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Abstract. We use ultracold atoms in a quasiperiodic lattice to study two outstanding problems in the physics of disordered
systems: a) the anomalous diffusion of a wavepacket in the presence of disorder, interactions and noise; b) the transport
of a disordered superfluid. a) Our results show that the subdiffusion, observed when interaction alone is present, can be
modelled with a nonlinear diffusion equation and the peculiar shape of the expanding density profiles can be connected to the
microscopic nonlinear diffusion coefficients. Also when noise alone is present we can describe the observed normal diffusion
dynamics by existing microscopic models. In the unexplored regime in which noise and interaction are combined, instead, we
observe an anomalous diffusion, that we model with a generalized diffusion equation, where noise- and interaction-induced
contributions add each other. b) We find that an instability appearing at relatively large momenta can be employed to locate
the fluid-insulator crossover driven by disorder. By investigating the momentum-dependent transport, we observe a sharp
crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. The set of
critical disorder and interaction strengths for which such critical momentum vanishes, can be identified with the separation
between a fluid regime and an insulating one and can be related to the predicted zero-temperature superfluid-Bose glass
transition.

Keywords: Disorder, interaction, transport, diffusion, noise, out-of-equilibrium
PACS: 03.75.Lm, 05.60.-k, 05.45.-a

INTRODUCTION

Disorder is present everywhere in nature and it can dramatically affect the properties of quantum systems. The transport
in superfluids and superconductor, in fact, is strongly affected by the presence of disorder or isolated defects. The most
celebrated example was predicted by Anderson [1] for the conductivity in crystals, strongly influenced or eventually
suppressed by the presence of even a weak disorder. Moreover the interplay of disorder, non-linearities and noise
gives rise to interesting phenomena in a variety of physical systems, including metals and superconductors [2], glasses
[3], photonic crystals [4, 5] and biological complexes [6, 7, 8]. In the last few decades, in fact, a great interest in
the understanding of their complex properties grew up. In particular, interactions, at least in the regime of a weak
repulsion, are known to be able to break the Anderson localization induced by the disorder, restoring the coherence
and the mobility in an otherwise incoherent, insulating system. This is however a challenging problem, because in
most systems it is very difficult to independently control the various contributions. Ultra-cold quantum gases are very
promising devices to investigate disordered systems, due to the possibility they offer to precisely tune all the important
parameters, including disorder, interactions, noise, thermal and quantum fluctuations [9, 10, 11, 12].
In this contribution to the Transport in Interacting Disordered Systems (TIDS 15) Conference, we outline our recent
experimental studies on the transport of an atomic Bose-Einstein condensate in a quasiperiodic optical lattice, to
investigate the interplay of the localizing disorder and a weak repulsive interaction across the superfluid-Bose glass
transition [13, 14]. In particular, we have investigated how a system that is initially localized by a static disorder is
affected by a repulsive interaction or by a temporal noise. A study of the long time expansion dynamics allows us to
observe an anomalous diffusion that can be justified in the frame of current theories. We have also studied the short
time dynamics of a disordered interacting system confined to one spatial dimension. In this case we observe a non
trivial behavior, with dissipation and instabilities, which are determined by the interplay of disorder, interactions and
the characteristic phase fluctuations of 1D systems.
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THE DISORDERED INTERACTING SYSTEM

In the experiment we employ a weakly-interacting Bose-Einstein Condensate in the fundamental band of a quasi-
periodic potential, which is realized by perturbing a strong primary optical lattice with a weak, incommensurate,
secondary one. Non-interacting particles in the first band of such a potential can be described by the well-known
Aubry-André tight-binding Hamiltonian [15]:

H =−J ∑
j
(b†

jb j+1 +b†
j+1b j)+Δ∑

j
cos(2πδ j)n j , (1)

where b†
j ,b j and n j = b†

jb j are the standard on-site creation, destruction and number bosonic operators, J is the kinetic

(hopping) energy, Δ is the quasi-disorder energy and δ is the ratio of the two lattice spacings. Note that for Δ = 0, i.e.
in the absence of the secondary lattice, the Aubry-André Hamiltonian is equivalent to the single-particle tight-binding
Hamiltonian for a single lattice. The perturbation due to the secondary lattice, in fact, does not change substantially
the position of the minima but just shifts the energies in a range ∼ 2Δ [16, 17]. This model is known to show Anderson
localization for Δ > 2J, with an essentially energy-independent localization length ξ ∼ d/ ln(Δ/2J), where d is the
main lattice spacing [16, 18].

In the experiment we can realize this single-particle regime, and also add a controllable repulsive interaction between
the particles, by employing potassium-39 atoms with a magnetically-tunable Feshbach resonance [19, 20]. In the
presence of interaction, one needs to introduce an additional term in the Hamiltonian

Hint =U ∑
j

n j(n j −1) , (2)

where U parameterizes the two-particles interaction energy and Eint ∼ Un(x, t)d represents the local interaction per
particle, where n(x, t) is the time-dependent density distribution. Such interaction can couple distinct single-particle
localized states, allowing for macroscopic transport.

A temporal noise can be introduced by an amplitude modulation of the secondary lattice, with controllable strength
A [21]. In this case we have to introduce in the Hamiltonian the following term

Hnoise = Asin(ωmt +φm)Δ∑
j

cos(2πδ j)n j . (3)

where the frequency ωm is randomly varied in a proper interval and the phase φm is adjusted to preserve the continuity
of the modulation and the sign of its first derivative. This corresponds to a broadband spectrum with a controllable
width of the same order of the energy bandwidth of the quasiperiodic potential (W ≈ 2Δ+4J), which is able to drive in-
coherent hopping between the localized states and to allow for macroscopic transport even in a non-interacting system.

We performed two kinds of experiments (Fig. 1). In the first series of experiments we investigated the expansion
dynamics of an initially confined wavepacket along a disordered lattice, in the absence of any additional confinement
(Fig. 1left). This kind of out-of-equilibrium dynamics has been extensively studied in the theory and we performed
its first experimental realization. We were interested in studying the different kinds of dynamics in the presence of
disorder (which gives Anderson localization) and a temporal noise (which drives a normal diffusion) and/or a repulsive
interaction (able to drive a subdiffusion). In this case, since the system was essentially 3D because of the weak radial
confinement (∼ 50 Hz), the maximum interaction Eint we could reach was of the order of J. In this kind of experiments
the system was subjected to a long-time dynamics, that we could investigate up to 10s.

In a second series of experiment we investigated the dynamics of a system initially prepared at the equilibrium in
the center of an external trap and then subjected to a sudden shift of the potential (Fig. 1right). We were interested in
studying the critical velocity of the superfluid and in understanding how it is affected by the disorder. We investigated
this phenomenon in a 1D environment, where both quantum and thermal fluctuations are strongly enhanced, in analogy
with quantum wires, but with the additional ability to control the disorder. In this case the system is realized with an
additional 2D optical lattice in the radial direction, which splits the 3D Bose-Einstein Condensate in a few hundreds
of 1D quasi-condensates. The strong radial confinement (50 kHz) allows us to reach higher values of the interaction
energy (Eint ∼ 10J), but the tight axial confinement (150 Hz), introduced by the 2D lattice, prevents the observation of
the diffusive dynamics we performed in 3D.
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FIGURE 1. Schematic representation of the disordered, interacting system. (left) An initial non-interacting wavepacket (blue
dashed line) can be decomposed into exponentially-localized single-particle states (green thick lines) of the quasi-periodic lattice
(grey thin line). After having removed the axial harmonic confinement (orange dotted line), a weak interaction or an external noise
couple the states and allow an expansion of the wavepacket. Only states separated by one quasiperiod, d/(δ − 1), are shown for
clarity. (right) The initial atomic cloud is prepared at equilibrium (blue dashed line) and the initial harmonic confinement (orange
dotted line) is suddenly displaced (red dash-dotted line). The atoms start to accelerate in the new trap.

ANOMALOUS DIFFUSION WITH DISORDER, NOISE AND INTERACTION

To study the dynamics, we initially prepare the condensate close to the ground state of the combined potential of the
quasi-periodic lattice with Δ > 2J and a tight axial harmonic trap, characterized by a Gaussian density distribution
n(x). We then suddenly switch off the trap and study the expansion dynamics along the lattice for a variable time, in
the presence of an additional radial confinement. In the absence of atom-atom interaction or external noise, the sample
is localized in a finite region of the space, as an effect of the Anderson localization mechanism, and we observe only
an extremely slow expansion, presumably due to technical noise (Fig. 2). A weak interaction introduces a coherent
coupling of single-particle localized states and inhibits localization by giving rise to a subdiffusion, essentially due
to the density-dependent local diffusion coefficient. A temporal noise breaks the coherence necessary to have the
Anderson localization and hence destroys it. Since this noise is density-independent, it is able to induce a diffusive
expansion. A typical time evolution of the width of the system for Δ > 2J in the presence of noise and interaction is
shown in Fig. 2.

The disorder-induced localization is broken by the interaction or the noise alone or also by their combination. In
all cases, we observe a short-time transient that evolves into an asymptotic behavior, which is different in the three
cases. To model the expansion we fit the evolution of the measured square root of the second moment of n(x, t) with
the solution of a generalized diffusion equation:

σ(t) =
√
〈x2〉= σ0(1+ t/t0)α , (4)

which is expected to correctly model the overall behavior from short time to the asymptotic regime. Here σ0 is the
initial width, t0 is a free parameter that represents the crossover time from the short-time dynamics to the asymptotic
one, and α is the long-time diffusion exponent which is characteristic of the dynamics and is different in the three
cases. In the combined case of noise and interaction, at short time the expansion is strongly affected by the interaction
while at longer time it is dominated by the noise. The interaction-assisted diffusion, in fact, tends to vanish as the
sample expands and we should expect a long-time crossover to a regime where interactions effects are negligible and
the system diffusion is only due to noise.
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FIGURE 2. Expansion with disorder (Δ = 4J), noise and interaction. The lines are fits with Eq. (4).

Subdiffusion of an interacting system in a static disordered lattice

Let’s first discuss the effect of a repulsive interaction in a static disordered lattice. As shown in Fig. 2 we essentially
observe no expansion if U = 0, while for a finite U the distribution broadens and changes shape with the increasing
time, as already studied both in the theory [22, 23, 24, 25, 26, 27, 28, 29, 30] and in the experiments [31].
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FIGURE 3. Density distribution n(x, t) during the expansion with strong disorder and repulsive interaction. The initial Gaussian
distribution (left) evolves into a flat-top distribution at longer times (right). The blue dash-dotted lines are Gaussian fits of the tails
of the distribution; the orange dashed lines are fits of the profiles with Eq. (8).

The finite interaction energy breaks the orthogonality between the localized states, weakening the localization.
The observed expansion is well fitted with Eq. (4) with a characteristic exponent α in the range 0.2-0.4 [31]. We
can describe in a perturbative approach the resulting dynamics as an interaction-assisted coherent hopping between
localized states. The diffusion coefficient can be estimated as D ∼ Γξ 2, where ξ is the natural length scale of
the hopping and Γ is a coupling rate, that decreases as the system expands. The perturbative approach predicts
D ∝ n(x, t)β ∝ σ−β , with β > 2 or β = 2, if respectively Eint � Δ or Eint ∼ Δ.
By solving the standard diffusion equation

∂n(x, t)
∂ t

=
1

2

∂
∂x

(
D

∂n(x, t)
∂x

)
, (5)
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for a Gaussian distribution n(x, t) ≈ exp [−x2/2σ(t)2], we find an evolution of the width σ as dσ2(t)/dt = D, and
therefore a time dependence of the form of Eq. (4), with α = 1/2. In this case the dynamics results in a diffusive
behavior (σ =

√
Dt), with a constant diffusion coefficient D = σ2

0 /t0.

By still considering a Gaussian, but with a width-dependent diffusion coefficient as D ∝ σ−β , Eq. (4) continues to
describe the time evolution of the width, but with a time exponent α = 1/(2+β ). In this case the dynamics results in
a subdiffusive behavior, i.e. in a diffusion with a decreasing instantaneous diffusion coefficient

D(t) = 2α
σα−1

0

t0
σ(t)2−α−1

. (6)

While the subdiffusive expansion of the width is well described by this simplified heuristic model of the microscopic
dynamics, both in the numerical observations [30] and in the experimental ones [31], a little or no analysis is available
for the evolution of the overall shape of n(x, t). We can compare the evolution of the density distribution during the
subdiffusive expansion with a solution of a general nonlinear diffusion equation (NDE) of the form:

∂n(x, t)
∂ t

=
∂
∂x

(
D0na(x, t)

∂n(x, t)
∂x

)
, (7)

where the diffusion coefficient is explicitly density-dependent. The NDE is usually studied in the asymptotic limit,
where its solution is not able to describe the clear change of the shape we observe at short-time expansion. We built
the following approximate solution of the NDE:

n(x, t) =

⎧⎨
⎩

B
(

1− b(t)x2

w(t)2

)1/b(t) |x|< w(t)/
√

b(t)

0 |x| ≥ w(t)/
√

b(t)
(8)

where B = B(b,w) is an appropriate normalization coefficient and b(t) = a(1 − exp(−t/τ)) is a time-dependent
exponent, which provides an accurate interpolation between the initial Gaussian shape and the known asymptotic
distribution. As shown in Fig. 3 we found a qualitative good agreement between the experimental evolution of the shape
and the generalized solution in Eq. (8), which confirms the hypothesis of a density-dependent diffusion coefficient [32].

Quantum diffusion of a disordered interacting system in the presence of noise

While the weak interaction destroys localization by inducing a subdiffusive behavior, a temporal noise is known to
drive an incoherent hopping between the localized states, which results in a diffusive expansion, as predicted by theory
[33, 34, 35, 36, 37] and observed in experiments [5, 38, 39, 40, 41].

In the presence of noise alone, in fact, we typically observe an expansion well fitted by Eq. (4) with an exponent
α = 0.45(5) (Fig. 2), consistent with the normal diffusion, and that the shape n(x) keeps being Gaussian at all times
[21]. The measured diffusion coefficient D = σ2

0 /t0 shows a clear dependence both on the noise A and disorder Δ/J
strengths. Using a perturbative approach, in the limit of a noise bandwidth equal to the lattice bandwidth, we predict
[21]

D = ξ 2Γ ≈ A2J
3h̄

(ξ +d)2

1+ ed/ξ . (9)

which is in good agreement with the experimental observations (Fig. 4).

As shown in Fig. 5, in the presence of both noise and interaction we typically observe a non trivial expansion that
is globally faster than for noise or interaction alone, but has an exponent α , extracted from the fit with Eq. 4 (purple
solid line in Fig. 5), which is intermediate between the two ones measured for interaction alone (red line) and noise
alone (blue line). In the combined case, in fact, α varies in the range 0.3-0.5, depending on the relative value of the
interaction energy Eint and the noise amplitude A. The observed anomalous diffusion, that is a transient to normal
diffusion, can be modelled with a generalized diffusion equation (GDE) for σ2(t)

dσ2(t)
dt

= Dnoise +Dint(t) . (10)
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FIGURE 4. Noise-induced normal diffusion: ξ and A dependence of the diffusion coefficient D, for J = 150 Hz. Open symbols
are the experimental data and filled ones (left) are numerical simulations. Solid lines (left) are a guide to the eyes for numerical
simulations. Dash-dotted line (right) is the perturbative prediction from Eq. (9).
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FIGURE 5. Noise and interaction additive anomalous diffusion. Measured time evolution of the width for noise alone (triangles),
interaction alone (squares), or both (circles), for Δ = 4J. In the three cases, solid lines are fits with Eq. (4). The dash-dotted line is
the numerical solution of Eq. (10) using the extracted diffusion coefficients from the fits for interaction alone (red solid line) and
noise alone (blue solid line), with the confidence interval shown as a grey area.

where the instantaneous diffusion coefficient is the sum of the two coefficients of the interaction alone (red line) and
the noise alone (blue line): Dnoise is the time-independent diffusion coefficient due to noise alone, while Dint(t) is the
time-dependent diffusion coefficient for the interaction alone (Eq. (6)). The numerical solution of Eq. (10) is shown
in Fig. 5 (purple dash-dotted line). We find that such general diffusion equation, which is similar to a generalized
diffusion equation theoretically predicted for Brownian motion of classical interacting particles [42], is valid in a wide
range of parameters.
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MOMENTUM-DEPENDENT TRANSPORT AT THE FLUID-INSULATOR
TRANSITION

In a second series of experiments we investigate the transport in a strongly-fluctuating 1D environment, that we realize
with 1D ultracold atomic bosons in quasiperiodic lattices [43].

To realize the system, the 3D Bose-Einstein condensate is subjected to a 2D lattice that creates a series of parallel 1D
tubes, resulting in a few hundreds of 1D quasi-condensates. The quasi-periodic lattice is loaded along the longitudinal
direction. The Bose-Hubbard interaction energy U is varied in the range (0.3-10)J and the mean atom number per site
ν , which scales approximately as U−1/3, varies in the range of 2-4.

To study the transport, the trap center along the vertical direction is suddenly displaced by a small amount
z0=3.9(2) μm by switching off a magnetic-field gradient (Fig. 1). After a variable waiting time in which the atoms
evolve in the shifted trap, all potentials are suddenly switched off and the momentum distribution ρ(p) is recorded
after a free expansion. In a single lattice, in the absence of any dissipation, the atoms would oscillate with a frequency
ω∗ = ωz

√
m/m∗ 
 2π×90 Hz, were m∗ is the atomic effective mass in the lattice. In the presence of a disorder,

by exciting the motion with variable momentum p, we observe a sharp crossover at a disorder-dependent critical
momentum from a weakly dissipative regime (at low p) to a strongly unstable one (at large p). The vanishing of
this critical momentum for the observed instability is then employed to locate the fluid-insulator transition driven by
disorder, across the interaction-disorder plane.

Transport in non-disordered lattices

We started our investigation with non-disordered lattices (Δ=0), where theoretical models are available. A typical
observation of the evolution of ρ(p) is shown in Fig.6, and compared to the solution of the semiclassical equations of
motion. At short times, the displacement of the peak momentum, p0, can be approximated with a damped oscillation

p0(t) = m∗ω∗2z0/ω ′ sin(ω ′t)e−γ∗t , where ω ′ =
√

ω∗2 − γ∗2 and γ∗ = γm/m∗, with a damping rate γ = 2π×(20-
300) Hz. At longer times, as p0 increases towards the center of the Brillouin zone (p = h/2λ1), we observe a sudden
increase of γ and of the width of ρ(p). This causes a stopping of the increase of p0, followed by a decay towards zero
which can be again fit with a much higher damping rate of the order of 1 kHz.
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FIGURE 6. Transport in non-disordered lattices. (left) Time evolution of the peak momentum for U = 1.26J and relative
observation of the transition from the initial regime of weaker dissipation to the strongly unstable regime at pc. (right) Critical
momentum pc as a function of the interaction energy. The arrow marks the critical U/J for the superfluid-Mott insulator transition
(calculated for ν = 2 [44]).

We estimate a critical momentum pc separating the initial regime of weaker dissipation from the strongly unstable
regime, by linearly fitting the difference between the experiment and the fit of the initial oscillation. As shown in
Fig. 6, the measured pc features a clear decrease when increasing U at constant J. Eventually, pc approaches zero as
U approaches the predicted critical value for the Mott insulator. By a piecewise fit of the data, we obtain a critical
interaction that is comparable with the value predicted by the theory [44], showing that also in 1D the onset of the
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Mott regime can be detected from a vanishing of pc, as in 3D systems [45]. Moreover the decrease of pc, accompanied
by a corresponding increase of γ with U , suggests a quantum activation of the phase slip [46, 47, 48].

Transport in disordered lattices

By introducing a finite Δ together with the main lattice and by performing the experiment as before we investigated
the transport in the presence of disorder. We have in particular studied the weakly-interacting regime, U/J <3, where
pc for the non-disordered lattice can be very precisely measured. Fig.7 shows how a small Δ results in a moderate
increase of γ , but also in an anticipated instability. Both changes can be related to the idea that the transport in disorder
is dominated by the weakest hopping links, resulting in a smaller effective J(Δ) that in turn produces an increase of the
phase-slip nucleation rates above. For a fixed U , pc features a clear decreasing trend for increasing Δ. Above a critical
disorder strength Δc of the order of the total interaction energy per atom νU , pc stops decreasing and stays constant
at a small value close to that observed in the Mott-insulator regime. This is actually the regime where the disorder
can overcome the delocalization effect of the interaction and a weakly-interacting Bose glass is predicted to appear
[49, 50].
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FIGURE 7. Transport in disordered lattices for U = 1.26J. (left) Time-evolution of the peak momentum for different values of
the disorder strength. Lines are fits of the semiclassical motion to the initial oscillation to estimate pc. (right) Critical momentum
pc as a function of the disorder strength. The line is the piecewise fit used to estimate Δc.

We studied how Δc evolves with U . For each U , we estimated Δc with a piecewise fit of the decreasing pc(Δ), as
shown in Fig.7. The summary of these measurements in Fig.8 shows a clear increase of Δc with U , indicating that
the critical momentum of more strongly interacting systems is less affected by the disorder. The increase of Δc is
actually fully justified, since the critical disorder strength to enter the Bose glass phase from the superfluid in the
regime of weak interactions is expected to scale as Δc/J = A(Eint/J)α , where Eint 
 νU is the total interaction energy
per atom, while A and α are coefficients of the order of unity [49, 50, 51]. In the absence of an analytical model for the
superfluid-Bose glass transition in a quasiperiodic lattice, we fit the experimental data with (Δc − 2)/J = A(νU/J)α

to account for the critical Δ 
 2J for localization in the non-interacting system.
The exponent we found, α = 0.86(22) is compatible with the mean-field theory prediction α=1 for correlated

Gaussian disorder in the so called Thomas-Fermi regime, where Eint is larger than the typical disorder correlation
energy Ec [50]. For the quasiperiodic lattice we estimate indeed an upper bound Ec 
 0.7J. The observation is however
not incompatible with the prediction α = α(U) < 1 found in disorder models that include the corrections beyond
mean-field [51].

CONCLUSIONS

Our experiments have provided the first characterization of the transport of a wavepacket in the presence of a
controllable disorder, noise and interaction. In the presence of a repulsive interaction we confirmed the subdiffusive
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FIGURE 8. Critical disorder to enter the insulating phase as a function of the interaction energy.

nature of the expansion. By connecting the clear evolution of the shape of the expanding density profiles with an
approximate solution of the nonlinear diffusion equation, in fact, we confirmed the hypothesis of a microscopic
density-dependent diffusion coefficient. In the presence of an external noise we characterized the noise-induced
diffusion and its interplay with the interaction induced subdiffusion. We have observed that the complex anomalous
diffusion resulting from the simultaneous presence of the two mechanisms can be explained by a simple generalized
diffusion equation.
By exploiting the possibility to change the dimensionality of our system, we have also studied the momentum-
dependent transport of 1D disordered bosons. For non-disordered lattices we observe a rather sharp transition from
a weakly dissipative regime at low p to a strongly unstable one at large p. When we add a weak disorder we
observe an enhanced dissipation and a reduced critical momentum pc for the instability. We observe that for a given
interaction strength there is a critical disorder strength above which pc vanishes, which indicates the crossover into an
insulating regime. From a set of different measurements we find a crossover line in the interaction-disorder plane that
is compatible with the predicted zero-temperature superfluid-Bose glass transition.
The present study was for weak interactions and constant T . Future work should explore the role of temperature, easily
controllable in our experiment, to investigate the many-body metal-insulator transition [52], and to establish a link with
the Luttinger-liquid theory for the superfluid-Bose glass transition for generic U and Δ. Furthermore our system could
be used to investigate the barely explored effect of an abrupt quantum quench on a strongly correlated system [53].
We could study, for example, the condition for which a closed system can display local thermalization and the still
disputed relation between thermalization and integrability of the system [54, 55, 56, 57]. We could also investigate the
effect of disorder on this challenging problem.
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