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Abstract

At present, the possibility to employ Single Molecule Magnets (SMMs) properties in
real technological devices is still a challenge. In order to reach this target a significant
extension of their spin life-time and a rational tuning of their properties on demand
is mandatory. In this Ph.D. thesis a comprehensive theoretical and computational
assessment of the main open questions related to the microscopic quantum origins
of SMMs properties has been done together with the development of an ab initio
protocol based on both DFT and post HF schemes able to describe SMMs electronic
structure in any sort of chemical environment. The multi-spin origin of the ground
state in polynuclear SMMs has been discussed and the several involved spin terms
assessed. A fundamental extension of spin relaxation theory has been developed in
order to account for the real complexity of the spin environment made by phonons
and other SMMs spins. Spin relaxation phenomena have been addressed tracking
down the origin of the spin-flip effective barrier reduction, observed experimentally
and never interpreted before. The determination of the main contribution of molecu-
lar internal degrees of freedom at the origin of spin relaxation has also been pointed
out for the first time, paving the ground for a rational design of molecular structures
to extend relaxation time-scales. Finally, the issues related to the conservation of
SMMs properties once adsorbed on a metallic substrate have also been addressed. A
combination of different computational schemes made possible to highlight the strik-
ing importance of electronic and structural rearrangements of SMMs once deposited.
This effect, largely underestimated in literature, has been observed both for what
concerns substrate/SMM and SMM/SMM interactions, demonstrating, for instance,
the possibility to modulate the molecular orientation playing with the SMMs organic

scaffold degrees of freedom.
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Chapter

Introduction

Single molecule magnets (SMMs) are a class of molecular compounds which experience

a slow relaxation rate of their magnetization vector.

The first evidence of a blocking temperature under which the orientation of a spin
vector carried by a molecule shows a slow relaxation was obtained for the crystal of a
mixed valence Mnys cluster at the temperature (T) of 2 K[I]. The possibility to ob-
serve an hysteresis curve of molecular origin has been a fundamental discovery which
paved the ground for a new research field with potential high impact applications in
a large context of technological aree. The interest in SMMs spin dynamics lies in the
origin of the phenomenon itself more than in its magnitude, as numerous magnetic
materials with blocking temperatures well above a few K have been known by cen-
turies. Classical magnets show their magnetic behavior in virtue of a phase transition
which grants them a stable magnetic ground state, because of a long range correlation
between spins composing the material, while magneto-crystalline anisotropy provides
to their macroscopic magnetic moment a preferential direction in space. In SMMs,
the same effect is basically reproduced on molecular scale but considering that the
long range cooperative effect is excluded by the small number of paramagnetic ions
involved, the long term magnetization is completely due to inherent molecular mag-
netic properties. Indeed, each molecule inside the crystal has an S ## 0 ground state
which behaves like an isolated magnetic moment (M), almost completely uncorrelated
from those of other molecules, and nevertheless able to retain its direction in space

thanks to the molecular easy axis kind of magnetic anisotropy. This class of systems
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is generally composed by single or polynuclear transition metal clusters and recently
it has been extended to lanthanides based molecules|2H4]. The microscopic origin
of the axial magnetic anisotropy, which confers to SMMs their properties, is due by
the presence of a strong spin-orbit coupling interaction felt by the unpaired electrons
generating the global S # 0 ground state. The spin orbit coupling correlates the
almost vanishing angular momenta of transition metals to the spin variables, whom
will experience a non homogeneous angular potential energy bias. Therefore, the S
ground state multiplet degeneracy is split with respect to the projection along the z
quantization axis, which is labeled by S, eigenvalues Mg. The easy axis anisotropy
stabilizes M components according to fig. [I.1}

E

Figure 1.1: Horizontal black lines show the energy ladder of the spin states. The S,
expectation values are intended to be calculated for a molecule orientated with its

easy axis along the z quantization axis.

Usually, the spin levels energy ladder is pictorially described as a double well poten-
tial energy surface function of the axial components of the ground state S, operator.
Clearly, the double well potential energy surface is only a classical analogy valid for
huge values of magnetic moment (classical limit) and for typical small S the molec-
ular states should be treated in a quantum theory framework. Loosely speaking,
at finite T the two opposite spin polarizations would be statistically almost equiva-
lently populated and the SMM would not show any residual magnetic moment. When
driven out of equilibrium, e.g. by an external applied field, the SMM would show its
spin magnetic properties due to the the unbalanced spin population of the two wells
As for their classical bulk magnets counterpart, an easy axis magnetic anisotropy

would tend to retain such polarized configuration where the magnetization vector lies



along the easy axis direction but, on the other hand, in the case of molecular mag-
nets, the cooperativity between different spins is absent and the time scales needed
to recover the equilibrium configuration with M = 0 become very short. However,
besides this drawback, SMMs make possible to probe properties of pure molecular
origin and due to this feature interesting effects not obtainable with common mag-
nets become available. The combination of low dimensionality and extremely reduced
sizes prompt these compounds at the center of an extremely multidisciplinary inves-
tigation with roots in material science, physics and, obviously, chemistry. Indeed,
single molecule magnets give the unique chance to study spin related quantum effects
in well-controlled systems, where synthetic chemistry can play a designing role and
where the strengths of the various interactions can be monitored and tuned. For
instance, in the context of the nano-revolution recently experienced by material sci-
ence, SMMs represent a very promising alternative to the zero dimensional quantum
dots usually built by metastable and not easily controlled entities like nanoparticles
or magnetic impurities inside bulk hosts. The implementation of SMMs as nanomag-
nets for high-density information storage is their most intuitive application, making
possible to shrink a bit size of orders of magnitudes with an increase in hard drive
capabilities of at least by a factor of 100[5]. More exotic applications are also possible
due to the quantum nature of the molecular spin. Indeed, the possibility to observe
superposition of SMM eigenstates makes possible the use of SMMs as logic elements
for quantum computing[6l [7]. So far, the proposition of algorithms able to exploit the
manifold of the ground state spin level has been reported and big efforts to push spin
relaxation time scale forward have been done, in order to match those required by
practical applications.[8HI2] Recently, a very promising emerging technological field
has been taking place: spintronics[I3]. This discipline, already used to built currently
available M-RAM devices, exploits spin property of conducting electrons as an ad-
ditional degree of freedom to carry information together with charge. Among the
many success in this field, the most important one is due to the observation of the
giant magnetoresistance effect, which granted the Nobel prize to Fert and Griinberg
in 2007[I4]. Another interesting advantage of using spins as information carriers is
represented by the important reduction of devices energy loss and temperature in-
crease they provide, as it represent one of the actual limits in the building of logical
devices. The introduction of organic molecules in place of bulk materials in spintronic
devices would represent a fundamental step forward for this discipline thanks to both
the high synthetic versatility of molecules and their low cost, compared to magnetic
metals and oxides[I5] [I6]. In this framework, the combination of the rich quantum

behavior of SMMs and spintronic technologies represent an interesting evolution of
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both these fields, which might also bring to the observation of new interesting effects

over those already characterized|[17].

However, to be implemented in real devices, a significant amount of work on SMMs
is still needed. Among the many open research directions offered by the SMMs world

the three most important field of debates are
I Origin of SMMs static magnetic properties;
IT Origin of SMMs dynamical and transient properties;
IIT Implementation of SMMs in real devices.

The first two aree address the fundamental problem of understanding the origin of the
SMDMs behavior and are propaedeutic for all the aforementioned applications. Indeed,
only a deep knowledge of the microscopic origin of SMMs properties would make pos-
sible a chemical tailoring strategy to tune their properties to the desired level. As
already pointed out, the low dimensionality of SMMs grants them their fascinating
properties but at the same time they experience the drawback of not being permanent
magnets. Indeed, their magnetic properties are inherently transient and originates by
a non-equilibrium spin dynamics. Their implementation in real devices, therefore, re-
quires that a significant extension of their magnetization life-time should be achieved.
In order to tackle such problem the understanding of the quantum origin of magnetism
in molecular compounds is a mandatory step. Big efforts have devoted to this task
in recent years, from both experimental and theoretical sides, with a great success
for what concerns single ion molecular magnets. However, the description of polynu-
clear SMMs is still under debates and some uncertainty are still present, especially
for what concerns those more elusive properties such, for example, the anisotropic
exchange coupling inside transition metal polynuclear clusters. Although the study of
static magnetic properties of SMMs is the most investigated aspect among the three
introduced above, its consequences on spin dynamics properties are not yet well under-
stood. One of the limiting factor in this field is represented by the lacking of theoretical
models able to explain unambiguously the microscopic origin of the relaxation and
consequently a certain amount of serendipity is still present in the designing process
of new SMMs. The acquisition of a deeper knowledge in this field would be expected
to dramatically push forward the possibility to engineer molecular structures to create
more efficient SMMSs. In view of their implementation on real devices, another set of
problems must be addressed. For instance, in order to exploit single molecule magnets
as I/O units a probing of their local properties must be fulfilled and in order to do

that they need do to be deposited on a solid support i.e. surfaces. The possibility to



realize such a process has been recently provided but, however, a numerous amount
of open questions arose. The most important one concerns the ability of SMMs to
retain their properties once deposited on a substrate as both failing and successful
adsorption attempts have been reported. Passing from a crystalline environment to
an adsorbed scenario both structural and electronic properties of molecules could be
affected with dramatic effects on their magnetism. However, the complexity of the
processes involved do not make their assessment an easy task and even employing
multiple experimental techniques many of them remain unsolved issues. Moreover, as
observed for simple molecular system like phthalocyanines and porphyrins, the for-
mation of an interface between the substrate and the molecular layer might introduce
new features to this aggregate adding new properties not observable in the two com-
ponents separately. The possibility to tune molecular properties through the interplay
with substrates represent a very interesting playground which has been only slightly
investigated for SMMs because of their complexity. However, recently, SMMs robust
enough to retain their basic magnetic properties once adsorbed have been synthesized
opening the possibility to employ the so called surface-magnetochemistry principles
also in this field.

Although experimental investigations in these fields are intensively operative and their
state of the art is constantly pushed forward, the theoretical side of their description
is still in its early stages. Especially the possibility to include SMMs description in
a solid ab initio computational framework has been made possible only in the last
few years thanks to an extensive work on the specialization of density functional the-
ory (DFT) and post Hatree Fock (postHF) methods to the calculation of magnetic
properties[I8] [19]. The possibility to model the complexity of SMMs accounting for
important information obtained by first principle calculations is expected to dramat-
ically improve the understanding of SMMs world and offers the unique chance to
rationalize experimental findings and to give fundamental support to study elusive
properties. In this thesis a comprehensive analysis of the aforementioned themes
( I-II-1IT ) will be provided. In chapter number 2 the research area I will be ad-
dressed. The description of the spin hamiltonian formalism will be introduced and its
ab initio determination in the context of polynuclear transition metal SMMs will be
investigated. The contents of this chapter will be propaedeutic for all the subsequent
chapters. Topic related to the research area II will be addressed in the chapter 3,
where the basic quantum theory of the spin relaxation will be revisited and extended
to molecular crystal of SMMs. Concluding, in the chapter 4 results related to de-
posited SMMs issues (III) will be presented. As a final comment, the addressing of
all the themes I-II-III in the same work also offers the possibility to investigate the
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SMMs behavior from different point of views, usually addressed by different research
communities with different backgrounds and methods of choice. An attempt to find
a middle ground for a comprehensive discussion of all the different SMMs properties
has been done and in order to reach such a goal a multidisciplinary approach has been
exploited using different levels of theory for different tasks and at the same time trying
to unify them under the same formalism. For instance, electronic structure modeling
methods, well grounded in the computational chemists community, have been used
together with stochastic approaches for the spin relaxation theory, which is usually
more investigated by physicists community by means of classical statistical mechanics.
Similarly, methods, like molecular dynamics, usually employed to study soft matter
properties, have here been exploited to address typical surface science problems. In
this respect, this project is intrinsically multidisciplinary also in its methodological
contents. Indeed, different theoretical grounds, usually confined in their specific range
of applicability will be here used together in order to get a balanced description of
all the interactions involved, accordingly to the needed level of accuracy and to the
problem size. A specific effort has been devoted to the tune of available computational
schemes in order to make possible a realistic modeling of SMMs and their environ-
ment complexity, which necessarily requests large simulation cells, without scarifying
the accuracy of the numerical methods. For instance a description of electronic struc-
ture by mean of density function theory (DFT) has been preferred to more expensive
post-Hartree Fock (post-HF) schemes where the modeling of the SMMs surrounding
has been necessary, while post-HF schemes have been preferred for isolated molecules
made by only one paramagnetic ion. The same attention has been devoted to the
choice of structural optimization schemes, selecting ab initio ones for system under
1000 atom per unit cell while employing a force field parametrization to extent size

scales to tens of nm and time scales to ns.
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SMMs have been mostly investigated in their molecular crystalline phase and there-
fore the study of their bulk properties represents the natural starting point for the
discussion before moving to more complex and exotic scenario. The access to high
quality structural parameters provided by X-ray techniques makes possible to create
detailed magneto structural correlations, which have been proved to be an unique tool
for the rationalization of magnetic effects in molecular compounds. So far, although
a comprehensive characterization of static magnetic properties of mononuclear SMMs
has been done, a corresponding amount of work about multi ion transition metal
clusters is still lacking and a few pieces for a complete and exhaustive description of

their magnetic properties are still missing. The inherent complexity of these systems
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is mainly due to the multiple interactions occurring inside their magnetic core, which
elusively mix all together to create the observable global magnetic behavior, whose in-
terpretation is an exceptional challenge for both experimental and theoretical sciences.
From a practical point of view, the need to shed some lights on multi ion transition
metal complexes comes from the appreciation that in order to enhance the effective
spin reversal barrier a high level of molecular engineering is required and without a
quite accurate chemical design of single ion environment and cluster structure, it is
not possible to sum up several anisotropy contributions without observing cancellation
effects. The case of the Mnjg cluster[20] is just a dramatic example. In this framework
the need to understand and to predict how the single ion contributions sum|[21] and
how much the interaction between different spin centers can contribute to the final
anisotropy value becomes crucial. In order to tackle this problem, a synergy between
computational sciences and experimental investigations must be established. In this
framework, the interaction between the experimental and theoretical sides requires the
determination of a common playground where these two distinct worlds can interact.
The spin hamiltonian formalism can represent such an opportunity since it has always
been the basic tool for magnetic phenomena interpretation and big efforts are con-
tinuously devoted to the interpretation and determination of its parameters. For this
reason, section [2.1] of this chapter will be entirely devoted to the description of its the-
oretical foundations and will be preparatory for all the following discussions. Indeed,
all the results that will be displayed in the rest of this thesis will be always presented
through this formalism in order to be readily comparable with the available liteature.
The whole SMMs research is totally hinged on this formalism and in sections 2.2 and
[2:3] the state of the art of its connection to the computational machinery of DFT
and post-HF approaches will be outlined. Sections and will then be
devoted to the application of these tools to specific multi ion complexes. Waldmann
theoretically showed[22] that the spin flip energy barrier value does not sensitively
depends on the ground state S value and on lights of this, ferrimagnetic systems rep-
resent the most popular and studied SMMs. The family of helical pitch complexes,
also called ferric star complexes, will be at the center of this investigation due to the
extensive characterization already available in literature and, starting from these re-
sults, an extensive characterization of their magnetic properties will be developed in
order to fill the gaps still present in their description. This class of SMMs represent the
perfect benchmark systems for the purpose of extending the knowledge on multi ion
complexes without totally leaving the safe shore of experimental evidences. Indeed,
the study of these SMM crystals has an additional propaedeutic value with respect to

the intrinsic interest in their properties. The possibility to access, at least partially,
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to reliable structural and magnetic experimental information makes possible to finely
tune the computational techniques which will be also exploited in the next two chap-
ters where the complexity of the task to be accomplished will be much more harder
and little help from existing results will be available. The main challenge represented
by this class of system is that the only experimental observable is the ground state
anisotropy which hides into itself all the multi-spin structure of the zero field splitting.
Many experimental strategies have been attempted to solve this puzzling situation.
For instance, in the context of helical pitch SMMs, partial diamagnetic substitution
of metallic ions and the chemical modulation of magnetic properties due to organic
scaffold modifications have been the basic tools exploited to get information about
the magneto structural correlations ruling these SMMs behavior.[23] 24] However, be-
cause of the large number of parameters required to completely specify the multi spin
magnetic structure of these complexes, the real weight of some interactions inside the
metallic core and their origin remain unknown. In section [2.4] will be presented the
application of DFT simulations to the determination of magneto structural correla-
tions inside an iso structural series of Fe, helical pitch molecules through the direct
calculation of the multi spin hamiltonian parameters. These information will be also
used to reproduce the ground state properties for a direct comparison with experi-
mental data. This last procedure will be further analyzed in section [2.5] where the
possibility to calculate higher order spin hamiltonian terms and their properties will
be discussed. Section[2.6] will be devoted to the post Hartree Fock study of anisotropic
exchange coupling tensor, as the last missing element in the helycal pitch multi spin
hamiltonian. Section [2.7] will concern the study of extended magnetic atom chains
(EMACs). This class of compound represents a less common class of polynuclear
magnetic complexes and will give the opportunity to investigate the effects of direct
metal-metal bonding to the overall SMM behavior.
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2.1 Spin Hamiltonian Formalism

Although the origin of the spin hamiltonian formalism is mainly phenomenological,
a theoretical foundation could be provided. The main idea of this formalism relies
on the possibility to define a Spin system as an entity localized on a single center
and with intrinsic properties, only marginally affected by the surrounding, that could
be interrogated through external stimuli. From a theoretical point of view the same
definition could be stated as the possibility to describe the system through a set of

quantum operator variables §, whose algebra follows

[Si, 8;] = ihSkbij (52,51 =0 (2.1)
5.|8%8.) = hS.|S%8S.) 52|15285,) = h2S(S +1)|5%8S.) (2.2)

Clearly this definition needs to be fulfilled at all times, i.e. [H,S? = 0. This last
condition is of paramount importance and summarizes the spin center definition:
the hamiltonian H, which describes the spin system, has common eigenkets with the
operator S? and its eigenkets can be labeled through S? eigenvalues.

Accordingly to the discussion above, independently on the chemical complexity of a
system, if it fulfills the condition [H,S?] = 0, it is possible to described its low lying
eigenvalues and eigenvectors through eigenvalues and eigenvectors of a spin hamilto-
nian H, built with spin operator variables. These are the only ingredients needed for
the spin hamiltonian description. The hamiltonian is then shaped according to alge-
braic requirements. The spin hamiltonian for an isolated system should be invariant
upon reference frame transformations, i.e. it must be a 0 rank tensor. In this context,
the word tensor applies to reference frame rotation effects on spin operators. There-
fore, the easiest description of the spin hamiltonian is in terms of spherical tensors
T,f . Indeed, spherical tensors are operators, build from a combination of cartesian
spin operators, which maintain their algebraic shape upon cartesian axis rotation.
Nevertheless, spherical tensor operators possess the major drawback not to be hermi-
tian and they need to be combined between themselves in order to produce hermitian
operators, property that assures the hamiltonian to be hermitian itself. Although this
is not mandatory, it is convenient in order for spin hamiltonian coefficients to be real
and thus subject to ordering. Tennant’s operators are a class of tesseral operators
that are hermitian and at the same time possess a clear connection with the spherical

tensors which have the correct rotational properties|25]:
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ok =1k (2.3)
1 q

oF :ﬁ(( DITF +T) (2.4)

OF , =—=((—=1)*'TF +- T ) (2.5)

This is not the only possible choice and in literature there is a complete zoology of gen-
eralized Steven’s operators which are commonly used to build spin hamiltonians|26].
From now on the letter T would be used in the spin hamiltonian formalism to indi-
cate spherical tensor operator, while the letter O for the Tennant’s operators, if not

differently specified.

These operators could be used to build a completely general spin hamiltonian of the

form:

25k
Hy(S)=>" > BFOXES) (2.6)
k=0q=—k
The upper limit 2S for the index k comes from the null value of all the matrix ele-
ments (SM,|O¥|SM,) according to the wigner-eckart theorem. The BY coefficients
are real numbers, accordingly to O§(§) properties, and their value is adjusted in or-
der to reproduce the 25 + 1 lowest eigenvalues and eigenvectors of the hamiltonian H
describing the system in terms of its first principles. The mapping between the real

hamiltonian H and the spin hamiltonian is made by the relation

(SMs|H|SMg) = (SMg|H,|SMg) (2.7)

which paved the ground for the computational evaluation of spin hamiltonian coeffi-

cients.

0Odd k index spherical tensors worth an additional comment. These operators change

sign upon time-inversion symmetry operation

(Im|TF[Im’) = (1) (Im|TF|lm”) (2.8)

This imply that the corresponding B(’; coefficients must do the same in order for Hg

to be a O-rank tensor. These terms are usually neglected from the description of
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magnetic systems, except for the Dzyaloshinskii-Moriya interaction (vide infra), but
it must be stressed that it should be done in force of their small value as there are

not a priori reasons for their null value.

Before moving to the multi spin hamiltonian description it is useful to introduce the
concept of spherical tensor norm. Sometimes, for analysis purposes, it is needed to
reduce all the components of a spherical tensors into a single number, as it is common
practice for cartesian vectors. In order to accomplish that, lets start noting that as
H, is a O-rank tensor, all the X 5 of a general spin hamiltonian Hy = ", 0 gﬁf must
transform as T(f ,
we can use the relation

and so, according to the composition theorem of spherical tensors

qu _ ZU’L l’l"|l’q'l”q”>Xl/q/Xl"q” (2.9)

q/q/I
Choosing 1=0 and I’=1", the Clebsh-Gordan coefficients (lq,1"l"|l'q'l" ¢") become:

i

Oo,l/l/ l/ /l/ 1 :5/7 .
( 'q'l'q") N

(2.10)

Exploiting the spherical tensor property X, = (—1)q/Xl/,q/ we get in the end:

z’ R4

raql 'q’ X ’q!
E /7 l l'q Eq, Tl 1| l'q |

TV | = Xoo = (2.11)
Eq. is positive defined for all even order spherical tensors and negative defined
for all odd order spherical tensors and therefore it can be used as norm definition for
the coefficients of spin hamiltonian operators. This definition of norm will be used

multiple time in the next sections and chapters.

Multi Spin Hamiltonian

For a multi spin system, the coupling theorem for single spin spherical tensors can
used and obtain

TF(s1s2) = Y < k1, k2,k,qlk1,k2,q1,q2 > T)2(s1)T}5 (s2) (2.12)

ql,q2

where from now on the lowercase letters will always indicate a spin from a multi spin
system, while capital S letters will indicate the total spin variable S = >;8i. In the
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context of single spin system the capital S letter will be used without ambiguity. Re-
lation could be used recursively an arbitrary number of times in order to produce

v-plets combinations of spin operators, leading to a general multi-spin hamiltonian

H(sy, ... =>> Z Big(v)Okqg(v) (2.13)

vk q=—k

In order to clarify the meaning of the generalized multi-spin hamiltonian, lets study
its connection with a more common form of multi-spin hamiltonian. When dealing
with transition metal complexes made of N spins s, the low-lying energy spectrum is

usually mapped to the eigenvalues of a multi-spin Hamiltonian of the form:

N
{SI}N ZBeB gi- Sl Z § 'Jij N S} (214)

i,j=1

The first term reported in equation[2:14] usually called magnetic Zeeman hamiltonian,
describes the interaction between an external magnetic field B and a single spin. This
interaction is modulated by the Landé tensor g. The tensor Jj; is usually decomposed
into single body terms (D; for i = j) and two body terms (J;; with ¢ # j). These
two second rank cartesian tensors, which are respectively called single ion anisotropy
tensor and exchange coupling tensor, describe the energy levels splitting of spins
in zero external field and they embed all the effects of the surrounding chemical
environment, whatever their nature is. The last one is usually further decomposed
into an isotropic (Heisenberg hamiltonian) and an anisotropic part for each pair of

spins (Anisotropic exchange hamiltonian and Dzyaloshinskii-Moriya hamiltonian):

si- Jij - sj = Jij(Si - 8j) + 8i - Dyj - 85 + dy - (Si X ) (2.15)

where
Jij = TT(Jij)/3

1 1
Dij = 5(Ji +J51) and  dyj = (I35 — Ji)

The isotropic exchange interaction constants J;; are the only terms of the above spin
Hamiltonian which do not depend on the orientation of the spins and they just lift the
degeneracy of the various S? eigenfunctions (Heisenberg Hamiltonian). All the other
terms, instead, describe anisotropic interactions and they arise from the non spherical

symmetry of the interactions felt by the spins.
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This four part of the spin hamiltonian could be obtained from the general hamiltonian
with a specific choice of v. Indeed, choosing appropriate combinations of couples

of single spin operators

T'(s;) ® TY(B) — T"(si, B) =Zeeman hamiltonian (2.16)
T'(si) ® T'(s;) — T°(s;, s;) =Heisenberg hamiltonian (2.17)
T'(s;) ® T*(s;) — T"(s;, s;) =Dzyaloshinskii-Moriya hamiltonian (2.18)
T (s;) ® T'(s;) — T?(si, s;) =Anisotropic exchange hamiltonian (2.19)
T (s;) ® T'(s;) — T?(sy, s;) =Single ion Anisotropic hamiltonian (2.20)

The spread of the cartesian notation for the multi spin hamiltonian terms makes
them the most common forms for second order operators and the spherical tensor
formalism is introduced only for the higher order terms. The anisotropic second order
cartesian tensor terms are defined symmetric and traceless, so they have only five
independent elements. From them, the anisotropy intensity and its distortions from
perfect axial symmetry are conventionally introduced with the axial (D) and rhombic

(E) parameters:
1 1
D=D.~3(Dy+Ds)  E=g|(Dy— D) (2.21)

where D, Dy, and D, are D eigenvalues chosen such as 0 < |[E/D| < . The remaining
parameters needed to completely describe D are inside its eigenvectors. The sign of
the parameter D describes very important property of the system i.e. negative values
correspond to easy-axis kind of anisotropy while positive values correspond to easy-

plane kind of anisotropy.

Giant Spin Approximation

When dealing with systems with many spins (e.g. polynuclear clusters of interacting
paramagnetic ions) the mathematical problem becomes easily inaccessible as Hy di-
mension is given by [ [, = s;(s;+1), where i scales over the spins considered. Moreover,
as only the first few eigenvalues and eigenstates are usually needed, the mathematical
treatment of this class of spin systems exploits the so called Giant Spin Approximation
(GSA). This approximation can be introduced when the difference in energy between
different multiplets (eigenvectors with the same S? expectation value) is much higher

than the energy splitting of levels inside each multiplet, splitting which arises from
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anisotropic terms (Strong Exchange limit). In that case the mixing of states between
different multiplets is small and it is possible to consider each multiplet separately
from the others [27]. In order to introduce the mathematical procedure used to per-
form this approximation, lets consider a multi-spin hamiltonian (MSH), written as a
function of spherical tensors, composed only of single and double spin interactions

%

H(sy,..., s ZZX" )+ ZZX 5i5;)T,; (si5;5) (2.22)

The GSA is realized asking the identity between MSH and giant spin hamiltonian
(GSH), the last one being algebraically equivalent to a single spin hamiltonian with

value S:

(SMs|Hars (51, ..., s5)|SME) = (SMg|Hgs(S)|SMY) (2.23)

,where cross multiplet terms are assumed zero i.e. (SMg|Hpg|S'Mg,) =0 .

Considering, for sake of clarity, only single spin tensors from the MSH and exploiting

the wigner-eckart theorem

SMS\ZZXk (5:)TF (s:)|SME) = (2.24)

SMg, kS|kq, SML)
XF(s)(SMg||T*(s:)||S M (SMs, 07 S 2.25
Z%: q (8)(SMs||T"(s:)||SMg) T (2.25)

Alike, for the GSH

(SMs| > X5 (S)TE(S)|SME) = (2.26)
kq
SMg, kS|kq, SML)
XE(8)(SMs|[T*(8) |5 S3Ms: oS 2.27
DX (S)(SMs|[TH(S)]ISM5) === (2.27)
Matching Eq. and Eq. for each (k,q)
Mg||T* (s;)||SM!

SMsIIT’“(S)HSMé>
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similarly for multi spin terms of MSH

SMs||T* (sis;)||SMg)
(SMs||T*(S)|[SMg)

Xxk(s) = Z XF(sis;) < (2.29)

Egs. and show that the GSH parameters could be evaluated from the MSH
ones through a weighed sum. The translation from spherical to cartesian components,
may be used for the very common situation which requires to project the symmetric

and anisotropic hamiltonian [2.14] into

Hs =S -Dg-S (2.30)

According to relations [2.28 and 2.29] Ds is related to the several terms Dj and Dj;
by

Ds =) d/Di+) djDj (2.31)
i 17
with

45 _ (SMs|IT*(s0)[1SM)
" (SMS|ITHS) 15My)

(SMs||T* (sis;)||SMg)
(SMs||T*(9)[1S M)

5y = (2.32)
Multi spin hamiltonian and giant spin hamiltonian definitions put the basis for a
more detailed discussion about the spin hamiltonian formalism in general. The same
spin addiction formalism just presented readily applies to the combination of single
electron hamiltonians. Indeed, the single spin hamiltonian is nothing than a giant spin
hamiltonian built from single spin hamiltonian of interacting electrons. According to
the Russel-Sunders picture, when the distance between ground and excited state LS
terms is big enough, with respect to the intra ground state multiplet level splitting,
it is possible to conside the multiplet total S operator a good quantum number and
the 25+1 level of the ground LS terms can be regarded as level of a giant S spin. It is
then clear that a hierarchy between intra spin first principles and spin-external world
interactions must exists. Indeed, although the spin hamiltonian describes interactions
between the spin and the external world, at the same time, part of these interactions
spoil the nature of the spin itself. Specifically, all the anisotropic terms in a multi-

spin hamiltonian do not commute with S? and therefore makes the total S operator
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eigenvalues bad behaving quantum numbers. The condition only marginally affected
by the surrounding appearing in the spin hamiltonian definition at the beginning of
the section is then needed to be associated only to this kind of interactions. As it also
comes from the discussion of the Russel-Sunders picture, the giant spin hamiltonian
formulation could still be used if the anisotropic interactions are weak with respect
to the isotropic ones. In this framework, the condition [Hy, S?] = 0 could be relaxed

to [Hs, S?] ~ 0, in order to include in the formalism anisotropic effects.
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2.2 QM - Spin Hamiltonian Mapping

The main consequence of the condition [Hg,S?] ~ 0 is the necessity to interpret
the spin hamiltonian as a perturbative series. This statement is at the basis of the
mapping between electronic structure calculations and spin hamiltonian parameters.
While isotropic interactions are generated by pure electrostatic interactions between
electrons, all the anisotropic terms in the spin hamiltonian come from relativistic
contributions, i.e. spin-orbit coupling (SOC) and spin-spin dipolar (SS) contribu-
tion. Lets consider Eq. 2.7 with H = Hpo + Hsoc, where Hgoc refers to the SOC
hamiltonian interaction and Hpo refers to the Born-Oppenheimer hamiltonian. Ac-
cording to the above discussion, Hgpoc must be regarded as a perturbation to the
main contribution to the energy coming from the Born-Oppenheimer hamiltonian.

Therefore,

(aSM|H|aSM,) = Eadyy o + (aSM|HsoclaSM,) (2.33)
(aSM|Hsoc|bSM., Y (bSM, |Hsoc|aSM,)
-3 (2.34)
ot Eb - Ea

, where a and b represent the label of the H eigenstate |aSM,) including all the
other degrees of freedom except for the spin one. The E, value can be neglected
as it only gives the energy scale. The mapping between H, anisotropic terms and
Hsoc perturbative series is done on the basis of algebraic correspondences. Hgoc
could be written in the spherical basis as Hsoc = >, > _;(—1)7h—4(i)sq(i), where h_,
contains angular momentum operators and coordinate dependent coefficients and the

i sum runs over all the electrons in the system. The first order contribution is then

(@SM;|HsoclaSM,) =" > " (=1)alh—q(8)]a){SM, s (i) SM,) (2.35)

q i

s4(%) is a spherical tensor of the first order and therefore, according to the wigner-

eckart theorem
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Ny - Slls@I1S) N
(SMs|sq(3)|SM,) = NoEES (SM;1S|1q,SM,) = (2.36)

(Slls@1S) v2S+1
V2S+1 (SITHS)IIS)
{Slls(@)]15) V25 +1

(SM|T}(S)|SM,) = (2.37)

V25 +1 \/25+1\/S(S+1)<SMS|Tq (S)[SM,) = (2.38)
(SlIs(9)]S) ) ,
\/(QSJrl)(S(SJrl)) <SMS|TQ (S)|SM5> (2.39)

Substituting the final expression of Eq. [2:39] in [2.35]

(aSM,|Hsoc|aSM.) = (2.40)

(Sl @)1S) P
XS0 oyl SR SMITS)SM) @4

Recognizing the algebraic form of Hy = ) q X ;qu is then possible to make the map-
ping

(S1ls(@)I[S)
V(2S5 +1)(S(S +1))

(2.42)

X2 = S7(=1) alh—q(i)a)
The calculated X &L coeflicients may be combined according toto obtain the specific
form of a generalized spin hamiltonian. At the best of my knowledge, this is the first
time Eq. [2.42 has been reported.

The procedure just outlined could be recasted at different perturbational orders with
different relativistic terms in H to produce a variety of spin hamiltonian terms. For
instance, spin orbit coupling at the second order could be mapped into a spin hamil-
tonian of the form Hg = S - Dg - S|28], while mixing at the second order spin orbit
coupling and electronic zeeman interactions gives the anisotropic landé factor in the
spin hamiltonian Hg = /3§ g ]:3;[28]. As the spin hamiltonian formalism is strictly
correct only in the weak anisotropy regime, the perturbation expansion upon which
is based the mapping with the electronic structure is expected to break down when
low lying electronic levels become almost degenerate to the ground state i.e. the an-
gular momentum is not completely quenched. As it will be shown later, this is indeed

the case of strongly anisotropic single ion transition metal complexes of Fe?t, Co?*
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and Ni?T. These cases fall into a gray area for the spin hamiltonian theory because
perturbation theory is no longer strictly applicable but at the same time the ground
state orbital angular momentum is partially quenched and it could not be used as a
good quantum variable to produce a pseudo spin hamiltonian in terms of the total
angular momentum J=L+S, as it is common practice for lanthanides compounds. In
this case a spin hamiltonian of the form [2.6] could be retained but the mapping with
the electronic structure is made by means of a brute force fitting. The low lying part

of H spectrum could be written as function of its eigenvalues and eigenvectors

25+1
H=">" |k)Ex(kl (2.43)
k=1

Therefore, the mapping with the spin hamiltonian assumes the form

2541
(SMs|H,|SMg) = > (SMg|k)Ey(k|SMs:) (2.44)
k

This system of linear equation could be solved by means of a least square fit[29].
Although this relation is not a priori valid and the quality of the fitting should be
evaluated each time, its range of applicability is larger with respect to the (more
correct) perturbation treatment of relativistic interactions. For instance, it can also
be exploited when higher order spin hamiltonian terms are needed to describes the
system; this feature is particularly appealing as analytical expressions, like are
missing for these terms. At the same time, a clear connection between specific inter-
action included in H and spin hamiltonian terms is here lost and the correctness of Hg
choice falls under the quality of the fit itself. Over parametrization problems could

arise, especially when multi spin complexes are considered.

The mapping procedures just outlined are based on many body electronic structure
algorithms. On the other hand, the calculation of magnetic properties from density
functional or Hartee-Fock therory requires some precaution and the next section will

be dedicated to the review of available DF'T-SH mapping methods.
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2.3 DFT - Spin Hamiltonian Mapping

The most studied term of the spin Hamiltonian, in a molecular orbital framework,
is by far the isotropic exchange interaction. Probably the first attempts to define
and calculate the exchange coupling constants go back to Lowdin [30, BI] but the
first practical methods, which allow for an accurate J evaluation within the frame-
work of DFT or Hartee Fock (HF), appeared in the literature a few decades ago with
Noodleman [32], Yamaguchi [33] and Ginsberg [34]. The basic idea behind all these
treatments relies on the mapping of the low lying energy levels obtained from DFT
with the Heisenberg spin Hamiltonian. The main problem to puzzle out was that
Unrestricted Kohn Sham (UKS) and UHF schemes, when used to describe multiplets
different from the High Spin (HS) state, give a spin contaminated solution. If one is
interested on the evaluation of spin properties, it becomes of fundamental importance
to account for the differences between these kind of solutions, usually called broken
symmetry (BS) solutions, and pure spin states. This problem was solved by Noodle-
man, who interpreted these BS solutions as eigenfunctions of the S, operator. These
eigenfunctions can be written as a weighted average of pure spin states which are
orthogonal and non interacting with respect to the total Hamiltonian of the system.
In this way Noodleman found out that it is possible to cancel out all the contributions
of the multiplets between the HS and the BS just making the difference between the
energy of the HS and BS state:

Ens — Eps = 2J125152 (2.45)

To demonstrate this relation lets consider a system of two interacting spins which
could be described by the |S,S5;,s1,s2 > basis set. Within this scheme is possible
to calculate the energy spin ladder of the Heisemberg spin hamiltonian as a function
of the only multiplet S value since this interaction does not lift the S, energy level

degeneracy:

E(S) = 5[5(5 4 1) — §Maz(gMaz 4 1) 4 g Maz GMax] (2.46)
Expression could be readily used to evaluate E(HS) and obtain E(HS) = Js;$a.
However, to compute energies evaluated within the DFT framework E(B.S)) it should

be interpreted the DFT solution as vectors of the form |s1, s2, 5,1, 5,2 >:
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E(BS) = < s1, 82,821, 822|H|s1, 52, 512, $2; >= (2.47)
> ¢k < 57,8, 51, 5/ H|S?, S, 51,5 >= (2.48)
S
Smaa: J
S EEES) =Y 5023(5(S+ 1) — Smaz (Smaz + 1) +23152) (2.49)
S S

Utilizing now the relations Y g% =1 and Y g c2S(S +1) =< 5% >pg +Smas and
making the difference between E(HS) and E(BS)

E(HS) — E(BS) = 2Js1 55 (2.50)

The relation [2.50]is just the generalization for a generic spin pair of the relation found
out by Noodleman [32] and was derived for the first time by Dai Et al|35].

This relation is theoretically correct for two well defined spins. All the limitations on
the accuracy of this method arise from the impossibility to define properly a spin center
and from the deficiencies of DFT to manage open shell systems. The first evaluation of
anisotropy tensors from DFT is more recent and proposed by Pederson et al. [36]. In
his pioneering work he used second order perturbation theory arguments to evaluate
the contribution of spin-orbit coupling to the non relativistic ground state of a Mnis
cluster. An alternative formula was derived by Neese [37] within a response theory
framework. These two formula are quite similar and essentially differ only in the pre-
factors of the angular momenta integrals. Recently Van Wiillen et al. [38] showed
that Pederson and Neese’s approaches to ZFS mapping of SOC contribution could be

modified and with these modifications both method’s formulae become identical to:

Dkr = m{ = 2itar < Pt Par > Uk
=2 ia) < GiL|hi|day > U({lu (2.51)
+2ita) < Gitlhilday > Uc{liT
+ 20t < PiL|hldar > Uk 3

Where ¢ stands for a generic spin orbital and the various U are linear response pa-
rameters. These several U parameters correspond to < ¢gt|h32|¢pir > /(€4 — €) In
absence of the explicit HF exchange term in the functional, otherwise they should
be compute them from coupled perturbed equations. Another very important result
was obtained by Neese [39], who showed the importance of the spin-spin interaction

contribution to the single ion anisotropy tensor. This interaction could be handled
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with MO calculations thanks to first order perturbation theory, which leads to the

calculation of integrals

: 20t — 3(ry)xc(riy)
SS _ai 7’” KL 17 ) K \T'ij L.
PR Zasas Z; i (2.52)

(25,4855 — 82i825 — §yi§yj)|\110>

where « is the fine structure constant, r is the distance vector between electrons and
’\IJ0> is the ground state wave function. In another article Van Wiillen [40] explained
that the equations [2.51] and 2.52] could be applied only if the wave function obtained
from DFT is a pure spin state. This is not the case when antiferromagnetic interac-
tions occur between different magnetic centers and a single determinant description
of the wave-function is used. In ref [40] it was suggested to switch off the spin or-
bit interaction over all but one magnetic center in order to evaluate the single ion
anisotropy tensor for that specific ion. This procedure allows for the direct evaluation
of the single ion tensor for all the ions into the cluster, carrying out a calculation with
the formula for all the ions one by one. The same authors have also recently pub-
lished a methodology [41], similar in philosophy to the one proposed by Noodleman,
for the isotropic exchange coupling constants, for the evaluation of the contributions

of spin-spin and spin-orbit coupling to the anisotropy exchange tensors.

In the next section these procedures will be tested and expanded. The calculation of
the single ion tensors will be done through a diamagnetic substitution of the various
paramagnetic ions, as also suggested in [40], since it is a common experimental proto-
col for the extraction of single ion contributions [42]. For what concerns the inclusion
of the anisotropic interactions between different spin centers (Dj;) here I would like to
show a different procedure from the one presented in [4I]. The method is directly re-
lated to the strong exchange formulation of the HS state for two antiferromagnetically
coupled spins, where Dygg is written as function of multi-spin Hamiltonian parame-
ters (see Equation . Once the single ion tensors of a couple are obtained with
the diamagnetic substitution method it is possible to extract the anisotropic exchange

contribution as

Dyus — di¥Dy — diI*D,

Dy =
S
diy

(2.53)

where df1¥ dfS and dfL® are the projection coefficients that relate the various tensors
to the global high spin state and Dyg is the anisotropy tensor for the dimer in its High

Spin configuration. Using the diamagnetic substitution for all the magnetic centers
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except two, it is thus possible to calculate the anisotropy tensor for the HS state of a
dimer. Note that this operation could be safely handled with formula since the
high spin state could be written as a pure spin state, even utilizing mono determinant
wave functions. It also should be pointed out that the GSA is especially valid for
the HS state since the energy difference between adjacent states is E(S)-E(S-1)=JS,
which is maximal for the HS state. This procedure has to be repeated for all the
strongly interacting exchange coupled pairs. For all the other couples, where the SOC
contribution to the anisotropic tensor could be neglected, the Dj; tensor is determined
only by the dipolar through space interaction, which could be safely treated with the

point dipole approximation:

Dgip _ Mngi -V 3(531 T)(T-g;) (2.54)
where r is the distance between the ions, ¥ the unit vector connecting them and g;
is Landé single ion tensor which can be evaluated from DFT at the same time of
the single ion tensors Dj, as described by Neese[43]. The main advantage of this
procedure, with respect to the one proposed by Kessler et al.[41], is that it does not
require any introduction of arbitrary chosen unknown parameters, choice which is
expected to affect dramatically the results. Moreover, the application of eq. [2.53] does
not require any other code implementation and could be exploited within the already

available software.
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2.4 Feys SMM Series

Accordingly with the discussion of the last section, I want here to present a compu-
tational protocol to describe the axial zero field splitting parameters (D) for antifer-
romagnetically coupled paramagnetic ions, including the contribution of anisotropic
exchange coupling interaction between magnetic centers. From a theoretical and com-
putational point of view this approach represents a possible route to treat such systems
in the DFT framework, whose range of applicability was only recently expanded to the
realm of ferrimagnetic complexes. In this framework a comprehensive and detailed

magneto-structural correlation analysis of a series of Fe, SMMs has been performed.

Fe2
J

1 2
F£1

SN

Fed «————— Fe3

J

Figure 2.1: Fe3*t ions arrangement inside Ferric Star. Red arrows show the direct
exchange interactions labeled by J; constants while the blue arrows shows the indirect

interactions labeled by Jo constant.

The studied molecules in this work are seven different synthetic analogs of the ferric
star [Fe4(OMe)g(dpm)g] (Fe,OMe) (1)[44]. These molecules differ one from another
by the presence of one or two tripodal ligands RC(CH20)3 (R-LIG) with different R
groups which substitute three methoxide groups each in (1). The molecules selected
for this study are [Fes(OEt)3(tBu-LIG)(dpm)g| (FestBu) (2), [Feq(Ph-LIG)2(dpm)e]
(FeyPh) (3) and [Fes(Me-LIG)2(dpm)g] (FesMe) (4), from the work of Accorsi et
al.[23] and [Feq(AcS(CHs2)5-LIG)2(dpm)g| (Polymorph No.1) (FeysC5) (5), [Feq(AcS
(CHz)4-LIG)2(dpm)s| (FesC4) (6), [Fesa(AcS(CHz)3-LIG)2(dpm)g] (Polymorph No.1)
(FeyC3) (7) and [Fey(AcSCH,-LIG)s(dpm)g| (Polymorph No.1) (FeyC1) (8) from
Tancini’s Ph.D thesis[45] (see Figure 2.2). The magnetic nature of these SMMs origi-
nates from four Fe3* disposed on the same plane as pictorially described by the Figure
The interaction between the central (Fe; or Fe.) and the peripheral (Fey, Feg, Fey

or briefly Fe,) irons is made possible thanks to p-alkoxo ligands that mediate a super-
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Figure 2.2: The Fey4 series. Top line from left: Fe4OMe (1), FeqtBu (2), Fe,Ph (3),
Fes,Me (4); Bottom line from left: FesCs (5), FesCy (6), FeyCs (7), FesCy (8).

Hydrogen atoms were not reported for sake of clarity.

exchange coupling interaction. These SMMs, in their crystalline environment, have
an S = 5 ground state which originates from the leading antiferromagnetic coupling
between the central high spin Fe3* ion (Fe, or Fe; ) and the three peripheral high
spin Fe** ions (Fe, or Fes, Fez and Fey). The Hamiltonian describing these isotropic

interactions is written as

H =J1281 - 83 + J1381 - 83 + J1481 - Sa+
(2.55)
Jo(S2 - S3 4 82 -S4 + 83 - §y).

Here, Ji, (x = 2-4) are the first and Jy the second neighbor exchange interactions
(J3 is left three-fold since it is usually below 1 cm™!). Usually experimental data are
interpreted assuming a threefold symmetry of this hamiltonian i.e. the three Ji, (x
= 2-4) constants are described by a means of their means value J;. Experimentally
J1 is always found to be antiferromagnetic with values ranging from about 23 to 15
cm™!, while J, is about a few wave-numbers and its value is strongly affected by
experimental systematic errorsf[46]. The magnetic memory effect, i.e., the opening of
magnetic hysteresis loop, is originated by the degeneracy lifting of the ground state

multiplet due to the anisotropy term of the spin Hamiltonian,

H=>§ D8+ Y & Dy-§ (2.56)
i i,j7#1
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(a) (b) (c)

Figure 2.3: Graphical description of the trigonal rotation angle ¢ (a), y-pitch angle
(b) and FecaFep (c).

In the above expression, ¢ and j run over the spin (§) of the four iron ions. Alterna-
tively, in the Giant Spin approximation (GSA), the same anisotropic physical behavior
could be modeled as

H=S8 Dg_s-S, (2.57)

where S now stands for the ground state giant spin S = 5 vector. The Dg_5 axial
constants are always found negative (easy-axis anisotropy) with values ranging be-
tween -0.206 and -0.449 cm~1[23, 45]. By symmetry the rhombic Eg_5 values are
quite small and often not even measured. Thanks to all these kinds of Fe; molecules
synthesized through the years it is now possible to better understand the magneto-
structural correlations that govern the global magnetic properties of this class of
SMMs. For what concerns the relation between the exchange coupling constant Jq
and the geometrical structure, it has been found that the crucial structural parameter
is the F ecaF ep angle (see Figur), as already been found from studies about iron
dimers [23] 47, 48]. All the iron ions in the Fey, SMMs posses a distorted Oy, crystal
field environment, which is the fundamental ingredient in order to have a single ion
anisotropy. Since the central Fe™3 ion conserves its ternary symmetry, its distortions
from the perfect Oy, point-group symmetry are usually described with the two angles
6 and ¢, which correspond to the trigonal compression and rotation respectively (see
Figure ) The effects of this kind of distortions on the anisotropy of Fe3* ions
have been already studied both from experimental and computational[49, [50] point
of view and a few magneto-structural correlations have been also extracted. In par-
ticular it has been observed that, while the trigonal compression leads to positive D

values, trigonal rotations lead to easy axis anisotropies. Since these molecules have
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four magnetic centers, the resulting Dg is generated from the spin projected tensorial
sum of the single-ion and exchange contributions (see Equation . Therefore, in
order to understand magneto-structural correlations, geometric parameters that take
into account both local O symmetry distortions and mutual tensors orientation are
needed. Experimentally, a magneto-structural correlation between the D value and
the so called y-pitch [23] was found out. The helical y-pitch is defined as the dihedral
angle between the Fe.OqFe, and Fe4 planes (see Fig) and it is directly correlated
to the trigonal rotation of the central ion. Experimentally, it was observed that the
enhancement of D is quite sensitive to the modulations of the y-pitch. In order to
explain the observed trend, it was suggested|23] 48] that such modulations causes
changes in the D parameter for the central ion as well as in the magnitude and/or
orientation of the anisotropy tensors for the peripheral ions. The reorientation of the
peripheral tensors, which results in a different overall anisotropy, was considered a

key ingredient.

Isotropic Exchange Coupling Constants

Usually the spin Hamiltonian used to fit experimental data is chosen according to an
idealized C3 symmetry for the molecule. Except for (2) and (3), which have a D3
and Cj molecular symmetry, respectively, this is only an approximation of the real
molecular symmetry. Indeed, (1), (3), and (5) belong to the Cs symmetry point-
group, while (6), (7), and (8) belongs to the C; symmetry point-group. Despite
this approximation about the real symmetry of the molecules, this approach does not
introduce sensitive differences in the results since experiments actually sense only the
J mean value. Therefore, although the used Heisenberg Hamiltonian (see Equation
is expressed with three explicit J; constants, only their mean value is reported
here, in order to directly compare these results with the experimental ones. Cal-
culated exchange coupling constants for the whole series are reported in Table
together with the experimental values found in literature [23, 45] and the value of
F ecaF ep angles averaged assuming a Cs symmetry of the molecule. The calculated
exchange coupling constants are in good agreement with the experimental ones. The
correlation coefficient between experimental and computed values is 0.932 while the
mean error is 1.80 cm™!. The goodness of these results is also supported by the
high correlation between the F ecéF e, and computed J; constants (see Tab. .
The PBEO functional is found to be particularly able to quantitatively predict the
exchange coupling constants. In Table 2:I] are also reported the J, values together

to the available experimental values. Although the absolute value for this interaction
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Table 2.1: Calculated (PBEO) and experimental Exchange Coupling Constants.

Fe,OMe Fey tBu Fe,Ph FeyMe
JpET 23.37 cm ™! 22.04 cm ™! 13.10 cm ™" 16.47 cm™*
JExre 21.10 cm~ ' *  21.40(16) cm™! * 16.37(12) cm™ ! ® 16.51(8) cm ™! *
JprT 0.24 cm™*! 0.32 cm™! 0.24 cm ™t 0.25 cm™*
Jpxr -1.10em™' *  -0.16(14) cm™' ®*  0.29(11) cm™' *  -0.62(8) cm ™t *
Fe.OFe, 104.4 ° 104.3 ° 102.2 ° 102.9 °

Fe,C5h Fe,C4 Fe,C3 Fe,C1

JbrT 15.96 cm—* 12.63 cm~* 11.08 cm~* 12.41 cm~*
JEXrP 16.74(4) em™* ®  15.85(7) em™ ' P  16.49(9) cm™* ®  16.04(4) cm™ ! P
J2DFT 0.24 cm ™! 0.21 cm ™! 0.49 cm ™1t 0.18 cm ™1
JExE 0.05 cm~! ® 0.37 cm~t P 0.40 cm™! P -0.07 cm~* P
Fe.OFe, 102.8 ° 102.3 © 102.1 ° 102.3 °

# Experimental values taken from [23];
P Experimental values taken from [45].

Table 2.2: Isotropic Exchange Coupling Constants Magneto-Structural correlations

Analysis.

Correlation Slope Std.Err Std.Err%

Jprr-JEXP 0.932 1.86 1.80 10.24
Jprr-Fe.OFe, 0.991 - - _
Jexp-Fe.OFep 0.963 - - -
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is comparable with experimental findings, reported calculations predict a practically

constant antiferromagnetic value for all the J5 exchange coupling constants.
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Anisotropic Single Ions Tensors

The FesPh molecule has been used as a benchmark to test PBE and PBEO perfor-
mances. Presented results are in partial agreement with the study of Duboc et al.[51],
where they showed that hybrid functionals, like BSLYP, do not lead to a significant
increase in accuracy. In this study PBE results by far superior compared to PBEO for
what concerns single ion tensor prediction and, because of that, single ion calculations
for the other molecules have been carried out only with PBE. Results are shown in
Table 2.3 where the values of axial and rhombic zfs parameters both for the central
and peripheral ions are reported, together with Euler angles (ZYZ convention). In
this context Euler angles describe the orientation of Dgy (single ion anisotropy tensor)
eigenvectors with respect to the natural Cartesian frame of the Fe,. For convention
this reference frame is defined with the z axis parallel to the normal vector of the
plane identified by the three peripheral iron ions; y along the Cs; symmetry axis,
while the eigenvectors of Dgy are ordered depending on their eigenvalues following

the convention: medium-axis = x, easy-axis = y and hard-axis = z. It is clear that

Figure 2.4: Calculated Dgr for FeyMe. Prolate ellipsoids stand for easy-plane
anisotropies and oblate ellipsoids stand for easy-axis anisotropies. Local tensors eigen-
vectors were reported as red for the hard direction, yellow for the medium direction

and green for the easy direction.
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Figure 2.5: Calculated Dgy for Fey,Me. Prolate ellipsoids stand for easy-plane
anisotropies and oblate ellipsoids stand for easy-axis anisotropies. Local tensors eigen-
vectors were reported as red for the hard direction, yellow for the medium direction

and green for the easy direction.

DFT can well reproduce the variations of Fe, axial anisotropy on the substitution of
OMe ligands of (1) with one tripodal ligand in (2) and with two tripodal ligands in
(3)-(8). These structural variations, indeed, produce a modification of the trigonal
rotation angle ¢, which enhances the easy axis nature of the central Fe3*. Experimen-
tally all these information about single ion contribution to the global Dg are quite
complicated to be extracted. The only available information are about the peripheral
irons and have been extracted from FeGaszPh and Fe3CrMe complexes[24] [52]. These
data, reported in Table 2:3] show that DFT can reproduce, with a nice agreement,
both their absolute values and their symmetry properties, predicting different D val-
ues for the two different kinds of Fe,. Indeed only one Fe, lies on the real/idealized

Cy symmetry axis while the other two equivalent irons do not (Fe,).

The direct calculations of single ion tensors, without any a priori assumption, allow
the description of the non-collinear properties of magnetization easy axis. As expected
by symmetry considerations, the easy axis of the central iron is found parallel to the

pseudo-Cg symmetry axis. Since one Fe,, lies on a real/pseudo-C; symmetry axis, one



2.4. FE4 SMM SERIES 35

Table 2.3: Calculated Single Ion Anisotropy Tensors and their orientations.

DY E/D" B8
Fe,. Fe,, ¢ Fe,/ © Fe, Fe,* Fe,/ ¢

Fe,OMe -0.240 1.038 1.028 0.023 0.064 0.061 25
FestBu -0.307 0.841 0.841 ~ 0 0.062 0.080 22
FeysPh -1.100 0.728 0.630 0.061 0.160 0.230 13
FeysMe -1.084 0.828 0.848 0.004 0.170 0.148 9
Fe, Ch -1.105 0.818 0.731 0.033 0.163 0.170 9
Fe,C4 -1.070 0.555 0.780 0.036 0.258 0.147 7
Fe, C3 -1.079 0.523 0.766 0.021 0.285 0.726 13
Fe,C1 -1.072 0.682 0.609 0.005 0.197 0.217 7
Fe3CrMe? - 0.738(1) 0.738(1) - 0.087 0.087 5
FeGazPh® - 0.710(5) 0.602(5) - 0.108 0.168 -

2 B’=|B — 90| is here reported only for Fey;

b Values expressed in cm ™! and angles expressed in degree;

¢ Fe, refers to the peripheral iron lying on the pseudo-Cz and Fe, refers to
irons which do not;

4 Taken from article [52];

¢ Taken from article [24].

of its eigenvectors is correctly found to lie into the irons plane with its x-axis parallel
to the y Cartesian axis, i.e. a = 0° (see Figure. Since this symmetry conditions is
not strictly fulfilled by all the molecules, which have only an idealized Cy symmetry,
some discrepancies have also been found. Indeed, the molecules (1) and (8) show
an « value around 10° instead of ~ 0°. The other eigenvectors, corresponding to
easy (v) and hard (z) axis, do not have any symmetry constraint and are found to
be with the easy axis slightly rotated from the Cartesian z axis of an angle §' =
|90 — 8| (see Figure . Finally, the angle v is found to be ~ —90°. Thanks to
the pseudo-Cs; axis perpendicular to the irons plane, the eigenvectors of the two Fe,
are approximately related to the eigenvectors of Fe, by a rotation of 120°. Recently
all these information have become available for the FesCrMe SMM thanks to the
single crystal EPR investigation of Sorace et al.[52]. In Table it is shown that
both experimental investigation and these calculations agree on the orientation of the
eigenvectors of peripheral irons. I would like to stress out that, in order to correctly
and quantitatively predict multi nuclear complexes magnetic properties, it is of great
importance not only to reproduce axial and rhombic parameters, but also the tensor
eigenvectors orientations, since the tensorial summation operation, needed to extract

the global magnetic behavior, strictly depends on all these parameters.
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Anisotropic Exchange Coupling Tensors

The spin-spin interaction between different magnetic centers is usually calculated
within the point-dipole approximation. In this framework spins interact only through
space with an 7~3 power law. As demonstrated by Riplinger et al.[53] for di-radical
species and as also observed by Maurice et al.[54] for a copper acetate dimer in a com-
putational study, the point-dipole approximation is no longer valid once delocalization
and through bond spin-spin interaction occur. In Table 2:4] it is reported the axial
value D of D;; for Fe,Ph, separated in its spin-spin (Dgg) and spin-orbit (Dgoc) con-
tributions. Calculations have been done using both PBE and PBEO functionals. For

comparison, the Dgg values predicted by the point-dipole formula are also reported.

Table 2.4: Fe4Ph Dgpoc and Dgg. Comparison between PBE, PBEO and point-dipole

approximation.

Dss® Dsoc®
PBE PBEO Point-Dipol PBE PBEO
Fe.-Fe, -0.152 -0.160 -0.179 0.813 -0.219
Fec—Fep/ -0.153 -0.160 -0.180 1.040 -0.199
Fep—Fep/ -0.032 -0.034 -0.035 0.008 0.133
Fep/—Fep/ -0.034 -0.033 -0.033 0.014 -0.096

? Values expressed in cm_1;
b Fep, refers to the peripheral iron lying on the Cz and Fe,/ refers
to irons which do not.

For what concerns the spin-spin contribution to D (Dgg), in Table it is possible to
note how both PBE and PBEO give similar results. At the same time they both deviate
from the predictions of the point-dipole formula when dealing with strongly exchange
coupled irons (Fe,-Fep,). As expected, the point-dipole formula predicts values in
agreement with DFT only when delocalization effects and through bond interactions
are negligible, as for the couples Fe,-Fe,. The easy axis of this interaction is correctly
predicted parallel to the Fe-Fe direction. Less satisfactory is the determination of the
anisotropic exchange interaction Dgoc. The only available experimental value for
this kind of interaction between Fe3T ions is the one available for an iron dimer[42],
where the anisotropic exchange coupling has been estimated to be -0.159 cm™!. With
respect to this value PBE completely fails, both for what concerns the sign and the
size of the interaction. PBEO gives a completely different result from PBE and at least
the sign of the axial anisotropy parameter is found in agreement. However, also in
this case the absolute value of Dgoc is overestimated. In Table 25| values of Dgg for

all the molecules have been reported, computed with PBE for the exchange coupled
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irons and with point-dipole formula for the others. This receipt will be used for all

the next calculations.

Table 2.5: Calculated Exchange Coupling Anisotropy Tensors.

Dss® (E/D)ss”
FeC—Fepb Fep—Fepb Fec—Fepb Fep—Fepb
FeyOMe -0.145 -0.031 0.070 0.000
Fey tBu -0.147 -0.033 0.074 0.000
FeysPh -0.152 -0.034 0.086 0.000
FeysMe -0.152 -0.034 0.086 0.000
Fe,C5 -0.152 -0.032 0.086 0.000
Fe,C4 -0.151 -0.035 0.087 0.000
Fe,C3 -0.149 -0.033 0.086 0.000
FeyC1 -0.150 -0.034 0.083 0.000

2 Values expressed in cm ™!,

b Fe, here refers to a generic peripheral iron.

Spin Projected Anisotropic Tensors and Magneto-Structural
Correlations

Now that the multi-spin nature of the zero field splitting for all the Fe, SMMs have
been computed, it is possible to collapse all these information into the spin pro-
jected anisotropy tensor. The df =5 and dfj:5 coefficients could be always numerically
evaluated[55] once the isotropic exchange structure is known, by direct diagonaliza-
tion of the Heisenberg Hamiltonian expressed in a basis set that spans the complete
Hilbert space of dimension va (2s; +1). Although these systems span point groups
from C1 to D3, in all cases the symmetry of the core can be approximated to a
pseudo C3 symmetry. In this framework, it is possible to find a spin coupling scheme
(Is1,82,S12,83,S123,84,S >) which defines a representation that already diagonal-
izes the Heisenberg Hamiltonian: |%7 %7 5, %, 1—25, g, 5 >. This basis set is then used to
numerically calculate the several projection coefficients which are:

d. = 01282 d, = 0.1868

dep = -0.1816 dyp 0.2335

These coefficients, together with anisotropic tensors, are then inserted in Equation
[2.31] and the results are summarized in Table 2.6 As expected, even if the dominat-
ing part of the total axial anisotropy comes from single ion contributions, Dgﬁ, the

spin-spin part is not negligible. This two body interaction is, however, constant along
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Table 2.6: Calculated and Experimental Anisotropic Tensors for the S=5 Magnetic
Ground State.

FesOMe FestBu Fe,Ph FesMe
D37® -0.158 cm ™! -0.223 cm~* -0.419 cm ™! -0.462 cm ™!
D37 (e) -0.038 cm ™! -0.039 cm~* -0.141 cm ™! -0.139 cm ™!
D27%(p) ¢ -0.128 cm ™! -0.183 cm™* -0.278 cm ™! -0.323 cm ™!
DSTiss -0.181 em ™! -0.244 em™! -0.442 cm™! -0.485 cm ™!
D33 -0.206(1) cm~'®  -0.270(1) cm™*  -0.421(1) cm™'* -0.445(1) cm~1®
ESTiss 0.007 cm ™! 0.000 cm™* 0.002 cm™*! 0.003 cm™*!
E33p - — 0.023 cm ™ '?* <0.009 cm '
v — pitch 63.24 ° 65.82 °© 68.93 °© 70.63 ©

F84C5 Fe4C4 Fe4C?> F64CI
D3P -0.443 cm ™! -0.417 cm ™! -0.413 cm ™! -0.405 cm ™!
D37 (c) -0.142 cm ™ * -0.137 cm ™ * -0.138 cm ™! -0.137 cm ™!
D37%(p) © -0.302 et -0.280 cm~* -0.275 cm ™! -0.268 cm~*
DSTiss -0.467 cm ™! -0.440 cm™? -0.436 cm ! -0.428 cm ™!
DY -0.451(4) cm™'?  -0.440(11) em™'®  -0.415(5) cm ™' -0.426(3) cm 1P
ESTlss 0.007 cm~* 0.024 cm ™! 0.027 cm ™! 0.005 cm ™!
S=

EEXSP - - - -
~ — pitch 70.45 © 68.41 ° 69.42 ° 68.84 °

® Values from the work of Accorsi et al.[23];
b Values from Tancini’s Ph.D thesis [45];
¢ Dy here stands for the sum of all the three peripheral single ion tensors.
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Table 2.7: S=5 Ground State Anisotropic Tensors Magneto-Structural Correlations
Analysis.

Correlation  Slope  Std.Err  Std.Err%

DS ss-Dixp 0.993 1.21 0.014 3.64
D372 ss-y pitch 0.973 - - -
D27°(p)-v pitch 0.986 - - -
D323%5-~ pitch 0.960 - - -

the whole series, as it principally depends on Fe-Fe distances (see Table . The
contribution Dglzf gg, which includes both single ion and exchange spin-spin contribu-
tions, is found to nicely reproduce the experimental D®=° values. The linear regression
analysis reported in Table 2.6] shows a very good agreement, indeed. The Std. Error
is found to be 0.014 ecm ™!, which is comparable to experimental errors. The rhombic
parameters are found to be much smaller with respect to D values. Only two experi-
mental values are available and they are in qualitative agreement with the computed
findings (see Table . In order to individuate which is the leading contribution to
the magnetic ground-state anisotropy, the total D*SgI:5 value has been decomposed into
the Fe, and Fe,. contributions (D37°(c) and D37°(p), respectively). The Fe,. already
possesses an easy-axis single ion anisotropy collinear to the symmetry axis of the en-
tire molecule and so directly contributes to the global D=, On the contrary, the
peripheral irons have an easy-plane anisotropy but they still contribute to the final
easy-axis anisotropy value thanks to the orthogonality of their easy-plane with the
symmetry axis of the molecule. Indeed, thanks to the pseudo-C3 symmetry axis, the
plane contributions to the final D cancel out and only the easy-axis contribution, that
acts in the direction normal to the irons’s plane, is effectively enhanced in the sum
process. As already noted by Oshio et al.[21] this is a general feature about the sum of
single ion contributions to the global anisotropy of transition metal clusters and could
be exploited in order to obtain easy axis contribution from easy-plane anisotropies.
Although the high negative value of the axial anisotropy of Fe., its contribution to
the global anisotropy is less than 50% of the total Fe, contributions. Such a result
can be explained by the smaller projection coefficient and by the presence of three
Fe, contributions. It is possible to observe a substantial increase of D7°(c) passing
from (1)-(2) to (3)-(8), where the pseudo-Cs symmetry is enforced, but between (1)
and (2) and inside the group (3)-(8) there are no significant variations of D27°(c)

on 7-pitch modulations. On the contrary, D§?5(p) not only contributes more than
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Dglzs(c), but it is also responsible for the magneto-structural correlation with v-pitch
as its correlation coeflicient attests (see Table . As discussed in section the ~-
pitch geometrical parameter combines contributions both from the trigonal rotation of
the central iron and from the non-collinearity and different magnitude of anisotropy
of the peripheral ones. Since all these contributions are simultaneously modulated
through the series in an uncorrelated fashion, the «-pitch could not explain by itself
all the single ion features of the Fes complex. Therefore a complete analysis by means
of the multi-spin Hamiltonian, as the one showed in this work, is needed. For the
sake of completeness I would also like to make a few comments on the contribution
of the anisotropic exchange (SOC contribution) to the global D=°. In section 6.3 it
was stated that the PBE functional completely fails on the estimation of this prop-
erty and thus it was not included in the analysis of the Giant-Spin Hamiltonian for
the ground state multiplet. On the contrary, the values of Dgoc obtained with the
functional PBEQ are in partial agreement with the few experimental findings avail-
able in literature. For this reason it has been evaluated a D=5 tensor composed by
Dy and Dgg contribution from PBE calculations and the SOC contribution to the
anisotropic exchange interaction from PBEO calculation. This procedure have been
exploited only for the molecule (3). The resulting axial and rhombic anisotropy pa-
rameters are: D=-0.395 cm~! and E/D=0.033. The comparison of these values with
those reported in Table shows that the introduction of the PBEO Dgoc lowers the
axial anisotropy D®=® but with respect to the experimental data the absolute value
of the deviation of PBE and PBEO are similar, 6.2% and 5.0%, respectively. Since the
very small amount of both experimental and computational data it is not possible, at
this stage, to prove the correctness of the Dgpc evaluated from PBEOQ, and a deeper
analysis of this contribution is is provided in the next chapter.

Conclusions

A comprehensive magnetic characterization performed at DFT level for a selected se-
ries of star shaped Fe; SMMs have been presented. The already established procedure
to compute single ion anisotropy tensors has been exploited and extended in order
to include the determination of exchange anisotropy tensors, both spin-spin and SOC
contributions. It should be also stressed out that this procedure is not only related to
the DFT framework, since it avoids BS solutions, but it could be directly used to map
every kind of electronic structure calculation to the multi-spin Hamiltonian of Equa-
tion [2:14] This means that it shows a practical way to evaluate exchange anisotropy
tensors also in the framework of high level post-HF methods like CASSCF/NEVPT2
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or CASSCF/DDCI, which will be shown later. This approach differs from the one
proposed very recently by Van Wiillen [4I] which is based on the exploitation of a
number of Broken Symmetry solutions. In this framework, the presented computed
multi-spin parameters have been calculated on X-ray structures and a nice agreement
has been found with the available experimental findings, supporting the reliability of
the computational protocol. Confirmations on the correlation between F' eOFe angle
and the J; has been also found. New insights have been brought, instead, to the
correlation of the D with the «-pitch angle. A detailed analysis of the anisotropy
parameters led to the conclusion that although the contribution of central iron to
the D can be strongly influenced by the tripodal ligands, the main responsible of the
different anisotropy properties observed in the series are the peripherals ions. Their
contribution comes both from the non-collinearity and from the absolute value of their
single ion anisotropy tensors, properties which are simultaneously modulated through
the series. Although this work was principally devoted to the determination of the
nature of magneto-structural correlations for the Fe, SMM, it has been also provided
a few information about DFT reliability over the determination of isotropic exchange
and ZFS interactions for u-alkoxo bridged Fe3* ions. Both J and D determination
from DFT are found to be quite accurate with Std. errors of 1.80 cm™! for J and
0.018 ecm ™! for D. In conclusion, the computational protocol here proposed seems to
be robust enough to be used also as predictive tool as witnessed by the good results

obtained in describing the fine complex magnetic structure of the Fe, SMMs series.
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2.5 Beyond the Giant Spin Approximation

In the last section the GSA was employed in order to project the single ion and
exchange anisotropy tensor on the ground state multiplet. Principles of validity for
this procedure have been outlined in the section devoted to the spin hamiltonian
formalism, where it was clearly pointed out the importance of the large exchange limit
J >> D. Although many transition metal clusters usually have exchange interactions
much stronger than anisotropy splitting, experimental evidences of GSA breaking
exist[52, [56] [57]. These evidences arise in anomalies in EPR experiments which are
not accountable with the spin hamiltonian terms coming from the GSA. To reproduce
these spectra features the introduction of higher order terms in the GSH is thus
needed. The origin of these additional terms has been demonstrated to be connected
to the S-mixing[58, [59]. This effect arises from the mixing between MSH solutions
with different S? expectation value. Indeed, when the isotropic exchange introduce a
small multiplet separation, the anisotropic terms of the spin hamiltonian couple them

and generate a system which is no longer an S? eigenstate.

An intuitive approach to the S-mixing requires a perturbative description of the multi
spin hamiltonain anisotropic terms in the giant spin basis set. This procedure readily
generalized the perturbative approach exploited by Neese et al.[28] to project spin
orbit contributions into the usual H, = S - D - S hamiltonian and was used for the
first time in this context by Liviotti et al.[59]. Lets start recalling that the multi spin

hamiltonian is connected to the giant spin one through the usual matrix elements
mapping relation2.13}

<SM5|HG5(S)|SM§> = <SM5|HM5(81, ceey SN)|SM‘/5> (258)

In order to make clear from a mathematical point of view the origin of these higher

order GSH terms lets study the mapping between these two spin hamiltonians

Hys =Y Jij(8i-§;) + > _8i-Dij - § (2.59)
7 7

Hgs =Y B2+ BT} (2.60)
q q

The left side of eq. [2.5§ could be evaluated straightforwardly with the aim of the

Wigner-Eckart theorem as S? commute with Hgg. The same it is not possible for the
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right side term of eq. However, |SMg) is eigenket of the isotropic part of the
MSH and therefore a perturbative approach is applicable. i.e. the H; =), .§;-D;;-§;
part of the hamiltonian on the right side of eq. is treated as a perturbation of
the reference 0-order hamiltonian Hy =), i Jij (8; - 8;). Restraining the formalism at

the second order

<SM3|HM5‘SMZ§> =FEg+ <SM5|H1‘SMZ§> (261)

1
-y A (SMs|H1|S" Mg} (S" Mg | Hi| SM§)  (2.62)
S”Mg// S//S

For infinite exchange Agrg — 0o the GSA scenario (see eq. [2.23)) is obtained and it
thus could be considered as the first order approximation of a general treatment of
the S-mixing. In order to show that a MSH containing second order terms is able to
give rise to giant spin hamiltonian of the kind BT, (S5), let’s decompose T} (S) by
means of the projection theorem into two second order terms:

TH(S) =Y (4q,22/1q1,1g2) T (S)T, (S) (2.63)

q192

Including this transformation in the left side matrix element of eq.

(SMs|Hgs(S)|SMg) = > By(SMs|T(S)|SMg) = (2.64)
D B> (49,22[1q1,1g9) Y (SMs|T;, (S)[SME)(SME|Ty, (S)|SME)  (2.65)

q1q2 M

This last relation is of the correct algebraic form to be compared with the last term
in eq. However it is not already clear how the mapping could be done. In order
to do that the last term in eq. [2.62] should be converted in a form which present
explicitly the part Y-, (SMs|T? (S)|SME)(SME|T; (S)|SMg). In order to get this
result let’s start considering only the S” excited states equal to S. In this case

(SMs| Hy|SME){(SMY|H, |SME) = (2.66)
ST B2 (sus) B2, (505, (SMs T2 (515, | S MEN(SMEIT2, (si5,)|SME)  (2.67)

iJ 4192
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The conversion of (SMg|T7 (sis;)|SMY) and (SMG|TZ (sis;)|SMg) into functions
depending only on the total spin variable S could be accomplished thanks to relations

(SMs||T* (sis;)[|S M)

SMg|T?(sis5)|SMG) = (SMg|T2(S)|SMg 2.68
< S‘ q( J)| S> < S‘ ( )l > <SM5||Tk( )HSM/> ( )
Inserting this last relation into and then into [2.62
>y A (SMg|H,|S" Mg )(S" Mgn|Hy|SMY) = (2.69)
§17=8 Mg, —5"8
3 Z B3, >2(sis;) B3, (sis;) (SMs|[T* (si5;)||SM§) (2.70)
q1q2 ij S'= Agrs <SMS||Tk(S)HSM,/s>
Z<5Ms\T¢i(S)ISMs><5Mé’\T52(5)|5Mé> (2.71)
M//

and finally, matching the expressions [2.65] and [2.7]]

ZB4 (4q,22|1q1, 1¢2) = (2.72)

=S Z By, > (si 8]) Bia (si55) (SMs||T*(sis;)||SMg)

Aors (SMs|[T*(S)[|5M5) (2.73)

ij St=

Before to proceed another discussion of the perturbation treatment just presented is
required. The second order perturbation expression of the MSH has been mapped to
the fourth order GSH thanks to the spherical tensor projection theorem. However,
this was not the only possible choice as from the sum of two second order spherical
tensors is possible to generate all the spherical tensors of order between 0 and 4. In

this scenario a generalization of the expression [2.73] to

ZBQ 2¢,22|1q1, 1g2) + ZB“ (4q,22|1q1, 1g2) = (2.74)

- ¥ Bi, Y(5i85) qz(szsz) (SMs||T* (si5;)|1SM)

Aors (SMs][T*(S)||SMp) (2.75)

ij Si=9
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is thus possible. This argument shows that S-mixing not only generates higher order
GSH terms but it also affects the regular second order ones. Similar expressions to
and for cases with S” # S, could be derived but the algebra is much
more involved and cumbersome. The same issue particularly applies to the study of
higher order perturbation theory and for practical purpose a different approach for
the higher order giant spin terms determination is needed. The simpler one follows
the same procedure outlined in the first section of this chapter to fit the electronic
energy ladder with a single spin hamiltonian. Here, the low lying spectrum obtained
from the diagonalization of the MSH could be fitted with a generalized GSH, through

a simple linear least square approach.

The Fe3Cr SMM has been used to study experimentally the origin of higher order giant
spin hamiltonian terms inside the helical-pitch SMM family[52]. This compound is
structurally identical to the Fey system except for substitution of the central Fe ion
with a Cr*2 one. Magnetic interactions inside the magnetic core of this molecules are
very similar to the original Fes one and lend to this SMM an S=6 ground state and
an easy axis global anisotropy. This molecule could be used as benchmark system to
analyse the effect of S-mixing, their correlation with the non collinearity of peripheral
iron ion easy axis and their magnitude dependency from the main isotropic exchange
coupling constant linking the central chromium and the peripheral iron ions. In order
to study the effect of S-mixing on the FezCr the experimental D3, symmetry adapted
multi spin hamiltonian parameters are going to be used. The second order anisotropic
tensors of the peripheral iron ions have also been realigned with the C3 symmetry axis
of the molecule i.e. the 8’ angle of the latter discussion on the Fey series has been set
to zero. The mapping with the GSH has been done through a direct fit of the first
25+1 (with S=6) roots of the diagonalization of this hamiltonian. The GSH has been

chosen to contain second, fourth and sixth order terms.

Hgs =Y _ BIO2(S)+ Y _BiO;(S)+ > _ BSOS(S) (2.76)

Starting from the study of GSH parameters dependence on the excited states energy
splitting, fig. [2.6] shows the residual sum of square for the fit as function of the
isotropic exchange coupling constant between the chromium ion and the peripheral
iron ions. Notably, the accuracy of the fitting increases as the energy separation with
the excited states increases, showing that despite the introduction of fourth and sixth
order giant spin operator the fit of the low lying part of the multi spin spectrum

could not be exactly be fitted by a generalized giant spin hamiltonian unless the GSA
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validity is approached.
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Figure 2.6: Residual sum of squares resulting from the least square linear fit of the

giant spin hamiltonian.

Fig. 2.7 2.8 and 2:9] reports the evolution with J of the norms of the second, fourth

and sixth order giant spin operators, respectively.

All of these three trends show a remarkable ~ 1/J behavior, which approaches zero
in the second and third case and approaches a finite value for the second order case.
The 1/J behavior is in line with the second order perturbative approach used above to
introduce the S-mixing effect. Moreover, as pointed out in the same discussion, it is
here demonstrated that the S-mixing does not only introduce higher order giant spin
terms in the spin hamiltonian but also affects the second order ones predicted by the
GSA. One interesting consequences of this last effect is that the S-mixing introduces
every kind of terms in the spin hamiltonian, symmetry forbidden included. Eq. 2.75]
could help to shed some light on this last point. According to Sorace et al.[52], for the
Dg3j, symmetry of the problem under study, the only allowed fourth order terms would
be the B3(S) B3(S) but, according to relation the term B} (S) would be non zero
unless all the second order B3(s;) terms are zero. Indeed, in this symmetry, the sum
of B3(s;) terms must cancel out, but the sum of their square is not. Similar arguments

could be applied to the B3(S) terms which in fact become zero, as symmetry requires,
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Figure 2.7: Second order giant spin tensor operator norm.
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Figure 2.8: Fourth order giant spin tensor operator norm.
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Figure 2.9: Sixth order giant spin tensor operator norm.

only in the J — oo limit, where only first order terms of eq. [2.62] becomes relevant.
Fig. and show these effect as dependence of J.

Notably, not all the singular terms of the giant spin hamiltonian converge to zero
as 1/J but some of them experiences an oscillatory behavior superimposed to the
decaying one, see for instance the O?(S) behavior reported in fig.

This symmetry breaking effect might seem counter intuitive but it must be stressed
out that the mapping of GSH in the presence of S-mixing effect is not formally strictly
correct. Indeed, these terms are partially spurious and should be considered as mere
additional fitting parameters needed to mimic the effects of excited states mixing with
the ground state multiplet. As also pointed out by the RSS trend, the mapping is
never completely fulfilled and this is because the fit with a GSH required a spin purifi-
cation of the MSH eigenkets, operation which inevitably spoils part of the information
provided by the MS description of the system. At this stage a comment on the work
by Liu et al. is necessary[60]. In this paper the authors essentially present the same
analysis just made but for a Mnj cluster with C3 symmetry. Although the similarity
of these problems, Liu and co-workers differently conclude that in zero field the only
appearing giant spin terms are those allowed by symmetry, in contrast with the just

showed findings. This difference essentially comes from the method used to extract
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Figure 2.10: O3(S) behavior as function of isotropic exchange coupling J between

chromium and peripheral ion ions.

these parameters. Indeed, Liu and co-workers use only the energy ladder obtained
by the diagonalization of the multi spin hamiltonian and they did not introduce any
information in the fitting about the eigenstates. The higher order GSH terms like
O and Of had been calculated according to the splitting between the S, = +6 and
S, = 43 states and according to the the avoided crossing of all the other doublets all
the other GSH terms had been excluded in the absence of non-collinearity between the
C3 symmetry axis and the single ion axial contributions. Accordingly, the simulations
conducted over the FezCr with 8/ = 0 show a spectrum with the most important
splitting between S, = 46 and S, = £3, however, a very small, but still over the ma-
chine precision, splitting is calculated for all the other states. More importantly, all
the MSH eigenvectors show a deviation from the expected S, eigenvalue, accordingly
with the presence of S-mixing. The fitting method exploited here is based on the map-
ping of both eigenvalues and eigenvectors of GSH and MSH and it is therefore able to
capture entirely the effect of S-mixing, the one contained in the eigenvectors included.

This analysis also points out the non necessity of non collinearity between easy axis
of the peripheral ions, as it was excluded by construction. However, the dependence of
S-mixing effects and non collinearity has been studied in order to access possible mag-

neto structural correlations. The modulation of the giant spin operator norm by the
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Figure 2.11: Rhombic term E behavior as function of isotropic exchange coupling J

between chromium and peripheral ion ions.

angle ' shows an oscillating behavior for all the orders considered demonstrating the
importance of the non collinearity over the S-mixing effect. These results could also be
used to extract higher order GSH parameters in a DFT framework. Indeed, assuming
that the multi spin hamiltonian already contains all the information about the spin
system, the higher order spin hamiltonian terms completely comes from the S-mixing

effect and could be easily calculated from single ion and exchange anisotropies.



2.5. BEYOND THE GIANT SPIN APPROXIMATION 51

0.00025

0.0002
- 0.00015
0.0001

5e-05

024(S) (cm™

-5e-05

-0.0001 -
0 50 100 150 200 250 300 350 400 450 500

J(cm™y

Figure 2.12: O%(S) behavior as function of isotropic exchange coupling J between

chromium and peripheral ion ions.
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Conclusions

A numerical investigation on the entity of higher order giant spin hamiltonian terms
coming from the S-mixing effect in polynuclear clusters have been done exploiting the
experimentally available Fe3Cr spin hamiltonian parameters. This analysis, supported
by perturbation theory arguments, shows that the best giant spin hamiltonian that
fits the reference multi spin hamiltonian is affected by a symmetry breaking which is
resolved only in the infinite exchange limit. Moreover, it has been proved that the
S-mixing affects also the second order terms directly determined by the multi spin
hamiltonian by means of the GSA. In the infinite J scenario the GSA approximation
becomes both formally and quantitatively established and the mapping between the
two kind of hamiltonian becomes exact. However, in a more realistic regime, where
the isotropic interactions have a finite value, the giant spin hamiltonian and the multi
spin one could never be exactly matched, due to the spin purification of the multi-spin

low lying eigenstates spin components needed for their mapping.
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2.6 Fey; Anisotropic Exchange

So far, many efforts have been devoted to the study of various spin hamiltonian terms
that contribute to the Fey family spectrum. Among them the most elusive one is
by far the hamiltonian concerning the anisotropic exchange interaction. Although
this interaction is generally neglected in the interpretation of experiments, this is
not always correct and especially for those systems where single ion anisotropies not
necessarily dominate the low lying part of the spin spectrum, this interaction might
plays a fundamental role. Nevertheless helical pitch complexes fall inside this last
category, the inclusion of anisotropic exchange in their spin hamiltonian has been
attempted only recently[6I]. As shown in the section of this chapter, a possible
route to its computation has been presented but unfortunately a conclusive claim
about the goodness of its applicability has not been possible. The reason mainly
lies in the lack of benchmark references, both of experimental and computational
origin. In order to get some more insights on the importance of this interaction on
Fe, like systems the most valuable strategy concerns the application of high level
of theory with respect to DFT. Unfortunately this is not possible for system as big
as the whole Fe;, SMM and the study must be restrained to its most characteristic
fragments. In this section the anisotropic exchange interaction for an high spin Fet?
molecular dimer will be calculated through the methodology early described both at
DFT and post Hartree Fock level of theory. The Fe™3-oxo dimer Fey(OCHj3)2(dbm),
with Hdbm = dibenzoylmethane (Fes from now on) has been chosen as benchmark
system mimicking the Fe.-Fe, inside the Fe, SMM structure (fig. reports its
structure). An experimental EPR study of Fe; shows that this system behaves as two

S=5/2 iron ions whose spectrum is well described by the spin hamiltonian[42]

Hs(sl,SQ) = J12(§1 . §2) =+ §1 . D12 . §2 —|— §1 . D11 . §1 + §2 . D2 . §2 (277)

The leading interaction is the isotropic interaction J;» whose value is ~ 15 cm™!. For
symmetry reasons single ion anisotropic terms are equal and of the easy plane kind.
The anisotropic exchange has been estimated to be of the same order of magnitude of
the single ion term suggesting its importance in the final contribution to the magnetic

behavior of this paramagnetic complex.

The DFT computation follows exactly the same procedure for Fe, series and requires
the knowledge of both single ion tensors D; and Ds, evaluated through diamagnetic
Ga™3 ions substitution, and the high spin S=5 anisotropy tensor Dg—s. The same

quantity have been calculated also with complete active space self consistent field
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Q r

Figure 2.16: Fey X-ray structure. Color code. Fe blue, O red, C green and H white.

(CASSCF) plus N-electron valence perturbation theory (NEVPT2) correction of the
hamiltonian diagonal elements. The solutions obtained from this procedure have been
then used to diagonalize the spin orbit coupling operator and, in the context of nearly
degenerate perturbation theory (QDPT), the 2S+1 solutions of interest have been
used as model space to fit the spin hamiltonian. For the CASSCF calculation of
the electronic structure of the doped system a (5,5) active space including all d-like
orbitals and the five unpaired electrons have been used and the sextuplet, all triplet
and all doublet solutions have been included into the QDPT. While this strategy for
extracting transition metal single ion anisotropy has already been widely validated[I9],
calculations on multi ion transition metals is still in its early stage and no practical
guidelines are available in literature. So far, only active spaces extended over the
d-like MOs have included in this kind of calculation and the same approach will
be followed here in order to limit the already big computational demand[54] [62].

Nevertheless, as pointed out by many papers concerning the isotropic part of the
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exchange, the inclusion of the MOs participating to the superexchange interaction
might be fundamental. Such extension of the active space would be unaffordable and
the effect of the ligand MOs correlation is included only at the perturbative level
through NEVPT2 correction. For the DFT situation, the choice to project the D
tensor on the high spin multiplet solution was forced but the impossibility of DFT to
reproduce intermediate spin states but postHF calculations grant the access to each
spin multiplicity. Although the choice of the spin multiplet where to project the D
tensor is arbitrary, the high spin solution remains the most practical pathway as it
is the one with the lower number of excitations. Moreover, as already discussed, this
is also the solution less affected by S-mixing problems and therefore it is much more
prone to be included in a spin hamiltonian mapping. On light of this discussion, only
all the possible two higher spin multiplicity excitations have been introduced into the
CASSCEF plus QDPT machinery. CASSCF plus NEVPT?2 calculation of the electronic
structure makes also possible to extract the isotropic exchange coupling constant from
the energy splitting between the S=10 and S=9 multiplet. Among the many S=9
solutions the one that should be considered for this purpose is the one corresponding
to two misaligned local s=5/2 spins i.e. the solution with the biggest weight on
determinants comprehending only on site excitations. At the CASSCF level, before
applying the NEVPT2 corrections, this S=9 solution has the lowest energy among
the whole S=9 multiplet and the isotropic exchange coupling constant Jio is -9.12
cm ™! and thus ferromagnetic, in net contrast to the experimental antiferromagnetic
value. After the application of NEVPT2 correction, the S=11 and S=9 swap and J

becomes 5.32 cm™ 1.

This value is still an underestimation of the experimental ~15
cm ™! but the sign is recovered. Possible strategies to further improve this result would
require the introduction of dictated CI procedure on top of the CASSCF instead of
NEVPT2, but the computational demands for these treatments would require further
fragmentation of the system and will not be addressed here. Table 2.8 reports all
the results for both DFT and postHF anisotropy calculations and their respective
experimental values. First of all it must be pointed out that experimental single ion
value contains both spin-spin and soc contribution while the computed ones retain
only soc contributions. Nevertheless, the lacking spin-spin contribution could not
account for the big difference between the two and both DFT and postHF simulations
underestimate the single ions contribution. As noted for the Fe Ph system, DFT
overestimates the anisotropic exchange contribution while postHF methodologies give

a result in good agreement with the experimental one both in sign and magnitude.
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Table 2.8: Calculated Single Ion and Anisotropic Exchange Anisotropy Tensors.

Dsy Esr/Dsr Dex Epx/Dex Dpus Ens/Dus
DFT(PBEO) 0.231 0.321 -1.902 0.090 -0.484 0.170
postHF 0.329 0.113 -0.108 0.321 0.173 0.112
Exp. 0.749 0.097 -0.159 0.176

Conclusions

From a computational point of view, these results demonstrate that postHF calcula-
tion of magnetic properties is a valuable tool for qualitative and quantitative predic-
tions and its increased computational cost, with respect to DFT, is well payed back by
its robustness. Concerning the practical side of this study, the non negligible impor-
tance of the anisotropic exchange coupling inside iron-oxo dimers has been confirmed.
Indeed, this interaction is found of the same order of magnitude of the single ion one
and it might represents a fundamental ingredient to play with in the tailoring of SMM
magnetism. This last point is particularly important as the most fruitful strategy to
increase the global anisotropy barrier of a multi spin SMM has been showed to be
the control of specific building block anisotropies, more than just increases the total
S values.
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2.7 Cr; EMACs

In the last sections I showed the ability of DFT to reproduce iron cluster magnetic
properties. Results for single ion anisotropy and isotropic exchange parameters are ex-
ceptionally good and a qualitative agreement is achieved only for anisotropic exchange
calculations. However, the good quality of these results is in striking contrast with
the few DFT computed values available in literature, where even single ion properties
usually carry errors much higher than a few percentage points. The explanation lies
in the electronic structure of the transition metal considered. Indeed, so far, all the
calculations presented concern Fe™ ion properties. This ion has an S=5/2 ground
state arising form a completely half-filled d shell, giving a total symmetric ground
state. The absence of angular momentum degeneracy i.e. almost no static correlation
contributions, makes the Fet3 jons as the best candidates to be treated at the DFT
level of theory. In this section I will show results for a different transition metal in
order to highlight DFT limits in the prediction of spin hamiltonian parameters and

the need to employ higher level of theory for a much robust computational strategy.

Extended metal atom chains (EMACs) are a class of transition metal clusters char-
acterized by a linear arrangement of the paramagnetic ions. The interest in this class
of compound has many origins that range from a classic chemical point of view, with
the study of metal metal multiple bond nature, to a more practical side, concerning
possible applications in the molecular magnetism based device realm. Last but not
least, the big synthetic versatility of this class of compounds offers the possibility
to engineer both ligands and metallic core nature, resulting in a valuable tool for a
systematic study of all the properties listed above. In the context of this thesis I will
focus on the description of their electronic structure as propaedeutic step for the fol-
lowing discussion about their magnetic properties. Specifically, the molecules studied
are two synthetic variants of the Crs system. The metallic core of these systems is
made by five Cr+2 ions arranged in a linear fashion. Each ion is coordinated by four
azo-ligand lying in perpendicular planes to the metal chain direction. Along the metal
axis, each ion saturates its octahedral coordination by two Crt2 ions, except for the
two terminal ions whose pseudo octahedral coordination shell is completed by one L~
ligand each. Results for L==C17,SCN~ will be discussed.

Clearly, the magnetic behavior of these compounds is strongly related to the num-
ber of unpaired electrons and consequently to the nature of the metal-metal bonds
inside the chain. Chromium clusters are the prototype of multiple metal metal bond

compounds and the existence of fourth order multiple bonds in chromium dimers is
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commonly belief on the basis of their diamagnetism and short metal-metal distance.
From a computational point of view this claim has been partially reviewed and the
presence of a slightly lower bond order has been demonstrated[63]. The origin of this
discrepancy lies on the very low energy lying nature of the §* molecular orbital in the
Cr dimer, which is slightly occupied by means of electronic correlation effects, result-
ing in a partial lowering of the bond order. As the bond order is critically correlated
to intra metal distance, in order to predict EMAC magnetic and electronic structure
features, the knowledge of high quality structural parameters is mandatory. In this
context, conflicting claims about EMAC structure have been reported in literature.
The PES shallow nature along the metal chain direction makes the assessments of
the intra-metal distance quite challenging from both experimental and computational
points of view and a short assay of available results from literature is here required.
A comprehensive study on Crz EMACs[64] showed the occurrence of three differ-
ent bond patterns inside the chromium trimer depending on the degree of symmetry
between the two Cr-Cr bonds: symmetric and slightly or largely asymmetric. The
modulation between the three possible structures occurs with the interchanging of
the two axial terminal ligands according to their ligand field effect. Ligands favoring
a large d orbital splitting as CN~ give symmetric structures while weak o ligands
produce asymmetric structures with one very short metal metal distance. Interme-
diate o donors as CI~ and SCN™ produce less asymmetric structures. The Cr;CI
molecule can be regarded as a CrsCl molecule where an axial C1™ is substituted by
a ligand made by a chromium dimer[65] and, according to literature[66], the alternat-
ing intra-metal spacing demonstrates the weak ¢ donor power of the C'roCl building
block. Moreover, magnetic studies on this compound reveled an S=2 ground state
which, together with the structure analysis, suggests that two chromium couples are
involved in a fourth order bond each, while the fifth Cr ion is single bonded to a
Cr-Cr couple. Interestingly, C'r5C1 behaves as a SMM under external applied field
thanks to a D=-1.6 cm™! and a E/D~ 0[67]. The high axial symmetry felt by the
metallic ions makes this system a good candidates for typical SMM applications, but
in order to enhance its property even further a better knowledge about the origin
of its magnetic behavior it is mandatory. Specifically, the dependence of the whole
magnetic properties of the EMAC on the terminal high Cr*? ion and its small cou-
pling to the diamagnetic chromium couples must be proved. A detailed knowledge of
EMAC magnetic and electronic structure would also pave the ground for a rational

engineering of its properties.
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Cr;X Structure Optimization

X-Ray diffraction techniques have been used to determine Cr;Cl and Cr5SCN struc-
tures. The structure of CrsCl have been reported multiple times and a common
agreement on the presence of alternating short and long CrCr distances is reported in
literature. Although Cr5SCN structure is expected to have an isostructural core to
the Cr5Cl one, the Cr-Cr distances show instead a symmetric pattern evidenced by
the crystallographic analysis[68]. However, the interpretation of X-ray results for this
class of system is not always straightforward and to shed some light on the structural
properties of the two systems their geometries have been optimized. Despite CASSCF
calculations would be preferable in this case (vide infra), the computational demand
for a structure optimization at this level of theory is too high and DFT is the only
tool able to tackle such problem.

Figure 2.17: Cr5Cl asymmetric and symmetric optimized structures. Chromium ions

are numbered from 1 to 5 from left to right.

CrsCl and Cr5SCN structures have been optimized with both symmetric and asym-
metric Cr-C bonds arrangements as starting geometries. Accordingly with literature,
the energy difference between these structures is very small and because of the shal-
low form of the PES, DFT does not let the structure evolve significantly during the
optimization and both minima are found stable at this stage. However, as expected
by precedent works, the asymmetric structures have been found as the most stable
of about 2.5 kcal/mol for both compounds, in agreement with the discussion above
(see Fig. . The same optimizations have also been carried out with the inclusion
of CH5Cl; solvent effects through the COSMO model but not appreciable differences
have been noted. Structural parameters of interest are reported in Table The
difference between Cr-Cr distances with L=Cl or L=SCN are not significant and they
show the same trend for the symmetric and asymmetric species. Symmetric species

shows the two inner Cr-Cr distances shorter than the outer two. The asymmetric
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molecules show two short Cr-Cr distances of about 1.9 A, a computed value which is

in agreement with the usual distance associated to a fourth order bond.

Table 2.9: Chromium Intra-Chain Distances.

Cl1 SCN

Cri_2 Cra_3 Crz—y4 Crs_s ‘ Cri—2 Cra_3 Crz—4 Cry_s

Symmetric 2.32 2.21 2.22 2.31 ‘ 2.33 2.20 2.22 2.31

Asymmetric 2.55 1.86 2.60 1.90 ‘ 2.55 1.87 2.60 1.91

Figs. [2.18] [2.19] and [2.20] report unrestricted natural orbitals (UNOs) at the end of
the optimization for the asymmetric Cr5CI structure (Crs SCN are qualitatively the

same). This kind of orbitals are not associated with any single particle energy, like
the corresponding unrestricted Kohn-Sham canonical molecular orbitals, but provide
the information about the mean occupation number of electrons associated with a
specific spatial single particle density probability. In this framework, UNOs fractional
occupation numbers are well defined and points out correlation effects. UNOs show
an almost complete separation between orbitals of Cr; with those of the Cro_5 unit.
This result is in line with the long distance between Cr; and Crs ions. Unrestricted
natural orbital occupation numbers show that the o, 7, w, d orbitals of the Cry_5 unit
are sensibly less than completely filled (13 out of 16 electrons) and at the same time
the anti boding orbitals are more than totally empty by the same amount of electrons.
However, occupation number of d like UNOs localized on Cr; show a half occupation
except for the d,2_,» which is totally empty. This result suggests that Crs could be
considered as the superposition of two sub units, which are only marginally interacting
between them. Only Cr; d.2 like UNO is slightly delocalized over the Cry_5 part of
the chromium chain. Although the same consideration are valid for the Cry_3 and
Cr4_5 units, their d,2 like UNOs are totally mixed due to their shorter bond. However,
all these features could be exploited in order to rationalize EMACs behavior on the

basis of sub unit magnetism.

Uunrestricted natural orbitals for the symmetric CrsCl optimized structure (Crs SCN
are qualitatively the same) are reported in figs. [2.21] [2.22] and [2.23] Although the
occupation numbers follow the same pattern as in the asymmetric situation, the UNOs

shape is completely different. The saparation of UNOs observed in the previous

example is completely lost and the one particle electronic density is spread all over
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the five Cr ions. Notably, the singly filled UNOs are made by d like orbitals located on
the Cry,Crs and Crs. This particular configuration might imply a completely different

anisotropic magnetic behavior with respect to the asymmetric case.
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Figure 2.18: Cr;Cl asymmetric optimized structure UNOs.
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Figure 2.19: Cr;Cl asymmetric optimized structure UNOs.
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Figure 2.20: Cr;Cl asymmetric optimized structure UNOs.



CHAPTER 2. POLYNUCLEAR SSM CRYSTALS

66

1.89

Nocc

=1.96

Nocc

=1.77

Nocc

=1.77

Nocc

=1.46

Nocc

=1.47

Nocc

=1.26

Nocc

=1.44

Nocc

Figure 2.21: Cr5Cl symmetric optimized structure UNOs.
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Figure 2.22: Cr5Cl symmetric optimized structure UNOs.
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Figure 2.23: Cr5Cl symmetric optimized structure UNOs.
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Magnetic Property Modeling

The study of magnetism will be restricted to the asymmetric molecules as they are the
more stable configurations. As previously discussed, anisotropy tensor calculations at
the unrestricted DFT level of theory require the electronic spin density of the system
to be consistent with an S? eigenstate. For all the structures just presented this is
not the case. Indeed the (S?)ppr are significantly deviating from the expected value
(S?) = 6. For this reason the straightforward DFT calculation of D is not possible.
The natural orbitals show a significant spread of the occupation number already at the
DFT level pointing out the need of a the theoretical method able to handle high level
of correlation. CASSCEF is particularly fitted for these purposes but in this situation it
would require the calculation of an extended active space comprehensive of all the Cry
five d like MOs and the sixteen Cry_5 bonding and anti-bonding MOs. Although this
kind of calculations could be handled with some computational scheme as ORMAS
or GASSCF, the computational demand remains enormous and in this thesis T will

restrain the discussion to the analysis of sub units magnetism.

Figure 2.24: Cro_3 and Cr; model structures.

The Cr; unit is a typical mononuclear Cr?* ion in a square planar pyramid coordina-
tion geometry with the chromium ion only slightly out of the plane of the N ligands.
The calculation of its electronic structure has been done at both DFT and CASSCF
(4,5) level and the axial anisotropy constant for this model has been calculated as
D—-0.464 cm~! and D—-1.51 cm™!, respectively. The origin of such discrepancy is
hard to tell. The lacking of static correlation in DFT is not expected to play an
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important role here as the ground state of Cr; is well described by a single Slater
determinant. Both computational methods predict E/D~ 0, in agreement with the
presence of a C4 symmetry axis collinear with the metal chain axis. CASSCF result is
in excellence agreement with the experimental anisotropy Desp=-1.6 cm™!. The trun-
cated Cr; model with the SCN ligand gives similar CASSCF results: D=-1.59 cm~!.

lis in remarkable agreement with CASSCF also

The experimental value D=-1.8 cm™
in this case. Moreover, CASSCF is able to predict the slight decrease passing from Cl

to SCN.
Cry_3 is the next studied fragment.

According to the shorter bond length and confirmed by UNOs, the two Cr*? ions
are strongly coupled and for this reason both static and dynamic correlations are
supposed to be relevant. Therefore, CASSCF(8,8) has been used to determine the
electronic structure for this fragment. The active space has been built with o, 7,7, §
and o*, 7%, 7% §* orbitals. Two ground state selected calculations have been carried
out converging the wave function on the first triplet and singlet CI solution, respec-
tively. Energy difference for these two simulation give the singlet state more stable
than the triplet of 3927.95 cm™!. The big energy distance between the solutions
demonstrates that the Cry_s unit could be considered as a diamagnetic fragment.
Natural orbital analysis gives an interesting insight on the nature of the Cr-Cr bond.
The bond order could be defined as the half difference between bond and anti-bond
natural orbital occupation numbers and for the singlet ground state solution it is only
2.27, value significantly departed from the expected 4. As also reported in literature
this is due to the partial occupation of anti bonding orbital as effect of electron cor-
relation. The value reported here is even more dramatically small than other similar
systems reported in literature, and the explanation lies in the partial twist of the two
squares perpendicular to the Cr axis and containing the nitrogen ligands. Indeed,
departures of the alignment between the two set of ligands make the overlap between
dgy, dz. and d,., i.e. 7 and ¢ interactions, less effective and the energy splitting
between bonding and anti bonding pairs of MOs gets reduced. The reduction of the
band gap is then reflected on a higher spread of electron occupation numbers all over
the Fermi energy region which consequently reduces the effective bond order of the

chromium pair.

Accordingly to the above discussions, it is natural to expect the Cr; ruling the mag-
netism of the whole asymmetric EMACs. Indeed, the Cry_5 is expected to behave
only as diamagnetic ligands only marginally affecting the electronic structure of Cry.

Moreover, the long distance between Cr; - Cry and the almost complete separation
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between UNO of different sub sections, make this hypothesis quite solid.

In order to put the last result in more solid theoretical ground, even though qualitative,
lets study the D dependence from a perturbation mimicking the C;_5 interaction.
Although D formulas in terms of spin multiplets splitting for an S=2 exist[69, [70],
a formulation in terms of MOs would be advisable for clarity purpose. Lets start
recalling that atomic d orbital are tesseral function defined from spherical harmonics

|I,m) as

|d,2) = 12,0), (2.78)
|dyaoy2) = 702 ,2) + [2,-2)), (2.79)
|dzy) = if<|2 1) +[2,-1)), (2.80)
ldoa) = f%uz, 1)~ [2,-1)), (2.81)
|diy) = (12,2) — [2,-2)) (2.82)

Z\f

where (I,1,,1.) and (l4,l_) are orbital angular momentum operators

I|l,m) = m|l, m) (2.83)
Iy |l,m) = VI=m)I+m+1)|l,m+1) (2.84)
I_|l,m) = V4 m) (I —m+1)[l,m—1) (2.85)
L = %(u +) (2.86)
ly = 2%,(@ —1) (2.87)

From second order perturbation theory the SOC contribution to D in terms of MOs
is expressed by eq. 2.51] As discussed by Neese, this sum over states formula could
be obtained from the general second order perturbation treatment of a regular many
body wave function in absence of the exchange term[39], and therefore it readily
applies to the unrestricted DFT framework, where states are expressed by means of
non orthogonal unrestricted MOs. This property is of paramount importance in the
context of practical calculations as spin polarization effects, arising from it, account

for general properties of paramagnetic molecules. However, in this context it makes
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impossible to extract practical information on D. In order to overcome this flaw a
slightly different formulation of eq. should be used. Based on the discussion of
Neese[39], unrestricted MOs could be converted into orthogonal unrestricted natural
orbitals, divided in double occupied, singly occupied and non occupied MOs, where
the former sub space is associated with alpha Fock operator eigenvalues and the latter
with beta Fock operator eigenvalues. The MOs belonging to the remaining sub space
are dressed with the average value between spin up and spin down Fock operator
eigenvalues. Although containing a degree of arbitrariness, this kind of transformation
(quasi restricted orbitals ) provides proper results in excellent agreement with the more
general eq. The only contributions to the Cr*? anisotropy comes from the S=2
and S=1 multiplets and their effects in terms of single particle excitations is given
by @ — «a and a — [ spin excitations. Clearly the most important ones are those
localized into the d like MOs of the chromium ion and the discussion will be restrained
to them.

Cr; coordination geometry is a square pyramid geometry and its ground state could
be described by a configuration (dgy)' (d.q)' (d2y)' (do2)" (dy2—y2)® where the energies
ladder is about E(dyy) < E(d..) ~ E(d.y) < E(d,2) < E(dy2_,2), according to
the MOs ordering provided by the CASSCF calculation. The only o« — a excitation

contributions are

Do ox — ‘<dx2*y2|lz|dzy>|2 _ 4 (2.88)
zz 6d127y2 — dey 6d127y2 - edmy
T €d127y2 — edzy €d127y2 edzy
dy2_y2|ly|dze)|? 1
DyyO(— ‘< 2 y2|il >| — — (290)
€d,o 2 7 Cdiy €d,2 2 €duo
(2.91)
while the a@ — 8 excitations are
2
1
D.. o 4 Weolleld=y)® (2.92)
Edzac - edzy Edzm - edZy
Ayl |da) | do2|lg|dsy) 2 1 3
Do oy [eallaldn) P | (deluldey)? . 2.93)
€d.e — €day €d_o — €d, €d.e — €duy €, — €d.,
doy|ly|dey)|? d2|ly|da) |? 1 3
Dyyoc+ |< y| y| y>| + |< 2| y| >‘ _ + (2.94)

€d.y — Cdyy €d> — €d.y €d.y = €dyy  €d,2 T Cdan
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Therefore, D = D, — %(Dm + D,,) for the o — a excitations is

4 1 1 1
Doyyox ————— + —( + ) (2.95)
Edw2,yz — €dyy 2 6dl,z,yz —€d,, edwz,yz — €.,
while for the a — 3 excitations it is
1 1 1 3 1 3
Daﬁg o — *( + + + )
€d,, —€d., 2 €., —€d,, €. —€d, €d, €, €do ~ €d.,

(2.96)

From relation @ it comes out that D becomes more negative as d,, and dg=_,»
get closer or d2_,2 - d.;/d, split gets larger. From relation D becomes more
negative if d,2 or dy, get closer to d.g, d.,. All these conditions are coherent with
those found out in the work of Barra et al.[69] for the iso electronic high spin Mn™*3.
Interestingly these MOs based formulas take into accounts all the main contributions
reported by Liakos et al.[70], for a Jahn Teller distorted Cr(IT)(H20)g, in the context of
many body perturbation theory. Indeed, egs. and [2:.96] correctly accounts for sign,
symmetry and magneto structural correlation for both quintet excitations (°E, —°
Tyy) and the two most important triplet excitations (°E, —3 T1, and SE;, —° Ty,)
contribution to D. From the UNOs analysis at the beginning of the sections was
evident that the major contribution to the Cr; Cro_j5 interaction comes from the
overlap between the Cr; d,2 MO and the Cro_5 o MO. As the Cr; d,» lies more
near to the bonding ¢ orbital, with respect to the anti bonding ¢*, this interaction
would increase the d,» energy and consequently its gap with d,. and d., resulting in
a decrease of the anisotropy absolute value. The same effect would be provided by 7

interactions which would increase d, and d., energy difference from d,> leading to

—y2,
a more negative D,_,, contribution. Clearly, this discussion is completely qualitative
and it does not give information on the magnitude of D reduction due to the sigma
overlap with the Cro_5 fragment. Although the explicit inclusion of the Crs_j5 ions is
too expensive as already discussed, a small step toward a refinement of the truncated
Cr; model might be done with the inclusion of a diamagnetic substitution (Zn?*
ions) in the Crs structure without any structural relaxation. Although this kind of
substitution is not expected to be realistic and experimentally feasible, it could at
least give an indication of the importance of a charged transition metal near the Cry
site. A summary of results for Cr; and CrZns model anisotropy calculations, with
both Cl and SCN ligands, are reported in Table After the inclusion of Zn*?
ions, the anisotropy constants are slightly diminished with respect to the truncated

Cr; model, in agreement to the D analysis above. Although this tiny variations could
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hardly be considered quantitative, the comparison between the two models clearly

shows the small influence of the axial ligand on the Cr; magnetism.

Table 2.10: CASSCF Calculated Cr; Anisotropy.
Cl SCN
D (cm™') E/D(cm™') D (cm™') E/D (cm™?!)

Cry -1.513 0.000 -1.592 0.000

CrZny -1.441 0.000 -1.248 0.000

Exp -1.6 - -1.8 -
Conclusions

This study meant to give a rationalization of the origin of the slow relaxation rate of
the magnetization for a recently proposed Cr*? based SMM. The ambiguity on the
possible source of the zero field splitting have been addressed by means of postHF
calculations which elucidates the importance of only one chromium ion inside the Crs
EMAC chain. The possible effect of the nearby chromium ions has been investigated
through perturbation theory and diamagnetic substitution techniques which proved
the Cr-Cr interaction to be almost negligible. A short discussion of the electronic
structure of an alternative geometry has also been provided suggesting the possibility
to modify sensibly the EMAC magnetism changing the external axial ligands ¢ donor

power.
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2.8 Summary

In this chapter the importance of the various terms of the spin hamiltonian for polynu-
clear SMMs has been investigated. Fet3 iron clusters have been at the center of the
investigation due to the wide interested they have recently capture and a comprehen-
sive characterization of the fundamental properties of a Fe4 family have been addressed
through a DFT plus post-HF approach. This proposed computational scheme makes
possible to elucidate the nature of magneto-structural correlations inside the helical
pitch family and to unambiguously weight all the multi spin interactions concurring
to their spin hamiltonian. Moreover, a practical way to calculate the anisotropic ex-
change part of the multi spin hamiltonian has been proposed and tested on the Fe,Ph
SMM at the DFT level, and over the Fes cluster at both DFT and postHF levels,
demonstrating the not negligible weight of this interaction. Although the assessment
of the DFT protocol has been very positive, this study pointed out the necessity to
use a higher level of theory for evaluation of the exchange coupling tensor. The limits
of the GSA approximation have also been tested and the possibility to access compu-
tationally the higher order giant spin hamiltonian terms has been investigated. First
a theoretical description of the nature of these higher order terms has been provided
by means of perturbation theory and then a numerical analysis through the exact
diagonalization of the multi spin hamiltonian has been done shedding some light on
their value dependence on both isotropic exchange coupling and spin non-collinearity.
Finally, metal-metal bond effects on the spin hamiltonian have been studied in the
context of chromium based EMACs showing the possibility to change the easy axis

anisotropic of a Cr*? ion modulating it distance inside the linear metallic ions chain.
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2.9 Computationl Methods

CP2K and ORCA|7I] packages of software have been used to perform DFT calcu-
lations of isotropic exchange coupling constants and all the other properties, respec-
tively. The evaluation of the isotropic part of the spin Hamiltonian J;; has been
carried out with the PBEO [72] functional. To solve the UKS equations in CP2K,
the Gaussian and plane waves (GPW) formalism was used. Double-¢ polarized
basis sets (DZVP-MOLOPT-SR|73|) with Goedecker-Teter-Hutter norm conserving
pseudopotentials[74], [75] have been employed. The auxiliary Plane Wave basis set
has been truncated to an energy of 400 Ry. DZVP-MOLOPT-SR for iron and SZV-
MOLOPT-SR for all the other elements have been used as auxiliary basis-sets for
the exchange integrals evaluation[76]. A convergence criteria on the maximum el-
ement of the wave function gradient was sets to 1.0E-07. The DFT evaluation of
all the anisotropic tensors, made with the package ORCA, has been carried out with
both PBE [77] and PBEO functionals. All the calculations have been done with a def2-
TZVP [18] basis set for all the elements. The RI-J approximation along with the def2-
TZVP/J auxiliary basis set|79] and the COSX approximation[80] to the Fock operator
building when dealing with hybrid functionals have also been exploited. Speaking in
the ORCA notation, grids were set to 5 and VeryTightSCF convergence criteria were
used. As shown by Neese et al.[39] the two fundamental ingredients for the anisotropy
relativistic calculations are spin-orbit (SOC) and spin-spin (SS) interactions and both
were taken into account for the calculations. SOC have been evaluated with UKS or-
bitals and with Van Wiillen et al’s[38] receipt for the pre-coefficients of integrals. The
SS contribution to D have been evaluated utilizing the unrestricted natural orbitals
(UNO) obtained from UKS orbitals as suggested by Sinnecker et al.[8I]. Magnetic
properties of SMMs are strictly related to geometries and even small variations of the
structural parameters could affect the computed final values. For this reason, X-ray
crystal structures were used for all calculations if not differently specified. All the
calculations have been carried out on a single molecule without any approximations
as, for instance, ligands truncation. All the Fe, molecules considered crystallize with
four or six molecules per unit cell and, except for Fe,Cs, Fe,Cy, and FesCy, the crystal
lattice owns only one crystallographically-independent molecule. For what concerns
Fe,Cs, FeyCy, and FeyCq, the crystallographically distinct molecules exhibit very sim-
ilar geometries and essentially differ only in the orientation of the alkyl chains. The

Heisenberg Hamiltonian chosen to describe the isotropic spin-spin interaction is:
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H =Ji(si-$3) + Ji'(s1-83) + Ji"(s1 - sa)+ (2.97)
Jo(S3 -S3 + S5 -S4+ 83 -84) .

To calculate the Js values[82], the energy of the high spin state has been calcu-
lated, S=10 (HS) and all the broken symmetry states (BSx, x =1-4) obtained by
all the possible single spin flips on the four iron ions. The system of linear equations
AE(HS-BSz) =2 Eij JijsisjAij (where \;; differs from zero only if, for the selected
BS, s; and s; have opposite sign) can then be used. The anisotropic part of the spin
Hamiltonian is chosen of the form H:Zili:fl s;-Dj- s'{+2?:17j¢i si - Djj - sj where each
ion and each couple contribution has been evaluated explicitly, without making any

symmetry assumptions.

For what concerns the postHF calculations they have been done with ORCA employ-
ing a def2-TZVP [78] basis set for magnetic elements and their first neighbors, while
def2-SVP basis set has been used for all the other atoms. The RI-J approximation
along with the def2-TZVP/J auxiliary basis set[79] for all the elements has been used.
Speaking in the ORCA notation, grids were set to 5 and VeryTightSCF. This set up
has been test in the context of CASSCF method with respect to calculations done
with the def2-TZVP basis set on every atomic kind and no significant differences have

been noted on the energy ladder of the excited states.
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The study of interactions between spins and their surrounding manifold of phonons is
a key problem in physics as it is related to a broad area of phenomena. For instance,
the spin phonon interaction is responsible for relaxation in magnetic materials and
moreover, due to the fermionic nature of electrons, spin phonon interaction deeply af-
fects charge and spin transport properties with consequences for (super)conductance
and spintronic phenomena. The importance of an exhaustive description of the spin
phonon interaction could be hardly overestimated and the addressing of fundamental
questions about the microscopic quantum origin of this mechanism is of broad interest.
For what concern SMMs, as their key properties arise from non equilibrium dynamics,
spin-phonon relaxation acts as the limiting factor to their range of applicability and

for this reason this interaction has been extensively studied in this context for almost

79
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twenty years, with the final goal to extend the SMMs operating temperature to the
ambient one. Generally, relaxation time of SMMs exhibits an Arrhenius like temper-
ature behavior 7 = moexp(Uess/kyT)|27] and therefore the effective spin-flip barrier
U.ss has been of central interest in order to enhance the magnetization life time 7.
Uess has been linked to the spin excited state energies and this connection has been
used as guideline to increase U f[83]. Although a lot of efforts have been done in or-
der to increase U.sy value, and remarkable results have been obtained following this
route[84], [85], several discrepancies between the expected barrier, obtained through
optical methods, and the effective one have been observed|[86H88], leading to severe
limitations about their properties engineering. Moreover, although hundreds kelvin
effective barriers have been reached through extensive molecular structure manipula-
tions and ligands design, relaxation time scales are still confined in the sub-ms regime
and only at low temperature. This effect is observed because responsible interactions
for high spin-flip barriers are the same that made the spin couples to the phonon bath
and therefore, the strategy to enhance Ucsy commonly leads to 79 reductions at the
same time. This situation clearly points out the need to extend current strategies to
significantly extend spin life-times and in order to accomplish such a result, a more
detailed theory is needed. So far, the formal theory describing spin-phonon coupling
in molecular crystals is the same firstly derived in the context of paramagnetic ionic
crystals by Orbach[89]. Clearly at the time a phenomenological approach was the
only possible route and the description of this dynamics in an ab initio fashion has
become feasible only in the last few years. In that framework, only the effect of acous-
tic phonon branches was considered and no details on the effective coupling strength
between normal modes and spin degrees of freedom was specified. However, although
all this approximation, the original theory of the first 60s has been at the center of
experiment interpretations up today with remarkable results. Clearly, various special-
ization of this theory to molecular system has been attempted over the years but the
phenomenological ground has never been left. For instance, also librational modes
have been addressed to explain spin relaxation in molecular magnets but the use of
the Debye phonon model in order to get rid of explicit phonon feature dependencies
has always been introduced[90]. Although these arguments have been used ever since
the firsts Orbach’s spin-phonon relaxation models, a clear proof of their validity has

never been provided.

In this chapter a review of the basic theory of the spin phonon coupling mechanism
will be provided making a fundamental step toward a realistic description of this
interaction. For the first time, the anharmonicity of normal modes and its temperature

dependence has been introduced into the theory lifting the too extreme harmonic
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approximation. A few simple models will be discussed in order to highlight differences
with the former theory and to introduce new predictable spin dynamics features.
Moreover, in section thanks to recent progresses in both electronic structure
theory and computing facilities, it will be discussed the ab initio evaluation of all the
spin-phonon coupling coefficients for the periodic cell of a prototypical mononuclear
transition metal based SMM, which has been used to put to test the new formal
theory in a realist playground. The realistic modeling of the complexity of both
the spin system and its vibrational environment, makes possible to unambiguously
reveal the dramatic effects of the phonon bath thermal fluctuations over the SMM
spin dynamics and their connection with the effective spin reversal barrier reduction
has been established. Finally, the possibility to calculate the spin phonon coupling
coeflicient for a real molecular system, for the first time, makes possible to access the
weight of specific modes to the global spin dynamics paving the ground for a rational

tailoring of molecular structural features in order to scale up spin life time.
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3.1 Spin-Environment Dynamics

The low energy lying part of SMM spectrum is generally composed by a manifold
of spin levels whose degeneracy is removed by relativistic interactions, therefore the
total hamiltonian of the spin system Hj is generally described as the sum of the
Born-Oppenheimer hamiltonian Hpo and the spin orbit coupling hamiltonian Hgoc
i.e. Hy = Hpo + Hsoc. The spin relaxation phenomena took place through the
modulation of the spin components of the wave function during molecular motion.
This coupling between spin and nuclear degrees of freedom open an energy exchange
path which makes the manifold of phonon modes to act as a thermal bath for the
spin system. Therefore, the bath hamiltonian could be expressed in terms of normal
modes ¢, occupation number operators 7, = al,a, and vibrational frequencies w,.
Assuming a weak coupling between phonon bath and spin degrees of freedom the

interaction hamiltonian H,_pp, could be modeled as

Hypn=Y (aHO)Oqa (3.1)

— \04a

Assuming a weak coupling between phonon bath and spin degrees of freedom H,_pp

can be modeled as

_ 0Hy 1 0%H,
Hgyp,p = ; (%)qu + 3 ; (anqz )quql... (3.2)

The dynamics of the spin and bath systems can be described by means of density
operator, whose equation of motion in the interaction picture reads:

PO 1), pt0) (3.3

From now on H ~ Hy,, and all the operator will be intended in the interaction picture

if not differently specified.
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3.2 First Order Spin-Phonon Coupling

As the interest is on dynamics of only spin degrees of freedom it is convenient to
define a reduced density operator taking trace over bath degrees of freedom: p,(t) =
trp(p(t)) After a formal integration of equation

dps - / ds trp[H(),[H(s), p(s)] (3.4)

Where trg[H(t), p(0)] = 0 has been assumed. The first term of already satisfy
this condition. If the second term is considered, it is still possible to define a new
ngh -
Equation is only formally independent by bath dynamics. In order to remove this

Hopn — Trp(Hspnp(0)) without any needs of changing the subsequent results.

dependence, it is useful to make the Born approximation: p(t) = ps(t)®pk. In virtue
of the supposed weak coupling between bath and spin degrees of freedom the Born
approximation assumes the bath to relax much faster than the spin system. Before
to explicitly write H also the Markov approximation should be done, in order to let
ps to be a dynamical semi-group. To do so, the substitution ¢ = ¢ — s should be done
and the t’ superior integration boundary should be bring to +oc:

0 _ / dt'tr [H(t), [H(t — ). pa(t) ® pp] (3.5)

Now let’s consider H = ) VoL, corresponding to the first term in equation as
Vo = g{;j and Lo = qo :

dpczt(t) - % OOO dt’ ] { (3.6)
[Va(OValt = #)ps(t) = Vaps(O)Valt — )] (3.7)
Trp(La(t)Lalt — )0 ) - (3.8)
[Valt = )0, (OValt) = po(®)Valt = )Va(D)] (3.9)
Trg (L (t—t’)La(t)p‘;?)} (3.10)

Taking the matrix elements of p4(t) in the eigenket basis of Hyla) = E,|a) is possible

to obtain:



84 CHAPTER 3. SPIN RELAXATION

W@Zi;(t):_% Omdtfgg{ (3.11)
VeVt =)o (t) = Ve Opiat)Vat - )] (3.12)
Trg(La(t)La(t t’)pgl)f (3.13)
[Virlt = 1)p2a()Vis (8) = phc(OVaa(t — )V (1)) (3.14)
Trg (La(t - t')La(t)pE?) } (3.15)

Now let’s explicit the time dependencies of spin degrees of freedom coming back to
the Scroedinger picture: Vi, (t) = (a|e?HotVe~iHot|p) = eiwarty/

dfgizf”:_hi? 0 dt’za:%:{ (3.16)
(VirViupi (tyeiectetsnatemonat’ gt (1)Vselenctetomteiont’ | (3.17)

Tra (La(t)La(t - t')pg) - (3.18)
Vasprat)Vieentetmteionct — gt (1)VgVgeienatenteioeat’] (3.19)

)

Trs (La(t ) La (t)p;ﬂ) } (3.20

Doing some algebra is possible to lead equation to a linear system of linear

differential equation:

Wflfzﬁ:_% 0 da;g{ (3.21)
{Vachdeb( )it ~iweat’ e ps (¢ )Vdﬁeiwacteiwdbte_wdbt/} (3.22)
Trg (La(t)LQ (t— t')pg) - (3.23)
[Vitpra(O)Viageroectetontem it — g2 ((VaVgetote et | (3.24)
Try (La(t — )L, (t)pgl) } (3.25)

Rearranging the first and the last term as:
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D Vv e ettt (3.26)
Z(devﬁ‘/;?ﬂcd t)einct et = Z [ZCdeV;:VZ? iwactemiwict ] g2 (1) = (3.27)

icd
ST Vg viget s ginete ot ot (3.28)

Z SV pi(tettem ot — (3.29)
Z‘Scanj Vispta(tyente it =% T[N 5o VigVise e 4t | p3y () = (3.30)
ijc cd J

Z Zécavdg jbezwaceiwdbteiiu)djt/]pzd(t) (331)

Then, taking the secular approximation: e*(“Wactwan)t — 1 equation becomes

dpay(t)
dt

= Rab,cdPea(t) (3.32)

Req = —% 3 { (3.33)

Z Oba Vi Vie / dt'e" it Trp (La (t)Lo(t — t’)pqu) (3.34)
J
—yays / dt' et Ty (La(t)La(t - t')pgf) (3.35)
0
_yeys / dtlefiwact’TrB<La(t—t’)La(t)p%q> (3.36)

+3 6. VgV /0 dt'e~at Trp (La(t - t’)La(t)pgﬂ)} (3.37)
J

Equilibrium Bath Correlation Function

The term fooo dt'e=wiit Ty (La(t)La (t—t') p%q) is the single phonon bath equilibrium
green function and it contains all the information on the bath dynamics, temperature

dependence included. Clearly, the form of this function rules the temperature behavior
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of the spin relaxation and for this reason its evaluation is of paramount importance.
This mathematical object is usually studied in perturbative way where the harmonic
approximation is used as the ground for the Dyson’s equation while anharmonic in-
teractions between phonon represent the perturbation acting on normal modes. The
presence of anharmonic interactions makes the life time of phonon finite and conse-
quently the bath spectral shape broadened. Clearly, the spectral shape of the bath
is a key ingredient in this relaxation theory and its features are expected to sensibly
affect the overall magnetization dynamics. In order to access this information about
the bath, the calculation of the anharmonic frequencies and phonon self energy would
be required[91]. Basically the formalism used so far for the spin-phonon interaction
should be recast for the phonon-phonon interaction. An alternative way to proceed
is offered by the Caldeira-Leggett model which solves the problem though a phat-
integral approach[92]. In the Caldeira-Leggett model the hamiltonian is composed by
a single harmonic oscillator interacting with a bath of harmonic oscillator through
a linear coupling, equivalently to the anharmonic hamiltonian previously discussed.
Consequently, the total set of anharmonic coupling parameters is required also in this
framework. Moreover, although the path integral solution makes possible to over-
come possible failure of perturbative green function series, it makes the results less
transparent and the connection between specific phonon-phonon interactions may be
lost.

In the context of this thesis I have decided to tackle this problem through a stochastic
approach, which has the advantage of not needing all the information about the single
phonon-phonon interactions. In this framework, the bath hamiltonian is considered
of the harmonic form Hy,, = Y hwa(fiq + 3) and all the anharmonic features are
included in a statistical way, according to the fact that the interaction of a modes with
its bath, (made by all the other modes) is the same interaction that drives it to the
thermal equilibrium described by the canonical distribution. If a phonon is considered
at thermal equilibrium its energy experiences fluctuations and consequently, a certain
H,, eigenstates would have finite life time. Clearly there is an equivalence between the
statistical picture and the mechanistic microscopic description of the phonon phonon-
bath system. In order to bridge the statistical description of the system and the
microscopic one, the phonon Hamiltonian is considered time dependent with a time

drH(T) .

propagator et lo The expression for the time dependent bath operators L

will be

L(t) — ei fgf dTHB(T)qe_i f()t dTHB(T) (338)
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Therefore
Trp (La(t)La(t — )pf) = (3.39)
Trg (ei Sy drHu(n) o =i fy drHy () i f o drHu () g i fy T drH T)pj;?) = (3.40)

Trp (ei fot drHy(T) (U‘L + aa)e*ifot d-er(-r)ei fotftl d-er(-r)(a]; +a ) —i fo ¢ drHy(T) qu>

(3.41)

The time dependence of Hpg is in the entity w, that can be expressed as wq(t) =
(wa) + dwa(t). According to the choice of pp(t) ~ p% it is natural to suppose that
the bath relaxes at equilibrium as its equilibrium fluctuations do, in a fluctuation-
dissipation theorem fashion. Therefore, the phonon’s energies will be considered ran-
domly fluctuating around the NVE (w,) frequencies with a gaussian distribution of
amplitude A = /(0E?) = \/(E?) — (E)? where all the mean values are taken at the
NVT equilibrium. As the time dependent part of the bath hamiltonian is not due to
its operator part [Hp(t), Hz(t')] = 0 and thus ' Jo I7H5 () = [T._, e2 () where
all the exponential commute. According to this, it is then possible to demonstrate
that

eiJo drHp(7) al e~iJo dTHB(T) _ i fy dTwa(T)aL (3.42

zfo dTHB(T) 72 fo drHp(T) _ efi fot dTwa(T)aa (343)
Equation then becomes

Try (( N O P I R P ) pB) (3.44)
Before to proceed it should be assumed that

TTB((ei fg dT‘“”(T)aLaa + €7i fot d‘rwa(‘r)aaa];)p%q) _

TrB(eifJ dm("(T),O%q)TrB@Laapg) +Trp (e‘iﬁ drwa(r) eq)TrB(aa Lp%q)
(3.45)

Finally, according to Kubo’s model[93, [94]
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Trg (ei J& walr) p%q) _ (efwal 5 Bwa(m)y Z gilwal (i fy Bwa(m)y — gitwalt Py
(3.46)

Expanding F(t’) as a cumulant expansion of averages and taking advantage of the

gaussian statistic of fluctuation

F(t)) :emp(— % /0 ’ /0 ' dT'dT“<5w(T')5w(T”)>) (3.47)

making the substitution 7 = 7/ — 7

F(t') = exp( - /0 ' dr(t — T)<5w(7)5w(0)>) (3.48)

assuming that the fluctuation correlation function decay as an exponential (dw(7)dw(0)) =
A2exp(—1/7.)

F(t) = ea:p( — A*r2(exp(—t)7.) +t)Te — 1)) (3.49)

According to the Born-Markov approximation the spin dynamics is in a regime where
t > 7., and therefore F(t) = exp(—A2%7.t). Choosing 7. according to the Heisenberg
principle: 7. = hAE~! = A~! and so F(t) = exp(—At).

In the end it is possible to define the phonon spectral shape according to the phonon

Green'’s function:

Gl o) = / et Triy (Lo ()Lt~ #)55) = (3.50)
OOO . !’ ! . ! ’
/ dt’ [e_’(“’”_““)t e~ AR, + e Wi twa)t o= Aat (e + 1)} = (3.51)
0
A, ) Aa

n 1 .02
AZ + (wij — wa)? T AZ T (wij +wa)? (e +1) (3.52)

Mo = efleaq is the phonon occupation number according to Bose Einstein statistics,

while

HH)  (hwa)2efn
A2 = é@> - Eeﬁhw)we_ A (3.53)
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Eq. [3353 shows the temperature dependence of the phonon spectra line width. At
low temperature A converges to zero asymptotically and a 1/ linear divergence is
observed for 8 — 0. About the same trend in temperature is experimentally observed
through the determinations of homogeneous contribution to the phonon line width[95}-
97]. Although Eq. qualitatively describes the correct observed behavior for
A, a few discrepancies between this model and experiments exist. First of all, the
experimental line width approaches a finite value different from 0 for 7" — 0. Moreover,
this model treat on the same footing every modes while experimentally the rapidity of
A divergence depends on the anharmonicity of the mode considered. However, given
its extreme simplicity, the model proposed represents an appealing way to introduce
anharmonic contribution in the bath green function without any further requirements

apart from harmonic modes calculation.

Master Equations

According to the last two sections the time evolution of the reduced density operator
for the spin system is :

dpsp(t) 1

dt h?

{Zdbdva]Vch Wje,Wa) — Vit Vi G(wap, wa) — Vit Vi G (Wea, wa)

+ 3 0eaVig Vi Glwiarwa) poialt) - (3:54)
J

where it was used [;° dt'e~™at Trg <La (t—t")La (t)p%?) = G(wji, wa)-

Let’s study the case of population transfer:

daa
pt = h2z

{Z(sacvava chawa) VieVea G(Weas wa) = Ve Vea G (Wea, Wa)

aj " jgc

+mem (wieswa) pic(t)  (3.55)



90 CHAPTER 3. SPIN RELAXATION

dpsa(t) 1

dt _ﬁ

{ ZVaVa wjaawa) Vacz‘/;?za(wcaawa) Vaoé‘/c?zG(wCa’wQ)

aj " ja

Zv;;v;; (@jaswa) poic(t)  (3.56)

dpa(:f = hQ Z{ Z ‘ | G wﬂmwa) + | ‘2G<wcaawa)}pic(t) (357)

Equation [3.57]is exactly the same result it would have been obtained if the derivation
would have started with the probability density coming from the second Fermi’s golden

rule, integrated over the bath degrees of freedom:

Py = Z P "\ (a0 Hapn [bB) 26 (wap + was) (3.58)

as a density matrix for master matrix approach to the time evolution of Hy’s eigen-
states. Equation [3.:57) could be used instead of the complete [3.54]if a the starting time

the system is expressed as a incoherent superposition of Hy eigenstates.

S=1/2 and S=1 Models
Pseudo S=1/2 with 1 mode

Let’s consider a spin system composed by a doublet of |0) and |1) whose energy
difference Fy — Ey = |d] ~ 0.

According to Eq. the population (py and p;) of the states dynamic is reproduced
by the system of linear differential equation:

d
Tt = kap1 — k1po

(3.59)

L — ypo — kopr

Solutions of the system [3.59 are:
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)

|0)

Figure 3.1: Energy level diagram for the one phonon model. Blue lines displays energy
differences, red lines represent population transfers due to a phonon absorption and
green lines represent population transfers due to a phonon emission. For graphical
reasons the energy differences are not proportional to their real value. See the text

for details.

(Po(0) = po(o0))e™*1F72) 4 po(o0)

po(t) 0
p1(c0)(1 — e (krth)t)

e (3.60)

Assuming the reference frame with the z component aligned along an external mag-
netic field, or equivalently with z oriented in order to reduce rhombic terms in the
spin hamiltonian, (0|M|0) ~ —(1|M|1) and thus

M (#) o ((po(0) = po(00) — p1(00))e™ 142! 4 py(00) + pi (o0) (3.61)

For such a kind of model the magnetization vector relax to its equilibrium value with

L 1
a relaxation time 7 = z—7-.

If hw > 0 ~ 0 and a finite line width for the bath green function is assumed, ky
and ko expressions are identical to a(2n(hw) + 1)G(J, iw). hw here stands for the
energy associated to the phonon mode with frequency w and « is the phonon assisted
transition probability between the two states. In this scenario the transition between
the two almost degenerate states is induced by the tail at ~ 0 of the Lorentzian

phonon spectra, as no other modes are included.

case 1: hw >> kT
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In this situation the population of the normal mode is approximately zero and there-
fore k1 = ko o« G(0,w). According to relation and introducing the definition of
A

A A o _phe
kl_kz_aAQ—i-(é—hw)QNaAQ—Fhw?Nﬂe (3.62)

and so the relaxation time follows an Arrhenius like temperature dependence

hw hw
BUcs To = — Uepsr = — (3.63)

T = Tpe
« 2

case 2: kT >> hw

In this case k1 ~ k2 o n(hw)G(d,w) and therefore:

1 A o o3 o 1
= = [ ——— ~ —— 1 - —
Fi = ks CePhe — 1 A2 + (0 —hw)?2 hw (ePhw —1)2 4 ePhw hw( 2,8hw)

(3.64)

In the limit for 8 — 0, 7 ~ %‘”(1 - %57@)))71 ~ %w(l + %6%)

Pseudo S=1 with 1 mode

Let’s now suppose there is an additional exited states |2) whose energy is higher than
|0> and |1> FEy>FE, ~FEyie Ey—FE ~FEy,—FEy=Xand E; — Ey =~ 0.

The kinetic equations for this kind of system are:

o — —kypo + kops — kapo + kapr
DL = —kspy + kspo — k1p1 + k1pe (3.65)

2 = —2kopo + kipo + kips

Assuming § — 0 the various kinetic constants are
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| kil ke k1|l ko
ks
0) _ L — 1)
k3

Figure 3.2: Energy level diagram for the one phonon model. The blue line display the
zero field splitting energy, red lines represent population transfers due to a phonon

absorption and green lines represent population transfers due to a phonon emission.

k1 = an(fiw)G(\, hw) (3.66)
ko = a(n(fw) + 1)G(=, hw) (3.67)
ks = a(2n(hw) + 1)G (6, hw) (3.68)

Assuming as before M, (t) = pp — p1, and thus subtracting the first and the second

equation of [3.65]

dl\f;(t) _ d<p0d; P _ (2 + k1) (po — p1) = —(2ks + k1) M. () (3.69)

In order to understand the nature of this relaxation it is necessary to obtain eigenvec-
tors and eigenvalues of the whole system [3.65] Instead of solving the system [3.65] it is
more instructive to split the problem between pure direct intra ground state doublet
population transfer and through excited state mechanism (Orbach mechanism) forc-
ing k1 =ko=0 and k3=0, respectively. In the k;=ko=0 case, a system equivalent to the
one already solved for the pseudo S=1/2 case is found and so the same solutions apply
here to describe the direct relaxation mechanism. The system with ks=0, describing
a pure Orbach relaxation mechanism, has two eigenvalues besides the null one: k; and
2ko + k1. The eigenvector corresponding to k; is the same as for the pseudo S=1/2

spin and it corresponds to a population transfer from 0 to 1 and vice versa:
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Do 1
D2 0

Interestingly, this process, which introduces the k; kinetic constant in the magneti-
zation decay profile, does not produce population on the excited states, contrary to
common belief, but involve a virtually instantaneous excitation and emission of the
system. It must be noted that even though the population of the excited state |2)
is not involved in this process, the presence of this state is indirectly accounted for
in the definition of the kinetic transfer rate constant k. The effect on the system
of the eigenvalue 2ks + ki is different from the former one and it corresponds to an

eigenvector of the form

Do 1/V6
m |=| 1/V6 (3.71)
D2 -2/V6

This kind of eigenvector does not produce relaxation but merely adjust the population

of the excited state to its equilibrium value and indeed it does not appear in the M(t)
rate equation [3.69]

Focusing on the sole through excited state mechanism, the transition rate is

o Bhw 1
k‘l = —e 2 e (372)
hw eBhw (>\(hf)2)2 (e,@hw _ 1)2

I{; = 76_T (3.73)

for all temperatures. However, in the low T regime, the general expression [3.72]imply

a relaxation time constant

2
TOrbach = @[6% + 7()\ — h(*}) e%ﬂhw

- T’ ] (3.74)

Expressions [3.62] and [3.73] corresponding to the direct and Orbach relaxation mech-

anism respectively, differ from those usually reported in literature[89, 08, [99]. The
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direct mechanism is here T dependent also in the Aw >> kT limit and it exhibits
an Arrhenius like behavior. Notably, the effective spin flip barrier for both relaxation
pathways is related to the half energy of the phonon. Although at a first sight it might
seems counter intuitive the independence of the U.¢f by A in the Orbach mechanism,
the spin splitting magnitude dependence is indirectly established. Indeed, in a most
realistic situation, where multiple phonons are available, the most efficient ones are
those near the resonant condition A ~ hw and consequently U(ef f) ~ A/2. However,
with the introduction of a finite life time the contemporary effect of more then one
mode might be observed and each out of resonance node would contribute to the final
magnetization rate expression according to the whole eq. [3.74] Finally it is impor-
tant to stress out that all the formulas displayed above become coincident with the
classical formulas available in literature if the anharmonicity of bath is neglected and

an infinite phonon life-time is assumed.

The introduction of fluctuations into relaxation theory has already been explored be-
fore in the context of the Ueys reduction[100, 101] but, in contrast to this treatment,
the line width broadening was phenomenologically applied to spin excited state en-
ergy levels instead to the bath vibrational levels. Although the former approach was
virtually able to explain small U.¢s reductions, it is not applicable to more recent
dramatic barrier reductions, which would imply astronomically big excited states line

width, in clear contrast to optical measurements.

Pseudo S=1 with Continuum Phonon DOSs

The discussion of the single phonon models clearly points out the importance of the
phonon spectra features over the spin dynamics. Indeed, even for single mode models,
different behaviors of the In(7) v.s 1/T plot, with respect to the expected ones, could
be derived once the temperature dependence of the phonon spectra line width is
considered. Clearly, in this framework also the form of the phonon density of states is
expected to play an important role. In order to investigate this further dependency,
the S=1 model has been studied also once embedded in a pseudo continuum phonon
density of states. This analysis has been done numerically by the integration of eq.
for 200 normal modes homogeneously spaced between 1 cm™! and 200 cm™!.
The spin hamiltonian has been assumed to contain only the O3 term and moreover,
in order to study only the more relevant Orbach relaxation mechanism, the only spin
hamiltonian derivatives different from zero has been assumed to be O%, in order to
completely quench the direct relaxation mechanism. The spin dynamics has been
investigated in the 4 K < T < 120 K range. Results of simulations for different O?
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values have been reported in fig. [3.3] The various lines all show a similar non linear
behavior in the explored temperature range, however, for small barrier energies, the
curvature is sensibly reduced and a linear behavior with a slope corresponding to the
excited state energy is recovered. Interestingly, the slope of the pseudo linear behavior
at high temperature (1/T<0.05) for big OF is about the same value of the excited
state energy. Fig. [34] reports an increment of the high T region of the plot. The
linear regression results (lines), superimposed over the simulated ones (points), predict
effective barriers in good accord with the expected ones. These date, are in nice accord
with experimental observations which commonly show Arrhenius behaviors for non
strongly anisotropic compounds while big discrepancies appears in compounds with
big zero field splitting.

7 -1
U=6.21cm™—
U=12.34 cm1-
61 u=18.46 cm
U=24.60 cm™1—
5| U=368cm?
i&/ 4
=
= 3
2
1
0
0 0.05 0.1 0.15 0.2 0.25

1T (K)

Figure 3.3: Temperature trend of relaxation times of a S=1 spin embedded in con-
tinuum of normal modes. The key reports the expected barrier i.e. the energy of the
excited state.

Accordingly with the former theory, if a very narrow function e.g. a Gaussian function
with 1 cm™! of width at half height, is used instead of a Lorentzian function with A
width, the same plot changes. Fig. [3.5]shows that the linear Arrhenius like behavior at
low T, as predicted by Orbach’s theory, is recovered if a the phonon energy fluctuations
are small enough in order for the spin transition to be efficiently selected. Indeed,
the slope of all the lines reported in fig. in the range 0.01 < 1/T < 0.25 is with
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26| Ue=10.80 cm™—
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2.2 | yeg=32.27 cm'L

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
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Figure 3.4: Linear fitting of the temperature trend of relaxation times of a S=1 spin
embedded in continuum of normal modes in the high T regime. The key reports the

effective barrier i.e. the slope of the reported fitted lines.

good approximation the same value of the excited state energy. Finally, it worth a
comment the effect of neglecting the temperature dependence of phonon life time. i.e.
a Lorentzian line shape of phonon spectra is assumed. Fig. [3.6] reports the results
for these simulations where the Lorentzian line shape of phonons is assumed constant
and equal to 0.01 cm™!. The plots behavior appeared to be a mix between the two
limiting cases just discussed. For small O? value the dynamics resembles the one
deduced by selecting only a single phonon, while moving to higher energy excited
states, features of the dynamics with a temperature dependent phonon line width are
recovered. These last simulations clearly show that the phonon density of states is
another key element for the rationalization of the spin dynamics and even without
considering its temperature dependence, a significant different behavior, from the one

expected for a totally harmonic crystal theory, is observed.
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Figure 3.5: Temperature trend of relaxation times of a S=1 spin embedded in contin-
uum of normal modes when a Gaussian function with 1 cm™! of width at half height

is used as phonon life time.
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Figure 3.6: Temperature trend of relaxation times of a S=1 spin embedded in contin-
uum of normal modes.
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Conclusions

In this section the theoretical ground for the discussion of the spin phonon coupling
mechanism has been developed through the specialization of the Redfiled equation for
this interaction. A fundamental step forward, with respect to current theories, has
been done introducing a more detailed description of the phonons green function. The
anharmonic terms and the subsequent finite phonon life-time an have been introduced
into the theory within a stochastic approach as the computational overhead for a
detailed ab-initio computation of a molecular crystal green function is still far beyond
the reach of modern hardware. On the contrary, the stochastic approach proposed
here, although not quantitative, makes possible to get an estimation of phonons life-
time with a simple analytical expression without any need of powerful computational
resources. Another advantage of the presented set of equations is their generality
with respect to the nature of the phonon that the spin is interacting with. Indeed,
no assumptions have been made so far in order to let the theory be adaptable to a
general ab initio treatment of phonons. The full set of density matrix equations of
motion has been used to study a few simple models in order to extract some handily
information on the spin dynamics. The analytic solutions for a pseudo S=1/2 and
pseudo S=1, interacting with a single phonon, show the dramatic contribution of the
temperature dependence of the phonon line width. In this framework both direct and
Orbach relaxation mechanisms show a different temperature dependence with respect
to the former Orbach’s theory pointing out the importance of phonons features on the
spin dynamics. The introduction of finite phonons life-time also switch on the effect
of phonon density of states on the spin dynamics. Indeed, as demonstrated by the
numerical analysis of a pseudo S=1 in a continuum of phonons, the spin dynamics
could be driven by multiple phonons at the same time resulting in non Arrhenius like
In(7)v.s.1/T plots. Notably, an Arrhenius behavior with an effective spin-flip barrier
of the same value of the excited state could be recover in two distinct situation: in the
low T - low barrier and high T - high barrier regimes. All these foundings, although
qualitative in nature, are in remarkable accord with a lot of experimental data showing
the same trend in the two region of the barrier-T space and points out the need to
consider the explicit phonon structure in order to correctly interpret experimental
analysis. Specifically, an Arrhenius trend should not necessarily be expected and the
slope of the In(7)v.s.1/T plots might strongly depends on the temperature region the
experiments is conducted. This partial loss of the U.rs meaning also point out the
need to focus on other parameters as rule of thumb to increase SMMs quality.
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3.3 First Order Spin-Spin Relaxation

Although spin-phonon interactions are the leading one at high temperature, usually
under a few K the SMM relaxation is usually driven by spin-spin interactions. The
source of these interactions lies both in presence of other SMMs in the crystal and in
the presence of nuclear spins. In order to study this relaxation pathway eq. and
could still be used as long as the interaction hamiltonian is replaced with the
Zeeman interaction Hys =S - g - B, 77(t). Differently from the spin-phonon situation
where the nuclear dynamics was assumed faster than the spin one and thus integrated
out of the equations of motion, here is not clearly possible to follow this route as
]:3;e #£(t) is, at least in part, originated by the same spin which are evolving in time.
The effective magnetic field felt by each spin is generated by the magnetic vector of all
the other molecules inside the crystal. In a good approximation this can be calculated

as sum of point dipole contributions

B, (t) = Z _Moiffgs (31_:(1_:7;5<Si>) _ <§;>) (3.75)

—

where the sum is extended to the whole periodic crystal molecules and (S;) is the
time dependent part of it as the expectation value is calculated over an evolving
wavefunction. It must here be noted that in principle there is another time dependent
part in this expression coming from the dependence on the molecule inter distance
coordinate r. Accordingly to the point like dipole approximation only acoustic nuclear
displacements are able to module such interaction. Clearly, this is a simplification
of much more involved situation where also libration and optical modes act as a
perturbation on both absolute value and orientation of <§,) At very low temperature,
when the only acoustic populated states are those near the I' point, the effect of nuclear
displacements could be neglected and no temperature effect is provided by phonons.
In this regime Eq. could be numerically integrated with time steps small enough
to consider B, 77(t) constant in that lapse of time. In this scenario the magnetic field
generated by all the other SMMs in the crystal act as a static perturbation and thus
introduces a transition probability only between degenerate levels. In conclusion, the

master equations defining the i-spin dynamics are

Piall) _ 2L S 1y Polege) + Vael8ea) b0 (3.76)

J
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where V. = *gs<a|]§eff : <§Z)|c>

This kind of relaxation pathway is usually called quantum tunneling relaxation mech-
anism because of its similarity with the tunneling effect of particles through potential
barriers. However, the connection between the two effects is only virtual as proper
tunneling is not an irreversible process as the one discussed in this section. Indeed,
proper quantum tunneling has its origin in the oscillation of the phase component of
a wave function which is not a system eigenstate, while spin-spin relaxation acts inde-
pendently from the wave function of the system, as it is originated by the open-system

nature of the molecule embedded in a spin bath.
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3.4 Spin Hamiltonian Connection

The theory just outlined is expressed as function of hamiltonian derivatives. Although
they could be evaluated by means of analytic derivatives machinery, an expression as
function of a few parameters would be much more convenient. Moreover, in order to
obtain more physical insights on the various contribution to the relaxation, a clear
connection to the spin hamiltonian formalism would be desirable. Considering the sys-
tem described by an effective Spin Hamiltonian H, =}, BigOrq(8)[25], Hy matrix
element derivatives could be evaluated as follows:

0" H,
S(s Ms\70|5 M) Za SMS|HO|SMS> (3.77)
2.7
o " qu A — /
> Sar o (M| Hopin| SM) = ZZ Sa g, SMsl0w@ISMs)  (3.78)
i

Deriving it has been took advantage of the non dependency of spin wave function
with respect to bath normal modes (% = 0) and of the spin hamiltonian definition
(SMg|Ho|SMg) = (SMg|Hg|SMg). At the best of my knowledge, this is the first
time that a connection between general theory of spin-phonon relaxation and spin
hamiltonian formalism has been reported. These relations also suggest a practical way
to evaluate the spin phonon coupling coefficients on the basis of electronic structure
calculations presented on the last chapter, indeed once normal mode displacements of
the systems are known, it is easily possible to numerically derive the spin hamiltonian

parameters.
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3.5 Fe(Il)tpal”* SMM

Spin dynamics has been carried out for the anion Fe(tpa?) SMM[102] (structure and
magnetization easy axis are reported in fig. , where tpa”” = tris(pyrrolyl-phenyl-
methyl)amine is the ligand of the S=2 high spin Fe*? ion. The trigonal pyramidal
coordination geometry of the amine ligands around the Fe™? center makes the first
excited S=2 state almost degenerate with the ground state. This situation makes
the spin orbit coupling interaction especially effective to split the degeneracy of S=2
ground state multiplet, producing a remarkable easy axis zero field splitting with D=-
27.5 cm~! with an almost vanishing rhombicity. Fe(tpa’?) crystallizes in a P; space
symmetry group with a primitive cell that comprehends two SMMs units and two
co-precipitate Na ion coordinated by three dimethoxyethane solvent molecules each,
for a total of 228 atoms. The Fe(tpal®) structure has been optimized both for the
isolated molecules and for the periodic unit cell in the gamma point approximation.
The structures produced by the two optimization schemes are very similar, accordingly
with the high stiffness of the ligands cage. Normal modes and harmonic frequencies
have been calculated for both the isolated and periodic structure. From now on this

two models will be denoted as Isol Model and Bulk Model, respectively.

Phonon density of states (DOSs) for both Isol Model and Bulk Model are displayed in
Fig. Major differences between the two models are evident, especially in the low
energy part of the DOSs. The latter difference clearly comes from the appearance of
lattice vibrations. Interestingly, the Isol Model shows a non zero density of states at
very low energy values. Further differences come from the presence in the periodic cell
of co-precipitate molecules which clearly contribute to the global DOS, see for instance
the appearance of DOSs at about 3000 cmm~!. Moreover, intermolecular interactions

are expected to introduce further modulation on the DOSs shape.

CASSCF calculations have been done in order to determine Fe(tpa’”) ZFS. All mag-
netic property calculations have been done on a single isolated molecule as periodic
boundary condition are not implemented for correlated calculations. For instance, for
the Bulk Model only one of the two Fe(tpa’”) molecules in the primitive cell has been
characterized but this does not represent a problem as they are symmetry reported
inside the crystal. However, the elimination of the explicit surrounding of the SMM
during the anisotropy calculation poses a serious limitation to the model as the crystal
is made of charged molecules. Despite dipole and polarizability long range effects due
to the packing are usually neglected during these kind of calculations, reports about

the importance of stark effects on the magnetic structure of SMMs exist[103].
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Figure 3.7: (tpa’")Fe optimized structure. Iron ion is shown in pink, nitrogen atoms
in blue, carbon atoms in green and hydrogen atoms in white. The red arrow displays

the easy axis magnetization direction.

For this reason, a point charge modeling of the charge density of the periodic crystal
has been attempted. Various point charge methods have been tested: Mulliken, den-
sity derived point charges (DDAPC)[I04], RESP[105] and CHELPG[I06]. The first
two methods rely on the projection of the DFT electronic structure on atomic local-
ized functions, while the last two are based on a fitting of the electrostatic potential
outside the vdW volume of the molecule coming from the DFT charge distribution.
Although all these parametrization schemes give similar results, final CASSCF calcu-
lations have been done with RESP point charges as this procedure is the one usually
employed for force field development and thus much more tested and robust. Fig.
[3:9] shows preliminary results about the stark effect on ZFS coming from charged
co-precipitate molecules. Results coming from the introduction in the CASSCF simu-
lation cell of the nearest co-precipitate molecule (red bars) show the dramatic impact
of the stark effect on both the ZFS and its derivatives, the last one calculated along a
low energy internal vibrational mode. The substitution of the explicit co-precipitate
molecule with its fitted RESP point charges reproduces very nicely the latter results.
It also must be stressed that the explicit molecule model is not necessarily the most

accurate one, indeed the co-precipitate charged molecules is treated at the HF level of
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Figure 3.8: Phonon density of states. A gaussian broadening of 10 cm™! has been

applied to all the modes.
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Figure 3.9: Stark effect on D and its derivatives along an internal displacement.
Data are expressed as percentage difference with respect to the isolated molecule
results. Red bars show results for the calculation that includes the explicit nearest
co-precipitate cation molecule. Blue bars show the results for the same model after
the quenching of the co-precipitate charge through the removing of the Na*t! ion.
Green bars show the results for the model with RESP point charges in place of the

co-precipitate molecule.
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theory which is known to overestimated both dipole moment and polarizability.[107]
Accordingly, DFT GGA fitted RESP point charges predict a smaller stark effect. Cal-
culation with the explicit co-precipitate molecule without the sodium ion have also
been done. The quenching of the net charge shows that dipole and polarizability
effects have only a small impact on the magnetism of the SMM. In order to complete
this analysis, it is interesting to compare the D tensor derivatives displayed on fig.
with those obtained by reciprocal translation of the two molecule. Both longi-
tudinal and transverse movements produce spin-phonon coupling coefficients at least
one order of magnitude smaller than those produced by the internal coordinates used
to test point charge models, suggesting an intrinsic poor effect of acoustic phonons
on relaxation. Clearly this is only a preliminary result and a more systematic study
is needed. In order to mimic the periodic surrounding, the single explicit SMM has
been embedded in a 21X21X21 lattice of point charges. The model that includes the
point charge correction will be called Bulk PC' Model. This model shares the same
structure and phonon structure of the Bulk Model. Table 3] reports the calculated

anisotropy parameters for all the models equilibrium structures.

Table 3.1: Calculated Fe(tpa’®) Models Anisotropy

Model Exp X-ray Isol Bulk Bulk-PC
Dem™?! -27.5 -27.54 -33.75 -30.74 -31.01
E/D 0.08 0.03 0.01 0.05 0.06

The D axial anisotropy constant calculated retaining the X-ray structure (X-ray
model), without any optimization, is found very close to the experimental one demon-
strating the ability of CASSCF to handle this problem, as also previously noted by
Atanasov et al.JI08]. Looking at the various models it is possible to observe a small
deviation from the X-ray value. Bulk Model is the one which better reproduces the
experimental value, accordingly with the higher level of environment quality. Interest-
ingly, the effect of point charge correction is almost negligible. Although preliminary
calculations predict an important effect of an externally applied electrostatic field on
anisotropy, here the local filed is everywhere zero due to the crystal symmetry and
thus ineffective.

Although the calculated axial anisotropy parameters are in nice accord with the ex-

perimental value, the reproduction of the whole ground state S=2 multiplet spectrum
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is poor. Indeed, energy levels of the second pseudo doublet are overestimated of about
15 cm~! with respect to the calculated ones while the energy of the highest energy
spin level is underestimated of about the same quantity. The breaking down of the fit
quality on a spin hamiltonian containing only the second order Stevens term is in line
with the high anisotropy of the molecules. Indeed, the big ZF'S observed for this SMM
originates from the presence of two almost degenerate electronic energy levels with
the same spin multiplicity, which mix to create the S=2 ground state spin multiplet
once the SOC is turned on. As discussed in the chapter [2| this is the situation when
the spin hamiltonian formalism itself is expected to fail. However as the ground state
multiplet does not suffer from S-mixing effects the quality of its description could be
raised employing higher order terms in the spin hamiltonian. Indeed, tests on this
direction showed an increased quality of the CASSCF spin levels when fourth order
terms are added to the spin hamiltonian. However, the introduction of these terms
does not change the results discussed in the next sections, except for an overall speed
up of the relaxation process thanks to new spin-phonon coupling terms. For this rea-
son all the discussion on the spin dynamics will be done over the data obtained with

a spin hamiltonian Hy, =), ; Dijsis; without any loss of generality.

Magnetization Dynamics

Magnetization dynamics driven by spin-phonon interactions can be studied solving
eq. [3:32] In order to reproduce a relaxation experiment the starting density matrix
could be chosen accordingly to a pure state representing or not an eigenket of the
spin hamiltonian. Fig. display the dynamics of the magnetization component
parallel to the external B field at 5 K, where the density matrix is initialized as pure
maximally polarized S, eigenket and as the pure lowest energy lying H, eigenket,

respectively.

Clearly in the latter situation coherences are zero at all times and a well defined
exponential decay is observed. In the former situation the exponential decay is su-
perimposed to an oscillating function arising from the phase dynamics. This fast (>
THz) wave function oscillations are the analog of a particle through barrier tunneling
effect. Indeed, if a generic quantum system is not initialized as an eigenstate, it will
oscillate coherently between its eigenstates or part of them, and this is exactly what
happens to the spin system as long as it is not interacting with any bath. Clearly this
effect is not by itself a relaxation mechanism as the phase state oscillating dynamics

is not damped. Only as soon as the bath interaction is switched on, every density
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Figure 3.10: Temperature Dependence of Relaxation Time at 5 K. Red line corre-
sponds to the dynamics of an Hy eigenstate, while the blue one corresponds to the

dynamics of an S, eigenstate.

matrix element will start decaying. This effect must not be confused with the so
called quantum tunneling relazation, which will be discussed later in the context of
spin-spin interactions. Even though the starting magnetization is different in the two
cases, the exponential decay characteristic time is the same. This is simply because
the nature of the equilibrium driving force is unchanged in the two experiments and
the population decaying part of the equation remains the same. For this reasons, in
the next sections, all the calculations concerning T; will be done utilizing the master
matrix equation [3.57] without any loss of generality. A final comment on the possibil-
ity to access the global dephasing time T is here needed. Apart from inhomogeneous
contributions, transverse relaxation time is due both to pure population decay (T;)

ad pure dephasing (T%):

1 1 1

The pure dephasing relaxation time T arises from the asynchronous SMM relaxations
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inside the crystal and thus, in order to compute it, the dynamics of both spin and nu-
clei of all the SMMs inside the crystal is required. Eq. has been obtained through
the trace over all the bath degrees of freedom and for this reason all the information
about the explicit nuclear dynamics is lost. Indeed, all the three cartesian components
of the magnetization vector relax according to the same exponential function and the

oscillatory part of it persist as long as there is population, i.e. T5 = 0.

The inclusion of the spin-spin relaxation pathways through egs. [3.76| necessarily needs
the inclusion of more than one molecule inside the simulation cell. In order to do so,
the Fe(tpa”®) unit cell, containing two molecules, has been reproduced along the three
Bravais lattice vectors 5 times each for a total of 250 molecule in the simulation cell.
The B. #£(t) has then been calculated over these ensemble of spins within the point
dipolar approximation and exploiting periodic boundary condition along all the three
space directions in order to mimic the infinite crystal cell. B, 77 (t) is updated every
spin dynamics step, which has been chosen in order to resolve smooth variation of the
effective field. For this simulation the Dirac’s delta appearing in eq. has been
chosen as a Lorentzian function with 0.0001 cm~! broadening. The magnetization
dynamics obtained from a simulation at 2 K with only this interaction would produce
a M (t) decay as showed by the red line in fig.

the decaying profile could be fitted with a double exponential function (see blue and
green line in fig. . This decay form arises from the presence of two different phase
of the relaxation: at the beginning, the whole sample is polarized in the same direction
(all the molecules have been initialized in their lowest energy H spin eigenstate) the
relaxation is faster with respect to the last phase of the dynamics when the sample has
almost completely lost its magnetization and the local magnetic field felt by the spins is
almost zero. However, in perfect agreement with former simulation and experimental
observations|[I09, [I10], the two exponential decay could be also fitted with a stretched

exponential

M#)=(M{t=0)—M(t= oo))exp(—(%)”) + M(t = 0) (3.80)

This peculiar form of decaying profile is equivalent to a double exponential decay for
v < 1 (v would have been 0.37 in the previous plot). The stretched exponential makes
possible to extract a single relaxation time constant 7 which can be monitored through
temperature modulations as for the spin-phonon decay but, as the spin-spin dynam-
ics has been introduced as a temperature independent effect, the spin-spin 7 constant

would produce a straight line in the n(7)v.s.1/T plots. Moreover, as the effective
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Figure 3.11: The red line reports the simulated behavior of M in time. The blue and

green lines stands for the two exponential whose sum perfectly fits the M decay.

line width associated with the energy conservation condition in [3.76] has not been ad-
dressed, this remain an adjustable parameter which deeply affects the value of 7 and
for this reason no further discussion of the spin-spin dynamics will be provided in the
next, leaving it for further studies. However, even at this stage an important infor-
mation could be provided by this simulation. When both spin-spin and spin-phonon
channel are potentially operative, the most efficient one is selected by the temperature
and at low T the spin-spin pathway becomes dominant. Interestingly the region on
transition is confined in few K and at higher temperature the parameter v becomes
one and exactly the same dynamics provided by the solely spin-phonon mechanism is
recovered. On the contrary, only from a few K under the transition temperature the
spin-spin relaxation becomes the only active relaxation mechanism and - approaches
~ 0.4. These data lead to the very important conclusion that spin-spin dynamics,
which involves only the ground state doublet due to the severe energy conservation
condition, does not affect the thermally activated relaxation regime. Consequently,
the so called tunneling of the magnetization could not be used as argument to explain

the reduction of the effective barrier.
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Temperature Dependence

Fig. [3.12] (red dots) shows the results for the magnetization dynamics simulation at
various temperature for the (tpaf”)Fe crystal. The In(7) v.s. 1/T plot shows a linear
behavior in the low temperature region with 1/T>0.2, a second linear behavior, but
with different slope, is observed in the range 0.1<1/T<0.2 and finally a deviation
from a linear trend is observed for small values of 1/T. The two linear behavior slopes
correspond to U.rr = 19.7 em™! for the low T regime and U.s¢ = 55.7 em™! for the
intermediate T regime. Experimental date are available only up to 0.2 K~! and report

an effective barrier value of 25 em ™!

, in good agreement with the present founding.
For instance, both values are in net disagreement with the first spin excited state

energy value, calculated at ~94 cm ™! from the ground state.
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Figure 3.12: Temperature Dependence of Relaxation Time for Selected Modes

In order to individuate the nature of the relaxation mechanism at different temper-
atures, the same simulation has been done retaining only the effect of the almost
degenerate ground doublet states in one case and totally neglecting it in a second
case. In the former case, the direct mechanism is selected and the green line in fig.
[3:12) represent its behavior. On the opposite, in the latter situation only the Orbach
mechanism is retained and reported in fig. with the blue line. The two different
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pathways have been schematically reported in fig. [3.13]
E (em™1)
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Figure 3.13: Horizontal black lines show the energy ladder of the five spin states.
The S, expectation values are calculated for the molecule orientated with its easy
axis along the external magnetic field. The first four states are only slightly non
degenerate (~ 0.5+ 1 em™!) and their energy difference could not be appreciated
from the figure. The green arrow represents the direct relaxation pathway and the

blue arrows represent the Orbach relaxation mechanism.

The two linear regimes have been found generated by these two distinct mechanisms,
with the direct one active at small temperature and the Orbach one active from 0.2
K~! on. Interestingly, up to 0.1 K~! the dynamics is driven by only the first few low
energy lying normal modes and the observed slopes are in remarkable agreement with
what expected by the S=1 model proposed in the previous section. Indeed, the lowest
energy phonon has a frequency of ~ 36ecm ™! and it generates a pseudo Arrhenius
behavior with Ues; = 36/2 = 18cm ™! for the direct mechanism and a pseudo Arrhe-
nius behavior with Urs = 3% 36/2 = 54cm ™! for the Orbach mechanism. It should
be noted from eq. that the Orbach mechanism induced by an out of resonance
mode contributes to the effective barrier with %fw, differently from a resonance mode
which contributes with %hw The effect of multiple phonons becomes active only at
higher temperature where a drift form the Arrhenius law is observed. Fig. high-
lights this scenario showing explicitly the contribution of different number of modes,

counting from the lowest energy one, in the high T part of the former plot.

The experimental AC measurement results are reported in fig. [3.12) as well. The evi-

dence of the relaxation time scale agreement between simulated and experimental one
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Figure 3.14: Temperature Dependence of Relaxation Time for Selected Modes

is a remarkable results, especially considering the huge number of ab initio calculations
needed to produce these results. Moreover, although the simulated time scales are
slightly longer (about a factor of 10 of difference between calculated and experimental
7 at 5 K), this difference is expected to further reduce with the introduction of other
relaxation pathways as those provided by second order relaxation processes or those
provided by the inclusion of higher order spin hamiltonian parameters in both the
spin hamiltonian and the spin-phonon coupling hamiltonian. For what concerns the
comparison between calculated and experimental U,y is important to note that the
experiments were conducted without a diamagnetic dilution of the SMM crystal and
therefore at low T a pseudo plateau is expected in virtue of the overcoming spin-spin
dipolar relaxation pathways and, for this reason, it is not possible to unambiguously
compare the low T simulation with the available experiments. At T higher than ~
0.25 K~ a more pronounced In(7) temperature dependence is observed, signaling
the overcoming of spin-phonon processes. The authors provided an Ugf¢ ~ 26 cm™!
obtained fitting the Arrhenius law over the last three points available in this temper-
ature region. In the original work of Harman et al. [I02], the relaxation at higher T,

with respect to those obtained in the AC measurements, are obtained by means of
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Mossbauer experiments. The authors report the presence of two relaxation regimes
for T < 30 K, one in agreement with the AC fit of ~ 26 cm~! and the other one
in agreement with the expected full barrier provided by the first excited spin state.
Besides the difficulties related to a direct comparison of experimental and simulated
data it is however possible to point out a qualitative agreement between the two.
Indeed, both set of data show a small and comparable U.sy Arrhenius behavior at
low T with a progressive recovering of a big Uy close to the first spin excited state

energy for high T.

As discussed previously, although its extreme simplicity, the model proposed to eval-
uate the energy fluctuations is able to account for the major features of the phonon
homogeneous line width. However, the specific temperature dependence of A for
each normal modes is related to the anharmonic nature of the mode itself. There-
fore, discrepancies between experimental and the calculated U.ss trend are expected.
However, at the same time, the dependence of the slope on the specific properties
of phonons elucidates the presence of many different behavior reported in literature.
The inclusion of the explicit bath dynamics in the ab initio protocol would require the
calculation of the phonon self energies through the evaluation of high order derivatives
of the molecular potential with respect to normal mode displacements. These kinds

of calculations are quite expensive and at present beyond the scope of this thesis.

Despite the complex dependence over the system details does not make possible to
easily predict the value of the effective barrier, a few main guidelines to increase U,y ¢
may be provided by this analysis. The direct process is slowed down both increas-
ing the lowest phonon frequency and reducing the spin-phonon coupling coefficients.
While the former strategy might be an hard nut to crack, the second one is readily
accomplished with the usual quantum tunneling reduction methods such as employing
highly axial symmetry Kramer-ions. Although the Orbach mechanism is expected to
be slower than the direct one in virtue of its higher U.yy, it is always the faster one
at high temperature, as also observed for the molecule under exam. The reason is
that in the pseudo Arrhenius regimes, its pre-exponential coefficient (see eq. and
eq. [3.74)) is always smaller than the one of the direct relaxation mechanism because
both depending on the value of the phonon frequency inducing the relaxation. Clearly
the phonons most effective for an Orbach process are those near the resonance with
the excited states and therefore those modes with a higher frequency with respect
to those inducing the direct mechanism, which are the low energy ones. Therefore,
although U.ss increases passing from direct to Orbach mechanism, the intercept of

the Arrhenius plot is sensibly reduced with a resulting effect of fastening the Orbach



3.5. FE(II)TPATH SMM 115

dynamics at high T instead of slowing it down with respect to the direct mechanism.
The same argument applies to different and competitive Orbach mechanism involving
different excited states. Indeed, an Orbach relaxation pathway through an higher
energy excited states would involve the dynamics of higher energy phonons result-
ing in higher U.s; but also higher 7y at the same time. Indeed, if a continuum like
phonon spectra is available, 79 of each mode increases as fiw does and the sum of all
the contribution would resemble the curvilinear trend observed for the S=1 model
in the previous section. This effect points out that an increase of the excited state
energy would imply an increasing of 7y at the same time of U.f; and since these two
parameters have opposite effects the final magnetization relaxation rate is not slowed
down as expected by the solely increase of U.ss. Although tricky to exploit, a possi-
ble strategy to quench the Orbach mechanism is to modulate the spin excited state
energy value in order to obtain a non resonant condition with the phonon spectrum.
However, as already discussed, more attention on other parameters besides Uesy (7o

among all) is mandatory in order to produce significant spin life-time extensions.

Internal-External Displacement Contribution

According to the discussion above, the most effective way to quench spin-phonon relax-
ation might be to selectively engineer the spin-phonon coupling coefficients. However,
in order to do so, it is first necessary to understand the nature of the modes that cou-
ple with the spin. Nuclear displacements for molecular systems could be divided into
two main classes: External and Internal displacements. In the first case the displace-
ments are called acoustic and libration and correspond to translations and rotations
of the rigid molecules inside the electrostatic potential generated by the crystalline
surrounding. Instead, internal displacements are those who generate optical branches
of phonons and correspond to internal vibrations of molecules. Figure [3.15] reports

the ration between the cartesian norm of total and internal cartesian displacements

VAXZ /\/AX2,,, for each crystal’s normal mode, as function of frequency. As ex-
pected, external displacements are much more localized on low frequency modes due
to the big inertia of such movements, however, there is not a clear separation between
acoustic, librational and optical branches which are always mixed together. This is
mostly due to the existence of very low energy internal vibrations such as those that
involve heavy elements displacements.

Considering a spin hamiltonian such as Hg = Zij D;;s;isj, each mode contributes to

the coupling between states a and b through:
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Figure 3.15: Contribution of External Displacements to Crystal Normal Modes
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Considering only the part of eq. [3.:81] which does not depend on temperature, there are
5 independent elements for each mode (0D;;/0q) plus the dependence on the nature
of the matrix elements on the wave function composition. Moreover, if an external
field is applied, the elements (a|s;s;|b) would also depend on the orientation in space
of the system. In order to let the dependence of the spin phonon coupling intensity
on the phonon’s nature to become more evident it is convenient to first convert the D
cartesian tensor derivatives (shortly 4D in the next), appearing in expression into
the corresponding spherical tensors of second order Hy,p, = Y7 q 60X 36T,12(§) and then
to study its norm behavior (see for the definition). Fig. shows the frequency
dependence of the spin phonon coupling coefficients. Nicely, an homogeneous behavior
is not observed and there are two spectral region where a more pronounced phonons

effect is evident: around 400 cm~! and 1300 cm~!.

In order to split the effect of
internal and external modes to the total[3.16]behavior, cartesian displacements coming
from calculated normal modes have been projected into rotational translational and
internal displacements|[ITI]. All the D tensor derivatives have been calculated for two

new model: Bulk PC Proj Int and Bulk PC Proj Rot, containing only internal and
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rotational displacements respectively.
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Figure 3.16: Contribution of External Displacements to the spin phonon coupling
coefficients

The difference between [0D| norm for Bulk PC and Bulk PC Proj Int models is really
small as shown by the ration between |6D;| and |§Dyot| (see Fig. [3.17). The very
first few modes are those which report the biggest difference, which reach a factor of
more than ten for a couple of modes. Nevertheless, it is evident that the modulation
of |6D| by internal modes is much more important than that produced by external

displacements.

Fig. reports the in(7)v.s.1/T plots obtained for Bulk-PC, Bulk-PC-Proj-Int and
Bulk-PC-Proj-Rot models. Accordingly with calculated spin phonon coefficients dis-
played in fig. the relaxation coming from internal modes is more efficient with
respect to the one induced by rotations with the exception of an intermediate tem-
perature region where rotations becomes more effective. These results show that in
order to correctly evaluate the effect of a normal mode it must be taken into account
both the spin coupling coefficient and its temperature dependence deduced from the
bath green function. Notably, the inclusion of the crystal structure by means of point
charges does not influence the calculation of H’s derivatives and the simulations for
the Bulk model (not shown) are identical to the Bulk-PC model. The inclusion of

electrostatic effects coming from the periodic crystal surrounding should affects the
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Figure 3.17: Contribution of External Displacements to the spin phonon coupling

coefficients

calculation of the spin hamiltonian derivatives for every degrees of freedom. How-
ever, the most important effect is expected for acoustic phonons because , differently
from rotations and internal vibrations, translations do not intrinsically change the
spin hamiltonian elements and they are necessarily connected to the interaction be-
tween SSM and its surrounding. Consequently, translations can only affect the SMM
anisotropy due to long range electrostatic interactions between different molecules.
Electronic delocalization effects along different molecules are excluded as molecular
crystal paramagnetic centers are efficiently screened by organic ligands. Therefore, as
the inclusion of surrounding electrostatic interactions is found totally ineffective, the
demonstration that acoustic modes are totally ineffective in this crystal is provided.
However, as the symmetry of the crystal (P;) prevents the formation of a finite elec-
trostatic field inside the crystal, such behavior was expected. This situation is not

general and electrostatic field effects might be operative in other systems.

The importance of internal modes on the spin dynamics is a remarkable result and
it is in line with the very short range effects of the spin orbit coupling, whose mod-
ulation induce such relaxation phenomena. In this context the enormous amount of
magneto-structural correlations developed over the years might be dressed with re-

new interest and exploited to tune SMM spin-phonon coupling coefficients. Clearly,
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Figure 3.18: Temperature Dependence of Relaxation Time

following from the short range nature of the SOC, the most relevant modes for the
spin relaxation are those whom induce large modification of the paramagnetic ions
anisotropies and therefore those involving the first shell of coordination of the metal.
Fig. shows the frequency dependence of phonon cartesian displacements involv-
ing iron and nitrogen atoms inside the Fe(tpa’”®) molecule for the Bulk Model. The
maximum modulation of these structural parameters is found very close to the spin
phonon coupling coefficients dispersion of fig. However, a strict correlation be-
tween the two set of data is absent and a more refined collective variable, function
of internal displacements, must be introduced in order to find a magneto structural
correlation in the spin-phonon coupling context.
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Figure 3.19: Temperature Dependence of Relaxation Time
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3.6 Conclusion

The theory outlined in the previous sections of this chapter has been applied to a real
chemical system through a rigorous ab initio treatment of both nuclear and electronic
structure of the benchmark Fe(tpa””) SMM. The magnetization dynamics has been
studied under the effect of both spin-phonon and spin-spin interactions revealing the
fundamental information that the quantum tunneling of the magnetization, induced
by spin-spin dipolar interactions, does not affect the temperature active spin-phonon
mechanism. Indeed, simulations showed that spin-spin and spin-phonon coupling mix
together only in the narrow temperature range where the transition between the two
regime takes place. This consideration has a deep impact on the general understanding
of spin relaxation phenomena in molecular magnets as the magnetization tunneling
has been usually used as argument to interpret the reduction of the effective spin flip
barrier. The rest of the work focused on the spin-phonon relaxation and its tempera-
ture dependence. Due to the lacking of phonons under the frequency of 36 cm ™! for
Fe(tpa’®) at the gamma point, the low temperature regime dynamics is driven by the
first mode and only at higher temperature (T > 10 K) more modes become active.
The spin dynamics has been found dominated by a direct relaxation mechanism at T
< 5 K and by an Orbach mechanism at higher temperatures pointing out the needs
to calculate all the spin-phonon coupling coefficients in order to predict such features
as the transition between different regimes is connected with the relative spin-phonon
coupling strength between different phonons. The results obtained for Fe(tpa®) have
also been interpreted with the results of the pseudo S=1 model discussed previously
showing that the consideration made in the previous sections also apply in a more
realistic context. The effects observed for (tpa’”)Fe are believed to be quite general
and help to shed some lights upon the typical puzzling situation encountered in the
context of highly anisotropic SMMs, where the low temperature relaxation rate fol-
lows an Arrhenius like trend but without a clear correlation with the expected Ueyy.
In light of this discussion this strict correlation must be lifted because both Orbach
and direct processes follow an Arrhenius law which depends on the specific phonon
structure. Reports available in literature, support this theory and give the chance to
explain some conflicting situation. For instance, an experimental observation of multi
Orbach mechanism has been reported for a Dy*3 SMM|I12]. Specifically, the low
temperature spin dynamics was found to be characterized by a double Arrhenius like
trends with both effective barriers (334 K and 94 K) lower than the first accessible spin
exited state (430 K). The presence of two separate Arrhenius like trend, both with an

effective barrier below the first excited state, point out the existence of two different
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mechanism which, in light of our discussion, could be attributed to the effect of two
different normal modes. The possibility of processes, different from the Orbach one,
showing an Arrhenius like trend in lanthanides based SMMs has been also proposed
very recently by Pedersen et al. on the basis of experimental data[86]. However, the
conclusions outlined in that work are essentially different from this thesis claims, since
discrepancies between theory and experiments had been addressed by them introduc-
ing a second order Raman effect contribution. Here we have shown that is possible
to conciliate theory and experiments without requiring second order effects (Raman
relaxation) to prevail over first order ones (Orbach and direct relaxations). The study
of Fe(tpa) has been extended also in order to understand which are the most impor-
tant nuclear displacements able to induce large spin-phonon couplings. The phonon
displacements have been analyzed in terms of their projection on internal and external
movements of the single SMM molecule inside the unit cell. This study revealed that
internal degrees of freedom are highly efficient in order to promote the spin relaxation
in virtue of both their higher density of states (especially at high T) and of their
intrinsic intensity. Nevertheless, also rotations affect the spin dynamics in the low
temperature region and again, in order to predict such features for realistic system,
a detailed ab initio modeling of all the SMM parts is mandatory. However, in light
of an high temperature application of SMMs, the engineering of internal vibrations
seems to be most fruitful path to be followed. In light of this consideration a first
attempts to rationalized the correlation between the spin-phonon coupling coeflicients
and the internal degrees of freedom has been done and the prominent effect of the
metal-ligand local distortions has been highlighted.
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3.7 Summary

In this chapter the spin dynamics in SMMs has been discussed. The spin-phonon
origin of relaxation has been addressed through a quantum mechanics first order per-
turbative approach where both harmonic and anharmonic terms have been introduced
in the phonons Green function. Consequences of this theoretical framework have been
investigated in the context of toy models as pseudo S=1/2 and pseudo S=1, which
revealed the most important consequence of the introduction of a phonon finite life-
time. Both the temperature dependence of the phonon spectral width and the phonon
density of states have been found to be key elements for what concern the temperature
dependence of the magnetization relaxation time. A prototypical real SMM has been
studied in an ab initio context revealing the need to carefully weight all the ingredi-
ents of the theory in order to make quantitative prediction of relaxation phenomena.
The study of Fe(tpa’”) makes possible to investigate the joint presence of spin-spin
and spin-phonon relaxation pathways demonstrating that the effective spin flip bar-
rier reduction in the temperature triggered relaxation regime could not be possibly
addressed to the quantum tunneling of the magnetization. Most importantly, the ab
initio study point out the importance of the internal modes for the spin relaxation
suggesting the possibility to chemically engineer specific degrees of freedom in order
to extend the spin relaxation time. In this context, from a perspective point of view, a
specif effort to offer practical guidelines for SMMs structures tailoring has been done,

hoping to stimulate further experimental and theoretical investigations.
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3.8 Computational Details

All the calculation concerning structure and frequency determination have been done
with the cp2k software. To solve the UKS equations in CP2K, the Gaussian and plane
waves (GPW) formalism was used. Double-¢ polarized basis sets (DZVP-MOLOPT-
SR[73]) with Goedecker-Teter-Hutter norm conserving pseudopotentials[74, [75] have
been employed. The auxiliary Plane Wave basis set has been truncated to an energy
of 400 Ry for isolated systems and up to 600 Ry for crystals. The PBE functional
has been used throughout all the calculations with Grimme’s D3 vdW corrections.
Several vdW correction schemes were tested on the periodic cell optimization. All the
method tested showed an underestimation of all the lattice parameters. D3 and rvv10
corrrections showed similar result, with D3 performing slightly better. df and df-2 non
local corrections have also been tested but both perform worse than D3 and rvv10.
The chosen set up guaranteed a maximum error on lattice parameters of less than
5%. RESP point charges have been evaluated, with Cp2k, for all the four molecules
inside the unit cell one at the time. The charge of the Fe ion has been constrained
to its DDAPC value. All the other constraints were used with their default value.
Hessian calculation has been done with a 0.001 a.u. numerical integration step, with
a convergence criteria on the maximum element of the wave function gradient sets
to 1.0E-08. The evaluation of all the anisotropic tensors, made with the package
ORCA|T]], has been carried out at the CASSCF level of theory. All the calculations
have been done with a def2-TZVP [78] basis set for N and Fe elements while def2-
SVP basis set has been used for C and H. The RI-J approximation along with the
def2-TZVP/J auxiliary basis set[79] for all the elements has been used. Speaking in
the ORCA notation, grids were set to 5 and VeryTightSCF. This set up has been
test with respect to calculations done with the def2-TZVP basis set on every kind
and no significant difference has been noted. All the spin-phonon coupling coefficients
have been numerically evaluated differentiating calculated D tensor values along each
of the normal coordinates obtained from the hessian diagonalization. The numerical
integration step has been chosen as 0.2 normal mode units, in order to guaranteed a

linear dependence of D elements with respect to displacements.
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So far, a detailed understanding of the atomic scale scenario of surface deposited
molecules is missing and, therefore, one of the main open challenge in this field
is about the understanding of the nature of the interaction between surfaces and
molecules, the so-colled spinterface. The possibility to retain SMM properties af-
ter the adsorption is the first fundamental question to be addressed. However, the
importance of such studies is also grounded by the interesting effects originated by
molecule-surface interaction, which might thus be exploited as an additional tuning
parameter in order to address molecules with new properties. Indeed, the possibility
to combine effects such surface electron screening with the inherent quantum com-
plexity of SMM might leads to a further enrichment of molecular properties. In this
last chapter the interaction between SMMs and a metallic surfaces will be addressed.
Once again the helycal pitch SMMs will be at the center of the investigation. Indeed,

several molecules of the propeller-shaped family[I13] have been showed to be robust
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enough to retain their magnetic hysteresis loop[I14] once grafted on Au(111), result-
ing as appealing candidates for a throughout analysis on how the magnetic properties
change upon deposition on a metallic surface. A detailed experimental characteriza-
tion of SMMs@Au(111) can be achieved only through an interplay between different
techniques.[IT5] In particular, the difficult access to accurate structural information
poses major limitations onto the full understanding of deposited SMMs properties.
Indeed, the absence of an atomically resolved structure makes the assessments of the
origin of the observed magnetic phenomena difficult to be unambiguously rationalized.
In this scenario a cutting-edge theoretical description of SMMs deposited on surfaces
becomes mandatory to fill up the missing information and therefore to draw a final
picture of the SMM@Au(111) system.

A methodology able to provide the SMM@Au(111) structure without a reliable start-
ing reference represents the first issue to be solved. X-ray derived geometries are
commonly used for the calculation of magnetic properties of SMMs and in some stud-
ies, to account for the effects of adsorption on surfaces, the structures have been
optimized at the level of theory of choice.[TT6HIT8] However, static optimization ap-
proaches can not be always sufficients to describe a complex configurational space
that could present multiple minima, as it is expected to be the case by deposition of
SMMs on surfaces. In this framework, ab initio molecular dynamics (AIMD) repre-
sent the proper computational tool to provide a reliable sampling of the accessible
space of configurations at finite temperature. The generated trajectory is expected to
visit the accessible structures according to their statistical probability at the selected
thermodynamic conditions. In this respect, the MD simulation samples the free en-
ergy surface (FES) underlying the dynamic of the system of interest, and reproduces
its characteristic thermal fluctuations. Recently AIMD has been applied to the study
of Spin crossover magnetic systems containing Fe?™ ions.[119}, 120] However, at the
best of my knowledge, this computational strategy has never been applied before to
study hybrid systems (adsorbate@surface) containing hundreds of heavy atoms and
with a complex magnetic structure as the one observed for SMMs. Indeed, a similar
statistical analysis restricted to only isotropic magnetic properties has been previously
computed only at the QM/MM level for a metalloprotein system [121I] containing two
iron ions bridged by di-sulfuric bridge as catalytic center. The AIMD application
to the study of the grafting process of Fe,Cs@Au(111), will be reported in the first
section of this chapter, where both dynamical information and steady state struc-
tures, which could well statistically describe the molecular geometry once the SMM is
grafted on Au(111), will be discussed. The so computed accurate atomistic picture of

the system is of fundamental importance in order to understand how the deposition
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on a metallic surface affects the molecular magnetic properties and in section [£.2] the
same methodology will be applied to a series of Fe, where the dependence of structure
and magnetism over the surface-linking group nature will be provided. In section
the limits of AIMD will be tackled extending the time scales of the dynamics investi-
gation through a force filed (FF) parametrization of all the main interaction involved
in the hybrid SMM plus substrate system. The realization of an ad hoc effective po-
tential for the Fe,Ph@Au(111) system makes possible to confirm the AIMD results
and, using a combined approach FF+AIMD, the self assembling process and the two
dimensional crystal packing effects over the SMM magnetism will be investigated.
The determination of the importance of structural deformations introduced by the
substrate paves the ground for the final step: the determination of the weight of the
substrate purely electronic effects on the SMM and their dependence on the SMM
nature. In section [£.4] two structurally identical SMMs, but with different transition
metal ions, have been studied: FezCrCs@Au(111) and Fe,Cs@Au(111). The study of
this topic will be performed for the isotropic exchange interactions inside polynuclear
systems, as they have been recognized as a promising property to be exploited to build
an I/O spintronic devices[I5], 122]. Moreover, such a property has deep effects on the
whole rich quantum magnetic behavior of SMMs it represent the first step before to

propagated the discussion to anisotropic terms.
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4.1 Surface Grafting Structural Effects

Fe,Cs, whose X-ray structure is reported in fig. [£.I] represents the first SMM pos-
itively grafted on Au(111) with the retaining of its magnetic properties and in this
section its structural evolution on a gold slab will be addressed through AIMD calcu-
lations. Before to proceed with the results an outline of the protocol used is required.

When a trend of physical properties must be evinced, it is of fundamental importance

Figure 4.1: Sketch of FeyCs molecule. Iron atoms are colored in blue, oxygen atoms

in red, sulfur atoms in purple, carbon atoms in green and hydrogen atoms in white.

to handle all the elements of the ensemble with the same computational procedure.
Such a care must be used in order to enforce the homogeneity of the results and re-
duce the source of errors coming from unbalanced computational treatments. Since
the geometry of grafted species can not be determined at the experimental level (it can
only be qualitatively extrapolated in simple cases, e.g., adsorbed porphyrins [123]),
the calculation of the relaxed geometry, through structure optimization, of the SMM
on the surface becomes mandatory. Therefore, in order to study the evolution of the
magnetic properties from the bulk to the grafted scenario, the same optimization pro-
cedure must be applied also to the SMM bulk phase. The magnetic data computed on
optimized geometries become the reference values to compare to those computed in the
grafted scenario. In order to have comparable magnetic properties, each spin Hamilto-
nian parameter must be computed with the same electronic structure approach before
and after the grafting. The choice of the computational protocol clearly depends on
the properties one isinterested in. GGA DFT calculations are known to accurately
determine optimized structures of large systems. However, the accurate calculation

of magnetic properties, e.g. the calculation of exchange coupling parameters, may
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require the use of hybrid functionals. The mixed computational protocol proposed
in this work allows us to determine the evolution of the SMM’s magnetic properties
from bulk to the grafted scenario. The reference bulk structure optimization and the
AIMD simulations have been carried out with the TPSS functional[I24] corrected for
the dispersion forces using the Grimme’s formalism[I25]. The calculation of exchange
coupling parameters would require the use of hybrid functionals, while the anisotropic
part of the spin Hamiltonian could be accurately calculated with the less demand-
ing PBE functional. However, applying hybrid functionals to large periodic systems
(SMM bulk and grafted on a surface) and over many configurations becomes com-
putationally unaffordable. For this reason, the isotropic exchange coupling constants
have been calculated at the PBE+U level of theory. [126] PBEO calculations have
been carried out for isolated systems and compared to the PBE-+U results, in order
to asses the reliability of the parametric Hubbard correction (see Methods for further
details).

Bulk Structural and Magnetic Properties

One of the main issues related to the calculations of the magnetic properties at the
quantum-mechanical level is the choice of the geometrical data. X-ray structures have
often been considered as the best choice[I27], since optimization procedures might be
not accurate enough. Slight distortions of the most important geometrical parameters
have significant effects on the computed magnetic properties. Indeed, the geometry
optimization of molecules in the gas phase can hardly provide structures corresponding
to the experimentally determined magnetic properties, which are generally measured
in the solid state. Hence, in order to get a reliable bulk reference state, it is crucial to
quantify the effects on the computed magnetic properties ascribed to the optimization
at the DFT level and to the crystalline environment. To this purpose, the Fe Cs
molecule has been optimized both in vacuum (Opt-Isol model) and inside the periodic
crystallographic cell (Opt-Bulk model). Optimizations have been carried out with the
TPSS+D3 functional converging the electronic structures on the S = 5 BS state (see
the Methods section for more details). The resulting Root Mean Square Deviation
(RMSD) of the the Opt-Bulk model with respect to the X-ray structure is 0.10 A. The
larger contribution to the RMSD value comes from the Cs aliphatic chains, which,
however, are not well resolved in experiment. Instead, the RMSD of the iron and
oxygen atoms of the magnetic core is only 0.03 A. For the Opt-Isol model the global
RMSD amounts to 0.12 A, while it is reduced to 0.04 A considering only the core

of the molecule. Considering the strong dependence of the magnetic properties on
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structural parameters, particular attention has been devoted to check the agreement
between experimental and computed Fe.OFe, and ~-pitch angles of the propeller
structure.

The latter is defined as the dihedral angle between the irons’ plane and the plane
Fe.OzFe, defining the blades of the propeller structure, see ﬁg@ As already dis-
cussed, the isotropic exchange coupling between central and peripheral irons and the
axial anisotropy intensity strongly depend on the Fe.OFe, and the 7-pitch angles,
respectively. The mean value of the Fe.OFe,, angle for the Opt-Isol and the Opt-Bulk
models deviates from the corresponding X-ray values of 1.5% and 0.9%, respectively.
The average v-pitch angle deviates of about 1.5% for both Opt models. To verify the
effect of these deviations on the magnetic properties, the isotropic exchange coupling
and the anisotropy tensors have been evaluated for the Opt-Bulk and Opt-Isol models
(see Tables and . The same successful approach used to calculate these prop-
erties for the X-ray structures of a Fe, family has been exploited here. The isotropic
exchange coupling constants are obtained at both PBEO and PBE-+U level of theory.
The PBE+U results show a slight overestimation of the antiferromagnetic contribu-
tions comparing to the PBEO ones(see Table . The difference between PBE+U
and PBEOQ can be ascribed to the fact that the used Hubbard U parameters for Fe
and O were fitted at the DFT rev-PBE level.[128] Nevertheless, these results show
the good transferability of the U parameters within the Fey class of SMMs.

Table 4.1: Fe,Cy Crystal Magnetic Properties

Functional =~ X-ray® Opt-Bulk® Opt-Isol* Exp

ia (em=1) PBEO 17.4 13.2 9.8
12 PBE+U 21.5 16.2 13.9
s (em=1) PBEO 15.3 8.1 5.0
3 PBE+U 19.2 11.7 8.8
ia (em=1) PBEO 15.3 7.8 8.6
14 PBE+U 19.1 11.4 12.5
b
PBEO 16.4 9.7 7.8
-1
Julem™)  pppiu 19.9 13.4 11.8 16.74
PBEO 0.2 0.1 0.1
-1
Jo(em™)  pppLy 0.4 0.2 0.2 0.5

# Selected molecule inside the Fe,Cs crystal;
Y Jia, Jis and Ji4 average value.
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The effective Cy symmetry of the molecule is correctly retained only in the Opt-Bulk
model, which turns out to be less antiferromagnetic than the corresponding X-ray
structure (see Table [.1)). A further decrease of J has been obtained for the Opt-Isol
model. The same trend has been observed for both the PBEO and PBE+U approaches.
This confirms the strong dependence of the magnetic properties on small geometrical
variations, thus emphasizing the importance of accurate reference structures. Previous
studies on iron dimers and Fey molecules [129, 130] suggest that the FeOFe angle
variations have the largest effect on J;. Instead, in the Opt-Bulk model a large
decrease of J; seems to be induced by a slightly changed Fe.OFe, angle. Most of the
structural differences between X-ray and Opt-Bulk come from the rotation of the two
tripodal ligands along the pseudo Cs symmetry axis. This rotation occurs without
changing the position of the oxygen atoms. It rather modifies the out-of-plane angle
of the alchoxy-nearest carbon with respect to the Fe.-O-Fe, plane. Test calculations
over an iron dimer model support the hypothesis that also this degree of freedom could
affect the isotropic exchange interaction between p-alchoxy bridged iron clusters (see
ESI for further explanations).

Table 4.2: Fe,Cs5 Crystal Magnetic Properties

Functional =~ X-ray® Opt-Bulk® Opt-Isol* Exp

Dy (cm™1) PBE -1.105 -1.050 -1.046

E/D; 0.03 0.01 0.11

Dy (cm™1) PBE 0.818 0.639 0.650 i
E/Do 0.16 0.20 0.21

D3 (ecm™1) PBE 0.731 0.619 0.540 i
E/Ds 0.17 0.18 0.22

—1

Dy (em™1) PBE 0.731 0.628 0.591 i
E/Dy 0.17 0.18 0.20

Ds—s (cm~') PBE -0.475 -0.426 -0.425  -0.451
E/Ds—s PBE 0.02 0.03 0.06 0.01

# Selected molecule inside the Fe,Cy crystal;

For what concerns the axial anisotropy parameter, D, the symmetry properties are
correctly retained in the Opt-Bulk model and this seems to be sufficient to get a
good agreement with experiment. Apparently, the structural changes generated by

the optimization have a marginal effect on this quantity. These results shed light
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Figure 4.2: On the left the Fe,Cs@Au(111) starting configuration used for the AIMD
simulation (GeoUp). On the right one snapshot extracted from the trajectory after
thermalization (GeoDown). Color code as in Fig. Yellow is used for the gold
atoms.

on the importance of studying the condensed phase to reproduce the experimental

properties.

As a summary, the Opt-Bulk model is preferable to reproduce both geometrical and
magnetic features of FeyCs and thus it is selected as reference model.

Fe,C;@Au(111) Molecular Dynamics and Structures Relaxation

The DFT-optimized structure published by Mannini et al.[I13] was obtained with
the bare TPSS functional as were not available vdW correction methods at the time.
This structure has been optimized with the computational set up explained in the
Methods section but the inclusion of D3 corrections does not significantly change
the Fe,C5@Au(111) structure. This geometry (GeoUp model, Fig. left panel),
already found by Mannini et al.[IT3] is the starting configuration for the AIMD sim-
ulations. The initial thermalization run at 200 K (~ 3 ps) has produced important
structural changes and a stabilization of about 77 kcal mol~!. The new relaxed ge-
ometry (GeoDown model, see Fig. right panel) is characterized by the collapse of
the aliphatic Cs chain on the gold surface, so that the organic scaffold of the mag-
netic irons core is significantly closer to both the surface and the aliphatic chain itself.

Moreover, the angle 6, defined as the angle between the normal to the plane of the
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Figure 4.3: Top view of an AIMD snapshot. Color code as in Fig. [£.2] but for the Cs
aliphatic chains’ carbon atoms colored in white.

four irons and the surface normal, is significantly smaller (see Fig. . 0 is related
to the easy-axis direction of the spin ground state anisotropy. As a consequence of
this rearrangement, also the magnetic core undergoes a strong deformation, with the
loss of the Co symmetry axis along the Fe;-Fes bond.

In order to sample the configurational landscape of Fe,C5;@QAu(111) at finite tem-
perature, eight independent AIMD simulations have been started from the minimum
structure found after the thermalization. In order to generate independent trajecto-
ries spanning the accessible phase space, the velocities have been differently initialized
(details in Methods). Each independent run consists of a thermalization part at 200
K, followed by a sampling part at equilibrium. The sum of all eight sampling times
amounts to 20 ps, which can be used for the analysis of the equilibrium properties of
Fey,Cs5@Au(111) at 200 K. All trajectories span the same region of the configurational
space, which suggests that a stable minimum is already reached during the thermal-
ization. The Cy aliphatic chain remains in close contact with one dpm ligand of Fes,
while the other dpm are free to lay in contact with the surface (see Fig. . As a
consequence, the molecule turns out to be tilted with respect to the surface normal
and the symmetry elements of the Fe,Cs magnetic core are completely removed.

The statistical distributions of Fe.OFe,, y-pitch, and 6 angles, reported in Fig. [f.4]and
Fig. [45] provide an interesting overview on the observed distortions. The mean value

of the Fe.OFe, angle, averaged over the three Fe.-Fe, couples inside the molecule,
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Table 4.3: AIMD Walkers Final Energies

GeoUp GeoDown 7 Walkerl  Walker2  Walker3  Walker4  Walker5  Walker6  Walker7  Walker8 Avg.®
E (Kcal mol~ 1) 0.0f -76.95 7 -83.43 -79.02 -79.09 -79.97 -81.54 -81.73 -81.16 -79.40 -80.67
RMSDP 0.64 0.00f 7 0.16 0.25 0.38 0.20 0.21 0.20 0.28 0.34 0.25
Fe.OFep® 102.37° 102.94° 7 103.15° 103.54° 102.95° 103.65° 104.88° 104.23° 105.23° 104.07° 103.73
0° 29.0° 14.7° 7 18.5° 18.0° 16.5° 16.9° 16.3° 13.9° 14.3° 17.5° 16.5°
~-pitch? 67.3° 71.5° 7 71.1° 71.2° 68.2° 70.6° 72.7° 69.1° 70.8° 78.0° 71.4°

# This averaged value is calculated over the eight final AIMD structure only;

® Evaluated considering irons and oxygens from magnetic core region only;

¢ Averaged over the molecule, Exp. Value 102.89°;

d Averaged over the molecule, Exp. Value 70.45°;

¢ Estimated upper limit value by Mannini et al.[I13] 35°;

f Reference value.
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Figure 4.4: (a): Molecular average FeOFe angle’s normalized distribution. (b): Sin-
gle FeOFe angle’s normalized distributions. (c): Molecular average 7-pitch angle’s
normalized distribution. (d): Single v-pitch angle’s normalized distributions.

is 103.8° (Fig. ) This value is only slightly larger than the value characterizing
the X-ray geometry: 102.6°. Splitting the average into the single angle contributions,
both for the oxygen above (O,) and below (O4) the iron ions’ plane, as showed in
Fig. [{4p, it is noticed that the Fe;O4Fes distribution is shifted with respect to the
others. On the other hand, the single y-pitch angles fluctuate around quite different
mean values, while the molecular average is strongly peaked at 61.1° (Fig. Vs
Fig. [4.4d). In both cases, the larger deviation from the molecular average value is
observed for the Fez ion’s properties. Such different behavior can be ascribed to the

fact that this ion is the one in direct contact with the Cs chain.

Even though Fes;C;@Au(111)’s local magnetic centers undergo severe geometrical dis-
tortions upon grafting, the differences are partially averaged at the molecular level.
Fig. shows that 6 explores angles between 10° and 25° with a mean value of

16.7°. This means that the magnetization easy-axis does not sample all the direc-
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Figure 4.5: The angle between the irons’ plane normal and the surface’s normal.

Figure 4.6: Overlapped structure of all the Fe,C; Walkers. Walkers’ geometries have
been translated over the Au(111) slab minimizing the displacement between equivalent
iron ions. Color code as in Fig. 1.2}

tions inside a cone, as expected.[I13] Instead, it moves inside an hollow cone, avoiding
the structures strictly perpendicular to the surface. The observed behavior is due to
the presence of the Cy carbon chain which remains under the organic scaffold of the
Fey core, thus imposing the tilt. The not innocent influence of the functionalization
group of the tripod ligand on the final grafted geometry is even more evident. In-
deed, if a flexible aliphatic chain can ensure a lower angle 6, it can also induce larger
geometrical perturbations at the magnetic core level, which in turn might alter the
Fe,Cs magnetic properties. SMMs magnetism becomes experimentally evident only

at temperature of a few K, while AIMD generates a structural sampling at 200 K.
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In principle, starting from the sampled configurations, an estimate of the magnetic
properties could be extrapolated from structural magneto-correlations. However, it
is preferable to get rid of the entropic contributions, i.e. to derive from the FES
exploration the corresponding equilibrium structures on the PES. Even though on
the FES the system has remained in one single basin of attraction, the underlying
PES is topographically corrugated, i.e. is characterized by several local minima. The
structural features distinguishing among these minima determine fluctuations of the
magnetic properties that might become important for the understanding of the ex-
perimentally observed behaviour. In order to identify possible different minima on
the PES, a simulated thermal annealing (from 200 K to a few K) has been applied to
the final configuration of each of the eight generated trajectories. Each annealing has
been followed by a structure optimization. Energies, RMSD and selected geometrical
parameters for the eight optimized geometries (Walkerl-8 from now on) are summa-
rized in Table All the structures are in a range of few kcal mol~! in energy. With
respect to the GeoDown model, they are approximately 4 kcal mol~! more stable.
RMSD (only for iron and oxygen atoms) values and Fe,OFe,, and 6 angles are close to
the averages of the corresponding distributions as obtained along the AIMD sampling,
and differ substantially from those calculated for the GeoUp model. The most evident
structural parameter that distinguishes the eight Walkers is the position of the dan-
gling Cs-SAc aliphatic chain, as illustrated by the overlap of eight sets of coordinates
in Fig. Small, but significant from the magnetic point of view, deviations in the
core region are also observed, which point to a distribution of the values of certain
magnetic properties, even though these structures belong to the same minimum on
the FES.

Magnetic Properties Analysis

As discussed above, in order to employ a consistent electronic structure method to
compare magnetic properties of Bulk-Opt model and the Fe,Cs@Au(111), the PBE4+U
approach has been adopted to evaluate isotropic exchange coupling constants. As for
Bulk-Opt, FesC5@Au(111) retains antiferromagnetic exchange interaction between
iron ions and the S = 5 ground state multiplicity. The average values of the Js re-
ported in the last column of Table reveal a stronger antiferromagnetic character
for Fe,C5@Au(111) than for Opt-Bulk. In particular, .J; increases of about 11 cm™?
and Jy of about 0.2 cm~'. The bulk pseudo C3 symmetry is here lost and the individ-
ual Ji2, J13 and Jy4 values are quite different one from each other. According to the

structural analysis made in the last section, these Jy, differences could be attributed



Table 4.4: Tsotropic Magnetic Properties - Fe,Cs@Au(111) Models

Functional Walkerl Walker2  Walker3 Walkerd  Walker5  Walker6 Walker7  Walker8 7 Avg

CHAPTER 4. SMMS ON AU(111) SURFACE

Ji2 PBE+U 20.8 16.7 17.3 11.7 13.3 20.1 15.1 16.6 7 16.5
Jis PBE+U 26.2 17.4 24.3 29.1 31.1 33.1 43.9 39.6 7 30.6
J1a PBE+U 20.2 26.4 28.7 27.7 25.3 29.9 33.1 17.8 7 26.1
J1*  PBE+U 22.4 20.2 23.4 22.8 23.3 27.7 30.7 23.8 7 24.3
Ja PBE+U 0.2 -0.3 -0.5 0.3 0.7 1.1 1.2 0.7 k 0.4
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All reported values are in cm™!.

# J12, J13 and J14 average value.
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Table 4.6: Anisotropic Magnetic Properties - Fe,Cs@Au(111) Models

Functional  Walkerl Walker2  Walker3 Walkerd  Walker5  Walker6 Walker7  Walker8 Avg

CHAPTER 4. SMMS ON AU(111) SURFACE

Dy PBE 1.555 -1.138 -1.058 -1.177 -1.106 -1.105 -1.107 -1.167 -0.789
E/D, 0.23 0.12 0.08 0.26 0.09 0.23 0.18 0.18 0.17
Dy PBE 0.651 0.557 0.573 0.614 0.480 0.508 0.529 0.610 0.565
E/Dy 0.13 0.16 0.13 0.13 0.15 0.16 0.13 0.15 0.14
D3 PBE -0.375 0.536 -0.407 -0.390 -0.447 -0.362 -0.434 -0.465 -0.293
E/Ds 0.21 0.25 0.20 0.18 0.30 0.14 0.20 0.26 0.22
Dy PBE 0.461 0.488 0.515 0.591 0.634 0.410 -0.384 0.747 0.433
E/Dy 0.24 0.23 0.21 0.17 0.14 0.23 0.32 0.19 0.22
Ds—5 PBE -0.390 -0.403 -0.583 -0.376 -0.378 -0.343 -0.343 -0.409 7 -0.403
E/Dg=5 PBE 0.12 0.02 0.19 0.05 0.04 0.07 0.15 0.08 7 0.09
¢ 18.6° 14.2° 36.7° 15.1° 14.7° 12.2° 13.9° 15.3° 7 17.6°

All reported D and E/D values are in cm™!.
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to the removal of any symmetry elements for the four iron ions upon grafting. The
J1 values are all larger than the bulk reference, as expected from the increase of the
Fe.OFe, angles. It is interesting to note that the standard deviations for the two
exchange coupling parameters are 3.0 cm~! and 0.6 cm™!, respectively. This means
that the energy separation from the first excited state, S = 4, can range from 46 cm ™!
to 70 cm™!. The estimate for the Opt-Bulk model is significantly lower, 32 cm ™!, once
more strongly supporting the not innocent role of the Au(111) surface. These results
pose a question on the nature of the effects induced by the grafting process. In order
to separately address steric effects and electronic contributions of the gold surface,
the gold slab has been removed, computing the magnetic properties keeping the same
molecular coordinates, FesC5@Au(111) model. In this case the Ac' group has been
reintroduced at the S radical site, in order to avoid spurious spin contributions. In-
deed, in the grafted scenario, at this site a strong Au-S bond is present. For a check on
the reliability of the DFT+U correction for geometries different than the equilibrium
one, the Js of the Fe,Cs@Au(111) model have been also computed at the PBEO level.
Confirming the trend observed for the Bulk and Isolated models (see Table [4.1), the
PBEO values in Table are systematically lower than the PBE+U ones. Otherwise,
the two series of calculations over the eight walkers show the same type of fluctuations,
validating the reliability of the PBE+U approach. The exchange interaction between
iron ions is always antiferromagnetic and the ground state multiplicity is still S = 5.
The comparison between J values in Tables [£.4 and reveals that the explicit pres-
ence of the metallic substrate induces an homogeneously reduction of the J; values of

about 1 cm™!.

These data clearly show that structural rearrangements induced by the grafting pro-
cess are mostly responsible for the evolution of the magnetic properties of Fe,Cs and

the electronic effects induced by the presence of the metallic slab can be considered
negligible.

Also the anisotropy parameters have been calculated for the Fe4C5,@/Au(111) system.
Given the negligible effect of the Au(111) explicit presence, these parameters are
expected to properly approximate the FesC5@Au(111) values. From the study of
the anisotropic part of the spin Hamiltonian (reported in Table , a significant
increase in the rhombicity of the single ion anisotropy tensor for the central iron
ion is observed, with respect to the bulk calculated values. The local distortions of
the octahedral environment around Fe,. are responsible for this behavior. Except for
Walkerl, the easy axis kind of anisotropy is retained. While no big differences with

respect to the crystalline system are recorded for Fe; and Fey, the magnetic behavior
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of Fes is modified. The dpm ligands of Fes are always found to lie above the Cs;
aliphatic chain. This causes the change in sign of its axial anisotropy parameter in all
cases, except for Walker2, leading to an easy-axis anisotropy, in contrast with the easy
plane anisotropy observed for the Opt-Bulk model. To be stressed that in spite of all
these not negligeble modifications, the orientation of the single ion tensors resemble
the bulk one. The easy-axis of both the central iron and the peripheral ions are almost
parallel to the irons plane normal, e.g. the mean inclination angle of the Fes easy-axis
with respect to the normal is 4.8° + 3.7°. The global molecular anisotropy, evaluated
for the S = 5 ground states in the GSH approximation, is an easy-axis anisotropy
and, for all the adsorbed molecules except for Walker3, its value is diminished of
about the 11%, with respect to the Bulk-Opt model. The easy-axis orientation, with
respect to the irons’ plane normal, is retained: the easy-axis direction deviates from
the peripherals irons’ plane normal of about 4°. Moreover, the easy-axis direction
inclination (¢) with respect to the surface normal, evaluated from the Dg_5 tensor,
well matches with the angle 6 for all the Walkers, except for Walker3. For Walkerl,
Walker3 and Walker7 the increase of the rhombicity term with respect to the Opt-Bulk
model is also observed. The significant increase in the rhombic anisotropy induced
by the interaction with the surface well compares with experimental observation of
an increased tunnelling relaxation efficiency. Indeed, the simulation of the hysteresis
loops detected by XMCD experiments by Mannini et al.[T13] requested an increases
of the E/D ratio up to 0.1 as well as the inclusion of higher order terms in the spin
Hamiltonian. It should however be considered that in that case the formation of a
densely packed monolayer of grafted molecules could partially limit the interaction of

the aliphatic chain with the surface, reducing the deformation of the magnetic core.

Conclusions

In this section a computational study of the Fe,Cs SMM adsorbed on Au(111) has
been presented. The proposed new computational protocol revealed to be able to
predict the evolution of both structural and magnetic properties going from the bulk
to the adsorbed scenario. The importance of the AIMD approach to properly take into
account the distribution of accessible configurations and to reveal, after annealing, the
roughness of the PES has been highlighted. Selected geometrical parameter, crucial
for the SMM magnetism, have been monitored both at finite and zero temperature
and considerable modifications, with respect to the bulk reference values, have been
observed. The relevant conclusion is that the retention of the S = 5 as ground state
in the transition from bulk to @Au(111) is not due to the rigidity of the Fe4 core
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but on accidental balanced structural distortions of it. In particular the not innocent
influence of the Cs aliphatic carbon linker, on the final adsorbed geometry, have been
discussed. The combination of AIMD sampling, annealing procedures, and magnetic
properties calculations at the DFT level of theory allowed to shed light on the effects
of structural rearrangements and of the surface coupling on grafted SMMs. A first
attempt to get a quantitative estimation of the importance of electronic effects on
the magnetic orbitals coming from metal density of states has been tackle with a
DFT+U approach in its common phenomenological fashion. Although at this state
the relaxation of screening effects inside the U parameters have been neglected an
important information about sign and magnitude of this interaction over the isotropic
exchange coupling constant has been obtained: the leading J; constant is marginally
affected by this interaction, with respect to the weight of structural rearrangements,

toward more ferromagnetic values.
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4.2 Linking Group Effects

According to the main conclusion of the last section, the linking group used to graft
the Fey SMM to the Au(111) surface is expected to play a very important role and
for this reason the analysis of the magnetism dependence on this degrees of freedom
has been addressed. A series of three molecules, namely Fe,Cx with X=2-4, has been
studied by means of the tools proposed in the previous section. Around 4 ps of AIMD
have been performed for the Fe,Cy_4@Au(111) systems in order to relax their X-ray
structures over the gold slab and let them be comparable with the Fe,Cs@Au(111)
structure (only walkerl will be discussed in this section). Following, a thermal an-
nealing down to ~ 0 K in ~ 1 ps plus structure optimization has been done in order to
produce sufficiently reliable Fe,Cx@Au(111) structures. At this stage only the mag-
netism of the extrapolated geometries Fe,Cx@Au(111) will be studied and a more
detailed description of the electronic effects of metallic substrate is left to the next
section. Accordingly with the previous section discussion, the Cx aliphatic chains of
the Fe,Cx@Au(111) structures, reported in fig. remains parallel to the surface.
For this reason small differences between Cz_5 are indeed observed as the Fe; mag-
netic core lies all the same over the linking chain. A different scenario is observed
for Fe,Cs, whose linking chain is short enough not to directly interact with the ex-
ternal dpm ligands and remains directly under the Fey core, imposing a more tilted
configuration to the SMM.

For the reasons reported above the discussion of the Fey,Cy will be separated from
the Fe4,Cs_5 ones. Similar trends for isotropic exchange coupling constants have been
computed within the Fe ;Cs_5 systems. Indeed, the Ji3 interaction has been found
to be the larger one and the less altered by the grafting process for the three con-
sidered structures. Interestingly, this is the interaction between the central iron and
the iron approximately lying over the aliphatic chain. The other two constants show
a more pronounced modulations toward smaller values passing from the Cs to Cs,
resulting in a slight reduction of the mean J; constant. Jo is always observed very
small and antiferromagnetic regardless system changes. Surprisingly, isotropic inter-
actions inside Fe ,Cy show a dramatic enhancement almost up to the double of the
other element of the series. Similar features are reported for the anisotropic part of
the spin hamiltonian. Indeed, while the Fe,C3_5 possess similar properties, Fe,Cy
shows dramatic changes in its single ion anisotropy properties. As discussed in the
last section and further highlights in tab. [£8 small modulations of the single ion
anisotropy tensor lead to almost identical ground state Dg—5. Nevertheless, Fe,Co

single ion anisotropic tensors are so remarkably different from the expected values
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Figure 4.7: Fe,Cy_5@Au(111) model structures. Hydrogen atoms are not displayed

for sake of clarity.

that the projected Dg—s5 change its sign, leading to an overall easy plane anisotropy.
In tab. [£.8|there are also reported the molecular easy axis tilt angle 6 with respect to
the surface normal vector, which shows a mildly pronounced rising of the SMMs over
the substrate passing from Fe,Cy to FeyCs, in agreement with the qualitative analysis
reported at the beginning of the section. The dramatic changes in the Fe,Co@Au(111)
magnetic structure deserves a further comment. Due to the interaction between the
sulfur and gold and the short linking chain, this SMM is strongly pulled toward the
substrate with a consequent molecular stress induced by the steric repulsion between
Au(111) slab and external dpm ligands. Due to this compression the F ecaqu angles
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are larger spread and the final mean F ecan value reach 104.2°. However, as already
pointed out in the previous section regarding the Fe,C;@Au(111) isotropic exchange
coupling correlations with the aforementioned angle, this magneto structural correla-
tion is no more strictly valid for highly distorted structures as those examined here
and other parameters might be introduced in the analysis. For what concerns the
extremely high easy plane anisotropy of the central iron ions it could be interpreted
in terms of its trigonal compression. Indeed, the same molecular stress leading to the
increase of the F ecan angles also increase this second structural parameter which is

known to produce easy plane anisotropy in high spin d® transition metal ions.

Table 4.7: Crystal and adsorbed Fe,Cx@Au(111) Isotropic Exchange Couplings.

FE4 C2 Fe4C3 F64 C4 F84C5

Jiz (em™Y) 2637  10.46 7.24 17.49
Jis (em~1)  43.10  25.00 22.61  23.42

Jia (em™') 3292 1353  16.07  16.33

Ji (em™1) 34.13  16.33 1531  19.08

Jo (cm™h) 0.20 0.13 0.07 0.18

Conclusions

The main results of the last section have been confirmed here with the extension of
the study to other three homologous SMMs, i.e. FeyCo_s@Au(111) and a progres-
sion on structural and magnetic properties for the series has been demonstrated. The
computed results hint the possibility to play with the linking group in order to con-
trol the SMM magnetic properties from a pure synthetic chemistry point of view in
a bottom up approach, leading to the fundamentally important possibility to reach
a dense-oriented packing of molecules on the substrate. Interestingly, in a covalent
grafted scenario, a too short linking chain seems to induce a molecular stress, due
to structural perturbations, enough to spoil the SMM easy axis magnetic properties.
Once again, the importance of structural rearrangements coming together a deposi-
tion have been highlighted pointing out the necessity to carefully tailor the grafting

chemical group in order to let the SMM to retain its bulk properties once adsorbed.
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Table 4.8: Crystal and adsorbed Fe,Cx@Au(111) Magnetic Anisotropies.

Fe,Co Fey C3 Fe Cy Fe,Cs
Dy (cm™1) 4.50 -1.118  -1.126  1.556
E/D; 0.23 0.03 0.22 0.23
Dy (cm™1) 0.331 0.518  0.739  0.651
E/D» 0.30 0.15 0.13 0.13
D3 (em™1) -0.363  0.418  -0.375  -0.375
E/Ds 0.27 0.32 0.19 0.21
Dy (cm™1) 0.346  0.656  0.557  0.460
E/Dy 0.27 0.18 0.18 0.24
Ds—s (cm™')  0.697 -0.391 -0.380  -0.390
E/Ds—s 0.30 0.10 0.03 0.13
6 (°) 10.2 16.5 15.5 18.5
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4.3 Self Assembling and Packing Effects

AIMD has been proved to be a valuable and very powerful tool to explore configu-
rational landscape of complex system like adsorbed molecules with many degrees of
freedom. However, the big computational cost does not make possible to access to
large system and/or long time scales. Indeed, the application of AIMD has been possi-
ble only for a single adsorbed molecule and for a few ps of acquisition time. Although
many important effects have been proved to be captured with this approach, the study
of different and at the same time important effects requires an extension of the system
size and the simulation time. For instance, the possibility to include the description
of multi SMM collective dynamics can give access to fundamental information about
the self-assembling process. Clearly, the possibility to do that would necessarily re-
quire the lowering of the level of theory and the introduction of a partial amount of
parametrization into the atomic forces definition. Among the many possible schemes,
the complete parametrization of the electronic structure through an analytical force
field has been chosen. Although it may resemble a drastic solution, it is the only one
that makes possible to access time scales as long as ns and for system containing a

number of atoms as large as thousands.

Force Field Description and Validation

In order to produce an ad hoc force field for the Fe,Ph@SMM system the most natural
choice is to assemble it from existing exportable force fields. The classic hamiltonian
of the hybrid system SMM@Au(111) is considered as the sum of three main parts, ad-
dressed separately for purpose of discussion, i.e. H = Hp,01 + Hs1ap + Himoi—siab- The
H,, o describes the interactions occurring inside the Fe;,Ph SMM. The most widely
used FF form for the description of molecular systems is in terms of internal de-
grees of freedom i.e. stretching, bonding, torsion, wagging and pairwise potentials
describing vdW and electrostatic forces. For what concerns organic compounds, there
exist many different robust and exportable parametrization for these interactions and
among them the general amber force field (GAFF) has been used to describe the lig-
and parts of the SMM[I31]. Major efforts have been devoted to the parametrization of
the interaction involving metal centers. Indeed, due to the complex three dimensional
nature of the coordinative bonds and their not transferability properties, a general
and readily usable parametrization of these interaction does not exist. In this work
the metal-ligands interaction has been described by means of a GAFF-like form of

the potential whose parametrization has been done following the scheme proposed by
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Seminario[I32]. This very simple recipe makes possible an automated parametriza-
tion on the basis of a DFT description of the Fe,Ph hessian through the interface
between the software Hess2FF and the software Gaussian[I33], [134]. Clearly this was
not the only possible solution and many other more refined computational set up are
available to solve this task. Following the discussion of Hu et al.[I35], a DFT B3LYP
optimization followed by an analytical hessian calculation has been done to evaluate
stretching, bending and torsion involving the iron ions. vdW interactions have been
chosen accordingly with the GAFF recipe as described by 6-12 Lennard Johns poten-
tial forms, whose parameters have been selected from literature. The fully bonded FF
obtained has been tested over its ability to reproduce the structure and stability of
both isolated and crystalline Fe4,Me SMM. This specific Fey family member has been
chosen as it is the only one that crystallizes with one independent molecule inside its

primitive cell.

Table 4.9: Experimental values compared to the computed DFT and FF ones for the
Isolated FesMe

Fe.-O-Fe, (°)  Fe.-Fe, (A) Fe,-Fe, (&)

FF 103.2 3.05 5.28
DFT 102.4 3.11 5.39
Exp. 102.9 3.09 5.35

Table shows the structural results for the isolated Fe,Me SMM at different level
of theory. The agreement between the FF and experimental structural values is re-
markable and well within the DFT-exp error. The choice of testing the FF on the
periodic cell has been done to check the FF reliability to reproduce the SMM-SMM
interactions which are of capital importance in driving the self-assembling process. In
table are reported cell and geometrical parameters computed at the FF level for
the FeyMe crystal. The very nice agreement with the experimental findings is evident.
Moreover, an MD study, within the NPT ensemble, of the crystal has been performed
in order to demonstrate the stability of the crystal structure at finite temperature and
pressure. Indeed, an error of about the 3% has been introduced with respect to static
calculations. Nevertheless, this difference is consistent with the thermal expansion of
the lattice at finite temperature. These structural and dynamical tests point out the
high quality of the produced FF. A more detailed description of these and other tests
is reported in the master thesis of Fernandez Garcia together with the complete list

of the new FF parameters[136].

For what concerns the Hg,p hamiltonian the 6-12 Lennard Jones description of the



150 CHAPTER 4. SMMS ON AU(111) SURFACE

Table 4.10: Calculated and experimental Fe;Me cell parameters and RMSD with

respect to exp. geometry.

Cell Opt. NPT Exp

a (A) 16.554 17.165  16.189
b (A) 16.554 17.275  16.189
c (A) 56.707 57.111  56.712
a(®) 89.99 89.99 90
B(°) 90.01 90.05 90
7(°) 119.99 119.96 120
RMSD (A) 0.4052 0.4636

RMSD without H (A)  0.3370  0.3805

Au-Au interaction has been chosen[I37]. This choice is particularly appealing as it
makes possible to combine the Au-Au interaction parameters with those of the GAFF
in order to readily obtain the H,,0—siqp hamiltonian[I38]. However, this scheme must
be carefully tested and the adsorption energy of a single phenyl ring on Au(111) (E(Ph-
Au(111)) has been chosen as our master benchmark, since lot of computational and
experimental data are available in literature. Moreover, even because the Ph-Au(111)
interaction is supposed to be pretty important in the Fe,Ph adsorption process. When
such kind of interactions are present, the choice of the dispersion forces corrections to
DFT becomes extremely important. At this regard we calculated the E(Ph-Au(111)
both with D3 and rVV10 schemes (see table [4.11]).

Table 4.11: E(Ph-Au(111)) benchmark with both FF and DFT schemes.

TPSS+D3 TPSS+rVvVi0 GAFF  DFT®  Exp”

AFE.q4s Kcal/mol -30.53 -21.26 -27.30 -16.83  -17.06

* Computational value obtained with PBE+vdW*"f from [139];
P Experimental values taken from [T40)].

Both TPSS+D3 and GAFF overestimate E(Ph-Au(111)). Although recently the
highly accurate PBE+vdWS""f functional has been developed, here the TPSS+rVV10
functional, available in the CP2K software, has been used as reference for a new FF
parametrization of the atomic kinds involved in the Ph@Au(111) interaction. This
choice relies in the perspective to use an homogeneous DFT-FF protocol in order to
reduce source of discrepancies in the results coming from different levels of theory.
Aromatic carbon and hydrogen atomic kinds (C, and H,) are the only ones, of those
involved in the Fe,Ph@Au(111) interaction, that are expected to be those that weight
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more in the final results, indeed Fe,Ph is only physisorbed on Au(111) and its Ph
ring is the part which interacts more strongly with the substrate. Accordingly, only
the parametrization of aromatic carbon and hydrogen atomic kinds is expected to be
important for in the final results. The energy profile of the phenyl ring, lying flat
with respect to the Au(111) surface, has been calculated at various distances from the
metal slab. A first attempts to fit this energy profile with a Lennard-Jones potential
has been done but with unsatisfactory results. Accordingly to other parametrization
tests reported in literature, the Lennard-Jones potential form is ineffective to capture
surface-adsorbate interactions and more degrees of freedom in the potential function

are needed. A Morse kind of potential has then be used to complete this task.

Ei‘ = D[@—Q('r‘—'f‘o) - 26_(T_r0)] (41)

The use of three parameters inside the definition of the interaction potential makes
possible to fit with excellent accuracy all the points of the DFT calculated energy
profile and it has been used throughout all the next calculations. The fitted parameters
are reported in table

Table 4.12: Morse Potential Fitted Parameters.
D (kcal/mol) oA™Y 1o (A)
E(Cqo-Au) 0.42717 1.2460  3.5554
E(Hq-Au) 0.14130 1.1105  3.3359

Isolated SMM@Au(111)

The FF just described has been used to perform MD runs of a single Fe, Ph@Au(111).
The study of this system has a twofold importance: it is the fundamental final test
for the FF proposed and it is also useful to check the stability of the fully ab initio
results obtained for FesC5@Au(111) and Fe3CrCs@Au(111) over a longer time scale.
The Fe,Ph@Au(111) DFT optimized structure proposed by Ninova et al. has been
used as starting point for the MD. A simulation of 20 ns at 300 K shows diffusion of
the SMM molecule on the surface.

Fig. reports the distribution of the single and mean +-pitch values and the single
and mean Fe,OF ep values. Differently from the AIMD Fe C5;@Au(111) correspond-
ing values, the single distribution are much more similar among them and readily
resemble their mean distribution. Although these results point to an high stiffness of

Fe,Ph during molecular motion, it should be stress that it might be due to the bonded
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Figure 4.8: (a): Molecular average FeOFe angle’s normalized distribution. (b): Sin-
gle FeOFe angle’s normalized distributions. (c): Molecular average ~-pitch angle’s

normalized distribution. (d): Single «-pitch angle’s normalized distributions.

form of the FF used. Indeed, as the equilibrium geometry is the only one used for the
FF parameters fit and because of the harmonic form of the potential, big reorganiza-
tion of the SMM structure are impossible to be observed in this framework. The MD
simulation has been followed by a thermal annealing down to 200 K in turns followed
by a thermal annealing at the DFT level down to 0 K in 0.1 ps. A final geometry
optimization at the DF'T level reveals a final structure different from the starting one
(see fig. . The main difference between the two lies in the phenyl ring in direct
contact with the substrate whose bending angle with the molecular pseudo symmetry
axis is reduce of 12.3°. Although this is not a dramatic distortion, it is important to
underline that it modifies the position of the whole molecule over the surface, with
consequences for the SMM easy axis orientation. For instance, the presence of the

phenyl ring as physisorbing linking unit makes the easy axis direction of the Fe,Ph
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Figure 4.9: Distribution of the iron ions plane normal vector inclination with respect

to the surface normal vector.

SMM inclined of about 30° with respect to the surface normal vector as showed by
fig. differing less than 5° with respect the starting geometry. This value should
be also compared to the ~ 15° observed for the Fe,C5@Au(111), demonstrating again
the importance of the surface linking group. In table [£.13] there are reported the ad-

A

Figure 4.10: On the left the Fe4,Ph@Au(111) starting configuration used for the MD
simulation (GeoUp). On the right one snapshot extracted from the trajectory after
the FF based MD + DFT thermalization (GeoDown).

sorption energies of both the starting and final Fe,Ph@Au(111) geometries and their
energy difference (AEy,p—down). The good agreement between FF and DFT energetics
validates even further the new proposed FF and they both predict the down struc-
ture as the more stable. For comparison, a FF without the adjusted phenyl-Au(111)

interaction would has predicted a value of AE,p_gown = 49.11 kcal/mol in net dis-
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Table 4.13: Structural values for the Isolated FesMe

AEYP (kcal/mol)  AE¥™ (kcal/mol)  AEyup—down (kcal/mol)

ads ads

FF -46.2 -83.4 -17.0
DFT -53.1 -92.3 -12.1

agreement with the more efficient DFT scheme, demonstrating the importance of the
new parametrization proposed. In order to study in more detail the time evolution of
the SMM structure during the MD simulation, the probability density plot of oxygen
and iron ions has been computed and reported in fig. [{.I1fogether with the SMM
mean structure. These data have been calculated along the whole 20 ns trajectory
after the elimination of the external degrees of freedom. Accordingly with the discus-
sion about the MD mean values distributions, the magnetic core ions experience small
displacements with an almost spherical distribution. For comparison, the thermal an-
nealed final structure, whose energetics has just been discussed, is slightly different
from the mean one but still inside the probability density plot.

Figure 4.11: Mean FesPh core structure and its space probability distribution. Blue
volumes correspond to the oxygen space probability and the red volumes correspond

to iron ions space probability.
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It must be noted that the DFT refinement of the structures produced by the FF based
MD simulation is a mandatory steps in order to access the SMM magnetism. Indeed,
while the FF is believed accurate enough to described qualitatively the dynamics
of the adsorbed molecules and its interaction with the substrate, does not account
for an accurate description of the internal degrees of freedom involving the metallic
ions. This is mostly due to the already discussed dramatic dependency of magnetic
properties over these structural parameters which impose the need to address them
more carefully. The magnetism of the X-ray, Opt-Isol and final adsorbed structures,
reported in table [£.14] and has been evaluated for the extrapolated geometries
with the usual PBEO and PBE approach. The comparison between Opt-Isol and X-
ray models reveal the already observed partial spoils of the structure quality with
the consequent lowering of magnetic properties accuracy. Regarding the mean J;
constant, its value increases from 11.19 ecm™! to 16.05 cm ™! once FesPh is adsorbed
on gold. Although the same trend was observed for the Fe,Cx series, in this case the
entity of the variation is less dramatic, confirming the higher rigidity of the Fe,Ph core
observed also during the MD run. The same observations also apply to the anisotropic
part of the spin hamiltonian whose projection on the ground S=5 state in increased of
0.007 cm~! in absolute value. However, the Eg—5/Dg—s5 ration increases of one order

of magnitude accordingly with the loss of symmetry after the deposition.

Table 4.14: Crystal and adsorbed FeyPh Isotropic Exchange Couplings.

X-ray  Opt-Isol ~ FeyPh@Au(111) Exp Bulk

Jia (em™1)  13.30 13.48 9.37 -
Jiz (em™1)  13.00 16.90 20.66 -
Jig (em™1)  13.10 3.18 18.13 -
Ji (em™1) 13.10 11.19 16.05 16.37

Jz (cm™h) 0.24 0.14 0.19 0.29
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Table 4.15: Crystal and adsorbed FeysPh Magnetic Anisotropies.

X-ray  Opt-Isol  FesPh@Au(111) Exp Bulk

Dy (em™1) -1.100  -1.027 -1.144 -

E/D; 0.06 0.12 0.25 -

Dy (cm™1) 0.728 0.716 0.485 0.710
E/D» 0.16 0.17 0.19 0.108
D3 (em™1) 0.618 0.527 0.491 0.602
E/Ds 0.23 0.28 0.25 0.168
Dy (cm™1) 0.641 0.543 0.675 0.602
E/Dy 0.22 0.25 0.18 0.168
Ds—s (ecm™%)  -0.456  -0.388 -0.395 -0.421

E/Dgs=s5 0.00 0.06 0.18 0.023
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Self Assembled Monolayer of SMM@Au(111)

On the basis of results obtained for the isolated SMM@Au(111) it is now possible to
proceed to the study of molecule-molecule interaction on the surface. For this purpose
an half coverage monolayer of 36 Fe,Ph has been assembled as shown in fig.
A rearrangement of the SMMs distribution to form clusters of molecules is observed
already at the beginning of the simulation run. Panel b) of fig. reports the
half monolayer structure at the end of the MD simulation after 10 ns. Although the
presence of border effects on the clusters, due to the lacking of SMMs that prevent
the formation of a fully periodic phase, the formed island of SMMs clearly show a
regular pattern (see for instance the white hexagonal marked group in panel b) of
fig. . Interestingly, exotic orientations of FesPh have also been observed. For
instance a quasi isolated molecules lying with it pseudo symmetry axis parallel to the
surface has been identified (see the red mark in panel b) of fig. . This structure,
called FeyPhg;qe@Au(111) from now on, has also been optimized alone over a slab
of Au(111) (see fig. [4.13). Notably, this configuration had not been observed in the
single SMM MD simulation and became accessible only with the presence of SMM-
SMM interactions. It must be pointed out that the choice of the starting disposition
of the SMM molecules on the Au(111) slab is in principle a big issue as it might biases
the subsequent results. However, in this case, the high tendency of the SMM to create
a regular two dimensional structure different from the starting one and the excellent
agreement with experimental findings (vide infra), suggests the overcoming of this
MD pathological issue. Nevertheless, a refinement of the MD results on the basis of
more sophisticated methodology, e.g. metadynamics and replica exchange methods,
to extend the exploration of the configurational phase space of this SMM@Au(111)

might be an interesting evolution of this study.

The regular structures observed in the half monolayer simulation and their high sta-
bility suggest the possibility the SMMs can form a two dimensional crystal of packed
SMMs. A simulation cell comprehending 72 SMMs on Au(111) slab has been pre-
pared (see panel a) of fig. |4.15)) and simulated following the same procedure used for
the single adsorbed molecule: an MD run of 10 ns at 300 K has been produced and
followed by a thermal annealing down to 200 K. Clearly in order to proceed to the
DFT refinement of the periodic 2D structure is first necessary to reduce the system
size down to a cell of less then a thousand of atoms. Thanks to the periodic proper-
ties of the self assembled monolayer it has been possible to shape an hexagonal unit
periodic cell containing one SMM. This structure has been then cooled down to ~0
K and optimized at the DFT level (FesPhyp@Au(111) model from now on). The
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Figure 4.12: Panel a): Starting distribution of the half monolayer of Fe,Ph molecules
on Au(111). Panel b): Final distribution of the half monolayer of Fe,Ph molecules
on Au(111). The Au(111) color has been switched to black in order to enhance the

contrast of the molecules.

mean probability distribution P(r) to find two FesPh at distance r, reported in panel
a) of fig. [4.14] shows a regular pattern of picks corresponding to the crystallographic
positions of a 2D hexagonal Bravais lattice. Notably, P(r) almost reach 0 between the

picks pointing out the lacking of diffusion inside the crystal. The residual diffusion is
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Tt f

Figure 4.13: FeyPhg;q.@QAu(111) optimized structure.

probably due to the holes in the surface coverage. Accordingly, a qualitative analysis
of the overall SMMs distribution at the end of the MD simulation shows that although
the majority of the molecules remains in a sufficiently well defined two dimensional
crystal scenario (see for instance the white marked group in panel b) of fig. ,
the observation of other structures as FeysPhg;q.@Au(111) (see the red mark in panel
b) of fig. is still possible. This is further highlighted by the distribution of the
SMMs easy axis inclination with respect to the surface normal reported in panel b)
of fig. 14l The red line reports distribution of the molecular easy axis inclination
angle and clearly shows the presence of at least three molecular orientations. The
first one, centered at ~ 30° corresponds about to the same structure observed in the
single molecule scenario. A second pick, less intense, corresponds to a more tilted
kind of molecule probably due to transient configurations explored by molecules on
the border of the more bulky phase and finally the small pick at 90° points out the
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presence of the FesPhg;qe@Au(111) structure. The very small distributions above
~ 150° corresponds to the same structures with ~ 30° due to the 90° periodicity of
the property under study. Notably, if the mean value of the tilting angle is taken
before the distribution is evaluated, i.e. the distribution shows the entire cell mean
value, the second pick is averages out (green line in panel b) of fig. . The differ-
ence between the two distribution reflect the potential difference between a local (red

distribution) and massive (green distribution) probe of this property.

P(r) A.u.
A.u

0 20 40 60 80 100 0 20 40 60 80 100 120 140 160 180
r (Angstrom) 6 (Deg)

Figure 4.14: (a): Probability distribution of funding two SMMs at distance r. (b):
Probability distribution of the cell mean easy axis inclination in reported in green and
the mean probability distribution of the molecular easy axis inclination in reported

in red.

Isotropic exchange coupling constants and anisotropy tensors for the FeyPhyp@Au(111)
and Fe4Phsid0@Au(111) structures have been calculated with the PBEO and PBE ap-
proach and reported in tab. and together with the previous results for
Fe,Ph@Au(111). The isotropic exchange coupling constant increase passing from the
Fe,@Au(111) models to those coming from the self assembled monolayer. Notably,
Fe,Phgige@Au(111) and FeyPhyp@Au(111) show the same increase of the mean J;
constant. The same apply also to the anisotropies which show a small increase in

their absolute value.
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Figure 4.15: Panel a): Starting distribution of the full monolayer of Fe,Ph molecules
on Au(111). Panel b): Final distribution of the full monolayer of Fe,Ph molecules
on Au(111). The Au(111) color has been switched to black in order to enhance the

contrast of the molecules.
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Table 4.16: Full Monolayer Fe,Ph Isotropic Exchange Couplings.

FesPh@Au(111)  FeyPhgjqo@Au(111)  FeyPhop@Au(111)

Jia (em™1) 9.37 22.57 21.04
Jiz (em™1) 20.66 18.26 23.91
Jia (em™1) 18.13 23.87 19.13
Ji (em™1) 16.05 21.57 21.36
Jz (em™1) 0.19 0.03 0.25

Table 4.17: Full Monolayer Fe,Ph Magnetic Anisotropies.

Fe,Ph@Au(111)  FesPh.;go@Au(111)  FesPhop@Au(111)

D; (cm™h) -1.144 -1.146 1.315
E/D; 0.25 0.18 0.28
Dy (cm™h) 0.485 0.568 0.403
E/D, 0.19 0.21 0.28
D3 (em™1) 0.491 0.508 0.615
E/Ds 0.25 0.22 0.17
Dy (em™1) 0.675 0.633 0.712
E/Dy 0.18 0.19 0.17
Ds—s (cm™1) -0.395 -0.417 -0.418

E/Ds—s 0.18 0.07 0.14
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Conclusions

The FF based MD simulation of a single Fe;,Ph@Au(111) confirms the main outcomes
about the AIMD study of the similar Fe,Cs@Au(111), where the influence of the
linking group that makes the SMM bound to the substrate has been revealed. The
proposed FF set up has been demonstrated a reliable and powerful tool and has been
used to simulate the self-assembled monolayer at two different coverage: half and full
monolayer. The study of the self-assembled monolayer points out the importance of
inter molecular interactions in the modulation of SMM magnetic properties and, as
also observed for SMM-substrate interactions, the isotropic exchange couplings are the
most affected parameters of the spin hamiltonian while the axial anisotropic ground
state parameters Dg_s5 are modulated to a lesser extent by structural reorganization.
Interestingly, inter molecular interactions lead to the observation of several structures,
not explored by the MD simulation of the single Fe,Ph@Au(111), which differ mainly
for the orientation of the SMM easy axis. However, although the most probable
structure is associated to a periodic 2D crystal, where the orientation of the single
units resemble the orientation of the isolated one, the need to engineer SMM structures
in order to lead to a specific and regular self assembled monolayer became evident.
This need becomes especially relevant as the lacking of a surface covalent grafting
is suggested to be at the origin of a reduction of the 2D crystallinity, due to the
stabilization of SMM configurations with an unwanted easy axis parallel to the surface.
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4.4 Surface Grafting Screening Effects

Density Functional Theory (DFT), in its LDA or GGA flavor, is the commonly used
method for calculations of electronic and magnetic properties of transition metal ion
clusters. For both isotropic exchange coupling constants and density of states pre-
diction this tool is known to give poor results.[141], [142] For what concerns isotropic
exchange coupling constants, the overestimation of the magnetic orbitals delocaliza-
tion, due to spurious self-energy interactions, results in an overestimation of the an-
tiferromagnetic interaction between unpaired spins, while the lacking of non-local
interactions inside the exchange-correlation potential exclude the renormalization of
molecular MOs while approaching metallic substrates, thus providing unreliable DOSs
and related magnetism. This last point becomes especially important in the context
that is going to be discussed in this section, as the effects of electronic interaction
between localized d-like SMM states and itinerant s-like Au(111) states will be ad-
dressed. An interesting way through these technical problem is provided by the hub-
bard correction[126] and in the last section a first attempt to the determination of the
importance of electronic effects coming from the substrates surface states has been
done in this framework. However, this correction scheme has been implemented in its
native phenomenological approach with parameters prepared ad hoc to reproduce the
bulk magnetic scenario. In order to overcome this theoretical limitation, in this sec-
tion the DFT+U procedure will be considered in its linear response framework|[143].
The possibility to calculate the Hubbard correction within DFT theory, enables us
to define it for different chemical environments without the necessity to modulate it
on the basis of experimental data, which are not always available. However, most
importantly, it must be stress out that this practical advantage of the DFT+Upg
is not the only appealing property of this computational scheme and its validity on
the scenario of molecular magnets deposited above metallic substrates is grounded
on strong theoretical considerations. Lets start noting that the DFT+Ur approach
already introduce into the theory a key element for the description of bulk SMMs.
Indeed, as pointed out by Pemmaraju et al.[I44] the hubbard correction could be
interpreted as self interaction correction acting on a subset of localized MOs and,
in fact, it has been already showed that accurate exchange coupling constant could
be extracted from such an approach once the hubbard correction is applied over both
transition metals and those ions responsible for super exchange interactions[I45]. The
account of the weak hybridization between itinerant and localized electrons is one of
the most investigated problems in the realm of computational chemistry as the flaws

in its description make the assessment of all the properties related to the adsorbed
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system quasi particle spectra unreliable. The source of errors in the description of
this property arises from the lacking of proper non-local interactions inside the Kohn-
Sham potential which in turn exclude the formation of the correct band gap due to
the absence of the discontinuity of the total energy with respect to the system occupa-
tion numbers. As nicely discussed by Himmetoglu et al.[I46], the introduction of the
DFT+Upg correction would dress the system exactly with these lacking features. A
formal connection with higher level of theory as GoWy, already known to give reliable
states renormalization for physisorbed molecules, has also been provided [I47]. It is
also interesting to note that a strategy formally equivalent to the DF'T+U i approach
in the context of surface induced band gap renormalization has been exploited by Sau
et al. and Souza et al.[I48], [149], with the only difference that they had applied the
correction to the HOMO and LUMO orbitals instead to the magnetic ones. Clearly
this two framework would coincide when magnetic orbitals lies near the Fermi level.
Moreover, as this correction is applied only to the localized d-like states of the tran-
sition metals of the SMM, the GGA part of the functional is still taking care of the
description of delocalized states of the metal, which are known to be sufficiently well
described by GGA functional.

According to the discussion above, linear response calculated Hubbard correction is
the perfect candidate to represent the extension of the state of art computational
treatment for this system, as it is able to take into accounts the aforementioned prop-
erties, which are all at the same time needed to correctly reproduce SMM electronic
features once deposited on a metallic substrate. Although these such intriguing fea-
tures sound very appealing, DFT+Ur has been applied only a few times[I50] to
systems similar to the one discussed here and this work represent the first attempt
to use it for the determination of surface induced polarization effects on molecular

magnetism.

The computational strategy follows the same outline of the last sections. Magnetic and
electronic characterization have been produced for both the gas-phase optimized struc-
tures (Opt-Isol Models), the adsorbed SMM relaxed structures (SMM@Au(111)) and
finally for the extrapolated models (SMM@Au(111)), where the last one is obtained
from the SMM@Au(111) model just removing the Au(111) slab without changing
the SMM structure (see Methods section for more details). The comparison between
these three models makes possible to capture from a microscopic point of view the
weight of structural and electronic modifications upon SMM magnetism induced by

the adsorption process.

The relaxed structure of Fe;Cs@Au(111), obtained through AIMD and thermal an-
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Figure 4.16: CrOFe angle’s normalized distributions.

nealing calculations, have been reported and discussed in the last section and here its
analysis will be restrained to the Walkerl geometry. In order to study the dependence
of helical pitch magnetism on the nature of its magnetic ions, an AIMD calculation
has been performed on FezCrCs@QAu(111) (see Methods for details) showing that its
time evolution is similar to the one already observed for Fe,C5@Au(111). As already
discussed elsewhere (see section for the FeyCs system, it exists a correlation be-
tween the angle Fe.OFe, and the isotropic exchange coupling parameter which couple
the two iron ions. Although the same correlation has never been highlighted for the
CrOFe moiety, its validity could be extend to the system under study. The thermal
fluctuations of the CrOFe angles has been reported in Fig. [£.16] for the adsorbed sys-
tem. Comparing the Opt-Isol model’s CrOFe angle average value (101.0°) with the
mean distributions reported in Fig. is possible to observe that the interaction of
Fe3CrCs with Au(111) distorts the SMM’s structure producing an overall increase of
these parameters value. The violet curves in Fig. [£.16] shows that the CrOFe, angle
is the most affected by the grafting process and it is due to the interaction of Fey
with the Cj aliphatic chain that bind the SMM to the substrate. These finding are in
perfect agreement with what already reported for Fe,Cs@Au(111). The two SMMs
share about the same relaxed geometry and the structural effect on magnetism due

to the substrate could be readily compared.

The Hubbard on-site coeflicients have been therefore evaluated for all transition metal

ions and ligands oxygen ions separately for all models in order to include screening
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effects due to surrounding environment changes. As the calculation of the hubbard
correction for every different atomic kind requires two self consistent field energy
calculations each, only two oxygen kinds have been used: oxygen atoms belonging
to the tripod ligands (O,) and oxygen atoms belonging to the dpm external ligands
(Oc). The calculation of the hubbard correction for these two kinds has been done for
only two representative atoms bonded to Fes. The results are reported on Table [£.18]
The U values for the Opt-Isol model transition metals are in remarkable agreement
with those phenomenologically introduced in section While the effect of pure
geometric distortions on transition metals U values is negligible for Fe,Cs@Au(111),
the on-site U correction for FezCrCs@Au(111) increases of about 0.5 eV. Interestingly,
the sole effect of the surface is able to increment the U value for the central ion in
FeyCs5@Au(111) of about 0.8 €V. An increase on the Cr ions of about 0.3 €V upon
inclusion of the gold slab is also observed. The effect of structural and electronic
perturbations on the chromium ion U value is additive and it results in a total increase
of 0.8 eV passing from the Opt-Isol to FesCrCs@Au(111) model. This effect worth a
further comment. As briefly discussed in the introduction of this section, the hubbard
correction is deeply connected with the opening of the molecular band gap due to
the restoration of the discontinuity in the Kohn-Sham energy profile. Moreover, as
the hubbard correction has been calculated for every different scenario it is also able,
at least to some extent, to take into account the screening effect due to the metallic
surface. The variation of the hubbard correction upon inclusion of the gold slab is a
clear manifestation of this effect, which is believed to be of fundamental importance in
order to retain the calculated results reliable. The on-site Hubbard correction values
of oxygen ions remain about the same for all the models considered. Although only
two oxygen atoms have been monitored, the selected ones are those most influenced
by structural rearrangements, pointing out the robustness of the hubbard correction
for oxygen atomic kinds. However, differences of about 1 eV between the U correction
associated to the dpm oxygen ions for FeyCs and Fe3CrCs have been noted. Besides
the differences already discussed, the magnitude of the U corrections calculated for
transition metals have been found similar to the phenomenologically fitted values used
in the last section. The same is not true for the corrections on oxygen ions. Indeed, the
linear response calculation provides values more than 100% higher. This discrepancy
mainly arises from the different chosen MOs sub set where the hubbard correction
is applied. In the last section the hubbard parameters where fitted and used over
the projection of MOs over a set of Lowdin orthonormalized metal d states while in
this context the correction is applied over non-orthogonal atomic-like metal d states.

The choice of the nature of the sub space where to apply the hubbard correction
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represent the only arbitrary part of this formalism and it must be chosen accordingly
to both common sense and quality of the results. Preliminary test of DFT+Upp
on iron dimer and other Fe,Cs SMMs point out the necessity to use non orhogonal
d-like MOs as definition of localized states. Although this choice is reasonable for the
transition metal ions, the use of pure p atomic orbital for the oxygen ions is probably
less acceptable as the corresponding MOs have a more pronounced hybridization with

respect to the d counterpart.

Table 4.18: FegM Calculated On-Site Hubbard Parameters

U (eV) Opt-Isol FesM@Au(111)  FezM@Au(111)

Cr Fe Cr Fe Cr Fe
M 3.8 4.3 4.3 4.4 4.6 5.2
Feq 4.8 4.4 5.3 4.5 4.6 4.3
Feo 4.8 4.4 5.2 4.5 4.8 4.5
Fes 4.8 4.4 5.2 4.5 4.8 4.5
Oy, 10.5 9.5 10.4 10.8 10.7 10.2
O, 114 100 11.3 11.2 11.3 10.6

At this stage, only the evaluation of the mean isotropic coupling constant J acting
between the central ion and the peripheral ones has been calculated at the DFT+Up g
and results for Fe,Cs and FesCrCj are reported in Table[d.19] Isotropic exchange cou-
pling constants for FesCrCs Opt-Isol model is in good agreement with experimental
data, which place it at slightly less antiferromagnetic values with respect to Fe,Cs
SMM. Despite the DFT prediction is in line with the expected behavior, the Fe,Cs
Opt-Isol J value is found overestimated of about 6 cm ™! with respect to both experi-
mental value and the results reported in the last two sections. From the comparison
of results for Opt-Isol and SMM@Au(111) models it has been found that the mean
J constant is enhanced as a result of structural rearrangements of the magnetic core
after the deposition of the SMMs. Although the same trend was observed in the last
sections, where hybrid and phenomenological DF'T+U approach were exploited, here
the effect of structural rearrangements on Fe Cs is less dramatic. However, it must
be noted that the J value of the Fe,Cs@Au(111) model is in remarkable agreement
with the previous analysis and that this discrepancy comes from an overestimation of
the Opt model J.

The comparison between SMM@Au(111) and SMM@Au(111) models revealed that
the sole electronic contribution of the metal substrate reduces the mean J; con-
stant of about 6 cm™! (36 %) for Fe3CrCs@Au(111) and of 3.4 cm™! (14 %) for
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Fe,C5@Au(111). This is a twofold remarkable result: firstly it shows that the metal
acts to reduce the antiferromagnetic contribution to J and, secondly, it highlights the
dependence of its magnitude on the nature of the transition metals involved. Al-
though the similar structure of the two SMM are almost identical, the final J values
for the adsorbed systems are significantly different. This result could be used to rec-
oncile two apparent contradictory experimental reports. The mean J values for both
SMM@Au(111) have been measured by means of two different experimental methods.
In the case of Fe,Cs@Au(111) the authors claimed to observe an increases of J of
about ~ 60% with respect to the bulk value. A completely different scenario has been
observed for Fe3Cr@Au(111) where no significant variations on J was observed|[I51].
On light of the calculations just discussed, this could be explained considering the
different activity of the metal substrate, that compensate the structure deformation
effects only for the Fe3CrCs.

Table 4.19: Fe3CrCs and Fe,Cs Isotropic Exchange Coupling Parameter.

J (em™1) Opt-Isol SMM@Au(111) SMM@Au(111) Exp-Bulk Exp@Au(111)
Fe3CrCs 122 cm ™t 16.6 cm ! 10.7 cm ! 13.0-15.6 cm™*®  14.0-15.6 cm 1P
FesCs 21.4 cm ™! 24.2 cm ™! 20.8 cm ! 15.6 cm ™! 25.7 cm ™ t¢

? Value taken from the work of Totaro et al.[I52] and Tancini et al.[24]
P Value taken from the work of Tancini et al.[I51]
¢ Value taken from the work of Salman et al.[I53]

In order to get some insights on the nature of such interaction Lowdin charges and
projected DOSs have been evaluated. The difference between the 16wdin charge car-
ried by transition metal and oxygen ions between SMM@Au(111) and SMM@Au(111)
models is 0.088 and 0.092 atomic charge unit for FesCrCs and Fe Cs, respectively.
Therefore, although for both system a very small depletion of charge in the core region
is observed, according to its modest value, it is possible to exclude a significant charge
transfer effect between surface and magnetic core. This is indeed expected because of
the insulate barrier created by organic ligands. As demonstrated by the analysis of
the Lowdin charges, the magnetic core region could be considered as a physisorbed
unit. Indeed, nevertheless the SMMs are chemisorbed through a S-Au(111) bond to
the substrates, the Cy alyphatic chain ensure the independence of magnetic core from
the bonding region. Consequently, the screening effects due to the metal charge den-
sity stands as the prominent interaction operating in this framework, coherently with

common observation about physisorbed molecules upon metal substrates.
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Figure 4.17: Fe3CrCs projected DOSs on 3d orbitals of Cr and one Fe,, Ions.

Pojected DOSs on 3d atomic like orbitals of Cr and Fe ions for both FesCrCs and
Fe,Cs SMMs are reported in Fig. [1.17] and [£:18] respectively. The DOSs is reported
for all the models in order to show the effects of specific interactions. The density
of occupied states for Fe3CrCs; Opt-Isol model are characterized by two peaks near
the Fermi energy. The density of states corresponding to d orbitals of peripheral iron
ions are shifted at lower binding energies with respect to Cr states and are much more
spread in energy, displaying the effect of a less pronounced local symmetry with respect
to the distorted octahedral environment of the central Cr ion. FesCrCs@Au(111)
density of states show that structure distortions produce a shift of iron d orbitals to
lower energies with respect to the Opt-Isol model, while the energy of Cr d orbitals
is slightly shifted toward the Fermi energy. Moreover, the degeneracy of the two
high lying d orbitals of the Cr ion is removed producing two different peaks. The
comparison between FezCrCs;@Au(111) and FesCrCs@Au(111) models DOSs show
that the proximity of Au(111) electronic density shifts the occupied d orbital energies
towards the Fermi energy. Notably, the Fe3CrCs becomes half metallic when adsorbed
on Au(111). The DOSs for peripheral iron ions in FeyCs follows a trend similar to

the corresponding ions in FegCrCs. Due to the broad and not well defined line shape
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Figure 4.18: Fe Cs projected DOSs on 3d orbitals of Fe. and one Fe,, Ions.

of Fe. in Fe,Cs5, the evolution of its DOSs is not easily rationalized and follows about

the same changes of the three Fe,.

Although there is not a straightforward procedure to extract from the DOSs the sin-
gle contribution to the isotropic exchange coupling, an attempt to give e qualitative
interpretation on the basis of Hoffmann’s theory will be performed. The resulting
total exchange coupling between two paramagnetic ions may be considered as the
sum of exchange couplings between all the possible couples of electrons, each located
on different magnetic centers. Moreover, each electrons couple produces an antiferro-
magnetic contribution to the total J constant proportional to (E; — E,)?, where K,
and FE, are, respectively, the energy of the gerade and ungerade combination of the
two d orbitals containing the selected couple of electrons. Taking a look at the pro-
jected DOSs, it is clear that d orbital of Cr and Fe are poorly mixed inside MOs and
therefore, it is possible to approximate (E, — E,)? to (E(dp.) — E(dc,))?. Compar-
ing the energies of occupied dp, and d¢, orbitals for Opt-Isol and FegCrC5,@Au(111)
it is possible to observe an overall increases in their energy separation. According
to the above considerations, an increase in the antiferromagnetic contribution to the

isotropic exchange coupling constants is expected and indeed observed by calculations.
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Comparing the energies of occupied dp. and dg, orbitals for Fe3CrCs@Au(111) and
FesCrCs@Au(111) models is possible to observe the opposite trend. The energy of
both d¢, and dp. orbitals get closer to the Fermi Energy but with a reduction of their
energy difference. Therefore, isotropic exchange coupling constants are expected to
be reduced by the electronic interaction between Fe3CrCs and substrates. Also in this
case our simple model is in accord with DFT+UjpRr calculations. The same reasoning
is expected to apply also to Fe;Cs but unfortunately the complexity of its DOSs does
not allow to verify it. However, in this framework, as Fe,Cs DOSs changes are less

evident with respect to Fe3CrCs ones, a weak effect on J is expected.

At this stage it is not possible to unambiguously demonstrate the source of these
different shifts in the Fez3CrCs and Fey,Cs DOSs and more tests will be needed. How-
ever, excluding the charge transfer effect as the driving interaction between SMM
and substrate on the base of the previous discussion, the image-charge effect is the
best candidate to explain the presented features. From a classical point of view, this
effect arises when a charge distribution p(¥), is placed near a surface. According to
Maxwell equations, the electrostatic potential ¢(r) inside the substrate would follows

the solution of the screened Poisson equation

(VZ - X)¢(I_:) = p(F)mol (42)

where y represent the surface susceptibility. Therefore, the p(r)mo density induces a
response in the slab, polarizing it, which in turns generates an electrostatic field acting
on p(T)mor itself. This effect is known as image-charge effect and it is at the origin
of molecular electronic level renormalization induced by a substrate. The potential

acting on the molecules is of the form

/

() (4.3)

- 4|z — 2|

where z — zp is the distance from the surface, q is the test charge out of the surface
a distance z — zg and q'=q(1l-€)/(1+¢€) is the image charge in the surface with € =
1+ x. According to this form of the potential, the molecular electronic levels energies
would be shifted according to their MO shape and distance from the surface slab.
Concluding, all these effects might play together in order to shift different MO energies
in different ways, producing a modulation of the J constants as expected from Hoffman

theory.
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Conclusions

The addressing of the tricky effect of the weak hybridization between localize d-like
and itinerant metal electrons has been attempted through a linear response DFT+U
framework in order to obtained a balance description of all the electronic features.
Application to FegCrCs@Au(111) and FeyCs@Au(111) SMMs revealed that screen-
ing effects are operative on their magnetic core, which act over the main J; isotropic
exchange coupling constant to reduce its absolute antiferromagnetic value. The anal-
ysis of Lowdin charges and DOSs suggests that the principal source of screening is
the polarization of the surface due to the molecular charge density and only small
charge transfer screening is operative. A qualitative interpretation of the computa-
tional data by mean of classical image-charge surface effect and Hoffman theory has
been provided paving the ground to future, more extended, studies. Indeed, as the
reciprocal spin states energy difference is at the origin of all the magnetic properties
described by means of the spin hamiltonian, the possibility to shift them through an
interplay with surface itinerant states might has deep effects also on the anisotropic

properties of SMMs.
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4.5 Summary

In this chapter the adsorption of SMMs over a metallic surface has been studied with
particular attention to decouple effects coming from different kind of interactions
i.e. SMM-Au(111) and SMM-SMM, where the former ones have been further divided
between effects coming from pure structural rearrangements and pure electronic inter-
action with the gold itinerant electrons. In all the studied scenario the basic magnetic
features of the helical pitch SMM family have been retained i.e. the ground state S=5
and its negative axial anisotropy Dg—_s5 remain qualitatively the same. However, from
a multi spin point of view, the spin hamiltonian parameters are deeply influenced by

the many interactions occurring in the complex surface scenario.

The study of the series of grafted Fe,Cx@Au(111) and the physisorbed Fe, Ph@Au(111)
revealed the important effect of structural rearrangements over SMMs magnetism. In-
deed, vdW forces between substrate and molecules lead to a strong interaction between
the two, with consequent severe modification of the molecular structure. This effect,
generally not recognized in literature, is expected to be particular important for this
class of system because of their complex structure with many degrees of freedom. The
surface linking group itself has been revealed a key element in the modulation of the
magnetism on the surface, mainly because it is responsible for the SMMs orienta-
tion on the substrate. Indeed, if a long spacer chain can ensure a facilitate grafting
procedure, it can also induce larger geometrical perturbations at the magnetic core
level risking to alter the Fey magnetic structure. On the other hand, a too short link-
ing group might induces an exceedingly molecular stress leading to the loss of SMM
properties e.g. FeysCy. The possibility to employ a physisorption process instead to
a covalent grafting has been addressed with the study of a single Fe,Ph@Au(111),
which showed the same qualitative features of the Fe,C x @Au(111) series in addiction
to an high on surface molecular mobility. FesPh has been also used to study the
effect of inter molecular interactions once a self assembled monolayer is formed. Both
the half and full monolayer coverages have been simulated, showing that on surface
packing interactions play a role in the modulation of easy axis orientation and single
molecule properties. Interestingly, the lacking of a covalent grafting and the possibil-
ity of interaction among molecules leads the SMMs to assume multiple configurations

unexplored by the single molecule scenario.

Finally, the effect of the weak hybridization of SMM magnetic orbitals with the metal
itinerant electrons has been addressed for Fe,Cs and Fe3CrCs systems. The sole effect

of molecular level reorganization has been found operative in both system leading to
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a decrease of the main isotropic exchange coupling interaction inside the magnetic
core. However, the magnitude of this effect has been found dependent on the nature
of the magnetic ion involved in the interaction showing a more pronounced effect for
FesCrCs@Au(111). Although a more detailed study is mandatory in order shed more
lights on this effect, a possible interpretation on the basis of image charge effect has
been provided, suggesting that the alignment between the metal Er and molecular
levels, the shape of the magnetic orbital and their distance from the surface might play
a fundamental role in this interaction. Moreover, according to this interpretation, the
possibility to tune the surface response to the molecular deposited charge density, e.g.
applying an electrostatic bias or changing the surface itself, might lead to interesting
magnetic properties modulations. Although in the context of this thesis only the
effect over isotropic exchange coupling constants has been addressed, it is believed

that both single ion anisotropy and exchange anisotropy might be affected.

Finally, from a computational point of view, in this chapter a big amount of work has
been devoted to development of a multiscale protocol able to address and disentangle
the many interactions separately. This goal has been achieved through the interplay
of different level of theory and different computational approaches which have been
selectively used in the respective area of interest. For instance, once the need of
molecular dynamics to study the structural arrangements had been realized, the high
quality fully ab initio approach has been restricted to the single molecule scenario while
a more computationally light FF parametrization has been developed to stress the time
scale limits and system sizes up to nano seconds and more than twenty thousands
of atoms for the study of the self assembling process. The same approach has been
followed for the study of magnetic properties where the use of highly demanding hybrid
PBEO functional has been restricted to the isolated and extrapolated scenario where it
was known to well describe localized d states, leaving the place for DF'T+U approaches
for the more demanding adsorbed scenario where a more balanced description of

localized and itinerant electrons was needed.
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4.6 Computational Methods

Models

The Au(111) surface has been modeled as a four layers slab of gold. Each layer consists
of 80 gold atoms. The dimensions of the simulation cell are 23.05 x 25.0 x 60.0 A.
Periodic boundary conditions are always applied, but the size of the box is sufficient
to avoid interactions between periodic images of the FeyCs units, which are about
10 A apart from each other. From experimental and computational evidances it can
be assessed that both thioacetyl and simple thiols undergo an homolithyc cleavage
of the S-Ac (S-H) bond with the formation of a sulfur radical, which is the species
that effectively binds the metallic substrate.[I54], I55] The Fe,Cs molecule has two
side chains, each containing one thioacetyl group. Thanks to the steric hindrance of
the magnetic core, only one of the two chains can actually bind to the substrate[156].
According to literature[I54], [155] 157, [158], the initial configuration was prepared
grafting the X-ray structure of Fe,Co_5 upon the Au(111) after the removal of one
Ac’ group from one aliphatic chain, while leaving intact the other one. The starting
geometry of Fe3CrCs has been chosen simply replacing the Fe. ion with a Cr*? ion

in the Walkerl structure as discussed in section (.4

MD and optimizations

AIMD calculations within the Born-Oppenheimer framework have been performed op-
timizing the wave function at each MD step. Electronic structure and nuclear forces
have been calculated at the meta-GGA DFT level of theory, applying the Gaus-
sian and plane wave (GPW) method[I59] [160], as implemented in CP2K[I6I]. The
GPW approach is based on the expansion of the valence electron molecular orbitals
in Gaussian type orbital basis sets, for which we use molecule optimized basis sets of
the DZVP-MOLOPT-SR-GTH type.[73] The auxiliary plane wave basis set is needed
for the representation of the electronic density in the reciprocal space and the effi-
cient solution of the Poisson’s equation. We truncate the plane wave basis set at 400
Ry. The interactions between valence electrons and atomic cores are described by
means of Godecker-Teter-Hutter pseudopotentials.[74, [75] In particular, we used the
TPSS[124] functional together with the Grimme’s D3 corrections[125] to account for
the dispersion forces. The computational set up has been tested on bulk Au, Au(111)
surface energy and cohesive energy of Benzene on Au(111) (available on ESI). The

selected set up can adequately reproduce the structure of both gold slab and grafted
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molecule. PBE and non local dispersion corrections (rvv10) have been used for both
optimizations and AIMD runs only for the Fe,Ph SMM simulations (see section
for further discussions). Electronic energy calculations have been carried out with
the direct diagonalization of the Kohn-Sham matrix until the maximum gradient of
the wave function was less than 1.0E-05 for AIMD and 1.0E-06 for geometry opti-
mizations. In order to reach rapidly the convergence criteria we used both a Broyden
mixing procedure and a smearing of the MOs’ occupation numbers with a Fermi-Dirac
distribution set at 1500 K.

Hamiltonian equations of motion are numerically integrated using the velocity Verlet
algorithm and a time step of 1 fs. Canonical distribution of momenta at 200 K is
enforced with the canonical stocastic rescaled velocity (CSVR) thermostat[162] with
a time constant of 100 fs during thermalization and 500 fs during acquisition runs.
When requested, independent trajectories starting from the same initial configuration
have been generated by first initializing the velocities at 100 K and then annealing
the system up to 200 K by different ramp procedures. Total energy conservation
has been obtained with a smearing of molecular orbitals’ occupation numbers with a
Fermi-Dirac distribution at 1500 K and with a convergence threshold criteria on the

maximum wave function’s gradient of 1.0E-5.

When dealing with multispin systems, the DFT solution which can be used to evaluate
forces is not unequivocally defined. Various spin solutions, described by broken sym-
metry (BS) states, are available. For what concern the overall structure of the complex
and its interaction with the surface, the choices of one spin DFT solution instead of
another is not important and no appreciable differences should be expected. For this
reason, all the AIMD calculations are carried out with forces evaluated from the elec-
tronic configuration that better describes the lowest energy spin multiplet (S =5 for
Fey and S = 6 for Fe3Cr): the central iron (Fe. or Fey) / chromium is down polarized

while the peripheral irons (Fe, or Fes_4) are up polarized (schematically DUUU).

All the force field based MD calculations have been done with the software LAMMPS.
The single molecule simulations has been done on a cell of 46.08x50x60 Awith a 6 layer
slab of gold (1902 Au atom in total) while for the half and full coverage monolayers
simulations a simulation cell of 138.24x134.28x80 Awith a 6 layer slab (33000 Au atom
in total) of gold has instead been used. Non-bonded interactions cutoff has been set

at 20 Aand pppm summations have been exploited with an integration accuracy of
1.0E-7.
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Magnetic Properties Calculations

The nearby metallic substrate could affects Fe,Cs magnetic properties both by ge-
ometrical distortions and electronic effects. In order to decouple and independently
estimate these two contributions we evaluated the magnetic properties both on the
entire system (mol@Au(111)) and on the molecule by itself in vacuum (mol@Au(111)).
This procedure was applied only for the isotropic exchange coupling constants calcu-
lations while for the anisotropy parameters calculations it was possible to study only
the extrapolated case. Nevertheless it is not possible to exclude a priori an electronic
contribution from the metal to the anisotropic magnetic properties of the SMM and
this topic is left for future studies. Magnetic properties analysis have been carried out
utilizing both CP2K and ORCA software. For what concerns the extrapolated ge-
ometries we used the same procedure of section for the Fe, SMMSs. This procedure
consists in two steps. The first one requires the CP2K code with the hybrid PBEO
functional[72] for the calculation of the isotropic exchange coupling constants. The
PW cutoff have been set to 400 Ry, DZVP-MOLOPT-SR basis sets with GTH pseudo
potentials have been chosen for all the elements. For the evaluation of exact exchange
integrals we take advantage of an auxiliary basis set[76]: the DZVP-MOLOPT-SR
basis set has been used for iron ions while the SZV-MOLOPT-SR basis set was cho-
sen for carbon, hydrogen, oxygen and sulfur atoms. Convergence criteria over the
maximum component of the wavefunction’s gradient were set to 1.0E-6. Following
the Noodleman formulation of the BS approach[32] [82], isotropic exchange coupling
constants have been extracted solving the linear system

AE(HS — BS({sk})) = Y 2Jijsis;\° (4.4)

where s; and s; are the value of the single ion spins, J;; their exchange interaction
and \;; is equal to one if, for the specific BS state considered with the appropriate sy
value, the couple of spin (i,j) are misaligned, zero otherwise. The SH considered to
model the multiplet structure of the Fe,Cs is given in Equation In order to solve
the system [£.4] for the SH model [2.55 we used four different energy differences built up
by the HS state and the four BS determinants: DUUU, UDUU, UUDU and UUUD.
Once the non relativistic multiplets structure is obtained, it is then possible to proceed
with the second step, where the calculation of the anisotropy tensors is performed.
For this second task the software ORCA has been utilized. The computationally
cheap GGA (PBE) functional has been used, since the expensive PBEQ is found not
to improve the results. We used the def2-TZVP basis set for all the elements and the
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RI approximation for the coulomb operator integral evaluation have been employed
with the def2-TZVP/J auxiliary basis set. Speaking in the ORCA notation, Grid
5 and Very Tight convergence criteria were used. The protocol used to compute
anisotropy splittings follows the route of the diamagnetic substitution. We evaluated
single ion tensors making the substitution of all but one iron ions with Ga3* ions at
turn. Both Spin Orbit Coupling (SOC) and Spin Spin (SS) interactions were take
into accounts for single ion anisotropy tensor calculations.[37, [38] For what concerns
the anisotropic exchange coupling interaction between iron ions we decided to take
into account only spin dipole pair interaction. Moreover, although a few differences
between DFT and point-dipole like calculation of this interaction exist,[53] we decided
to use the second one which is less computational demanding. This procedure makes
possible to directly map the multispin Hamiltonian H=) ", §; - Dj '§i+2i,j;&i Si-Djj-§;
from DFT calculations. Thanks to the quite large J coupling constants, compared to
anisotropy splitting, it was possible to take advantage of the strong exchange limit
and use the Giant Spin Hamiltonian (GSH) H=S  Dg_j5 - §, which is generally used
to interpret experimental data. The multispin Hamiltonian and the GSH are related

by the equation
Dg = E d;sDi+ E d%Dij (4.5)
i ij

where the projection coefficients df and dfj were evaluated as:

S (aS||Tu(si,s;)||aS)

© T {(a8||Tu(S, 8)||asS)

(4.6)
s _ <aS||T2 Si,Sj HozS)
Y (aS||T»(8S, S)||S)
where (aS||- - ||aS) stands for an irreducible matrix element of spherical tensor Tjg.

Once the eigenket of the Heisenberg Hamiltonian (Eq. ) |awS M, s> have been eval-
uated by numerical diagonalization, d; and disj could be calculated taking advantage
of the Wigner-Eckart theorem.

The straightfoward application of this procedure to the calculation of the isotropic
exchange coupling once the Au(111) metallica slab is considered is not possible. Al-
though the hybrid formulation of DFT usually improves the results for system de-
scribed by localized states, when delocalized states are considered, as is the case of

metallic systems, GGA functionals give better results. Moreover, the computational
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cost for a periodic extended system like those treated in this work poses several limi-
tation to the application of hybrid functional to this class of systems. However, it is
well known that DFT at the GGA level overestimates the delocalization of the charge
density leading to unacceptable overestimation of antiferromagnetic interactions. In
order to solve this situation, we employed a GGA+U methodology[126] for the study
of SMMs and Au(111) substrate at the same time. This procedure makes possible to
correct part of the GGA deficiency on the treatment of localized states, without loos-
ing high speed performances of non-hybrids functionals. In section we tested the
DFT+U in its phenomenological formulation with the CP2K software, choosing the U
correction for Fe, O and Au elements of 4.1 eV, 3.0 ¢V and 0.60 eV, respectively. These
values were taken from the works of Ninova and Malavolti et al.[128, [163]. In section
[£:4] this approach has been extended to its parameters-free linear response formulation
(Urgr) and applied to Fe,Cs and FezCrCs SMMs. In this context, Ur g, Density of
States (DOSs) and isotropic exchange coupling constants calculations have all been
done with Quantum Espresso software.[164] PBE functional with PAW pseudo poten-
tials have been used together with a plane wave cutoff of 50 Ry for the kinetic energy
and 300 Ry for the electronic density. Such values for the plane wave expansion cutoff
were carefully testes in order to get well converged multiplet energy differences. The
computation of the on-site Hubbard correction have been applied to all transition
metal atoms and all oxygen ions. The inclusion of the correction for the latters has
been shown to be crucial to get a quantitatively agreement between simulation and
experiments. [145] [165] [166] The Hubbard U values has been computed as the second
derivative of the ground state electronic energy (E) with respect to the i-site occu-
pation number (n;)[]. We chose to define the i-site occupation number n; through
the projection of the electronic density on the non-orthogonalized d and p atomic
orbitals for the metal and oxygens ions, respectively. The computation of the energy
derivatives is performed through the application of an external o potential acting on

the sub manifold of projected atomic orbitals:

_ _ 871@
Ui = (Xiol — X Yoxi= <8a-)a:0 (4.7)

where y; is computed with self consistent converged wave function and ;g is calculated
with the wave function after the first diagonalization with the applied a potential.

The derivatives are numerically evaluated thorugh « variation of 0.1 eV.



Chapter

Final Remarks and Perspectives

In this thesis a systematic theoretical and computational approach has been applied to
the main research aree concerning SMMs. The state of the art about SMMs modeling
has been used and pushed forward in order to investigate their properties in different
environments: isolated, embedded in molecular crystals and deposited on a metallic

surface.

Besides the results presented and discussed, this thesis is also expected to stimulate
further investigations on the here presented topics. Indeed, from a perspective point
of view, the results on spin relaxation phenomena can represent a very promising
starting point in the SMMs field. Thanks to it, indeed, it would be possible to answer
to many questions and open it to new developments. For instance, the extension of
the formalism here developed would make possible its straightforward extension to
higher order perturbation treatments, making an ab initio determination of the sec-
ond order Raman effects on relaxation. Most importantly, a more detailed analysis
on normal modes contribution to the several relaxation pathways is expected to be
a breakthrough in the comprehension of this phenomena with consequences also for
experimental studies. It is important to stress out that the microscopic description
of time dependent spin phenomena represents an aspect of paramount importance in
physics due to its broad impact over many aree. Knowing how spins relax in function
of time would allow the design of new magnetic data storage devices, non-volatile
memories, high frequency resonators, etc. Among the various mechanisms for spin

relaxation, spin-phonon interaction is dominant for a vast class of materials. For
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instance, this interaction determines the Curie and Neel temperatures in bulk mag-
nets and furthermore affects the transport properties such as the conductance and
spin currents generation in spintronic materials. An important step forward toward
a full understanding of deposited SMMs related phenomena has also been done. The
combination of a multi scale computational approach has made possible to address
separately the many aspects of the SMM@Au(111) interactions, revealing their respec-
tive importance. The whole study on SMM@Au(111) is expected to change drastically
the actual conception on deposited systems. Indeed, the realization of the dramatic
effect produced by the deposition is starting only recently to enter in the scientific
debates and a full realization of the not necessary robustness of SMMs and similar
systems, with respect to adsorption process, is expected to induce a more careful
design of SMMs and its a priori computational characterization for specific deposi-
tion purpose, instead of completely relying on the SMM crystalline phase properties.
Also in this field, numerous evolution pathways arose from the present study. The
realization of a computational protocol able to address different sizes and time-scales
might be further enriched, for instance, by the mixing of the present schemes within
a QM /MM approach[I67]. On the basis of the results presented in this thesis, such
an approach can represent a valuable tool capable to account in large part the accu-
racy of the AIMD and the efficiency of the FF MD approaches. In the same context,
another very promising evolution of the presented studies is represented by the use
of more advanced computational schemes for the free energy surface scan as meta-
dynamics and replica exchange methods[I68] [169]. These approaches, together with
the FF description of forces, are expected to be a valuable tool to explore different
configurational phases of adsorbed SMMs in a more systematic way. Moreover, the
conclusion of the study on the sole electronic effect on the SMMs magnetism is ex-
pected to produce interesting results showing an innovative way to control magnetism
in deposited scenario with a wide appeal also in slightly different context with respect
to SMMs field.
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