
Received: 17 April 2016 Revised: 7 March 2017 Accepted: 22 March 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research
DO
I: 10.1002/smr.1878
S P E C I A L I S S U E ‐ HA S E 2 0 1 6
Systems‐of‐systems modeling using a comprehensive
viewpoint‐based SysML profile

Marco Mori1 | Andrea Ceccarelli1 | Paolo Lollini1 | Bernhard Frömel2 |

Francesco Brancati3 | Andrea Bondavalli1
1Department of Mathematics and Informatics,

University of Florence, Florence, Italy

2 Institute of Computer Engineering, Vienna

University of Technology, Vienna, Austria

3Resiltech S.R.L, Pisa, Italy

Correspondence

Andrea Ceccarelli, Department of

Mathematics and Informatics, University of

Florence, Viale Morgagni 65, Firenze, Italy.

Email: andrea.ceccarelli@unifi.itb

Funding Information

European Project, Grant/Award Number: FP7‐
ICT‐2013‐10‐610535
J Softw Evol Proc. 2017;e1878.
https://doi.org/10.1002/smr.1878
Abstract
In recent years, more and more efforts have been devoted in supporting the design of systems‐

of‐systems (SoS). Designing such systems is a multidisciplinary problem which involves consider-

ing emergent phenomena, assuring the achievement of dependability/security requirements,

guaranteeing system responsiveness, and supporting dynamicity/evolution and multicriticality

of provided services. A first step towards a viable design approach is to provide a conceptual

model of SoS which captures SoS concepts, and their interrelationships aiming at enhancing

the understandability of SoS to stakeholders and providing the basis for further automated anal-

ysis. In this context, the AMADEOS European project is bringing together researchers and prac-

titioners to provide the support to design SoS starting from the definition of a domain specific

ontology serving as a vocabulary for SoS. Our contribution consists in the modeling of the key

SoS concepts and relationships defined in AMADEOS adopting a systems modeling language

visual modeling language. We propose a systems modeling language profile for SoS, and we show

its applicability in a Smart Grid scenario. We show how to use the profile in a model‐driven

engineering process to support different types of analyses, and we discuss how to integrate

the profile in a user‐friendly model‐driven engineering tool for SoS rapid modeling, validation,

code‐generation, and simulation.

KEYWORDS

conceptual model, MDE process, SysML Profile, system of systems
1The objective of the AMADEOS15 FP7 project is to bring time awareness and

evolution into the design of SoS, to establish a sound conceptual model, a

generic architectural framework, and a design methodology, supported by proto-

type tools, for the modeling, development, and evolution of time‐sensitive SoS

with possible emergent behaviors.
1 | INTRODUCTION

A system of systems (SoS) results by the integration of independent,

autonomously operating, possibly many, and likely heterogeneous con-

stituent systems (CSs), which are brought together in order to realize a

global goal under certain rules of engagement.1 An SoS approach may

offer valuable benefits by reducing cognitive complexity of the engi-

neering and operating methodologies of SoS in a wide range of

domains where classical system engineering approaches cannot be

easily applied anymore. For example, railway, automotive, smart

energy grids, the global automated teller machine network, and crisis

management may benefit from adopting an SoS engineering (SoSE)

approach. Indeed, different techniques can be found in SoSE to evolve

an SoS, handle its dynamicity requirements, achieve time‐dependent

and dependability/security requirements, early identify, and mitigate

detrimental emergence phenomena, and fulfill multicriticality require-

ments. However, a relevant challenge is to integrate all these tech-

niques in a design methodology that produces a high‐level SoS
wileyonlinelibrary.com/journal/s
architecture ensuring the delivery of the envisioned global goals. This

target architecture should be amenable to refinement and design pat-

terns facilities thus supporting automated analysis wherever possible.

With this aim, the adoption of an architectural description language

(ADL)2 is useful for abstracting and understanding SoS design‐related

problems thus fostering information sharing and reuse among SoS

stakeholders and describing an SoS using several viewpoints of analy-

sis. Such a language also reduces development risks and flaws by

enabling analysis and experimentation processes at early stages of

the design cycle.

Based on the outcomes achieved in the context of the

AMADEOS3 project,1 seven viewpoints have been selected and

explored to define a generic SoS architectural framework and design
Copyright © 2017 John Wiley & Sons, Ltd.mr 1 of 20

https://core.ac.uk/display/301572944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-7275-3509
mailto:andrea.ceccarelli@unifi.itb
https://doi.org/10.1002/smr.1878
https://doi.org/10.1002/smr.1878
http://wileyonlinelibrary.com/journal/smr

2 of 20 MORI ET AL.
methodology. Under these viewpoints, we studied SoS in different

domains (railway, automotive, smart energy grids, global automated

teller machine network, and crisis management) and proposed a

meta‐requirement model4 to describe a generic SoS and to support

its design, development, and evolution. The identified viewpoints are

the following: structure, dynamicity, evolution, dependability, security,

time, multicriticality, and emergence.5 Structure represents architec-

tural concerns of an SoS. In particular, it defines the manner in which

CSs are composed6 and how do they exchange semantically well‐

defined messages7 through their interfaces.8 Dynamicity represents

variations to the operation of SoS that have been considered at design

time to reconfigure the SoS in specific situations, eg, either after a fault

or after the variation of an external condition.9 Evolution represents

changes that have been introduced later to accommodate modified

or new requirements by means of including, removing, or modifying

system functions.10 Dependability and security11 consists of nonfunc-

tional critical requirements as availability, reliability, safety, privacy, or

confidentiality. Multicriticality aims at integrating together subsystems

providing services with different levels of criticality corresponding to

different dependability and security requirements.12 Time is funda-

mental since SoS are sensitive to the progression of time, and it is

necessary to design responsive SoS able to achieve reliably time‐

dependent requirements.13 Emergence mainly denotes the appearance

of novel phenomena at the SoS level that are not observable at CSs

level; managing emergence is essential to avoid undesired, possibly

unexpected situations generated from CSs interactions and to realize

desired emergent phenomena being usually the higher goal of an

SoS.14

Following the viewpoint based analysis, in this paper, we propose

a semiformalization of the SoS conceptual model that serves as a

domain‐independent vocabulary for SoS. To this end, we rely on the

systems modeling language (SysML),15 which is adopted as the main-

stream ADL for SoSE. In particular, we define an SoS profile that

extends the SysML reference metamodel with specific language con-

structs, eg, stereotypes and their associations. By using our profile a

designer could dynamically apply the SoS concepts to a SysML model

of an existing system, effectively elevating the abstraction level from

a systems‐only perspective to an SoS perspective. Our profile consoli-

dates identified SoS characteristics under well‐defined SoS concepts;

thus, it decreases cognitive complexity concerning the modeled view-

points and helps stakeholders to implement desired SoS goals. To dem-

onstrate the clarification effects and overall usefulness of our profile,

we applied it in a smart grid use case. We show how to use the profile

(1) to model the high‐level design of the target SoS architecture, (2) to

support different types of analyses in a model‐driven engineering

(MDE) tool chain, and (3) to solve scalability and usability concerns

through its integration in a user‐friendly MDE tool for SoS rapid

modeling, validation, code generation, and simulation.

We remark that a SysML profile can be rarely considered carved in

stone, and minor updates can be identified also once it reaches matu-

rity. The 4.0 version that we report here has reached maturity at the

end of a 3‐year process, during which the profile has been extensively

discussed with members of the AMADEOS project,16 the External

Advisory Board, and the scientific community.17,18 Further, it has been

exercised in use cases whose requirements are defined by industries.16
This paper is an extended version of Mori et al.17 With respect to

Mori et al,17 we present an extensive discussion on the relevant con-

cepts of the conceptual model, and we clarify how they are coded into

an SysML profile including graphical examples from selected view-

points. Further, this work includes 2 additional viewpoints, namely,

dependability and security, and enhances the emergence viewpoints;

these changes are included to align our description to the final defini-

tion of the profile. Additionally, we introduce a user‐friendly MDE tool

that integrates the SysML profile enabling the design, validation, code

generation, and simulation of SoS.

The paper is structured as follows. Section 2 introduces a motivat-

ing smart grid scenario in the energy domain for showing the applica-

bility of the SoS profile. Section 3 provides a short introduction of

the basic SysML elements and diagrams that will be used in the rest

of the paper. The SysML profile for SoS is then presented in Section

4 along with the conceptual model it is based on. Section 5 shows

the application of the profile to the scenario thus opening it for view-

points‐driven design and analysis. Section 6 discusses how to use the

profile in a MDE process to support different types of analyses, and

how to integrate the profile in a user‐friendly MDE tool for SoS rapid

modeling, validation, code generation, and simulation. Section 7 pre-

sents a viewpoint‐driven gap analysis for SoS design approaches found

in the literature, and Section 8 concludes the paper showing possible

future work directions.
2 | MOTIVATING SCENARIO

In a smart grid household scenario, different operationally independent

subsystems aim at delivering the desired emergent phenomenon of

improving the efficiency and the reliability of the production and distri-

bution of electricity through communication facilities. Requests for

energy coming from electronic appliances are forwarded towards the

subsystems in charge of granting or denying each request while

achieving the smart grid goal, ie, keeping balanced the production

and consumption rates for connected households.

Figure 1 shows the topology of the main subsystems involved

within a single household of the smart grid scenario. Washing

machines (WMs) and microwaves (MWs) are examples of electronic

appliances. They represent a flexible load which may initiate an energy

request. The smart meter (SM) measures energy consumption and pro-

duction rates; the distributed energy resource (DER) manages the pro-

duced energy through energy generating and storage systems, like

wind‐powered electrical generators or batteries. A command display

shows consumption rates and enables inhabitants to interact with their

own energy control system. The energy management gateway (EMG)

controls the flexible loads and the DER based on measurements

received from the SM and in agreement with the coordinator to estab-

lish optimal energy distribution. The coordinator is connected to the

neighborhood network access point with the aim of keeping the pro-

duction and the consumption of energy for a set of connected house-

holds balanced. A distribution system operator regulates consumption

and production rates at the country level. By means of its load manage-

ment optimizer, a distribution system operator receives information

from a meter aggregator and enacts control decisions in cooperation

FIGURE 1 Smart grid: energy management scenario. DER, distributed energy resource; DSO, distribution system operator; EMG, energy
management gateway; LMO, load management optimizer

MORI ET AL. 3 of 20
with the coordinator. The access to the household is provided by one

or more local network access points connected to a neighborhood net-

work access point. All the above mentioned components require

proper interfaces to exchange control messages and physical energy

entities within and outside the household smart grid.

In a household, electrical appliances have to request when they

want to switch on, but they may freely switch off. Consequently, they

dynamically connect and disconnect to the grid. However, a decision

to turn on electrical appliances is taken at a higher level, as follows:

First, the electrical appliance sends a request to the EMG, which peri-

odically receives aggregated consumption and production rates from

the SM. Then the EMG, which cannot directly determine how much

energy is available in the smart grid, forwards the request to the con-

nected coordinator. The coordinator decides according to the informa-

tion received by the EMG and on the basis of the current global energy

consumption and production rates of the neighborhood, if the request

for energy can be satisfied. In a last step, this decision is sent back to

the EMG which finally grants or denies the energy request of the initi-

ator electrical appliance. This interaction pattern occurs for many elec-

trical appliances which possibly concurrently request energy in many

households contributing to a highly dynamic and—without appropriate

modeling techniques—complex smart grid behavior.

Dynamic interactions may also lead to undesired smart grid behav-

iors that need to be discovered and prevented. In case of an excep-

tional lighting of a specific public space, a peak of energy request

comes from an external EMG (in the neighborhood). Let us now sup-

pose that the corresponding SM fails in transmitting aggregated con-

sumption and production values to its EMG. The latter forwards

wrong information to the coordinator which consequently fails in

maintaining balanced consumption values, eg, by allowing more

request to the households then it is possible. This will then result to

a blackout of the household grid. This detrimental emergent
phenomenon cannot be captured if we only look at the interactions

of the internal household subsystems without considering the external

EMG. Appropriate means to describe and recognize interactions that

lead to detrimental emergent phenomena are essential to prevent pos-

sible negative consequences.

Smart meters of the households may be subject to faults which

may hamper their availability and compromise the safety of the whole

smart grid. To this end, appropriate counter measures have to be

modeled in the design process to early identify possible problems for

which solutions are already available according to common standards.

Solutions have to be applied, which may span from replication mecha-

nisms to improve availability to error detection techniques aiming to

guarantee a certain tolerable hazard rate (THR).

The security of communication within the smart grid has to be

carefully considered to avoid the intrusion of third party and the cor-

rect functioning of the grid. The protocol to adopt is the Open Smart

Grid Protocol adopting RC4 and EN14908 as encryption/decryption

algorithm which exploit the OMAK symmetric key defined in the Open

Smart Grid Protocol.19 It is, thus, required to define a security protocol

in the design model, its encryption/decryption algorithm and key and

link them to the part of smart grid that shall be secured.

Our smart grid scenario shows also that different subsystems may

have different levels of criticality. Indeed, the service of public event

lighting (PEL) has a higher level of criticality regarding the service pro-

vided by MWs and WM in a household. The latter can be interrupted

with no detrimental consequences while the interruption of lighting

for a public event may cause more severe problems.

Finally, a smart grid is also subject to the introduction of new tech-

nologies aiming at maximizing its business value. A new device, a

smartphone, may have to be included in the household to replace the

command display (ie, a desktop device) to show consumption/produc-

tion rates and supporting new interactive actions, ie, turning on and off

4 of 20 MORI ET AL.
a device directly from the smartphone. This scenario represents a pos-

sible evolution which has to be fully characterized to describe its

impact on the Smart Grid.
3 | BASICS ON SysML

The SysML20 is a general‐purpose graphical modeling language,

defined by the Object Management Group, based on the well‐known

unified modeling language (UML2). The SysML supports specification,

analysis, design, verification, and validation of a broad range of sys-

tems, and it includes 9 diagrams instead of the 13 diagrams from

UML, making it a smaller language that is easier to learn and apply. It

provides structure diagrams to describe system structure and compo-

nents, and dynamic diagrams to model the behavior of the system.

The diagrams that we will use in the rest of the paper are the block def-

inition diagram (BDD—structure diagram), and the sequence diagram

(dynamic diagram). The official Object Management Group SysML

webpage3 contains all the details on the available SysML features

and diagrams, also in the form of tutorials (eg, Friedenthal21).

Blocks in SysML BDD are the basic structural element used to

model the structure of systems, and they can be used to represent sys-

tems, system components (hardware and software), items, conceptual

entities, and logical abstractions. Blocks are shown as UML classes ste-

reotyped “block” and are depicted as a rectangle with compartments

that contain block characteristics such as name, properties, operations,

and requirements that the block satisfies. A block provides a unifying

concept to describe the structure of an element or a system: system,

hardware, software, data, procedure, facility, and person. This type of

diagram helps a system designer to depict the static structure of an

SoS for its CS and possible relationships.

A sequence diagram represents the items involved in a scenario or

interaction, and the messages that are exchanged in a chronological

order. Items in a sequence diagram are represented by a lifetime.

These lifetimes can be generic instances, or instances from blocks

defined in the model; instantiating blocks on sequence diagrams estab-

lish a link with the static (BDD) system model.

Another important element to be introduced is the concept of pro-

file.While UML provides various generic concepts for software and sys-

tems modeling, it cannot cover all possible application scenarios;

instead, it can be extended with profiles to add custommodel elements

to suit the specific needs. Therefore, a profile is a generic extension

mechanism for customizing UML models for particular domains and

platforms. Profiles are defined using stereotypes, tag definitions, and

constraints which are applied to specific model elements, like classes,

attributes, operations, and activities. A profile is a collection of such

extensions that collectively customize UML for a particular domain or

platform. SysML itself is actually defined as an extension of a subset

of UML using UML's profile mechanism. The SoS profile we present in

this paper further extends the SysML reference metamodel with spe-

cific language constructs for modeling the key concepts and relation-

ships in the domain of SoS.
2www.uml.org

3http://www.omgsysml.org/
4 | SysML PROFILE BASED ON
CONCEPTUAL MODEL FOR SoS

A conceptual model consists of a set of stable and unambiguously

defined concepts (ie, categories) and semantic relations among them.

A conceptual model provides a domain‐specific ontology representing

a vocabulary for domain discourse. A group of experts may commit to

such a domain‐specific ontology; hence, they establish a shared view

on a domain and are able to collaborate with respect to the domain.

In the AMADEOS project, a conceptual model for SoS22 has been

conceived to find a common language allowing experts to collaborate

on modeling, engineering, and analyzing SoS. It is structured in several

viewpoints on SoS which we introduced in Section 1. In this section,

we give a brief overview of a subset of the concepts contained in

the viewpoints and howwe have modeled them in a SysML semiformal

representation organized in a profile4 composed by viewpoint‐related

packages. To this end, we have defined specific constructs and we

have exploited already implemented stereotypes available in other

related profiles to support specific viewpoints. Our proposed profile

is meant to be used by designers in describing the static SoS structure

and its dynamic behavior according to the introduced viewpoints. Such

an SoS description can be adopted to be kept consistent across view-

points by tools and for machine‐assisted cross‐viewpoint analyses (eg,

finding detrimental emergent SoS behavior).

In the following, we enlist the solutions we envision in our profile

to the needs raised by each of the viewpoints.
4.1 | Structure package

The static structure of an SoS is based on the concept of a CS, which is

“An autonomous subsystem of an SoS, consisting of computer systems

and possibly of a controlled objects and/or human role players that

interact to provide a given service.” A CS exchanges information that

is either represented by things/energy or data with its environment

by means of interfaces. The environment of a CS includes all entities

that are able to interact with the CS, including other CSs. In our con-

text, information is any kind of timed proposition about the state of

an attribute of an entity which is either an attribute of a physical thing

(eg, temperature of a room) or an attribute of an abstract construct (eg,

execution time of a program).

The interfaces among which the CSs interact with one another are

the relied upon interfaces (RUIs). As such the CS service—which is its

intendedbehavior—is providedat this interface. TheRUI is further struc-

tured in the relied upon message interface (RUMI) and the relied upon

physical interface (RUPI). The RUMI allows for message‐based commu-

nication of CSs over cyberspace (eg, the Internet), while the RUPI

enables the indirect physical exchange of things or energy among CSs

over their common environment (see Kopetz and Fromel23 for details).

The profile supports the description of the static and dynamic

structure of an SoS representing: the basic architectural elements

and their semantic relationships; the sequence of messages exchanged
4https://github.com/AMADEOSConceptualModel/

SysMLProfileAndApplication.git—GitHub public link to the AMADEOS SysML

profile and the Smart Grid application

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Domain_model
http://www.uml.org
http://www.omgsysml.org
https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git
https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git

MORI ET AL. 5 of 20
among CSs in an SoS; the points of integration, ie, interfaces, allowing

the exchange of information/energy among connected entities.

The structural properties of an SoS are described using 3 different

subpackages: “SoS Architecture”, “SoS Communication”, and “SoS Inter-

face” (see the literature22). The first defines stereotypes useful to

describe the topology of an SoS; the second provides stereotypes to

describe the communication aspects between the CSs of an SoS;

finally, “SoS Interface” semiformalizes internal and external points of

interaction of an SoS. For the sake of brevity, in this paper, we focus

on the “SoS architecture” subpackage that is the foundation for building

any type of SoS.
4.1.1 | SoS architecture subpackage

Architectural components are defined within the “SoS Architecture”

subpackage (see Figure 2). This package extends SysML BDD to model

the topology and the relations of an SoS.

The first stereotype is “entity” (something that exists as a distinct

and self‐contained unit), and it extends the SysML metaclass “Block”.

We distinguish between 2 different kinds of entities: “thing” (a physical

entity that has an identifiable existence in the physical world) or
FIGURE 2 Systems‐of‐systems (SoS) architecture subpackage. CPS, cy
interface; RUMI, relied upon message interface; RUPI, relied upon physical
“construct” (a nonphysical entity, a product of the human mind, such

as an idea). They extend the properties of entity, so they are also rep-

resented as blocks.

A “System” is a type of entity (thereby a Block); it has the same

characteristic, but it is also capable of interacting with its environment.

As it is expressed by the “sys_type” enumeration, a system can be

• “autonomous”—a system that can provide its services without

guidance by another system;

• “monolithic”—if distinguishable services are not clearly separated

in the implementation but are interwoven,

• “open” (or “closed”)—a system that is interacting (or is not

interacting) with its environment during the given time interval

of interest,

• “legacy”—an existing operational system within an organization

that provides an indispensable service to the organization,

• “homogeneous”—a system where all sub‐systems adhere to the

same architectural style,

• “reducible”—a system where the sum of the parts makes the

whole,
ber‐physical system; CS, constituent system; HMI, human machine
interface

6 of 20 MORI ET AL.
• “evolutionary”—a system where the interface is dynamic (ie, the

service specification changes during the given time interval of

interest),

• “periodic”—a system where the temporal behavior is structured

into a sequence of periods, and

• “stateful” (or “stateless”)—a system that contains (or does not con-

tain) state at a considered level of abstraction.

Every organization that develops a system follows a set of explicit

or implicit rules and conventions, eg, naming conventions, representa-

tion of data (eg, endianness of data), protocols, etc when designing the

system. This set of explicit or implicit rules and conventions is called

the architectural style, which is represented by the stereotype

“architectural_style”. A system can provide a communication “inter-

face”, and it has a “boundary” (a dividing line between 2 systems or

between a system and its environment). A “subsystem” is a subordi-

nate system that is part of a system and it is related to “system” by a

composite relation.

A CS is an autonomous subsystem of an SoS, consisting of human

machine interfaces “HMI” and possibly of physical “controlled_object”

and it provides a given “service” by interacting with “role_player”

through the “RUMI”. The RUMI is a message interface where the ser-

vices of a CS are offered to the other CSs of an SoS, and “RUPI” stereo-

type represents a physical interface where things are exchanged among

the CSs of an SoS. A wrapper represents a new system with at least 2

interfaces, which is introduced between interfaces of the connected

component systems to resolve property mismatches among these sys-

tems, which will typically be legacy_systems. A prime mover is a human

that interacts with the system according to his or her own goal. In the

profile, the “wrapper”, the “legacy_system”, and the “prime_mover” are

CS, which is a stereotype that extends the property of “system” that

contains multiple “sub_system”, which in turn can be CS. A system has

a “state_space” composed of states described by the variables that

may be accessed by the CS service. In addition, a CS interacts with

cyber‐physical systems. The “SOS” stereotype represents the integra-

tion of systems, ie, CSs that are independent and operable, and which

are networked together for a period to achieve a certain goal. As

expressed by the “sos_type” enumeration, an SoS can be

• “directed”—an SoS with a central managed purpose and central

ownership of all CSs;

• “acknowledged”—independent ownership of the CSs, but cooper-

ative agreements among the owners to an aligned purpose;

• “collaborative”—voluntary interactions of independent CSs to

achieve a goal that is beneficial to the individual CS; and

• “virtual”—lack of central purpose and central alignment.

A cyber‐physical system (“CPS”) is composed by a set of

“cyber_system” (ie, computer systems), and “physical_system” (ie, con-

trolled objects).

4.2 | Time package

The progression of time enables changes, ie, dynamicity and evolution,

in SoS. In the AMADEOS project, it has been concluded that a global
sparse timebase is fundamental for reducing cognitive complexity in

understanding aspects related to all nonstatic investigated viewpoints

on SoS. For example, a sparse global timebase allows establishing con-

sistently—across all CSs—a temporal order among sparse events,

regardless which CSs originally produced these sparse events.

We call time‐aware SoS those SoS whose CSs have access to such

a sparse global timebase. The global timebase in time‐aware SoS is typ-

ically established by external clock synchronization, eg, GPS. Further,

the sparse global timebase is essential for the temporal precise coordi-

nation of distributed interactions with the common environment of

involved CSs. For instance, in a time‐aware SoS the specification of

RUIs can refer to exact points in the sparse time when information

should be exchanged (eg, messages sent and received). This tremen-

dously simplifies the agreement of the temporal occurrence of distrib-

uted actions. For example, in the cyber domain, it is possible to limit

the generation of events (eg, messages) according to ticks of the sparse

global timebase and no explicit agreement protocol is required.

The profile supports the definition of responsiveness SoS by

enabling the achievements of time‐dependent requirements through

a global time base. To this end, it allows the instantiation of time con-

cepts extended from Modeling and Analysis of Real‐time Embedded

Systems (MARTE) profile,24 which supports the design of real‐time

and embedded systems (eg, by extending the clock stereotype to sup-

port an SoS global time base). Our SysML profile includes the relevant

stereotypes from the MARTE profile that are required to describe the

timing properties of a System of Systems.
4.3 | Dependability package

Dependability is “The ability to avoid failures that are more frequent

and more severe than is acceptable.” A failure, ie, a deviation of the

system behavior from its intended behavior, is resulted from an error

state (eg, flipped bits in a data word) within a system which was caused

by a fault (for example, an electromagnetic pulse outside system spec-

ifications). A system outage describes the interval where a system does

not provide the intended behavior. System restoration is “The transi-

tion from system failure to intended system behaviour.”11

The profile supports the definition of dependability concerns in an

SoS by supporting the definition of dependability guarantees which

refers to different dependability measures (ie, robustness, safety,

integrity, maintainability, availability, and reliability), for which a set

of techniques may have to be applied (ie, fault forecast, fault tolerance,

fault removal, and fault prevention).11

Security and multicriticality are other nonfunctional aspects of sys-

tems that relate to unacceptable failures. To emphasize their importance

in our viewpoint‐based conceptual model, we discuss them separately.
4.4 | Security package

Security is concerned with establishing confidentiality, integrity, and

availability for authorized actions only. These nonfunctional attributes

are usually accomplished by symmetric or asymmetric cryptographic

means (eg, encryption and hashes). Authorization is realized by access

control policies and is usually augmented by authentication to ensure

the identity of the authorized subject.

MORI ET AL. 7 of 20
To discuss attacks and mitigation strategies on security, the

AMADEOS conceptual model introduces a threat as “Any circum-

stance or event with the potential to adversely impact organizational

operations (including mission, functions, image, or reputation), organi-

zational assets, individuals, or other organizations through a system

via unauthorized access, destruction, disclosure, modification of infor-

mation, and/or denial of service.” Security attacks exploit system

vulnerabilities. Risks quantize the likelihood of specific threats and

their impact.

The profile supports the application of security concepts to

achieve the encrypted transfer of messages among CSs according

either to a public key or asymmetric cryptography mechanism.

Access controls policies are also supported to allow users in getting

authenticated to the SoS and authorized for a set of granted actions

to the SoS. To this end, a monitoring infrastructure following secu-

rity policies to detect security incidents and vulnerabilities may be

put in place.

Security viewpoint is limited to express the concepts identified

in the AMADEOS conceptual model, which constitutes a domain‐

independent vocabulary for SoS. However, this can be potentially

expanded with novel concept as well as introducing existing profiles,

for example, UMLsec.25
4.5 | Evolution package

In contrast to dynamicity, the concept of evolution relates to all

changes of an SoS that are not given by requirements and thus part

of the design, but arise by changes in the environment (primary evolu-

tion), or by new or changed requirements on the SoS service itself

(secondary evolution). Note that in the context of SoS, we are only

concerned with evolution that affects the behavior of CSs relevant

for the SoS. Local evolution within single CSs that is not observable

at the RUIs has by definition no effect on the global SoS service and

is of no interest to us. In prospect to formalize a methodology which

allows evolution to take place in a controlled manner, the concept of

managed evolution is most relevant. It is defined as the “evolution that

is guided and supported to achieve a certain goal.”9 Evolutionary

change is often associated with an increase of the business value of

an SoS.

The profile supports the definition of the elements to describe the

process of gradual and progressive change of an SoS. Among others, it

supports the identification of the evolution type, the objective it aims

at achieving and the involved system resources.

To describe this type of processes we have chosen a BDD,

because it is designed to show the generic characteristics and struc-

tures of a system.

The main SoS concepts related to evolution are modeled within

the “SoS Evolution” package of our SoS profile. Figure 3 shows the

“evolution” stereotype as a block of a BDD, aiming at describing an

SoS change. In our conceptual model, we envision 2 different types

of evolution:

• “managed_evolution”—Process of modifying the SoS to keep it rel-

evant in face of an ever‐changing environment. Examples of envi-

ronmental changes include new available technology, new
business cases/strategies, new business processes, changing user

needs, new legal requirements, compliance rules, and safety regu-

lations, changing political issues, new standards, etc.

• “unmanaged_evolution”—Ongoing modification of the SoS that

occurs as a result of ongoing changes in (some of) its CSs. Exam-

ples of such internal changes include changing circumstances,

ongoing optimization, etc.

An SoS evolution has a “goal”, it improves the “business value”

(overarching concept to denote the performance, impact, usefulness,

etc of the functioning of the SoS) by the exploitation of the

“system_resource” (renewable or consumable goods used to achieve

a certain goal, eg, a CPU, CPU time, and electricity) and can be affected

by the “environment” (entities and their actions that are not part of a

system but have the capability to interact with the system). Evolution

is achieved by modifying CSs and consequently the whole SoS.
4.6 | Dynamicity package

Dynamicity concerns all changes or configurations an SoS can exhibit

by design. Most importantly it encompasses all CSs interactions (eg,

message or things/energy exchanged over time). Consequently from

the viewpoint of dynamicity the service of all CSs is exposed at the

RUIs where observable inputs and outputs can be conveniently (1)

described in interface specifications for engineering purposes and (2)

monitored for diagnosis purposes.

Dynamicity also concerns reconfigurability, which is the ability of a

system to change its configuration according to the current demands.

For example, in SoS, we often do not have statically connected CSs,

but CSs enter and exit autonomously a given SoS over time. The

involved CSs must be able to reconfigure themselves accordingly. Con-

ceptually, we modeled this again at the RUI by means of a RUI connec-

tion strategy which is “[…] searches for desired, with regards to

connections available, and compatible RUIs of other CSs and connects

them until they either become undesirable, unavailable, or

incompatible.”22

The profile supports the definition of the dynamic structure and

behavior of an SoS. It supports the elicitation of the dynamic elements

in an SoS by also allowing the definition of different type of

dynamicity. Beyond the static representation of dynamicity, the profile

supports also the specification of the dynamic behaviors through the

exchange of messages among CSs as also enabled for the structure

viewpoint.
4.7 | Multicriticality package

A multicriticality system is a system delivering at least 2 services of dif-

ferent criticality levels, ie, different levels of dependability/security

requirements. For example, safety is “The absence of catastrophic con-

sequences on the user(s) and on the environment” and as stated in

Bums et al,26 in many safety standards, “Up to five levels may be iden-

tified (see, for example, the IEC 61508, DO‐178B, DO‐254 and ISO

26262 standards).” Multicriticality can also be applied to services, ie,

intended (sub)behavior of a system. A critical service requires a certain

level of dependability and security, eg, safety. In certification, it is

FIGURE 3 Systems‐of‐systems (SoS)
evolution package. CS, constituent system

8 of 20 MORI ET AL.
required practice to declare the criticality level of a system as high as

its most critical delivered service unless evidence can be supplied that

more critical services can be provided in sufficient isolation (eg, dedi-

cated power supply and dedicate and statically reserved processing

time) to less critical ones. Consequently, partitioning and isolation

mechanisms are important in systems that support multicriticality.

The profile supports the integration of CSs (through their provided

services) having different criticality requirements. To this end, it allows

the definition of services being critical according to possibly different

levels to which it may correspond different dependability and security

requirements as enabled for the dependability and security viewpoints.
4.8 | Emergence package

In the AMADEOS conceptual model, emergence is defined as “A phe-

nomenon of a whole at the macro‐level is emergent if and only if it is

new with respect to the non‐relational phenomena of any of its proper

parts at the micro level.” Consequently emergent behavior is observ-

able at the macro level (eg, a traffic jam) which cannot be reduced to

the behavior of one of the parts at the micro level (eg, a single car ana-

lyzed in isolation). If an emergent phenomenon can be described by a

transordinal law, ie, a law that explains the emergent phenomenon at

the macro level from properties or interactions of parts at the micro

level, it is explained emergence. In case such laws have not been found

(yet, or maybe they do not exist at all), it is unexplained emergence. An

explained emergent phenomenon can be classified as expected

(transordinal laws are known), or unexpected (transordinal laws are

not known). Orthogonally another classification of the emergent phe-

nomenon with respect to the SoS goals seems reasonable: beneficial
or detrimental. Naturally, unexpected detrimental emergence marks a

very problematic case which is still under open research. For an in‐

depth discussion about emergence in SoS, we refer to Kopetz et al.27

The profile supports the description of emergent phenomena

according to their nature and the CSs that may be affected. Further,

it relates the descriptions of the emergent phenomena to the dynamic

interactions among the former identified CSs (cf. structure viewpoint).
5 | APPLICATION OF THE VIEWPOINT‐
BASED SoS PROFILE

In this section, we describe our SoS profile by illustrating how we have

applied it to solve the viewpoint‐driven needs raised by the energy

management scenario. Consequently, we do not present the meta‐

models of the profile defined through SysML BDDs (where blocks

are the basic structural element used to model the structure of sys-

tems14), but we do present how most of the BDDs can be applied to

solve specific problems at hand for a given viewpoint. Interested

readers may refer to the literature22 for further details on SoS profile

meta‐models and illustrative applications.
5.1 | Structure viewpoint

To support the definition of the SoS structure, the profile contains a

BDD to model the topology and the relations of an SoS.

Figure 4 shows how the SoS structure BDD can be applied to our

household scenario.

MORI ET AL. 9 of 20
The latter is modeled as an SoS able to produce and reliably dis-

tribute electricity by means of its entailed CSs. The EMG is a block

and it is stereotyped as a «cs»; similarly, SM (ie, the SM) and

CommandDisplay are each stereotyped as «cs». The Flexible Load is

a «cs» and it is composed by a set of appliances: MW, WM, clothes

dryer, etc. These appliances are switched on and off dynamically on

the basis of the current needs. Each CS is associated with a RUMI

and RUPI to transfer control messages and energy, respectively.

Nevertheless, by means of this diagram alone, we are not able to

describe the actual interactions occurring among CS. We modeled

in our profile the message‐based communication among CSs over

their RUMIs by defining a BDD for a set of stereotypes describing

the main characteristics of communication protocols. The application

of this diagram consists in adopting a sequence diagram, ie, a UML

diagram representing the behavior of a system in terms of a

sequence of messages exchanged between parts. The latter are rep-

resented as lifelines defining the individual participants in the inter-

action. The time is showed by the length of the lifeline and it

passes from top to bottom while messages are exchanged. Through

such sequence diagrams, we aim at representing the exchanged

information during the progression of time among the CSs which

have been formerly identified. Figure 5 shows an example of the
FIGURE 4 Energy management scenario: static structure. CS, constituent
operator; EMG, energy management gateway; MW, microwave; RUMI, rel
smart meter; WM, washing machine
main communication concepts to represent how the SM collects

consumption rates from the appliances in order to periodically for-

ward aggregated values to the EMG.

In this scenario, a message flowing from MW to the SmartMeter

contains the energy consumption rate (data_field = 2 kW) and some

additional information as displayed in the comment box of the

sequence diagram.
5.2 | Evolution viewpoint

To describe the evolution process, our profile defines a distinct BDD

with a set of specific stereotypes. Figure 6 represents an application

of the profile to our scenario. It shows the evolution of the SoS caused

by the replacement of the device controlling consumption and

production values.

As shown in the figure, evolution is represented with a

Household_evolution block which is stereotyped as «managed_evolution».

It consists of introducing a new technology (NewAvailableTechnology

stereotyped as «goal») thus maximizing the usefulness, ie, the

«business_value». With this aim, the evolution acts on a new

system_resource by replacing the CommandDisplay with the smartphone.

By eliciting the evolution as enabled with our profile, it is possible to help
system; DER, distributed energy resource; DSO, distribution system
ied upon message interface; RUPI, relied upon physical interface; SM,

FIGURE 5 Energy management scenario: message exchange. EMG, energy management gateway; MW, microwave; SM, smart meter; WM,
washing machine

FIGURE 6 Energy management scenario: evolution modeling. SoS, systems of systems

10 of 20 MORI ET AL.
system designers in reflecting on how a progressive change or develop-

ment could impact the whole SoS.
5.3 | Dynamicity viewpoint

As motivated by the nature of the dynamicity viewpoint (see Section 3),

we present (1) how to apply specific profile concepts to elicit dynamicity

and (2) how to represent dynamic interactions occurring in an

operational SoS.

First, by applying a specific BDD defined in our profile, we show

how to identify the dynamic behavior in the energy management sce-

nario which consists in the connection\disconnection of the Flexible

Load. This dynamic behavior is stereotyped as «reconfigurability», ie,

the variation to the CSs structure (see Figure 7).

Second, since our objective is to fully capture the dynamic

behavior of an operational SoS, we propose a 3‐step process: the

first step consists in selecting the CSs involved in the communica-

tion; the second, making use of structure viewpoint (through a
FIGURE 7 Energy management scenario: dynamicity definition. CS, consti
sequence diagram), represents the behavior of messages exchanged

among CSs; the third step is to analyze the most common interac-

tions. The dynamic behavior supporting the provision of energy

(see Section 2) is represented in Figure 8 as a sequence diagram

showing continuous reconfiguration of the grid performed by the

household electrical appliances.

The latter want to be switched on at a time from t1 to t7, with the

support of the coordinator entity, which satisfies energy requests

according to the current global consumption and production values.

The figure shows that if the current energy load can become unbal-

anced by allowing the clothes dryer to be switched on (as requested

at time t5), the coordinator may decide to prohibit the clothes dryer

to be connected at time t6 and t7. In the figure, we have highlighted

the only electrical appliance which cannot be switched on according

to the message received by the gateway EMG.

Our dynamicity representation supports a system designer in

understanding which are the properties of an SoS that are constantly

changing and how the SoS may change by rearranging its components.
tuent system; SoS, systems of systems

FIGURE 8 Energy management scenario: dynamicity behavior description. EMG, energy management gateway; MW, microwave;WM, washing
machine

MORI ET AL. 11 of 20
This dynamic introduction, modification, or removal of CSs can intro-

duce new system behaviors that need to be analyzed.
5.4 | Emergence viewpoint

Figure 9 shows how, through a specific BDD, the emergence phenom-

enon is described in Section 2.

The latter is labeled as wrong coordination decision and it is

represented as an «explained_emerg_phenomenon» explained by the coor-

dinator balancing behavior which is stereotyped as a «trans_Ordinal_law»,

ie, a law explaining what happen globally through CSs interactions in

order to balance consumption and production values. This phenomenon

results in a blackout for the smart grid which consists in an

«unexpected&detrimental» behavior putting the grid out of service.

Similar to dynamicity, we cannot model the manifestation of emer-

gent phenomena based on a static description of interacting CSs alone.

Consequently, we also introduce a sequence diagram as it has been

made available to us in the structure viewpoint. We use this type of

diagram to detail the interactions among CSs that lead to a blackout,

which we consider as a detrimental emergent phenomenon in the

smart grid household scenario. Consider the sequence diagram in

Figure 10, whereWM is switched on at t1 after the agreement allowed

from the coordinator. Next, the coordinator receives (at time t2) and

grants (at time t3) the request for switching on the public lighting for

the exceptional event. This request is forwarded to the coordinator
FIGURE 9 Energy management scenario: emergence definition. SoS, syste
from the PEL EMG which is external to the household. Before the

request is issued by the EMG (at time t2), the SM fails in communicat-

ing the actual production/consumption values. This will affect the

forthcoming decisions of the coordinator which will act upon wrong

information. As next, within the household, the MW and clothes dryer

issue (at time t4 and t5) and receive (at time t6 and t7) the grant to be

connected to the grid. These decisions are based on the wrong infor-

mation received by the EMG: the EMG assumes to grant energy

requests while still being able to balance consumption and production

values. Unfortunately, because the external SM has communicated no

information, the grid is accepting more requests for energy than it is

able to supply. This puts energy producers under stress and eventually

leads to the failure of some energy producers. These failures lead to an

even greater imbalance in the grid. The resulting higher stress on

remaining energy producers will trigger more failures until finally the

grid is not able to deliver enough energy for most consumers, ie, a

blackout has occurred. The latter is revealed within the household by

the switch‐off messages sent from the SM to all the appliances (time

t8‐t10).

This illustrative example shows that networked individual sys-

tems, which work together to realize a higher goal (optimal energy

distribution), could lead to a detrimental emergent behavior in the

event of an exceptional energy demand in combination with a cata-

strophic SM failure. This has been modeled (except for the producers

interactions) through the exchange of messages leading to
ms of systems

FIGURE 10 Energy management scenario: emergence behavior description. EMG, energy management gateway; MW, microwave; PEL, public
event lighting; SM, smart meter; WM, washing machine

12 of 20 MORI ET AL.
unexpected and detrimental emergent behavior caused by a system

dynamicity property.
5.5 | Dependability viewpoint

As it emerges from the motivating scenario different dependability

requirements have to be accurately taken into account for the

household management SoS. In particular, we have discussed the

dependability metrics related to safety and availability of the SM.

To this end, the profile supported the definition of availability and

safety «dependability guarantee» (see Figure 11). The first consists in

providing an availability > 10−3 by means of a replication technique

to provide «fault‐tolerance». The second consists in providing a THR

per hour THR < 10−8 through an error correction technique provid-

ing «fault‐tolerance». The 2 adopted techniques are implemented
FIGURE 11 Energy management scenario: dependability. CS, constituent sy
rate
within the SM CS; thus, in the diagram, it also appears the SM block

as imported from the structure viewpoint.
5.6 | Security viewpoint

The security viewpoint supported the definition of secured communi-

cation through the «security» stereotype as linked to the SG_Household

(see Figure 12).

The communication to be secured occurs between EMG and SM

CSs for which the protocol adopted is the Open Smart Grid Protocol

as defined with the «cryptography» stereotype. This protocol adopted

as encryption and decryption algorithms the RC4 and EN14908 algo-

rithms. The latter are represented by means of 2 different blocks each

labeled with «encryption» and «decryption» stereotype. This adopted

mechanism is based on a secret key infrastructure which exploits the
stem; SM, smart meter; SoS, systems of systems; THR, tolerable hazard

FIGURE 12 Energy management scenario: security. EMG, energy management gateway; SoS, systems of systems; SM, smart meter

MORI ET AL. 13 of 20
so‐called OMAK «symmetric‐key» representing the shared secret

between the EMG and the SM.
5.7 | Multicriticality viewpoint

As discussed in the energy management scenario, we have a PEL ser-

vice with a high level of criticality and a washing service with a lower

level of criticality. To represent this situation in Figure 13, we have

added the stereotype critical_service to both the former services, and

we have linked each of them to the correspondent criticality_level

either low or high (in the specific example). Each of these levels is

defined by means of different safety requirements. The high

criticality_level (associated to the PEL service) consists in a THR per

hour smaller than 10−8 (corresponding to Safety Integrity28 Level 4)

while the low criticality level (associated to the washing service) con-

sists in noTHR set. In this case, we have considered stereotypes iden-

tified for structure and dependability viewpoints which are essential to

characterize the multicriticality instantiation.
6 | ADOPTING THE SoS PROFILE WITHIN
MDE METHODOLOGIES

The profile that we illustrated by applying it to the energy scenario in

Section 2 can also be adopted within a MDE approach,29 which sup-

ports system understanding, design, development, maintenance, and

evolution by means of models. In this context, by applying our profile

it is possible to obtain a platform‐independent model (PIM), ie, a view-

point‐driven SoS model describing the architecture and its behavior

which neglects platform specific details. A PIM can further be com-

bined with specific platform details to generate a platform‐specific

model for each viewpoint. Our profile supports the generation of a
FIGURE 13 Energy management scenario: multicriticality. PEL, public even
PIM as the first step for a model‐driven methodology. Even though

generic and platform independent, a PIM is the starting point for a

set of specific tasks. Among others, source code generation may auto-

matically support the translation of the SoS to executable artifacts.

System analysis techniques, like hazard analysis (HA), failure mode

and effect analysis, and fault tree analysis may be also applied to differ-

ent purposes (eg, Bonfiglio30). Finally, also system testing may also be

applied to identify test procedures or to resolve problems of testing

coverage. Noteworthy, the mentioned techniques to be valuable com-

pleted require additional inputs.

In the rest of this section, we show the applicability and usefulness

of the SoS profile in 2 different contexts:

• In Section 6.1, we discuss how the PIM generated with our profile

can be used to support the detection/avoidance of emergent

behaviors of an SoS by means of an HA.

• In Section 6.2, we illustrate the usage and integration of the profile

in a MDE tool to model, validate, query, and simulate SoS.
6.1 | Interface analysis to detect emergent behaviors
of SoS

This section describes how the PIM generated with our profile can be

exploited to support the detection/avoidance of emergent behaviors

of an SoS by means of an HA. The basic idea consists in analyzing

interacting events among CSs. With this aim, we have defined a set

of steps to be followed. Step 1 defines an SoS architectural model

using the elements of the profile; step 2 formalizes the connections

among CSs to univocally identify internal SoS interfaces; step 3 iden-

tifies a set of events that could lead to emergent behaviors, being it
t lighting; THR, tolerable hazard rate; WM, washing machine

TABLE 1 Energy management scenario: internal interfaces

Interface among constituent systems ID Interface

EMG and coordinator INT_01

Coordinator and DSO INT_02

Smart meter and meter aggregator INT_03

Meter aggregator and DSO INT_04

Command display and EMG INT_05

Command display and smart meter INT_06

Smart meter and flexible load INT_07

Smart meter and EMG INT_08

EMG and flexible load INT_09

PEL SM and PEL EMG INT_10

PEL EMG and coordinator INT_11

Abbreviations: DSO, distribution system operator; EMG, energy manage-
ment gateway; PEL, public event lighting.

14 of 20 MORI ET AL.
either beneficial or detrimental; step 4 associates each event with

semantic information, ie, guidewords to explore particular circum-

stances leading to an emergent behavior.

To illustrate how it is possible to detect emergent behaviors, we

exploit the energy management scenario (see Section 2). According

to step 1, we already discussed the SoS model for the smart grid (see

Figure 4). According to step 2, we univocally identified CS interfaces

in the former model as listed in Table 1 (step 2).

Following step 3, we have identified 2 events that could originate

emergent behaviors.

(Event 1) A new functionality is added to the command display:

the electrical appliances can be switched on and off through the com-

mand display HMI. In such a case, the command display sends a mes-

sage to EMG containing the name/type of an electrical appliance

involved. The EMG can distinguish the device that requires/release

energy and forward the request/notification to the coordinator.

(Event 2) A new EMG is connected to the Smart Grid to support

the provision of energy for PEL. This represents the most difficult step

because it is strictly related to the SoS characteristics.

Once we have identified relevant events, it is possible to start with

a system interface analysis (step 4). To this end, we exploit the inter-

face HA technique, as defined in Redmond et al,31 which identifies

and mitigate hazards leading to detrimental situations. Our aim is to

adopt the HA technique with a different objective, ie, finding emergent

conditions (positive and negative) related to the information

exchanged through the interfaces. Our hazard‐based analysis takes

as input the identified events (step 3) and the internal interfaces

(step 2), and it produces as output the identification of possible conse-

quences and emergent behaviors.

An extract of an interface analysis is shown in Table 2. Each row

represents an event with an associated guideword5 which is exploited

to help designers in detecting hazardous events. The last 2 rows iden-

tify 2 types of emergent behaviors. The former represent a beneficial
5Guideword (in our example, not, more, and early/late)32 adds semantic informa-

tion to the event, ie, not indicates the nonoccurrence of an event, more indicates

the occurring or something additional, early/late means an early/late occurrence

of an event; in our specific case, guidewords exploited to identify both hazards

and emergence behaviors.
emergent behavior caused by the new functionality of the command

display: EMG receives additional information on the electrical appli-

ance willing to be switched on. In this case, EMG can forward addi-

tional information to the coordinator. For instance, the type of

electrical appliance could be communicated to the coordinator, which

may optimize the energy consumption accordingly (ie, knowing that

the energy requested by a WM lasts longer than the energy requested

by a MW). The last row of the table represents a detrimental emergent

behavior caused by failed communication between the PEL SM and

the PEL EMG (INT_10) which in turn transmits wrong aggregated con-

sumption values to the coordinator (INT_11). The latter will then make

possibly wrong decisions on granting the provision of energy thus

causing a blackout. Mitigation to this case may consist of implementing

a distributed failure detector mechanism to guarantee that at INT_11

information are correctly exchanged and then the coordinator will act

on the correct basis.
6.2 | SoS profile's integration in a MDE design
framework

Adopting the presented profile in a model driven engineering process

may be difficult for nonexpert designers in SysML modeling; addition-

ally, scalability concerns may arise with the growing complexity of the

SoS. In our perspective, we have considered 7 different viewpoints to

break the complexity of design models. But still, having a detailed def-

inition of components and their interactions and attributes adds com-

plexity to the modeling phase. Indeed, even with a small case

example the readability of the SoS design using SysML can be already

difficult, finally leading to the so‐called spaghetti diagrams where the

model is composed of a huge number of crossing lines connecting

the different blocks. To solve the above problems, it is necessary to

adopt graphical approaches which have to be easily integrated in the

MDE chain while still being usable also with large scale SoS scenarios.

In addition, SoS designers should be able to conceive an SoS design

without having specific expertise of modeling technologies like SysML.

To this end, a new graphical tool shall be adopted to provide efficient

design facilities and the compatibility with the MDE chain.

In the rest of this section, we will present a supporting facility tool

developed within the AMADEOS project16 that (1) integrates the SoS

profile for enabling the design of SoS, and (2) provides a simple and

intuitive design environment extending the modeling capabilities of

Google Blockly.33
6.3 | AMADEOS supporting facility tool

The objective of the AMADEOS supporting facility tool is to provide a

simple and intuitive way to design SoS combining the SoS profile and

the Blockly tool. Blockly33 is a domain specific language adopted to

ease the design of SoS by means of simpler and intuitive user interface

thus requiring minimal technology expertise and support for the SoS

designer. Blockly is a Google open source project under the Apache

2.0 license which consists in a client‐side JavaScript library for creating

visual blocks programming editors. Its user interface consists of a tool-

box entailing all the available blocks and a workspace where the former

blocks can be placed. Blockly can be also adopted to generate

T
A
B
LE

2
E
xt
ra
ct

o
f
th
e
sm

ar
t
gr
id

in
te
rf
ac
e
an

al
ys
is

Id E
ve

nt
Id

In
te
rf
ac
e

G
ui
de

w
o
rd

H
az
ar
d

E
m
er
ge

nt
B
eh

av
io
r

C
o
ns
eq

ue
nc

e
M
it
ig
at
io
n

E
ve

nt
1

IN
T
_0

5
N
o
t

E
M
G

do
es

no
t
re
ce
iv
e
in
fo
rm

at
io
n
fr
o
m

th
e

ne
w

co
m
m
an

d
di
sp
la
y

N
o

E
M
G

ca
nn

o
t
fo
rw

ar
d
th
e
re
qu

es
t/
no

ti
fi
ca
ti
o
n

to
th
e
co

o
rd
in
at
o
r

M
IT
_0

1
:
co

m
m
an

d
d
is
p
la
y
h
as

to
w
ai
t
th
e

ac
kn

o
w
le
d
gm

en
t
fr
o
m

E
M
G

E
ve

nt
1

IN
T
_0

5
N
o
t/
m
o
re

E
M
G

re
ce
iv
es

w
ro
ng

in
fo
rm

at
io
n
fr
o
m

th
e

ne
w

co
m
m
an

d
di
sp
la
y

N
o

E
M
G

m
ak
es

a
m
is
ta
ke

in
re
qu

es
ti
ng

/r
el
ea

si
ng

en
er
gy

M
IT
_0

2
:
E
M
G

h
as

to
ve

ri
fy

th
e
in
fo
rm

at
io
n

se
n
t
fr
o
m

co
m
m
an

d
d
is
p
la
y

E
ve

nt
1

IN
T
_0

5
La
te

M
G

re
ce
iv
es

in
fo
rm

at
io
n
fr
o
m

th
e
ne

w
co

m
m
an

d
di
sp
la
y
w
it
h
a
de

la
y

N
o

E
M
G

ca
nn

o
t
co

nt
ro
lf
le
xi
bl
e
lo
ad

an
d
do

es
no

t
o
pt
im

iz
e

th
e
en

er
gy

co
ns
um

pt
io
n

M
IT
_0

1
:
co

m
m
an

d
d
is
p
la
y
h
as

to
w
ai
t
th
e

ac
kn

o
w
le
d
gm

en
t
fr
o
m

E
M
G

w
it
h
in

a
fi
xe

d
in
te
rv
al

E
ve

nt
1

IN
T
_0

5
M
o
re

E
M
G

re
ce
iv
es

ad
di
ti
o
na

li
nf
o
rm

at
io
n
fr
o
m

th
e
ne

w
co

m
m
an

d
di
sp
la
y
o
n
th
e

el
ec
tr
ic
al

ap
pl
ia
nc

e
sw

it
ch

ed
o
n

Y
es
—
be

ne
fi
ci
al

E
M
G

ca
n
fo
rw

ar
d
ad

di
ti
o
na

li
nf
o
rm

at
io
n
to

th
e
co

o
rd
in
at
o
r

fo
r
be

tt
er

ba
la
nc

in
g
th
e
sm

ar
t
gr
id

N
o
t
n
ee

d
ed

E
ve

nt
2

IN
T
_1

0
IN

T
_1

1
N
o
t

T
he

P
E
L
E
M
G

do
no

t
re
ce
iv
e
ag
gr
eg

at
ed

co
ns
um

pt
io
n
va
lu
es

fr
o
m

th
e
P
E
L
SM

Y
es
—
de

tr
im

en
ta
l

P
E
L
E
M
G

tr
an

sm
it
s
w
ro
ng

in
fo
rm

at
io
n
to

th
e
co

o
rd
in
at
o
r

w
hi
ch

gr
an

ts
m
o
re

re
qu

es
t
th
en

it
is
po

ss
ib
le

to
sa
ti
sf
y

(b
la
ck
o
ut
)

M
IT
_0

3
:
d
is
tr
ib
u
te
d
fa
ilu

re
d
et
ec
to
r
th
ro
u
gh

“I
am

al
iv
e
m
es
sa
ge

”
se
n
t
p
er
io
d
ic
al
ly

at
in
te
rf
ac
e
IN

T
_1

0
b
et
w
ee

n
P
E
L
SM

an
d
P
E
L
E
M
G

A
bb

re
vi
at
io
ns
:
E
M
G
,e

ne
rg
y
m
an

ag
em

en
t
ga
te
w
ay
;
P
E
L,

pu
bl
ic

ev
en

t
lig
ht
in
g;

SM
,s
m
ar
t
m
et
er
.

MORI ET AL. 15 of 20
JavaScript, Python, PHP, or Dart code and can be also customized to

generate code in any computer language. It has been adopted in differ-

ent contexts of usage to support the definition of educational games

and teaching programming languages concepts.

The AMADEOS supporting facility6 is a tool to model, validate,

query, and simulate SoS. The tool integrates the SysML profile

described in this paper thus importing all the terminology and relation-

ships available in the SoS profile. Therefore, all the benefit achievable

through the profile can be also achieved through the AMADEOS

supporting facility tool, namely, elevating the design from a system

to an SoS perspective and decreasing its cognitive complexity.

The editor, based on Blockly, eases the design of SoS by means of

intuitive and usable interfaces which do not require any specific SysML

technologies expertise, and technological support. Blocks, which rep-

resent specific profile stereotypes, can be easily created and deleted

by means of drag and drop facilities. As an example, Figure 14 shows

the supporting facility tool homepage with the Blockly model—archi-

tecture viewpoint—corresponding to the smart grid scenario described

in Section 2. At this level of abstraction, we can define the targeted

SoS (block “Household”) as an autonomous system (as discussed in

Section Section 4.1.1) composed by 7 CSs (the blocks “Coordinator”,

“Household DER”, etc).

Scalability problems can be avoided by means of a multilayered

view: a viewpoint‐based perspective that enables the visualization of

portions of artifacts referring to a certain selected viewpoint. By simply

selecting the viewpoint of interest (depicted in the left part of

Figure 14), the editor shows the relevant portions of artifacts, and it

hides the rest of the design models. By simply clicking each block, it

is possible to expand it and to navigate through its entailed properties

and subelements thus facilitating the switching among SoS views of

different granularity.

The advantages in terms of usability and readability of design

models have been achieved by defining proper transformations within

the MDE chain. The flow of MDE using the tool is described in

Figure 15.

First, the SysML meta‐model is transformed to Blockly blocks, and

these blocks can be used to create an SoS model as depicted in

Figure 14. The supporting facility provides rapid modeling, validating,

code generation, and simulation facilities to the user. It is an iterative

design process, where early design SoS models can be successively

refined and extended to account for new information available on

the targeted system (eg, new knowledge or insights on some CS) or

as a consequence of the analysis of the simulation results (eg, detect-

ing a violation of a safety requirement). Finally, once the model is com-

plete in Blockly, it can be transformed back to SysML in Eclipse for

further refinement or formal analysis.

The supporting facility tool can generate 3 outputs: (1) the model

in XML, (2) Python code generated for the simulation, (3) a plantUML7

representation of the equivalent SysML model. The Python code gen-

erated by the tool can be further refined and also can be used to
6The current version of tool can be accessed at http://blockly4sos.resiltech.com.

7PlantUML is an open‐source tool allowing users to create UML diagrams from a

plain text language. URL: http://plantuml.com/.

http://blockly4sos.resiltech.com
http://plantuml.com

16 of 20 MORI ET AL.
connect to other simulators or external systems for interaction while

running simulation.

The main features of the AMADEOS supporting facility tool are

described as follows:

• Requirements management. The design of an SoS starts with

requirements; hence, requirements management is an important

aspect of SoS design, where traceability of requirements must be

maintained and monitored. Requirements are divided based on

the viewpoints. Each block maintains the list of requirements it

meets and each requirement block maintains the list of blocks

which satisfy its requirement thus offering traceability.

• Design validation and constraints. Supporting facility allows only

compatible blocks to be connected with each other thus making

the model valid by design. Custom constraints can be specified

to make the model precise; the constraints are specified by the

designer in JavaScript and the tool uses a specific function to eval-

uate the constraint statements and change the color of a block to

black if the constraints are not satisfied. The constraints are eval-

uated at each “‘onchange’ event of the block. The tool also sup-

ports constraints during the simulation. These are supported

using Python's assert function and evaluated at runtime during

simulation.

• Design without lines. To avoid the spaghetti diagram problem,

Blockly uses collapsed views to simplify/abstract an SoS model

and it does not use lines to show relationship between blocks.

Model querying can be used to visualize a model in its traditional

view (i.e. visualizing block relationships with lines).

• Model querying. On large models, it is also important to visualize

models with a customized viewpoint. For example find all critical

services having criticality less than 3 (ie, filter blocks based on a

condition). The blocks in the model goes through a filter function

in JavaScript and highlights only the blocks that passes through

this filter. The filter function is created on the fly from the query

entered by the user.
FIGURE 14 The Blockly smart grid model (architecture viewpoint). DER, d
unified modeling language
• Behavior, sequence diagrams, and simulation. Behaviors for each

block in the model can be added in Python programming language

which will be executed during simulation.

Scenarios can be simulated on the basis of the sequence diagrams

created by the user. The sequence diagrams can be created using

blocks provided in the supporting facility tool. Unlike traditional

sequence diagrams, these blocks offer restricted sequence diagrams

which adhere to AMADEOS concepts (eg, communication can only

be performed through RUIs). These diagrams do not have any ambigu-

ity and can be converted to code. The simulation starts by starting all

the CS as threads; then for each system, RUIs are started and wait

for communication. The sequence diagrams created by the tool can

also be viewed in the traditional format.
6.4 | Lessons learned

The profile is the result of several activities carried out within the

AMADEOS project, all aiming to properly define and model the key

SoS elements (concepts and their relationships). The profile and the

supporting modeling tool have been extensively discussed with

AMADEOS members, with major representatives of important organi-

zations in different SoS domains, including energy and smart grid,

banking, transport, emergency and cloud, and with the scientific com-

munity at large through papers17 and specific tutorial sessions. The

tutorial session18 organized as part of the INCOSE IS conference in

Edinburgh was a formidable opportunity to have a concrete (external)

feedback on the profile's definition and on the usefulness of the

AMADEOS supporting facilities tool for designing SoS. The tutorial

session (6 hours) involved a total of 15 participants both from Indus-

tries and Universities, and it had the following objectives: (1) to dem-

onstrate the clarification effects and usefulness of the key elements

of the conceptual model, (2) to illustrate the usefulness of adopting

the SysML profile for the high‐level design of an SoS architecture,

and (3) to show the potentialities of the supporting Google Blockly tool

for the integrated design of the different SoS viewpoints.
istributed energy resource; EMG, energy management gateway; UML,

FIGURE 15 Model‐driven engineering flow
with the supporting facility tool in
Blockly4SoS. SoS, systems of systems; SysML,
systems modeling language

MORI ET AL. 17 of 20
In general, we got a very positive feedback on the usefulness of

the approach for constructing a platform independent description of

SoS, which allows to capture the key, cross‐domain, SoS concepts con-

sidering the different (interconnected) viewpoints. At the same time, it

was noted that the profile and the supporting tool should now move

towards specific application domains thus extending it with domain‐

specific artifacts for modeling an SoS in specific application areas.

Another important suggestion was to focus on the interoperability

and seamless integration of the supporting facilities tool into existing

development environments (eg, in sysML ecosystem), paving the

ground for its future adoption in real industrial contexts.

A final, comprehensive, assessment of the major AMADEOS pro-

ject achievements, including the SoS profile and the supporting facility

tool, has been presented in a public project deliverable.34 Results con-

firm the adequacy of the SysML profile (and therefore of the corre-

sponding conceptual model) for expressing the key SoS elements in

the different viewpoints, and underline the very positive Industrial

experience of using the supporting facility tool for SoS design, noting

that similar design done in SysML without viewpoints was complex

and difficult to manage due to too many lines in the diagram. The capa-

bility to simulate the behavior of the target SoS was another selling

point of the approach, allowing system architects to quickly test

hypothesis regarding future systems and determine what attributes

will lead to advantageous or poor results.
TABLE 3 Viewpoint‐based literature analysis of SysML approaches to SoS

Structure Dynamicity Evolution

Huynh et al38

Lane et al39

Rao et al40

COMPASS41-43

DANSE44,45

Abbreviations: SoS, systems of systems; SysML, systems modeling language.
7 | RELATED WORKS

Modeling of systems, or specific aspects of systems, has been per-

formed for many years in many different disciplines; several models

can be developed at different abstraction levels, depending on their

purpose and the forms of analysis that are to be performed on them.

For example, the MARTE24 profile focuses on real‐time systems, the

CHESS35 profile on industrial systems, the CONCERTO36 profile on

embedded systems, and the UMLsec25 profile is instead specific for

introducing security aspects.

While the foundations of these profiles constitute a solid refer-

ence and background, they are generally not able to represent the

many facets of SoS. Modeling SoS requires capturing the different

facets of SoS; however SoSE and SoS modeling, as reported in Nielsen

et al.,37 is a relatively novel area of research, where established model-

ing solutions are still missing. While different modeling approaches

have been proposed in the last years, several research questions are

still open. These are due to the complex and variegate nature of SoS,

and the inherent difficulty in identifying a generic and comprehensive

way of describing them.

In this section, we present a viewpoint‐driven analysis of related

ADL design approaches presented in the literature of SoS. This analy-

sis, whose results are reported inTable 3, is not meant to be exhaustive

but it is based on the most representative related works on designing
design

Emergence Time Multicriticality Dep & Sec

18 of 20 MORI ET AL.
SoS. Its objective is to determine at what extent viewpoints‐based SoS

concepts have been already captured in the literature.

In Huynh and Osmundson,38 the authors propose the use of

SysML in representing an SoS by adopting and in some cases extend-

ing canonical SysML diagrams to model different viewpoints of an

SoS. In particular aspects related to the structure viewpoint have been

deeply considered to identify the SoS internal structure, its boundaries

with the environment through well‐defined interfaces, SoS functional-

ities, and how interactions occur by exchanging messages. Beyond

structure, a specific support to the multicriticality viewpoint is also

provided by adopting the specific stereotypes aiming at grouping

requirements according to qualitative and quantities metrics to

support trade‐off analysis. Nevertheless, in Huynh and Osmundson38

a specific support to the time viewpoint has not been considered to

assure the responsiveness of SoS and dependability/security

viewpoints have not specifically addressed. The authors did not

consider viewpoints like dynamicity, evolution, and emergence.

A partial answer to the above issues is given by the approach

presented in Lane and Bohn39 providing support to structure and evo-

lution viewpoints of an SoS by exploiting several SysML models. The

authors propose the adoption of diagrams to determine an evolving

SoS and its environment and the interactions occurring between an

SoS and the environment and among CSs themselves. Noteworthy,

the approach is still missing specific support to dynamicity, emergence,

and multicriticality viewpoints and although the executable models

presented are a first required step to assure dependability/security

requirements and responsiveness (time), it still missing a specific

support to those viewpoints.

In the SysML modeling approach presented in Rao et al,40 the

authors allow the definition of the SoS structure and how to support

dynamicity and evolution viewpoints by means of understanding the

dis‐alignment of a simulated SoS with respect to its requirements.

The approach makes use of different executable diagrams to simulate

Net‐centric SoS through the Petri net formalism thus describing the

dynamic behavior and assuring that end‐user requirements are met.

Noteworthy, the approach40 is still missing a specific support to emer-

gence and multi‐criticality. Concerning dependability and security

viewpoints as well as responsiveness (time), the approach,40 similarly

to Lane and Bohn,39 does not provide any specific support.

The approach presented in Bryans et al41 and Ingram et al,42 in the

context of COMPASS EU project,43 provides support to model the

structure of an SoS and emergence by means of the extension to

SysML diagrams. Analyses of the former models are conducted to evi-

dence that requirements are fulfilled. COMPASS exploits tool's well‐

established extension mechanisms to extend traditional systems

modeling as needed to model and analyze SoS with the support of

the formal COMPASS modeling language. The latter has been

exploited to support fault handling (dependability viewpoint) and

responsiveness (time viewpoint) of an SoS. Nevertheless, the

approaches in Bryans et al41 and Ingram et al42 provide no specific sup-

port to dynamicity, evolution, and multicriticality.

The approach in Gezgin et al,44 within the context of the DANSE

EU project,45 supports the definition of an SoS structure, dynamicity,

and evolution (by means of Graph Grammars), emergence, etc, with

the only exception of multicriticality. DANSE presented a set of
methodologies and tools to model and to analyze SoS based on the uni-

fied profile for DoDAF and MoDAF. In particular, DANSE focuses on

the 6 models that can be represented as executable forms of SysML

as partially reported in Gezgin et al,44 according to a well‐defined

formalism to relate basics SoS concepts and their relationships. In the

context of DANSE, the goal specification contract language assures

the achievement of dependability and security requirements and it

guarantees the timely response of an SoS.

The following works are referred here because they focus on dif-

ferent viewpoints in SoS modeling, but they are not in the Table 3 as

they do not provide a profile. The approach in Baldwin et al46 presents

a theoretical model to describe autonomy, belonging, connectivity,

diversity, and emergence in SoS. The work first models these charac-

teristics and their properties, then it uses a computer simulation to

demonstrate the presented model. SoSADL,47 currently under devel-

opment, is a formal language derived from π‐ADL and targeted to

SoS architectures. SoSADL includes static and dynamic architectural

specifications, with specific focus on reconfiguration modeling.

As shown in the literature, different attempts exist to apply SysML

approaches to specific viewpoints that we deemed essential in

supporting the design of SoS. These approaches have shown the utility

of adopting SysML formalisms to model architectural aspects of SoS

thus supporting different types of analysis and a first step towards exe-

cutable artifacts which can be automatically derived. Although these

approaches provide detailed insights for different viewpoints aspects,

it is still missing (1) an homogeneous synthesis at a more abstract level

of key design‐related SoS concepts and (2) and a viewpoint‐based

vision. Bringing this perspective in one single consistent reference

model, it is possible to provide solutions to specific design problems

while still keeping the required interconnections among viewpoints.
8 | CONCLUSION AND FUTURE WORK

This paper presented a viewpoint‐driven approach to design SoS by

adopting a SysML profile. We pointed out the gaps in the literature

of ADLs for SoS with regards to a set of viewpoints that we deemed

essential for understanding SoS. We outlined the conceptual model

at the basis of the profile, and we presented how to solve specific

viewpoint needs in an integrated fashion by exploiting the high‐level

SoS representation in a small scale scenario. We implemented the pro-

file in the Eclipse‐integrated development environment jointly with

Papyrus,48 ie, an Eclipse plug‐in supporting advanced facilities to

manipulating UML artifacts and SysML profiling. We discussed the

integration of the profile in the MDE chain and the support for differ-

ent type of SoS analyses. As an example, we showed how the HA may

support the detection of emergent behavior. Furthermore, we

discussed the usage of the profile with a MDE tool to support the

SoS designer in managing the complexity of SoS models. To such

extent, scalability and usability concerns have been discussed.

As future work, we are applying our profile and the Blockly tool to

a use case on industrial automation. More in detail, we are currently

supporting the design of an automated industrial system, which

includes the coordination of autonomous carts for loading and

unloading goods, with the ultimate target of resource optimization

MORI ET AL. 19 of 20
and of course without compromising safety of personnel and equip-

ment. This case study focuses strongly on, among other, real‐time

requirements, safety requirements, and planning for positive emer-

gence. We plan to apply the solutions presented in this paper to sup-

port the design and the simulation of the targeted SoS.

We also envision the application of the profile and the Blockly‐

based tool to support the different stages of an SoS life cycle. In fact,

as a longer‐term objective, we plan to study the application of our

solution for verification and validation activities. Concerning verifica-

tion, the approach is suitable for system analysis: the paper presented

an approach for HA, but other techniques can be investigated as well,

for example, failure mode and effect analysis and fault tree analysis.

Concerning validation, the SoS model can be the basic layer to define

test procedures or resolve problems of testing coverage. This is partic-

ularly relevant for SoS composed of several interacting CSs.

A further action, which is nontechnical but it is very relevant for

us, is instead on the dissemination side. The profile and the Blockly‐

based tool are freely available, and it is our ambition to promote their

usage. The Blockly‐based tool has been submitted to the attention of

Google (Blockly's owner), and as per today, it is reported on the Blockly

Wikipedia website.49 Further actions consist in finding novel use cases

and pilots where the solution can be exercised, as well as further dis-

seminate the results to encourage their usage and collect feedbacks

from practitioners.

ACKNOWLEDGMENT

This work has been partially supported by the European Project FP7‐

ICT‐2013‐10‐610535 AMADEOS.

REFERENCES

1. Jamshidi M. Systems of Systems Engineering—Innovations for the 21st

Century. Wiley and Sons; 2009.

2. SAE Architecture Analysis & Design Language, AS5506, 2009‐01‐20.

3. “Cyber‐Physical Systems of Systems. Foundations – A Conceptual Model
and Some Derivations: The AMADEOS Legacy”, A. Bondavalli et al.
(eds.), LNCS 10099 (open access), 257 pages, https://doi.org/
10.1007/978‐3‐319‐47590‐5

4. Ceccarelli A, Mori M, Lollini P, Bondavalli A. Introducing meta‐require-
ments for describing system of systems. HASE. 2015;150‐157.

5. Ceccarelli A, Bondavalli A, Froemel B, Hoeftberger O, and Kopetz H.
Basic Concepts on Systems of Systems. In: Cyber‐Physical Systems of
Systems (pp. 1–39). Springer International Publishing, https://doi.org/
10.1007/978‐3‐319‐47590‐5_1.

6. Nakagawa EY, Gonçalves M, Guessi M, Oliveira LB, Oquendo F. The
state of the art and future perspectives in systems‐of‐systems software
architectures. SESoS. 2013;13‐20.

7. H. Kopetz. “Conceptual model for the information transfer in systems
of systems”, ISORC 2014, pp. 17‐24, IEEE Press. 2014.

8. S. A. Selberg, M. A. Austin. “Toward an evolutionary system‐of‐systems
architecture”, INCOSE, pp. 1065‐1078, 2008.

9. Schmerl B, Aldrich J, Garlan D, Kazman R, Yan H. Discovering architec-
tures from running systems. IEEE TSE. 2006;32(7):454‐466.

10. Murer S, Bonati B, Furrer FJ. Managed Evolution: A Strategy for Very
Large Information Systems. Springer; 2010.

11. Avizienis A, Laprie JC, Randell B, Landwehr C. Basic concepts and taxonomy
of dependable and secure computing. IEEE TDSC. 2003;1(1):11‐33.

12. Verissimo P. “Travelling through wormholes: a new look at distributed
systems models,” SIGACT News 37(1), pp. 66‐81, 2006.
13. Kopetz H. Real‐time Systems: Design Principles for Distributed Embedded
Applications. Springer; 2011.

14. Mogul J. “Emergent (mis)behavior vs. complex software systems”,
EuroSys, pp. 293‐304, ACM, 2006.

15. OMG. System modelling language (SysML) ‐ http://www.omgsysml.org

16. FP7‐ICT‐2013‐10‐610535 AMADEOS—architecture for multi‐critical-
ity agile dependable evolutionary open system‐of‐systems ‐ http://
amadeos‐project.eu/

17. M. Mori, A. Ceccarelli, P. Lollini, A. Bondavalli, B. Froemel. (2016). A
holistic viewpoint‐based SysML profile to design systems‐of‐systems.
In 2016 IEEE 17th International Symposium on High Assurance Sys-
tems Engineering (HASE), pp. 276‐283.

18. P. Lollini, and A. Babu. “Architecting systems of systems: from basic
concepts towards a SoS profile and supporting tools”, Tutorial session
within INCOSE IS 2016, July 2016, Edinburgh. http://amadeos‐pro-
ject.eu/event/incose‐international‐symposium/

19. Jovanovic P, Neves S. Practical cryptanalysis of the Open Smart Grid
Protocol. In: Fast Software Encryption. Berlin Heidelberg: Springer;
2015.

20. OMG, Systems modeling language (SYSML) specification, version 1.3
(June 2012). URL http://www.omg.org/spec/SysML/1.3/PDF

21. S. Friedenthal, A. Moore, R. Steiner. OMG Systems Modeling Language
Tutorial. September, 2009. Available at: www.omgsysml.org/INCOSE‐
OMGSysML‐Tutorial‐Final‐090901.pdf

22. AMADEOS Consortium, “Deliverable 2.3—AMADEOS conceptual
model ‐ revised”, 155 pages, 30 September 2016. Available at http://
amadeos‐project.eu/

23. H. Kopetz, B. Fromel. “Direct versus stigmergic information flow in sys-
tems‐of‐systems.” System of Systems Engineering Conference (SoSE),
2015 10th. IEEE, 2015.

24. “A UML profile for MARTE: modeling and analysis of real‐time embed-
ded systems”, OMG Document Number: ptc/2008‐06‐09.

25. Jan Jürjens. “UMLsec: extending UML for secure systems develop-
ment.” International Conference on The Unified Modeling Language.
Springer Berlin Heidelberg, 2002.

26. Alan Burns, Davis Robert, “Mixed Criticality Systems—A review.” Depart-
ment of Computer Science, University of York, Tech. Rep (2013).

27. H. Kopetz, O. Höftberger, B. Frömel, F. Brancati, A. Bondavalli.
“Towards an understanding of emergence in systems‐of‐systems”
SoSE, pp. 214‐219, IEEE, 2015.

28. EN 50129:2003: railway applications—communication, signalling and
processing systems—safety related electronic systems for signaling.

29. Schmidt DC. Guest editor's introduction: model‐driven engineering.
IEEE Computer. 2006;39(2):25‐31.

30. V. Bonfiglio, L. Montecchi, F. Rossi, P. Lollini, A. Pataricza, and A.
Bondavalli. “Executable models to support automated software FMEA”.
HASE, pp. 189‐196, IEEE, 2015.

31. P.J. Redmond, J.B. Michael, P.V. Shebalin,. “Interface hazard analysis for
system of systems”, SoSE, pp. 1‐8, IEEE, 2008.

32. P. Tommaso, R. Esposito, P. Marmo, and A. Orazzo. “Hazard analysis of
complex distributed railway systems”, Proceedings of International
Symposium on Reliable Distributed Systems (SRDS), pp. 283‐292,
2003.

33. N. Fraser. Google Blockly—a visual programming editor. URL: https://
code.google.com/archive/p/blockly/, accessed Sep. 2014.

34. Amadeos Consortium, D4.5 ‐ Final results and lesson learned from
proof of concepts, 2016. Available at http://amadeos‐project.eu/

35. A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi, and T.
Vardanega. (2012, September). CHESS: a model‐driven engineering
tool environment for aiding the development of complex industrial sys-
tems. In Automated Software Engineering (ASE), 2012 Proceedings of
the 27th IEEE/ACM International Conference on (pp. 362‐365). IEEE.

https://doi.org/10.1007/978-3-319-47590-5
https://doi.org/10.1007/978-3-319-47590-5
https://doi.org/10.1007/978-3-319-47590-5_1
https://doi.org/10.1007/978-3-319-47590-5_1
http://www.omgsysml.org
http://amadeos-project.eu/
http://amadeos-project.eu/
http://amadeos-project.eu/event/incose-international-symposium/
http://amadeos-project.eu/event/incose-international-symposium/
http://www.omg.org/spec/SysML/1.3/PDF
http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
http://amadeos-project.eu/
http://amadeos-project.eu/
https://code.google.com/archive/p/blockly/
https://code.google.com/archive/p/blockly/
http://amadeos-project.eu/

20 of 20 MORI ET AL.
36. Silvia Mazzini. “The CONCERTO project: an open source methodology
for designing, deploying, and operating reliable and safe CPS systems”,
ADA USER, 2015, 36.4: 264.

37. C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J.Woodcock, J. Peleska. “Systems
of systems engineering: basic concepts, model‐based techniques, and
research directions.” ACM Computing Surveys (CSUR) 48.2 (2015): 18.

38. T. V. Huynh, J. S. Osmundson. “An integrated systems engineering
methodology for analyzing systems of systems architectures”, Asia‐
Pacific Systems Engineering Conference, Singapore, 2007.

39. Lane JA, Bohn TB. Using SysML modeling to understand and evolve
systems of systems. System Engineering. 2013;16(1):87‐98.

40. Rao M, Ramakrishnan S, Dagli C. Modeling and simulation of net centric
system of systems using systems modeling language and colored petri‐
nets: a demonstration using the global earth observation system of sys-
tems. Systems Engineering. 2008;11(3):203‐220.

41. Bryans J, Fitzgerald JS, Payne R, Kristensen K.Maintaining Emergence in
Systems of Systems Integration: A Contractual Approach using SysML.
INCOSE; 2014.

42. C. Ingram, J. Fitzgerald, J. Holt, N. Plat. “Integrating an upgraded con-
stituent system in a system of systems: A SysML case study.”
INCOSE International Symposium. Vol. 25. No. 1. 2015.

43. COMPASS, “Guidelines for architectural modelling of SoS. Technical
note number: D21.5a version: 1.0”, September 2014 ‐http://www.
compass‐research.eu
44. Gezgin T, Etzien C, Henkler S, and A. Rettberg, “Towards a rigorous
modeling formalism for systems of systems”, ISORCW, pp.204‐211,
IEEE, 2012.

45. DANSE Consortium, DANSE methodology V2 ‐ D_4.3 ‐ https://www.
danse‐ip.eu

46. W. Clifton Baldwin, Brian Sauser. “Modeling the characteristics of sys-
tem of systems.” System of Systems Engineering, 2009. SoSE 2009.
IEEE International Conference on. IEEE, 2009.

47. Franck Petitdemange, Isabelle Borne, and Jeremy Buisson. 2015.
Approach based patterns for system‐of‐systems reconfiguration. In
Proceedings of the third international workshop on software engineer-
ing for systems‐of‐systems (SESoS '15). IEEE press, Piscataway, NJ,
USA, 19‐22.

48. MDT/Papyrus. Eclipse model development tools (MDT). http://wiki.
eclipse.org/MDT/Papyrus‐Proposal

49. Blockly, https://en.wikipedia.org/wiki/Blockly

How to cite this article: Mori M, Ceccarelli A, Lollini P, Frömel

B, Brancati F, Bondavalli A. Systems‐of‐systems modeling using

a comprehensive viewpoint‐based SysML profile. J Softw Evol

Proc. 2017;e1878. http://doi.org/10.1002/smr.1878

http://www.compass-research.eu
http://www.compass-research.eu
https://www.danse-ip.eu
https://www.danse-ip.eu
http://wiki.eclipse.org/MDT/Papyrus-Proposal
http://wiki.eclipse.org/MDT/Papyrus-Proposal
https://en.wikipedia.org/wiki/Blockly
http://doi.org/10.1002/smr.1878

