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Abstract. We consider a two-type (red and blue or R and B) particle popu-
lation that evolves on the d-dimensional lattice according to some reaction-
diffusion process R +B → 2R and starts with a single red particle and a den-
sity ρ of blue particles. For two classes of models we give an upper bound on
the propagation velocity of the red particles front with explicit dependence
on ρ.

In the first class of models red particles evolve with a diffusion constant
DR = 1. Blue particles evolve with a possibly time-dependent jump rate
DB ≥ 0, or, more generally, follow independent copies of some bistochastic
process. Examples of bistochastic process also include long-range random
walks with drift and various deterministic processes. For this class of models
we get in all dimensions an upper bound of order max(ρ,

√
ρ) that depends

only on ρ and d and not on the specific process followed by blue particles,
in particular that does not depend on DB . We argue that for d ≥ 2 or ρ ≥ 1
this bound can be optimal (in ρ), while for the simplest case with d = 1 and
ρ < 1 known as the frog model, we give a better bound of order ρ.

In the second class of models particles evolve according to Kawasaki dy-
namics, that is, with exclusion and possibly attraction, inside a large two-
dimensional box with periodic boundary conditions (this turns into simple
exclusion when the attraction is set to zero). In a low density regime we then
get an upper bound of order

√
ρ. This proves a long-range decorrelation of

dynamical events in this low density regime.

1 Models and results

1.1 A diffusion-reaction model

In [6] Kesten and Sidoravicius considered the following Markov process. A count-
able number of red and blue particles perform independent continuous-time simple
random walks on the d-dimensional lattice Z

d . Red particles jump at rate DR and
blue particles jump at rate DB . When a blue particle jumps on a site occupied by
a red particle, the blue particle turns red. When a red particle jumps on a site oc-
cupied by blue particles these turn red. Thinking respectively of the red and blue
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particles as individuals who have heard about a certain rumor and are ignorant
of it—or as individuals who have and have not a certain contagious disease—this
Markov process provides a model of rumor propagation—or epidemic diffusion—
inside a moving population. This is also a reaction-diffusion dynamics of the kind
R + B → 2R that can model a combustion process.

We define at each time t ≥ 0 a red zone R(t), by the set of sites Z
d that have

been reached by some red particle at some time s ∈ [0, t]. At any time t ≥ 0 all
the red particles stand in the red zone, but some blue particles can stand in the
red zone and the red zone can contain empty sites. The red zone is the set of the
sites reached by the rumor or the set of burnt sites according to one or another
interpretation of the process.

Let us assume that the initial configuration was built in the following way. We
put independently at each site z ∈ Z

d a random number of blue particles according
to Poisson variables of mean ρ > 0. Then, at time t = 0, we choose one particle
according to some probabilistic or deterministic rule, we turn it red as well as we
turn red the possible other particles that stood in the same site. Then, denoting by
B(z, r) the Euclidean ball of center z and radius r and making a change of origin
to have R(0) = {0}, Kesten and Sidoravicius proved [6].

Theorem (Kesten–Sidoravicius). If DB = DR > 0 there are two positive and
finite constants C1 < C2 such that with probability 1

B(0,C1t) ⊂ R(t) ⊂ B(0,C2t) (1.1)

holds for all t larger than some finite random time T0.
If DR > 0 there is a finite constant C2 such that with probability 1

R(t) ⊂ B(0,C2t) (1.2)

holds for all t larger than some finite random time T0.

Remarks. (i) Actually, no change of origin was introduced in [6]. The analogous
result without change of origin is an equivalent statement, but our change of origin
will be useful later.

(ii) Kesten and Sidoravicius proved the theorem in a slightly more general
situation than the one described above. Instead of allowing to add red particles at a
single site, they consider initial distributions obtained by adding any finite number
of red particles at a finite set of sites. However, it is easy to see that the same result
in this more general case is equivalent to the previous theorem. For the sake of
simplicity we will restrict ourselves to discuss processes where at time t = 0 red
particles are added at a single site. We start our discussion with the case of a single
blue particle that turns red.

(iii) The inclusion (1.2) gives a “ballistic upper bound” on R(t). The “ballistic
lower bound” expressed in (1.1) is much harder to prove and was obtained only in
the special cases DB = DR > 0 (in [6]) and DB = 0 (in [1,2,8]). But it is believed
that such a bound holds in the general case DR > 0 (in [7]).
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(iv) From a ballistic upper and lower bound on R(t) like in (1.1), Kesten and
Sidoravicius deduced a “shape theorem” for the red zone: R(t)/t converges with
probability 1 to a deterministic shape. This proves the existence of a (maybe non-
isotropic) propagation velocity of the rumor or the combustion front. In this con-
text C1 and C2 are respectively uniform lower and upper bounds of this possibly
nonisotropic front propagation velocity.

(v) In [7] it is conjectured that in the general case DR > 0 this propagation
velocity does not depend on DB (see [7], note 38).

In this paper we give an upper bound on the propagation velocity, that is, a bal-
listic upper bound on R(t) of the kind (1.2) with explicit dependence of C2 on
the density ρ and no dependence on DB . This bound will be, in all dimensions, of
order max(ρ,

√
ρ). We argue that for d ≥ 2 or ρ ≥ 1 this bound can be optimal (in

ρ), while for d = 1 and ρ < 1, we give in the simplest case DB = 0 a better bound
of order ρ. In addition we prove that our upper bound in max(ρ,

√
ρ) holds for a

larger class of models. We prove it, on the one hand, for those models in which red
particles perform independent random walks while blue particles follow indepen-
dent copies of any kind of bistochastic process (see below). On the other hand, we
give an analogous upper bound for models in which the rumor diffuses through a
“contact process” inside an interacting particle system with exclusion and possible
attraction (simple exclusion, Kawasaki dynamics) when a low density limit allows
for a Quasi Random Walk (QRW) approximation as introduced in [4].

1.2 One upper bound for many models

We now define the first class of models we will work with. Like previously, we
start with a density ρ > 0 of particles, putting independently in each site z ∈ Z

d

a Poissonian number of particles with mean ρ. We then put labels 1, 2, 3, . . . on
particles. We call zi the position of the particle i and for all t > 0 we will call
Xi(t) ∈ Z

d and Yi(t) ∈ {R,B} its position and its color at time t . With each i we
associate two continuous-time Markov processes on Z

d , denoted ZR
i and ZB

i , in
such a way that:

• each of these processes start at 0, and are independent;
• ZR

i is a simple random walk process with diffusion constant or jump rate 1;
• ZB

i is a bistochastic process, that is, satisfies

∀z ∈ Z
d,∀t ≥ 0,

∑
z0∈Zd

P
(
z0 + ZB

i (t) = z
) = 1. (1.3)

This includes simple random walks with constant or time dependent jumps rates,
long-range random walks with drift, various deterministic processes; . . .

• The ZB
i ’s (like the ZR

i ’s) have the same law.
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At time t = 0 we choose one particle i0 with some probabilistic or deterministic
rule, we shift the origin to i0, we give the red color to the particles in the new origin
and the blue color to the other particles so that, for all i,

Xi(0) = zi − zi0, (1.4)

Yi(0) = R if Xi(0) = 0, (1.5)

Yi(0) = B if Xi(0) �= 0. (1.6)

Then, each particle i follows the moves of ZB
i while Yi = B , turns red when it

meets a red particle and then follows the moves of ZR
i . More formally, for all i,

we define the time when blue and red particle meet by

τi :=
⎧⎪⎨
⎪⎩

0, if Xi(0) = 0,
inf{t ≥ 0 :Yi(t−) = B,∃j �= i,

Yj (t−) = R,Xi(t) = Xj(t)}, if Xi(0) �= 0,
(1.7)

with the usual convention inf∅ = +∞. That implies

Xi(t) =
{

Xi(0) + ZB
i (t), if t ≤ τi ,

Xi(0) + ZB
i (τi) + ZR

i (t − τi), if t > τi ,
(1.8)

Yi(t) =
{

B, if t < τi ,
R, if t ≥ τi .

(1.9)

We will call process of type RB any process that can be built in this way. The
Kesten and Sidoravicius reaction-diffusion model is a process of type RB when
DR = 1. We will call it KS process. The general case DR > 0 can be mapped on
the KS process by a simple time rescaling.

Setting, like previously, for all t ≥ 0,

R(t) := {z ∈ Z
d :∃i ≥ 1,∃s ∈ [0, t], (Xi, Yi)(s) = (z,R)}, (1.10)

we will prove:

Theorem 1. There is a positive constant δd that depends only on d and such that,
for any RB process and for all t ≥ 0

P

(
∃z ∈ R(t)

∖
B

(
0,

ρ̄t

δd

))
≤ ρ̄2e−δdρt

δdρ5 (1.11)

with

ρ̄ := max
(
ρ,

√
ρ

)
. (1.12)

As a consequence, using the Borel–Cantelli lemma we get:



260 A. Gaudillière and F. R. Nardi

Corollary 1.1. There is a positive constant δd that depends only on d and such
that for any RB process, with probability 1

R(t) ⊂ B

(
0,

max(ρ,
√

ρ)t

δd

)
(1.13)

holds for all t larger than some finite random time T0.

We will give an analogous result for a second class of models. In dimension
d = 2 we consider a low-density lattice gas, with density ρ, that evolves according
to the following Kawasaki dynamics at inverse temperature β ≥ 0, inside a large
box �(ρ) (that goes to infinity when ρ → 0), with periodic boundary conditions.
In this dynamics the particles evolve with exclusion and attraction. More precisely,
the total number of particles is,

N := ρ|�(ρ)|, (1.14)

where |�(ρ)| denotes the volume of �(ρ). We will write η̂i(t) ∈ �(ρ) for the
position at time t of the particle i in {1, . . . ,N} and ηt ∈ {0,1}�(ρ) for the config-
uration of the occupied sites in �(ρ), in such a way that, for all t ≥ 0,∑

z∈�(ρ)

ηt (z) = N. (1.15)

The energy of a configuration η ∈ {0,1}�(ρ) is

H(η) := ∑
{x,y}∈�(ρ)

|x−y|=1

−Uη(x)η(y), (1.16)

where | · | now denotes the Euclidean norm and −U ≤ 0 is the binding energy. With
each particle we associate a Poissonian clock of intensity 1. At each time t when a
particle’s clock rings, we choose with uniform probability a nearest neighbor site
of the particle, say i. If this site is occupied by another particle then i does not
move. If not, we consider the configuration η′ obtained by moving i to the vacant
site and then with probability

p = e−β[H(η′)−H(η)]+ (1.17)

i moves to the vacant site and, with probability 1 − p, i remains where it was at
time t−. Observe that the case U = 0 corresponds to the simple exclusion process.

In addition, we choose at time t = 0 some particle i0 according to some prob-
abilistic or deterministic rule and give to i0, as well as to the particles that share
with i0 the same cluster at time t = 0, the color red, while all the other particles
receive the blue color. A red particle will definitively remain red (like previously)
and a blue particle turns red as soon as it shares some cluster with some red par-
ticle. We call RBK process this dynamics and, for all t ≥ 0, the red zone R(t) is
defined like above.
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To control the propagation of the red particles in the regime ρ → 0, we will
use the low density to reduce the problem to simple random walks estimates.
This is more challenging when ρ and β go jointly to 0 and +∞: in this case we
have not only a low density regime, but also a strong interaction regime. We will
then deal with this more challenging regime only, setting ρ = e−�β for � a posi-
tive parameter and sending β to infinity. We will write �β for �(ρ) and we will
choose |�β | = e	β for some real parameter 	 > �. This regime was studied in [4]
where a “Quasi Random Walk (QRW) property” was proved “up to the first time
of anomalous concentration Tα,λ.” For α a positive parameter that can be chosen
as close as 0 as we want, and λ a slowly increasing and unbounded function such
that

λ(β) lnλ(β) = o(lnβ) (1.18)

[e.g., λ(β) = √
lnβ], Tα,λ is defined as the first time there appears a square box

� ⊂ �β with volume less than eβ(�−α/4) that contains more than λ/4 particles.
We will recall and use this QRW property to prove:

Theorem 2. For the RBK process, for all δ > 0 and all C > 0, uniformly in the
starting configuration, and uniformly in T = T (β) ≤ eCβ ,

P
(

Tα,λ > T and ∃z ∈ R(T ) \ B
(
0, eδβ√

ρT
))

(1.19)
≤ ρ−3eδβ exp{−e−δβρT } + SES

where SES stands for “super exponentially small,” that is, for a positive function f

that does not depend neither on T and nor on the starting configuration and such
that

lim
β→+∞

1

β
lnf (β) = −∞. (1.20)

We will then prove:

Corollary 1.2. For the RBK process, for all δ > 0 and all C > 0, uniformly in the
starting configuration, and uniformly in T = eKβ with K any positive parameter
such that K < C,

P
(

Tα,λ > T and ∃z ∈ R(T ) \ B
(
0, eδβ max

(√
T ,

√
ρT

))) ≤ SES. (1.21)

Of course, these results would be of no use if we were not able to have some
control on Tα,λ. But in [4] we discussed the fact that, starting from a “good con-
figuration,” Tα,λ is “very long.” For example, we proved that in the case � > 2U ,
starting from the canonical Gibbs measure associated with H , for all C > 0,

P(Tα,λ < eCβ) = SES. (1.22)
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As a consequence of these results, we will prove a long range decorrelation
of dynamical events in this low density regime. Given �(1) and �(2) two square
boxes contained in �β , we will denote by d(�(1),�(2)) their Euclidean dis-

tance and by (F (1)
t )t≥0 and (F (2)

t )t≥0 the filtrations generated by the restrictions
(ηt∧Tα,λ |�(1) )t≥0 and (ηt∧Tα,λ |�(2) )t≥0. With these notations we will prove:

Theorem 3. For the Kawasaki dynamics, for all δ > 0 and all C > 0, uniformly
in the starting configuration, uniformly in T = eKβ with K any positive parameter
such that K < C, uniformly in �(1) and �(2) such that

d
(
�(1),�(2)) ≥ eδβ max

(√
T ,

√
ρT

)
(1.23)

and uniformly in (A(1),A(2)) ∈ F (1)
T × F (2)

T ,∣∣P (
A(1) ∩ A(2)) − P

(
A(1))P (

A(2))∣∣ ≤ SES. (1.24)

In the study of the low temperature metastable Kawasaki dynamics (the case
U < � < 2U ; see [3]) we will need such a long range decorrelation property
(see [5]). This was the original motivation of this paper.

1.3 How good are our bounds?

In this paper we will not give any lower bound on the propagation velocity. But we
give here some heuristic that indicates that max(ρ,

√
ρ) should be the right order

of the velocity propagation in different situations. This heuristic is in important
part due to Francesco Manzo.

Consider for now the KS process in dimension d = 2 with ρ < 1 and in the
special case DB = DR = 1. R(t) should then look like a kind of ball that contains
all the red particles and very few blue particles. In addition, DB = DR implies
that, except for the color propagation, the particle system starts and remains at
equilibrium. Let us call n(t) the number of red particles at time t . Since only the
particles at the border of R(t) should contribute to the propagation of the rumor,
and since a particle typically waits for a time 1/ρ before meeting another particle,
we should have

dn � cst
√

nρdt, (1.25)

where “cst” stands for a positive constant the value of which can change from line
to line. As a consequence

√
n � cstρt. (1.26)

If r(t) stand for the radius of the smallest Euclidean ball that contains R(t), we
should have

n � cstr2ρ, (1.27)
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so that

r � cst

√
n√
ρ

� cst
√

ρt. (1.28)

If ρ ≥ 1, we will typically have ρ particles per site and (1.25) turns into

dn � cstρ

√
n

ρ
ρdt, (1.29)

so that

r � cst

√
n

ρ
� cstρt. (1.30)

If d ≥ 3 or DR �= DB we do not have such kind of heuristic. In the former case
indeed R(t) should be a more complex fractal object, in the latter case the system
does not stay at equilibrium. However Theorem 1 says that an upper bound of order
max(ρ,

√
ρ) holds independently of DB and independently of the dimension.

For d = 1, DR = DB and ρ < 1 the previous heuristic has to be modified. In
this case the typical interparticle distance is 1/ρ and a particle typically waits for
a time 1/ρ2 before meeting another particle. Then (1.25) and (1.27) turn into

dn � cstρ2dt, (1.31)

n � cstrρ, (1.32)

and we get

r � cstρt, (1.33)

while Theorem 1 gives only an upper bound on the velocity of order
√

ρ > ρ. We
will prove an upper bound of order ρ for the simplest case of the KS process, that
is DB = 0, also known as frog model:

Proposition 1.1. For the KS process in dimension 1, with ρ < 1 and DB = 0, there
is a positive constant δ such that, for all t ≥ 0,

P

(
∃z ∈ R(t)

∖
B

(
0,

ρt

δ

))
≤ e−δρ2t

δρ2 . (1.34)

As previously we then get with the Borel–Cantelli lemma:

Corollary 1.3. For the KS process in dimension 1 and with DB = 0 there is a
positive constant δ such that, with probability 1

R(t) ⊂ B

(
0,

ρt

δ

)
(1.35)

holds for all t larger than some finite random time T0.
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We will give in Section 4 some indications on how one can extend the simple
proof of Proposition 1.1 to the general case of the KS processes. This is rather
technical and we will not go beyond these indications.

1.4 Notation and outline of the paper

We will write “cst” for a finite and positive constant that depends only on the
dimension d and the value of which can change from line to line. Given d ≥ 1
we will write | · | for the d-dimensional Euclidean norm. Given a Markov process
X and x in its state space, we will write Px for the law of the process that starts
from x.

In Section 2, we prove simple random walk and large deviations estimates and
we recall some definitions and properties regarding the QRW approximation for
the Kawasaki dynamics. In Section 3, we prove Theorem 1 for the frog model as
well as Proposition 1.1. In Section 4, we prove Theorem 1 in the general case as
well as Theorem 2, Corollary 1.2 and Theorem 3.

2 Preliminaries

2.1 Random walk and large deviation estimates

Lemma 2.1. Let N and N ′ be two independent Poisson variables and γ > 1 such
that E[N ′] ≥ γE[N ]. Then

(i) P(N ≥ γE[N ]) ≤ exp
{−E[N ](γ lnγ − (γ − 1)

)}
, (2.1)

(ii) P

(
N ≤ E[N ]

γ

)
≤ exp

{
−E[N ]

((
1 − 1

γ

)
− lnγ

γ

)}
, (2.2)

(iii) P

(
N

E[N ] ≥ γ
N ′

E[N ′]
)

≤ 2 exp
{−E[N ](t ln t − (t − 1)

)}
(2.3)

with t := γ − 1

lnγ
∈]1, γ [.

Proof. We just use the Chebyshev exponential inequality. With λ = E[N ] we
have, for any t ≥ 0,

P(N ≥ γ λ) ≤ e−tγ λE[etN ] = exp
{−λ

(
tγ − (et − 1)

)}
. (2.4)

Optimizing in t we find (2.1) with t = lnγ . Similarly, for any t ≥ 0,

P(N ≤ λ/γ ) ≤ etλ/γ E[e−tN ] = exp
{−λ

(
(1 − e−t ) − t/γ

)}
. (2.5)

Optimizing in t we find (2.2) with t = lnγ . Finally we have, for any t ≥ 0,

P

(
N

E[N ] ≥ γ
N ′

E[N ′]
)

≤ P(N ≥ tE[N ]) + P

(
N ′ ≤ t

γ
E[N ′]

)
. (2.6)
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By (2.1) and (2.2) this gives, if t > 1 and t < γ ,

P

(
N

E[N ] ≥ γ
N ′

E[N ′]
)

≤ exp
{−λ

(
t ln t − (t − 1)

)}
(2.7)

+ exp
{
−λγ

((
1 − t

γ

)
+ t

γ
ln

t

γ

)}
.

The two terms of this sum are equal when

t = γ − 1

lnγ
. (2.8)

The concavity of the logarithm ensures

1 − 1

γ
≤ − ln

1

γ
= lnγ ≤ γ − 1 (2.9)

so that 1 < t < γ when t is defined by (2.8). This gives (2.3). �

Lemma 2.2. Let ζ be a d-dimensional continuous-time simple random walk with
jump rate 1. For all t ≥ 0 and z ∈ Z

d :

• If |z| ≤ t then

P0
(
ζ(t) = z

) ≤ cst

td/2 exp
{
−cst|z|2

t

}
. (2.10)

• If |z| ≥ t then

P0
(
ζ(t) = z

) ≤ cst exp{−cst|z|}. (2.11)

Remark. Since we just need an upper bound on these probabilities we do not
need the usual condition |z| = o(t2/3) of the local central limit theorem. However,
working with continuous-time random walks, we have to treat separately the case
|z| > t .

Proof of Lemma 2.2. We will prove slightly different but clearly equivalent esti-
mates: (2.10) when |z| ≤ 2t and (2.11) when |z| ≥ 2t .

For the case |z| ≥ 2t we apply the previous lemma. If ζ reaches z in time t

then the number of its clock rings up to time t is larger than or equal to |z|. Since
this number has a Poissonian distribution of mean t , this occurs, by (2.1), with a
probability smaller than

exp
{
−t

( |z|
t

ln
|z|
t

−
( |z|

t
− 1

))}
≤ exp

{
−t

cst|z|
t

}
= e−cst|z| (2.12)

(for the last inequality we used that |z|/t was bounded away from 1).
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We now treat the case |z| ≤ 2t . First observe that, working with a continuous-
time process with independent coordinates, it is enough to prove the result for
d = 1. In a second step, we prove the estimate for ζ̃ the discrete time version of
such a one-dimensional process. Without loss of generality we can assume that
z ∈ Z is nonnegative. If z ≤ n/2, then, by the Stirling formula,

P0
(
ζ̃ (n) = z

) ≤ cst√
n

2√
1 + z/n

√
1 − z/n

×
[(

1 + z

n

)(1+z/n)/2(
1 − z

n

)(1−z/n)/2]−n

(2.13)

≤ cst√
n

exp{−nI (z/n)}

with

I (x) := 1 + x

2
ln(1 + x) + 1 − x

2
ln(1 − x), x ∈ [−1,1]. (2.14)

It is immediate to check that⎧⎨
⎩

I (0) = I ′(0) = 0,

∀x ∈]−1,1[, I ′′(x) = 1

1 − x2 ≥ 1.
(2.15)

As a consequence, for all x ∈ [−1,1],

I (x) ≥ x2

2
(2.16)

and this gives, for z ≤ n/2,

P0
(
ζ̃ (n) = z

) ≤ cst√
n

exp
{
− z2

2n

}
. (2.17)

This is easily extended to the case z ≥ n/2, that is, z/n ≥ 1/2. Since the inequality
in (2.15) is a strict inequality as soon as x > 0, the function x ∈ [1

2 ,1] → 2I (x)

x2 is

increasing, 2I (x) ≥ 8I (1/2)x2 for x ≥ 1/2 and 8I (1/2) > 1, we have

P0
(
ζ̃ (n) = z

) ≤ cst exp{−nI (z/n)} ≤ cst exp
{
−n · 8I (1/2)

z2

2n2

}
(2.18)

≤ cst
√

n

z2 exp
{
− z2

2n

}
≤ cst√

n
exp

{
− z2

2n

}
.

Finally, we use the previous lemma to conclude. From the estimates on ζ̃ we de-
duce

P0
(
ζ(n) = z

) ≤ E

[
cst√
N

exp
{
− z2

2N

}]
, (2.19)
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where N is a Poisson variable of mean t . Intersecting with the event N in or out of
the interval [ t

γ
, γ t], we get

P0
(
ζ(n) ≤ z

) ≤ E

[
cst√
N

exp
{
− z2

2N

}∣∣∣∣ t

γ
≤ N ≤ γ t

]
(2.20)

+ P

(
N /∈

[
t

γ
, γ t

])
.

By (2.1), (2.2) applied with a large enough γ we can find two positive constants
c1, c2 with 4c1 < c2 such that

P0
(
ζ(n) = z

) ≤ cst√
t

exp
{
−c1

z2

t

}
+ exp{−2c2t} (2.21)

≤ cst√
t

(
exp

{
−c1

z2

t

}
+ exp{−c2t}

)
(2.22)

and we get (2.10) using z ≤ 2t , i.e., 4t ≥ z2/t . �

2.2 Quasi random walks

With the notation we introduced in Section 1.2 for the Kawasaki dynamics and
given an arbitrarily small parameter α > 0 as well as an unbounded slowly in-
creasing function λ satisfying (1.18), we recall in this section a few definitions and
results from [4].

Definition 2.1. A process Z = (Z1, . . . ,ZN) on �N
β is called a random walk with

pauses (RWP) associated with the stopping times

0 = σi,0 = τi,0 ≤ σi,1 ≤ τi,1 ≤ σi,2 ≤ τi,2 ≤ · · · , i ∈ {1, . . . ,N}, (2.23)

if for any i in {1, . . . ,N}, Zi is constant on all time intervals [σi,k, τi,k], k ≥ 0,
and if the process Z̃ = (Z̃1, . . . , Z̃N) obtained from Z by cutting off these pauses
intervals, that is, with

Z̃i(s) := Zi

(
s + ∑

k<ji(s)

τi,k − σi,k

)
, s ≥ 0, (2.24)

where

ji(s) := inf
{
j ≥ 0 : s + ∑

k<j

τi,k − σi,k ≤ σi,j

}
. (2.25)

Z̃i(s), i ∈ {1, . . . ,N}, are independent random walks in law.

Now with

Tα := e(�−α)β (2.26)

QRW processes are defined as follows.
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Definition 2.2. We say that a process ξ = (ξ1, . . . , ξN) on �N
β is a QRW process

with parameter α > 0 up to a stopping time T , written QRW(α, T ), if there exists
a coupling between ξ and a RWP process Z associated with stopping times

0 = σi,0 = τi,0 ≤ σi,1 ≤ τi,1 ≤ σi,2 ≤ τi,2 ≤ · · · , i ∈ {1, . . . ,N}, (2.27)

such that

(i) ξ(0) = Z(0),
(ii) for any i in {1, . . . ,N} ξi and Zi evolve jointly (ξi −Zi is constant) outside

the pause intervals [σi,k, τi,k], k ≥ 0, and
(iii) for any t0 ≥ 0,

the following events occur with probability 1 − SES uniformly in i and t0:

Fi(t0) := {
�{k ≥ 0 : σi,k ∈ [t0 ∧ T , (t0 + Tα) ∧ T ]} ≤ l(β)

}
, (2.28)

Gi(t0) := {∀k ≥ 0,∀t ≥ t0, σi,k ∈ [t0 ∧ T , (t0 + Tα) ∧ T ]
(2.29)

⇒ |ξ(t ∧ τi,k ∧ τ) − ξ(t ∧ σi,k ∧ τ)| ≤ l(β)
}

for some β �→ l(β) that satisfies

lim
β→+∞

1

β
ln l(β) = 0. (2.30)

In words, the fact that for each i the events Fi(t0) and Gi(t0) occur for all t0 ≥ 0
means, on the one hand, that in each time interval before time T and of length 1/ρ

almost, there are few pauses for the associated RWP Zi (a nonexponentially large
number) and, on the other hand, that ξi stays close to Zi . The two processes are
close in the sense that during each of these few pause intervals the distance between
the two processes cannot increase of more than the same nonexponentially large
quantity l. Recalling the definition of Tα,λ before Theorem 2:

Proposition 2.1. For any unbounded and slowly increasing function λ that satis-
fies (1.18) and any positive α < �, η̂ is a QRW(α, Tα,λ) process.

We refer to [4] for the proof. In that paper we proved a “nonsuperdiffusivity
property” as consequence of the QRW property: for all δ > 0, uniformly in the
initial configuration and uniformly in T = T (β) ∈ [2, T 2

α ],
P

(
Tα,λ > T ,∃t ∈ [0, T ],∃i ∈ {1, . . . ,N}, |η̂i(t)− η̂i(0)| > eδβT

) ≤ SES. (2.31)

In [4] we also introduced at any time t0 ≥ 0 a partition of {1, . . . ,N} in clouds of
potentially interacting particles on time scale Tα : we associate with each particle i
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a ball centered at its position at time t0 with radius

r := eαβ/4
√

Tα, (2.32)

we call B0 their union

B0 := ⋃
i

B(η̂i(t0), r), (2.33)

and we say that two particles are in the same cloud if they are, at time t0, in the
same connected component of B0. It is easy to check that if t0 < Tα,λ, then no cloud
contains more than λ particles. And, as a consequence of (2.31), with probability
1 − SES, interactions between particles during the time interval [t0, (t0 + Tα) ∧
Tα,λ[ will only take place inside the different clouds (and not between particles of
different clouds).

3 The frog model

3.1 Proof of Theorem 1 for the KS process with DB = 0

There is a natural notion of generation in the model. We say that the first particle at
the origin is of first generation and that a particle that turns red when it encounters
a particle of kth generation is of (k + 1)th generation. (If a blue particle moves on
a site with more than one red particles then its generation number is determined
by the lowest generation number of the red particles.) Now, to drive the red color
outside an Euclidean ball B(0, r) by time t , the first particle initially in z1 = 0
has to activate at some time t1 a second generation particle in some site z2, and
this particle has to activate at some time t1 + t2 a third generation particle in some
site z3, . . . and, for some n, an nth generation particle will have to reach some site
zn+1 outside B(0, r) at some time t1 + · · · + tn ≤ t . Taking into account the fact
that more than one blue particle can stand in a site reached by a red particle and
using Lemma 2.2 we get, for all r and t ,

P
(∃z ∈ R(t), |z| > r

) ≤ Q(r, t) (3.1)

with

Q(r, t) := ∑
n≥1

∑
z1,...,zn+1

z1=0
zn+1 /∈B(0,r)

∫
t1+···+tn≤t

∑
j2,...,jn≥0

n∏
k=2

e−ρ ρjk

jk! jk

(3.2)

×
n∏

k=1

((
cst

t
d/2
k

e−cst|zk+1−zk |2/tk
)

∨ (
cste−cst|zk+1−zk |))dtk,

where here, like in the sequel, we did not write to alleviate the notation, that the
integral is restricted to positive variables only.
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Permuting the last sum with the product, making a spherical change of variable
and using the triangular inequality, we get

Q(r, t) ≤ ∑
n≥1

∫
r1+···+rn≥r
t1+···+tn≤t

ρn−1
n∏

k=1

(
q1(rk, tk) ∨ q2(rk)

)
rd−1
k drk dtk (3.3)

with

q1(rk, tk) := cst

t
d/2
k

e−cstr2
k /tk , (3.4)

q2(rk, tk) = q2(rk) := cste−cstrk . (3.5)

Grouping together the different terms according to the respective values of q1

and q2 and using, for all 0 ≤ j ≤ n,(
n

j

)
≤ 2j 2n−j (3.6)

we get

Q(r, t) ≤ 1

ρ

∫
R1+R2≥r
T1+T2≤t

∑
n≥1

n∑
j=0

(
n

j

)(∫
r1+···+rj≥R1
t1+···+tj≤T1

ρj
j∏

k=1

q1(rk, tk)r
d−1
k drk dtk

)

×
(∫

r1+···+rn−j≥R2
t1+···+tn−j≤T2

ρn−j
n−j∏
k=1

q2(rk)r
d−1
k drk dtk

)
dR1 dR2 dT1 dT2

(3.7)

≤ 1

ρ

∫
R1+R2≥r
T1+T2≤t

∑
n≥1

n∑
j=0

Q
(j)
1 (R1, T1)Q

(n−j)
2 (R2, T2) dR1 dR2 dT1 dT2

= 1

ρ

∫
R1+R2≥r
T1+T2≤t

Q1(R1, T1)Q2(R2, T2) dR1 dR2 dT1 dT2

with for m = 1,2 and all j ≥ 1

Q(j)
m (Rm,Tm) :=

∫
r1+···+rj≥Rm

t1+···+tj≤Tm

(2ρ)j
j∏

k=1

qm(rk, tk)r
d−1
k drk dtk, (3.8)

Qm(Rm,Tm) := ∑
n≥1

Q(n)
m (Rm,Tm). (3.9)

For any R,T ≥ 0 we will estimate separately Q1(R,T ) and Q2(R,T ).



Front propagation velocities in moving populations 271

We have

Q1(R,T ) ≤ ∑
n≥1

(cstρ)n
∫
r1+···+rn≥R
t1+···+tn≤T

n∏
k=1

e−cstr2
k /tk

(
rk√
tk

)d−1 drk dtk√
tk

. (3.10)

Making a change of variable xk = cstr2
k /tk and observing that, by the Cauchy–

Schwartz inequality,

⎧⎪⎪⎨
⎪⎪⎩

∑
k

√
tk

√
xk ≥ cstR,

∑
k

tk ≤ T ,
⇒

⎧⎪⎪⎨
⎪⎪⎩

∑
k

xk ≥ cstR2/T ,

∑
k

tk ≤ T ,
(3.11)

we get, with � the Euler function,

Q1(R,T ) ≤ ∑
n≥1

(cstρ)n
∫
x1+···+xn≥cstR2/T

t1+···+tn≤T

n∏
k=1

e−xkx
(d−1)/2
k

dxk dtk

x
1/2
k

(3.12)

≤ ∑
n≥1

(cstρ)n
∫
x1+···+xn≥cstR2/T

t1+···+tn≤T

n∏
k=1

e−xkx
d/2−1
k

dxk dtk

�(d/2)
. (3.13)

Since the volume of the n-dimensional simplex of side-length T is T n/n! and the
sum of independent variables with a � distribution follows a � law,

Q1(R,T ) ≤ ∑
n≥1

(cstρT )n

n!
∫
x≥cstR2/T

e−xxnd/2−1 dx

�(nd/2)

≤ ∑
n≥1

(cstρT )n

n! P

(
N ′ ≤

⌈
nd

2

⌉)

≤ ecstρT P (N ′ ≤ cstN),

where N and N ′ are independent Poisson variables of mean cst ·ρT and cst ·R2/T ,
respectively. Now, for any large enough γ , if R ≥ γ

√
ρT , then by (2.3)

Q1(R,T ) ≤ ecstρT P

(
N

E[N ] ≥ cst
R2/T

ρT

N ′

E[N ′]
)

(3.14)
≤ ecstρT e−cstR2/T ≤ ecstρT e−cst

√
ρR

so that, for any large enough γ ,

Q1(R,T ) ≤ ecstρT exp
{−cst

√
ρR1[γ√

ρT ,+∞[(R)
}
. (3.15)
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Turning to Q2(R,T ) we have

Q2(R,T ) ≤ ∑
n≥1

(cstρ)n
∫
r1+···+rn≥R
t1+···+tn≤T

n∏
k=1

e−cstrk rd−1
k drk dtk

≤ ∑
n≥1

(cstρ)n
∫
x1+···+xn≥cstR
t1+···+tn≤T

n∏
k=1

e−xkxd−1
k dxk dtk

(3.16)

≤ ∑
n≥1

(cstρT )n

n!
∫
x≥cstR

e−xxnd−1 dx

�(nd)

≤ ecstρT P (N ′ ≤ cstN),

where N and N ′ are independent Poissonian variables of mean cst ·ρT and cst ·R,
respectively. Then, for any large enough γ , if R ≥ γρT , we get by (2.3)

Q2(R,T ) ≤ ecstρT P

(
N

E[N ] ≥ cstR

ρT

N ′

E[N ′]
)

≤ ecstρT e−cstR (3.17)

so that, for any large enough γ ,

Q2(R,T ) ≤ ecstρT exp
{−cstR1[γρT ,+∞[(R)

}
. (3.18)

Turning back to Q(r, t), we get, for any large enough γ ,

Q(r, t) ≤ 1

ρ

∫
R1+R2≥r
T1+T2≤t

ecstρ(T1+T2)

× exp
{−cst

(√
ρR11[γ√

ρT1,+∞[(R1) (3.19)

+ R21[γρT2,+∞[(R2)
)}

dR1 dR2 dT1 dT2

≤ 1

ρ

∫
R1+R2≥r
T1+T2≤t

ecstρt

× exp
{−cst

(√
ρR11[γρT1,+∞[

(√
ρR1

)
(3.20)

+ R21[γρT2,+∞[(R2)
)}

dR1 dR2 dT1 dT2.

Now if ρ ≤ 1, then

R21[γρT2,+∞[(R2) ≥ √
ρR21[γρT2,+∞[

(√
ρR2

)
, (3.21)

and if ρ ≥ 1, then
√

ρR11[γρT1,+∞[
(√

ρR1
) ≥ R11[γρT1,+∞[(R1). (3.22)

As a consequence, with

ρ̄ := max
(
ρ,

√
ρ

)
and Xm = ρ

ρ̄
Rm, m = 1,2, (3.23)



Front propagation velocities in moving populations 273

we have

Q(r, t) ≤ ρ̄2

ρ · ρ2

∫
X1+X2≥ρr/ρ̄

T1+T2≤t

ecstρt

× exp
{−cst

(
X11[γρT1,+∞[(X1) (3.24)

+ X21[γρT2,+∞[(X2)
)}

dX1 dX2 dT1 dT2

≤ ρ̄2ecstρt

ρ3

(3.25)
×

∫
X1+X2≥ρr/ρ̄

T1+T2≤t

e−cst(X1+X2−γρ(T1+T2)) dX1 dX2 dT1 dT2.

If r ≥ 2γ ρ̄t , that is,

ρr

2ρ̄
≥ γρt (3.26)

then

Q(r, t) ≤ ρ̄2ecstρt

ρ3

∫
X1+X2≥ρr/ρ̄

T1+T2≤t

e−cst(X1+X2)/2 dX1 dX2 dT1 dT2

≤ cst
ρ̄2ecstρt

ρ3 t2 ρr

ρ̄
e−cstρr/(2ρ̄) ≤ cst

ρ̄2ecstρt

ρ5 e−cstρr/(2ρ̄) (3.27)

≤ cstρ̄2

ρ5 ecstρt e−cstγρt

and, with a large enough γ , we get

Q(r, t) ≤ cstρ̄2

ρ5 e−cstρt . (3.28)

3.2 Proof of Proposition 1.1

In the previous proof we could have used, instead of the estimates from Lemma 2.2
on P0(ζ(t) = z) dt , an estimate on

dP0
(
τz(ζ ) ≤ t

) = P0
(
τz(ζ ) ∈ [t, t + dt]) (3.29)

with

τz(ζ ) := inf{t ≥ 0 : ζ(t) = z}. (3.30)

While in dimension d ≥ 2 the two quantities are quite close, in dimension d = 1
they are substantially different. In addition, using τz(ζ ) in dimension 1 allows to
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give a simpler proof of a stronger result when ρ is small enough. Indeed, for all r

and t ,

P
(∃z ∈ R(t), |z| > r

)
≤ ∑

n≥1

ρn−1
∑

r1+···+rn≥r

∫
t1+···+tn≤t

n∏
k=1

dP0
(
τrk (ζ ) ≤ tk

)
(3.31)

≤ ∑
n≥1

ρn−1
∑
R≥r

∑
r1+···+rn=R

P0
(
τR(ζ ) ≤ t

)
. (3.32)

Then, by the reflexion principle and Lemma 2.2

P
(∃z ∈ R(t), |z| > r

) ≤ cst

ρ

∑
R≥r

∑
n≥1

ρnRn

n! (e−cstR2/t ∨ e−cstR)

(3.33)
≤ cst

ρ

∑
R≥r

eρR(e−cstR2/t ∨ e−cstR).

Now if r ≥ γρt for some large enough γ we get, for ρ small enough,

P
(∃z ∈ R(t), |z| > r

) ≤ cst

ρ

∑
R≥r

e−cstρR ≤ cst

ρ2 e−cstρr ≤ cst

ρ2 e−cstρ2t . (3.34)

This proves Proposition 1.1 for small ρ’s.
When ρ is bounded away from 0, the estimate in Proposition 1.1 is just a con-

sequence of Theorem 1 for the frog model.

4 RB and RBK processes

4.1 Proof of Theorem 1

We can proceed like in the case of the frog model except for the fact that a particle
does not anymore turn red at the same point where it started. We have then to sum
over the possible starting points. With the notation

sk = t1 + · · · + tk−1, k ≥ 2, (4.1)

and for any i ≥ 1 we have

P
(∃z ∈ R(t), |z| > r

)
≤ ∑

n≥1

∑
z1,...,zn+1

z1=0
zn+1 /∈B(0,r)

∫
t1+···+tn≤t

∑
z′

2,...,z
′
n

j2,...,jn≥0

n∏
k=2

e−ρ ρjk

jk! jk

(4.2)
× P

(
z′
k + ZB

i (sk) = zk

)
×

n∏
k=1

(
cst

t
d/2
k

e−cst|zk+1−zk |2/tk ∨ cste−cst|zk+1−zk |
)

dtk. (4.3)
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Now permuting the last sum with the product and using (1.3) we get

P
(∃z ∈ R(t), |z| > r

) ≤ Q(r, t) (4.4)

with Q(r, t) defined in (3.2) and estimated in the previous section.

Remark. Unfortunately the proof of Proposition 1.1 cannot be extended so simply
to the general case, even if we restrict ourselves to KS processes. To do so we
would have to link the differential

dP0
(
τzR

(ζR) ≤ t
) = P0

(
τzR

(ζR) ∈ [t, t + dt]) (4.5)

with the sum ∑
zB>0

P(0,zB)

(
τ0(ζB − ζR) ∈ [t, t + dt], ζR(t) = zR

)
(4.6)

with ζR and ζB independent continuous-time random walks with jump rates
DR = 1 and DB > 0. In the case DB = 1 this can be done using the indepen-
dence between ζB − ζR and ζB + ζR . In the case DB �= 1 we can only use an
“asymptotic independence” between ζB − ζR and ζB + DBζR . In both cases this
is a quite technical task: we will not go in this paper beyond the result for the frog
model.

4.2 Proof of Theorem 2 and Corollary 1.2

Proof of Theorem 2. We first note that, for β large enough, the right-hand side
of (1.19) is larger than 1 if ρT ≤ 1. Without lost of generality we can then assume
T ≥ ρ−1. Now we can adapt the proof for the frog model using the QRW property
and the last observations of Section 2.2:

P
(∃z ∈ R(T ), |z| > R, Tα,λ > T

)

≤
�λlT /Tα�∑

n=1

∑
z1,...,zn+1∈�β

z1=0
zn+1 /∈B(0,R)

∫
t1+···+tn≤T

n∏
k=1

cstλ3l2 (4.7)

×
(

cst

t
d/2
k

e−cst|zk+1−zk |2/tk ∨ cste−cst|zk+1−zk |
)

dtk + SES.

In this formula the first sum is limited to �λlT /Tα� since, on the one hand, T is at
most exponential in β and in each interval of length Tα , with probability 1 − SES,
interactions are limited to clouds that contains λ particles at most and, on the other
hand, particles are coupled with random walks with l pauses at most. The factor l2

is due to the fact that, with probability 1 − SES, in each pause interval the distance
between a particle and its associated random walk with pauses increases of at
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most l. One factor λ is due to the fact that at most λ red particles can leave a
given cluster before Tα,λ: no cluster can contain more than λ particles before the
first “anomalous concentration.” The last factor λ2 is due to the fact that at each
time t < Tα,λ a given particle can turn red other particles inside a radius λ at most.

Then we can repeat the calculation of Section 3.1 with two main differences.
On the one hand we do not have the factor ρn−1 anymore in our sum, on the other
hand this sum is limited to �λlT /Tα�. Instead of (2.3) we use then (2.2) repeatedly.
For example, defining Q1 and Q2 in an analogous way and observing that for any
δ > 0, λ and l are smaller than eδβ for β large enough, we have now, choosing a
small enough α and using T ≥ ρ−1,

Q1(R,T ) ≤
�eδβρT �∑

n=1

(eδβT )n

n! P

(
N ′ ≤

⌈
nd

2

⌉)
+ SES (4.8)

≤
�eδβρT �∑

n=1

(eδβT )n

n! P(N ′ ≤ e2δβρT ) + SES (4.9)

with N ′ a Poisson variable of mean cst · R2/T . For any δ1 > δ, if R ≥ eδ1β
√

ρT

the last probability can be estimated from above by

P(N ′ ≤ e2δβρT ) ≤ exp
{−cst

√
ρR

} + SES (4.10)

and the remaining sum can be estimated from above by

�eδβρT �∑
n=1

(eδβT )n

n! ≤ exp{eδβT }P(N ≤ eδβρT ) + SES (4.11)

with N a Poisson variable of mean eδβT , so that, by (2.2),

�eδβρT �∑
n=1

(eδβT )n

n! ≤ exp{eδβT } exp
{−eδβT

(
(1 − ρ) + ρ lnρ

)}
(4.12)

= exp{eδβT − eδβT + eδβTρ + eδβTρ�β} (4.13)

≤ exp{e2δβρT } + SES. (4.14)

Using (4.9), (4.10) and (4.14) we get, for any R, T ,

Q1(R,T ) ≤ exp{e2δβρT } exp
{−cst

√
ρR1[eδ1β√

ρT ,+∞[(R)
} + SES. (4.15)

We can estimate Q2 in the same way and the rest of the calculation goes like in
Section 3. �

Proof of Corollary 1.2. We distinguish between two cases: K < � and K ≥ �.
In the former case (1.21) is a consequence of the last remarks of Section 2.2:
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interactions are restricted to clouds of potentially interacting particles on time scale
Tα > T for a small enough α, then (1.21) follows from the nonsuperdiffusivity
property (2.31). In the latter case (1.21) follows from Theorem 2 applied with
δ′ := δ/4 and T ′ := eδβ/2T instead of δ and T . �

4.3 Proof of Theorem 3

Given �(1) and �(2) with the condition (1.23) we define a new coloring process.
With

B := �(1) ∪ �(2) (4.16)

and

W :=
{
z ∈ �β : inf

b∈B
|z − b| > e−δβ/2d

(
�(1),�(2))} (4.17)

we say that all the particles that start from B are black, all the particles that start
from W are white and all the particles that start from (B ∪ W)c do not have any
color at time t = 0. Then, for t > 0, black particles keep their black color, white
particles keep their white color, noncolored particles that enter B turn black, non-
colored particles that enter W turn white, and noncolored particles that share some
cluster with a colored particle turn black or white choosing randomly a colored
particle inside the cluster and taking the same color. We can define a black zone
and a white zone like we defined the red zone. As a consequence of Corollary 1.2,
with probability 1 − SES, the black and white zones will not intersect up to time
T ∧ Tα,λ and we will never see black and white particles in a same cluster up to
time T ∧ Tα,λ.

Now we couple in the more natural way the previous process, with a process
that starts from the same initial configuration, uses the same marks and clocks for
the particles and evolves in the same way except for the fact that each particle in W

or that enters in W disappears. For this process the restrictions of the dynamics to
�(1) and �(2) are clearly independent and the previous observation shows that,
with probability 1 − SES, these restrictions for the two processes coincide up to
time T ∧ Tα,λ. This proves the theorem.
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