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Neural networks with excitatory and inhibitory components: Direct
and inverse problems by a mean-field approach
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We study the dynamics of networks with inhibitory and excitatory leak-integrate-and-fire neurons with
short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is
analyzed by a heterogeneous mean-field approximation, which allows us to keep track of the effects of structural
disorder in the network. We describe the complex behavior of different classes of excitatory and inhibitory
components, which give rise to a rich dynamical phase diagram as a function of the fraction of inhibitory
neurons. Using the same mean-field approach, we study and solve a global inverse problem: reconstructing
the degree probability distributions of the inhibitory and excitatory components and the fraction of inhibitory
neurons from the knowledge of the average synaptic activity field. This approach unveils new perspectives on
the numerical study of neural network dynamics and the possibility of using these models as a test bed for the
analysis of experimental data.
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I. INTRODUCTION

Many brain activities emerge as the combined effect of
excitatory and inhibitory components associated with synaptic
plasticity [1–6]. In mammalians, the fraction of inhibitory
neurons is close to 20%—30% [7], and it seems plausible that
this value was determined by evolutionary constraints, aiming
at the effectiveness of brain functions. Recently, an explanation
was proposed referring to the possibility that such a rate
between inhibitory and excitatory neurons could optimize the
performance of a neural network [8]. Neurons in the cortical
area can exhibit quite complex scale-free structures, where
inhibitory neurons play the role of hubs that control and
moderate the action of the excitatory ones [9]. All of these
considerations indicate that models of neural networks aiming
at reproducing a great number of brain functions should take
into account the presence of both excitatory and inhibitory
neurons, organized in a suitable network [10–13].

The large number of units and the typical high density of
connections in many brain areas suggest that a mean-field
approach is a proper mathematical tool for understanding the
large-scale dynamics of neural network models [6,14–17].
Recently, we have applied a heterogeneous mean-field (HMF)
strategy to deal with the dynamics of an excitatory neural
network. This method retains the basic information on the
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network topology through the probability distribution P (k̃)
of the in-degree density k̃ of synaptic connections attributed
to each neuron, and it allows us to build the dynamics of
classes of neurons sharing the same in-degree density k̃, by
suitable discretization of the dynamical rule [18]. The HMF
approach is very effective in reproducing the main dynamical
features of random dense networks of leaky-integrate-and-fire
(LIF) excitatory neurons with synaptic short-term plasticity.
In particular, the structure of quasisynchronous events and
the distinction between families of locked and those of
unlocked neurons, with a rich and complex phenomenology
in synchronization related to the topological features of the
network, are fully recovered [18].

Interestingly, the HMF approach also allows us to solve
in a natural way a global inverse problem. This consists in
recovering the unknown degree probability distribution P (k̃)
from the knowledge of the average synaptic activity field. The
method has been successfully applied to Gaussian and broad
degree probability distributions of excitatory neurons, and it
has been shown to be robust with respect to the introduction
of noise and disorder [19].

In this paper we show that the HMF strategy can be
generalized to networks of excitatory and inhibitory neu-
rons, organized in a complex network topology, combining
depressive and facilitating mechanisms. The main technical
difficulty to overcome is that short-term synaptic plasticity
obeys different dynamical rules for excitatory and inhibitory
neurons [20,21]. Moreover, as discussed in Sec. II, one has
to distinguish the dynamics of postsynaptic excitatory vs
inhibitory neurons and, for both of these subclasses, the signals
coming from presynaptic excitatory vs inhibitory neurons.
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A comparison between the original network dynamics and
the corresponding HMF dynamics is reported in Sec. III.
There we show that, even in a random network with both
excitatory and inhibitory components, the HMF approach re-
produces the main features of the different complex dynamical
regimes.

In Sec. IV we discuss the features of the global synaptic
activity fields emerging from the HMF dynamics for different
values of the inhibitory fraction. In particular, we show that
the system can display a quasiperiodic behavior characterized
by locked and unlocked neurons or an asynchronous regime
in which all neurons have different oscillation frequencies.
Moreover, for a specific value of the inhibitory fraction, the
system features an optimal synchronization regime, where all
neurons display the same interspike interval.

In Sec. V we derive an approximated analytic relation
between excitatory and inhibitory global synaptic activities,
holding if the periodicities of the neurons are similar. We
use this result to show, in Sec. VI, that the global inverse
problem can be solved also for neural networks containing
both excitatory and inhibitory components, with Gaussian and
scale-free degree density distributions. In particular, we are
able to reconstruct, from the average synaptic activity, the
degree density distributions and the inhibitory fractions in a
network with 10% inhibitory neurons and two Gaussian dis-
tributions P (k̃) for both inhibitory and excitatory components.
The same holds in the case of a network with 30% inhibitory
neurons generated by two P (k̃) scale-free distributions, with a
larger average value of k̃ for the inhibitory components.

Conclusions and perspectives of our research are, finally,
presented in Sec. VII.

II. LIF EXCITATORY AND INHIBITORY NEURONS
WITH SYNAPTIC PLASTICITY

We consider a network of N neurons, either excitatory or
inhibitory. Calling vi(t) the membrane potential of neuron i,
its dynamics is ruled by the LIF model, i.e.,

v̇i(t) = a − vi(t) + I
syn
i (t), (1)

where a is a common constant stimulus and I
syn
i (t) is the

synaptic current coming from the connections with other
neurons. All variables can be rescaled to work with adi-
mensional units (see [18] and [19]). For instance, time is
rescaled to the membrane time constant τm = 30 ms, and
the spiking threshold vth of v is set to 1, while its reset
value is vr = 0. Whenever vi reaches vth, neuron i emits a
spike and is reset to vr . In our simulations we set a = 1.3,
so that neurons are in a spiking regime; i.e., even in the
absence of synaptic stimuli they fire periodically, with a period
T0 = ln(a/(a − 1)). For the coupling dynamics we use the
Tsodyks, Uziel, and Markram model, a description of short-
term synaptic plasticity that has been successfully tested in
experimental setups [20,21]. According to [22], the dynamics
of the synapse between postsynaptic (i.e., receiving) neuron
i and presynaptic (i.e., transmitting) neuron j is described
in terms of the fraction of its active, yij (t), available, xij (t),
and inactive, zij (t), resources. These quantities are assumed to
evolve according to the following set of coupled differential

equations:

ẏij (t) = −yij (t)

τin
+ uij (t)xij (t)Sj (t), (2)

ẋij (t) = zij (t)

τ i
r

− uij (t)xij (t)Sj (t), (3)

xij (t) + yij (t) + zij (t) = 1, (4)

where Eq. (4) is a conservation rule and Sj (t) = ∑
δ(t − tj (n))

is the spike train of presynaptic neuron j emitting its nth
pulse at time tj (n). Whenever neuron j emits a spike, it
activates a fraction uij of the available resources xij . In between
two consecutive spikes, the fraction of active resources yij

decreases with time, with a time constant τin, and the fraction
of available resources recovers in a time τ i

r the fraction of
inactive resources zij . If postsynaptic neuron i is inhibitory,
the recovery time is much shorter. In particular, the typical
phenomenological values are τin = 0.2, while τ i

r = 3.4 if i is
inhibitory and τ i

r = 26.6 if i is excitatory. Moreover, if the
index i corresponds to an excitatory neuron, uij (t) is assumed
to be constant, namely, uij = U = 0.5; otherwise,

u̇ij (t) = −uij (t)

τf
+ Uf (1 − uij (t))Sj (t), (5)

where τf = 33.25 is the facilitation time scale and Uf = 0.08
is a phenomenological parameter [22,23].

The Tsodyks-Uziel-Markram model equations combine
depressive and facilitating mechanisms of plasticity [22]. If
the postsynaptic neuron is excitatory, the mechanism is purely
depressive, as a high-frequency spiking of presynaptic neurons
delays the available synaptic resources. If the postsynaptic
neuron is inhibitory, the dynamics of uij describes a facilitating
mechanism, reinforcing the synapse when presynaptic neuron
j has high electric activity. Equations (2)–(5) participate in the
neural network dynamics by specifying in Eq. (1) the form of
the synaptic current received by neuron i:

I
syn
i (t) = g

N

∑
j �=i

εij yij (t), (6)

where g is the coupling parameter and the index j labels
the presynaptic neurons of neuron i. The matrix elements εij

can take the values 0, 1, and −1 if, respectively, presynaptic
neuron j is disconnected, excitatory, or inhibitory with respect
to postsynaptic neuron i. In our first approach, we consider
random uncorrelated dense networks, i.e., networks where any
correlation among different degrees is absent, and the degree is
proportional to N [this explains the normalization factor 1/N

in Eq. (6)].
By denoting k̃ = k/N the rescaled in-degree, where k ∈

[0,N − 1] is the number of in-connections of a given neuron,
we can associate with the uncorrelated network its in-degree
distribution P (k̃). In general, inhibitory and excitatory neurons
may have different in-degree distributions, PI (k̃) and PE(k̃).
In particular, PI (k̃) and PE(k̃) are the probabilities that an
inhibitory and an excitatory neuron receive k̃N inputs from
other neurons. In this setup, we fix the in-degree distributions
of inhibitory and excitatory neurons, assuming that typically
they have randomly distributed outputs.
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III. HETEROGENEOUS MEAN FIELD FOR A NETWORK
OF EXCITATORY AND INHIBITORY NEURONS

The HMF approach (see [18] and [19]) amounts to setting
a thermodynamic limit while keeping the neuron in-degree
density k̃ fixed. Dynamics (1) is replaced by an evolution rule
for classes of neurons labeled by their k̃,

v̇k̃(t) = a − vk̃(t) + gk̃Y (t), (7)

where Y (t) is the average synaptic activity field. In [18]
and [19] this method was applied to dense uncorrelated
networks of excitatory LIF neurons, and it revealed a very good
approximation of dynamics (1) for any large finite network.
For instance, the HMF approach is effective also for sparse
uncorrelated networks, provided they exhibit a sufficiently
large average in-degree [19].

Here we describe how the HMF approach can be extended
to networks of inhibitory and excitatory neurons. In this case,
the dynamics of each neuron depends on the number of its
inhibitory and excitatory presynaptic neurons. The information
is stored in the adjacency matrix εij , which encodes the
network topology. Following the HMF strategy, we split the
dynamics, (7), into two equations for classes of excitatory (E)
and inhibitory (I ) postsynaptic neurons with in-degree density
k̃:

v̇E
k̃

(t) = a − vE
k̃

(t) + gk̃(−fIYEI (t) + fEYEE(t)), (8)

v̇I
k̃
(t) = a − vI

k̃
(t) + gk̃(−fIYII (t) + fEYIE(t)). (9)

The last expressions on the right-hand side of these equations
correspond to the average synaptic activity fields received
by postsynaptic E and I neurons with label k̃ from their
presynaptic E and I neurons. The fractions of inhibitory
and excitatory neurons are denoted fI and fE = 1 − fI ,
respectively.

These equations determine the spike trains SI
k̃
(t) and SE

k̃
(t)

of inhibitory and excitatory classes of neurons, with in-degree
density k̃. The spike trains enter the set of Eqs. (2)–(4), which
splits into four sets, identified by the superscript (†,∗), where
both symbols can be either I (inhibitory) or E (excitatory),
with ∗ corresponding to presynaptic neurons with label k̃. In
formulas

ẏ
(†,∗)
k̃

(t) = −y
(†,∗)
k̃

(t)

τin
+ u

(†,∗)
k̃

(t)x(†,∗)
k̃

(t)S∗
k̃
(t), (10)

ẋ
(†,∗)
k̃

(t) = z
(†,∗)
k̃

(t)

τ
†
r

− u
(†,∗)
k̃

(t)x(†,∗)
k̃

(t)S∗
k̃
(t), (11)

x
(†,∗)
k̃

(t) + y
(†,∗)
k̃

(t) + z
(†,∗)
k̃

(t) = 1, (12)

where u
(†,∗)
k̃

= U if † = E, and otherwise,

u̇
(†,∗)
k̃

(t) = −u
(†,∗)
k̃

(t)

τf
+ Uf (1 − u

(†,∗)
k̃

(t))S∗
k̃
(t). (13)

Note that the value of the parameter τ
†
r depends on the type of

the postsynaptic neuron.

These equations can be closed by the consistency relations
defining the average fields that appear in Eqs. (8) and (9):

Y†,∗ =
∫ 1

0
P∗(k̃)y(†,∗)

k̃
dk̃. (14)

In the following, it is also convenient to define the global
average fields, YI and YE , received by inhibitory and excitatory
neurons:

YI = −fIYII (t) + fEYIE, (15)

YE = −fIYEI (t) + fEYEE. (16)

IV. DYNAMICAL EFFECTS OF INHIBITORY NEURONS

In a series of papers [18,19,24,25] we have analyzed in
detail the dynamics of random, uncorrelated, dense networks
of excitatory LIF neurons and successfully compared it
with the corresponding HMF dynamics. Analogously, in this
section, we provide a short summary of some basic dynamical
regimes of the HMF dynamics with inhibition presented in
Sec. III.

To appreciate the reliability of this approach, we prelimi-
narily give a comparison between the HMF method and direct
numerical simulations, performed on a large finite network
made up of N = 5000 neurons. In Fig. 1 we plot the average
interspike time interval (ISIk̃) of each neuron as a function
of its in-degree density k̃. Data have been obtained for the
Gaussian probability distributions PI (k̃) and PE(k̃) of k̃, with
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FIG. 1. Average interspike time interval (ISI) for a network of
N = 5000 neurons [(purple) squares] as a function of the in-degree
density k̃. The distributions PI (k̃) and PE(k̃) are both Gaussian, with
〈k̃I 〉 = 0.5, 〈k̃E〉 = 0.7, σ̃I = 0.04, and σ̃E = 0.056, respectively.
(a) The inhibitory fraction fI = 0.1; (b) fI = 0.65; (c) fI = 0.85.
Black (excitatory neurons) and green (inhibitory neurons) dots were
obtained by the corresponding HMF dynamics. Note the plateau
region typical of the population of excitatory neurons, which is almost
absent for the population of inhibitory neurons. Inset: Raster plot of
the HMF dynamics, where the neuron index s is ordered according
to the in-degree density k̃ (see text): black dots, excitatory neurons
(0 < s � 2000); green dots, inhibitory neurons.
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〈k̃I 〉 = 0.5, 〈k̃E〉 = 0.7, and standard deviations σ̃I = 0.04 and
σ̃E = 0.056. Here and in the following, we have assumed the
phenomenological values of the parameters τf = 33.25 and
g = 30 (see [22] and [23]). In Fig. 1 we have chosen three
values of the inhibitory fraction, fI = 0.1, fI = 0.65, and
fI = 0.85, the first two corresponding to synchronous regimes
and the last to an asynchronous one. The matching between
the HMF method and the direct simulations is remarkable in
all regimes. The HMF dynamics has been implemented by
sampling k̃ with 2000 values for both groups of neurons. As
expected, the fluctuations are much smaller in the HMF case.
This confirms the numerical efficiency of the method with
respect to the direct simulation of a finite massive network.
In particular, the method already provides a quite accurate
description of the dynamics in the thermodynamic limit for
a sampling of P (k) by a few hundred bins (see [19] for an
extensive discussion of the efficiency of the HMF approach).

Let us now consider in detail the case fI = 0.1, corre-
sponding to Fig. 1(a). As observed in fully excitatory networks
[18,19,25], excitatory neurons split into two families, namely,
periodic (locked) and aperiodic (unlocked) neurons, corre-
sponding to k̃ < 〈k̃E〉 and to k̃ > 〈k̃E〉, respectively. Inhibitory
neurons cover an approximately uniform range of higher
frequencies. In the inset we report the raster plot (i.e., index
of the neuron s vs its firing times t) of the HMF dynamics to
point out the microscopic organization of neurons. Excitatory
neurons correspond to 0 � s � 2000 (s has been ordered
according to decreasing values of k̃). The quasisynchronous
bursts observed for 0 � s < 1300 are produced by the locked
excitatory neurons in the plateau region. The unlocked neurons
(1300 � s < 2000) exhibit irregular firing behavior, as well
as most of the inhibitory neurons, which fire more frequently
thanks to the facilitation mechanism typical of their synaptic
activity. Only a small fraction of inhibitory neurons, around
k̃ � 4.7, produces quasisynchronous bursts, but at a different
pace with respect to the excitatory ones. Despite the com-
plexity of the raster plot in this regime, the average activity
fields YE(t) and YI (T ) exhibit periodic oscillations, which
characterize a dynamical phase with a high level of synchrony
[e.g., see the inset in Fig. 3(a)]. In particular, the frequency of
the fields coincides with the frequency of the locked excitatory
neurons, while excitatory and inhibitory unlocked neurons
exhibit a quasiperiodic behavior, as discussed in [25]. Finally,
locked inhibitory neurons display an ISI in a simple rational
relation with the period of the field (2/3 for the case illustrated
in Fig. 1). In other words, we are facing a sort of high-order
locking effect induced by the global fields YI (T ) in a subset of
inhibitory neurons with a proper frequency.

We now report on how the dynamical regime of the HMF
dynamics of the model in Fig. 1 changes as a function of
the fraction fI of inhibitory neurons. As pointed out in [26],
an effective order parameter for exploring the HMF phase
diagram is the extremal values of YE(t). For increasing values
of fI , the amplitude of YE(t) decreases and the synchrony
mechanisms within the network are significantly modified. In
Fig. 2 we plot the maximum (filled circles) and minimum
(asterisks) values of YE(t) as a function of fI . One can
distinguish three main regimes. For 0 < fI < 0.45 (regime A),
the network dynamics is driven by locked excitatory neurons.
Figure 3(a) shows the average ISI as a function of k̃ for

FIG. 2. Maximum (filled circles) and minimum (asterisks) values
of the global field YE(t) as a function of the fraction of inhibitory
neurons fI obtained from the HMF dynamics. The distributions
PE/I (k̃) and the HMF sampling adopted are the same as in Fig. 1.

fI = 0.2. We see that a large portion of the excitatory neurons
is locked in phase, yielding the quasisynchronous events
appearing also in the inset in Fig. 1. The inhibitory neurons
are mainly unlocked and they fire at a higher frequency.
In the inset we plot the average activity fields received by
excitatory and inhibitory neurons, YE(t) and YI (t). Both fields
take positive values, while YI (t) > YE(t), as a consequence
of the facilitation mechanism, which increases the synaptic
efficiency during fast firing activity.

For fI > 0.7 (regime C), YE(t) becomes negative and its
amplitude decreases significantly, while neither YE(t) nor YI (t)
exhibits any oscillating behavior (not shown). This dynamical
phase is dominated by inhibitory neurons and the natural firing
activity of all neurons slows down to an irregular behavior,
where quasisynchronous events disappear.

For 0.55 < fI < 0.7 (regime B) partial synchronization
with quasisynchronous events persists, as in regime A. On
the other hand, the microscopic organization of firing events is
different, as shown in Fig. 3(b), where fI = 0.6. Looking at the
inset, one observes that inhibitory neurons receive a relatively
higher-amplitude activity field, YI (t), with respect to excitatory
neurons, YE(t). The main distinctive feature with respect to
regime A is that both YE(t) and YI (t) also take negative values,
and inhibitory neurons are no faster than excitatory ones, as
clearly illustrated by the average ISI vs k̃. In particular, an
appreciable subset of inhibitory neurons locks at the same
frequency as the locked excitatory ones (see the initial plateau
around k̃ = 0.4). As for the unlocked inhibitory neurons, they
fire at lower frequencies than the excitatory ones, which, on
their side, are locked for large values of k̃ [compare Figs. 3(a)
and 3(b)]. Finally, also in this case inhibitory neurons may
display a higher-order locking. In particular, the low-frequency
plateaus are characterized by an ISI which is in a simple
rational relation with the period of the global field, i.e. the
ISI of locked excitatory neurons.

At the edge between regime A and regime B, there is a
region of optimal synchronization (vertical gray band in Fig. 2),
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FIG. 3. Dynamical regimes for different values of the fraction of
inhibitory neurons fI for the same model as in Fig. 1. The dependence
of the average ISIk̃ on k̃ for (a) fI = 0.2, (b) fI = 0.6, and (c) fI =
0.5. Green dots, inhibitory neurons; black dots, excitatory neurons.
Insets: Average activity fields YE(t) (solid black lines) and YI (t)
[dashed (green) lines]. Left inset in (c): Raster plot of firing events.
As in the inset in Fig. 1, black dots represent excitatory neurons;
green dots, inhibitory neurons.

where neither excitatory nor inhibitory neurons prevail. The
dynamics typical of this region is shown in Fig. 3(c), where
fI = 0.5. The average ISI is independent of k̃. This means
that all neurons fire at a common frequency very close to
1/T0, i.e., the frequency of the noninteracting system (g = 0);
only their relative phases depend on k̃. Notwithstanding this,

the microscopic organization of firing events is still quite
complex: as shown in the raster plot in the left inset, there
is a majority of inhibitory and excitatory neurons participating
in the same quasisynchronous events; i.e., they are almost
in phase. The right inset shows that YE(t) and YI (t) exhibit
periodic fluctuations of very low amplitude (i.e., g ≈ 0),
apart from narrow activity peaks, which correspond to the
quasisynchronous events shown in the left inset. This is
quite interesting collective dynamical behavior, emerging in
a weakly interacting network, where the complex organization
of the phases of equally periodic excitatory and inhibitory
neurons is determined by the random structure of the network,
i.e., by the in-degree density distributions PE(k̃) and PI (k̃).

V. RELATION BETWEEN AVERAGE EXCITATORY
AND INHIBITORY ACTIVITY FIELDS

The HMF approach provides also the possibility of working
out an analytic study of the complex network dynamics de-
scribed in the previous section. For instance, direct inspection
of Fig. 3 suggests that the average synaptic activity fields
defined in Eqs. (15) and (16) exhibit quite similar behavior with
time, despite single inhibitory and excitatory neurons receiving
different synaptic activity fields and emitting different spike
trains. In Fig. 4 we focus on the time evolution of YE(t)
and YI (t) for the HMF with fI = 0.1 (see Fig. 4 caption for
details). Apart from small fluctuations, the two fields coincide
by a suitable rescaling of their amplitudes (see left inset). An
analytic estimate of the rescaling factor can be obtained by
a heuristic argument. Since YE and YI depend on the fields
y

(E,∗)
k̃

and y
(I,∗)
k̃

, respectively [see Eq. (14)], their difference

can be traced back to the different dynamical behavior of u
(†,∗)
k̃

[see Eq. (13)], which comes into play in the firing events.
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FIG. 4. Time evolution of YI (t) [dashed (green) line] and YE(t)
(solid black line) for the HMF dynamics with fI = 0.1. Left inset:
YI (t) has been rescaled using the common period of the global
fields and the factor obtained analytically (see text). Right inset:
Comparison between the scale factor deduced from simulations
(black circles) and the one obtained analytically (asterisks). The
latter was calculated by dividing the right-hand-side term in Eq.
(17) by the right-hand-side term in Eq. (18), where the period T

was obtained from the time evolution of the global fields. The distri-
butions PE/I (k̃) and the HMF sampling adopted are the same as in
Fig. 1.
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Accordingly, in between two spikes, YI (t) and YE(t) follow
the same dynamics, i.e., an exponential decay with the same
time constant τin. Let us consider a neuron that, firing its spike
train, generates postsynaptic fields y

†,∗
k̃

(t) and assume that it
emits spikes at a constant rate; i.e., its synaptic activity field
is periodic, with the same period T of the average activity
field (actually, locked neurons display this behavior). By
imposing the periodicity properties on Eqs. (10) and (13), i.e.,
y
†,∗
k̃

(t) = y
†,∗
k̃

(t + T ), we can obtain an explicit expression of
their time dependence. Both fields exhibit the same exponential
decay, with time constant τin, and their amplitudes are found
to depend on the different boundary conditions during firing
events for excitatory and inhibitory neurons. In formulas we
report their maximum values, ỹ

E,∗
k̃,MAX

and ỹ
I,∗
k̃,MAX

, achieved
immediately after spike emission:

ỹ
E,∗
k̃,MAX

= U

1 − (1 − U )e− T
τin + U

τE
r

τE
r −τin

e
− T

τE
r −e

− T
τin

1−e
− T

τE
r

, (17)

ỹ
I,∗
k̃,MAX

= ũI

1 − (1 − ũI )e− T
τin + ũI τ I

r
τ I

r −τin

e
− T

τI
r −e

− T
τin

1−e
− T

τI
r

, (18)

ũI = Uf

e
− T

τf

1 − e
− T

τf + Uf e
− T

τf

. (19)

Note that, as the two fields decrease exponentially with
the same time constant in between two consecutive spikes,
the field ỹ

E,∗
k̃

(t) is equal to ỹ
I,∗
k̃

(t) apart from a scaling factor
that can be calculated at their maximum values, obtained from
Eqs. (17) and (18). In the right inset in Fig. 4 we compare
the scaling factor computed numerically with the analytic
prediction obtained from Eqs. (17)–(19). The agreement is
quite good, despite the simplifying assumptions introduced
in the analytic estimate. Let us point out that, in principle,
the proportionality assumption should hold for a dynamics
where all the neurons display the same periodic behavior.
Simulations indicate that this agreement is still effective when
the frequencies of most neurons are not too different from the
frequency of the average activity fields YE(t) and YI (t). This
is indeed shown in Fig. 3, where the value of the ISI between
the different neurons varies by, at most, a factor of 1.5.

On the other hand, there are situations where such a
quasiproportionality fails. For instance, if a significant fraction
of neurons is subcritical (a < 1), this condition cannot be
achieved since the global activity fields are no more periodic.
In Fig. 5 we report the results of numerical simulations for a
neural network, where the values of stimulus a attributed to
individual neurons are extracted from a uniform probability
distribution P (a) with average value ā < 1 and support
length �a . By choosing the parameters in such a way that
approximately half of the neurons are subcritical [Fig. 5(a)],
the quasiproportionality of the activity fields is preserved.
Conversely, for a slightly smaller value of ā [see Fig. 3(b)],
neural activity is highly reduced and there is no more space
for quasiperiodic firing events, while the activity fields are no
longer proportional.
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FIG. 5. Time trace of YE and YI , rescaled by the proportionality
scaling. (a) ā = 0.9561; (b) ā = 0.9541. The variance of the uniform
distribution is the same: �a = 0.1001. In (a) we have used the scaling
deduced by the analytic argument. In (b), since the signals are no
longer periodic, Eqs. (17)–(19) do not apply and the best scaling
factor minimizing the differences between the fields demonstrates
that there is no proportionality. Inset: Data without rescaling.

VI. THE INVERSE PROBLEM WITH
INHIBITORY NEURONS

Global synaptic activity fields in extended regions of the
brain can be more accessible to experimental measurements
than single-neuron activities. As shown in two previous
papers [18,19], in the HMF frame one can recover the
degree distribution of a fully excitatory LIF network from the
knowledge of its global synaptic activity field. In other words,
the HMF formulation allows one to solve a global inverse
problem. Here we discuss how to extend this result to networks
made up of inhibitory and excitatory LIF neurons. The method
can be extended to networks with different single-neuron
models.

Let us assume that we have access to the measure of
the average activity field received by neurons, i.e., Y (t) =
fEYE(t) + fIYI (t). We will recover, within a reasonable accu-
racy, PE(k̃), PI (k̃), and fI , i.e., the probability distributions of
the equivalent in-degree density k̃ of excitatory and inhibitory
neurons, as well as their fraction. The procedure is comprised
of the following steps.
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(i) As discussed in Sec. V, YE(t) and YI (t) can be rescaled
by a suitable proportionality constant, γ , whose explicit
expression depends only on phenomenological parameters of
the model [see Eqs. (17)–(19)]. Accordingly, we can write

YI (t) = γ YE(t) = γ Y (t)

1 + (γ − 1)fI

, (20)

and we consider YE(t) and YI (t) to be functions of Y (t) and of
the unknown fraction fI .

(ii) For each value of fI , we integrate the dynamics, (8)
and (9), that produce the spike trains S∗

k̃
(t) that allow us to

integrate Eqs. (10)–(13).
(iii) We use y(†,∗)

k̃
(t,fI ) to impose the self-consistency

condition [see (14)]:

Ỹ†∗(t) =
∫ 1

0
P∗(k̃)y(†,∗)

k̃
(t,fI )dk̃. (21)

We can write the equations analogous to (15) and (16),

ỸI = −fI ỸII (t) + fEỸIE, (22)

ỸE = −fI ỸEI (t) + fEỸEE, (23)

and

Ỹ (t) = fEỸE(t) + fI ỸI (t).

(iv) Note that the effective field Ỹ (t) depends on the
quantities to be recovered, namely, PE(k̃), PI (k̃), and fI ,
and the self-consistency condition, (21), should hold only if
Ỹ (t) → Y (t). In practice, a suitable estimate of the unknown
quantities can be obtained by minimizing the variance,

σ 2 = 1

t1 − t0

∫ t1

t0

(Ỹ (t) − Y (t))2dt, (24)

where [t0,t1] is the measurement time interval of Y (t).
The minimization procedure can be achieved using a zero-
temperature Montecarlo algorithm, as for the purely excitatory
case (see [18]).

The inverse problem procedure, (i)–(iv), allows us to
recover quite well the fraction fI = 0.1 of inhibitory neurons.
In Fig. 6 we show the reconstruction of PE(k̃) and PI (k̃) for
the dynamics reported in Fig. 1. This analysis confirms that,
in the case of Gaussian in-degree density distributions for
both excitatory and inhibitory neurons, the average synaptic
activity signal can be efficiently inverted. The bumps appearing
in the reverse estimate of the degree distribution of inhibitory
neurons are just effects of the adopted numerical accuracy,
which could be improved by considering longer time spans
and a finer sampling of k̃.

Interestingly, this global inverse procedure can be applied
also to the case of broad power-law distributions, with
inhibitory neurons typically displaying higher connectivities
[9]. As an example, here we report just the case of a
network with fI = 0.3 where PE(k̃) and PI (k̃) are power-
law distributions, scaling as k̃−α [8]. In order to avoid
too small values of k̃ we impose a lower cutoff, k̃E

m and
k̃I
m, on both probability distributions, which are accordingly

normalized.
In Fig. 7 we report the results of the inverse problem

procedure. The average synaptic activity field Y (t) has been

0 0.2 0.4 0.6 0.8 1~k

0

4

8

P
I/E

(~k)

FIG. 6. Reconstruction of PE(k̃) and PI (k̃) for the network in
Fig. 1. Solid curves are the expected distributions, while (red) circles
(excitatory neurons) and (blue) asterisks (inhibitory neurons) are the
reconstructions obtained with the self-consistent inversion equation.

computed from the dynamics of a finite network of N = 5000
neurons. Figures 7(a) and 7(b) show the reconstruction of
PE(k̃) and PI (k̃). The minimization procedure [step (iv)]
provides quite an accurate reconstruction of the fraction
fI ≈ 0.3 and of the distribution PE(k̃) over the whole range of
definition, while PI (k̃) is recovered just for k̃ � k̃I

m. This result
indicates that a more refined algorithm should be employed to
improve the quality of the inversion.

We remark that, although in this case the reconstruction of
PI (k̃) is not completely reliable, the presence of a fraction of
inhibitory neurons in the inversion procedure is crucial also
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FIG. 7. Reconstruction with power-law connectivity degree dis-
tributions. Reconstructions of (a) PE(k̃) and (b) PI (k̃) (black circles).
The fraction of inhibitory neurons proves to be fI = 0.3, as wanted.
The solid (red) line is the power-law k̃−5 with cutoff k̃I

m = 0.8 and
k̃E

m = 0.4. (c) The procedural result when the global field is inverted
by considering only excitatory neurons; n is the MC step. In particular,
we compare the convergence of the parameter σ in the case of (a) and
(b), where the presence of inhibitory neurons is taken into account
(solid black line), with that in the case where the inverse problem
has been performed by considering only the excitatory population
[dashed (red) line]. Inset: The reconstructed PE(k̃) in the latter case.
We see that it is quite far from the expected one in (a).

012305-7



DI VOLO, BURIONI, CASARTELLI, LIVI, AND VEZZANI PHYSICAL REVIEW E 93, 012305 (2016)

for the reconstruction of the excitatory distribution. Let us
consider the global field and implement the inverse problem
in the absence of inhibitory neurons (actually the procedure
reported in [18]). In Fig. 7(c), we can observe that, by omitting
the presence of an inhibitory population, the reconstruction of
the network structure yields a bad regeneration of PE(k̃) as
well (see the inset). Moreover, we compare the reconstruction
performance by plotting the convergence of σ in the Monte
Carlo minimization. The curve, in the presence of only
excitatory neurons, converges to higher values of σ . More
precisely, the relative error δ = σ/〈Y 〉, which is 48% in
the case without inhibitory neurons, reduces to 1% when
inhibitory neurons are taken into account. This implies that
the matching between Ỹ (t) and Y (t) is neatly improved by
considering the inhibitory population.

VII. CONCLUSIONS AND PERSPECTIVES

We have studied the dynamics of random uncorrelated
dense networks of LIF neurons with inhibitory and excitatory
components by the HMF approximation. This method proves
extremely effective in reproducing the complex emerging
dynamical phases of the system and provides significative
advantages, both in numerical simulations and in the analytic
approach to the inverse problem, which can be formulated in
terms of average properties.

The model presents a very rich dynamical phase diagram
where inhibitory and excitatory components feature different
complex evolutions. This complexity does not restrain the
HMF approach from offering an interesting first insight into
the global dynamics, which can be grasped directly from a
simplified version of the HMF equations. Precisely, if the
dynamics of the two types of synapses were the same, the
presence of a certain fraction fI of inhibitory neurons could
be described by introducing an effective in-degree density
distribution.

Indeed, since in this simple case the same activity fields are
transmitted to inhibitory and excitatory neurons, we deal with
just a single set of evolution equations, where the dependence
on the inhibitory or excitatory nature of presynaptic and
postsynaptic neurons can be omitted. In fact, any neuron with

degree k̃ receives a field gk̃Y , where

Y =
∫ 1

0
[fEPE(k̃) − fIPI (k̃)]yk̃(t)dk̃.

If the term in brackets has a definite sign, the network is
equivalent to a completely inhibitory or excitatory (depending
on the sign) network with an effective probability distribution
F (k̃) = |fEPE(k̃) − fIPI (k̃)|. In particular, if PE = PI , the
introduction of a fraction of inhibitory neurons fI is equivalent
to an effective dilution in the original network, obtained
through 2fI cuts of the links. If the term in brackets has no
definite sign, F (k̃) is not a probability distribution, so that the
real dynamics does not correspond to an equivalent excitatory
or inhibitory network.

In the more complex case considered in this paper, the
inhibitory dynamics is characterized by a facilitation effect
and the field received by inhibitory neurons turns out to
be larger than the excitatory field. This difference can be
approximately estimated by an analytic argument, which
allows us to implement an approximated inverse problem for
the distributions P∗(k̃) even in the presence of inhibition.

The global inverse problem proves very effective in re-
producing the in-degree density probability distributions of
the two populations, together with the fraction of inhibitory
neurons, for meaningful distributions ranging from Gaussians
to power laws. On technical grounds, the inversion could be
improved by adopting more refined minimization procedures,
but it is significant that even the simple zero-temperature
Monte Carlo method adopted here is sufficient to provide the
wanted outcome.

This result paves the way to an analysis of experimental
data on the average synaptic activity fields in broad regions
of the brain. Moreover, the overall approach can be extended
to models of correlated dense networks with single-neuron
dynamics different from LIF.
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