
Engineering the Performance of a
Meta-modeling Architecture

Sara Fioravanti
University of Florence

Florence, Italy
sara.fioravanti@unifi.it

Fulvio Patara
University of Florence

Florence, Italy
fulvio.patara@unifi.it

Enrico Vicario
University of Florence

Florence, Italy
enrico.vicario@unifi.it

ABSTRACT
The Reflection architectural pattern is an elegant reusable
solution to design software applications based on a meta-
model that provides a self-representation of the types used
in the domain model. This provides significant benefits in
terms of adaptability, maintainability, self-awareness, and
direct involvement of domain experts in the configuration
stage. However, while virtuous in the perspective of object-
oriented development, the meta-model adds a level of indi-
rection that may result in poor performance. The complex-
ity is further exacerbated when the object-oriented domain
model is mapped to a relational database. We identify four
performance anti-patterns that may naturally occur in the
design of a meta-modeling architecture, and for each of them
we propose a refactoring intervention on the object model
and on the database mapping strategy. Experimental results
are reported to characterize the gain obtained applying the
proposed refactoring techniques to a real case of data man-
agement system, in order to provide a roadmap for engineer-
ing the performance of meta-modeling architectures.

Keywords
Performance, Anti-patterns, Reflection pattern, Meta-modeling
architecture, Dynamic architectures, Relational database,
Mapping, Electronic Health Record (EHR) systems

1 INTRODUCTION
In the common practice of software development, the do-
main model of a system represents a conceptualization of the
entities involved in a particular application domain. Consol-
idated object-oriented systems generally represent business
entities as separate classes hard-coded directly into software
and database models [1, 2]. This approach, which could be
said static, fits well the development of systems demanding
limited complexity of the domain ontology, rapid develop-
ment, with expected low rate of change and limited evo-
lutionary maintenance. However, it inevitably exposes its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053647

limitations when system requirements and domain concepts
change often, leading to a continuous cycle of system chang-
ing, re-building, re-testing, and re-deploying.

In domains characterized by higher volatility and where
both flexibility and run-time configurability [3] are required,
a more convenient solution can be provided by more abstract
architectures, open to modification, extension and evolution
over time. In the literature, this kind of adaptable solu-
tions, typically characterized by two different levels of ab-
stractions, are called meta-modeling (a.k.a. reflective) ar-
chitectures [4][5].

Yet, all that glitters is not gold. Designing systems able
to change structure and behavior dynamically inevitably re-
sults in a more complex software architecture, making the
reference model more abstract, less intuitive [6], and hard to
develop [5]. Moreover, a meta-modeling architecture is of-
ten exposed to performance inefficiencies, determined in the
design activity but made evident only after the deployment
phase, and usually solved with expensive and partially res-
olutive interventions [7]. The high degree of abstraction of
the underlying meta-model requires to process and instan-
tiate, at run-time, an increased number of objects and rela-
tionships to reproduce the whole domain. This drawback is
further exacerbated when the meta-model is made persistent
through an Object-Relational Mapping (ORM) layer, which
increases the degree of indirection. For these reasons, per-
formance engineering comprises an essential question to be
properly integrated along the whole development lifecycle.

In this paper, we address performance engineering of a
meta-modeling architecture through a suite of refactoring
actions, aimed at improving performance while supporting
and preserving reusability and maintainability. To this end,
we identify and characterize four performance anti-patterns
and their applicable solutions. This contributes to the litera-
ture and practice of performance anti-patterns by providing
a roadmap that should be taken into account during the
design phase of meta-modeling architectures. For the sake
of concreteness, but without loss of generality, we refer to
the case of an Electronic Health Record (EHR) system [8]
that leverages the meta-modeling architectural approach in
order to achieve flexibility and run-time configurability re-
quired for recording, retrieving, and manipulating clinical
information in a medical context.

2 BACKGROUND
An adaptable system must be able to change its structure
and behavior dynamically so as to adapt itself to a variety

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Florence Research

https://core.ac.uk/display/301572581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FactFactType

CompositeFactQuantitativeFactQualitativeFactTextualFactCompositeType TextualTypeQuantitativeType QualitativeType

1

Knowledge Level

* *

Phenomenon

Unit

*

*

1

1

*

11

* *1*

Operational Level

1

FactContext
1

1

FactContextType

Figure 1: The UML class-object diagram of a general data collector domain based on the underlying meta-
modeling paradigm, addressed in the architectural perspective by the Reflection pattern [4] and in the
conceptual perspective by the Observations & Measurements pattern [9].

of concepts produced by different domains. Meta-modeling
architecture may be suitable for any example of data collec-
tor system that pursues two goals: i) achieve a high level
of adaptability and changeability [3] in order to fit into dif-
ferent domains; ii) enable domain experts to deal with the
definition and maintenance of domain concepts.

From an architectural perspective, these principles are ad-
dressed through the Reflection pattern [4], in which the ar-
chitecture is split into two parts (i.e., meta and base levels)
so as to support dynamic adaptation of the system in re-
sponse to changing requirements.

Various applications have been reported in the specific
context of Electronic Health Record (EHR) systems [8], which
structurally demand for flexibility and run-time configura-
bility so as to dynamically adapt data structures and be-
havior to a variety of context-of-use. To this end, in [9],
Fowler proposes the Observations & Measurements analysis
pattern, a conceptualization of the Reflection pattern which
allows the separation of medical concepts, represented in a
so-called knowledge level, from clinical information, repre-
sented in a so-called operational level.

Fig. 1 provides a high-level specification of the domain
model of a reflective architecture that we have implemented,
named Empedocle EHR system [10], starting from Fowler’s
concepts: i) on the left, the knowledge level collects classes
(i.e., FactType and its subclasses) and instances of medi-
cal concepts that have to be taken into account and kept
up-to-date; ii) on the right, the operational level contains
classes (i.e., Fact and its subclasses) and instances of clini-
cal observations. Through a many-to-one relationship with
FactType, the FactContextType class composes into a tree
data structure all concepts collected in a given FactContext

(e.g., a clinical examination). Note that the medical context
is only one of those possible application scenarios based on
a meta-modeling architecture: for instance, we applied the
same paradigm to develop a system for monitoring the state
of various types of buildings after a natural disaster, or for
representing different University courses of study.

3 PERFORMANCE ANTI-PATTERNS OF META-
MODELING ARCHITECTURES

A meta-modeling architecture natively requires a large amount
of objects to be created at run-time to encode knowledge
concepts and operational values. This verbose objects mech-
anism hinders performance especially when both the domain
model grows in complexity and is made persistent into a re-
lational database.

We report on four refactoring solutions that have been
adopted so as to overcome the negative consequences of
these performance issues, while supporting maintainability
and preserving reusability. Each anti-pattern is described
using a systematic template: i) Problem: the recurrent sit-
uation that causes negative consequences; ii) Context : ex-
planation of the context where we can find the anti-pattern
in a meta-modeling architecture; iii) Solution: how can we
avoid, minimize or refactor the anti-pattern.

3.1 Mapping inheritance structures: joins ex-
plosion

3.1.1 Problem

Inheritance structures can create problems when they are
mapped to a relational database which does not natively
support inheritance. In cases where the domain model can
change very often in terms of attributes or sub-classes, the
most natural solution consists in mapping each class to its
own table (i.e., joined-tables strategy). This strategy offers
various well-known advantages in the perspective of soft-
ware architecture [11], related to understandability, support
for polymorphism, and maintainability of class inheritance
hierarchies. However, it exposes some limits, due to the
number of tables generated, one for each sub-typed entity
in the hierarchy. Data reading and data writing result in
heavier operations because they require the joining of mul-
tiple tables for polymorphic queries (e.g., the total set of



attributes for a particular instance is represented as a join
along all tables in its inheritance path).

3.1.2 Context
In the case of a reflective architecture, as depicted in Fig.
1, Facts (or FactTypes) are specialized in different kind
of entities to represent various concepts and informations.
Using the joined-tables strategy, a table corresponding to
a generic Fact (or FactType) is generated, which contains
one column for each attribute in common with its children,
while each sub-typed entity is mapped in a different table
that contains only columns specific to its own attributes and
one extra column as foreign key for uniquely identifying a
row in the hierarchy. Data size grows in direct proportion
to growth of the number of objects with strong impact on
performances.

3.1.3 Solution
In order to overcome performance issues caused by the joined
approach, a mapping strategy based on a single table ap-
proach should be preferred. In so doing, all attributes of
super- and sub-classes are mapped into the same table, and
the type of each instance is distinguished by a special dis-
criminator column. Single table strategy collects all data
in one table, and queries result less complicated due to the
reduced number of join required (from a join along all tables
to a single join). In general, this migration is largely eased in
the case of models characterized by simple and static hierar-
chies, and with minimal overlapping (in terms of attributes
in common) between classes in hierarchies. Nevertheless, it
should be noted that single table strategy limits the power of
the normalization in relational database and requires more
attention to be paid at the application level to avoid incon-
sistencies in the data.

3.2 Mapping hierarchical structures: queries
explosion

3.2.1 Problem
In Sect. 3.1 we have introduced the problem of mapping
inheritance structures to relational databases, and we have
suggested a refactoring solution able to reduce the complex-
ity of executed queries. However, another performance ques-
tion still remains open: how to reduce the number of queries
required to retrieve all nodes in a hierarchy?

3.2.2 Context
In the context of a reflective architecture, domain structures
are characterized by two different hierarchical levels: one
resulting from Fact and FactType inheritance (discussed in
the previous section), and another one from composition of
those entities in part-whole hierarchies through the Compos-

iteType class. Since tree traversal for retrieving the whole
structure requires one query per node, increasing the di-
mension of the tree increases the number of queries required.
Specifically, to retrieve the whole tree, the traversal function
starts from the root node, stores all children of that node,
and then repeats the traversal for each child until every leaf
is visited, requiring almost one query per node.

3.2.3 Solution
To optimize the amount of queries, hierarchies can be en-
riched with ancestor-descendant relations, so that each node

maintains a list of its ancestors. In so doing, the hierarchy
can be represented as an ordered directed tree, where only
one query is required for retrieving all the information con-
tained in the whole structure.

The proposed solution drastically reduces the number of
queries but requires to maintain a list of ancestors for each
node: in the worst case, when all nodes belong to the same
path from the root to the leaf, given a tree with depth D,
being d the current depth, and nd the number of nodes at
d level, the total number of ancestors A results: A = 1 +∑D

d=1 d ∗ nd.

3.3 Mapping entity associations: fetching over-
loading

3.3.1 Problem
In a domain model, associations represent relationships be-
tween classes. While object-oriented languages represent as-
sociations using object references that are navigable, in the
relational world, an association is represented as a foreign
key column that it is not a directional relationship by na-
ture. In order to smooth the object/relational paradigm
mismatch, association mapping plays a lead role. Object-
Relational Mapping (ORM) layers often include the ability
to make one-to-many relationships either unidirectional or
bidirectional. Since unidirectional associations are more dif-
ficult to query, one of the best practice for large scale ap-
plications suggests to turn almost all associations navigable
in both directions [12]. However, in some contexts, this ap-
proach can result in retrieving data not really necessary in
every use-cases, leading to memory overload.

3.3.2 Context
Referring to Fig. 1, all information related to a particu-
lar context may be easily fetched without recurring to an
explicit query using bidirectional associations between Fact

and FactContext, navigating through and iterating over per-
sistent objects.

However, while this solution brings evident advantages at
the object level, it may not be the most convenient choice in
terms of performance, relying on the specific context-of-use
of the system: in the practice of EHR systems, for example,
a medical examination is not required to be aware about
clinical information collected during its execution; viceversa,
it is mandatory for a clinical information to know its own
context.

3.3.3 Solution
Moving from bidirectional to unidirectional association and
removing the redundant one-to-many association mapping
preserves the capability to retrieve the FactContext related
to a specific Fact simply exploiting the entity association.
On the other hand, retrieving all Facts belonging to a spe-
cific FactContext can be done through a single query.

This results in some interesting benefits. First, depen-
dencies between classes and packages are lower and clearer,
thanks to the increased number of unidirectional relation-
ships. Second, the whole code appears well structured in
self-contained areas, and this supports testing and future
refactoring interventions. Third, from a performance per-
spective, queries become more efficient because only small
objects are loaded, and additional information can be re-
trieved through dedicated queries. Finally, note that this



kind of mapping reduction is applicable only to classes that
are in a weak form of association. Conversely, the bidi-
rectional mapping must be preserved when classes are in a
strong form of relationship (e.g., composition), in order to
emphasize the dependency of the contained class to the life
cycle of the container class.

3.4 Inheritance vs. aggregation: fetching over-
loading

3.4.1 Problem
One of the most common technique for reusing functionality
in object-oriented systems is class inheritance, where a class
may inherit fields and methods of its superclass and may
override some of those fields and methods to alter the de-
fault behavior. However, this approach leads up to some in-
herent hurdles. On the one hand, the whole model design is
affected by this choice, resulting in a less intuitive represen-
tation of information, due to the workarounds often required
to overcome some implementation barriers (e.g., multiple in-
heritance). On the other hand, increasing the number of
specialized classes, inheritance-based model ends up includ-
ing several classes derived from the base one, very different
from each other, driving to more complex (and slow) queries,
as described in Sect. 3.1 and in Sect. 3.2.

3.4.2 Context
In the meta-modeling architecture of Fig. 1, a special cat-
egory of knowledge is represented by QualitativeType in-
stances, i.e. domain concepts where related information can
assume only specific values (called Phenomenon) in a finite
range. In general, a Phenomenon is sufficiently characterized
by its label, but sometimes a plain string is not enough and
it is necessary to encode extra and more structured infor-
mation. In the context of healthcare, a typical example is
represented by the International Classification of Diseases
(ICD) [13], a standard designed to map diseases and other
health problems to codes.

3.4.3 Solution
As first solution, ICD codes may be treated as specializations
of Phenomenon types, in order to support their exploitation
inside qualitative information. However, aggregation rep-
resents a more efficient solution in terms of performance.
In this way, classes corresponding to special phenomenon
categories can be placed in weak association with the Phe-

nomenon class, and consequently, they are responsible for
generating associated phenomena, starting from extra col-
lected information. The resulting model is easier to main-
tain, test, and extend, where queries concerning phenomena
become simpler, faster and more efficient.

4 EXPERIMENTAL EVALUATION
We conducted some experiments and collected performance
measurements on a dataset of clinical examinations acquired
by a real case of context-specific EHR system, named Empe-
docle [10], presently in use in various clinics at AOUC, the
main hospital in Florence.

4.1 Experimental methodology
In the context of EHR systems, the complexity is often
related to the medical specialty under consideration. In

our experience, performance is not an issue for the con-
text of Ophthalmology, whose basic examination results in
a lightweight data structure, where only few tens of obser-
vations are collected for each patient. Otherwise, when the
system was configured for operating in the Cardiology de-
partment, performance issues have made evident.

Table 1: Comparison of Ophthalmology and Cardi-
ology examination structures in Empedocle.

Specialty
configuration

Nodes Leaves Max
depth

Avg
depth

Ophthalmology 64 45 5 3.7

Cardiology 639 495 7 3.6

Table 1 highlights the complexity of object models in
terms of number of nodes (i.e., FactTypes), leaves and depth
(i.e., the maximum distance from the root node) of the data
structure used to represent a medical examination (i.e., the
tree-like structure in the knowledge level). In particular,
the number of nodes and leaves in a Cardiology examina-
tion is ten times bigger than values for an Ophthalmology
examination.

Performance limitations were observed in two main sce-
narios of interaction, namely “performing a medical exam-
ination (UC1)” and “accessing the patient’s EHR content
(UC2)”. In UC1, the examination structure is first loaded;
then clinical information corresponding to observed facts are
filled by the user; finally, the system stores clinical data col-
lected during the examination. UC1 combines fetching oper-
ations to retrieve the data structure from the knowledge level
(i.e., FactContextType), and writing operations to persist
collected data at the operational level (i.e., FactContext).
In UC2, the health professional accesses a performed medi-
cal examination and consults collected clinical information.
Since this scenario requires to just retrieve data structure
and content, UC2 is characterized by read-only operations.

In order to isolate performance issues closely related to
the reflective architecture from those more related to tech-
nology solutions adopted, specific performance tests focused
on the meta-level domain model were implemented and run.
We investigate the time to execute each task, and, in par-
ticular, the number of queries and joins generated during
each scenario under consideration, which significantly im-
pact on performance as documented by [14] in terms of“N+1
queries” and “Circuitous Treasure Hunt” anti-patterns.

The time to perform each task was evaluated for all 22 000
examinations in the Ophthalmology dataset and for all 13 000
examinations in the Cardiology dataset. Each experiment
has been repeated 100 times to estimate the mean time value
in order to limit impact of the start-up time required by
ORM and any outer factor that can influence performance.
All reported experiments were performed on a MacBook Pro
with 2.8 GHz Intel Core i7 and 16GB of 1066 MHz SDRAM
DDR3L installed in pairs (two 8GB modules).

4.2 Experimental Results
The performance of the refactored model obtained after re-
moving the four anti-patterns described in Sect. 3 was tested
through the measurements and comparison of time to per-
form the two scenarios discussed in Sect. 3.4, so as to eval-



uate the performance gain obtained applying the proposed
refactoring solutions.

Table 2 and Table 3 illustrate the impact on performance
produced by the complexity of the object model of Empe-
docle in the different configurations of Ophthalmology and
Cardiology. Specifically, the upper part of Table 2 compares
the average time and the coefficient of variation for complet-
ing the UC1 scenario measured before and after the refactor-
ing interventions, while the upper part of Table 3 compares
the number of queries and joins related to the same scenario,
as determined by the structure of the examinations involved
in the experimentation. In the same way, the lower part of
Table 2 and Table 3 are related to the UC2 scenario.

Table 2: Time mean value (µ) and coefficient of vari-
ation (cv) for UC1 (fetch and write) and UC2 (read-
only) before and after refactoring (100 repetitions).

Specialty
configuration

Before After

µ (ms) cv µ (ms) cv

UC1
Ophthalmology 203.65 0.22 163.67 0.29

Cardiology 2004.89 0.08 1755.57 0.85

UC2
Ophthalmology 252.3 0.12 44.18 0.7

Cardiology 585.43 0.13 196.02 0.41

Table 3: Number of queries and joins for UC1 (fetch
and write) and UC2 (read-only) before and after
refactoring.

Specialty
configuration

Before After

Q
u
e
ri

e
s

J
o
in

s

Q
u
e
ri

e
s

J
o
in

s

UC1
Ophthalmology 557 261 630 25

Cardiology 5755 561 6167 71

UC2
Ophthalmology 141 6274 10 29

Cardiology 322 13701 39 65

The comparison of results in Table 2 reveals a gain of per-
formance by a factor of 1.24 for Ophthalmology and 1.14
for Cardiology in the UC1 scenario. Indeed, most of the re-
ported optimizations in the refactored model give their ma-
jor contribution to the UC2 scenario. For this reason, it is
relevant to pay attention on data reported in the lower part
of Table 2, where a huge improvement in read-only opera-
tions emerges. Performance for the second scenario presents
a gain of almost 5.7 and 3.0 times for Ophthalmology and
Cardiology, respectively.

Moreover, the overall number of queries and joins is being
limited. Specifically, while some additional queries are re-
quired by the refactored model to perform the first scenario
(as reported in the upper part of Table 3), a substantial
reduction in the number of accesses to the database is high-
lighted for the UC2 scenario, as depicted in the lower part
of Table 3 by factor of 14.1 for Ophthalmology and 8.3 for
Cardiology.

Turning to details, the solution provided in Sect. 3.1 de-
creases the number of join operations during the UC2 ; fur-
thermore, the refactoring proposed in Sect. 3.2 limits the
number of queries needed for this scenario, by reducing them
to only one. The different way to map entity associations

shown in Sect. 3.3 is intended to avoid unnecessary refer-
ences that carry an overload of objects in memory. Fi-
nally, moving from inheritance to aggregation as reported
in Sect. 3.4 limits the amount of retrieved data when a
lightweight Phenomenon associated to a QualitativeFact is
requested.

5 RELATED WORKS
From an architectural perspective, meta-modeling architec-
tures have been studied and discussed, as we highlighted in
Sect. 2, by [4], [15], [16] and Fowler in [9]. Also Beale in
[17] introduces two different levels of abstraction: while an
information level of classes describes the reference model,
a knowledge level defines domain concepts which have to
be processed as instances of reference model classes, driving
the system at run-time through archetypes and templates
concepts. Similar principles are achieved in the conceptual
perspective through the Item-Description pattern [15], also
known as Type Object pattern [16], which allows to dynami-
cally define new business entities at run-time, decoupling an
object from its description (i.e. type information).

In the context of healthcare, the impact of meta-modeling
architectures for EHR applications and interoperability is
mentioned in openEHR [18] and Health Level 7 (HL7) [19]
standards.

Performance issues have been widely addressed in the lit-
erature of performance anti-patterns, which describes recur-
ring problems with significant impact on performance. In
[14] and their following works, 14 generic problems are iden-
tified and corresponding solutions are suggested. Several
techniques aimed at automated detection of performance
anti-patterns in software architectural models are proposed
by [20] and [21], followed by [22], which defines refactoring
actions after problems detection.

Performance of object-relational mapping is analyzed in
few studies. The influence of optimizations and configu-
rations on the performance of the object-relational map-
ping tool Hibernate is evaluated in [23] and [24]. Hiber-
nate performance is also discussed in [25] and [26], com-
paring with outdated solutions of object-oriented databases
through benchmarks.

6 CONCLUSIONS
Designing and implementing a software intensive system based
on a meta-modeling architecture offers several proven bene-
fits in the software engineering perspective: improved main-
tainability; high degree of adaptability to fit the needs of
complex and volatile domains; inversion of responsibility to
delegate changes on the system structure and behavior to do-
main experts, without intermediation of software engineers.
However, a meta-modeling architecture also carries perfor-
mance consequences, that often remain hidden until testing
and deployment.

In this paper, we identified and illustrated four perfor-
mance anti-patterns which may occur when a meta-modeling
architecture is mapped into a relational database, and we
discussed design and mapping choices that may have a sound
rational in the perspective of object-oriented design but can
have significant and negative impact in the performance per-
spective. For each of these anti-patterns, we proposed de-
sign solutions and implementation choices that comprise a
performance-oriented guideline for software developers.



Benefits of the proposed refactoring strategies were as-
sessed through experimentation on a real case of EHR sys-
tem, referring to actual scenarios in the clinical practice.
Specifically, while our proposed solutions preserve perfor-
mances in write-dominant scenarios, a huge improvement
emerges when read-only operations are performed, since refac-
toring interventions are mainly focused on three specific tar-
gets: i) decrease the number of queries, in order to minimize
access to database; ii) reduce the queries complexity, so as to
downsize the number of join operations between tables; iii)
limit the retrieved data to the minimum necessary amount.

More works is needed to evaluate as proposed and new
anti-patterns may affect other functional and non-functional
system requirements (e.g., reliability, maintainability), in or-
der to guarantee both the consistency and the right trade-
offs among these properties. At the same time we have an
on-going experimentation to compare performances using no
relational databases underlying the objects model [27].

7 References
[1] B. Grady, Object-oriented analysis and design with

applications. Addison Wesley Longman, 1994.

[2] C. Date, An Introduction to Database Systems, 8th ed.
Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[3] “Iso/iec 25010:2011: Systems and software engineering
– systems and software quality requirements and
evaluation (square),” the International Organization
for Standardization, Tech. Rep., 2011.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture, Vol1:A System of Patterns,Wiley, 1996.

[5] J. W. Yoder and R. Johnson, “The adaptive
object-model architectural style,” in Software
Architecture. Springer, 2002, pp. 3–27.

[6] C. Atkinson and T. Kühne, “Reducing accidental
complexity in domain models,” Software & Systems
Modeling, vol. 7, no. 3, pp. 345–359, 2008.

[7] C. U. Smith and L. G. Williams, Performance
solutions: a practical guide to creating responsive,
scalable software. Addison-Wesley Professional, 2001.

[8] ISO/TR, ISO/TR 20514:2005. Health informatics —
Electronic health record — Definition, scope and
context, 2005.

[9] M. Fowler, Analysis patterns: reusable objects models.
Addison-Wesley Longman Publishing Co., Inc, 1996.

[10] F. Patara and E. Vicario, “An adaptable
patient-centric electronic health record system for
personalized home care,” in 8th International
Symposium on Medical Information and
Communication Technology (ISMICT). IEEE, 2014.

[11] S. Ambler, Agile Database Techniques: Effective
Strategies for the Agile Software Developer. New
York, NY, USA: John Wiley & Sons, Inc., 2003.

[12] L. Red Hat Middleware. (2004) Hibernate best
practices. [Online]. Available:
http://docs.jboss.org/hibernate/core/3.3/reference/
en/html/best-practices.html

[13] W. H. Organization, International statistical
classification of diseases and related health problems.
World Health Organization, 2004, vol. 1.

[14] C. U. Smith and L. G. Williams, “Software
performance antipatterns,” in Proceedings of the 2Nd
International Workshop on Software and
Performance, ser. WOSP ’00. NY, USA: ACM, 2000.

[15] P. Coad, “Object-oriented patterns,” Communications
of the ACM, vol. 35, no. 9, pp. 152–159, 1992.

[16] M. R. Johnson, “Type object,” in Pattern Languages of
Program Design 3. AddisonWesley, 1997, pp. 47–65.

[17] T. Beale, “Archetypes: Constraint-based domain
models for future-proof information systems,” vol. 105,
2002.

[18] T. Beale, S. Heard, D. Kalra, and D. Lloyd,
“OpenEHR architecture overview,” The OpenEHR
Foundation, 2006.

[19] R. H. Dolin, L. Alschuler, C. Beebe, P. V. Biron, S. L.
Boyer, D. Essin, E. Kimber, T. Lincoln, and J. E.
Mattison, “The hl7 clinical document architecture,”
Journal of the American Medical Informatics
Association, vol. 8, no. 6, pp. 552–569, 2001.

[20] C. Trubiani and A. Koziolek, “Detection and solution
of software performance antipatterns in palladio
architectural models,” in ACM SIGSOFT Software
Engineering Notes, vol. 36, no. 5. ACM, 2011.

[21] T. Parsons and J. Murphy, “A framework for
automatically detecting and assessing performance
antipatterns in component based systems using
run-time analysis,” in 9th International Workshop on
Component Oriented Programming, vol. 4, 2004.

[22] D. Arcelli, V. Cortellessa, and C. Trubiani,
“Antipattern-based model refactoring for software
performance improvement,” in Proceedings of the 8th
international ACM SIGSOFT conference on Quality
of Software Architectures. ACM, 2012, pp. 33–42.

[23] P. Van Zyl, D. G. Kourie, L. Coetzee, and A. Boake,
“The influence of optimisations on the performance of
an object relational mapping tool,” in Conf. of the
South African Institute of Computer Scientists and
Information Technologists. ACM, 2009, pp. 150–159.

[24] R. Singh, C.-P. Bezemer, W. Shang, and A. E. Hassan,
“Optimizing the performance-related configurations of
object-relational mapping frameworks using a
multi-objective genetic algorithm,” in Proceedings of
the 7th ACM/SPEC on International Conference on
Performance Engineering. ACM, 2016, pp. 309–320.

[25] P. Van Zyl, D. G. Kourie, and A. Boake, “Comparing
the performance of object databases and orm tools,”
in Conf. of the South African institute of computer
scientists and information technologists on IT research
in developing countries. South African Institute for
Computer Scientists and Information Technologists,
2006, pp. 1–11.

[26] R. Kalantari and C. H. Bryant, “Comparing the
performance of object and object relational database
systems on objects of varying complexity,” in British
National Conference on Databases. Springer, 2010.

[27] S. Fioravanti, S. Mattolini, F. Patara, and E. Vicario,
“Experimental performance evaluation of different
data models for a reflection software architecture over
nosql persistence layers,” in Proceedings of the 7th
ACM/SPEC on International Conference on
Performance Engineering. ACM, 2016, pp. 297–308.


