in order to achieve the following main aims: I) analysing pathogenic and virulence systems of 

phytopathogenic Gram-negative bacteria such as the Type Three Secretion System (TTSS), 

and in particular the main structural protein of TTSS pilus, i.e. “HrpA”, in order to design 

molecules able to block the pathogenicity and virulence of these bacteria without undermining 

their viability; II)  verifying the in vitro and in vivo efficacy of anti-infective molecules, such 

as small oligopeptides and polyphenolic extracts  obtained in a circular economy framework, 

to reduce or to block symptoms development caused by plant pathogenic bacteria; finally, as 

a future objective to analyse a possible correlation among virulence systems, fitness and efflux 

pumps related to xenobiotic compounds extrusion in phytopathogenic bacteria, in order to 

identify underdeveloped targets, against which innovative molecules can be designed.   

 

Methods and Results: The research was carried out with bacteria model systems belonging 

to P. syringae complex, such as P. savastanoi pv. nerii (Psn), P. syringae pv. tabaci (Ptab) 

and pv. actinidiae (Psa) together with the corresponding host plants Nerium oleander, 

Nicotiana tabacum and Actinidia chinensis. First of all, we have identified a “weak point” in 

TTSS pilus, which represents a pivotal device for pathogenicity and virulence of Gram-

negative plant bacteria. This “weak point” was identified with the main structural protein 

called “HrpA” in bacteria belonging to P. syringae complex, whose monomers are linked 

through coiled-coil interactions. The in silico analysis, performed with specific bioinformatic 

tools, has identified in C-terminus portion of the HrpA protein several fundamental amino 

acids for coiled-coil interactions. Their essential role was confirmed by site-directed 

mutagenesis experiments, where a non pathogenic or ipovirulent phenotype of bacterial 

mutants was detected. An experimental protocol for the biotechnological synthesis of the 

HrpA protein was set up and then used in a scale-up phase for primary antibody production 

employed in immunoenzymatic assays. Based on these results a set of small oligopeptides 

(17-27 amino acids) were designed to prevent the TTSS pilus assembly. The absence of any 

phytotoxic effect as well as the ability to inhibit the hypersensitive response (HR) of these 

peptides were previously evaluated through artificial infiltration into mesophyll of tobacco 

leaves. The absence of any antibiotic activity was verified by spectrophotometric 

measurements of bacterial liquid cultures mixed with known concentrations of these peptides. 

Finally, the specific action of these peptides against TTSS was analysed and confirmed by in 

vitro molecular assays based on spectrophotometric measurements on transformed bacteria 

with vectors expressing the reporter gene for the green fluorescent protein (gfp), Congo red 

assay, and bacterial mutants able to endogenously synthesise these peptides. The efficacy of 

these molecules to reduce or abolish symptom development was evaluated in vivo through 

their transgenic transient expression directly in plants and by pathogenicity tests on host 
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plants. The peptide with the highest anti-infective activity, i.e. AP17, was cloned in the binary 

vector pCAMBIA 1305.2 and delivered by A. tumefaciens into the apoplastic space of N. 

tabacum plant cells as confirmed by GUS histochemical assay. These transgenic plants, after 

inoculation with P. syringae pv. tabaci, were more resistant than control plants. In vivo and 

in vitro assays were performed with the peptide Psa21, designed on coiled-coil motif of HrpA 

protein of Psa, with positive results. An experimental protocol for transgenic plants, which 

are usually refractory to genetic transformation such as woody plants, was developed on kiwi 

Hayward transformed with Psa21 peptide. Using the same approach adopted for the 

oligopeptides, the anti-infective activity was evaluated and the antibacterial activity was 

excluded for standardized polyphenolic extracts obtained from vegetable wastes of Olea 

europaea, Vitis vinifera and Cynara scolymus. These extracts specifically inhibit the TTSS 

and partially the Quorum Sensing as highlighted by specific assays such as Congo red dye 

absorption, ELISA, expression gene by real time PCR. Their effectiveness against disease 

development was verified by artificial inoculations on adult plants. Finally, the absence of any 

toxicity against the cell membranes as well as subcellular targets conserved both in organisms 

and microorganisms (e.g. Ca2+-ATPase) was demonstrated by specific bioelectrochemical 

tests. 

 

Conclusions: The bioinformatic analysis performed on the HrpA protein of bacteria 

belonging to P. syringae complex has detected a coiled-coil domain in its C-terminus portion. 

These motifs were essential for TTSS pilus assembly in bacteria used as model systems, such 

as P. savastanoi pv. nerii, P. syringae pv. tabaci and P. syringae pv. actinidiae. Using these 

regions a set of small peptides were designed to prevent pilus assembly, and to disarm the 

pathogenicity and virulence of such bacteria. The anti-infective activity of these peptides as 

well as of the polyphenolic extracts, verified in vitro and in vivo on model systems, together 

with the ecofriendly aspect and the absence of toxicity, support their possible application in 

plant protection. Their specific activity against systems not related to bacterial viability and 

conserved among Gram-negative pathogens, not only of plants but also of humans and 

animals, suggests that a poor or absent selective pressure may develop in the bacterial 

population, thus providing a longer efficacy. 

 

Significance and Impact of the Study: The market globalisation and the climate change are 

contributing substantially to the possible and rapid spread of alien and invasive plant 

pathogens in areas where they were previously absent, or are intensifying the incidence and 

severity of endemic pathogens, thus contributing significantly to increase the possible threats 

to the agricultural sector. Moreover, the lack of effective alternative molecules to copper 

compounds in plant protection, whose negative effects on both human health and 

environmental protection, have been neglected for far too long, and the need to adapt to 

European legislation, have led the operators in plant protection sector to reflect about the 

urgent need to implement a cultural revolution in which major innovation efforts are required. 

In the scenario described above the work performed in this PhD thesis suggests significant 

perspectives in plant disease protection against Gram-negative bacteria and in particular of 

bacteria belonging to Pseudomonas genus, acting as pathogenic agents of a large number of 

important agronomic species, which deserve to be further investigated. 
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Abstract  

The control and management of bacterial diseases of plants still rely mainly on applications 

of copper salts and antibiotics, the latter not allowed in European Member States. 

Moreover, copper-based treatments against phytopathogenic bacteria are also strictly 

regulated and temporarily limited within European Union. Heavy negative effects have been 

reported following copper applications, both on different ecosystems and several biological 

processes.   

In this PhD thesis, the anti-infective activity of small peptides and polyphenolic extracts has 

been verified using as model systems bacteria belonging to P. syringae complex such as P. 

savastanoi pv. nerii, P. syringae pv. tabaci and P. syringae pv. actinidiae together with their 

corresponding host plants Nerium oleander, Nicotiana tabacum and Actinidia chinensis.  

Some of these molecules inhibit specifically the Type Three Secretion System (TTSS) and 

partially the Quorum Sensing (QS), without undermining bacterial viability and without any 

toxic effect. Additionally, the secondary structure of the putative HrpA protein, the main 

component of the TTSS translocating pilus in phytopathogenic bacteria belonging to the P. 

syringae group was also examined. In particular, it was shown that C-terminus portion of 

HrpA protein is characterised by a coiled-coil motif essential for TTSS pilus assembly.  

The work performed in this PhD thesis is presented and organised in six chapters. Chapter 1 

provides a brief overview of bacterial virulence mechanisms belonging to P. syringae group 

and of alternative strategies to control bacterial plant disease, including a short focus on 

advantages and disadvantages of antimicrobial peptides and drawbacks of copper treatments. 

In chapter 2, the design and development of anti-virulence peptides are addressed together 

with the study of the HrpA protein. Moreover, the in vivo and in vitro efficacy of anti-virulence 

peptides to inhibit the development of P. syringae disease is verified. In chapter 3, the role of 

Nicotiana tabacum transgenic plants expressing the anti-virulence peptides as a tool to assess 

the peptides’ efficacy to confer resistance towards P. syringae pv. tabaci is investigated. In 

chapter 4, polyphenolic extracts from vegetable no food/feed residues of typical 

Mediterranean crops are obtained and their inhibitory activity on TTSS and QS of P. 

savastanoi pv. nerii is also assessed. In chapter 5, the functional links between IAA (indol-3-

acetic acid) metabolism, TTSS and drug efflux pumps in P. savastanoi pv. nerii are analysed 

in order to obtain information and to identify new ideal targets that could be useful in the near 

future for the development of alternative strategies for the control of plant pathogenic bacteria. 

Finally, chapter 6 provides an overall concluding discussion about the results obtained in this 

PhD thesis.  
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Chapter 1 

 
General Introduction 

 

 

1.1 Plant bacteria diseases 

Phytopathogenic bacteria are responsible to affect a very large number of plants, especially 

those with agronomic importance, such as horticultural plants and fruit trees, causing severe 

financial losses. The known plant bacteria are about 5000 species and approximately 130 

species are pathogenic (Jackson RW, 2009). Among these, Gram-negative bacteria belonging 

to the genera Erwinia, Pseudomonas, Xanthomonas, Ralstonia and Xylella are the etiological 

agents of the most widespread and destructive plant diseases around the world. In this 

scenario, bacteria referred to Pseudomonas syringae complex are responsible for diseases on 

a broad range of crops, some of these are widely distributed in the Mediterranean basin such 

as olive and citrus (Lamichhane JR et al., 2015, Bull CT et al., 2010).  

Although an exception rather than the rule, the disease event is the result of a close interaction 

between the pathogen and the host plant, even at the molecular level. When a phytopathogenic 

bacterium interacts with a plant, two different reactions may occur: a “compatible” interaction, 

which is characterized by pathogen proliferation and disease development, or an 

“incompatible” interaction with no-host or resistant plant, where plant resistance can trigger 

a hypersensitive response (HR), characterised by a rapid and localised collapse and necrosis 

of tissue near the entry of the pathogen (Felix and Boller, 2003; Melotto et al., 2006). 

The biological characteristics of the plant pathogenic bacteria, such as the ability to survive 

epiphytically also on seeds, multiply and move endophytically, make their control very 

difficult. Currently, the only means available and effective for the control of plant bacterial 

diseases are the preventive treatments based on copper salts. An overview of the available and 

under development tools for the control of diseases caused by bacteria belonging to P. 

syringae complex is presented in the next section.  

 

1.2 P. syringae disease control   

The strategies for minimising plant disease progression can be summarised into the following 

three categories: I) exclusion, elimination or reduction of pathogen inoculum, II) promotion 

of genetic diversity in the crop and III) inhibition of pathogen virulence mechanisms (Strange 

and Scott, 2005). However, these methods should not be used in exclusion, rather than they 

are combined together an integrated management approach. The management strategies rely 

on preventive methods, e.g. pathogen-free seeds and on good cultural practices (e.g. crop 

rotation) can be an effective means to reduce inoculum or to limit proliferation, together, when 

possible at the employment of resistant cultivars. During the last few decades, there has been 

a growing interest in adopting biological control measures, based on application to foliar or 

root tissues of non–pathogenic or pathogenically attenuated microorganisms, saprophytic 

bacteria and plant-growth promoting rhizobacteria (PGPRs) as well (Filho et al., 2013; Hert 
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2007; Ji et al., 2006). These strategies aim to suppress pathogen populations or induce 

systemic acquired resistance or a similar response in the plant that reduces the ability of the 

pathogen to colonise the plant and cause disease. However, also for biological control the best 

results can be achieved through combined treatments, in a view of integrated control and in 

any case taking into account the specific conditions that you have in the field rather than in a 

controlled testing environment. Another form of biological control, which has been successful 

for managing disease caused by P. syringae, although strictly limited to annual plants such as 

tomato, is the use of bacteriophages (Jones et al., 2007, 2012; Flaherty et al., 2000). Selected 

bacteriophages have been demonstrated to be effective under greenhouse and field conditions 

for control of different bacterial diseases of annual plants but not of woody plants, because P. 

syringae etiological agents of vascular disease grew into cankers, resulting protected by all 

biological control agents (Lamichane et al., 2014; Jones et al., 2012). As emerged at the time, 

phage therapy has still to overcome several challenges before becoming effective. Moreover, 

in recent years, several studies showed the efficacy of natural extracts, obtained from different 

plants or plant parts, such as Ficus carica, Allium sativum and Punica granatum to control 

disease caused by P. syringae, such as P. syringae pv. tomato on tomato plants (Balestra et 

al., 2009). However, the only effective control methods used in plant protection are still based 

almost exclusively on chemical compounds. Although chemical control represents a strategy 

used for centuries in plant disease management, only a few bactericides, essentially antibiotics 

and copper salts, have been developed and commercially available. In recent decades, 

different chemical products like inducers of systemic acquired resistance such as acibenzolar-

S-methyl (ASM) and benzothiadiazoleand (BTH) (Louws et al., 2001; Wilson et al., 2002) 

have been used, although with limit results (Romero et al., 2001). Another product of 

increasing use is chitosan, a natural biodegradable polymer with antimicrobial and plant-

immunity eliciting properties (Xing et al., 2015). Chitosan is applied against a range of plant 

pathogens, including strains belonging to P. syringae group, although some limits have been 

reported (Mansilla et al., 2013). As previously mentioned, within chemical treatments, there 

are also antibiotics, their large-scale application is restricted in many countries and their use 

in plant protection is strictly forbidden in some countries, including those in the European 

Union due to concern over their contribution to the emergence of antibiotic resistance in 

human pathogens (Casewell et al., 2003;  Lipsitch et al., 2002). Finally, among the few 

effective and commercially available chemicals, there are copper compounds. However, many 

studies in recent time, have demonstrated that its massive use can lead to a range of undesired 

effects that are discussed in the following section.  

 

1.3 Copper in plant protection: problems and current European legislation 

Copper is an essential microelement whose presence in the soil is variable, according to the 

specific characteristics of the different soils e.g. sandy or clayey soils, with acid or basic pH. 

Some factors such as leaching, run off and uptake by microorganisms and plants combine with 

physical and biological processes occurring in the terrestrial environments, strongly influence 

copper bioavailability, which is defined as the portion of copper in the soil that is available 

for uptake by soil microorganisms/organisms and plants (Hinojosa et al., 2010). 
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Copper in the soil is almost exclusively in the ionic divalent form (Cu2+), and it is naturally 

attracted by negatively charged clay minerals, anionic salts and organic matter producing 

several metal-coordination compounds (Maier et al., 2000). A specific adsorption of copper 

to carbonates, phyllosilicates, and hydrous oxides of Al, Fe, and Mn was reported, where an 

antagonistic effect was observed between copper and N, P, Mo, Zn and Mn. In this scenario, 

it is noteworthy that the complete decomposition and mineralization of organic matter is 

indirectly prevented by copper, causing severe ecological imbalances in nutrient recycling 

(Parat et al., 2002). When bound, copper loses its bioavailability and mainly this occurs in 

environments with high cation exchange capacity, high organic matter content and high pH 

(Maier et al., 2000, Selim and Amacher 2001). On the contrary, soils displaying low pH values 

and cation exchange capacity, and/or poorly loaded with organic matter, content, make copper 

more mobile and bioavailable (Hinojosa et al., 2010, Selim and Amcher 2001). The biological 

activity of cooper is strictly dependent on its ability to exist in a “free” or “ionic” state. In the 

latter condition copper is very reactive against a broad spectrum of plant pathogenic fungi and 

bacteria. The amount of copper in the ionic state, greatly increases at pH values lower than 

6.5, this state makes a crucial contribution at its mobility, as well as its fungicidal and 

bactericidal activity, although this reactivity is also responsible for the phytotoxicity. 

The normal amount of copper concentration in soils generally ranges between 5 and 20 mg/Kg 

of soil, unless copper is present in parent rock and natural minerals; in this case copper 

concentrations as much as 100 mg/Kg of soil are reached (Wightwick et al., 2006). 

Conversely, when the copper levels range from 100 to up 1,280mg/Kg of soil and mainly 

accumulates in the topsoil, decreasing with depth in non sandy soils, and eventually returning 

to natural levels at about 40-60 cm unless, we are facing a contaminated agro-systems 

(Mirlean et al., 2007; Rusjan et al., 2007).   

As reported, copper is a micronutrient metal necessary for many organisms and 

microorganisms, taking part in numerous physiological processes and it is also as an essential 

cofactor for many metalloproteins. However, high concentrations of copper salts dangerously 

affect physiological and biochemical processes in microorganisms and higher organisms. In 

humans dramatic toxic reactions are observed in cases of excessively elevated intake 

(Jaishankar M et al., 2014).  

In this frame a great concern is given by the residual copper in vegetables and fruits for human 

consumption. On environmental scale, copper accumulation in soils is toxic for resident 

plants, animals and microorganisms; it is also deleterious for many ecosystem processes, with 

a dramatic impact on soil biology. High copper content reduces soil fertility, induces plant 

stress and abiotic diseases, such as impaired root growth, atrophy, chlorosis, necrosis and leaf 

wilting (Moolenaar 1998; Magalhaes et al., 1985). These deleterious effects are particularly 

damaging to plants when exposed to high temperatures and in acid soils, conditions which 

favour copper mobility and bioavailability. Moreover, the functional diversity of the soil 

microbial community is negatively affected by copper toxicity (Maier et al., 2000; Hinojosa 

et al., 2010). High copper concentrations in soil, kill naturally occurring beneficial 

microorganisms, as well as those applied as biocontrols including Bacillus and Trichoderma 

(Maier et al., 2000). High copper levels (ca. 200 mg/Kg of soil) were also demonstrated to 

suppress nitrogen fixation by symbiotic bacteria belonging to the genus Rhizobium (Tindwa 
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et al., 2014). Additionally, copper compounds heavily affect earthworms, which accumulate 

copper in their tissues and deleterious effects were also observed on bees and on fish fauna 

wildlife as well (Hinojosa et al., 2010; Eijsackers et al., 2005).  

Another important aspect of copper accumulation, having huge consequences for human 

health, is the increase, in polluted copper environments, of antibiotic-resistance bacteria. It 

was demonstrated that copper-polluted soil induces the selection of copper-resistant bacteria, 

and further indirectly induces a co-selection for antibiotic resistance, because both these 

resistance genes are located on the same bacterial plasmids (Berg et al., 2004, Baker et al., 

2006, Hu et al., 2016). It is noteworthy that copper often causes the selection of bacteria 

resistant to vancomycin, which is among the last resort for antibiotic treatment of resistant 

staphylococcal infections in humans (Rincón et al., 2014).  

Since the antibacterial effects of copper sulfate preparations, in the form of “Bordeaux 

mixture” (Pierre-Marie Alexis Millardet, France 1880) were discovered, the production of 

fungicides/bactericides based on copper salts has reached its wide spread and several copper 

based compounds were synthesised and available on the market. Consequently, many 

thousands of tons of copper compounds were and are still now used annually in agricultural 

practices worldwide. Despite its negative eco-toxicological profile, the use of copper is still 

tolerated for its properties as wide-spectrum fungicide and bactericide and it is the only 

chemical compound allowed also in organic agriculture. The over-accumulation of copper in 

the soil reaching toxic levels, mainly due to agronomic practices, prompted the European 

Union (EU) and the governments of European Countries to restrict and control the use of 

copper compounds. Its maximum residue levels (MRLs) in and on food and feed, both of plant 

and animal origin, were defined in regulation 396/2005/EC and have been recently amended 

by Commission Regulation 149/2008/EC. New MRLs for pesticides with copper as the active 

ingredient in and on several fruit and vegetables are now fixed at 5mg/Kg.  

Within the EU, limits to the use of copper compounds in organic production were introduced 

by the European Commission Regulation 473/2002/EC. Copper use is allowed up to 

6Kg/ha/year, as specified in Regulation 889/2008/EC, detailing the rules for the 

implementation of Council Regulation 834/2007/EC on organic production. These limits were 

applied by most European countries, including Italy, France and Spain. In Germany, Austria, 

and Switzerland, copper application has been further restricted to 3-4 Kg/ha/year, while 

copper has been banned completely in Netherland and Denmark (Tamm et al., 2004; 

Wightwick et al., 2008).  

Hence, treatments with copper derivatives against plant pathogenic bacteria and fungi 

contribute to its accumulation in soils more than any other agricultural activity, posing a 

serious threat to a wide range of organisms and microorganisms, and to terrestrial and aquatic 

ecosystems. In fact high concentrations of copper dangerously affect physiological and 

biochemical processes in microorganisms, algae and higher organisms. In addition to its 

negative ecotoxicological profile, a great concern is given by the residual copper in vegetables 

and fruits for human consumption. The restrictions imposed within the European Union on 

copper applications for plant disease control in agriculture stimulated the development of 

strategies to lower copper load into the topsoil, the optimisation of copper use, and the research 
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of realistic and efficient alternative strategies. Some of the most significant approaches, 

developed in recent years, are discussed in the following paragraphs. 

 

1.4 AntiMicrobial Peptides (AMPs)  

According to recent regulation to reduce the use of chemicals, AntiMicrobial Peptides (AMPs) 

have gained popularity for human and plant disease control during the past decade and are 

attractive alternatives to conventional antibiotics. These molecules distributed throughout the 

animal and plant kingdom are critical for the successful evolution of complex multicellular 

organisms and are effective weapons that higher organisms (including plants) have, among 

other defence strategies, to fight a great variety of pathogens (Table 2) (Boman 2003; Zasloff 

2002; Guilhelmelli et al., 2013).     

In general, AMPs consist of less than 50 amino acids, possess an overall net positive charge 

and amphipathic topology (Ebenhan et al., 2014; Yeaman and Yount 2003). The amphipathic 

topology creates clusters of hydrophilic and hydrophobic amino acids spatially separated from 

each other within the molecular selective antibacterial action through specific targeting of 

bacterial membranes having a high density of anionic lipids. Many bacterial membranes 

contain negatively charged components like hydroxylated phospholipids and 

lipopolysaccharides that are therefore major targets for AMPs. The hydrophobic regions of 

the AMPs support incorporation of the peptides into the membranes, leading to pore formation 

and permeabilisation. Basically, three models have been proposed for peptide insertion: the 

“barrel-stave model”, the “carpet model”, and the “toroidal-pore model” (Figure1) (Epand and 

Vogel 1999; Hancock and Diamond 2000; Lai and Gallo 2009).  

The “barrel-stave model” (Figure1A) explains its name as the peptide helices form a bundle 

in the membrane with a central lumen, much like a barrel composed of helical peptides as the 

staves. 

The orientation of the peptides forming the pore is so that the hydrophobic regions of the 

peptide align with the lipid core region, and the hydrophilic ones form the interior region of 

the pore. In the “carpet model” (Figure1B) peptides accumulate orienting by parallel to the 

surface of the lipid bilayer, because electrostatically attracted to the anionic phospholipid head 

groups, forming an extensive carpet. As the peptide concentration increases, the peptides are 

thought to disrupt the bilayer in a detergent-like manner, leading to the formation of micelles 

after disruption of the bilayer curvature. 

In the “toroidal-pore model” (Figure1C), the polar faces of the peptides are associated with 

the polar head of the lipids, so that the pore is lined both by the peptides and the lipid head 

groups. 

For their mode of action, namely targeting fundamental features of microbial cell membranes, 

AMPs have attracted the interest of researchers for many years. However, increasing 

hypothesis suggest that the effects such as formation of ion channels, transmembrane pores, 

and extensive membrane rupture, which surely leads to the lysis of microbial cells, are not the 

only mechanisms of microbial killing. In fact, other mechanisms may be involved, such as 

intracellular targets, that can alter the cytoplasmic membrane septum formation, inhibit cell-

wall synthesis and inhibit enzymatic activity (Brogden 2005; Hancock and Sahl 2006; 

Yeaman and Yount 2003). Moreover, the difference in prokaryotic and eukaryotic membrane 
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architecture has imparted selectivity of AMPs for bacteria and fungi, thus reducing toxic side 

effects against cells of higher organisms (Alan and Earle 2002; Montesinos 2007; Montesinos 

and Bardaji, 2008; Nawrot et al., 2014). For these reasons the diversity of mechanisms of 

action has led to believe that the frequency of resistance emergence to AMPs should be low 

(Brogden 2005; Peschel and Sahl 2006).  

 

 

Table 2: Representative antimicrobial peptides (Jung et al., 2014) 

 
 

 

In plants several families of natural AMPs have been identified, such as thionins, defensins, 

lipid transfer proteins, hevein-and knottin-like proteins and snakins, differing in structure, size 

and cysteine content (Tam et al., 2005). AMPs from animals were also analysed for their plant 

protecting potential. For example magainin (from frog), cecropin (from silkmoth) and 

modified or chimeric forms of these two peptides were used mainly in vitro or ex vivo (i.e. 

detached leaves or fruits) studies against plant pathogens (Alan and Earle, 2002; Coca et al., 

2006).   
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As previously reported AMPs are widely recognised as promising candidates and substitutes 

of antibiotics, although naturally occurring sequences present drawbacks that limit their 

development, such as susceptibility to protease degradation and low bioavailability (Choi et 

al., 2014). Overcome these limitations, a rational design of new AMPs, in order to find shorter 

and more stable peptides, maintaining or increasing the activity with a low cytotoxicity has 

been carried out (Zhang and Fall 2006; Hancock and Sahl 2006). A brief summary of the 

advantages and disadvantages of AMPs is reported in Table 3. 

 

Figure 1: Schematic representation of some action mechanisms of membrane-active AMPs. (A) Barrel-

stave model. AMP molecules insert themselves into the membrane perpendicularly. (B) Carper model. 

Small areas of the membrane are coated with AMP molecules with hydrophobic sides facing inward, 

leaving pores behind in the membrane. (C) Toroidal pore model. This model resembles the Barrel-stave 

model, but AMPs are always in contact with phospholipid head groups of the membrane. The blue colour 

represents the hydrophobic portions of AMPs, while the red colour represents the hydrophilic parts of the 

AMPs (Bahar and Ron, 2013). 

 

 

 

For example the synthetic peptide BP100 was found to be effective at micromolar 

concentration against Xanthomonas axonopodis pv. vesicatoria in pepper, Erwinia amylovora 

in apple, pear and Pseudomonas syringae pv. syringae (Badosa et al., 2007).  

However, the process involved in the development of AntiMicrobial Peptides is time-

consuming and limited by the number of individual compounds that can be synthesised. For 

these reasons, molecules able to block pathogenicity and virulence systems of pathogenic 

bacteria have been suggested as an alternative strategy (Silva et al., 2016). 
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      Table 3. Advantages and disadvantages of AntiMicrobial Peptides (Gordon et al., 2005) 

 

Advantages 

 

Disadvantages 

Broad-spectrum activity  

(antibacterial, antiviral, 

antifungal) 

Rapid onset of killing 

Cidal activity 

Potentially low levels of induced  

resistance 

Concomitant broad anti-

inflammatory activities 

 

Discovery costs of synthesis and screening 

Patent exclusivity for economic viability 

Systemic and local toxicity 

Reduced activity based on salt, serum, and pH 

sensitivity 

Susceptibility to proteolysis 

Pharmacokinetic and pharmacodynamic issues 

Sensitization and allergy after repeated application 

Natural resistance (e.g., Serratia marcescens) 

Confounding biological functions (e.g., angiogenesis) 

High manufacturing costs 

 

 

1.5 Bacterial Virulence mechanisms: Quorum Sensing and Type Three Secretion System  

Among the ideal targets against which set up alternative control methods, based on anti-

virulence activity molecules, there should be mechanisms that pathogenic bacteria use in the 

early stage of interaction and presiding over their pathogenicity and virulence (Figure 2). 

Among the main known strategies used by pathogenic bacteria to communicate each other 

and with the potential host, there are:  

i) The ability to synchronize the population behaviour in response both to density and specific 

external stimuli which indicate the plant host presence; 

ii) The ability to secrete directly into the cytoplasm of the potential host cell, molecules known 

as effectors, responsible for pathogenicity and virulence of pathogenic bacteria. 

In particular, these systems are the Quorum Sensing (QS) and the Type Three Secretion 

System (TTSS). 

 

 

1.5.1 Quorum Sensing 

The Quorum Sensing, discovered for the first time in the bioluminescent bacterium Vibrio 

fischeri, is an important universal mechanism, considered the “master switch” that regulates 

the bacteria virulence and allows to such class of microorganisms belonging to the same 

species and sometimes even to different species, to communicate through molecules, called 

autoinducers, which are generally omoserin-acyl-lactone (AHL) in Gram-negative bacteria 

and oligopeptides in Gram-positive bacteria (Waters and Bassler 2005; Galloway et al., 2011; 

Rutherford and Bassler 2012). This mechanism enables the bacteria to act as a coordinated 

community in the regulation of their gene expression. In fact, the QS regulates motility 

phenomena, bioluminescence, synthesis of virulence factors and/or related to the host 

colonisation (Castillo-Juárez, 2015). The communication can be interrupted by the opposite 

phenomenon called Quorum Quenching (QQ), which bacteria possess as a mechanism to 

control QS. 

 

 



Chapter 1 

 

15 

 

Figure 2: Bacterial virulence factor targets for antivirulence agents (Silva et al., 2016) 

 

 

Fundamentally, in this regard, three mechanisms can be identified (Brackman and Coenye 

2015; Rutherford and Bassler 2002): 

i) inhibition of the biosynthesis of the molecules directly involved in the QS through the 

inactivation of the enzymes responsible for the synthesis of the acyl chain, 

ii) degradation by enzymes as lattonasi acylase of these molecules to the purpose of preventing 

their accumulation,  

iii) inhibition of the interaction between these molecules and their specific receptors 

The existence in nature of the QQ phenomenon has been exploited in disease protection in 

order to find molecules able to block the QS and therefore the communication between 

bacteria, essential for their coordination during plant-bacteria interaction.  

Moreover, this mechanism provides a lower risk of developing resistance, since it has not 

generally effect both growth and bacteria fitness. This phenomenon represents a strategy with 

interesting practical implications and with significant therapeutic potential, as to be already 

widely studied to limit the bacterial infection (Koh et al., 2013). 

In addition to synthesis compounds, some natural molecules are able to determine the QQ, 

such as halogenated furanones produced by the marine red alga Delisea pulchra, which 

interfere the N-acylated homoserine lactone (AHL) regulatory system in several Gram-

negative bacteria (Bauer and Teplitski 2001; Kjelleberg et al., 1997).   

In recent years, the discovery of QS antagonists of bacterial and non-bacterial origin has 

increased considerably. For example, it was reported that certain bacteria possess the ability 

to quench QS through the synthesis of specific enzymes such as AiiA (an N-acylhomoserine 

(AHL) lactonase enzyme) from Bacillus sp., able to hydrolyze the lactone bond of the AHL 

signalling compound and PON (the paraoxonase enzymes) in human airway epithelial cells 

(Dong et al., 2001; Chun et al., 2004). However, as reported by Koh et al., 2013 the most of 

the antagonists, to date found, have been discovered in plant extracts and are active against 

human pathogenic bacteria. 
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1.5.2 The Type Three Secretion System 

The Type Three Secretion System is a molecular device, through which the bacterial 

pathogens inject effector proteins able to subvert eukaryotic cellular processes enabling the 

invasion. This structure, similar to a needle, consisting of more than 20 proteins that can be 

divided into three domains: the cytoplasmatic, the transmembrane, and the extracellular 

domain. The core hrp/hrc encodes the actual TTSS apparatus and it is composed of 27 genes, 

most of which are arrayed in four major operons (Alfano et al., 2000). Flanking the core 

hrp/hrc cluster are the Conserved Effector Locus (CEL) and the Exchangeable Effector Locus 

(EEL), which primarily contain a range of TTSS effectors, selfish elements and 

uncharacterised ORFs (Charity et al., 2003).  

The basal body, resembling the structure of the flagellum, is made up of the cytoplasmic and 

the transmembrane domains. The extracellular domain is composed of a needle-like structure, 

build by multiple copies of a single protein which acquires a superstructure helical-like 

forming a conduit, and a translocon complex which span the membrane of the host forming a 

pore (Figure 3). These regions allow the direct contact with the host cell and to secrete directly 

into the cytoplasm effectors of pathogenicity and virulence, which are the basis of onset of 

disease symptoms. In fact the transcription of genes related to such system is in response to 

different environmental conditions and after contact with the host cell. Although TTSSs have 

been identified in many bacterial species, quite limited number of TTSSs has been extensively 

investigated. Until now, five animal pathogens (Salmonella, Shigella flexneri, Pseudomonas 

aeruginosa, Yersinia, Escherichia coli, and Chlamydia spp.) and two plant pathogens 

(Pseudomonas and Xanthomonas) have been well studied for their TTSSs (He et al., 2004) .  

 

 

Figure 3: Schematic representation of the TTSS from plant pathogenic bacteria. The secretion apparatus 

spans both bacterial membranes and is associated with a cytoplasmic ATPase. The TTSS from plant 

pathogenic bacteria is connected to an extracellular pilus that presumably spans the plant cell wall. IM, 

Inner membrane; OM, outer membrane; PM, plasma membrane (Buttner and He, 2009). 

 

 

 

In plant pathogens, both structural and effector genes are coregulated, possessing the same 

“hrp box” regulatory motif. This means that the secretion of effectors happens at the same 

time of the assembly of the TTSS and the newly synthesised proteins will be recovered near 

the tip, depending on the hypothesised “conduit model” (He et al., 2004). On the contrary, the 

other model hypothesised “the guiding filament/conveyor model” suggested that the effectors 



Chapter 1 

 

17 

 

were carried inside the Hrp pilus during its growth, and therefore the newly synthesised 

effectors would have been recovered near the base of the pilus (He et al., 2004). 

Moreover, such apparatus consists of structural proteins, among these the HrpA protein is the 

most important component in the structuring pilus of the TTSS of plant pathogenic Gram-

negative bacteria belonging to P. syringae complex.   

Some evidences show as the TTSS is crucial for successful pathogenesis and that bacteria 

with a TTSS not fully functional are no more pathogenic or extremely reduced in virulence 

(Alfano and Block 2011; Dean 2011). The proteins constituting the Hrp pili tend to be quite 

diverse in sequence homology among different species, and even within each species among 

different strains (He and Buttner 2009; Weber and Koebnik 2005). However, despite this, they 

share a considerable number of physicochemical features: they are small and predicted to be 

constituted almost exclusively of -helices. Additionally, some of these proteins (HrpE from 

Xanthomonas campestris, HrpA from Pseudomonas syringae group, and HrpY from 

Ralstonia solanacearum) show very similar hydrophobicity profiles and resemble each other 

in their instability and aliphatic indices (Weber and Koebnik, 2005).  

Given its good conservation of both structural and physiological in all pathogenic Gram-

negative bacteria, the TTSS is considered the ideal target, for excellence, against which set up 

innovative anti-bacterial molecules. 
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1.7 Interest and aims of the study  

Bacteria plant pathogens cause serious diseases around the word resulting in significant crop 

losses. Among the critical issues that may impact both on yields and on food safety, it should 

be taken into account the effects of climate change, which are reflected in the diffusion of 

several plant pathogens and in the greater frequency of their reproductive cycles. In addition, 

the globalization of food markets also contributes to a rapid spread of alien and invasive plant 

pathogens in areas where they were previously absent, through the trade of infected and 

asymptomatic plant material, with devastating consequences both in productive and 

ecological sectors. The phytoiactric sector is still based on chemical treatment with 

compounds such as copper salts and antibiotics, the latter not allowed in European Member 

States. However, copper-based treatments are strictly regulated and temporarily limited within 

the European Union. Extensive applications of copper-based compounds, such as fungicides 

and bactericides, have contributed to the development of copper-resistant bacteria, making 

these compounds completely ineffective in phytoiatric sector. Similarly, the copper stored in 

the soil determines an alarming increase in multi-drug resistant bacteria in the agro-

ecosystems, which provide a source of antibiotic resistance genes, easily transmissible also to 

human and animal pathogenic bacteria, through cross-resistance phenomena. This scenario 

undermines prophylactic and therapeutic effectiveness of these substances both in human and 

animal medicine, generating a general concern. 

Recently, the scientific community has addressed this issue and several approaches to identify 

and develop new ecofriendly alternative for plant protection are under study.  

Many efforts have been made to identify inhibitors of natural or synthetic origin, which are 

able to target structures and/or systems related to pathogenicity and virulence of pathogenic 

bacteria such as Quorum Sensing and even more the Type Three Secretion System. 

Furthermore, recent scientific evidence indicates that Multi Drug Efflux Pumps (MATE) may 

contribute to both intrinsic and acquired resistance to toxic compounds in several life forms, 

and therefore represent a potential target for innovative molecules.  

 

In this scenario, the main objective of this PhD thesis has been to develop and test innovative 

strategies to be applied in plant protection. In particular, the research aimed at controlling 

bacterial disease progression in host plants using bacteria belonging to P. syringae complex. 

The main objective has been achieved through the following specific actions:  

 

 To analyse the structural protein HrpA of P. syringae, essential in the Type Three Secretion 

System pilus assembly, and to verify the efficacy in vitro and in vivo of small anti-infective 

peptides towards Gram-negative plant pathogenic bacteria in a very specific manner without 

undermining their viability.  

 

 To assess the peptides’ efficacy to confer resistance towards P. syringae pv. tabaci into 

Nicotiana tabacum transgenic plants. 
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 To identify new sources rich in polyphenols using no food/feed vegetable residues of typical 

Mediterranean crops and to verify the inhibitory activity of polyphenolic compounds on 

master virulence systems of Gram-negative phytopatogenic bacterium P. savastanoi pv. nerii.  

 

 To study the interaction among determinants of pathogenicity and virulence such as IAA, 

TTSS and MATE in P. savastanoi and to identify unexplored ideal targets to develop 

innovative molecules that can fight plant pathogenic bacteria. 
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Chapter 2 

Peptides as inhibitors of the Type Three Secretion System for 

environmentally friendly control of plant disease caused by P. syringae  

 

 
2.1 Abstract 

The control and management of bacterial diseases of plants still rely mainly on applications 

of copper salts and antibiotics. In European Member States, antibiotics are not allowed for 

plant protection, while copper is among the very few chemicals still authorised in organic 

agriculture. Furthermore, it has been demonstrated that repeated copper-based treatments 

cause a dramatic increase of antibiotic-resistant bacteria into agroecosystems, due to a cross-

selection mechanism, with risks for human and animal health.  

Promising alternative options to copper are not yet available for the control of Gram-negative 

plant pathogenic bacteria including those belonging to the Pseudomonas syringae group. 

For these reasons, based on secondary structure of the putative HrpA protein of P. savastanoi 

pv. nerii and confirmed by site-directed mutagenesis experiments, we identified and 

discovered the pivotal role that coiled-coil domains practice on the proper TTSS pilus 

assembly. From this finding, we designed a set of small peptides targeting the translocation 

of bacterial pathogenicity and virulence effectors by the Type Three Secretion System 

(TTSS), highly conserved and essential for the pathogenicity of Gram-negative bacteria, both 

of plants and of mammalian hosts including humans.  

As a result of their distinguishing hallmark, these Virulence Inhibiting Peptides (VIPs) 

compromise the TTSS injection of Type Three Effectors (TTEs) into plant cells, instead of 

bacterial viability, thus to avoid or decrease the risk to develop any VIPs resistance. This 

innovative strategy based on these VIPs, using P. savastanoi pv. nerii as model system, has 

demonstrated a compromise in vitro and in vivo bacterial pathogenicity on hosts, and HR on 

Tobacco. VIPs-induced inhibition of the TTSS assembly was confirmed by Congo Red assay. 

Finally, no negative side-effects on model membranes and Ca2+-ATPase were found.  

 

 

 

 

 

Key words: Virulence Inhibiting Peptides; coiled-coil; Gram-negative bacteria; Type Three 

Secretion System; P. syringae; plant protection;   

 

Biancalani C., Cerboneschi M., Biricolti S., Bogani P., Tadini-Buoninsegni F., Smeazzetto S., Tegli S. Peptides 

as inhibitors of the Type Three Secretion System for environmentally friendly control of plant disease caused by 

P. syringae. Manuscript in preparation.   
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2.2 Introduction 

 

The most common strategy for controlling diseases caused by plant pathogenic bacteria is still 

based on application of bactericides, as it was decades ago. Formulations active in the control 

of phytopathogenic bacteria mainly include a variety of copper compounds, or other heavy 

metals, with or without pest-control chemicals added. Antibiotics and other organic 

bactericides are or have also been used, but to a lesser extent. In particular the use of antibiotics 

(e.g., streptomycin) against plant pathogenic bacteria is not allowed all over Eureopean Union, 

while still are in USA and other Countries outside Europe such as Japan, Mexico and Israel: 

although the amount of antibiotics used on plants could be considered negligible when 

compared to that medical and veterinary uses (Perry and Wright, 2013; Smillie et al., 2011). 

Among the main undesirable effects observed either for the environment or for human and 

animal health, there is the selection in agroecosystems and agrosoils of bacteria resistant to 

antibiotics, which increase the frequency in the environment of antibiotic resistance genes that 

can be eventually transferred into medically relevant bacteria (Martinez and Baquero, 2014). 

In fact, the development and spread of resistance bacteria both copper and antibiotic in 

bacterial populations is strictly dependent and regulated by transmission of several genes and 

by several mechanisms, such as horizontal gene transfer, through conjugation of plasmids or 

transposable elements. These circumstances strongly undermine the effectiveness of these 

treatments (Mellanoù and Cooksey 1988; Gutirrez-Barranquero et al., 2013; Behlau et al., 

2011). When a plant pathogenic acquires a resistance against these chemicals, the frequency 

of resistant strains into bacterial population could increase, resulting a less effective disease 

control. Different strategies have been introduced to fight this phenomenon, such as the use 

of health seed, the biological control by antagonistic microorganisms, the soil solarization, 

and the use of natural-occuring antibacterial compounds, in a frame of a sustainable 

agriculture where the use of chemicals is gradually decreasing (Lamichhane et al., 2015). 

Advances in the studies on bacterial pathogenicity and virulence factors have provided 

mounting evidences about the essential role of the Type Three Secretion System (TTSS) for 

the pathogenicity of a broad spectrum of Gram-negative bacteria, which infect both plant and 

mammalian hosts including humans (He et al., 2004; Mota and Cornelis, 2005).  

Genes required for Hrp pilus production are encoded by a distinct gene cluster called 

“hypersensitive reaction and pathogenicity” (hrp), which is present in the genomes of Gram-

negative plant pathogens, including Pseudomonas, Xanthomonas, Ralstonia and Erwinia 

(Alfano and Collmer, 1997). The TTSS is a macromolecular complex of about 20 unique 

proteins extending from the bacterial cytosol across three membranes to the eukaryotic cytosol 

(Hueck, 1998). Until now, this syringe-like apparatus has been found and deeply studied in 

over two dozen of Gram-negative phytopathogenic bacteria, where it was shown to be very 

well conserved both structurally and functionally. Basically, TTSS is essential to cause disease 

into host plants by injecting pathogenicity and virulence effector proteins (named “Type Three 

Effectors”, TTEs), that are highly specific of the host-pathogen interaction, directly into the 

cytosol of host cells. Among the structural proteins forming the TTSS apparatus, it is worth 

to mention the so-called “HrpA protein”, which is the main component of the translocating 

pilus in the phytopathogenic bacteria belonging to the Pseudomonas syringae group. It was 
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demonstrated that in-frame deletion mutations in the chromosomal hrpA gene are able to 

abolish P. syringae pathogenicity on host plants, as well as induction of Hypersensitive 

Response on non-host plants such as Tobacco, and pilus production (Roine et al., 1997a; 

Roine et al., 1997b; Lee et al., 2005). In other words, hrpA deletion mutants are defective both 

in type III secretion and in the elicitation of any TTSS-mediated host response (Wei et al., 

2000; Lee at al., 2005). Currently, it is known that HrpA protein from P. syringae pv. tomato 

DC3000 is a hydrophilic 11KDa protein encoded by the hrpA gene, but little is known about 

its molecular features for transporting effector proteins and only a few molecular details are 

known about subunit-subunit interaction during the TTSS needle assembly (Preston et al., 

1995; Lee et al.,2005).  

From the bioinformatic analysis of amino acid sequence corresponding to the putative HrpA 

protein of P. savastanoi pv. nerii, we found that the carboxy terminus of this protein comprises 

an α-helical region which demonstrates heptad periodicity, that is the basis of coiled-coils 

(Mason and Arndt, 2004). Site-directed mutagenesis of HrpA heptad residues, without 

altering α-helices secondary structure, generated HrpA mutants defective in the TTSS pilus 

assembly. The abolition of such coiled-coil domain without altering α-helix secondary 

structure generates HrpA mutant bacteria with a no-pathogenic or hypovirulent phenotype. 

Using these evidences, we designed a novel set of Virulence Inhibiting Peptides targeting 

coiled-coil domains of the HrpA protein and their possible use in plant protection has here 

depicted.  
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2.3 Materials and Methods 

 

Bacterial strains, media and growth conditions 

The P. savastanoi pv.nerii (Psn23) and its mutants including Agrobacterium tumefaciens 

(EHA105) used in this study are listed in Table 1.  

Psn23 strains were routinely grown at 26°C as liquid or solid cultures, in King’s B (KB) (King 

et al., 1954) or in hrp-inducing Minimal Medium (MM) (Huynh et al., 1989), while A. 

tumefaciens EHA105 was grown and maintained on liquid or solid YEP medium at 28°C in 

the dark (An et al., 1988). Bacterial growth was monitored by determining the culture optical 

density at 600nm (OD600) at different times during incubation, and bacterial concentrations 

were estimated by serial dilutions and plate counts. For long term storage bacteria were 

maintained at -20°C and -80°C in 40% (v/v) glycerol. Escherichia coli strains TOP10 and 

ER2925 were grown in Luria–Bertani (LB) liquid or agarised medium (Miller, 1972). 

Antibiotics, when required, were added into the medium at the following concentrations: 20 

µg/ml streptomycin, 50 µg/ml nitrofurantoin, 10 µg/ml gentamicin, 50 µg/ml kanamycin and 

40 µg/ml rifampicin.  

 

Table 1: Bacterial strains and plasmids used in this study. 

Strain/Plasmid Relevant characteristics Reference/Source^ 

Strain   

E. coli TOP10 F-, mcrA, Δ(mrr‐hsdRMS-mcrBC) Φ80 lacZΔM15 ΔlacX74 recA1 
araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen, Carlsbad, 

USA 

E. coli ER2925 ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 

hisG4 rfbD1 R(zgb210::Tn10)TetS endA1 rpsL136 dam13::Tn9 xylA‐5 

mtl‐1 thi-1 mcrB1 hsdR2 

NEB, Hertfordshire, 

UK 

P. savastanoi pv. nerii 

(Psn23) 

Wild type LPVM collection 

∆hrpA 

 
PF5αα 

PF3αα 

hrpA in-frame deletion mutant of Psn23 

 
hrpA site-directed mutagenesis mutant of Psn23 

hrpA site-directed mutagenesis mutant of Psn23 

Chapter 5 

This study 
This study 

PF2αα hrpA site-directed mutagenesis mutant of Psn23  This study 
A.tumefaciens(EHA105) 

Plasmid 

C58 pTiBo542; T-region::aph, kan; derivative of EHA101 Hood et al., 1993 

 

pLPVM_T3A GmR, lacz, mcs,hrpA promoter+gfp Chapter 4 

pLPVM_T3A_AP17 GmR, lacz, mcs,hrpA promoter+ap17 This study 

pLPVM_T3A_LI27 

pK18mobsacB 
pK18- PF5αα 

pK18- PF3αα 

pK18- PF3αα 

GmR, lacz, mcs,hrpA promoter+li27 

sacB, lacZa, Km, mcs mobilizable vector 
pK18mobsacB derivative, site-directed mutagenesis of the hrpA gene  

pK18mobsacB derivative, site-directed mutagenesis of the hrpA gene 

pK18mobsacB derivative, site-directed mutagenesis of the hrpA gene 

This study 

Schafer et al. 1994 
This study 

This study 

This study 
pCAMBIA1305.2 

pCAMBIA1305.2Δgus 

pCAMBIA1305.2::AP17 
pCAMBIA1305.2::LI27  

GmR, kanR, GUSPlus™, signal peptide 

GmR, kanR, Δgus, signal peptide 

GmR, kanR, Δgus, ap17, signal peptide 
GmR, kanR, Δgus, li27, signal peptide 

  

CAMBIA Labs, 

Austrialia 

This study 
This study 

This study 

^LPVM collection Laboratorio di Patologia Vegetale Molecolare (University of Florence) 

 

 

Molecular techniques 

PCR, restriction digestion, ligation, DNA electrophoresis, and transformations were 

performed as described by standard procedure (Sambrook et al., 1989). The plasmids used 

and those generated in this study are listed in Table 1. Genomic DNA from P. savastanoi 

strains was extracted from single bacterial colonies using thermal lysis (Sambrook et al., 

1989), or from bacterial cultures (OD600 = 0.8), using Puregene® Genomic DNA Purification 
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Kit (Gentra Systems Inc., Minneapolis, MN, USA) according to manufacturers' instructions. 

DNA concentration was evaluated both spectrophotometrically, with NanoDrop™ ND-1000 

(NanoDrop Technologies Inc., DE, USA), and visually by standard agarose gel 

electrophoresis [1% agarose (w/v) in TBE 1×] (Sambrook et al., 1989). For plasmid DNA 

extraction, NucleoSpin® Plasmid (Macherey-Nagel GmbH and Co. KG, Düren, Germany) 

was used according to the manufacturer's protocol.  Amplicons were purified from agarose 

gel with NucleoSpin® Gel and PCR clean-up (Macherey-Nagel GmbH and Co. KG, Düren, 

Germany) and double-strand sequenced at Eurofins Genomics (Ebersberg, Germany). 

Multiple sequence alignments and comparisons were performed using the computer package 

CLUSTALW (version 2, http://www.ebi.ac.uk/Tools/clustalw2) (Thompson et al., 1994), and 

by means of Basic Local Alignment Search Tool 

(BLAST, http://www.ncbi.nlm.nih.gov/blast). Primers were designed using Beacon Designer 

7.7 software (Premier Biosoft International, Palo Alto, CA, USA) (Table 2).  

 

 

Table 2: Primers used in this study. 

Primer name Primer sequence (5’-3’)  Tm°C 

Aa_hrpA_XbaI_For TTTTCTAGAATCTGTACTTTCGCCTTAACG  57 

Aa_hrpA_EcoRI_Rev TTTGAATTCGGAAGTTATCTTCCTTGAGTTC  57 

hrpA_CrossREVx2 TTGGAAAGGGCTTCTTTCTTGTCTTCGAAGCCCGCGCGTTTGCTCGT  62 

hrpA_CrossFORx2 AAGACAAGAAAGAAGCCCTTTCCAACCAAATCGTTGCGAGCAAGATCCGG  61 

hrpA_CrossREVx3 TTGGAGCAGGCTTCTTTCTTGTCTTCGAAGCCCGCCAGCATGCTCGT  62 

hrpA_CrossFORx3 AAGACAAGAAAGAAGCCTGCTCCAACCAAGAAGACGCGAGCAAGATCCGG  63 

hrpA_CrossREVx5 TTGGAGCACATGGCTTCTTTCTTGTCTTCGAAGCCCGCCAGCATGCTCGT  62 

hrpA_CrossFORx5 AAGACAAGAAAGAAGCATCGTTGGCCTCCAACCAAGAAGACGCGAGCAAGATCCGG  63 

Li27F_BamHI TTTGGATCCCTGCTGCGTGAGACGAG  59 

Li27R_KpnI TTTGGTACCTCAGATCTTGCTCGCAACGATTT  57 

Ap17F_BamHI TTTGGATCCATGCTGGCGGGCTTCGAA  60 

Ap17R_KpnI TTTGGTACCAACGATTTGGTTGGAAAGGGC  59 

CAMBIA_FOR CTACTACTAAGCATTTGG  51 

CAMBIA_REV AACCCATCTCATAAATAAC  51 

AP17_CAMBIA_FOR TTTAGATCTATGCTGGCGGGCTTC  55 

AP17_CAMBIA_REV TTTCACGTGTCAAACGATTTGGTTGGAAAGGG  58 

Li27_CAMBIA_FOR TTTAGATCTCTGCTGCGTGAGACGAG  59 

Li27_CAMBIA_REV TTTAGATCTTCAGATCTTGCTCGCAACGATTT  58 

 

 

Quantification of bacterial IAA synthesis 

Indole quantification was conducted using Salkowski assay (Ehmann, 1977) (Chapter 5). 

Bacteria were grown on MM supplied with 250µM tryptophan, and indole production was 

measured after 24, and 48 h of growth. To this aim, bacterial suspensions were centrifuged at 

5,000g for 15 min at 4°C, and 1 ml of supernatant was added to Salkowski’s reagent. The 

reaction was incubated for 15 minutes at room temperature in the dark, and then the 

absorbance was measured using the spectrophotometer Infinite® M200PRO Quad4 

Monochromators™-based (TECAN, Switzerland).  
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Pathogenicity tests on oleander plants 

In vitro micropropagated oleander (Nerium oleander L.) (Vitroplant Italia s.r.l., Cesena, Italy), 

with red double flowers, were grown for 3 weeks at 26°C on MS (Murashige and Skoog, 

1962) without addition of phytohormones, with a photoperiod of 16 h/light-8 h/dark. Then, 

plants were wounded on the stem at the second internode, using a 1 ml syringe needle, and 

immediately inoculated with 1 µl of a bacterial suspension in sterile physiological solution 

(SPS, NaCl 0.85% in distilled water), with an OD600 = 0.5 (about 0.5×108 Colony Forming 

Unit/ml; CFU/ml). Negative control plants were inoculated with SPS alone. When required, 

the peptides were mixed at 60µM with bacterial suspension (OD600 = 0.5) and inoculated 

direclty into wounded stem. Plants were then incubated at 26°C, and a 16 h/light-8 h/dark 

photoperiod, periodically monitored for symptoms appearance and photographic records were 

made at 7, 14 and 21 days and the bacterial growth was estimated in time course. Three 

independent experiments were performed, and nine plants for each P. savastanoi strains were 

used in each run. 

 

Hypersensitive response assay 

Hypersensitive Response (HR) assay was performed on Nicotiana tabacum (var. Burley 

White), grown at 24°C, with a relative humidity of 75% and a photoperiod of 16/8-h 

light/dark. Bacterial cultures were grown overnight in KB medium at 26°C, resuspended in 

SPS to an OD600 of 0.5, and bacterial cell concentration was confirmed by a serial dilution 

plating method. When required the peptides were diluted up to 60 μM in sterile distilled water 

and co-infiltrated with Psn23 OD600 = 0.5, (approximately 0.5x108 CFU/ml). Using a 2 ml 

blunt-end syringe, approximately 100 μl of bacterial suspension was injected into abaxial 

mesophyll of fully expanded leaves of three tobacco plants (Baker, 1987), with six replicates 

for each strain tested, and for each of the three independent experiments carried out. The 

development of HR was assessed according to the macroscopic tissue collapse at 24 and 48 h 

post-inoculation, taking photographic record of the results obtained. 

 

Spectrophotometric and fluorometric analysis 

In vitro growth analysis was performed for Psn23 wild type and its mutants inoculated on MM 

and KB medium supplemented or not with anti-virulence peptides herein tested. Antibiotic 

activity of AP17 and LI27 peptides was evaluated in vitro by monitoring the bacterial growth 

as optical density at 600 nm (OD600), at different times during 24h incubation with these 

peptides using the spectrophotometer Infinite® M200PRO Quad4 Monochromators™-based 

(TECAN, Switzerland). Bacterial cells were cultured in KB medium at 26°C overnight, and 

after two washes in sterile physiological solution (SPS, 0.85% NaCl in distilled water) the 

bacterial pellet was resuspended adjusting to a final OD600 = 0.5 in MM or KB, supplemented 

or not with the anti-virulence peptides at concentrations ranging from 10 to 60 μM.  

To verifiy the hrpA promoter inhibition by AP17 and LI27 peptides, Psn23 bacterial cells 

carrying the promoter-probe plasmids pLPVM_T3A (Table 1) were cultured overnight on KB 

medium at 26°C. Then their pellet was washed twice with SPS, and inoculated in MM (final 

OD600 = 0.5) supplemented with AP17 or LI27 at concentrations ranging from 10 to 60 μM. 

Wild type Psn23 carrying the empty vector was used as control. The experiments were carried 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t001
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out into 24 multiwell plates (BIOFIL®, Guangzhou, China) at different time during 24h of 

incubation. The promoter activity of hrpA was then analyzed and quantitatively assessed, 

using the multimode microplate reader Infinite®M200PRO Quad4 Monochromators™-based 

(TECAN), by simultaneously measuring the GFP intensity and the bacterial growth. 

 

Congo Red assay 

Psn23 cells were grown on MM liquid medium (OD600 = 0.2), supplemented or not with the 

anti-virulence peptides here examined at 60 μM, and incubated at 18°C for 24 h with 

continuous shaking (100rpm). After 24 h incubation, the concentration of bacterial cultures 

was evaluated as OD600, and then the dye Congo red (SIGMA-Aldrich Co.) was added (10 

μg/ml), followed by a further incubation at 18°C for 1h, under shaking. Bacterial cells were 

removed by centrifugation (5000g for 10min.), and 1 ml supernatant for each sample was then 

aliquoted into 24 multiwell plates (BIOFIL®). The absorbance value at 490 nm (OD490) was 

recorded by spectrofluorimetry using Infinite® M200PRO (TECAN). Data analysis were 

performed as reported in Chapter 4.  

 

Generation of PF5αα, PF3αα and PF2αα Psn23 mutants by site-directed mutagenesis 

The Psn23 PF5αα, PF3αα and PF2αα mutants were constructed by site-directed mutagenesis 

of hrpA gene from Psn23 wild type genome (Table 1), using marker exchange mutagenesis 

(Yang et al., 2002). Copies mutated by substitution in specific amino acids of hrpA nucleotide 

sequence, were generated by primers reported in Table 2. PF5αα, PF3αα and PF2αα final 

constructs were generated by overlap extension PCR, using the primers reported in Table 2. 

The plasmids generated in this study to obtained final genomic mutants are based on 

pK18mobsacB, a suicide vector for P. syringae sensu lato allowing for SacB counterselection 

(Hagen et al., 2002; Zazìmalovà et al., 2007), and are listed in Table 1. The intermediate 

vectors were first transferred by electroporation with Gene Pulser XCell™ (Bio-Rad 

Laboratories Inc., Hercules, CA, USA) into E.coli TOP10 cells then into E.coli ER2925, 

which mimicks the methylation profile of Psn23, finally into electrocompetent P. savastanoi 

pv. nerii cells that were obtained as previously described (Pèrez-Martìnez et al., 2010). 

SucR colonies were screened by PCR, and the marked deletions were then confirmed by 

sequencing. 

 

Transgenic transient expression of AP17 and LI27 peptides 

Agroinfiltration experiments were performed on in vitro micropropagated oleander (Nerium 

oleander L.) (Vitroplant Italia s.r.l., Cesena, Italy), with red double flowers. Plants were 

grown for 3 weeks at 26°C on MS (Murashige and Skoog, 1962) without addition of 

phytohormones, in a chamber with a photoperiod of 16 h/light-8 h/dark before infiltration. 

Binary vectors in A. tumefaciens EHA105 strain transformed bacteria were obtained from 

pCAMBIA1305.2, after double digestion with BglII and PmlI to remuove GUSplusTM 

sequence and to obtain the intermediate pCAMBIA1305.2Δgus vector. After double digestion 

with BglII and PmlI, the nucleotide sequences corresponding to AP17 and LI27 were inserted 

in pCAMBIA1305.2Δgus, downstream the GRP signal sequence using the primers reported 

in Table 2 and the final vectors named pCAMBIA1305.2::AP17 and pCAMBIA1305.2::LI27 
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were obtained. Intermediate vectors were first transferred by electroporation with Gene Pulser 

XCell™ (Bio-Rad Laboratories Inc., Hercules, CA, USA) into E.coli TOP10 cells and then 

electroporated into A. tumefaciens EHA105.  

Transformed A. tumefaciens cultures were grown in a shaker overnight at 24°C at 200 rpm in 

YEP media (An et al., 1988) (1% peptone, 1% yeast extract, and 0.5% NaCl) (3 ml) containing 

50 mg/l rifampicin and 50 mg/l kanamycin to select for transformed Agrobacterium cells. 

Optical density at 600 nm was taken on starter cultures by spectrofluorimetry using 

Infinite® M200PRO (TECAN). Starter cultures were used to inoculate two 25 ml cultures to 

an OD600 of 0.004 and grown overnight. Infiltration suspensions for each vector were brought 

to OD600 of 0.5 x 10^6 CFU. The co-infiltration inoculum was prepered at different 

concentration of Psn23 wild type bacteria ranging from 0.5 x 10^6 CFU to 0.5 x 10^4 CFU and 

fixed concentration of A. tumefaciens transformed with pCAMBIA1305.2::AP17 or 

pCAMBIA1305.2::LI27 (0.5 x 10^6 CFU). In vitro oleander plants were wounded on the stem 

at the second internode, using a 1 ml syringe needle, and immediately inoculated with 1 µl of 

bacterial suspension mixtures. After infiltration, plants were placed back into the growth 

chamber and at 7 days post-infiltration (dpi) monitored for symptoms development and used 

to evaluate in planta bacterial multiplication. 

 

Biomimetic membrane analysis 

The anti-virulence peptides here examined were investigated for their effects both on Ca2+-

ATPase and on synthetic bilayer lipid membranes (BLMs).  

Current measurements were carried out on sarcoplasmic reticulum (SR) vesicles containing 

Ca2+-ATPase adsorbed onto a hybrid alkanethiol/phospholipid bilayer anchored to a gold 

electrode (the so-called Solid Supported Membrane, SSM) (Tadini-Buoninsegni et al., 2006). 

The experiment, including SR vesicles preparation and reagents were performed as reported 

in Chapter 4. To investigate the effects of anti-virulence peptides on current signals generated 

by Ca2+-ATPase, the required concentration of each compound was added to both the non-

activating and activating solutions. The ATP-induced current signal observed in the presence 

of AP17 and LI27 was compared to the control measurement obtained in the absence of the 

compound. To prevent Ca2+ accumulation into the vesicles, 1 μM calcium ionophore A23187 

(calcimycin) was used. The concentration jump experiments were performed by the 

SURFE2ROne device (Nanion Technologies, Münich, Germany). The temperature was 

maintained at 22–23°C for all the experiments. To verify the reproducibility of the current 

signals on the same SSM, each single measurement was repeated six times, and then averaged 

to improve the signal to noise ratio. Standard deviations did not exceed 5%. Moreover, each 

set of measurements was reproduced using two different SSM sensors. 

BLMs experiments were conducted in 250 mM KCl, 10 mM MOPS in Tris buffer pH 7, in 

both the chambers (1.3 mL per chamber) in a set up instruments constituted by Axon digidata 

1322A and Axopatch 200B amplifier. The lipid utilized was diphytanoylphosphatidylcholine 

(DPhPC) (Avanti Polar Lipids, Alabaster, AL) suspended in pentane 10 mg/mL. The final 

amount of lipids used to form the bilayer was 100 μg per chamber; the pore connecting the 

two chambers corresponded to an area of around 78.5 μm2. The formation of the lipid bilayer 

was accomplished through the folding method and the typical change in colour was visibibly 
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evaluated through a stereomicroscope and through the current recorded after the imposition 

of a square potential excitement. 

Through a voltage clamp protocol (step protocol:-120mV-+120mV) we recorded the response 

of the system in terms of current (pA). Before the addition of the peptides, the bilayer 

conductance was continuously recorded for 1h in order to exclude artefacts from 

contamination. Signals were recorded with Clampex Softwere 10.2 (Elecrophysiology Data 

Acquisition & Analysis).   

 

Bioinformatic analysis 

Several bioinformatic analysis were carried out through open source software described 

below. SignalP 4.1 server (http://www.cbs.dtu.dk/services/SignalP) was consulted to predict 

the presence and location of signal peptide in amino acid sequence of the putative HrpA 

protein, while CELLO v2.5: subCellular Localization (http://cello.life.nctu.edu.tw) and 

TMHMM-2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0) to predict transmembrane 

protein topology.  Secondary structure of HrpA protein was predicted by the Predict Protein 

server (https://www.predictprotein.org/). The coiled-coil interactions were identified by 

Paircoil2 (http://groups.csail.mit.edu/cb/paircoil2) and COILS (http://embnet.vital-

it.ch/software/COILS_form.html) statistical analysis programs. The secondary structure 

prediction of HrpA wild type and PF5αα, PF3αα and PF2αα mutants was performed by 

YASPIN (http://www.ibi.vu.nl/programs/yaspinwww) and COILS. For peptide sequence 

characterisation, including hydrophobicity profile was used INNOVAGEN bioinformatics 

tool (http://www.innovagen.se/custom-peptide-synthesis/peptide-property-

calculator/peptide-property-calculator.asp).  

 

Statistical analysis 

All the experiments in this study were performed in triplicate and repeated three times, unless 

otherwise stated. The data were presented as the means ± standard deviation (SD) and 

subjected to one-way analysis of variance (ANOVA) using PAST software (Version 3.11, 

Øyvind Hammer, Natural History Museum, University of Oslo). When ANOVA indicated a 

significant difference (P < 0.05), a Tukey-Kramer post-test was performed. 
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2.4 Results 

 

C-terminal portion of the HrpA protein is characterised by a coiled-coil motif 

The organization of the TTSS cluster in P. savastanoi pathovars appears to be highly 

conserved, it is 23,835 bp long and it is composed of twenty-seven genes, most of which 

arranged in five operons organized in two main blocks having convergent genes transcription 

(Tegli et al., 2011). The hrpA gene is located in this cluster together with other genes codifying 

for the proteins of the TTSS. This gene is 327 bp long, codifying for a protein of 108 amino 

acids (about 11 kDa) and the gene locus is preceded by a typical hrp box (Frederick et al., 

2001; Wei and Beer, 1995).  

From these evidences, the amino acid sequence of the putative HrpA protein of P. savastanoi 

pv. nerii was obtained and bioinformatic analyses were performed in order to achieve specific 

information on this protein. At the N-terminus position of the HrpA protein, from 1 to 10 

amino acids (aa), a signal peptide was predicted by SignalP4.1 (Figure S1A). The protein 

localisation outside cellular membrane, with hight score for periplasmatic space, was 

confirmed based on physic-chemical composition by two different bioinformatics tools 

CELLO v2.5 and TMHMM (Yu et al., 2006; Krogh et al., 2001) (Figure S1B). The secondary 

structure of the HrpA protein was predicted with Protein server (Rost et al., 2004) (Figure 

S2). The C-terminal portion (from 69 to 101 aa) was constituted by an α-helices region, which 

demonstrates heptad periodicity and where positions a and d in the heptad repeat unit abcdefg 

are occupied by hydrophobic residues, while e and g are occupied by polar and charged 

residues indicating a propensity for coiled-coil domain (Figure 1). This evidence was 

completely confirmed using Paircoil2 and COILS statistical analysis programs (McDonnell et 

al., 2006), where in correspondence of α-helix region a very hight score for coiled-coil was 

recorded (Figure S2).  

 

Figure 1:  A) C-terminal amino acid sequences of putative HrpA protein of P. savastanoi pv. nerii and PF 

mutants. In yellow (from 75 to 102 AA) is indicated the α-helices region with heptad periodicity “abcdefg”, 

positions “a” and “d” are occupied by hydrophobic residues, while e and g are occupied by polar and 

charged residues. Bold letters in the amino acid sequences indicate amino acid substitutions. B) Amino 

acid sequence of LI27 (bold red colour) and AP17 (bold blue colour), long 27 and 17 aa respectively.      

 
 

A) 

                              abcdefgabcdefgabcdefgabcdefg 

hrpA            KSSELDGTANEENGLLRETSMLAGFEDKKEALSNQIVASKIRNSVVQF 

PF5aa           KSSELDGTANEENGLLRETSKRAGFEDKKEACSNQEDASKIRNSVVQF 

PF3aa           KSSELDGTANEENGLLRETSMLAGFEDKKEACSNQEDASKIRNSVVQF 

PF2aa           KSSELDGTANEENGLLRETSKRAGFEDKKEALSNQIVASKIRNSVVQF 

 

B)   

Li27                          LLRETSMLAGFEDKKEALSNQIVASKI 

AP17                                MLAGFEDKKEALSNQIV 
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Bacterial mutants impaired in coiled-coil domain show a non pathogenic phenotype 

To confirm what we have found by in silico analysis on the HrpA protein and to better 

understand the importance of such interactions on the TTSS pilus assembly, we have set up 

three bacterial mutants by site-directed mutagenesis on hrpA nucleotide sequence (Accession 

Number GeneBank FR717897.2). These bacterial mutants denominated PF5αα, PF3αα and 

PF2αα (PF mutants) (Table 1) have mutated five, three and two amino acids compared to the 

wild type HrpA sequence, respectively. The introduced amino acid substitutions, starting from 

the nucleotide sequence of HrpA and respecting the codon usage of P. savastanoi have been 

chosen as reported in Figure 1A. In particular, PF5αα mutant presents five substitutions at 81, 

82, 92, 96 and 97 position, where the hydrophobic amino acids, methionine (M), leucine (L), 

leucine (L), isoleucine (I) and valine (V), have been replaced by polar and charges amino 

acids such as lysine (K), arginine (R), cysteine (C), glutamic acid (E) and aspartic acid (D), 

respectively. PF3αα mutant presents three substitutions at 92, 96 and 97 position with amino 

acids cysteine (C), glutamic acid (E) and aspartic acid (D) and PF2αα mutant have 

substitutions at 81 and 82 position with amino acids lysine (K) and arginine (R). These 

mutations have been chosen in such a way to eliminate the coiled-coil interactions without 

altering the α-helices secondary structure as verified and confirmed by bioinformatic analyses 

(Figures 2 and 3). Results obtained show that the substitutions at 81 and 82 positions do not 

modify the coiled-coil interaction, while amino acids at 92 and 96 positions appear to be 

fundamental and directly involved in the coiled-coil interaction. It is important to highlight 

that the coiled-coil motif in PF5αα mutant is completely abolished, while in PF2αα, in which 

the amino acids at 92 and 96 positions are not substituted, the coiled-coil region is almost 

completely restored (Figure 3).  

 

 

Figure 2:  Output obtained by YASPIN for wild type HrpA and PF5αα, PF3αα PF2αα mutants.  α-helix 

structure is preserved in all four cases, shown in yellow. The amino acids mutated are shown in red colour. 
*   AA: Target sequence 

* Pred: Predicted secondary structure (H=helix, E=strand, -=coil) 

* Conf: Confidence (0=low, 9=high) 

*Hconf: Confidence of helix  predictions 

*Econf: Confidence of strand predictions 

*Cconf: Confidence of coil   predictions 

 

HrpA 
AA:   MSIISSLTNAGRGVVNTVGGAAQGINSVKSSADRNIALTKNTGSTDSIDATRSSISKGDA 

Pred: ----HHHHH---EEEE----HHHHHHHHHHHHHH---EEE-------HHHHHHHHHH--- 

Conf: 931110252012331224312111010233164411121342676512627784103677 

 

Hconf: 000087999720000000039788747998999930100000000049999999999000 

Econf: 023300000000999800000100000000000002298900000000000000000000 

Cconf: 976612000278000199960001142001000066601099999950000000000999 

 

AA:   KSSELDGTANEENGLLRETSMLAGFEDKKEALSNQIVASKIRNSVVQF 

Pred: ---HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH-EEE- 

Conf: 642011115440000244586865642311200102367871111249 

 

Hconf: 011488899999247999999999999989986599999999820000 

Econf: 000201000000000000000000000000000000000000009990 

Cconf: 987300000000752000000000000010013400000000160009 
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PF5αα 
AA: MSIISSLTNAGRGVVNTVGGAAQGINSVKSSADRNIALTKNTGSTDSIDATRSSISKGDA 

 Pred: ----HHHHH---EEEE----HHHHHHHHHHHHHH---EEE-------HHHHHHHHHH--- 

 Conf: 921100232032431223312112031333164311011332676513637784203677 

 

Hconf: 000075999500000001039898988998999930000000000049999999999000 

Econf: 024400000001999900000000000000000004599900000000000000000000 

Cconf: 974513000498000098950001011001000065400099999950000000000999 

 

   AA: KSSELDGTANEENGLLRETSKRAGFEDKKEACSNQEDASKIRNSVVQF 

 Pred: ---HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH-EEE- 

 Conf: 631011214440000245486864642311121212358872101249 

 

Hconf: 012488899999258999999999999989883299999999840000 

Econf: 000100000000000000000000000000000000000000009890 

Cconf: 987400000000741000000000000010116700000000150009 

 

PF3αα 
AA: MSIISSLTNAGRGVVNTVGGAAQGINSVKSSADRNIALTKNTGSTDSIDATRSSISKGDA 

 Pred: ----HHHHH---EEEE----HHHHHHHHHHHHHH---EEE-------HHHHHHHHHH--- 

 Conf: 931110242032431223312112031332164311011332676513637784203677 

 

Hconf: 000086999600000001039898988998999930000000000049999999999000 

Econf: 024300000001999900000000000000000003499900000000000000000000 

Cconf: 975512000388000098950001011001000065400099999950000000000999 

 

   AA: KSSELDGTANEENGLLRETSMLAGFEDKKEACSNQEDASKIRNSVVQF 

 Pred: ---HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH-EEE- 

 Conf: 642001114440001245586865642311121112358872101249 

 

Hconf: 011388899999258999999999999989883299999999840000 

Econf: 000100000000000000000000000000000000000000009890 

Cconf: 988410100000741000000000000010116700000000150009 

 

PF2αα 
   AA: MSIISSLTNAGRGVVNTVGGAAQGINSVKSSADRNIALTKNTGSTDSIDATRSSISKGDA 

 Pred: ----HHHHH---EEEE----HHHHHHHHHHHHHH---EEE-------HHHHHHHHHH--- 

 Conf: 931110242022431223312111021333164311011343676512627784103677 

 

Hconf: 000086999610000001049898978998999930000000000049999999999000 

Econf: 024300000001999900000000000000000003499900000000000000000000 

Cconf: 975512000388000098950000021001000065500099999950000000000999 

 

   AA: KSSELDGTANEENGLLRETSKRAGFEDKKEALSNQIVASKIRNSVVQF 

 Pred: ---HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH-EEE- 

 Conf: 642001114440001355486864642311200102367871111249 

 

Hconf: 001488899999358999999999999989986599999999820000 

Econf: 000101000000000000000000000000000000000000009990 

Cconf: 998300000000641000000000000010013400000000170009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

 

36 

 

Figure 3: Output obtained by COILS service. Colour lines indicate coiled-coil motifs, which are present 

in HrpA and PF2αα, while in PF5αα and PF3αα are completely or partially removed. 

 
                                               

 

As reported in Chapter 4, to quantitatively evaluate variations in the TTSS pilus assembly a 

Congo red-based assay was performed on PF5αα, PF3αα, and PF2αα bacterial mutant 

cultures. Data obtained are consistent with bioinformatic analysis, in fact, PF5αα, PF3αα and 

PF2αα bacterial mutants show a percentage of dye adsorption of 18%, 35% and 75%, 

respectively (Figure 4). The direct involvement of these mutations on correct functionality of 

the TTSS pilus was confirmed following infiltration of PF bacterial mutants on Tobacco 

leaves. PF5αα and PF3αα strongly reduce HR response comparable to ΔhrpA mutant included 

as positive control, while PF2αα shows only a slight reduction (Figure 5). 
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Figure 4: Percentage of Congo red dye absorption of PF5αα, PF3αα and PF2αα bacterial cultures, grown 

in MM. The data were calculated according to the formula: [(Xunk−XΔhrpA) / (XWT−XΔhrpA)] *100 where 

XWT and XΔhrpAare the ratio OD490/OD600 for Psn23 and ΔhrpA respectively. The data represent the means 

± SD of three replicates. Results obtained are statistically significant (P <0.05). 
 

 

 

 

 
 

 

 

Figure 5: Hypersensitive Response assay on Tobacco leaves at 48h after infiltration of Psn23 wild type 

bacteria (WT), PF5αα, PF3αα and PF2αα. As control, sterile physiological solution (FS) and ΔhrpA mutant 

were used. 

 

 
 

 

Finally, to establish the PF mutants’ phenotype, pathogenicity trials on in vitro oleander plants 

were performed. As shown in Figure 6 plants inoculated with PF5αα and PF3αα show an 

absent or very little gall formation comparable to ΔhrpA (positive control), while plants 

inoculated with PF2αα show a reduced gall in comparison to Psn23 wild type bacteria. 

Moreover, in planta bacterial growth rate at 7, 14, 21 dpi (days post inoculation) confirm a 

strong decrease of bacterial multiplication following inoculation with PF5αα and PF3αα, 

respectively (Figure 6).    
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Figure 6: on the top) Pathogenicity trials of micropropagated oleander plants conducted using Psn23 and 

its mutants ΔhrpA, PF5αα, PF3αα and PF2αα at 14 and 21 days post inoculation (dpi). On the bottom) In 

planta bacterial growth at 7, 14 and 21 (dpi), in blu colour (Psn23 wild type), in red (PF5αα), in green 

(PF3αα), in violet (PF2αα) and in yellow (ΔhrpA) as positive control. Values are the mean of three 

independent experiments with nine replicates for each strain ± standard deviation (SD). ANOVA revealed 

statistically significant differences (p<0.05), comparison using the Tukey post-test are indicated by letters, 

where different letters indicate statistically significant differences.  

 
 

 
 

To rule out any variations in growth and IAA (acid-3-indol acetic) metabolism in PF5αα, 

PF3αα, and PF2αα mutants, we have analysed in vitro the bacterial growth rate and indole 

production. The bacterial growth was measured both in minimal and in rich medium. The 

indole production was recorded at 24 and 48 h by Salkowski assay on MM supplied with 

tryptophan, precursor to IAA (closely involved in Psn23 hyperplastic gall 

formation)(Rodríguez-Moreno et al., 2008; Quesada et al., 2012), without recorded any 

fluctuation compared to wild type bacterial cells (Figures 7 and 8).  
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Figure 7: In vitro bacterial growth rate in KB medium (A) and MM medium (B). Green line indicates 

PF5αα mutant; orange line PF3αα mutant; blu line PF2αα mutant and red line Psn23 wild type. 

 
 

 

Figure 8: Quantification of IAA production using the Salkowski assay for Psn23 and its PF5αα, PF3αα, 

and PF2αα mutant supernatants at 24 (green) and 48 h (blue) post-inoculation on MM supplemented with 

L-Trp (250 µM). The data are expressed as the average of three replicates ± standard deviation (SD). 

Statistically significant differences are represented by different letters above the bars (ANOVA and the 

Tukey test, p<0.05).    
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Design and performance of Virulence Inhibiting Peptides (VIPs)  

Based on obtained results we have hypothesised that single monomers of HrpA protein 

interact each other through hydrophobic bonding between a / d position residues at the 

interface of the helical bundle, which provides the driving force for the interaction and 

influences the oligomerisation state of the coiled-coil to form the entire translocation pilus. 

Thus, according to amino acid residues present in the hydrophobic surface of HrpA protein, 

supposed to be involved in the TTSS pilus assembly, and as suggested by phenotypic analysis 

carried out on PF5αα, PF3αα, PF2αα mutants, two different peptides were designed and their 

chemically synthesis obtained by Proteogenix (Oberhausbergen, France). These small 

peptides, named AP17 and LI27, are 17 and 27 amino acids long, respectively. Their 

sequences are perfectly homologous at a portion on HrpA protein, from 81 to 97 aa for AP17, 

and from 75 to 101 aa for LI27. Their physical-chemical profile was analysed by 

INNOVAGEN bioinformatic tool, AP17 shows a higher hydrophobicity profile than LI27 

(Figure S3). Preliminary tests were conducted to ascertain their applicability, excluding their 

antibiotic effect and verifying their specific activity against the TTSS pilus assembly. As 

preliminary verified these peptide do not trigger any plant defense responses and to exclude 

any phytotoxic effect, AP17 and LI27 were infiltrated into the mesophyll of Tobacco leaves 

until 60 µM, without observing any unspecific phytotoxicity (data not shown). Moreover, 

when AP17 and LI27 were co-infiltrated with Psn23 wild type cells, a strong reduction in HR 

symptoms was found at 60 µM for AP17, while only a significant reduction was recorded for 

LI27 (Figure 9). To further demonstrate the highly specific effect of AP17 and LI27 on the 

TTSS machinery, we investigated their impact on the TTSS pilus assembly through a Congo 

red-based assay to quantitatively evaluate variation in dye adsorption in Psn23 cells after 

treatment with these Virulence Inhibiting Peptides (Table 3). Finally, we have evaluated their 

effect on hrpA promoter by using the gfp-reporter fusion construct pLPVM_T3A and we have 

excluded any bacterial growth inhibition after treatment with these peptides by monitoring in 

vitro bacterial growth (Table 3). As previously reported hrpA gene is situated downstream of 

TTSS regulation pathway, and presumably the HrpA protein acts upstream stimulating TTSS 

genes expression (Tang et al., 2006). For this reason, it was highlighted a possible 

involvement of the HrpA protein in a positive feedback regulation, although still not entirely 

clarified (Wei et al., 2000). Under inducing conditions, the HrpA protein activates the 

transcription of the upstream genes, carrying out a fundamental role in the transcriptional 

activation of TTSS genes. The fluorescent signal inhibition corresponding to a down 

activation of hrpA promoter could be related indirectly to this regulation where the HrpA 

protein is involved. The effect obtained on hrpA promoter activity after application of AP17 

peptide was thus in frame with previous reports (Table 3). It could be hypothesised that AP17 

peptide binds to HrpA monomer, sequestering this protein and making it less available as 

trascriptional activator of TTSS pathway, resulting in a total or partial block of this system. 

Therefore, data obtained confirm the inhibitory activity of these peptides both in vitro and in 

planta against Psn23 and in all analyses performed AP17 has shown a better performance than 

LI27.  
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Figure 9: Hypersensitive response after infiltration of Psn23 wild type with different concentration of LI27 

and AP17 (30 and 60µM), respectively. FS indicates infiltration with only physiological solution (control).   

 

                                           
                   

                                                    
 

 

Table 3: Effect on bacterial growth in MM and KB, on the trans-activation of hrpA promoter and on TTSS 

pilus assembly of the AP17 and LI27 peptides tested in this study. Common letters indicate differences not 

statistically significant at p<0.05 according to Tukey’s test.  

VIPs 
Bacterial growth 

   in MM  (OD600) 

Bacterial growth 

    in KB  (OD600) 
hrpA promoter* 

Congo red dye§ 

adsorption % 

 LI27        0.95 ± 0.18a        1.15 ± 0.18a   0.92 ± 0.11a      75 ± 1.8a 

AP17        1.00 ± 0.11a        1.05 ± 0.16a   0.64 ± 0.12a      12 ± 1.5b 

Kanamycin       0.45 ± 0.16b        0.39 ± 0.19b   0.23 ± 0.15b            - 

* OD600 was recorded after 24h growth and data are calculated as GFP Abs (Ex.485nm; Em.535nm) / Abs (600nm) ± SD, 

and as normalized fold versus untreated bacterial cultures. 
§ [(Xunk−XΔhrpA)/(XWT−XΔhrpA)]*100 where: 

XWT and XΔhrpA are the ratio OD490/OD600 for Psn23 and ΔhrpA respectively.  
 

 

Virulence inhibiting peptides-expressing Psn23 mutants 

To further confirm our results we have generated bacterial mutants able to synthesize these 

peptides into their cytoplasm under hrpA promoter control, in order to obtain an instrument 

where the TTSS pilus assembly and peptides synthesis can take place in the same time and 

under the same stimuli. For this purpose we have transformed Psn23 wild type bacteria with 

the expression vectors pLPVM_T3A+AP17 and pLPVM_T3A+LI27, respectively. The 

obtained mutants have been identified as T3A_AP17 and T3A_LI27, respectively. Their 

phenotype was analysed both by pathogenicity tests (Figure 10) and by assays directed on the 

TTSS functionality such as HR and Congo red (Figure 11), confirming their inhibitory effect.  
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Figure 10: A) Pathogenicity test on micropropagated oleander plants with Psn23 T3A_AP17 (left side) 

and Psn23 T3A_LI27 (right side), below with PF5αα as positive control. B) Bacterial growth rate at 7, 14 

and 21days post-inoculation (dpi), in blu color (Psn23 wild type), in red (PF5αα) as positive control, in 

green (T3A_AP17) and in violet (T3A_LI27).  Values are the mean of three independent experiments with 

nine replicates for each strain ± standard deviation (SD). ANOVA revealed statistically significant 

differences (p<0.05), comparison using the Tukey post-test are indicated by letters, where different letters 

indicate statistically significant differences.  

 

 

 

 
                                          

 
                                                                                                                        

As shown in Figure 10, especially T3A+AP17 mutant results severely impaired in its 

pathogenicity and virulence on oleander plants. 

Therefore, we would assume that VIPs produced endogenously and under the control of hrpA 

promoter may act in concert with HrpA protein by competing each other through coiled-coil 

interactions.  

 

Figure 11: Percentage of Congo red dye absorption of T3A+AP17 (here named pT3-AP17) and T3A+LI27 

(here named pT3-Li27) bacterial cultures, grown in MM. The data were calculated according to the 

formula: [(Xunk−XΔhrpA)/(XWT−XΔhrpA)]*100 where XWT and XΔhrpA are the ratio OD490/OD600 for Psn23 and 

ΔhrpA respectively. The data represent the means ± SD of three replicates. Results obtained are 

statistically significant (P <0.05).  
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Finally, in order to indirectly follow the peptide fate endogenously produced we have carried 

out a set of co-inoculation experiments. T3A_AP17 and T3A_LI27 bacterial mutants and 

Psn23 wild type cultures were inoculated together, at two different concentrations 

(OD600=0.25 and/or 0.50). T3A_AP17 mutant was able to strongly reduce the typical 

hyperplastic gall compared to both Psn23 wild type and T3A_LI27 mutant (Figure 12).  

 

Figure 12: Pathogenicity test on in vitro oleander plants at 21dpi with (a) Psn23 wild type bacteria (wt) at 

OD600=0.5; (b) Psn23 wt (OD600=0.25) + T3A_AP17 (OD600=0.25), (c) Psn23 wt (OD600=0.50) + T3A_AP17 

(OD600=0.50); (d) Psn23 wt (OD600=0.25) + T3A_LI27 (OD600=0.25); (e) Psn23 wt (OD600=0.50) + T3A_LI27 

(OD600=0.50).    

        

 

                                

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIPs transiently expressing plants by Agro-infiltration 

The use of transient expression through infiltration of Agrobacterium tumefaciens 

(agroinfiltration) harbouring the transgene of interest should substantially decrease the time 

required to test candidate resistance genes and might provide a better platform to assess the 

potential of the gene products (Leckie and Stewart, 2011).  

To this purpose and to further verify the effectiveness of VIPs strategy we have used A. 

tumefaciens EHA105 transformed to specific binary vectors, named pCAMBIA1305.2::AP17 

and pCAMBIA1305.2::LI27 (Table 1), and used in agroinfiltration experiments. 

pCAMBIA1305.2 vector is characterised by a GRP signal peptide upstream gus gene replaced 

in the final vectors with the sequence corresponding to AP17 and LI27 respectively, to target 

peptide delivery to the apoplast of plant cells as monitored by histochemical GUS assay 

(Chapter 3).  
The efficacy of VIPs transiently expressed by A. tumefaciensEHA105 into micropropagated 

oleander plants was verified at different concentration of Psn23 wild type bacteria used in co-

inoculation (from 0.5 x 10^6 to 0.5 x 10^4 CFU) and fixed concentration of A. tumefaciens 

transformed with pCAMBIA1305.2::AP17 or pCAMBIA1305.2::LI27(0.5 x 10^6 CFU) 

(Figure 13).   

a b c 

d e 
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Figure 13: A) Agroinfiltration on in vitro oleander plants at 7dpi.  On the top, inoculation with Psn23 

(control) at different concentration (10^6; 10^5 and 10^4), where the gall formation at inoculation site is 

well visible. In the middle, co-infiltration with Psn23 and A. tumefaciens transformed with pCAMBIA 

1305.2::LI27. On the bottom, inoculation with Psn23 and A. tumefaciens transformed with pCAMBIA 

1305.2::AP17. In correspondence of inoculation sites (circled), a reduction in gall formation can be 

observed in comparison to inoculation with Psn23 alone. B) Bacterial growth rate monitored at 14dpi. A. 

tumefaciens pCAMBIA indicates A. tumefacies trasformed with the native vector, used as control. 

(Histogram colour legend: blue =0.5 x 10^6; red=0.5 x 10^5 and green=0.5 x 10^4 CFU). Values are the mean 

of three independent experiments with nine replicates for each strain ± standard deviation (SD). ANOVA 

revealed statistically significant differences (p<0.05), comparison using the Tukey post-test are indicated 

by letters, where different letters indicate statistically significant differences.  
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VIPs strongly reduce disease symptoms development on host plant 

Finally, we proceed with co-inoculation of Psn23 wild type mixed with synthetic peptides, to 

mimic as much possible the VIPs effect into plant. Preliminary data have shown that the 

minimal ihnibitory concentration of these peptides without any phytotoxic side effects was 60 

µM.  

Pathogenicity trials were performed at this VIPs concentration and their exogenous 

application mixed at Psn23 wild type bacterial cells (OD600=0.5, approximately 

0.5x108 Colony Forming Unit/ml; CFU/ml) has greatly reduced gall formation at inoculation 

side and has drastically decreased bacterial growth in planta both at 7 and 14 dpi. Thus, in 

particular AP17 peptide blocks both pathogenicity and virulence of Psn23 wild type bacteria 

comparably to ΔhrpA mutant bacteria (Figure 14).                                                                                                                           

 

Figure 14: A) Pathogenicity test on oleander plants at 14 dpi. When Psn23 wild type is mixed with AP17 

or LI27 peptides (at 60µM) the gall formation is strongly impaired. B) In planta bacterial multiplication 

at 7 and 14 dpi. (Histogram colour legend: blue=Psn23 wild type; red=Psn23 mixed with AP17 (60 µM); 

green =Psn23 mixed with LI27 (60 µM); violet histogram=ΔhrpA mutant). Data represent the means ± SD 

of three runs with nine replicates for each strain. Statistically significant differences are represented by 

different letters above the bars (ANOVA and Tukey’s test, P < 0.05). 
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VIPs do not have any toxicity effect on cellular membranes and Ca2+ ATPase 

The anti-virulence peptides here examined were investigated for their effects on Ca2+-ATPase, 

taken as a model of the ubiquitous molecular ion pumps P-type ATPases, known to be targets 

for many toxic compounds. Moreover, since the majority of anti-microbial peptide are known 

to penetrate the lipid membrane through hydrophobic interaction resulting in pore formation, 

we analysed the effect of AP17 and LI27 on synthetic bilayer lipid membrane (BLMs) to rule 

out this unwanted effect.  

The SR Ca2+ -ATPase belongs to the highly- conserved P-type ATPase family. P-type 

ATPases are a large, ubiquitous and varied family of membrane proteins that are involved in 

many transport processes in virtually all living organisms (Bublitz et al., 2011). A number of 

heavy metal ions, e.g. Cd2+, Hg2+, Pb2+, Zn2+ and Cu2+, were found to inhibit Ca2+ -ATPase 

activity in different types of membranes (Gramigni et al., 2009). Such inhibition typically 

causes a sudden increase in the cytosolic concentration of calcium ions, endoplasmic 

reticulum stress, and eventual cell death through apoptosis.  

To exclude the inhibitory effect of these VIPs on Ca2+ -ATPase, we investigated their 

interaction on Ca2+ -ATPase, and we analysed these results with the effect reported for Cu2+ 

ions (Chapter 4). In this experiment we compared the current signals generated by the ATPase 

following 100 µM ATP concentration jumps in the absence of the peptide (control 

measurement) and in the presence of AP17 (Figure 15D). Notably, we found no effect of AP17 

and LI27 on the ATP-induced current signal and related charge over a concentration range 

from 1 to 30 µM (inset of Figure 15C and D). Thus, this result indicated that the peptide AP17 

does not affect ATP-dependent translocation of calcium ions by Ca2+ -ATPase. 

While, we found that Cu2+ ions suppress the ATP-induced current signal and the associated 

displaced charge both at 0.1 µM and 1 µM concentration (inset of Figure 15C and D). 

Therefore, we may conclude that sub-micromolar copper exerts a strong inhibitory effect on 

Ca2+ -ATPase by interfering with ATP-dependent calcium translocation through the enzyme. 

Since the majority of the peptides are known to penetrate the lipid membrane we analysed the 

lipid-peptide interactions by BLMs experiment, associated to bioelectrical characterization 

and current recording. 

After the BLM formation, and once checked its stability, we started adding the AP17 and LI27 

peptides. Through several micromolar additions, we increased the peptide concentration from 

5 μM to 60 μM, the concentration which resulted to be active in vivo, and we left the system 

overnight. No change in current was recorded indicating any toxic effect on cellular 

membranes (Figure 15 A and B).  
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Figure 15: On the left side: effect of AP17 (A) and LI27 (B) on synthetic bilayer lipid membranes (BLMs). 

Current measurements carried out at different potentials (-80, -60,-40, +40, +60, +80mV), in presence or 

not of AP17 and LI27 (5 µM, 30 µM and 60 µM) in symmetrical conditions with 250 mM KCl in 10 mM 

MOPS (pH=7) buffer. On the right side: effect of copper ions and AP17 on ATP-dependent current signals 

generated by Ca2+-ATPase. Current signals induced by 100 μM concentration jumps in the presence of 10 

μM CaCl2 and in the absence (black curve, control measurement or in the presence of 1 μM CuCl2 (red 

curve). The inset shows the charges related to ATP-induced current signals in the presence of different 

CuCl2 concentrations. Charges are normalized with respect to the value measured in the absence of copper 

ions (control measurement). Data represent the mean ± SE of three independent measurements. D) 

Current signals induced by 100 µM ATP concentration jumps in the presence of 10 µM CaCl2 and in the 

absence (black curve, control measurement) or in the presence of 30 µM AP17 (red curve). The inset shows 

the charges related to ATP-induced current signals in the presence of different concentrations of the 

peptide AP17. Charges are normalized with respect to the value measured in the absence of AP17 (control 

measurement). Data represent the mean ± SE of three independent measurements.   
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2.5 Discussion 

 

The need to develop innovative anti-bacterial molecules is an urgent issue not only in human 

medicine but also in plant protection as a result of the worldwide spreading of antibiotics and 

copper resistance.  

The most cutting-edge approaches focus on searching of bioactive molecules which acting on 

the pathogenicity and the virulence of pathogenic bacteria, without affecting their viability, in 

order to decrease the selective pressure applied on bacteria populations and thus the 

consequent development of resistance phenomena.  

Among the ideal targets for this kind of innovative antibacterials, there is the Type Three 

Secretion System that is the highly conserved molecular syringe through which Gram-

negative bacterial pathogens inject their effectors into the host cells.   

Firstly, several critical amino acids residues were identified at the C-terminus portion of the 

HrpA protein, which is the main component of P. syringae TTSS pilus, supposed to be 

involved in coiled-coil interaction among HrpA subunits during the assembly of the Type 

Three injectisome.  

The bioinformatic analysis of the amino acid sequence corresponding to the putative HrpA 

protein of P. savastanoi pv. nerii has found that this protein is characterized by an α-helix 

region with a seven-residue repeat recurring in the coiled-coils motif. These domains are 

generally involved in protein-protein interaction, particularly in molecular recognition 

phenomena and in the formation of multimeric proteic complexes (Daniell et al., 2001; Wall 

and Kaiser, 1999). An experimental evidence about the role of coiled-coil domains in the 

assembly of the TTSS translocator protein EspA in the enteropathogenic bacteria Escherichia 

coli was reported, although about nothing is still known about the molecular details of subunit-

subunit interactions during filament assembly (Larzabal et al., 2010). Non-conservative amino 

acid substitution of specific EspA heptad residues generated E.coli defective in EspA filament 

assembly, indicating that coiled-coil interactions are involved in assembly or stability of the 

EspA filament-associated type III translocon (Delahay et al., 1999). Moreover, coiled-coil 

domains are found in high frequency amongst structural and effector proteins of the Type 

Three Secretion System of  Yersinia spp., Salmonella spp., E.coli and Shigella spp.(Costa et 

al., 2012; Knodler et al., 2011; Zoetewey et al., 2003; Barta et al., 2012) but until now, to the 

best of our knowledge, they have never been reported in the TTSS structural proteins of plant 

pathogenic bacteria. P. savastanoi pv. nerii mutants replaced in five, three and two amino 

acids among those hypothesized to be involved in HrpA coiled-coil interactions were 

produced and named PF5αα, PF3αα and PF2αα, respectively. When their behaviour was 

compared with the knock-out mutant Psn23 ΔhrpA (which retains 8,3% of amino acids 

sequence of wild type protein), carrying an in frame deletion in hrpA gene, only PF5αα and 

with minor extent PF3αα were unable to induce HR on N. tabacum leaves, and to cause disease 

and to properly grow on oleander micropropagated plants. As far as PF5αα was concerned, 

these results could have been determined by the replacement of those residues critical for 

HrpA subunits assembly or for the correct HrpA folding. The potential of these results in the 

frame to develop innovative anti-bacterial peptides was further investigated by comparing the 

PF5αα behaviour in planta with that of several other Psn23 mutants. According to these 



Chapter 2 

 

49 

 

results, it could be concluded that the TTSS pilus is an ideal target for innovative anti-bacterial 

molecules, for the control of bacteria diseases of plants. Therefore, small peptides were 

designed and synthesized, allowing them to hinder HrpA-HrpA interactions, and therefore 

halt both the TTSS assembly and the delivering of virulence factors from the pathogens into 

the host cells. Two different peptides, named AP17 and LI27 were planned, each of them 

designed according to HrpA sequence, with the feature of contain the amino acid sequence 

corresponding to the coiled-coil domain and with the only difference in their length.   

When co-infiltrated with Psn23 wild type into N. tabacum mesophyll and on oleander 

micropropagated plants, AP17 and LI27 (with minor extent) were demonstrated both able to 

suppress HR, pilus assembly by Congo red assay and unable to cause typical hypertrophic 

symptoms, respectively. Moreover, the activity of these Virulence Inhibiting Peptides on the 

activation of the promoter driving the transcription of hrpA operon was also investigated. To 

this purpose it was utilised a reporter system, where gfp was under the control of hrpA 

promoter, named T3A. The analysis was performed on Minimal Medium, mimicking the 

apoplastic condition in which the bacteria are located previous to the infection, with or without 

anti-infective peptides added (Tang et al., 2006). The results of GFP fluorescence assays 

showed that, in particular the AP17 peptide was also active on the hrpA promoter at 60 μM, 

and a strong decrease in the GFP fluorescence was observed in respect to the control condition.    

The endogenous production of AP17 and LI27 peptides by T3A+AP17 and T3A+LI27 

mutants under the hrpA promoter control has allowed to detect both a direct competition 

between HrpA monomers and the peptides expressed into bacterial cytoplasm and an indirect 

regulatory role of HrpA protein in the TTSS cluster, that it is still not entirely outlined (Wei 

et al., 2000). The co-inoculation in planta of Psn23 wild type bacterial cells and these mutants 

respectively, has shown a strong reduction in gall formation demonstrating as these peptides 

block disease symptoms development acting outside bacterial membrane until wild type 

bacterial wall. However, it should nevertheless point out that this hypothesis requires further 

confirmations. The peptides transiently expressed in oleander plant cells by A. tumefaciens 

carrying a binary vector pCAMBIA1305.2::AP17, have been able to reduce the gall 

formation. This important result shows that the peptides expressed into the periplasmatic 

space compete with HrpA proteins in the same cell compartment where the TTSS pilus 

assembly was previously hypothesised to occur (Busch and Waksman, 2012). Altogether 

these results detect the efficacy of VIPs strategy, the absence of any toxic effect of these 

peptides both on targets and preserved structures of cell membranes highlight their 

applicability. 

In conclusion, in this study, we have discovered and analysed the pivotal role of coiled-coil 

interactions in the TTSS pilus assembly of P. savastanoi pv. nerii. 

The simplest explanation about the present of this kind of domains in HrpA protein can be 

indicated in the homo or hetero oligomeric interaction between the HrpA monomers. Our 

hypothesis can be indirectly confirmed because until now no high-resolution x-ray crystal 

structure of a type III conduit protein in the final conformation has been reported, due to the 

technical problem concerning the propensity of these proteins to form multimeric 

superstructures rather than three-dimensional crystals (Roine et al., 1997 a and b; Lee et al., 

2005).    
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2.7 Supporting Information 

 
S1 Figure: A) Output obtained by SignalP 4.1 service. Signal peptide of the HrpA protein was predicted 

from 1 to 10 amino acids.  B) Output obtained by TMHMM service. Based on physico-chemical 

composition and on present of signal peptide the HrpA protein shows a localisation outside cellular 

membrane. 

 

 

   
 

 

 

 
 

S2 Figure: Output obtained by Predict Protein service. A considerable region (from 69 to 101 aa) of the 

HrpA protein shows a secondary structure rich in α-helix. 
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S3 Figure: Amino acids sequence of AP17 and LI27 characterized by INNOVAGEN bioinformatic tool 

http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-

calculator.asp 

 

                                                                                                       

 

          
                                                                                             

 

 

 

 

                                 

 
 

     

                                                                                       
 

 
 

 

 

 

 

 

 

 

 

 

                                           

                   

                                                                                                                                                                                          

                                  

                                                                         

 
 

 

 

 

 

Peptide Charge Attribute 

MLAGFEDKKEALSNQIV -1 acidic 

>LI27 2.99kD pH 6.62  

LLRETSMLAGFEDKKEALSNQIVASKI 

Color legend: Acidic Aromatic Basic Aliphatic Polar 

  

 Hydrophilicity Analysis: 

                      >AP17 1.89kD pH 4.44 

                      MLAGFEDKKEALSNQIV 
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2.8 Annex 1:  

 

HrpA protein synthesis by recombinant DNA-based technology  

In this section it was reported the experimental protocol for the biotechnological synthesis of 

the HrpA protein of P. savastanoi pv. nerii. This protocol was set up at laboratory scale and 

successively used in scale-up phase for primary antibody production employed in 

immunoenzymatic assays.  

The experimental approach is based on the pET200 D-TOPO expression vector and ProBond™ 

purification system (Invitrogen, Life Technologies, USA). HisTrapTM 1ml purification column 

(GE Healthcare, Uppsala, Sweden) was used in scale-up phase according to the 

manufacturer’s instructions. Briefly, hrpA genes from Psn23 was cloned into pET200D-

TOPO (Invitrogen, Life Technologies, USA) expression vector, using the primers A_RIC 

FOR 5’ CACCATGAGCATCATAAGTTCTCTG (Tm=62°C) and A_RIC_REV 5’ 

CAGAACTGGACGACC (Tm=64°C). After having successfully assessed the correct 

insertion of this sequence into the cloning vector, the recombinant plasmid was used in 

transformation experiments by electroporation, using several E. coli strains as recipients 

(BL21 from Invitrogen, USA, and C41 from Novagen). A single positive colony from the 

selection plate was inoculated in 20 ml LB liquid media containing 50 μg/ml kanamycin. The 

culture was incubated overnight with shaking at 37°C, and then transferred to a larger-scale 

LB media (10 ml culture was transferred into 90 ml fresh LB). The optimisation of the 

expression protocol was set up on pET200D-TOPO+hrpA expression, varying several 

fundamental parameters such as IPTG Isopropyl β-D-1- thiogalactopyranoside concentration 

(0.5; 0.75; 1mM), ODAbs 600nm (0.5; 0.8), time post-induction (2; 4; 6; overnight - on); 

temperature post-induction (37; 26 °C). Finally, the expression of the target protein was 

induced by 1mM IPTG when OD600 of the culture reached 0.8. Cells were harvested by 

centrifugation after grown for an additional 6 h at 28°C.  

After IPTG induction, expression of HrpA protein was assessed both on whole cell lysate and 

culture filtrates, by traditional electrophoretic methods. The expected size was approximately 

16KDa.  

The results obtained by gel electrophoresis, using E. coli C41 as recipients are reported in 

Figure 1A. The correct expression was confirmed by Western blotting using Anti-XpressTM 

antibody (Invitrogen, Life Technologies, USA) according to the manufacturer’s instructions  

(Figure 1B).        

On the samples with significant levels of recombinant protein expression, purification was 

carried out under native condition through ProBond™ Nickel-Chelating Resin (Invitrogen, 

Life Technologies, USA), using the N-terminal Hys-tag added to the recombinant protein by 

pET200D-TOPO (Invitrogen, Life Technologies, USA) and in scale-up phase through 

HisTrapTM 1ml (GE Healthcare, Uppsala, Sweden) according to the manufacturer’s 

instructions.       

The obtained results concerning the HrpA protein elution are reported in Figure 2A, where in 

line 4 it is shown a conspicuous band corresponding to the HrpA protein (16KDa). On the 

same purification Nickel-Chelating Resin column, the digestion to eliminate from HrpA 

protein the polyhistidine–tag was also performed using the enterokinase enzyme. In Figure 

2B, the results obtained are shown, after the enzymatic reaction performed at 25°C, overnight 
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and with 7u of EK MaxTM (Invitrogen, Life Technologies, USA) to digest the Hys tag and 

obtained the purified HrpA protein approximately of 11 KDa.   

 

Figure 1: A) SDS-PAGE analysis of C41 E. coli supernatants at 4, 6, and overnight hours post-induction 

(1mM IPTG); 1-3-5 lines: induced samples; 2-4-6 lines: no-induced samples; M: proteins standard B) 

Western blotting analysis, in line 1 the HrpA protein expressed and detected by antibody.                 
 

               A                                                                                       B  

                  
 

 

    

 

Figure 2: A) SDS-PAGE analysis of the fractions recovered from purification steps by using HisTrapTM 

1ml column system (GE Healthcare, Uppsala, Sweden). Line 1: binding step, 2: wash 20mM imidazole, 3: 

50mM imidazole, 4: elution HrpA protein. B) SDS-PAGE analysis in line 1 purified HrpA protein under 

native conditions; line 2 last elution step, M) proteins standard. 

 

                               A                                                               B                                    

                                                                                          
                                                                                          

                                                                                  

The final yield obtained of purified HrpA protein from recombinant technology was no more 

than 1 mg of proteins starting from a 100 ml of E. coli culture enriched in HrpA protein and 

measured through absorbance at 280 nm (NanoDrop™ ND-1000 (NanoDrop Technologies 

Inc., DE, USA). 

              1       2          3       4           5        6        M 

16KDa  

M                      1     

  1       2      3       4      M  
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Finally, the experimental protocol used in the HrpA protein purification was further 

improvement to get the needed yields for antibody anti-HrpA production obtained from 

Primm srl (Milano-Italy), following immunisation of two rabbits with recombinant protein 

HrpA (Figure 3) and used in immunoenzymatic assays performed in this PhD thesis. 

 

 

Figure 3: line 1 SDS-PAGE analysis of the HrpA protein obtained from recombinant technology and in 

line 2 Western blot performed with anti-HrpA antibody obtained from Primm srl (Milano-Italy).  
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2.9 Annex 2:  

 

P. syringae pv. actinidiae and the anti-infective peptide Psa21 

In this section it was reported the study performed on amino acid sequence of HrpA protein 

(113 AA) of P. syringae pv. actinidiae. Moreover, the efficacy in vitro and in vivo of the 

corresponding peptide Psa21 was also verified using the same methodological approach 

reported in Chapter 2.   

The C-terminus portion of HrpA amino acid sequence of Psa as reported for Psn23 (Chapter 

2) is characterised by a coiled-coil motif (from 57 to 92 AA). The Psa21 peptide was designed 

on this domain from 70 to 91 AA and it is 21 amino acid long (Figure 1A).    

The coiled-coil motif was verified through bioinformatic analysis (Material and Methods see 

Chapter 2). The result obtained with Paircoil (http://groups.csail.mit.edu/cb/paircoil2) is 

reported in Figure 1B.   

 

Figure 1: A) C- terminal amino acid sequence corresponding of putative HrpA protein of P. syringae pv. 

actinidiae rich in α-helices. In bold red color is indicated the amino acid sequence of Psa21 peptide. B) 

Output of the analysis performed with Paircoil.    

 

           A)                                      
PsaICMP      ESDANGAKLIAMQAQETMKKQTMDVLNAIQAGKEDSSNKKISATATNAKGISY 

                   

           

           B)                                     

 
 

 

 

To ascertain the pivotal role of the HrpA protein in the TTSS pilus assembly, we have 

generated as reported for Psn23 (Chapter 5), the hrpA in-frame deletion mutant, named ΔhrpA 

using the primers in Table 1 and following the methodological approach reported in the 

section Material and Methods (Chapter 5).  

The peptide activity on both structure and functionality of TTSS was verified in vitro and in 

vivo by several tests performed also in Chapter 2 for the peptides AP17 and LI27 (Material 

and Methods see Chapter 2).  

 

http://groups.csail.mit.edu/cb/paircoil2
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Table 1. Primers used in this study.  

Primer name Primer sequence (5’-3’)  Tm°C 

HrpA_XbaI_For TTTTCTAGATGACACTCAAGCTTCCGC  56.9 

HrpA_EcoRI_Rev TTTGAATTCCACTCGGTGTCAGCAGATC    56.1 

Cross_BamHI_Rev CCGGATCCAAACCTATTAAACTCCTGCAAATGCGACCAT       59.5 

Cross_BamHI_For GTTTAATAGGTTTGGATCCGGCAGTTACTAATTATTTCTGATTGC    57.2 

Psa21_BglII_For  AAAAGATCTGCGATGCAGGCTCAGGAAAC  59.0 

Psa21_PmlI_Rev TTTCACGTGTTAGGCCTGGATGGCGTTGAG     59.0 

 

Firstly, we have verified the activity of this peptide on the TTSS functionality throught co-

infiltration of Psa wild type cells with Psa21 peptide at 60µM and a strong reduction in HR 

symptoms was found after infiltration with Psa21 comparable to ΔhrpA bacterial mutant 

(Figure 2).   

 

Figure 2: Hypersensitive response after infiltration of Psa wild type with 60µM of Psa21. FS indicates 

infiltration with only physiological solution (control) and Psa ΔhrpA is used as positive control.   

   

                                                                                   
 

 

To further demonstrate the highly specific effect of Psa21 on the TTSS machinery, we 

investigated its impact on the TTSS pilus assembly through a Congo red-based assay to 

quantitatively evaluate variation in dye adsorption in Psa cells after treatment with this 

Virulence Inhibiting Peptide (Table 3). Moreover, we have evaluated the effect of Psa21 

peptide on hrpA promoter by using the gfp-reporter fusion construct pLPVM_T3A and we 

have excluded any bacterial growth inhibition after treatment with this peptide by monitoring 

in vitro bacterial growth (Table 3). Data obtained confirm the inhibitory activity of this peptide 

both in vitro and in planta against Psa (Material and Methods see Chapter 4).   

 

 

 

 

 

 

Psa 
FS 

ΔhrpA

AAAA 

FS 

Psa 

Psa + Psa21 60µM  
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Table 3: Effect on bacterial growth in MM and KB, on the trans-activation of hrpA promoter and on TTSS 

pilus assembly of the Psa21 peptide tested in this study. Common letters indicate differences not 

statistically significant at p<0.05 according to Tukey’s test.  

 

VIP 
Bacterial growth 

   in MM  (OD600) 

Bacterial growth 

    in KB  (OD600) 
hrpA promoter* 

Congo red dye§ 

adsorption % 

Psa21       0.98 ± 0.13a        1.05 ± 0.18a   0.68 ± 0.12a      28 ± 1.5 

Kanamycin       0.45 ± 0.16b        0.39 ± 0.19b   0.23 ± 0.15b            - 

* OD600 was recorded after 24h growth and data are calculated as GFP Abs (Ex.485nm; Em.535nm) / Abs (600nm) ± SD, 

and as normalized fold versus untreated bacterial cultures. 
§ [(Xunk−XΔhrpA)/(XWT−XΔhrpA)]*100 where: 

 XWT and XΔhrpAare the ratio OD490/OD600 for Psa and ΔhrpA respectively.  
 

 

Finally, we proceed with co-inoculation of Psa wild type mixed with synthetic peptide, to 

mimic as much possible the peptide effect into plant. Preliminary data have shown that the 

minimal inhibitory concentration of this peptide without any phytotoxic side effect was 60 

µM. 

Pathogenicity trials were performed at this concentration and their exogenous application 

mixed at Psa wild type bacterial cells (OD600=0.5, approximately 0.5x108 Colony Forming 

Unit/ml; CFU/ml) has greatly reduced the necrotic spots on A. chinensis leaves and has 

drastically decreased bacterial growth in planta until 20 dpi (days post inoculations). Thus, 

this peptide blocks both pathogenicity and virulence of Psa wild type bacteria comparably to 

ΔhrpA bacterial mutant (Figure 3). 

 

Figure 3: A) Pathogenicity tests on in vitro A. chinensis plants by anti-infective peptide Psa21 at 10 and 20 

dpi; a) Psa wild type, b) Psa + 60µM Psa21, c) Psa ΔhrpA bacterial mutant (positive control). B) In planta 

bacterial multiplication at 20 dpi. Data represent the means ± SD of three runs with nine replicates for 

each strain. Statistically significant differences are represented by different letters above the bars 

(ANOVA and Tukey’s test, P < 0.05). 
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Considering the promising performance of Psa21 peptide, we have set up an experimental 

protocol for genetic transformation of kiwi Hayward A. tumefaciens-mediated using the binary 

vector pCAMBIA 1305.2 (Material and Methods see Chapter 2). The primers used are 

reported in Table 1.    

In vitro micropropagated A. chinensis (var. Hayward) (Vitroplant Italia s.r.l., Cesena, Italy) 

plants were maintained on MS medium (Murashige and Skoog, 1962) containing salts and 

vitamins, 1.5 mg/l 6-Benzylaminopurine (BAP), 0.01 mg/l Naphthaleneacetic acid (NAA), 

0.1 mg/l Gibberellic acid (GA3). The pH of the medium was adjusted to 5.8 prior to 

autoclaving. The in vitro plants were grown for 3 weeks at 26°C, with a photoperiod of 16 

h/light-8 h/dark. 

The binary vector pCAMBIA1305.2_Psa21 was transformed into A. tumefaciens EHA105 by 

electroporation (Chapter 2). Single colonies from YEP medium (Chapter 2) plates containing 

kanamycin (50 µg/ml), were used to initiate 5ml YEP medium starter cultures. After 6 h 

shaking at 200rpm at 28°C, this suspension was used to inoculate a 20 ml YEP medium 

containing kanamycin (50 µg/ml) and rifampicin (10µg/ml), and grown overnight on a 

shaking platform at 200rpm to reach an OD600 of 1.0. Bacterial culture was centrifuged at 

2500 rpm for 15 min and pellet was re-suspended in liquid MS20 medium (MS + sucrose 

20g/l; pH =5.2) supplemented with 0.1M acetosyringone and 1M betaine chloride (Sigma-

Aldrich Co.-St. Louis, MO, USA) and grow further for 5 h at 20°C with shaking at 100 rpm. 

The optical density (OD600) of culture was checked and adjusted to 0.5. The bacterial 

suspension was used for transformation experiments. About 500 leaf discs of kiwi var. 

Hayward were immersed in bacterial suspension and gentle shaking at 45 rpm for 20 min at 

room temperature. After inoculation, leaf discs were blotted on sterile paper towels and co-

cultivated for 3 days under dark condition at 28°C, in petri dishes containing MS medium 

supplemented with 0.1mg/l (NAA) and 2mg/l thioridazine (TDZ). About 400 leaf discs were 

used in each experiments and transformation efficiency was compared with A. tumefaciens 

EHA105 strain used as control (about 100 leaf discs) (Figure 4).  

 

 

 

 

 

B  

a   a  

  b  
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Figure 4: Hayward leaf discs after co-cultivation with A. tumefaciens EHA105 harboring the binary vector 

pCAMBIA1305.2_Psa21.    

 
 

Following co-cultivation, the leaf discs were rinsed once in the washing solution (MS20 

supplemented with 0.1M acetosyringone, 1M betaine chloride 200mg/l cefotaxime and 

500mg/l amoxicillin) for 5h at 20°C with shaking at 100rpm. After that, leaf discs were blotted 

dry on sterile filter paper and placed onto MS20 selective medium supplemented with 0.1mg/l 

(NAA), 2mg/l thioridazine, 200mg/l cefotaxime and 10mg/l hygromycin for approximately 1 

month at 28°C 16/8h photoperiod (Figure 5A). The regenerated shoots from each leaf disc 

were separeted and transferred to MS20 medium supplemented with 200mg/l cefotaxime and 

10mg/l hygromycin (Figure 5B). The percentage of regenerated discs was about 11% (46/400 

regenerated leaf discs and 2,5 shoots for regenerated leaf discs).      

      
Figure 5: A) Hayward leaf discs after one month on selective medium; B) Regenerated shoots from 

Hayward leaf discs.  

 

 
 

 

 

 

  

 

 

 

  



Chapter 3 

 

63 

 

Chapter 3 

 

The expression of short anti-infective peptides targeting Type Three 

Secretion System (TTSS) confers improved resistance to Pseudomonas 

syringae pv.tabaci in tobacco transgenic plants 
 
 

 

 

3.1 Abstract 

 

In this study, we used the pCAMBIA1305.2 binary vector, in which a sequence coding for a 

short oligopeptide (namely AP17), targeting the HrpA protein of the Type Three Secretion 

System (TTSS) of Pseudomonas syringae pv.tabaci replaces native GUSPlus™ gene. The 

vector electroporated into Agrobacterium EHA105, has been used to transform Nicotiana 

tabacum L.cv Xanthi. The peptide sequence was cloned in the vector downstream of the signal 

peptide GRP to target peptide delivery to the apoplast of plant cells. Bacterial suspensions 

containing A. tumefaciens EHA105/pCAMBIA 1305.2 native vector were also used to 

transform tobacco as transgenic control to rule out any transformation effect on resistance to 

Pseudomonas syringae pv. tabaci and to demonstrate apoplastic expression of GUS protein 

monitored by histochemical GUS assay. The integration of the peptide sequence was 

confirmed by polymerase chain reaction (PCR) and the expression was evaluated by RT-PCR 

and reverse transcription quantitative PCR. ELISA tests using polyclonal antibody against 

HrpA, were used to detect its presence in transgenic plants. Transgenic plants expressing high 

levels of peptide were selected, and then in vitro inoculated with P. syringae pv. tabaci strain 

ATCC 11528. While untransformed control and transgenic control plants carrying 

GUSPlus™ were severely affected by Pseudomonas infection, AP17 transgenic plants 

showed faint symptoms, and the bacterial growth was severely inhibited in few days after 

inoculation. This data denote a proof of principle that constitutively expressed virulence-

inhibiting peptides could represent a successful strategy to control bacterial diseases of plants. 
 

 

 

Keywords: Anti-infective peptides; AP17; HrpA; Nicotiana tabacum; Pseudomonas 

syringae pv. tabaci; 
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targeting Type Three Secretion System (TTSS) confers improved resistance to Pseudomonas syringae pv.tabaci 
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3.2 Introduction  

 

Phytopathogens are the major problem in the agricultural sector around the world, causing 

substantial declines in yields with huge economic losses. Plant protection and resistance 

against pathogens have been traditionally and are still currently addressed with chemicals and 

breeding programs. However, both agrochemicals methods and conventional breeding have 

many drawbacks (Ravinder et al., 2014). On one side, indiscriminate use of chemical 

compounds has a negative impact on human, animal and environment health, on the other 

conventional plant breeding has a limited scope due to the paucity of genes with interesting 

traits in the usable gene pools and their time-consuming nature (Jan et al., 2010).  

Moreover, the increased public concern about the use of chemical compounds in crop disease 

protection presses in order to search alternatives to protect plants from pathogens. Likewise, 

during the last years, the research in plant pathology has focused on development of novel 

molecules with a wide antimicrobial activity spectrum against bacterial and fungal pathogens 

(Upadhyay et al., 2014). Recent advances in plant biotechnology, including the possibility of 

gene isolation and characterization, stable transformation and regeneration of transgenic 

plants in a wide range of species, have driven the development of new strategies and in 

particular molecular methods have been adopted, which expression in plants of antibacterial 

proteins of external or endogenous origin (Hou et al., 2014). Consequently, genetic 

engineering and transformation technology offer better tools to test the efficacies of genes and 

to provide a better understanding of their mechanisms in crop improvement. Therefore, to 

engineer plants with resistance genes against pathogens is becoming possible and plant 

transformation Agrobacterium-mediated has become a favored approach for many crop 

species (Barampuram and Zhang, 2011). In fact, this method is most preferred due its 

accessibility, tendency to transfer low copies of target genes with higher efficiencies, lower 

cost and with minimal rearrangement of a very large DNA fragments (Shibata and Liu, 2000; 

Gelvin, 2003). In this scenario, genetic engineering of plants expressing AntiMicrobial 

Peptides (AMPs) has been developed to create resistant plants and in recent years AMPs have 

been increasingly identified as candidate for disease protection in plants (Hancock and Lehrer, 

2006). Usually, they are peptides of 10-100 amino acids and they are components of innate 

defense mechanisms in organisms ranging from microbes to plants and animals (Bahar and 

Ren, 2013; Peters, 2010). A very considerable number of AMPs, more than 5000, have been 

discovered and reported which have either been identified from natural sources or have been 

artificially synthesized (Zhao, 2013). For example, the synthetic peptide BP100 was found to 

be effective at micromolar concentration against Xanthomonas axopodis pv. vesicatoria in 

pepper, Erwinia amylovora in apple and Pseudomonas syringae pv. syringae (Badosa et al., 

2007, Montesinos and Bardajì, 2008). However, some failures and negative aspects related to 

this strategy to be mentioned. For example, it was reported that expression of a native cecropin 

B or a synthetic cecropin analogue in transgenic tobacco and potato showed no enhanced 

resistance to bacterial infections, presumably due to degradation of the peptides by host 

proteases present in the intercellular fluid (Hightower et al., 1994; Allefs et al., 1995; Florack 

et al., 1995; Yevtushenko et al., 2005). Most of the AMPs have a common mechanism of 

action that involves the formation of pores in cell membranes (Sato and Feix, 2006). However, 
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it was reported that AMPs interfere with cell division, macromolecular synthesis and cell wall 

formation (Brogden, 2005). For these reasons, it is belived that AMPs are less vulnerable to 

the resistance development compared to conventional antibiotics (Tan et al., 2000). Althought 

AMPs possess considerable benefits, their commercial development still have some 

limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide 

production (Jung et al.,  2014).  

Nevertheless, there are some works where the transgenic expression of AMPs has delivered 

encouraging results in conferring specific or broad spectrum disease resistance in plants such 

as tobacco, potato, rice, banana, tomato and grapevine (Yevtushenko et al., 2005; Mentag et 

al., 2003; Vidal  et al., 2006; Gao et al., 2000; Chakrabarti et al., 2003).  

In this work, we report the successful transgenic stable transformation Agrobaterium 

tumefaciens-mediated of tobacco plants carrying the anti-virulence peptide AP17. These 

plants exhibited enhanced disease resistance to the pathogen Pseudomonas syringae pv. 

tabaci.   
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3.3 Materials and Methods 

 

Plant material and bacterial strains 

Nicotiana tabacum cv Xanthi axenic plants were obtained by germination of seeds on 

Linsmaier & Skoog Medium (LS) including vitamins (LAB Associates B.V., The 

Netherlands) after sterilization. Tobacco seeds were surface sterilized as follows: 1 min in 

70% (v/v) ethanol, 20 min in a 5% (v/v) hypochlorite containing a drop of Tween 20 and three 

successive washes of 10 min each in sterile water. Surface sterile seeds were germinated on 

LS medium containing 30 g/l sucrose and 0.6% agar and further grown at 24±1°C under a 16 

h light/8 h dark lighting conditions. Tobacco shoots were maintained in vitro by sub-culturing 

the top part of the shoots on fresh LS medium at intervals of 20 days.  

Bacterial strains and plasmids used in this work are described in Table 1. P. syringae pv. 

tabaci strain ATCC 11528 (Pstab) was cultured and maintained on KB (King et al., 1954) 

medium at 26°C. Nitrofurantoin when appropriate was added to the medium at the 

concentration of 50 g/l.  Agrobacterium tumefaciens strain EH105  was grown and maintained 

on YEP medium (10 g yeast extract, 10 g bacto peptone, 5 g NaCl, 15 g agar, pH 7, per liter) 

at 28°C in the dark. Antibiotics were used at the following concentrations: rifampicin at 40 

µg/ml, and hygromycin B at 10 µg/ml. 

 

Plant transformation and molecular analysis of N. tabacum transgenic plants 

For stable nuclear transformation of N.tabacum with DNA coding for the oligopeptide AP17 

was inserted into the binary vector pCAMBIA1305.2Δgus (Chapter 2) downstream of the 

signal peptide GRP (Figure 1) upon removal of the GUSPlus™ gene. The empty vector 

pCAMBIA1305.2 and the recombinant pCAMBIA::AP17 construct were electroporated into 

Agrobacterium tumefaciens strain EHA105 and a colony of the transformed bacteria, was used 

to transform leaf explants of N. tabacum L. cv Xanthi with the leaf disc infection technique 

(Horsch et al., 1985). Primary transformants were selected using 50 mg/l hygromycin and 

transformation was confirmed using Phire Plant Direct PCR Kit (ThermoFisher Scientific™) 

in combination with the CAMBIA_FOR and CAMBIA_REV primers (Table 2), according to 

the manufacturer’s instructions in PCR reaction. T0 transgenic plants were sub-cultured at 

intervals of 20 days, on fresh LS medium supplemented with the selection agent and 500 mg/l 

cefotaxime to eliminate Agrobacterium cells. Positive independent primary shoots (T0) were 

transferred to a greenhouse and allowed to self-pollinate at a temperature ranging from 18 to 

24±1°C, until T1 seeds production. T1 seeds from each independent line were then surface 

sterilized and placed in LS medium with 50 mg/l hygromicin and grown at 24±1°C under a 

16 h light/8 h dark lighting conditions to obtain T1 transgenic shoots. T1 seedlings were 

maintained in these conditions through further transfers onto selective fresh medium at growth 

intervals of 20 days each. 
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Table1. Bacterial strains and plasmids used in this study. 

             
Strains Relevant characteristics Reference/Source˄ 

   

P. syringae pv.tabaci (11528) Wild-type         LPVM collection 

A.tumefaciens(EHA105) 
            C58 pTiBo542; T-region::aph, kan;  

            derivative of EHA101 
Hood et al., 1993 

Plasmids   

pCAMBIA 1305.2             nptII, kan, GUSPlus™ , secretion signal peptide 
CAMBIALabs, 
Austrialia 

pCAMBIA 1305.2Δgus             nptII, kan, Δgus, secretion signal peptide (Chapter 2) 

pCAMBIA1305.2::AP17             nptII, kan, Δgus, AP17 peptide, secretion signal peptide (Chapter 2) 
    ˄LPVM Laboratorio di Patologia Vegetale Molecolare (University of Florence). 

 

DNA extraction and PCR analysis 

Genomic DNA was extracted from T1 transgenic tobacco plants using the NucleoSpin® Plant 

II kit (Macherey-Nagel) according to the supplier’s instructions. PCR reactions were carried 

out with primers for the amplification of AP17 peptide expression cassette (CAMBIA_FOR 

and CAMBIA_REV) and hygromycin resistance gene (HYGRO_FOR/HYGRO_REV) 

(Table 2). The PCR reaction mixtures contained 200 µM dNTPs (Pharmacia), 0.5 µM each 

primer, 0.2 U Taq polymerase (Fermentas), 1X PCR buffer and 50 ng genomic DNA. 

Reactions were carried out in a MJ Research PTC-200 DNA Engine Thermal Cycler set for 

an initial cycle at 94°C for 5 min followed by 35 cycles at 94°C for 30 s, 56°C for 30 s, 72°C 

for 40 s and a final extension at 72°C for 10 min. 

 

RNA isolation, reverse transcription (RT) and qPCR  

Total RNA from leaves of 4 selected genotypes of T1 transgenic and wild type tobacco 

plantlets was extracted following the instructions of the Macherey–Nagel‘‘Nucleospin RNA 

Plant’’kit. RNA concentration was estimated by fluorometry using the Q-bit quantitation 

platform by Invitrogen and digested with DNAse. RT-PCR for the analysis of transgene 

expression was performed with the First Strand cDNA Synthesis Kit for RT-PCR (AMV) 

(Roche Diagnostics, Monza, Italy), following the manufacturer's instructions. PCR 

amplification of the AP17 transgene was performed on cDNA obtained with oligo (dT) 

primers, using GRP-FOR and AP17-REV primers (Table 2) to selectively amplify the 

expressed sequence of the AP17 short oligopeptide comprising the signal peptide. Three µg 

of RNA from four selected transgenic lines (F, G, L, and N) and wild type N. tabacum were 

used for quantitation of the ectopic expression level of the AP17 sequence.     

 

Primers for q-PCR 

Primers for reference genes Actin (Act 9), Elongation factor (EF-1𝜶) and L25 ribosomal 

protein were designed based on the accession sequences, available in the GenBank® database 

(X69885, AF120093, L18908). The primers have been designed and tested to assess the 

amplification efficiency. The sequences are detailed in Table 2. All primers were synthesised 

by Sigma Aldrich Co., Milan, Italy.  

Prior to the assays, serial tenfold dilutions of the line AP17 L c-DNA were amplified to 

evaluate the amplification efficiency by the comparison of the slope of the regression curves 
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of transgene regions (AP17) and the reference Actin (Act9), Elongation factor 1𝜶 (EF-1𝜶), 

L25 ribosomal protein as previously reported (Biricolti et al., 2016). In fact, the use of the 2-

∆∆Ct method for relative quantification, a comparative technique in which a target gene is 

normalised to an endogenous control, requires the PCR efficiencies of target and control genes 

to be approximately equal. 

 

                               Table 2: Primers used in this study. 

Primer 

name 

Primer sequence (5’-3’) Tm 

(°C) 
AP17 

qPCR 

For  GCTCTTGCCATCCTTGTC 
Rev CGATTTGGTTGGAAAGGG 

55.0 
57.0 

 Act9 

qPCR 

For CCTGAGGTCCTTTTCCAACCA 

Rev GGATTCCGGCAGCTTCCATT 

62.0 

64.0 

EF-1𝜶 

qPCR 

For  TGAGATGCACCACGAAGCTC 
Rev CAACATTGTCACCAGGAAGTG 

60.0 
61.0 

L25 qPCR  For  CCCCTCACCACAGAGTCTGC 
RevAAGGGTGTTGTTGTCCTCAATCTT 

61.0 
60.0 

CAMBIA For  CTACTACTAAGCATTTGG 

Rev AACCCATCTCATAAATAAC 

55.0 

55.0 

HYGRO  For  GCGAAGAATCTCGTGCTTTCAG 
Rev CCGATGCAAAGTGCCGATAAAC 

63.1 
63.7 

GRP  For  ATGGCTACTACTAAGCATTT 57.8 

AP17  Rev CCCTTTCCAACCAAATCGTT 58.1 

 

 

Quantitative PCR procedure 

PCR analyses were performed with a Rotor-Gene 6000 (Corbett Life Science, Mortlake, 

Australia) in a 15 µl volume containing 3 ng cDNA, 7.5 µl of 2X SsoAdvanced SYBR Green 

Supermix (Bio-Rad laboratories srl, Hercules, CA, USA) and 250 nM of each primer. PCR 

conditions were 95°C for 5 min to activate the DNA polymerase, then 40 cycles at 95°C for 

13 seconds and 60°C for 40 s for the reference gene and 95 for 13 sec 57 for 13 sec, 60 for 13 

sec. The melting curves of the PCR products were acquired by a stepwise increase in the 

temperature from 50°C to 96°C after PCR amplification, which is a built-in program of the 

Rotor-Gene® platform. Each c-DNA sample was analyzed in triplicate in separate reactions.  

 

Relative quantification by the comparative Ct (2-∆∆Ct) method 

The most robust method for the relative quantification in real time PCR of a target gene 

transcript in comparison to a reference gene transcript is the Ct (2
-∆∆Ct) method (Livak and 

Schimittgen, 2001). If all amplicons amplify with the same efficiency, the difference ∆Ct 

between the Ct for the transgene (Ctt: AP17 transcript) and the Ct for the endogenous control 

(Ctr: Actin or EF or L25) is constant, provided that, independently from the amount, c-DNA 

is the same for both amplification reactions (transgene and endogenous control): 

∆Ct = Ctt – Ctr 

In our study, transgene expression is relative to the lowest expressing line (AP17 F) which 

has been adopted as a calibrator. Thus, in all samples with the same ∆Ct as the calibrator, 

ΔΔCt equals zero and 20 equals one, so that the fold change in gene expression relative to the 

calibrator equals one, by definition. More generally, the ratio of the expression level of the 

transgene transcript in the genotype to be tested (Xs) to expression level of the transgene 

transcript in the calibrator (Xcal) can be calculated as follows: 

Xs/Xcal= (1+E)^ (-∆∆Ct) 
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where ∆∆Ct = ∆Cts - ∆Ctcal, ∆Cts=∆Ct sample, ∆Ctcal=∆Ct calibrator and E=amplification 

efficiency (varying from 0 to 1). 

 

Histochemical GUS assay  

Leaf samples were collected and fixed in buffered (phosphate buffer 100 mM) para-

formaldehyde 4% for about 15 minutes. Afterwards the samples were washed 5 times with 

phosphate buffer (100 mM) and put into buffered X-Gluc (phosphate buffer 100 mM; EDTA 

10 mM; ferricianyde 2 mM; Triton X-100 0.1%; sodium metabisulphite 2 mM; X-Gluc 1 

mM). Then buffered X-Gluc was changed once and the samples were kept in an incubator at 

37 °C overnight. 

Samples were washed twice with phosphate buffer (100 mM), dehydrated by bathing in an 

ethanol series, and embedded according to the manufacturer protocol (Historesin). 5 µm thick 

sections were obtained with a rotary microtome with glass blades. 

The sections were examined using a light microscope (Zeiss, Laborlux 12) and staining 

patterns recorded by photography using Kodak Ektachrome 160T film. 

 

ELISA assay 

To ascertain the correct expression of AP17 peptide in transformed tobacco leaves an ELISA 

assay was performed using the apoplastic fluid extracted from wild type and genetically 

transformed N. tabacum in vitro plants with the empty vector pCAMBIA 1305.2 as control or 

with the four different pCAMBIA1305.2::AP17 lines named AP17 L, G, N, F.  

The infiltration-centrifugation technique using vacuum flask was performed and cytoplasmic 

contamination was verified as previously reported (O’Leary et al., 2014). The fluid recovered 

after centrifugation was used to perform ELISA assay according to manufacturer’s 

instructions (Bethyl Laboratories Inc., Montgomery, TX, USA). Polyclonal primary 

antibodies against HrpA protein of Ptab were obtained from Primm srl (Milano-Italy) and 

used together with secondary anti-rabbit horseradish peroxidase conjugate antibodies (Bethyl 

Laboratories Inc., Montgomery, TX, USA), according to manufacturer’s instructions and as 

reported in Chapter 4. The standard curve was obtained with serial dilution of AP17 peptide 

synthesised by Primm srl (Milano-Italy). The experiment was performed three times with 

three replicates for each tobacco lines analysed. The values obtained are calculated according 

to the following formula:  

     

(ng/ml)/(mlext / nginf )unk-( mlext / nginf )c 

 

Where: 

mlext = leaves fluid extract after infiltration-centrifugation 

nginf = leaves weight after infiltration 

unk = sample unknown; c = untransformed plant  
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Pathogen assay 

P. syringae pv. tabaci strain ATCC 11528 (Ptab) was grown at 26°C for 1 day in KB medium 

containing 50 mg/l nitrofurantoin. Cells were then centrifuged and diluted in 0.9% NaCl to a 

concentration of 108 CFU/ml (OD600= 0.5). 1 ml of the diluted suspension culture was then 

sprayed on the surface of wild type and transgenic plants grown in Wavin flasks (LAB 

Associates B.V., The Netherlands) containing LS solid medium. Tobacco plants sprayed with 

Ptab were grown in vitro up to 20 days. At different days from inoculation, 3, 10 and 20 days, 

bacterial multiplication into host tissues was evaluated. At each time, a sample of leaves was 

weighed and then washed in 5 ml sterile 0.9% NaCl (washing solution), to estimate Ptab 

survival on the leaf surface. The leaf sample was sterilised with 1% hypochlorite solution for 

5 min and successively washed three times with sterile distilled water. Each sample was, then 

homogenized in a sterile Eppendorf with a plastic pestle with 1 ml sterile distilled water. 100 

µl of washing solution and of the homogenate were serially diluted up to 10-7/ml cells. Five 

replications of each dilution were plated on solid KB medium supplemented with 50 mg/l 

nitrofurantoin. Bacterial growth was scored after two days of incubation of plates at 26°C. 

 

Statistical analysis 

The analysis of variance between untransformed N. tabacum and transgenic plants was 

conducted using One-way ANOVA (P < 0.05). Mean separations were performed using the 

method of Tukey. For the analysis the PAST program, version 1.89 (Hammer et al. 2001) was 

used. 
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3.4 Results 

 

Molecular analysis of transgenic tobacco plants 

pCAMBIA1305.2 (http://www.cambia.org/) and pCAMBIA1305.2::AP17 (Figure 1) binary 

vectors were used to obtain transgenic tobacco plants expressing respectively the GUSPlus™ 

reporter gene and the short AP17 peptide (17 amino acids) by using EHA105 Agrobacterium 

infections. The short AP17 peptide was cloned downstream of the constitutive CaMV 35S 

promoter and the GRP signal peptide, this latter addressing the recombinant AP17 peptide to 

the apoplast. The transformation efficiency in the presence of 50 mg/l of the selection marker 

ranged from 50% with the pCAMBIA1305.2 compared with 32.05% with the 

pCAMBIA1305.2::AP17. 

 

Figure 1. Schematic representation of T-DNA region of pCAMBIA1305.2::AP17 binary vector. LB= Left 

border; RB= Right border; HYG= hygromycin resistance gene; CaMV35S= cauliflower mosaic virus 

promoter; GRP= signal peptide; AP17= oligopeptide, 17 aminoacid long; NOS= Nopaline terminator. 
 

 

 

Peptide transgenic shoots able to grow in the presence of 50 mg/l hygromycin were, early 

scored for the presence of the cassette through the amplification of DNA directly from shoots 

with the CAMBIA_FOR and CAMBIA_REV primers that amplified a fragment of the 

expected size including the AP17 peptide (data not shown). Positive plants were allowed to 

produce self-pollinated seeds that generated hygromycin-resistant progenies. PCR analysis of 

genomic DNA extracted from positive T1 selfed-lines confirmed the presence of both the 

hygromycin gene in both pCAMBIA and AP17 transgenic plants and the presence of sequence 

peptide only in these latter (Figure 2). 
 

Figure 2. Electrophoretic analysis of PCR carried out with HYGRO_FOR/HYGRO_REV (Left) and 

CAMBIA_FOR/CAMBIA_REV (Right) primers. 1 kb Plus ladder ThermoFisher (M); N. tabacum wild 

type (1); pCAMBIA1503.2 plants (1-4); pCAMBIA::AP17 plants (5-8); PCR negative control (c-). 

 

 

 

LB RB HYG CaMV35S CaMV35S GRP AP17 NOS 

http://www.cambia.org/
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To assess the apoplast localization of the GUSPlus™ protein in pCAMBIA transgenic plants, 

leaf semithin sections have been made. In Figure 3 the blue color of the X-gluc reaction seems 

to be localized outside the plasma membrane and often in correspondence of plasmodesma 

bridging two adjacent cells, indicating that the GUS protein is driven outside the cell 

cytoplasm. 

 

Figure 3. Localization of gus expression in leaf cells of pCAMBIA1305.2 transgenic plants. 

 

 

AP17 sequence transcritpion was demonstrated in selected transgenic plants by both RT-PCR 

and quantitative PCR. In the first case, amplification with RTGRP_FOR e AP17_RTREV 

primers produced a fragment 70 bp long, corresponding to the transgene coding sequence 

(Figure 4). The presence of genomic DNA contamination in the RNA samples has been, ruled 

out by PCR amplification with the same primers carried out on total RNA without RT step 

(data not shown). 

  

Figure 4: RT-PCR amplification of the full-length AP17 peptide from cDNAs of four pCAMBIA::AP17 

transgenic lines (5-6-7-8), amplification from cDNA of tobacco wild type plant (WT), negative control  

(c-).     
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q-PCR analysis 

There is considerable variation among independent transgenic lines obtained under identical 

conditions using the same DNA construct (Toplak et al, 2004). For this reason, in studies of 

transgenic plants, transgene expression must be assessed in each independent transgenic line. 

Quantitative PCR was carried out to evaluate the relative level of expression of the AP17 

sequence in the leaves of four selected lines of transgenic tobacco. The expression has been 

normalised with specific housekeeping genes, the highest expression was observed in line 

AP17 L, which was twice that observed in the two lines AP17 G and AP17 N and 8 times the 

expression of AP17 observed in line AP17 F (Figure 5). 

 

Figure 5: Quantitative PCR on cDNA extracted from leaves of four selected lines of transgenic tobacco. 

Curves of different colour indicate different transgenic lines, in blu (AP17 L), in dark green (AP17 G), in 

light green (AP17 N) in violet (AP17 F), dark violet lines correspond to the control (sterilised water).  

 

 
 

 

 

ELISA analysis 

ELISA tests using polyclonal antibody against HrpA, whose sequence includes the one of 

AP17 peptide (Chapter 2)  have been carried out to further confirm the presence and 

expression of AP17 peptide in transgenic plants as already demonstrated by RT-PCR. To 

verify the sensitive of ELISA analysis and to exclude that fluid leaves background could 

change values recorded, we have set up two standard curves. Serial dilution of AP17 synthetic 

peptide were prepared both in leaves fluid extracts and in phosphate buffer. The two curves 

are not perfectly overlapping, however, linearity is maintained and the two standard curves 

are parallele in the range of AP17 concentration testes except for AP17 L (Figure 6A). This 

line, in fact, expresses this peptide at higher concentrations, above those found within the 

range of the standard curves linearity. The analysis performed suggest that substances in the 

fluid leaves extract do not interfere with antibody binding or subsequent reaction in the ELISA 
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assay. Results obtained and reported in Figure 6B shown a different amount of AP17 peptide 

deteced by antibody into leaves extracts among the four tobacco lines. The results obtained 

are consistent with those from qRT-PCR. In particular, low values of AP17 peptide have been 

recorded for AP17 F, where no statistically differences were recorded in comparison to control 

(tobacco line C), intermedie values have been reported for AP17 G and N.    

 

Figure 6: A) Standard curves for AP17 pepetide in phosphate buffer vs fluid leaves extract. Standard 

curves of fluid leaves extract from untransformed tobacco plants added with known concentration of 

synthesised AP17 peptide (from 500ng/ml to 31,25 ng/ml) [blue line], or diluited in phosphate buffered 

saline [red line].  Each data point is the mean of three measures ± standard deviation, with the dotted line 

through the data points representing the linear regression for each curve. B) Detection of AP17 peptide 

on different fluid leaves samples from N. tabacum transformed plants: C; pCAMBIA1305.2 empty vector 

(used as control); F, L, G, N different lines of tobacco transformed plants). Data obtained and reported in 

the histogram have been obtained according to the formula reported in Material and Methods. Different 

letters indicate significant differences among means at P < 0.05, according to Tukey's test. 

 

                               A 

 

                  B 

   

 

Tobacco transgenic lines display enhanced resistance to Ptab 

In planta resistance to P. syringae pv. tabaci inoculation of in vitro ten months old T0 plants 

wild type and genetically transformed with pCAMBIA 1305.2 (as transformed control) or 

with pCAMBIA::AP17, using the spraying technique (see Materials and Methods), resulted 

in areas of necrosis on the surface of the exposed leaves only in wild type and 
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pCAMBIA1305.2 transgenic plants. After 10 days from artificial inoculation, typical Ptab 

symptoms were recorded and evaluated according to an arbitrary disease index (0-5, with 0= 

no necrotic symptoms and 5= fully necrotized leaves), for a proper comparison among the 

different symptoms observed in wild type and transgenic tobacco plants (Figure 7). 

 

Figure 7. Phenotype analysis of tobacco plants before (A, B, C) and after 10 days from bacterial spray 

inoculation (A1, B1, C1) and disease index on transgenic tobacco plants: N. tabacum wild type (A), N. 

tabacum pCAMBIA1305.2 (B) and N. tabacum pCAMBIA::AP17 transgenic line L (C).   

 

 

 
 

   

N. tabacum 

wild type 
N. tabacum 

pCambia1305.2 

N. tabacum 

pCambia::Ap17 

3.31±0.50 3.28±0.42 0.13±0.02 

 

 

To assess whether the lack of symptoms in peptide transgenic plants was due to bacterial 

growth inhibition operated by the anti-infective peptide, we repeated the infection with Ptab 

on a panel of three replicates per genotype on two months old plants germinated from T1 

selected seeds. Bacterial survival was evaluated both in leaf surface washing solutions and in 

the host leaf tissue (see Materials and Methods) as CFU/ml/g fresh weight. Data were recorded 

after 3, 10 and 20 days after spray-inoculation with the bacterial suspensions. The starting 

concentration of the bacterial inoculum was about 108 cells/ml. After 3 days, the growth data 

of bacteria present in washing solutions ranged from a maximum of more than 1011cells/ml in 

both N. tabacum wild type and N. tabacum pCAMBIA1305.2 transgenic leaves to a minimum 

of 107 cells/ml in N. tabacum AP17 (Figure 8A). However, no statistical differences were 

found (P= 0,4824), whereas a significant reduction of bacterial growth into AP17 leaf tissues 

homogenates of each genotype was detected (Figure 8 B). A significant lower number of 

colonies in comparison with wild type and pCAMBIA1305.2 plants were detected both, in 

washing solutions and leaf tissues of AP17 plants at 10 days after the inoculation (Figure 8 C, 

D).  

Pseudomonas syringae pv. tabaci 
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Finally, in Figure 9 we have reported results concerning the growth of bacterial populations 

present, either on the surface and into leaf tissues of all lines tested, after 20 days of 

inoculation. In this experiment, a pool of leaves taken from the bottom of the plant (the part 

of the plant subjected to spraying with bacterial suspension), from each replicate per line, was 

ground in 1 ml of washing solution. Serial dilutions of the leaf surface washing solutions and 

leaf homogenates were then plated in KB culture medium to assess the growth of bacteria. By 

increasing the time after infection, the overall bacterial growth capability was lower for each 

genotype, but a significant substantial bacterial growth inhibition was still observed in 

transgenic AP17 plants compared to both wild type and pCAMBIA1305.2 transgenic plants. 

Based on the results obtained we have hypothesized that these peptides could also act outside 

the intercellular space, maybe translocated together with plant exudates present on leaf 

surface. 

 

Figure 8. Bacterial growth in N. tabacum wild type (NtWT), pCAMBIA1305.2 (NtpCa) and 

pCAMBIA::AP17 (NtAp17) transgenic tobacco plants inoculated with Ptab, evaluated at different times 

after infection. A, C: Colony Forming Units (CFU/ml/g) of bacterial cells present on the surface of the 

infected leaves; B, D: Colony Forming Units (CFU/ml/g) of bacterial cells present in the infected leaf tissue. 

Bars indicate standard deviations (n=3). °P< 0,05; ***P<0,001; pair–wise comparisons were determined 

between NtWT and NtpCa plants (°) and between NtpCa and NtAp17 (***) plants. 
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Figure 9. Bacterial growth in N. tabacum wild type (NtWT), pCAMBIA1305.2 (NtpCa) and 

pCAMBIA::AP17 (NtAp17) transgenic tobacco plants inoculated with Ptab, evaluated at 20days after 

infection. On the left A) tobacco wild type, B) tobacco pCAMBIA1305.2 (control), C) tobacco 

pCAMBIA::AP17 (transgenic line L) inoculated with Ptab. Bars indicate standard deviations (n=3). 

**P<0,05 ; pair–wise comparisons were determined between NtWT and NtAp17 plants. 
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3.5 Discussion 

 

The generation of transgenic plants expressing foreign genes of interest is the standard method 

for verifing and improving resistant against plant pathogen. AntiMicrobial Peptides (AMPs) 

have been the object of attention as candidates for plant protection products. There are already 

numerous studies reporting the stable expression of antimicrobial peptide genes in different 

plant species. This approache mainly aim to enhance the resistance of plants against certain 

pathogens and to lesser extent to use plants as biophactories to produce high amount of 

peptides (Ahmad et al., 2010). In the last decade, the succesfull transformation of genetically 

modified plants expressing resistant genes against a wide range of plant pathogens has greatly 

increased. For example transgenic plants introduced with defensin genes have been used to 

control Alternaria longipes, Verticillium dahliae, Heterobasidium annosum, Phytophthora 

parasitica, Botrytis cinerea and Alternaria solani (Gao et al., 2000; Elfstrand et al., 2001; 

Park et al., 2002; Schaefer et al., 2005). The hevein Pn-AMP expressed in tobacco protects 

against Phytophthora parasitica (Koo et al. 2002), and barley hordothionin expression in 

tobacco confers protection against Clavibacter michiganensis and Pseudomonas 

syringae pv. tabaci (Carmona et al. 1993). Also, human cathelicidin antimicrobial peptide 

carried out the substitution Met37Leu in Chinese cabbage and tomato plants significantly 

inhibited the growth of Pectobacterium carotovorum subsp. carotovorum on the plant leaves, 

and it conferred resistance to several fungal pathogens (Jung et al. 2012).  

In this work, for the first time we described the genetic transformation of Nicotiana tabacum 

L. cv Xanthi with the Virulence Inhibiting Peptide AP17, which competes in a highly specific 

manner with the monomers of not only of P. savastanoi pv. nerii but also of P. syringae 

pv.tabaci  HrpA protein by preventing the assembly of the pilus of the Type Three Secretion 

System (Chapter 2).  

We have used herein with succesfull Agrobacterium-DNA mediated trasformation with the 

binary vector pCAMBIA1305.2 characterized by the present of signal peptide upstream of 

AP17 gene sequence that drives its expression at apoplastic level as ascertained through the 

histochemical GUS assay. This feature is particular interesting because the peptide AP17 

should be expressed in the site where supposedly happens the pilus assembly (Chapter 2). 

We have generated four lines of transgenic tobacco plants, which have different levels of 

AP17 mRNA and different levels of peptide expression as detected in apoplastic fluid by 

ELISA assay using polyclonal antibodies against the HrpA protein.    

The efficacy in both growth bacterial inhibition in planta and in symptom development is 

tightly related to the presence of oligopeptide AP17 in transgenic tobacco plants as confirmed 

by the results obtained with the control plants transformed with the only pCAMBIA1305.2 

vector.  

Taken together, the obtained results in the present study are definitely encouraging and 

unambiguously suggest that the expression of the AP17 peptide provides an exciting approach 

to verify the effectiveness of this peptide in fighting the plant pathogenic bacteria P. syringae 

pv. tabaci. These data suggest that the oligopeptide AP17 has broad application prospects in 

improving crop disease resistance. 

 

http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B32
http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B26
http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B74
http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B85
http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B48
http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B14
http://www.plantbreedbio.org/journal/view.html?uid=102&page=&sort=&scale=10&all_k=&s_t=&s_a=&s_k=&s_v=2&s_n=1&spage=&pn=search&year=&vmd=Full#B53


Chapter 3 

 

79 

 

3.6 References  

 

Ravinder K, Goyal A, Mattoo AK. (2014) Multitasking antimicrobial peptides in plant development 

and host defense against biotic/abiotic stress. Plant Sci. 228:135–149 

Jan PS, Huang HY, Chen HM. (2010) Expression of a Synthesized Gene Encoding Cationic Peptide 

Cecropin B in Transgenic Tomato Plants Protects against Bacterial Diseases. Applied and 

environmental microbiology. Feb. 2010, p. 769–775 Vol. 76, No. 3 0099-2240/ doi:10.1128 

AEM.00698-09  

Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. (2014) Combating Pathogenic 

Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis. Biomed 

Res Int. 2014; 2014: 761741. doi:10.1155/2014/761741 

Hou H, Atlihan N, Lu ZX. (2014) New biotechnology enhances the application of cisgenesis in plant 

breeding. Front Plant Sci. 2014; 5: 389. doi:10.3389/fpls.2014.00389  

Barampuram S and Zhang Z. (2011) Recent advances in plant transformation. Methods in Molecular 

Biology Vol. 701; 1–35 doi: 10.1007/978-1-61737-957-4 

Shibata D and Liu YG. (2000) Agrobacterium-mediated plant transformation with large DNA 

fragments. Trends Plant Sci. 2000 Aug;5(8):354-7 

Gelvin SB. (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-

jockeying” tool. Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37  

Hancock REW and Sahl HG. (2006) Antimicrobial and host-defense peptides as new anti-infective 

therapeutic strategies. Nat. Biotechnol. 24 1551–1557 10.1038/nbt1267  

Bahar AA and Ren D. (2013) Antimicrobial peptides. Pharmaceuticals (Basel). 2013 Dec; 6 (12): 

1543–1575. Published online 2013 Nov 28. doi:  10.3390/ph6121543 

Peters BM, Shirtliff ME, Jabra-Rizk MA. (2010) Antimicrobial peptides: Primeval molecules or 

future drugs? PLoS Pathog. 2010; 6:e1001067  

Zhao X, Wu H, Lu H, Li G, Huang Q. (2013) Lamp: A database linking antimicrobial peptides. PLoS 

One. 2013;8: e66557. doi: 10.1371/journal.pone.0066557 

Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, Bardajì E, Montesinos E. (2007) A 

library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 

Volume 28, Issue 12, December 2007, pages 2276–2285 

Montesinos E and Bardajì. (2008) Synthetic antimicrobial peptides as agricultural pesticides for plant-

disease control. Chem Biodivers. 2008 Jul;5(7):1225-37. doi: 10.1002/cbdv.200890111 

Hightower R, Baden C, Penzes E, Dunsmuir P. (1994) The expression of cecropin peptide in 

transgenic tobacco does not confer resistanse to Pseudomonas syringae pv. tabaci. Plant Cell Reports 

13, 295–299  

Allefs SJHM, Florack DEA, Hoogendoorn C, Stiekema WJ. (1995) Erwinia soft rot resistance of 

potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not 

altered. American Potato Journal 72, 437–445 

Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W. (1995) Expression of giant silkmoth 

cecropin B genes in tobacco. Transgenic Research 4, 132–141 

Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. (2005) Pathogen-induced 

expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in 

transgenic tobacco. Journal of Experimental Botany, Vol. 56, No. 416, pp. 1685–1695, June 2005 

doi:10.1093/jxb/eri165 

Sato H and Feix B. (2006) Peptide–membrane interactions and mechanisms of membrane destruction 

by amphipathic α-helical antimicrobial peptides. Biochimica et Biophysica Acta 1758 (2006) 1245–

1256  

Brogden KA. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature 

Reviews Microbiology 3, 238-250 (March 2005) doi:10.1038/nrmicro1098  

Tan NS, Ng MLP, Yau YH, Chong PKW, Ho B, Ding JL. (2000) Definition of endotoxin binding 

sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi 

peptides. The FASEB Journal. 2000;14(12):1801–1813. doi: 10.1096/fj.99-0866com 

Jung YJ, Kang KK. (2014) Application of Antimicrobial Peptides for Disease Control in Plants. Plant 

Breeding and Biotechnology 2014;2:1-13 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178913/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178913/
https://dx.doi.org/10.1155%2F2014%2F761741
https://www.ncbi.nlm.nih.gov/pubmed/10908881
https://www.ncbi.nlm.nih.gov/pubmed/12626681
http://www.sciencedirect.com/science/journal/01969781
http://www.sciencedirect.com/science/journal/01969781/28/12
https://www.ncbi.nlm.nih.gov/pubmed/18649311


Chapter 3 

 

80 

 

Mentag R, Luckevich M, Morency MJ, Seguin A. (2003) Bacterial disease resistance of transgenic 

hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiology, 23, 405–411 

Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J and Reisch BI. (2006) Evaluation of 

transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and 

powdery mildew. Transgenic research, 15, 69–82 

Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner B, Stark DM, et al. (2000). Fungal pathogen 

protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310  

Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA. (2003) MSI-99, a magainin analogue, 

imparts enhanced disease resistance in transgenic tobacco and banana. Planta, 216, 587–596 

King EO, Ward MK, Raney DE. (1954) Two simple media for the determination of pyocianine and 

fluorescein. J Lab Clin Med. 1954; 44: 301–307. pmid:13184240 

Horsch R, Fry J, Hoffmann N, Wallroth M, Eichholtz D, Rogers S, Fraley R. (1985) A simple and 

general method for transferring genes into plants. Science 227: 1229-1231 

Biricolti S, Bogani P, Cerboneschi M, Gori M. (2016) Inverse PCR and quantitative PCR as alternative 

methods to Southern blotting analysis to assess trangene copy number and characterize the integration 

site in transgenic woody plants. Biochemical Genetics June 2016, Volume 54, Issue 3, pp 291-305 

O'Leary BM, Rico A, McCraw S, Fones HN, Preston GM. (2014) The infiltration-centrifugation 

technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. 

J Vis Exp. 2014 Dec 19;(94). doi: 10.3791/52113 

Biancalani C, Cerboneschi M, Tadini-Buoninsegni F, Campo M, Scardigli A, Romani A, Tegli S. 

(2016) Global Analysis of Type Three Secretion System and Quorum Sensing Inhibition of 

Pseudomonas savastanoi by Polyphenols Extracts from Vegetable Residues. PLoS ONE 11(9): 

e0163357. doi:10.1371/journal.pone.0163357 

Toplak N, Okrslar V, Stani-Racman D, Gruden K, El J. (2004). A High-Throughput Method for 

Quantifying Transgene Expression in Transformed Plants with Real-Time PCR Analysis. Plant 

Molecular Biology Reporter 22: 237–250, September 2004 

Ahmad A, Pereira EO, Conley AJ, Richman AS, Menassa R. (2010) Green biofactories: recombinant 

protein production in plansts. Recent Pat Biotechnol. 2010 Nov;4(3):242-59 

Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner B, Stark DM, et al. (2000) Fungal pathogen 

protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310  

Elfstrand M, Fossdal C, Swedjemark G, Sitbon F, Clapham D, Olsson O, Sharma P, Lönneborg A, 

von Arnold S. (2001) Identification of candidate genes for use in molecular breeding – A case study 

with the Norway spruce defensin-like gene, spi 1. Silvae Genet. 50, 75-81 

Park HC, Kang YH, Chun HJ, Koo JC, Cheong YH, Kim CY, et al. (2002) Characterization of a 

stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol. Biol. 50 57–

68 10.1023/A:1016005231852  

Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJM, Peumans WJ, Korban SS. (2005). 

Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense 

genes. Planta. 2005; 222:858–866 

Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, Ok HM, Park SY, Lee SH, Yun DJ, Lim 

CO, Bahk JD, Lee SY, Cho MJ. (2002) Over-expression of a seed specific hevein-like antimicrobial 

peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant 

Mol Biol. 2002 Oct; 50(3):441-52 

Carmona MJ, Molina A, FernBndez JA, Lopez-Fando JJ, Garcia-Olmedo F. (1993) Expression of 

the a-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. The Plant 

Journal (1993) 3(3), 457-462  

Jung YJ, Lee SY, Moon YS, Kang KK. (2012) Enhanced resistance to bacterial and fungal pathogens 

by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. 

Plant Biotechnol Rep. 2012 Jan; 6(1): 39–46. doi: 10.1007/s11816-011-0193-0 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/21171961
https://www.ncbi.nlm.nih.gov/pubmed/12369620
https://www.ncbi.nlm.nih.gov/pubmed/12369620
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262131/
https://dx.doi.org/10.1007%2Fs11816-011-0193-0


Chapter 4 

 

81 

 

Chapter 4 

Global Analysis of Type Three Secretion System and Quorum Sensing 

Inhibition of Pseudomonas savastanoi by Polyphenols Extracts from 

Vegetable Residues 

 

 

4.1 Abstract 

Protection of plants against bacterial diseases still mainly relies on the use of chemical 

pesticides, which in Europe correspond essentially to copper-based compounds. However, 

recently plant diseases control is oriented towards a rational use of molecules and extracts, 

generally with natural origin, with lower intrinsic toxicity and a reduced negative 

environmental impact. In this work, polyphenolic extracts from vegetable no food/feed 

residues of typical Mediterranean crops, as Olea europaea, Cynara scolymus, and Vitis 

vinifera were obtained and their inhibitory activity on the Type Three Secretion System 

(TTSS) and the Quorum Sensing (QS) of the Gram-negative phytopathogenic bacterium 

Pseudomonas savastanoi pv. nerii strain Psn23 was assessed. Extract from green tea 

(Camellia sinensis) was used as a positive control. Collectively, the data obtained throughgfp-

promoter fusion system and real-time PCR show that all the polyphenolic extracts here studied 

have a high inhibitory activity on both the TTSS and QS of Psn23, without any depressing 

effect on bacterial viability. Extracts from green tea and grape seeds were shown to be the 

most active. Such activity was confirmed in planta by a strong reduction in the ability 

of Psn23 to develop hyperplastic galls on explants from adult oleander plants, as well as to 

elicit hypersensitive response on tobacco. By using a newly developed Congo red assay and 

an ELISA test, we demonstrated that the TTSS-targeted activity of these polyphenolic extracts 

also affects the TTSS pilus assembly. In consideration of the potential application of 

polyphenolic extracts in plant protection, the absence of any toxicity of these polyphenolic 

compounds was also assessed. A widely and evolutionary conserved molecular target such as 

Ca2+-ATPase, essential for the survival of any living organism, was used for the toxicity 

assessment. 

 

 

Keywords: Polyphenolic extracts; anti-virulence compounds; Type Three Secretion System; 

Quorum Sensing; real time PCR; ELISA assay; Ca2+-ATPase 
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4.2 Introduction 

Plant pathogenic bacteria cause serious damages and heavy economic loss to the global 

agricultural production. Although they are less common than phytopathogenic fungi and 

viruses, bacterial control is a considerable challenge in agricultural practices. According to 

the first general principle of plant disease management, that is prevention, exclusion of the 

bacterial phytopathogens from their hosts is the primary control strategy. However, the 

application of very effective measures such as quarantine and eradication may have also a 

high economic impact [1]. Furthermore, the conventional control methods for 

phytopathogenic bacteria essentially still rely on the use of chemicals, mainly copper-based 

compounds and antibiotics. In Europe, antibiotics are not allowed for plant protection and 

copper is amongst the very few chemicals still authorized in organic agriculture [2]. 

Nevertheless, the use of copper was recently restricted as a result of its negative 

ecotoxicological impact, and for its effect on the increase of antibiotic-resistant bacteria into 

agroecosystems [3]. While promising alternatives to copper have been proposed against 

several phytopathogenic fungi, no sustainable options are yet available for phytopathogenic 

bacteria. Recently, many efforts were made to identify inhibitors which are able to interfere 

with virulence and pathogenicity bacterial systems and pathways; such efforts have mainly 

targeted the Quorum Sensing (QS) and the Type Three Secretion System (TTSS). In 

particular, QS allows bacteria to successfully communicate and thus to adapt their gene 

expression to biotic and abiotic stimuli [4]. The TTSS is a macromolecular complex essential 

for causing disease on susceptible plants. Through the TTSS, bacteria directly inject into the 

cytosol of host cells several pathogenicity and virulence effector proteins [5]. 

Salicylidene acylhydrazides (SAHs) are amongst the very few synthetic compounds that have 

been evaluated until now as an alternative to copper. In Erwinia amylovora, SAHs were 

demonstrated to target the TTSS gene expression, the secretion of effectors, and the needle 

assembly [6]. Similarly, several phenolic compounds were found to possess the ability to 

specifically alter TTSS gene expression, by acting as inhibitors, such as in E.amylovora [7] or 

as inducers, as for Dickeya dadantii [8]. Besides their role as bactericides, some plant phenol-

based molecules, such as p-coumaric acid and salicylic acid, have been shown to interfere 

with the QS of the plant pathogens Agrobacterium tumefaciens andPectobacterium 

carotovorum [9]. 

Increasing evidence suggests that several extracts from polyphenol rich plants, such as green 

tea, artichoke, olive tree and grapevine, have high antimicrobial activity [10–13]. For 

example, epigallocatechin gallate (EGCG) is the most abundant polyphenolic metabolite 

found in green tea. EGCG was shown to have high anti-virus and anti-bacterial activities 

against human pathogens. Furthermore, EGCG’s copper-like performance was verified 

against the causal agents of citrus canker and bacterial spot of tomato [10,14]. In this frame, 

great effort in current research is devoted to the development of anti-virulence compounds, 

both synthetic or from natural sources, instead of biocides. The control of human, animal, and 

plant bacterial pathogens would thus affect mechanisms that are not essential for bacterial 

viability, avoiding the risk of developing resistance, as it occurs with antibiotics and copper 

[15,16]. In the present study, polyphenolic extracts from Olea europaea and Cynara 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref006
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref007
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref008
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref009
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref010
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref013
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref010
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref014
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref015
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref016
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scolymus leaves were obtained by a green chemistry approach. Together with extracts from 

Vitis vinifera seeds and green tea (Camellia sinensis leaves), they were characterized in their 

polyphenolic composition, by HPLC/DAD (High-Performance Liquid 

Chromatography/Diode-Array Detection) and by HPLC/ESI-MS (High-Performance Liquid 

Chromatography/Electrospray Ionization Mass Spectrometry). 

For the first time, these polyphenolic extracts were tested for their inhibitory activity on the 

TTSS and QS of the Gram-negative phytopathogenic bacterium Pseudomonas savastanoi, the 

causal agent of oleander and olive knot disease. The promoter activity of TTSS and QS on 

key genes was determined by using specific fusion constructs with the gene coding for the 

green fluorescent protein (GFP). In addition, inhibition of the TTSS expression and of other 

virulence and pathogenicity related genes was assessed by quantitative real-time PCR. The 

ecotoxicological profile of the investigated polyphenolic compounds was also evaluated, in 

view of their potential application in plant disease control. 
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4.3 Materials and Methods 

 

Sources of the screened polyphenolic extracts 

The extract from O. europaea L. (varieties Frantoio and Carboncella) (hereafter denoted as 

FO) was obtained using green leaves, collected at the Azienda Agricola Frantoio “Il 

Forbiciaio” (Piancastagnaio, Siena, Italy, 42°51′N 11°41′E) and Vitasafer srl (Montorio 

Romano, Rieti, Italy, 42°08′16″N 12°48′28″E). The artichoke leaves extract (FC) (cultivars 

Terom and Violetto) were obtained by Consorzio Carciofo Violetto Brindisino (Mesagne, 

Brindisi, Italy, 40° 33' 35,28'' N, 17° 48' 32,76'' E). The grape seeds dry extract (VN) was 

commercially available and purchased from SOCHIM International S.p.A. (Milano, Italy). 

The green tea leaves dry extract (TV) was also commercially available, under the name 

TEAVIGO® (DSM Nutritional Products, Heerlen, Netherlands). At the moment, both extracts 

are commercialised for cosmetic and nutraceutical purposes. 

 

Solvents and reagents 

All the solvents (HPLC grade) and formic acid (ACS reagent) used for the extraction process 

were purchased from Aldrich Chemical Company Inc. (Milwaukee, Wisconsin, USA). The 

standards for tyrosol, luteolin 7-O-glucoside, chlorogenic acid, gallic acid, (+) catechin and 

oleuropein were purchased from Extrasynthèse S.A. (Lyon, Nord-Genay, France). EGCG, 

epicathechin, cynarin, caffeic acid, hydroxytyrosol and p-coumaric acid were purchased from 

Sigma-Aldrich Co. (St. Louis, MO, USA). The HPLC-grade water was obtained via double-

distillation and purification with a Labconco Water Pro PS polishing station (Labconco 

Corporation, Kansas City, USA). 

 

Extraction and fractioning of the polyphenolic extracts 

The extraction for FO and FC was performed in a Rapid Extractor Timatic series (Tecnolab 

S.r.l., Perugia, Italy), using a solid-liquid extraction technology. The extraction was performed 

with water, in a stainless steel basket at a temperature of 60°C. The working cycle was fully 

automatic and switched between a dynamic phase, obtained with a set pressure (7–9 Bar), and 

a static phase necessary for transferring the substance into the extraction solvent. Forced 

percolation was generated during the stationary phase, which ensures a continuous flow of 

solvent to the interior of the plant matrix. This avoided over-saturation and the formation of 

preferential channels, thus ensuring total extraction of the active principles from the vegetal 

matrix. 

 

HPLC/DAD and HPLC/ESI-MS analysis 

The HPLC/DAD analyses were performed with a HP 1100 liquid chromatograph equipped 

with a DAD detector (Agilent Technologies, Palo Alto, CA). In detail, the analytical column 

used for FO and VN was a LiChrosorb RP18 250×4.60 mm, 5μm (LichroCART, Merck 

Darmstadt, Germany) maintained at 26°C. The eluents were H2O adjusted to pH 3.2 by 

HCOOH (A), and CH3CN (B). For FO, a four-step linear solvent gradient was used starting 

from 100% A up to 100% B, for an 88-min period at a flow rate of 0.8 ml/min, as previously 

reported [17]. The VN extract was analyzed after solubilization in 70% EtOH pH 3.2 by 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref017
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HCOOH. A 7-step linear solvent gradient system, starting from 100% A up to 100% B was 

applied during a 117-min. period at a flow rate of 0.8 ml/min [18]. For the analysis of the FC 

and TV, a Luna C18 column 150×3.0 mm, 5μm (Phenomenex, Bologna, Italy) operating at 

27°C was used. The eluents were H2O adjusted to pH 3.2 by HCOOH, and CH3CN. A three-

step linear solvent gradient was performed starting from 100% H2O up to 100% CH3CN, with 

a flow rate of 0.6 ml/min for a 30-min. period [19]. The HPLC-MS analyses were performed 

using a HP 1100 liquid chromatograph, equipped with a DAD and a 1100 MS detectors. The 

interface was an HP 1100 MSD API-electrospray (Agilent Technologies, Santa Clara, United 

States). Mass spectrometer operating conditions were the following: gas temperature 350°C 

at a flow rate of 10.0 l/-min, nebulizer pressure 30 psi, quadrupole temperature 30°C and 

capillary voltage 3500 V. The mass spectrometer operated in positive and negative ionization 

mode at 80–120 eV. 

 

Qualitative and quantitative analysis of the polyphenolic extracts 

The phenolic compounds that were present in these extracts were identified by using data from 

HPLC/DAD and HPLC/MS analyses, by comparing and combining their retention times, 

UV/Vis and mass spectra with those of several commercial standards. Each compound was 

quantified by HPLC/DAD, using a five-point regression curve built with the available 

standards. Calibration curves with r2 ≥0.9998 were considered. In all cases, the actual 

concentrations of derivatives were calculated after making corrections for changes in 

molecular weight. In particular, secoiridoid molecules for FO were calibrated at 280 nm, using 

oleuropein as a reference; elenolic acid derivatives at 240 nm using oleuropein; 

hydroxytyrosol, lignans and derivatives were calibrated as tyrosol at 280 nm; verbascoside 

and other hydroxycinnamic derivatives were calibrated at 330 nm using chlorogenic acid as a 

reference; flavonoids were calibrated with luteolin 7-O-glucoside at 350 nm. For VN, gallic 

acid was calibrated at 280 nm using gallic acid as reference; catechin, epicatechin and 

procyanidins were calibrated at 280 nm using (+) catechin as reference. For FC, chlorogenic 

acid, mono- and di-caffeoylquinic acids were calibrated at 330 nm with chlorogenic acid as a 

reference; cynarin was calibrated at 330 nm with the pure standard, and flavonoids at 350 nm 

with luteolin 7-O-glucoside. For TV, EGCG and epicatechin gallate (ECG) were calibrated at 

280 nm using EGCG as a reference. The evaluation of the polyphenol content was carried out 

in triplicate. The results were recorded as mean values with the standard deviation. 

For each extract, the concentrations (expressed as μmol/g of total polyphenols), as well as the 

dilutions in water to obtain solutions 100 μM in polyphenols (or any other appropriate 

concentration according to the tests performed), were calculated by summing the 

concentrations of the individual polyphenolic compounds here characterized, expressed in 

μmol/g, according to the HPLC/DAD data and based on the molecular weight of each 

compound. 

 

Bacterial strains, media and growth conditions 

The bacterial strains used in this study are listed in Table 1. The bacteria were long-term stored 

at -80°C, in 40% (v/v) glycerol. Wild type P. savastanoi pv. nerii strain Psn23 and its 

∆hrpA mutant were routinely grown at 26°C, as liquid or solid cultures on King’s B medium 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref018
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref019
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t001
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(KB) [20], or on hrp-inducing minimal medium (MM) [21] to activate in vitro the expression 

of TTSS genes. Escherichia coli strains TOP10 and ER2925 were grown in Luria–Bertani 

(LB) liquid or agarose medium [22]. According to the experimental purposes and as required 

for plasmid maintenance, antibiotics were added to the growth medium at the following 

concentrations: streptomycin 10 μg/ml for E. coli, nitrofurantoin 50 μg/ml for P. savastanoi, 

and gentamicin 10 μg/ml in both bacterial species when transformed with the plasmids 

reported in Table 1. Any bacterial contamination was excluded by periodical monitoring using 

PCR-based assays specific for P. savastanoi [23]. 

 

 

Table 1. Bacterial strains, mutant and plasmids used in this study. 

Strain/Plasmid Relevant characteristics Reference/Source^ 

Strain   

E. coli TOP10 F-, mcrA, Δ(mrr‐hsdRMS-mcrBC) Φ80 lacZΔM15 ΔlacX74 recA1 

araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen, Carlsbad, 

USA 

E. coli ER2925 ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 

hisG4 rfbD1 R(zgb210::Tn10)TetS endA1 rpsL136 dam13::Tn9 xylA‐
5 

mtl‐1 thi-1 mcrB1 hsdR2 

NEB, Hertfordshire, 

UK 

P. savastanoi pv. 

nerii (Psn23) 

Wild type LPVM collection 

∆hrpA hrpA in-frame deletion mutant of Psn23 [24] 

   

Plasmid   

pBBR1-MCS5 broad host range replicating mobilisable vector, GmR  [25] 

pKENgfpmut3 ApR , mutated gfp (S6FG, S72A) [26] 

pLPVM  GmR, lacZ, mcs, gfp This study 

pLPVM_T3A GmR, lacZ, mcs, hrpA promoter+gfp This study 

pLPVM_QS GmR, lacZ, mcs, psnI promoter+gfp This study 

      LPVM Laboratorio di Patologia Vegetale Molecolare (University of Florence) 

      GmR, gentamicin resistance; ApR, ampicillin resistance 

 

Construction of plasmids 

Extraction of genomic or plasmid DNA, PCR and general DNA manipulations, such as 

restriction digestion and ligation, were performed according to standard procedures and in 

accordance with the manufacturer’s instructions [27]. Cloning vector pBBR1-MCS5 was 

linearized with a double digestion using KpnI and BamHI enzymes. The primer pair 

GFP_BamHI_For / GFP_KpnI_Rev was used to amplify gfp gene, using the pKEN GFP mut3 

plasmid as a template. Afterwards, the gfp amplicon was ligated into the linearized pBBR1-

MCS5 in order to obtain pLPVM plasmid. A 102 bp fragment containing the promoter region 

for hrpA, and a 630 bp fragment containing the promoter for the luxI homologue in Psn23 

(hereafter named psnI), were amplified using the primer pair T3_XbaI_For / T3_BamHI_Rev 

and QS_XbaI_For / QS_BamHI_Rev, respectively (Table 2), which were designed according 

to the Psn23 sequences deposited in GeneBank (Accession Number FR717897.2 and 

FR717654). The amplified fragments were then cloned into the pLPVM plasmid, following 

their double digestion with XbaI and BamHI, to drive the expression of the promoter-

less gfp gene, and to create the promoter-probe constructs pLPVM_T3A and pLPVM_QS. 

After their sequences were validated, these recombinant plasmids were transferred 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref020
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref021
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref022
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref023
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref027


Chapter 4 

 

87 

 

into E. coli ER2925, and then electroporated into Psn23 with Gene PulserXCell™ (Bio-Rad 

Laboratories Inc., Hercules, CA, USA). 

 

Table 2. Primers used in this study for recombinant plasmids construction. 

Primer name Primer sequence (5’→3’) 

 

Tm°  

GFP_BamHI_For AAAGGATCCATGGTGAGCAAGGGCG 62.1 

GFP_KpnI_Rev AAAGGTACCTTACTTGTACAGCTCGTC 60.2 

T3_XbaI_For AAATCTAGATTTTTTGCAGAGCGCT 62.6 

T3_BamHI_Rev AAAGGATCCCTAAATTCAAACAACGTG 64.0 

QS_XbaI_For AAATCTAGACGACATAGGCACTTCC 60.0 

QS_BamHI_Rev AAAGGATCCTATAAACTCCACTTCGCA 62.8 

 

Antibacterial activity test 

The antibacterial activity of the polyphenolic extracts VN, TV, FO, and FC was evaluated in 

vitro by monitoring the bacterial growth as optical density at 600 nm (OD600), at different 

times during 24-h incubation with the polyphenolic extracts herein tested using the 

spectrophotometer Infinite® M200PRO Quad4 Monochromators™-based (TECAN, 

Switzerland). Moreover, as references for these extracts, catechin, epicatechin, EGCG, 

oleuropein, caffeic acid, chlorogenic acid, cynarine, and luteolin 7-O glucoside, were tested 

as well. The Psn23 cells were cultured in KB medium at 26°C overnight, and after two washes 

in sterile physiological solution (SPS, 0.85% NaCl in distilled water) the bacterial pellet was 

resuspended adjusting to a final OD600 = 0.5 in MM, supplemented or not with the 

polyphenolic extracts or with other standard molecules, at concentrations ranging from 1 to 

100 μM. As control, the antibiotic kanamycin was also used (100 μg/ml). 

 

Hypersensitive Response assay 

Hypersensitive Response (HR) assay was performed on Nicotiana tabacum (var. Burley 

White), grown at 24°C, with a relative humidity of 75% and a photoperiod of 16/8-h 

light/dark. The polyphenolic extracts VN, TV, FO, and FC were diluted up to 100 μM in sterile 

distilled water, and a 100 μl aliquot was then co-infiltrated with Psn23 OD600 = 0.5, 

(approximately 0.5x108 Colony Forming Unit/ml; CFU/ml), by using a needleless syringe into 

the abaxial mesophyll of fully expanded leaves of three tobacco plants [28]. The development 

of typical HR necrotic and chlorotic symptoms was monitored, and photographic records of 

the results were obtained at 24 and 48-h post-inoculation. 

 

Pathogenicity test 

To test any variation in the ability of Psn23 to cause the typical hyperplastic symptoms on 

oleander following the treatment with the polyphenolic extracts here studied, a plant model 

system was developed efficiently mimicking what occurring when using the whole host plant. 

Explants having a length of about 10 cm were collected from 2-year-old twigs of Nerium 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref028
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oleander plants (var. Hardy Red), washed three times under vacuum in sterile water 

supplemented with Tween®20 (SIGMA-Aldrich Co.), 1% sodium hypochlorite and 10% 

penconazole, and finally dried on sterile filter paper. These explant were then cut into 3–3.5 

cm pieces by carefully removing their ends, weighted and placed on agar-H2O medium (7 g/l), 

amended with 10% penconazole, into sterile MagentaTM GA-7 plant culture boxes 

(bioWORLD, Dublin, Ohio, USA). The upper end of each explant was then inoculated with 

10 μl of a bacterial suspension, at a density of OD600 = 0.5, mixed or not with each 

polyphenolic extract (100 μM). The ∆hrpA mutant of Psn23 was used as control. The 

inoculated oleander explants were then incubated in a growth chamber at 26°C, 75% relative 

humidity and a photoperiod of 16/8-h of light/dark. Symptoms were recorded at 21 days post-

inoculation (dpi). At this time, the explants were weighed, and the weight increment recorded. 

Nine replicates were used for each treatment, and three independent experiments were 

performed. 

 

GFP-based transcriptional screening 

The Psn23 bacterial cells carrying the promoter-probe plasmids pLPVM_T3A or pLPVM_QS 

(Table 1) were cultured overnight on KB medium at 26°C. Then their pellet was washed twice 

with SPS, and inoculated in MM (final OD600 = 0.5) supplemented with polyphenolic extracts 

VN, TV, FO, or FC, or their reference molecules, at concentrations ranging from 1 to 100 μM. 

Wild type Psn23 carrying the empty vector was used as control. The experiments were carried 

out into 24 multiwell plates (BIOFIL®, Guangzhou, China) at different time during 24-h of 

incubation. The promoter activity of hrpA and psnI were then analyzed and quantitatively 

assessed, using the multimode microplate reader Infinite®M200PRO Quad4 

Monochromators™-based (TECAN), by simultaneously measuring the GFP intensity and the 

bacterial growth. 

 

Quantitative gene expression analysis 

Starter liquid cultures of strain Psn23 were grown overnight at 26°C on 20 ml KB, with 

continuous shaking at 100rpm. Cells were washed twice in SPS and used to inoculate MM 

medium, alone or supplemented with 100 μM of the polyphenolic extracts VN, TV, FO, or 

FC, to a final concentration OD600 = 0.5 (approximately 0.5x108 CFU/ml). The bacterial 

cultures were then incubated for 24-h at 26°C. Total RNA was purified from bacteria during 

their stationary phase (OD600 = 1), using NucleoSpin® RNA Plus (Macherey-Nagel GmbH 

and Co. KG, Düren, Germany). Residual genomic DNA was eliminated by a further treatment 

with NucleoSpin® gDNA Removal Column (Macherey-Nagel GmbH and Co). The RNA 

quality was evaluated both spectrophotometrically, with NanoDrop™ ND-1000 (NanoDrop 

Technologies Inc., DE, USA), and visually by standard agarose gel electrophoresis [1% 

agarose (w/v) in TBE 1×] [27]. About 1 μg of RNA for each treatment was reverse transcribed, 

using iScript™ Advanced cDNA Synthesis kit (Bio-Rad Laboratories Inc., Hercules, CA, 

USA), according to the manufacturer’s instructions. Diluted cDNA was analysed by real-time 

PCR, with SsoFast™ EvaGreen®Supermix (Bio-Rad Laboratories Inc.) and using the CFX96 

cycler–real-time PCR Detection System and CFX-manager software v1.6 (Bio-Rad 

Laboratories Inc.). The primer pairs used are listed in S2 Table. The expression of each 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref027
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.s005
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monitored gene was normalised with 16S rDNA, as previously reported [29]. PCR conditions 

were 95°C for 10s and 60°C for 20s. The melting curves of the PCR products were acquired 

by a stepwise increase in temperature from 60 to 95°C, with a 0.5°C increase every 5s, at the 

end of each PCR run to check for aspecific amplifications. The specificity of each primer pairs 

was confirmed according to the single peak constantly produced in their melting curves, as 

shown in S1 Fig. To analyze the mRNA levels the comparative Livak (2- ∆∆Ct) method was 

used [30]. The fold induction of the mRNA of each target gene was determined form the 

threshold cycle values (Ct) of the housekeeping gene, and then for the fold expression of the 

wild type strain imposed as = 1, to obtain a relative expression data for each gene examined. 

The use of the 2- ∆∆Ct method for relative quantification, a comparative technique in which a 

target gene is normalized to an endogenous control, requires the PCR efficiencies of target 

and control genes to be approximately equal. To verify this condition and to avoid significant 

measurement inaccuracies, ten-fold dilution series of Psn23 genomic DNA (from 50 ng to 0.5 

pg) were amplified to evaluate the amplification efficiency by comparison of the slope of the 

standard curves of target genes (hrpA, hrpL, hrpRS, hrpV, lon, rpoN, pssR, pssI) and the 

reference gene 16S rDNA. The slope of the linear regression and the correlation coefficient 

for each curve are reported in S1 Table. 

 

Congo Red assay 

Psn23 cells were grown on MM liquid medium (OD600 = 0.2), supplemented or not with the 

polyphenolic extracts here examined (100 μM), and incubated at 18°C for 24-h with 

continuous shaking (100rpm). After 24-h incubation, the concentration of bacterial cultures 

was evaluated as OD600, and then the dye Congo red (SIGMA-Aldrich Co.) was added (10 

μg/ml), followed by a further incubation at 18°C for 1-h, under shaking. Bacterial cells were 

removed by centrifugation (5000g for 10min.), and 1 ml supernatant for each sample was then 

aliquoted into 24 multiwell plates (BIOFIL®). The absorbance value at 490 nm (OD490) was 

recorded by spectrofluorimetry using Infinite® M200PRO (TECAN). The Congo red binding 

is directly correlated both to the TTSS pilus assembly and to the bacterial concentration [31]. 

Therefore, for any treatment the value obtained was calculated as a percentage of the binding 

ability of the wild type Psn23 and of its mutant ΔhrpA, according to the formula: 

 

 
 

where XWT and XΔhrpA are the ratio OD490/OD600 for Psn23 and ΔhrpA respectively, untreated 

with any polyphenolic extract. 

 

ELISA assay 

After an overnight growth at 26°C on KB medium, Psn23 cells were washed twice, and 

inoculated in MM (OD600 = 0.5), supplemented or not with the polyphenolic extracts VN, TV, 

FO, or FC (100 μM), and grown at 18°C for 24-h under shaking. Cells were removed by 

centrifugation (8000g for 15min., at 4°C). The supernatant was then filtered through a 0.45 

μm membrane (Filtropur S., Sarstedt, Nümbrecht, Germany) and 100 μl were then used to 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref029
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.s002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref030
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.s005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref031
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perform ELISA assay. Polyclonal primary antibodies against HrpA protein of Psn23 were 

obtained from Primm srl (Milano-Italy), following immunization of two rabbits with 

recombinant protein HrpA. Secondary anti-rabbit horseradish peroxidase conjugate antibodies 

were used (Bethyl Laboratories Inc., Montgomery, TX, USA), according to manufacturer’s 

instructions. The standard curve was obtained with serial dilution of HrpA recombinant 

purified protein. The experiment was performed three times, with two replicates for each 

treatment. 

 

Current measurements on a solid supported membrane 

The polyphenolic compounds here examined were investigated for their effects on Ca2+-

ATPase, taken as a model of the ubiquitous molecular ion pumps P-type ATPases, known to 

be targets for many toxic compounds. Current measurements were carried out on sarcoplasmic 

reticulum (SR) vesicles containing Ca2+-ATPase adsorbed onto a hybrid 

alkanethiol/phospholipid bilayer anchored to a gold electrode (the so-called Solid Supported 

Membrane, SSM) [32]. SR vesicles were adsorbed on the SSM surface during an incubation 

time of 60min. Ca2+-ATPase was then activated by the rapid injection of a solution containing 

ATP. If at least one electrogenic step, i.e. a net charge movement within the protein, is 

involved in the relaxation process that follows protein activation, a current signal is recorded 

due to the capacitive coupling between vesicle membrane and SSM. It should be pointed out 

that the current amplitude is related to the number of adsorbed ATPase molecules that are 

activated after the ATP concentration jump, and the associated charge, which is obtained by 

numerical integration of the current signal, corresponds to the overall amount of Ca2+ ions 

translocated by the proteins following their activation [33]. In ATP concentration-jump 

experiments two buffered solutions were employed, the “non-activating” and the “activating” 

solution: the non-activating solution contained 100 mM KCl, 25 mM MOPS (pH 7.0), 1 mM 

MgCl2, 0.25 mM EGTA and 0.25 mM CaCl2 (10 μM free Ca2+); in addition, the activating 

solution contained 100 μM ATP. To investigate the effects of reference polyphenolic 

compounds on current signals generated by Ca2+-ATPase, the required concentration of each 

compound was added to both the non-activating and activating solutions. The ATP-induced 

current signal observed in the presence of the polyphenolic compound was compared to the 

control measurement obtained in the absence of the compound. To prevent Ca2+ accumulation 

into the vesicles, 1 μM calcium ionophore A23187 (calcimycin) was used. The concentration 

jump experiments were performed by the SURFE2ROne device (Nanion Technologies, 

Münich, Germany). The temperature was maintained at 22–23°C for all the experiments. To 

verify the reproducibility of the current signals on the same SSM, each single measurement 

was repeated six times, and then averaged to improve the signal to noise ratio. Standard 

deviations did not exceed 5%. 

Statistical analysis 

All the experiments in this study were performed in triplicate and repeated three times, unless 

otherwise stated. The data were presented as the means ± standard deviation (SD) and 

subjected to one-way analysis of variance (ANOVA) using PAST software (Version 3.11, 

Øyvind Hammer, Natural History Museum, University of Oslo). When ANOVA indicated a 

significant difference (P < 0.05), a Tukey-Kramer post-test was performed. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref032
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref033
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4.4 Results and Discussion 

 

Characterization of polyphenolic extracts from olive, artichoke leaves, grape seeds, and 

green tea by HPLC/DAD and HPLC/MS 

The FO and FC extracts were obtained by an innovative separation process defined as Best 

Available Technology and recognized by the Environmental Protection Agency [34]. This 

method consists of an integrated system of several subsequent filtration stages (i.e. Micro, 

Ultra, Nano-filtration), followed by reverse osmosis carried out using ecofriendly materials 

[35]. Oleuropein is the main phenolic compound (14.92% p/p) present in the FO extract. In 

this study it was obtained from green olive leaves. Oleuropein consists of a secoiridoid core 

linked to the structure of hydroxytyrosol. The hydrolysis of oleuropein can yield various 

compounds, such as hydroxytyrosol, known for its important antioxidant activity, deacetoxy 

oleuropein and elenolic acid, the latter known as a powerful anti-bacterial molecule [36,37]. 

The polyphenols content in the FO extract is 240.234 mg/g (512.801 μmol/g polyphenols, 

14.92% p/p oleuropein) (Table 3). 

 

Table 3. Quali-quantitative HPLC/DAD/MS analysis of FO, FC, VN and TV extracts.   

Olive leaves extract mg/g§ µmol/g§ Grape seeds extract mg/g µmol/g 

hydroxytyrosol glycol 2,352 13,834 gallic acid 0,004 0,024 

hydroxytyrosol glucoside 17,373 54,978 catechin dimer B3 2,217 3,836 

hydroxytyrosol 2,194 14,245 catechin 11,073 38,183 

tyrosol 0,319 2,313 catechin trimer 3,213 3,710 

demethyl elenolic acid 

glucoside 
7,067 18,119 catechin dimer B6 2,614 4,522 

demethyl elenolic acid 

diglucoside 
13,463 24,390 catechin dimer B2 5,374 9,297 

elenolic acid glucoside 4,605 11,399 epicatechin 13,618 46,960 

elenolic acid glucoside 

derivative 
2,905 7,191 catechin trimer 3,706 4,280 

caffeic acid derivatives 0,475 2,638 epicatechin gallate 6,649 9,108 

p-cumaroyl acid derivatives 0,422 2,571 epicatechin gallate 6,098 13,796 

aesculin 0,483 1,421 catechin tetramers 54,877 47,553 

verbascoside 4,726 7,573 epicatechin gallate dimer 180,647 204,816 

verbascoside isomer 1,969 3,155 
catechin/epicatechin trimers 

digallate 
382,968 327,323 

luteolin 7-O-glucoside  1,262 2,817 
catechin/epicatechin trimers 

digallate 
149,655 127,910 

pinoresinol 5,339 14,913 total polyphenols 822,709 841,317 

acetoxy pinoresinol 12,131 29,160    

oleuropein 149,158 276,219    

oleuropein derivative 13,993 25,865    

total polyphenols 240,234 512,801 Artichoke leaves extract mg/g µmol/g 

   monocaffeoyl quinic acids 2,133 6,026 

Green tea leaves extract mg/g µmol/g dicaffeoyl quinic acids 4,688 9,085 

epigallocatechin gallate             838,840 1831,519 clorogenic acid 16,350 46,188 

epicatechin gallate 31,714 71,760 luteolin derivative 2,362 8,260 

total polyphenols 870,554 1903,279 total polyphenols 25,534 69,559 

§ Polyphenolic composition of olive, green te, artichoke leaves and grape seeds extracts. The amount of each 

polyphenol-based molecule is expressed as mg/g and µg/g.    

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref034
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref035
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref036
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref037
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t002
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As for the other extracts, the concentration of total polyphenols expressed as μmol/g was 

derived by summing the concentrations of each polyphenolic compound, estimated according 

to their molecular weights and spectrophotometric data. The HPLC/DAD/MS analysis carried 

out on the FC extract, obtained herein from dried artichoke leaves via a pilot process by hot 

aqueous extraction, shows the presence of hydroxycinnamic acids (mainly chlorogenic acid 

and cynarin), and flavones (e.g. luteolin 7-O-glucoside) for a total polyphenols content of 

25.534 mg/g (69.559 μmol/g) (Table 3). Moreover, the presence of mono- and di-caffeoyl 

esters of the quinic acid and flavonoid glycosides was observed in the phenolic fraction, as 

previously reported [38]. 

The VN and TV extracts are particularly rich in condensed tannins, which are monomeric or 

polymeric polyphenolic compounds with widely variable molecular weights based on flavan-

3-olic units, such as catechin or epicatechin. Such molecules may be esterified with one or 

more gallic acid unit/s (e.g. EGCG). Condensed tannins have a higher stability than 

hydrolyzable tannins, supporting their multifaceted biological properties [39]. The VN studied 

here includes a variety of condensed tannins with molecular weights ranging from 290Da (i.e. 

catechin and epicatechin) to 1170Da (i.e. catechin/epicatechin trimers digallate), as well as 

free gallic acid. In VN extract, the polyphenols amount is 822.702 mg/g (841.317 μmol/g), 

consisting entirely of condensed tannins (Table 3). The HPLC/DAD and HPLC/MS analysis 

of the TV extract shows the presence of 870.554 mg/g (1903.279 μmol/g) polyphenols, 

represented by EGCG and epicatechin gallate (96% and 4% of the total tannins, respectively) 

(Table 3). 

 

Polyphenolic extracts inhibit hrpA and psnI promoter activity in vitro without any 

antibiotic effect 

To monitor a potential inhibitory activity of these polyphenolic extracts on the TTSS and QS 

of Psn23, we evaluated their effect on the activation of hrpA and psnI promoters by using 

the gfp-reporter fusion constructs pLPVM_T3A and pLPVM_QS, respectively. As in other 

bacteria belonging to the P. syringae group, the hrpA gene encodes the main protein of the 

TTSS translocating pilus, while psnI encodes the luxI-homolog lactone synthase of a 

canonical QS. As reported in Table 4, all the polyphenolic extracts showed, although to a 

different extent, inhibition of hrpA promoter activity when tested at 100 μM. 

A reduction of about 48 and 54% was observed for VN and TV, respectively, while a decrease 

of about 25% was recorded for FO and of 19% for FC. p-coumaric acid (PCA), a plant 

phenolic compound, was included as positive control at 100 μM as previously reported for the 

phytopathogenic bacterium D. dadantii 3937 [40]. We observed that PCA does not cause any 

significant decrease in hrpA promoter activity of Psn23, as well as in QS promoter activity 

(Table 4). 

Furthermore, we found that FC, FO and TV inhibit psnI promoter’s activity at a different 

extent (about 43%, 32%, and 21%, respectively), while a slight increase is obtained in the 

presence of VN. No negative effect on bacterial growth was observed with VN and TV, and 

a growth increase was recorded after treatment with FO and FC (33 and 45%, respectively). 

These data indicate that the inhibitory effect of these polyphenolic plant extracts on TTSS and 

QS may not be a consequence of their negative impact on bacterial growth. Conversely, the 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref038
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref039
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref040
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t003
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antibiotic kanamycin used as negative control causes both inhibition on bacterial growth, and 

on TTSS and QS promoter activities (Table 4). Overall, all the extracts tested had a higher 

inhibitory activity on TTSS rather than on QS. In particular, the extracts VN and TV are the 

most effective in reducing the in vitro activation of the hrpA promoter. 

 

Table 4. Effects on bacterial growth, and on the trans-activation of hrpA and psnI promoters of the 

polyphenolic extracts tested in this study and their main constituents. Kanamycin and p-coumaric acid 

(PCA) were used as negative and positive control, respectively.   

Extract 
Vegetable matrix/ 

Main molecule 

Bacterial growth 

(OD600) 
hrpA promoter* psnI promoter* 

VN Grape seeds 1.05 ± 0.30a 0.52 ± 0.11ab  1.06 ± 0.17a 

 Catechin 1.02 ± 0.22a 1.08 ± 0.11a  0.96 ± 0.27a 

 Epicathechin 0.99 ± 0.19a 1.12 ± 0.13a  1.07 ± 0.32a 

TV Green tea leaves 1.01 ± 0.16a 0.46 ± 0.13b  0.79 ± 0.14ab 

 Epigallocatechin gallate 1.00 ± 0.17a 0.59 ± 0.24ab  0.94 ± 0.12a 

FO Olive leaves 1.33 ± 0.16a 0.75 ± 0.18a  0.68 ± 0.16ab 

 Oleuropein  1.00 ± 0.15a 1.24 ± 0.18a  1.01 ± 0.25a 

 Hydroxytyrosol 0.98 ± 0.18a 0.49 ± 0.17b  0.63 ± 0.16ab 

 Luteolin 7-O-glucoside 1.32 ± 0.12a 1.18 ± 0.10a  0.92 ± 0.18a 

FC Artichoke leaves 1.45 ± 0.18a 0.81 ± 0.17a  0.57 ± 0.13ab 

 Caffeic acid 1.16 ± 0.13a 0.99 ± 0.10a  0.94 ± 0.17a 

 Chlorogenic acid 1.13 ± 0.15a 1.02 ± 0.12a  1.08 ± 0.20a 

 Cynarine 1.22 ± 0.10a 1.10 ± 0.32a  1.03 ± 0.29a 

 Kanamycin 0.46 ± 0.18b 0.21 ± 0.18b  0.23 ± 0.22b 

 p-Coumaric acid 0.92 ± 0.15a 1.03 ± 0.22a  0.98 ± 0.25a 

* OD600 was recorded after 24h growth and data are calculated as GFP Abs (Ex.485nm; Em.535nm) / Abs (600nm) ± SD, 

and as normalized fold versus untreated bacterial cultures. 

Common letters in correspondence of each chemical compound indicate differences not statistically significant 

at p<0.05 according to Tukey’s test.  

 

 

For comparison, the inhibitory activity against TTSS and QS of the corresponding bioactive 

molecules for each of the polyphenolic extracts here examined (i.e. catechin, epicatechin, 

EGCG, oleuropein, caffeic acid, chlorogenic acid, cynarine, luteolin 7-O glucoside) was also 

analyzed. None of these molecules affect bacterial growth, and all but hydroxytyrosol and 

EGCG (Table 4) show a significant inhibitory effect on hrpA and psnI promoters. A reduction 

of hrpA and psnI promoter activity was found with hydroxytyrosol (51 and 37%, respectively), 

and with EGCG (41 and 6%, respectively), which represent a considerable fraction of TV and 

FO extracts. However, both EGCG and hydroxytyrosol had a higher concentration when 

tested individually than that in TV and FO extracts, respectively. 

 

Polyphenolic extracts inhibit HR in tobacco and knot development in oleander 

To exclude any phytotoxic effect of the polyphenolic extracts here used, they were infiltrated 

into the mesophyll of tobacco leaves, without observing any unspecific phytotoxicity (data 

not shown). 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-t003
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Moreover, when these extracts have been co-infiltrated at 100 μM with Psn23 wild type cells, 

a strong reduction in HR symptoms was found when in presence of TV or VN in comparison 

to the infiltration with Psn23 alone (Figure 1), and comparable to the results of the non 

pathogenic ∆hrpA mutant [24]. Similarly a reduced HR was obtained in presence of FC or 

FO, although to a lesser extent than with TV or VN (Figure 1). Therefore, these data further 

confirm the inhibiting activity of the polyphenolic extracts on the Psn23 TTSS in vitro and in 

planta, where HR elicitation by Psn23 was suppressed. 

 

Figure 1. Effect of polyphenolic extracts on HR development on tobacco leaves. Hypersensitive Response 

assay on tobacco leaves at 48-h after co-infiltration of Psn23 wild type bacteria (yellow rings), with FO, 

FC, VN or TV polyphenolic extracts (white rings). As control, sterile physiological solution was used (black 

ring).  

 

 
 

 

  

 

To determine whether these polyphenolic extracts could prevent the development of knot 

disease symptoms in oleander plants, an in vitro plant model system was developed using 

explants from 2-year old twigs of N. oleander. 

As shown in Figure 2A, a significant difference in the symptoms development was observed 

following inoculation of Psn23 wild type bacteria with VN or TV. In particular, a reduction 

of more than half of the explant weight increase was obtained for oleander explants inoculated 

with Psn23 treated with VN or TV in comparison to those untreated (Figure 2B). 

These data were confirmed by monitoring the in planta bacterial growth rate at 21 dpi, where 

a strong decrease of bacterial multiplication was recorded following inoculation of Psn23 with 

VN or TV extracts, comparable to the in planta growth of ∆hrpA mutant (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref024
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g001
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Figure 2. Pathogenicity test with Psn23 on oleander explants, following treatment with polyphenolic 

extracts VN, TV, FO or FC. Explants from adult oleander plants were inoculated 

with P. savastanoi pv. nerii strain Psn23, in the presence or absence of the VN, TV, FO or FC extracts (100 

μM). As negative control the non pathogenic mutant ∆hrpA was used. (A) Development of hyperplastic 

knots at 21 dpi with (from left to right): Psn23, ∆hrpA, Psn23+VN, Psn23+TV, Psn23+FO, Psn23+FC. The 

symptoms are detectable as swelling at the inoculated end of oleander explants. (B) Normalized weight 

increase of oleander explants at 21 dpi inoculated with (from left to right): Psn23, 

∆hrpA, Psn23+VN, Psn23+TV, Psn23+FO, Psn23+FC. Values are means ± SD of nine replicates for each 

treatment. Different letters indicate significant differences among means at P < 0.05, according to Tukey's 

test.  

 

 

 
 

 

 

Figure 3. In planta bacterial growth rate of Psn23 treated with polyphenolic extracts VN, TV, FO or FC. 

Bacterial multiplication was monitored at 21 dpi. Values are means ± SD of nine replicates for each 

treatment. Different letters indicate significant differences among means at P < 0.05, according to Tukey's 

test.  
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Polyphenolic extracts alter TTSS and QS gene expression 

To determine the effect of these polyphenolic extracts on the modulation of TTSS and QS 

pathways of P. savastanoi pv. nerii, we performed a gene expression analysis by real-time 

PCR. The whole sequence and organization of the TTSS cluster of Psn23 has been previously 

reported [29], and the QS genomic organization is available as well (GenBank Accession 

Number FR717654). To induce in vitro the expression of genes related to the 

TTSS, Psn23 was grown on MM, which is considered to mimic plant apoplastic conditions 

[41]. This medium was supplemented with 100 μM of VN, TV, FO or FC. The expression of 

the gene hrpA, coding for the main component of TTSS pilus, was evaluated as well as that 

of several genes known to be involved in TTSS regulation, such as hrpL, hrpV, hrpRS, rpoN 

and lon [42]. As shown in Figure 4, all the polyphenolic extracts here examined strongly 

reduce hrpA mRNA levels. 

 

Figure 4. Relative gene expression analysis of key genes correlated to TTSS and QS of Psn23. Relative 

mRNA levels of hrpA, hrpL, hrpV, hrpRS, rpoN, lon, psnI, psnR genes of Psn23, grown in MM 

supplemented with the polyphenolic extracts TV, VN, FO or FC compared to levels in MM alone 

(untreated). The expression of each monitored gene was normalised with 16S rDNA. The data are 

expressed as the average of three replicates ± SD. Asterisks indicate significant differences compared with 

the untreated sample at P <0.05.  

 

 
 

 

Besides its role in the assembly of the TTSS pilus, HrpA was hypothesised to 

regulate hrpRS gene transcription, in a way that still remains to be determined, presumably 

through a positive feedback on hrpRS [43]. Consistently with these data, hrpRS expression is 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref029
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref041
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref042
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref043
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also negatively affected as well as the hrpL mRNA levels (Figure 4). However, it is likely that 

TV, FO and FC inhibit TTSS expression in the same fashion, while VN impairs TTSS 

functionality otherwise. The characteristic effects of these polyphenolic extracts on the proper 

TTSS activation may be attributed to their different impact on the two main regulatory 

mechanisms that finely control the expression of hrp cluster in P. syringae, i.e. HrpRS and 

GacS/GacA system [44]. The HrpS/HrpR heterodimer is crucial for the transcriptional 

activation of hrpL, which is also under the positive control of RpoN [45]. 

The rpoN transcription as well as that of hrpRS are activated by the GacS/GacA system, 

although the mechanism through which GacA regulates the expression of hrpRS and rpoN are 

still unknown [44]. Concerning negative regulators, HrpV controls hrp cascade upstream to 

HrpRS through a protein-protein interaction between HrpV and HrpS [46], while HrpR is 

specifically degraded by the Lon protease, and both of them depend on the HrpRS cascade. 

As shown in Figure 4, we observed a significantly lower amount 

of hrpL, hrpV and hrpRS mRNA levels in Psn23grown in MM supplemented with TV, FO 

and FC, in comparison to levels found when Psn23was grown in MM alone. Moreover, TV, 

FO and FC promote the decrease of rpoN mRNA levels, while the lon mRNA levels are almost 

unaffected, suggesting the involvement of GacA-RpoN-HrpL pathway [47,48]. In contrast, 

VN appears to compromise hrp cascade through the GacA-HrpRS-HrpL pathway, as 

suggested by the increase of hrpV mRNA level, while rpoN expression in Psn23 grown in 

MM supplemented with VN is not statistically different to the expression level observed in 

MM alone (Figure 2). Lastly, we investigated the effect of these polyphenolic extracts on the 

two genes psnI and psnR, both correlated with QS. In Gram-negative bacteria, the first encodes 

for an acyl homoserine lactone synthase that belongs in most cases to the LuxI-protein family 

and produces the most common signal molecule, i.e. N-acyl homoserine lactone (AHL). The 

second encodes for a transcriptional sensor/regulator belonging to the LuxR family that forms 

a complex with the cognate AHL at threshold (quorum) concentrations, thereby affecting the 

transcription of target genes [49]. As shown in Figure 4, the data obtained corroborate those 

previously reported on psnI promoter activity. Namely, TV and FC were demonstrated to 

statistically reduce the transcript levels of both psnR and psnI, while FO only psnR. 

Conversely, VN strongly enhances both psnR and psnI expression. Moreover, the data further 

confirm the involvement of the GacA-HrpRS-HrpL pathway as a putative target of VN, and 

are in agreement with the tight functional link between TTSS and QS regulation mediated by 

GacA/GacS as already reported for P. syringae pv. tomato DC3000 [48]. 

To the best of our knowledge, this is the first wide gene expression study in which the effects 

of polyphenolic extracts from grape seeds, green tea, olive, and artichoke have been 

investigated against a wide set of genes correlated to TTSS and QS in P. savastanoi pv. nerii. 

 

Polyphenolic extracts inhibit Type Three Secretion System pilus assembly 

To further demonstrate the highly specific effect of the VN, TV, FO or FC polyphenolic 

extracts on TTSS machinery, we investigated their impact on the TTSS pilus assembly. To 

this purpose, we set up and performed a Congo red-based assay on Psn23-treated cultures, to 

quantitatively evaluate any variation in the presence of different types of pili and fimbriae, 

including the TTSS pilus [50]. Congo red binding has been shown to be associated with the 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref044
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref045
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref044
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref046
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref047
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref048
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref049
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref048
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref050
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presence of different types of bacterial appendages, although the basis for this phenomenon is 

unclear [51]. Furthermore, Congo red staining has been demonstrated to be a fast and 

economical method for monitoring TTSS assembly also in P. syringae pv. tomato [31]. 

The data obtained show that VN and TV cause a reduction of the dye absorption by Psn23-

treated cells, corresponding to 86% and 96%, respectively (Figure 5). In the case of FO and 

FC, the Congo red absorption was reduced to about 71% and 52%, respectively (Figure 5). 

Overall, such a decrease in Congo red binding to Psn23-treated cells in comparison to those 

untreated, indirectly demonstrates that these polyphenolic extracts, although with different 

effectiveness, compromise the correct assembly of the TTSS pilus. 

 

Figure 5. Effect of polyphenolic extracts on Congo red dye absorption of Psn23bacterial cultures. 

Percentage of Congo red dye absorption of Psn23 bacterial cultures, grown in MM amended with the 

polyphenolic extracts VN, TV, FO or FC. The data were calculated according to the formula: 

[(Xunk−XΔhrpA)/(XWT−XΔhrpA)]*100 where: XWT and XΔhrpA are the ratio 

OD490/OD600 for Psn23 and ΔhrpA respectively. The data represent the means ± SD of three replicates. All 

treatments are statistically significant (P <0.05).   
 

 
 

Figure 6. ELISA assay on Psn23 bacterial supernatant amended with polyphenolic extracts. 

Quantification of HrpA protein by ELISA assay on bacterial supernatant of wild type Psn23 grown on 

MM, or on MM amended with the polyphenolic extracts VN, TV, FO, or FC. As a negative control the 

∆hrpA mutant was used. As a reference for quantification, a standard curve was established by a serial 

dilution of the Psn23HrpA recombinant protein (117 pg/ml– 40 ng/ml). The data represent the means ± 

SD of three replicates. Statistically significant differences are represented by different letters above the 

bars (ANOVA and Tukey’s test, P < 0.05).   

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref051
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref031
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g003


Chapter 4 

 

99 

 

To confirm and directly verify these findings, the amount of HrpA produced by Psn23 in the 

supernatant was also quantified by ELISA, following or not treatment with the VN, TV, FO 

or FC extracts. The results obtained are consistent with those from Congo red assay. In 

particular, in the supernatants of untreated Psn23 cells a concentration of 33.93 ng/ml of HrpA 

protein was detected (Figure 6). In contrast, when TV or VN were supplemented to MM, the 

HrpA concentrations in the supernatants were 5.58 and 3.68 ng/ml, respectively, thus 

comparable to the levels detected for the ∆hrpA mutant (1.85 ng/ml). Following the treatment 

with FO or FC, HrpA concentrations of 10.87 and 21.30 ng/ml, respectively, were found 

(Figure 6). In conclusion, these findings demonstrate that the polyphenolic extracts obtained 

and tested in our work are able to interfere in a very specific manner with TTSS, as previously 

indicated by the results on gene expression analysis of this master pathogenicity system. 

 

Evaluation of toxic effects of polyphenolic compounds at the molecular level 

In view of the potential application of these polyphenolic extracts in plant disease control, we 

evaluated the toxicity of several polyphenols used here as reference i.e. EGCG, catechin, 

oleuropein, hydroxytyrosol and chlorogenic acid. In particular, these compounds were 

examined for their effects on the transport activity of SR Ca2+-ATPase, which is a crucial 

molecular target in a variety of physiological processes. SR Ca2+-ATPase belongs to the 

highly-conserved P-type ATPase family. P-type ATPases are a large, ubiquitous and varied 

family of membrane proteins that are involved in many transport processes in virtually all 

living organisms [52]. SR Ca2+-ATPase couples the hydrolysis of one molecule of ATP to the 

active transport of two Ca2+ ions from the cytoplasm to the lumen of SR. The Ca2+-ATPase 

transport activity plays a major role in cell Ca2+ signaling and homeostasis in both eukaryotes 

and prokaryotes [53,54]. In our study we employed SSM-based electrophysiology to compare 

the effects of the polyphenolic compounds with the inhibitory action of copper ions (Cu2+) 

towards the SR Ca2+-ATPase. In fact, several heavy metal ions, including Cu2+, were found 

to inhibit Ca2+-ATPase activity in different types of membranes [55]. Such inhibition typically 

causes a sudden increase in the cytosolic concentration of calcium ions, endoplasmic 

reticulum stress, and eventual cell death through apoptosis. 

To investigate the interaction of these polyphenolic compounds with SR Ca2+-ATPase and its 

possible inhibition, we performed current measurements on SR vesicles adsorbed on a SSM. 

The SSM technique allows direct measurements of charge displacements within the transport 

protein yielding valuable information about the ion transport mechanism [32,56,57]. The 

technique is also well suited for the analysis of inhibitor interactions with membrane 

transporters [33,58]. As shown in Figure 7, a current signal was observed following a 100 μM 

ATP concentration jump in the presence of CaCl2 (10 μM), taken as a control measurement. 

It is worth mentioning that the charge obtained by numerical integration of the ATP-induced 

current signal is attributed to an electrogenic event corresponding to translocation and release 

of bound Ca2+, after utilization of ATP [32,33,57]. 

ATP concentration jump experiments were then performed in the presence of CaCl2 and 

copper (Cu2+) or the polyphenolic compounds at different concentrations. The corresponding 

ATP-induced current signals were then compared to the control measurement obtained in the 

absence of these substances. In the case of CuCl2, we found that at 0.1 μM concentration 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref052
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref053
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref054
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref055
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref032
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref056
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref057
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref033
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref058
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref032
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref033
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref057
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Cu2+ ions suppress almost completely the ATP-induced current signal and the related 

displaced charge (Figure 7). Therefore, we may conclude that sub-micromolar copper exerts 

a remarkable inhibitory effect on SR Ca2+-ATPase by interfering with ATP-dependent calcium 

translocation through the enzyme. 

On the other hand, the polyphenol-based molecules here studied have minor, if any, effects 

on the ATP-induced current signal over a concentration range from 1 to 10 μM, with the 

exception of EGCG (Figure 7). In fact, in the case of EGCG a significant reduction of the 

current amplitude was recorded at 10 μM EGCG. Such an interference with ATP-dependent 

Ca2+translocation in the presence of a high EGCG concentration has been reported in recent 

biochemical studies [59,60]. In particular, EGCG was found to inhibit both Ca2+ uptake rate 

and ATPase activity with half-maximal effects observed at ~12 μM [60] and ~16 μM [59]. In 

these studies, however, no inhibitory effect of EGCG on SR Ca2+-ATPase activity was 

reported in the concentration range between 0.1 and 1 μM. 

Therefore, our results indicate that as compared to copper, the polyphenolic compounds here 

investigated do not affect the SR Ca2+-ATPase transport activity in the sub-micromolar 

concentration range. 

 

Figure 7. Current measurements on SR vesicles adsorbed on a SSM. Current signals induced by 100 μM 

ATP concentration jumps in the presence of 10 μM Ca2+
free and in the absence (black curve, control 

measurement) or in the presence of CuCl2 (red curve) or of the polyphenolic compounds EGCG, catechin, 

oleuropein, hydroxytyrosol and chlorogenic acid (green curves).   

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone-0163357-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref059
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref060
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref060
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref059
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4.5 Conclusions 

 

The identification and development of new ecofriendly alternatives for plant protection is 

becoming increasingly important, especially to reduce the use of copper compounds which 

are widely employed in agriculture practice, as well as to limit the emergence of copper-

resistant strains. Every year the agricultural industry generates billions of metric tons of plant 

biomass and waste, which can be environmentally polluting if not properly managed. 

Currently, several systems for kilo-scale extraction and fractionation of natural active 

ingredients from plant by-products were proposed [61]. The optimization of industrial closed 

cycle platforms for the recovery of green chemicals has been so far of interest for innovative 

applications in feed, food, as well as for cosmetic and nutraceutical industry. The results 

reported here demonstrated their potential and effective use in plant protection as well, which 

may lead to the development of sustainable models of circular economy into the agricultural 

sector. 

In this study, we have demonstrated that standardized polyphenolic extracts 

from O. europaea, C. scolymus leaves, V. vinifera seeds and C. sinensis leaves, characterized 

by HPLC/DAD and HPLC/MS analysis, are able to inhibit specifically the TTSS and partially 

the QS of P. savastanoi strain Psn23. A close relationship was found among the data obtained 

through promoter activation and gene expression analysis, both for TTSS and QS. The in 

vitro anti-microbial activity of olive mill wastewater on the growth 

of P. savastanoi pv. savastanoi was already known [62], but in this study for the first time 

several polyphenolic extracts were successfully examined for their anti-virulence activity 

against this plant pathogenic bacterium. The additive and synergistic effects of polyphenolic 

extracts are responsible for their powerful bioactive properties and thus their effectiveness has 

to be attributed to the complex mixture of phytochemicals present in whole extract. 

Furthermore, we have shown that these extracts compromise the TTSS pilus assembly in a 

very specific manner without undermining bacterial viability. Finally, the absence of any 

significant toxicity on SR Ca2+-ATPase supports the potential of this innovative strategy, 

which aims at employing standardized natural polyphenolic extracts as effective copper 

substitutes in the control and management of bacterial diseases of plants. 

 

 

 

 

 

 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163357#pone.0163357.ref061
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4.7 Supporting Information  

 

S1 Figure. qPCR melting curves for each primer pairs tested. Blue scaling color lines correspond to serial 

dilutions of target gene, red lines correspond to negative control (DNA-free sterile distilled water).  

 

 

 

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0163357.s002
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S2 Table. Sequences, temperature of melting (Tm°), amplicon size (bp), efficiency, R2, slope and Ct values 

of the primers used in real-time PCR.  
 

 

Gene 
Primer 

name 

Tm 

°C 

Primer sequence  

(5’→3’) (bp) 

Amplicon 

size (bp) 

 

Efficiency 

(%) 

 

R2 

 

Slope  

 

Ct 

minor 

 

Ct 

major  

hrpA hrpA_RT_for 62.7 GCAGGGTATCAACAGCGTCAAG 156 102.6 0.998 
- 

3.258 
23.85 34.75 

 hrpA_RT_rev 63.0 CCGTTCTCTTCGTTCGCAGTG       

hrpL hrpL_RT_for 59.7 GTATTGCGTTGAACCTGAT 126 104.6 0.994 
- 

3.216 
25.83 32.56 

 hrpL_RT_rev 59.7 CGTCTACCTGATGAGTGATA       

hrpV hrpV_RT_for 61.3 GAGCGGTTCCGTAACTAC 130 105.2 0.990 
- 

3.211 
26.50 33.26 

 hrpV_RT_rev 61.6 CTGCCAGCATCAACTCAT       

hrpRS hrpRS_RT_for 61.2 ACCCGCAGAGTGAAGAAC 88 99.8 0.998 
- 

3.265 
23.72 31.11 

 hrpRS_RT_rev 62.0 CGCTTGAGTGACTGTTGAATC       

rpoN rpoN_RT_for 60.0 CTACCGTGGATAACCTTGA 125 104.2 0.991 
- 

3.219 
25.73 32.16 

 rpoN_RT_rev 60.3 GTCATCATCGTTGCTTGG       

lon lon_RT_for 61.3 CCGAGCAGAACCATAACTT 134 103.2 0.995 
- 

3.198 
25.52 34.21 

 lon_RT_rev 61.2 CAGGCGAATGACTTCCAT       

psnI pssI_RT_for 61.0 ACGGTGGTCAGCAAGGCAATG 161 102.1 0.996 
- 

3.287 
23.49 35.15 

 pssI_RT_rev 61.0 GCCAACGGAGCAGGTCATCC       

psnR pssR_RT_for 61.3 AATGGCGTAATGCTATGC 162 103.9 0.991 
- 

3.232 
25.24 32.43 

 pssR_RT_rev 60.7 TGGCGATTTCACTTATGC       

16s 
rDNA 

16s_RT_for 63.7 GGAATCTCGCTGGTAGTGGGG 157 103.7 0.998 
- 

3.289 
19.31 33.49 

 16s_RT_rev 64.0 ATCGTCGCCTTGGTGAGCC       
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Chapter 5 

 

Indole-3-acetic acid in plant-pathogen interactions: 

A key molecule for in planta bacterial virulence and fitness 

 

 
5.1 Abstract 

The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and 

oleander knot disease, uses the so called “indole-3-acetamide pathway” to convert tryptophan 

to indole-3-acetic acid (IAA) via a two-step pathway catalysed by enzymes encoded by the 

genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate 

IAA to lysine to generate the less biologically active compound IAA-Lys, via the enzyme 

IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be 

widespread in many P. syringae pathovars, even in the absence of the iaaM and iaaH genes 

for IAA biosynthesis.  

Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii 

were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL 

and ΔiaaM were hypervirulent and hypovirulent, respectively, and these features appeared to 

be related to their differential production of free IAA. Using the Phenotype Microarray 

approach, the chemical sensitivity of these mutants was shown to be comparable to that of the 

wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is 

naturally present in plant exudates and is used as a biocide, which severely impaired the 

growth of ΔiaaL and ΔiaaM, as well as the growth of the non-pathogenic mutant ΔhrpA, which 

lacks a functional Type Three Secretion System (TTSS). According to the bioinformatics 

analysis of the Psn23 genome, a gene encoding a putative Multidrug And Toxic compound 

Extrusion (MATE) transporter was found upstream of iaaL. Similarly to iaaL and iaaM, its 

expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were 

identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH 

operon of P. savastanoi, suggesting their IAA-inducible transcription. The gene expression 

analysis of several genes related to TTSS, IAA metabolism, and drug resistance confirmed 

the presence of a concerted regulatory network in this phytopathogen among virulence, fitness 

and drug efflux. 

 

Keywords: Pseudomonas savastanoi; Phenotype Microarray; indole-3-acetic acid; IAA-

lysine synthase; Type Three Secretion System (TTSS); Multidrug And Toxic compound 

Extrusion (MATE); drug resistance; plant disease. 
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All figures and tables in this chapter are reproduced from Cerboneschi et al., 2016, Research Microbiology.   
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5.2 Introduction 

 

Auxins are an essential class of phytohormones that play a crucial role in virtually all aspects 

of plant development and growth, as well as in the response of plants to environmental stimuli 

including biotic and abiotic stresses [1-2]. The main naturally occurring auxin in plants is 

indole-3-acetic acid (IAA), the homeostasis of which guarantees its versatile role in plants 

mediated by a complex network of processes related to its biosynthesis, catabolism, reversible 

conjugation, signalling, and transport [3]. IAA is biosynthesized through several pathways 

from tryptophan (Trp), but Trp-independent routes are also known [4-7]. The free form of 

IAA is considered to be biologically active. However, in almost every plant tissue, this 

hormone is mostly conjugated, mainly to amino acids and sugars, and thus it is not more active 

[8-9]. IAA-conjugating enzymes, such as those encoded by the family of GH3 plant genes, 

contribute to the maintenance of cellular IAA homeostasis and bioactivity via an inhibitory 

feedback loop [8]. The dynamic regulatory role played by IAA, from the whole plant to the 

cellular level, also relies on rapid and specific alterations of the transcriptional activation of 

auxin-responsive genes according to the distinct thresholds of IAA, through the so called 

“auxin response element” (AuxRE), which is always present in their promoters [10-12]. 

Additionally, the transport and asymmetric distribution of IAA throughout the plant are 

dynamically modified in response to internal and external stimuli, mainly by the polar active 

transport (PAT) of IAA from cell to cell, which is mediated by changes in the expression and 

localization of specific plasma membrane-localised proteins (i.e., PIN, AUX), transporting 

IAA out of and into the plant cell, respectively [13]. Therefore, local IAA biosynthesis is 

dynamically integrated across the plant with mechanisms for its active transport, signalling, 

and perception, the regulation of which results in specific response outputs to nearly any 

endogenous and environmental input [14].  

Recently, several studies have shed light on the molecular basis of the role of IAA in plant-

pathogen interactions, particularly on the strategies adopted by phytopathogens to manipulate 

auxin homeostasis in plants to promote the infection process [15-18]. Basically, the localized 

increase in IAA during the first stages of their interaction with the host has been shown to be 

pivotal for plant pathogenic bacteria belonging to the Pseudomonas syringae group to promote 

plant susceptibility to infection [19-22]. In fact, P. syringae has also been demonstrated to 

take advantage of the accumulation in Arabidopsis-infected plants of an irreversibly catabolic 

conjugated form of IAA, IAA-Asp. Although it is less active in the plant than the free form, 

IAA-Asp has been shown to promote disease development by increasing P. syringae 

progression into the plant following the transcription of its virulence genes, as also observed 

for the plant pathogenic fungus Botrytis cinerea [15, 23]. Several of the P. syringae effectors 

secreted by the Type Three Secretion System (TTSS) have been shown to highjack the host 

plant systems for auxin biosynthesis, signalling and transport, to suppress active immune 

responses in susceptible plants [23-25]. 

Many plant-associated bacteria, including phytopathogens and symbionts, can also synthesize 

IAA using Trp as the main precursor [9, 26]. This feature was initially incorrectly believed to 

be restricted to gall-producing bacteria such as P. savastanoi and Pantoea agglomerans, in 

which IAA secretion was considered to be the main factor directly supporting the development 
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of the hyperplastic symptoms on the host [27-28]. However, it soon became evident that a 

broader distribution of IAA biosynthesis was also present in several non-gall-inducing 

phytopathogenic bacteria such as Dickeya dadantii [29]. The best characterized Trp-

dependent pathway in bacteria is the two-step process denoted as the indole-3-acetamide 

(IAM) pathway, where the enzymes tryptophan-2-monooxygenase (IaaM) and IAM hydrolase 

(IaaH) are encoded by the iaaM and iaaH genes, respectively, and sequentially convert Trp to 

IAM and then to IAA. This is the most common pathway in phytopathogenic bacteria, 

including P. savastanoi, in which the presence of the iaaL gene encoding the enzyme that 

conjugates IAA to the amino acid lysine to give IAA–Lys was first demonstrated [30]. This 

gene is widely distributed and conserved among P. syringae sensu lato species and pathovars, 

and no significant homology with any plant IAA-conjugating enzyme has been found [31]. 

Moreover, no plant hydrolases have been discovered to date for the catabolism of IAA–Lys, 

whereas several plant-associated bacteria have been shown able to hydrolyze plant auxin 

conjugates such as IAA–Asp [8].  

In this work, Phenotype Microarray (PM) technology was applied for the first time to P. 

savastanoi to test its chemical sensitivity patterns. Knockout mutants of strain Psn23 of P. 

savastanoi pv. nerii, with impaired IAA synthesis, conjugation or TTSS functionality, were 

all found to be more sensitive to 8 hydroxyquinoline (8-HQ) than their wild-type counterpart. 

Overall, the data obtained herein also offer the opportunity to unveil functional links among 

IAA metabolism, TTSS and drug efflux in P. savastanoi pv. nerii, and they provide 

information that could be useful in the near future for the development of alternative strategies 

for the control of this plant pathogenic bacterium. 
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5.3 Materials and methods 

Bacterial strains and growth conditions 

The P. savastanoi strain Psn23 and its mutants used in this study are listed in Table 1. They 

were routinely grown at 26°C as liquid or solid cultures, in King’s B (KB) [32] or in hrp-

inducing Minimal Medium (MM) [33]. Bacterial growth was monitored by determining the 

culture optical density at 600 nm (OD600) at different times during the incubation, and bacterial 

concentrations were estimated by serial dilutions and plate counts. For long-term storage, the 

bacteria were maintained at -20°C and -80°C in 40% (v/v) glycerol. The Escherichia coli 

strains TOP10 and ER2925 were grown in Luria–Bertani (LB) liquid or agarose medium [34]. 

Antibiotics, when required, were added to the medium at the following concentrations: 20 

µg/ml streptomycin, 50 µg/ml nitrofurantoin, 10 µg/ml gentamicin, and 50 µg/ml kanamycin. 

Any bacterial contamination was excluded by periodical monitoring using PCR-based assays 

specific for P. savastanoi [35-36]. 

 

 

Table 1: Bacterial strains, mutants and plasmids used in this study.   

Strain/Plasmid Relevant characteristics Reference/Source 

Strain   

E. coli TOP10 F-, mcrA, Δ(mrr‐hsdRMS-mcrBC) Φ80 lacZΔM15 ΔlacX74 recA1 

araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen, 

Carlsbad, USA 

E. coli ER2925 ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 

hisG4 rfbD1 R(zgb210::Tn10)TetS endA1 rpsL136 dam13::Tn9 xylA‐5 

mtl‐1 thi-1 mcrB1 hsdR2 

NEB, Hertfordshire, 

UK 

P. savastanoi pv. 

nerii (Psn23) 

Wild type This study 

∆hrpA hrpA in-frame deletion mutant of Psn23 This study 

ΔiaaM  iaaM in-frame deletion mutant of Psn23 This study  

ΔiaaL iaaL in-frame deletion mutant of Psn23 This study 

Plasmid   

pK18mobsacB sacB, lacZa, Km, mcs mobilizable vector Schafer et al. 1994 

pK18-∆hrpA pK18mobsacB derivative, in-frame deletion of the hrpA gene (273 bp) This study 

pK18-∆iaaM pK18mobsacB derivative, in-frame deletion of the iaaM gene (1101 

bp) 

This study 

pK18-∆iaaL pK18mobsacB derivative, in-frame deletion of the iaaL gene (561 bp) This study 

 

 

Molecular techniques 

PCR, restriction digestion, ligation, DNA electrophoresis, and transformation were performed 

according to standard procedure [37]. The plasmids used and those generated in this work are 

listed in Table 1. Genomic DNA from P. savastanoi strains was extracted from single bacterial 

colonies using thermal lysis [37], or from bacterial cultures (OD600 = 0.8) using the Puregene® 

Genomic DNA Purification Kit (Gentra Systems Inc., Minneapolis, MN, USA) according to 

the manufacturers' instructions. The DNA concentration was evaluated both 

spectrophotometrically with a NanoDrop™ ND-1000 (NanoDrop Technologies Inc., DE, 

USA) and visually by standard agarose gel electrophoresis [1% agarose (w/v) in TBE 1×] 

[37]. For plasmid DNA extraction, NucleoSpin® Plasmid (Macherey-Nagel GmbH and Co. 

KG, Düren, Germany) was used according to the manufacturer's protocol.  Amplicons were 
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purified from the agarose gel using NucleoSpin® Gel and PCR clean-up (Macherey-Nagel 

GmbH and Co.), and double-strand sequenced at Eurofins Genomics (Ebersberg, Germany). 

Multiple sequence alignments and comparisons were performed using the computer package 

CLUSTALW (version 2, http://www.ebi.ac.uk/Tools/clustalw2) [38] and with the Basic Local 

Alignment Search Tool (BLAST, http://www.ncbi.nlm.nih.gov/blast) [39]. Primers were 

designed using Beacon Designer 7.7 software (Premier Biosoft International, Palo Alto, CA, 

USA) (Table 2). The 7,548-bp sequence, containing the genes iaaL, matE, iaaM and iaaH, 

was deposited in GenBank under Accession Number KU351686. 

 

        Table 2: Primers used in this study.   

 

Primer name Primer sequence (5’-3’) 

hrpA_XbaI_For TTTCTAGAATCTGTACTTTCGCCTTAA 

hrpA_cross_Rev CCGGATCCACTAAACTTAAACTCAGAGAACTTATGATGCTC 

hrpA_cross_For GTTTAAGTTTAGTGGATCCGGCCAGTTCTGATTTCTTGAATG 

hrpA_EcoRI_Rev TTGAATTCAAGTTATCTTCCTTGAGTTCG 

iaaM_XbaI_For TTTTCTAGACAAAACCTTTACCGAATG 

iaaM_cross_Rev CCGGATCCACTAAACTTAAACTTTTTCAGGTAGTG 

iaaM_cross_For AAGTTTAGTGGATCCGGGCAGCGATTGTTTTTTCA 

iaaM_EcoRI_Rev TTTGAATTCCTGAGTTGACTGACAATC 

iaaL_EcoRI_For AAAGAATTCGTCATTCAGGTTGCTTTT 

iaaL_cross_Rev AAAGTTTAAGTTTAGTGGATCCGGGTTCTGAAGTCCTGATAAG 

iaaL_cross_For AAACCGGATCCACTAAACTTAAACTGAATACGAGTTTCTGTC 

iaaL_XbaI_Rev AAATCTAGAGATTTCGGCTATGATAAC 

hrpA_ RT_ For GCAGGGTATCAACAGCGTCAAG 

hrpA_ RT_ Rev CCGTTCTCTTCGTTCGCAGTG 

iaaM_ RT_ For TTCACTGCCTCACGGATAGCG 

iaaM_ RT_ Rev CGACTGGATGGTGGTGGGAAG 

iaaL_ RT_For ACCTCAGCAGCGGCGTAAAG 

iaaL_ RT_ Rev TCGTCGGTGTGTATGGCAGTTC 

iaaH_RT_For TGATGATGCCGATATTGTC 

iaaH_RT_Rev AAGGTGGTGATTGATGATG 

matE_RT_For CATCGCAGCCATTACG 

matE_RT_Rev AGCCTGAAGAACCTGTC 

hrpL_RT_For GTATTGCGTTGAACCTGAT 

hrpL_RT_Rev CGTCTACCTGATGAGTGATA 

hopAB1_RT_For CGCAGGCATAATCATAGT 

hopAB1_RT_Rev CGGTTCAAGCGACATT 

 

 

Generation of Psn23 knockout mutants 

The ΔhrpA, ΔiaaM and ΔiaaL mutants were constructed by in-frame deletion of the hrpA, 

iaaM and iaaL genes, respectively, from the Psn23 wild-type genome (Table 1), using marker 

exchange mutagenesis [40]. Knockout constructs were generated by overlap extension PCR 

using the primers listed in Table 2. The two DNA fragments flanking each in-frame deletion 

were amplified from Psn23 genomic DNA as a template with Pfu polymerase (Promega Corp., 
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Madison, WI, USA). The plasmids generated in this work are based on pK18mobsacB, a 

suicide vector for P. syringae sensu lato that allows SacB counterselection [12-13], and they 

are listed in Table 1. The recombinant vectors were transferred into electrocompetent Psn23 

cells by electroporation with Gene Pulser XCell™ (Bio-Rad Laboratories Inc., Hercules, CA, 

USA) [41]. SucR colonies were screened by PCR, and the marked deletions were then 

confirmed by sequencing. 

 

Quantification of bacterial IAA synthesis 

The amount of IAA produced by P. savastanoi strains was assessed both by the Salkowski 

assay [42] and using high-performance liquid chromatography (HPLC). IAA, L-Trp, indole-

3-acetamide (IAM), and LC-MS-grade acetonitrile, methanol and formic acid were purchased 

from Sigma-Aldrich, Inc. (St. Louis, MO, USA). The UniPrep® syringeless filtration device 

(0.25 μm) was obtained from Agilent Technologies (Santa Clara, CA, USA). Standard stock 

solutions (1,000 µg/ml) of IAA and IAM were prepared in methanol, while the standard Trp 

stock solution (1,000 µg/ml) was prepared in ultra-pure Milli-Q water. Working solutions for 

each standard were prepared by appropriate dilution of the stock solution with 35% MeOH 

and 0.1% formic acid. Samples were prepared from 0.1 g of lyophilised bacterial supernatant, 

resuspended in 1 ml of 35% MeOH and 0.1% formic acid, further diluted 1:10 in the same 

solvent, and filtered using a 0.25-μm Uniprep® syringeless filtration device. The filtrates were 

analysed by HPLC-DAD/FD or HPLC-MS, with data acquisition and data analysis carried 

out by the ChromQuest™ 4.2 Chromatography Data System and MassHunter® Workstation 

Software (B.04.00), respectively. 

 

Arabidopsis root elongation assay 

Seeds of A. thaliana Col-0 were surface-sterilized in 1% bleach, rinsed three times in sterile 

distilled water, and then stratified at 4°C for 2-4 days to obtain uniform germination. The 

Arabidopsis Col-0 seedlings were then sown on new half-strength MS plates and grown in a 

vertical orientation. At 4 cm from the root tip, 15 µl of a bacterial suspension (OD600=0.5) of 

Psn23 or of its mutants were spotted, as previously described [43]. Photographs were obtained 

after an additional 4 days of vertical growth, and the root length was measured using ImageJ 

software. The length of newly elongated roots was measured, and the relative root length was 

calculated. The mean ± standard deviation (SD) for 10 to 15 seedlings was calculated, and 

each assay was repeated at least three times. 

 

Pathogenicity tests 

In vitro micropropagated oleander (Nerium oleander L.) plants with red double flowers 

(Vitroplant Italia s.r.l., Cesena, Italy) were grown for 3 weeks at 26°C on Murashige-Skoog 

medium (MS) [44], without the addition of phytohormones and with a photoperiod of 16-h 

light/8-h dark. The plants were then wounded on the stem at the second internode using a 1-

ml syringe needle, and immediately inoculated with 1 µl of a bacterial suspension in sterile 

physiological solution (SPS, 0.85% NaCl in distilled water), with an OD600 = 0.5 

(approximately 0.5×108 Colony Forming Unit/ml, CFU/ml). Negative control plants were 

inoculated with SPS alone. The plants were then incubated at 26°C under a 16-h light/8-h dark 
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photoperiod and periodically monitored for the appearance of symptoms. Photographic 

records were obtained at 7, 14 and 21 days post-inoculation (dpi). At the same time points, 

bacterial growth was also estimated as previously described [36, 45]. Three independent 

experiments were performed, and nine plants for each P. savastanoi strain were inoculated in 

each run. 

 

Hypersensitive response assays 

As a model plant for the hypersensitive response (HR) assay, Nicotiana tabacum var. Burley 

White was used. The plants were grown at 24°C with a relative humidity of 75% and a 

photoperiod of 16/8-h light/dark. Bacterial cultures were grown overnight in KB medium at 

26°C and resuspended in SPS (OD600 = 0.5). The final bacterial cell concentration was 

confirmed by the serial dilution agar plating method. Using a 2-ml blunt-end syringe, 

approximately 100 μl of the bacterial suspension was infiltrated into the abaxial mesophyll of 

fully expanded leaves of three tobacco plants [46], with six replicates tested per strain in each 

of the three independent experiments. The development of HR was assessed according to the 

presence of macroscopic tissue collapse at 24 h post-inoculation. Photographic records of the 

results were obtained. 

 

Phenotype Microarray 

P. savastanoi strains were tested on chemical sensitivity panels (PM09-PM20) using PM 

technology (Biolog Inc., Hayward, CA, USA). Overall 1,152 different conditions were tested, 

including several concentrations of osmolytes (PM09), pH stresses (PM10) and a wide variety 

of potentially toxic compounds (PM11-20). In the PM11-20 panels, each chemical is 

dispensed at four increasing concentrations in adjacent wells, from the lowest to the highest. 

The complete list of compounds assayed can be obtained at http: 

//www.biolog.com/pdf/pm_lit/PM1-PM10.pdf and http: 

//www.biolog.com/pdf/pm_lit/PM11-PM20.pdf. PM uses tetrazolium violet reduction as a 

reporter of active metabolism [47]. Reduction of the dye causes the formation of a purple 

colour that, recorded every 15 min, provides quantitative and kinetic information about the 

response of the bacterial cells to each compound [47]. Each strain was grown overnight at 

26°C on BUG agar (Biolog, Inc.). Colonies were picked using a sterile cotton swab and 

suspended in SPS. The cell density was adjusted to 81% transmittance (T) on a turbidimeter 

(Biolog, Inc.). The bacterial suspension was diluted twelve times in KB medium 

supplemented with 25 mM L-Trp and 1x dye A (Biolog Inc.). All plates were incubated at 

26°C in an Omnilog reader (Biolog, Inc.), and the readings were recorded for 96 h. Kinetic 

data were analysed using Omnilog-PM software (release OM_PM_109M). For each strain, 

the area of the kinetic curves detected in PM9-20 was exported and used to calculate the 

difference between the wild-type and each mutant. Differences greater than 40,000 Arbitrary 

Omnilog Units (AOU) were considered relevant to identify phenotypic differences between 

the wild-type and each of its mutants. 

 

 

 



Chapter 5 

 

114 

 

Quantitative gene expression analysis 

Bacterial gene expression was evaluated by real-time PCR. Bacterial cells of wild-type Psn23 

and its mutants were grown overnight in KB (starting concentration OD600=0.1), washed twice 

with SPS, and transferred into MM alone or supplemented with L-Trp (250 µM), IAA (200 

µM), 8-HQ (10 µM), or IAA+8-HQ (200 µM and 10 µM, respectively). Cells were collected 

after 24 h of incubation at 26°C with shaking (100 rpm) and used for RNA extraction 

performed with a NucleoSpin® RNA Plus (Macherey-Nagel GmbH and Co. KG, Düren, 

Germany). Residual genomic DNA was removed using a NucleoSpin® gDNA Removal 

Column (Macherey-Nagel GmbH and Co.). RNA Reverse transcription was performed using 

the iScript™ Advanced cDNA Synthesis kit (Bio-Rad Laboratories Inc.) with approximately 

2 µg of total RNA. Diluted cDNA was analysed with SsoFast™ EvaGreen® Supermix (Bio-

Rad Laboratories Inc.), using the CFX96 cycler – Real-Time PCR Detection System and 

CFX-manager software v1.6 (Bio-Rad, Laboratories Inc.).  To normalise the expression of 

each gene, the 16S rDNA expression level was used as a housekeeping gene. For each sample, 

three replicates were assessed, and three independent experiments were conducted. The 

primers used are listed in Table 2. 

 

Data analysis 

Statistically significant differences among treatments were calculated by one-way ANOVA 

with Tukey-Kramer post-test (p<0.05) with PAST software (Version 3.11, Øyvind Hammer, 

Natural History Museum, University of Oslo). 
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5.4 Results 

 

A prokaryotic AuxRe identified in the promoters of genes for IAA biosynthesis and 

conjugation in P. savastanoi pv. nerii  

In the Psn23 genome, the iaaM/iaaH operon for IAA biosynthesis is positioned in close 

proximity to the gene iaaL for IAA conjugation, flanking an insertion sequence of the IS4 

family on a 7,548-bp DNA fragment. Moreover, an ORF encoding a putative Multidrug And 

Toxic compound Extrusion (MATE) efflux transporter is located upstream of iaaL (Figure 

1A), hereafter denoted as matE. According to the in silico analysis, the iaaL and matE genes 

are divergently transcribed from the iaaM/iaaH operon. In the 5’ region of the iaaM/iaaH 

operon, as well as upstream of iaaL and matE, hrp box promoter sequences were found, 

suggesting their TTSS-dependent expression and HrpL-regulated transcription (Figure 1B).  

 

Figure 1. Diagrams illustrating the physical and functional relationships among IAA metabolism, TTSS 

and drug efflux in P. savastanoi pv. nerii strain Psn23. (A) Organization of the genomic region containing 

the iaaM/iaaH operon and the iaaL and matE genes, including the putative promoters and factors 

regulating their expression. The transcriptional direction of each gene is indicated in orange, yellow, and 

grey arrows for iaaL, matE, and the iaaM/iaaH operon, respectively. hrp-box promoters: black arrows; 

AuxREs: green arrows; DS element: blue arrow. (B) The hrp-box promoter strength evaluated in silico 

for five different loci related to IAA metabolism and TTSS activation. Vertical blue arrows indicate the 

promoter strength from the bottom (low activation) to the top (high activation). Black bold nucleotides 

indicate perfect identity with the hrpA promoter; red bold nucleotides underline specific mismatches.  

 

 
 

However, several substitutions are present on the first 5 nucleotides of the –35 consensus 

motif (GGAACC) and the first 4 nucleotides of the –10 motif (CCACNNA) of these 

promoters in comparison to the canonical hrp-box driving hrpA transcription in P. syringae 

sensu lato (Figure 1B). Additionally, other regulatory elements were found that have never 

been identified previously in P. savastanoi or in any other P. syringae sensu lato. In particular, 

a putative prokaryotic AuxRe was identified upstream of the iaaL gene and the iaaM/iaaH 

operon of Psn23. The short sequence (TGTCCA) resembles that located upstream of the ipdC 

gene of Azospirillum brasiliense, encoding the key enzyme for Trp-dependent IAA 

biosynthesis in this bacterium and the only prokaryotic AuxRe identified to date [48]. With 
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respect to the start codon for iaaL, the AuxRe motif is located at positions (–38) to (–33). 

Moreover, in the iaaL promoter, a dyadic sequence (DS) has also been identified between 

positions (–42) and (–71), characterized by a perfect 8-bp inverted repeat separated by a 14-

bp spacer, further supporting the auxin-inducible expression of iaaL in P. savastanoi. 

Conversely, no DS was found associated with the putative AuxRe in the promoter of the 

iaaM/iaaH operon (Figure 1A). By an in silico analysis of the 5’ region of the iaaL gene and 

the iaaM/iaaH operon in other P. syringae phytopathogens, putative AuxREs were also 

identified in P. savastanoi pv. nerii (EW 2009, CFBP5067 and ICMP16943), while a DS 

sequence was found only in P. syringae pv. tomato DC3000 (data not shown).  

 

The increase in free IAA secretion determines the hypervirulence of the ΔiaaL mutant 

After 24 and 48 h of growth on MM amended with L-Trp (250 µM), indoles production was 

evaluated in the culture supernatants of Psn23 and the mutants ΔiaaM and ΔiaaL. Given 

the presence of several hrp box motifs in the promoters of the genes for IAA synthesis and 

conjugation, the mutant ΔhrpA was also examined for comparison. The 

colorimetric Salkowski assay was used for an initial screening because it is able to detect IAA 

with a high specificity among other indoles (Figure 2). As expected, indole production by 

ΔiaaM was negligible. Conversely, the mutant ΔiaaL produced significantly higher amounts 

of IAA than the wild-type Psn23, with approximately 61.3 and 64.5 µg/ml of IAA equivalents 

after 24 and 48 h of growth, respectively.  

 

Figure 2. Quantification of IAA production using the Salkowski assay for Psn23 and its ΔiaaL, ΔiaaM, and 

ΔhrpA mutant supernatants at 24 (green) and 48 h (blue) post-inoculation on MM supplemented with L-

Trp (250 µM). The data are expressed as the average of three replicates ± standard deviation (SD). 

Statistically significant differences are represented by different letters above the bars (ANOVA and the 

Tukey test, p<0.05).   

 

 

 
 

 

Regarding ΔhrpA, IAA biosynthesis was comparable to that of Psn23 (approximately 40 and 

37 µg/ml of IAA equivalents after 24 h and 48 h of growth, respectively). These results were 

then confirmed using an innovative method developed in this work that is based on liquid 

chromatography coupled to molecular fluorescence and to tandem mass spectrometry, 

specifically high resolution QToF. The fluorescence chromatograms at 340 nm (λex=280 nm) 
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of Trp, IAA and IAM used herein as standards (1 µg/ml) were compared with those from the 

lyophilised supernatants of Psn23 and its three mutants ΔiaaM, ΔiaaL and ΔhrpA. In 

particular, the fluorescence chromatograms for Trp and for IAA displayed a peak with a 

retention time of 2.68 min and 12.7 min, respectively. As expected, ΔiaaM was unable to 

convert Trp into IAA, and thus the peak at 2.68 min was present while that at 12.7 min was 

absent (Figure S1). Conversely, the ΔiaaL chromatogram showed both peaks for Trp and IAA. 

Surprisingly, both Psn23 and its ΔhrpA mutant exhibited the peak corresponding to Trp (2.68 

min) but not that at 12.7 min for IAA. Moreover, another unexpected signal was a retention 

time of 3.28 min that was not attributable to any of the standards used herein. Both Psn23 and 

ΔhrpA have the ability to convert IAA to IAA-Lys, unlike ΔiaaL. Thus, it was hypothesized 

that the peak at 3.28 min corresponded to IAA-Lys. Unfortunately, there is no commercially 

available standard for IAA-Lys, and thus this analyte requires further characterisation by 

HPLC-ESI-Q-ToF. Figure S2 shows the mass spectrum, acquired using positive ionization, 

for this unidentified indolic compound. The presence of m/z 304 ([M+H]+) and 130 ([NH2-

(CH2)4-CH-COOH]+) unequivocally confirmed that this compound corresponded to IAA-Lys.  

The higher content of free IAA in the ΔiaaL mutant in comparison to wild-type Psn23 was 

also biologically and quantitatively demonstrated by analysing the effect of bacterial IAA on 

root elongation and lateral root formation in A. thaliana seedlings (Figure 3).  

 

Figure 3. Root elongation and lateral root formation in A. thaliana Col-0 seedlings grown on vertical plates 

in the presence of wild-type Psn23, ΔiaaL, ΔiaaM, and ΔhrpA supernatants.  
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After 14 days, the mean length of the main root in the ΔiaaM-treated seedlings was 6.92 ± 

0.46 cm, which is comparable to that obtained for untreated seedlings (6.782 ± 0.34). 

Similarly, the mean root length of the ΔhrpA-treated seedlings (5.50 ± 0.46 cm) was longer 

than that of wild-type Psn23-treated seedlings (3.78 ± 0.13 cm). Conversely, the mean length 

of the roots of A. thaliana seedlings treated with ΔiaaL were extremely reduced (2.57 ± 0.06 

cm). Overall these data biologically confirmed the higher levels of free IAA produced by the 

ΔiaaL mutant in comparison to Psn23, inducing a strong inhibition of root elongation. As 

expected, this effect was not observed in A. thaliana seedlings treated with the ΔiaaM mutant, 

which is unable to synthesize IAA. According to the bimodal and opposite effect of the free 

IAA concentration on the primary root length and local differentiation events, massive lateral 

root development was also observed following ΔiaaL treatment (Figure 3). 

Given the high production of free IAA by the ΔiaaL mutant, and considering the conflicting 

results reported to date regarding the role of the iaaL gene in the virulence of P. syringae 

sensu lato, pathogenicity trials were subsequently conducted using micropropagated oleander 

plants. Together with ΔiaaL, the wild-type Psn23 and the mutants ΔiaaM and ΔhrpA were 

also used for comparison. The development of hyperplastic symptoms was visually observed 

and recorded at 7, 14 and 21 dpi (Figure 4A). 

 

Figure 4. Pathogenicity trials of micropropagated oleander plants conducted using on Psn23 and its 

mutants ΔiaaL, ΔiaaM, and ΔhrpA. A) Knot development at 21 days post-infection. Black arrows indicate 

the site of bacterial inoculum. (B) In planta bacterial growths at 7 (green), 14 (blue) and 21 (yellow) days 

post-infection. Values are the mean of 3 independent experiments with 9 replicates for each strain ± 

standard deviation (SD). ANOVA revealed statistically significant differences (p<0.05), comparison using 

the Tukey post-test are indicated by letters, where different letters indicate statistically significant 

differences.  
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At the same time points, in planta bacterial growth was also assessed (Figure 4B). The mutant 

ΔiaaL always induced more extensive hyperplastic lesions than Psn23. The symptoms were 

not restricted to the inoculation site, as observed for Psn23, but the upper part of the plant was 

also affected. Bacterial multiplication in planta was significantly correlated to symptoms and 

disease severity, with ΔiaaL achieving higher CFU values than Psn23 at all the time points 

considered (Figure 4B). Conversely, hyperplastic symptoms and bacterial growth were 

drastically reduced or completely abolished in the case of ΔiaaM and ΔhrpA, respectively, as 

expected (Figure 4B). Concerning the HR analysis of tobacco, ΔiaaM and ΔiaaL caused a 

typical HR, similar to that observed with Psn23, while ΔhrpA did not. These results confirmed 

that ΔhrpA is not more pathogenic (Figure 5).  

 

Figure 5. HR assay on tobacco leaves at 48 h post-infiltration. (A) Wild-type Psn23 (1), iaaM (2), hrpA 

(3) and SPS (4) as negative controls. (B) Wild-type Psn23 (1), iaaL (2), hrpA (3) and SPS (4) as negative 

controls.  

 

 
 

 

 

PM analysis as a tool to unravel the relationship in P. savastanoi pv. nerii among IAA 

metabolism, TTSS and resistance to toxic compounds 

Undoubtedly, the fitness in planta of a bacterial phytopathogen depends not only on its 

virulence and its ability to multiply in its hosts, but also on its resistance to a number of toxic 

and antimicrobial compounds of plant origin that are produced before and during the infection 

process. 

As a result of the unexpected hypervirulence of the ΔiaaL mutant, we decided to investigate 

potential changes in the phenotype of this mutant in comparison to wild-type Psn23 that could 

justify its reduced fitness and competitiveness in nature. Moreover, the presence of a gene 

encoding a putative MATE upstream of iaaL further prompted a wide phenotypic screening. 

PM analysis was applied to strain Psn23 and to its mutant ΔiaaL. The mutants ΔiaaM and 

ΔhrpA were also included for comparison. 



Chapter 5 

 

120 

 

By using twelve panels (PM9-PM20), their sensitivity to pH, osmolytes and to 240 toxic 

chemicals, each at four different concentrations, was evaluated. The three mutants showed the 

same pH and osmolyte sensitivity profiles compared with wild-type Psn23. As main 

characteristics, they tolerated pH values higher than 5.5, as well as NaCl concentrations lower 

than 4%. Conversely, the sensitivity profiles of the mutant strains to toxic compounds were 

not completely overlapping those of the wild-type Psn23 (Table 3). The most noticeable 

results were those obtained following 8-HQ treatment, in which the three mutants exhibited 

the same behaviour. In particular, ΔiaaL, ΔiaaM and ΔhrpA showed a significantly higher 

sensitivity towards 8-HQ than Psn23, although to different extents. The most sensitive strain 

was ΔiaaL.  

 

Table 3. Difference between the areas of the kinetic curve of the wild type and the three mutant strains 

detected by PM technology.  

 

 
* Four increasing doses of the toxic compounds were tested, dose I is the lowest and dose IV is the highest. 

** Differences higher than 40,000 AOU were considered relevant to identify phenotypic differences between 

the mutants and the wild type. 

 

 

Following these findings, the expression of matE, as well as of several genes related to IAA 

metabolism and to TTSS, was evaluated by real-time PCR and on Psn23 grown in vitro on 

MM supplemented with 8-HQ. As shown in Figure 6, the transcript levels of matE were the 

only ones to be upregulated in the presence of 8-HQ. Although this increase was quite 

marginal (1.5-fold), this result could support the hypothesis of 8-HQ efflux in Psn23 mediated 

by the hypothetical transporter encoded by matE. Moreover, in the presence of 8-HQ, the 

expression levels of matE were generally lower in the mutants compared with Psn23, 

explaining their higher sensitivity to this antimicrobial compound in the PM experiments 

Figure 7A.  
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Figure 6. Differential gene expression of wild-type Psn23 grown in vitro on MM alone or supplemented 

with L-Trp (250 µM), IAA (200 µM), 8-HQ (10 µM), and IAA+8-HQ (200 µM and 10 µM, respectively). 

Gene map: hopAB1 in blue, hrpL in orange, iaaH in grey, iaaL in yellow and matE in green. Data are the 

averages of triplicates ± standard deviation (SD). Asterisks indicate significant differences compared with 

the untreated sample at p<0.05.   
 

 
 

 

Figure 7. Relative gene expression analysis of the ΔiaaM, ΔiaaL, and ΔiaaA mutants grown in vitro on MM 

alone or supplemented with (A) 8-HQ (10 µM) and (B) IAA (200 µM) and compared with wild-type Psn23. 

Gene map: hopAB1 in blue, hrpL in orange, iaaH in grey, iaaL in yellow and matE in green. Asterisks 

indicate significant differences compared with wild-type Psn23 supplemented with the same treatment at 

p<0.05.   
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The expression of TTSS genes such as hrpL and hopAB1, induced by in vitro growth on MM, 

was strongly reduced in wild-type Psn23 in the presence of IAA (200 µM) (Figure 6). This 

down-regulation also occurred when MM was supplemented with Trp (250 µM), likely 

because IAA synthesis was carried out by Psn23 using Trp as a precursor (Figure 4). Likewise, 

the expression of genes such as iaaH, iaaL and matE was also reduced in response to IAA or 

Trp (Figure 6), as expected for the presence of hrp box motifs in their promoters (Figure 1B). 

Surprisingly, the inhibition caused of TTSS-regulated genes by IAA was largely removed 

when 8-HQ was applied together with IAA. These data could suggest a further role for the 

putative MATE transporter encoded by matE, in addition to conferring resistance to drugs, 

mediating IAA efflux (Figure 6). In support of this hypothesis, the expression levels of matE 

were upregulated in the ΔiaaM, ΔiaaL and ΔhrpA mutants in comparison to wild-type Psn23 

when IAA was added to the MM (Figure 7B). This result suggested a kind of repressive 

mechanism directly or indirectly driven by TTSS to activate drug or IAA efflux during 

specific stages of the infection process when TTSS is downregulated, or even switched off. 
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5.5 Discussion 

 

IAA biosynthesis, as well as of that of many indoles, is widespread among Gram-positive and 

Gram-negative bacteria, as well as in many fungi, including many pathogens of plants and 

even humans [49]. Trp is mostly used as a precursor of IAA, essentially by the IAM or IPA 

pathways [50]. While the pivotal role of this phytohormone for the development of 

hyperplastic symptoms caused by Ustilago maydis and P. savastanoi on their hosts [51], or 

for rhizobia and ectomycorrhizal fungi to support their beneficial interaction with plants is 

very clear [52], its physiological role in the presence of IAA produced by plant pathogenic 

necrotrophic fungi such as Colletotrichum and Fusarium spp. is less intuitive [53-54]. It is 

even less well understood when IAA biosynthesis occurs in bacteria and yeasts that are 

pathogenic to mammals, or that belong to different soil and aquatic ecosystems [55]. In fact, 

in the last few years, accumulating scientific evidence has indicated that IAA is indeed a 

signalling molecule for bacteria and is essential for the regulation of their physiology, adaption 

to stress conditions and communication, as well as the mediation of several host-microbe 

interactions [49]. Although highly speculative, these findings are not surprising when 

considering that IAA has the same indole-like chemical structure as that of other eukaryotic 

hormones such as serotonin, melatonin, and epinephrine [56]. 

Regarding plant-associated bacteria, IAA has been shown to determine changes in bacterial 

gene expression in the non-gall-forming phytopathogen D. dadantii (formerly E. herbicola) 

3937 [57], in A. tumefaciens [58-59], and in the plant growth-stimulating rhizobacterium A. 

brasilense [60], in which its ipdC gene has been the only bacterial gene reported to possess 

an AuxRe in its promoter as observed in the auxin-responsive genes of plants [48]. Similarly, 

in the yeast Saccharomyces cerevisiae, several IAA-inducible genes are regulated at high IAA 

concentrations by the fungal transcriptional activator YAP-1, which is able to bind to their 

promoters to induce a switch towards invasive behaviour, together with an arrest of cell 

growth. Conversely, at lower concentrations, IAA induces S. cerevisiae filamentation and 

adhesion, thus supporting plant infection. This phenotype conversion also involves a family 

of transporters, and it is noteworthy that YAP-1 is also pivotal for the pleiotropic drug 

resistance of S. cerevisiae [61].  

Antibiotic resistance is among the adverse conditions against which IAA increases tolerance 

in E. coli, in which indole has been shown to turn on drug efflux pumps [62-63]. An analogous 

relationship between IAA/indole biosynthesis and drug resistance has not been reported to 

date for phytopathogenic bacteria belonging to the P. syringae group, whereas IAA production 

and its increase during the early phases of infection have been shown to be essential for 

alterations of host auxin signalling, to enhance plant susceptibility and to promote successful 

infection [15].  

In the present study, IAA metabolism, not just its biosynthesis, was found to be an essential 

virulence determinant for P. savastanoi. In fact, the ΔiaaL mutant was found to be 

hypervirulent on its host plant N. oleander, where it is able to reach higher in planta population 

densities and cause more extended hyperplastic symptoms than wild-type Psn23. This finding 

was fully coherent with the increased amounts of free IAA produced by ΔiaaL in comparison 

to Psn23, as assessed using the Salkowski assay and HPLC MS. Conversely and as expected, 
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the ΔiaaM mutant was found to be hypovirulent. This ΔiaaL phenotype contrasted with the 

data reported thus far for P. savastanoi and P. syringae pv. tomato DC3000 [30, 64-65]. 

However, the opposite results for P. savastanoi could likely be due to downstream 

transcriptional consequences derived from inactivation of the iaaL gene by transposon 

mutagenesis [30]. Concerning P. syringae pv. tomato DC3000, previous reports are 

conflicting, mainly due to substantial differences in the experimental design of the 

pathogenicity tests applied [64-65]. Moreover, it is reasonable that IAA metabolism has 

different mechanisms in P. syringae pv. tomato DC3000 compared with those adopted by a 

hyperplastic bacterium such as Psn23. 

According to the data from the phenotypic characterization caused by PM technology, both 

ΔiaaL and ΔiaaM were shown to be more sensitive than Psn23 towards some antibiotics and 

biocides, with a significant reduced resistance to 8-HQ. This quinoline derivative is produced 

by plants in nature, generally secreted into their exudates, and used as an antimicrobial agent 

in agriculture and other industrial sectors during chemical synthesis. Several mechanisms have 

been proposed to support 8-HQ antibiotic-like activity, such as a lipophilic chelator and an 

inhibitor of TTSS, of multi-drug efflux pumps and of ribonucleic acid synthesis, although 

definitive evidence is not yet available [66-67]. Overall the PM data concerning the sensitivity 

of both ΔiaaL and ΔiaaM to 8-HQ was also confirmed for P. savastanoi pv. nerii, as already 

known for E. coli. Thus, IAA has a supplementary role as a fitness cost for the survival of 

these bacteria under stressful conditions, such as the presence of antimicrobials produced by 

the antagonists they find in their epiphytic phase and by the host plant during infection. 

Similarly, most P. syringae pathovars produce IAA even in the absence of hyperplastics, and 

the iaaL gene is widespread in P. syringae sensu lato. This finding strongly supports the 

existence of additional roles for IAA besides its involvement in plant-bacterial phytopathogen 

interactions, to manipulate plant auxin signalling, and even to enhance resistance to 

antimicrobial and toxic compounds. 

Here, we demonstrate that the ΔhrpA mutant of Psn23, with an impaired TTSS and diminished 

pathogenicity, is also more sensitive than the wild-type towards 8-HQ. The existence of a 

physiological link between IAA metabolism and TTSS is already known. In particular, high 

IAA concentrations (up to 1 mM) have been found to have a strong inhibitory activity on the 

TTSS functionality of P. savastanoi pv. savastanoi [29], and further demonstrated herein for 

P. savastanoi pv. nerii Psn23. According to this inhibitory activity of IAA on TTSS, the 

bacterial content of this auxin in its biologically active form must be carefully regulated and 

modulated in different manners during the various phases of the interaction of 

phytopathogenic bacterial with their host plants, to guarantee their epiphytic and endophytic 

survival as well as a successful infection. The tight control of intracellular levels of free IAA, 

and therefore of IAA metabolism, must be even more stringent for a hyperplastic 

phytopathogenic bacterium such as P. savastanoi, in which the amount of free IAA is pivotal 

for the development of the typical symptoms. 

The in silico analysis of the Psn23 genomic region, including the iaaM/iaaH operon and the 

iaaL gene operons, further supports this functional connection between IAA metabolism and 

TTSS, according to the presence of hrp box motifs in their promoters. Moreover, this analysis 

introduces an additional element to relate these systems that could explain the higher 
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sensitivity to 8-HQ observed in the PM experiments for the ΔiaaL, ΔiaaM and ΔhrpA mutants 

in comparison to wild-type Psn23. Close to iaaL, a gene encoding a putative MATE was 

found, as also recently reported for P. syringae pv. tomato DC3000 and P. savastanoi pv. 

savastanoi NCPPB3335, and it was very conserved among P. syringae bacteria belonging to 

genomospecies 3 [64, 68]. In the promoter region upstream of the matE gene of Psn23, an hrp 

box sequence was found, suggesting its HrpL-dependent transcription.  

In addition, several other features were identified, which could be considered to 

simultaneously regulate intracellular IAA levels and TTSS activation, and differentially 

regulate them during the course of bacterial infection. Here, for the first time, a sequence 

resembling the AuxRe of IAA-inducible plant promoters was identified in P. savastanoi, 

located at the 5’ end of the iaaM/iaaH operon, as well as to that of the iaaL gene. To date, a 

similar prokaryotic auxin-responsive element has been reported and found to be active only 

in the plant growth-promoting rhizobacterium A. brasilense, in which the ipdC gene is 

activated by IAA, the end-product of this pathway, via a positive feedback regulation [48]. 

The AuxRe elements identified herein in Psn23 are preceded by a conserved hrp box motif. 

This modular architecture resembles that of plant composite AuxREs, in which the TGTCTC 

element is not sufficient to confer auxin responsiveness to the promoters [69]. In composite 

AuxREs, the TGTCTC element requires a coupling element that is located close to or 

overlapping the TGTCTC motif, which confers constitutive expression of the promoter to 

which it belongs and is not responsive to auxin. Thus, the TGTCTC element acts as a repressor 

of the expression induced by the constitutive element when auxin levels are low. Conversely, 

this repression is released in response to high auxin levels, and the expression driven by the 

composite AuxREs is activated. Basically, we hypothesize that in P. savastanoi, IAA 

synthesis and conjugation are regulated by IAA. The DS element associated with the AuxRe 

of iaaL, but not with that of iaaM/iaaH operon, would allow differential IAA-inducible 

expression of these genes in P. savastanoi, as expected based on their function in IAA 

metabolism. In particular, at high IAA concentrations, the DS element of iaaL would 

guarantee its IAA inducibility by releasing the repression caused by TTSS through HrpL or 

other unknown TTSS-dependent transcription factors, as observed for the ipdC gene of A. 

brasilense. A similar scenario would explain the production of IAA by P. savastanoi after 

successful infection, which is essential to support the development of the hyperplastic knots 

in which the bacterium resides and thus avoid necrosis of the infected plant tissues. 

Accordingly, IAA-producing strains of P. agglomerans, which are sometimes associated with 

P. savastanoi in hyperplastic knots on olives, have been shown to determine an increase in 

the size of these knots unless their population is larger than that of P. savastanoi (1:100 ratio) 

at the beginning of the infection process [70]. The inactivation of TTSS expression and 

functionality after this system has served its purpose is a conserved phenomenon that occurs 

in other Gram-negative pathogens following successful infection of their hosts [71-73]. The 

putative MATE transporter encoded by matE would further contribute to this picture by 

mediating IAA efflux, as well as playing a likely role in drug resistance (Fig. 6). This 

hypothesis is further supported by the higher expression levels of matE in the three mutants 

examined herein in the presence of IAA, to simulate specific stages of the infection process 

when TTSS is downregulated or even switched off. The hypothetical MATE transporter is 
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encoded to mediate IAA efflux. Very recently, the MATE transporter Mte1 of the 

ectomycorrhizal fungus Tricholoma vaccinum was shown to export IAA during its compatible 

interaction with the host, positively regulating ectomycorrhiza formation and morphology 

[52]. Interestingly, some multidrug resistance-like genes of Arabidopsis have also been shown 

to transport IAA [14]. In P. savastanoi, the hypothetical MATE-mediated transport of IAA 

occurs at a reduced rate when TTSS is switched on by activation of its hrp box, and thus IAA 

levels are low, presumably during the initial steps of infection. Conversely, as the intracellular 

IAA levels increase, matE is further upregulated following transcriptional activation of the 

downstream gene iaaL, as occurs for genes that are part of the same operon. In fact, the pivotal 

importance of operons in the regulation of bacterial gene networks has been recently 

demonstrated in E. coli, in which the expression of a gene that is part of an operon increases 

with the length of the operon and according to its distance from the end of the operon during 

its transcription. By increasing the so called “transcription distance,” there is more time for 

translation to occur during transcription, which will increase the expression of the genes in 

the operon proportionally to their transcription distances [74]. To confirm this scenario, in P. 

syringae pv. tomato DC3000, the matE and iaaL genes were demonstrated to be transcribed 

both dependently and independently [64].  

To the best of our knowledge, PM technology was applied herein for the first time to P. 

savastanoi, and also used in the P. syringae group to assess the chemical sensitivity patterns. 

Until now, PM has been used to screen the protein-ligand interactions of P. 

syringae pv. actinidiae chemoreceptors [75], and a modified phenoarray approach was applied 

to analyse the apoplast-adapted nutrient assimilation pathways of P. syringae pv. tomato 

DC3000 [76]. Although it has not been definitely confirmed that 8-HQ efflux in Psn23 is 

mediated directly by the transporter encoded by the matE gene, the PM technology approach 

used herein demonstrated that the impact caused by TTTS and IAA metabolism on the P. 

savastanoi fitness goes beyond its pathogenicity and virulence, and also involves drug and 

antimicrobial resistance. Moreover, it is reasonable to hypothesize that the same phenomenon 

also occurs in non-gall-forming phytopathogenic and plant-associated bacteria that are able to 

synthesize and conjugate IAA. Despite not being the main aim of this study, other relevant 

and encouraging data were also found that deserve future investigations, such as the higher 

sensitivity of the ΔiaaM mutant to oxytetracycline, and the higher resistance of the ΔhrpA 

mutant to hydroxylamine, sodium azide and polymixin B, in comparison to the wild-type 

Psn23. In conclusion, taken together, these findings provide information for the development 

of alternative strategies to control pathogenic bacteria through the use of natural products 

containing indole-based molecules [77]. 
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5.7 Supporting Information 

 

Fig. S1. Fluorescence chromatograms (HPLC-DAD/FD) at 340 nm (λex=280 nm) obtained from lyophilised 

supernatants after 48 h of bacterial growth in MM supplemented with 250 µM of L-tryptophan. The 

retention times specify specific molecules: L-tryptophan (2.68), indole-3-acetic acid or IAA free (12.70) 

and putative IAA-Lysine (3.28).  

 

 

 
 

 

 

 

Fig. S2. Mass spectra acquired during positive ionization of putative IAA-lysine. (A) Mass spectrum of 

IAA-Lys with the fragmentor potential set at 100 V. (B) Target MS/MS spectrum of m/z 304 of the IAA-

Lys mass spectrum with the fragmentor potential set at 100 V and the collision energy at 50 V.  
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Chapter 6 

 

Concluding discussion 

 

 

According to the latest European regulations is now required in all European Union Member 

countries a drastic reduction in the use of the copper in plant protection against biotic diseases 

in traditional agriculture, integrated and organic, as part of a broader review process about 

pesticides and their residues, started with Directive 91/414 / EEC. In fact, copper tends to 

accumulate in the environment, in particular into the soil, where it is not degraded, and where 

can contaminate both surface and deep water, causing serious eco-environmental risks and 

episodes of acute and chronic toxicity towards a wide spectrum of organisms and 

microorganisms. Recent studies have estimated the consequences of continuous applications 

of copper salts in the last two hundred years: in agrosystems the concentration of copper in 

the soil varies between 100 to 1,280 mg / kg soil, against values of 5-20 mg / kg of soil in 

areas not contaminated by agricultural activities (Mackie et al., 2012). Currently, the amount 

of copper allowed in organic farming is of 6 kg / ha (Regulation (EC) No 889/2008) which 

should correspond to an accumulation per year of about 5 mg of copper / kg soil in its first 10 

cm. Unfortunately, these data are purely theoretical, since it is strongly dependent on many 

factors, such as the soil composition and its pH. Moreover, in this scenario, the European 

Union has imposed limits of copper residues on vegetables and fruits (Directive (EC) No 

37/2009; Regulation (CE) No 396/2005).  

Finally and most importantly, the use of copper salts in agriculture, as fungicides and 

bactericides, determines in agrosystems an increase of antibiotic-resistant bacteria. In fact, the 

spread of antibiotic resistance bacteria in environment is also triggered and/or favored by 

several anthropogenic pollutants, which promote a co-selection process that indirectly selects 

also for the resistance to antibiotics (Seiler and Berendonk, 2012). Moreover, this 

phenomenon is dramatically increasing, because the periodic application of copper-based 

bactericides on crops to control bacterial diseases increases the selection pressure for the 

development of epiphytic bacterial populations resistant to copper and streptomycin, elevating 

the risks for transferring of these resistance genes within the plant pathogenic bacterial 

population and also to other bacteria belonging to the resident microflora. Over the last years, 

phytopathogenic strains that are resistant to copper treatments have been detected worldwide 

and are threatening the efficacy of this strategy.  

In this context, the limited availability of environmentally-friendly, effective and specific 

molecules  is even more serious considering that climate changes are expanding the 

distributional areal of some plant pathogenic bacteria even aliens for European Union or 

exacerbating the incidence and severity of endemic pathogens.  

For example, it is worth mentioning the recent spread of two phytopathogenic bacteria 

Pseudomonas syringae pv. actinidiae and Xylella fastidiosa, responsible for huge economic 

losses in the Italian country.  

The first is the causal agent of bacterial canker of kiwifruit, recently introduced into EPPO 

(European and Mediterranean Plant Protection Organization) Alert list, due to its massive 
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spread in the Mediterranean basin and in view of the economic importance of kiwifruit 

production in Italy. The second is a bacterial pathogen to Olive trees, considered by quarantine 

for all Europe, which threatens to jeopardize the whole Italian olive sector, as happened in the 

last two - three years, notably in Apulia, where it has spread with devastating economic and 

landscape effects.  

Unfortunately, to date, there are no effective plant protection products and often the only 

solution is the eradication of affected plants to contain the spread of the pathogen. This 

situation makes us think about the urgency to generate innovation in the phytoiatric sector 

with identification of potential bacterial targets against which to direct alternative molecules 

with low environmental impact in order to drastically reduce or replace the use of copper. 

Many different strategies (e.g. health seed, antagonistic microorganisms, soil solarization) 

have been introduced to fight this phenomenon and to gradually decrease the use of chemicals 

towards a sustainable agriculture.   

In this frame, wide space has been given to the development of several defense strategies, 

including the production of natural AMPs (Zasloff, 2002). The advantage of using 

antimicrobial peptides as antibacterial agents is that bacteria are less likely to become resistant 

to these compounds in comparison to antibiotics. However, the peptide availability is one of 

the major factors that determine the feasibility of their widespread usage as antibiotics and a 

number of fundamental issues such as mechanisms, efficacy and safety must be addressed. In 

fact, these new molecules should act against pathogenic and virulence bacterial systems rather 

than on their viability, in order to reduce the risk of developing resistances as in case of copper 

and antibiotics. 

Among the few examples of currently available targets, it is certainly to worth mentioning the 

Type Three Secretion System and Quorum Sensing (Yang et al., 2014; LaSarre et al., 2013). 

In addition to these targets, scientific evidences indicate as multi drug efflux pumps are 

relevant elements that contribute both intrinsic and acquired resistance to toxic compounds in 

several life forms including humans. In fact, in human and animal medicine otherwise in plant 

protection the potential as ideal targets of proteic membrane pumps for xenobiotic compounds 

efflux has been explored (Nikaido et al., 2008; Poole, 2000). In recent time, it is emerging 

that microbial efflux pump inhibitors could be other important and theoretically promising 

therapeutic agents as well, because they would be able to reduce the ability of the bacterial 

cells to extrude many toxic compounds.  

Among these membrane proteins, divided into different classes according to their structure 

and physiology, the so-called Multidrug and Toxic compound Extrusion (MATE) need to be 

mentioned, because the putative MATE proteins appeared to be coded in the genomes of all 

life kingdoms. A gene coding for a putative MATE was recently found in the genomes of the 

phytopathogenic bacteria such as P. syringae pv. tomato DC3000 and P. savastanoi pv. 

savastanoi (Vargas et al., 2011; Castillo-Lizardo et al, 2015) and studied and discovered  in 

P. savastanoi pv. nerii as well (Chapter 5). This protein should be further investigated and 

evaluated as a new potential target for development of innovative anti-infective inhibitors 

making bacterial more sensitive to a range of xenobiotic compounds, and thus to be used in 

the “green” plant pathogens control.  
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Furthermore, against the canonical targets previously mentioned, the effect and efficacy of 

alternative molecules such as small peptides (Chapter 2) and polyphenols extracts obtained in 

a circular economy framework (Chapter 4) have been analysed with very promising results. 

These molecules do not show neither antibiotic activity nor toxic effect on conserved cellular 

structures. The production of transgenic plant expressing these peptides, although not 

marketable in Italy as all GMOs (Genetically Modified Organism), has rapresented not only 

a perfect tool to assess the VIPs efficacy but also a product that could attract the interest of 

foreign markets (Chapter 3).  

In this work, we have tryed to design and develop peptides, indicated as VIPs, able to 

overcome some limitations and drawbacks found in the best-known AMPs. Moreover, in view 

of their possibile applicability in plant protection, their biotechnological synthesis instead 

chemical one could considerably decrease the cost production and confer a further ecofriendly 

value.  

As far as polyphenol extracts are concerned, these are secondary metabolites present in all 

plant species and distributed, according to their role, in various plant tissues. Based on their 

chemical structure these compounds are divided into numerous subclasses with specific 

functions and localization. In general, polyphenols constitute a support and a barrier against 

microbial invasion (e.g. microorganisms, insects and other animals) and mediate plant 

response to climate and environmental stress situations. Polyphenols show anti-microbial, 

antioxidants, anti-inflammatory properties and for these reasons they are exploited in different 

sector (e.g agronomy, animal feed, cosmetics, foods and biomedical), both in traditional and 

innovative and multifunctional products, in which the synthetic chemical components are 

partially or totally replaced by natural molecules. Some polyphenols extracts tested in this 

thesis, for example, are commercilised for cosmetic and nutraceutical purposes.  

It is reasonable and desirable to think that these innovative and alternative molecules here 

analysed and developed might be applied in industrial sector in the foreseeable future. 

Nevertheless, it is worth to remember that the time this process needs to be completed would 

necessarily depend on the procedures to be applied, in the frame of the European regulation 

for the approval of new plant protection products (PPPs) (Regulation EC 1107/2009, repealing 

Council Directives 79/117/EEC and 91/414/EEC). This Regulation entered into force at the 

end of 2009, and it became applicable to be used in all EU Member States from June 2011. 

Basically, to achieve an approval to place a PPP on the EU market, a dossier has to be 

presented with the basic laboratory, safety and in use data. Field trials have to be carried out 

in at least two defined geographic zones (in the Country where the first application for 

approval will be presented and in those Countries where this PPP could be registered in the 

future). Concerning field trials, there are two main types that have to be performed, residue 

trials and efficacy trials, whose guidelines are defined by several official EU and international 

agencies (e.g.EPPO), and by EU specific regulations (e.g Commission of the European 

Communities, Directorate General for Agriculture, 7029/VI/95 rev.5, VI BII-1 Appendix B, 

Genral Recommendations for the Design, Preparation and Realization of Residue Trials).  

In conclusion, the results obtained and reported in this PhD thesis demonstrate the potential 

and effective use of both Virulence Inhibiting Peptides targeting the coiled coil motif of the 

HrpA protein and the standardized polyphenolic extracts from O. europaea, C. scolymus 
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leaves, V. vinifera seeds and C. sinensis leaves in plant protection. These innovative molecules 

are able to inhibit specifically the TTSS of bacteria belonging to P. syringae complex 

preventing the pilus assembly and to disarm the pathogenicity and virulence of such bacteria 

without undermine their viability. Their specific activity against systems not related to 

bacterial viability and conserved among Gram-negative pathogens, not only of plants but also 

of humans and animals, suggests that a poor or absent selective pressure may develop in the 

bacterial population, thus providing a longer efficacy. 
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