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Abstract 

We consider a coexistence problem for nonoscillatory solutions to the Emden-

Fowler type differential equation 

.1,0sgn)()sgn)(( ≥=+′′′ βα txxtbxxta  )(∗  

For the special case 

,1,0sgn)( ≥=+′′ β txxtbx  )(∗∗  

this problem has been posed by Moore and Nehari when β<1  [24] and by 

Belohorec when 10 <β<  [2]. Nonoscillatory solutions to )(∗∗  can be 

classified into three types, according their asymptotic behavior as ,∞→t  and 

in [2, 24] it is shown that these three types of nonoscillatory solutions cannot 

simultaneously coexist for .)(∗∗  When the sublinear case β>α  occurs, this 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301572318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ZUZANA DOŠLÁ and MAURO MARINI 88 

result has been recently extended to )(∗  in [17, 25]. In the superlinear case 

,β<α  a partial answer has been given in [9]. Here we complete this study, 

by showing that in any case this triple coexistence for nonoscillatory solutions 

is impossible also for .)(∗  

1. Introduction 

In this paper, we consider the second order nonlinear differential 

equation 

,0sgn)()sgn)(( =+′′′ βα
xxtbxxta  (1) 

where βα,  are positive constants such that ,β<α  the functions ba,  are 

continuous on ),[ 0 ∞t  and 

0}:)({sup,0)(,0)( >τ≥≥> ttbtbta  for any .0t>τ  (2) 

A prototype of (1) is the equation 

,0sgn)()sgn( 2 =+′′′ βα
xxtbxxt  

arising in the study of radially symmetric solutions of partial differential 

equations with Laplacian operator in ,3R  [7, 16]. 

Since ,0 β<α<  the initial value problem associated to (1) has a unique 

local solution, that is, a solution x such that 10 )(,)( xtxxtx =′=  for 

arbitrary numbers 10 , xx  and any .0tt ≤  Moreover, if ba,  satisfy suitable 

smoothness conditions and ,0)( >tb  then any local solution of (1) is 

continuable to infinity, see, [28, Appendix A]. On the other hand, under the 

weaker assumption (2), equations of type (1) with uncontinuable solutions 

may exist, see, [27]. 

Here, by a solution of (1) we mean a function x defined on some ray 

,,),[ 0txx ≥τ∞τ  such that it’s quasiderivative ,]1[x  i.e. the function 

,)(sgn)()()(]1[ txtxtatx ′′=
α  (3) 

is continuously differentiable, and satisfies (1) for any .xt τ≤  
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As usual, a solution x of (1) is said to be nonoscillatory if 0)( =/tx  for 

large t and oscillatory otherwise. Equation (1) is said to be nonoscillatory if 

any solution is nonoscillatory. Notice that, if ,β=/α  nonoscillatory solutions 

of (1) may coexist with oscillatory ones, while if β=α  this fact is impossible, 

[23, Chapter III, Section 10]. 

If both integrals 

∫∫
∞∞ α− ==
00

)(,)(1
t

b
t

a dssbIdssaI  

are divergent, then all solutions of (1) are oscillatory, while, if both integrals 

aI  and bI  are convergent, then all nonoscillatory solutions and their 

quasiderivatives are bounded, [21, 23]. Thus, the interesting case is when 

only one of integrals ba II ,  is divergent, that is either 

∞=∞< ba II ,  )P( 1  

or 

., ∞<∞= ba II  )P( 2  

Our aim here is to consider the superlinear case β<α<0  when )P( 1  holds, 

that is the case 

.,,0 ∞=∞<β<α< ba II  (4) 

Observe that the remaining cases have been already treated in the literature 

and are discussed below in Section 4. 

If x is a solution of (1), then x−  is a solution, too. Thus, let P  be the class 

of all eventually positive solutions x of (1). In view of (4), the class P  can be 

divided into three subclasses, according to the asymptotic behavior of x as 

,∞→t  [19]. More precisely, any solution P∈x  satisfies one of the following 

asymptotic properties: 

,0,)(lim ∞<<=
∞→

xx
t

tx ll  (5) 

,
)(
)(

lim ∞=
∞→ tA

tx

t
 (6) 
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,0,
)(
)(

lim ∞<<=
∞→

xx
t tA

tx
ll  (7) 

where xl  is a positive constant depending on x and 

.)()( 1 dssatA
t∫
∞ α−=  

Let P∈yx,  satisfy (6), (7) respectively. Then yx,  tend to zero as ∞→t  

and )()(0 txty <<  for large t. Hence, solutions of (1) satisfying (6) are called 

slowly decaying solutions, and solutions satisfying (7) strongly decaying 

solutions, [17]. Solutions satisfying (5), (6), (7) are referred also as dominant 

solutions, intermediate solutions and subdominant solutions, respectively, [4, 

15, 16, 20]. 

The interesting problem which arises is whether all three types of 

nonoscillatory solutions can simultaneously exist. Since there are known 

necessary and sufficient conditions for the existence of subdominant and 

dominant solutions, the coexistence problem leads to the problem on the 

nonexistence of intermediate solutions. 

Observe that for the linear equation 

0)())(( =+′ xtbxta  

this triple coexistence is impossible. This question has a long history, which 

started sixty years ago by Belohorec [2] and Moore and Nehari [24], for the 

special case 

.1,0sgn)( =/β=+′′ β
xxtbx  (8) 

Equation (8) is the well-known Emden-Fowler equation and it is widely 

studied in the literature, [18, 23, 27] and references therein. Moreover, it is 

easy to show that nonoscillatory solutions of (8) can be divided into three 

types, according to their behavior as .∞→t  which cannot simultaneously 

coexist, [2, 24]. 

Later on, for the limit case ,β=α  that is for the half-linear equation 

,0sgn)()sgn)(( =+′′′ αα
xxtbxxta  (9) 
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the same coexistence problem has been proposed by Kusano et al. in [16, page 
213]. A negative answer has been given in [3], by using an extension of the 
wronskian and a Minkowsky type inequality. It is worth noting that results 
in [3] are proved assuming the positivity of the function b, but they continue 
to hold also when (2) holds, with minor modification. 

When )P( 1  holds, in [17] the sublinear case has been considered and the 

above coexistence problem has been solved in a negative way for the more 
general equation (1). Here we complete this study, by considering (1) when (4) 
is valid. 

The main result is given in Section 3, jointly with some consequences and 
examples. In Section 4 a summary of the coexistence problem, jointly with 
some comments and suggestions for future researches, are presented. 

2. Auxiliary Results 

In view of (4), any eventually positive solution x of (1) is decreasing and 
]1[x  is negative nonincreasing. Hence, the class P  can be divided into the 

subclasses: 

,}0,)(,)(:{ ]1[
, ∞<<∞−=∞=∞∈=−

∞− xx xxxM lll P  

,})(,0)(:{ ]1[
,0 ∞−=∞=∞∈=−

∞− xxxM P  (10) 

,}0,)(,0)(:{ ]1[
,0 ∞<<−=∞=∞∈=−

− xxxxxM lll P  

The superscript symbol “_” means that solutions P∈x  satisfy )()( ]1[ txtx  

0<  for any large t. Clearly, classes −
∞−

−
∞− ,0, , MM l  and −

− l,0M  coincide 

with the ones given by (5), (6) and (7), and are called dominant solutions, 
intermediate solutions and subdominant solutions, respectively. 

Define 

,)(
1 1

1 00
dsdrrb

a
J

s

tt

α∞

α 





= ∫∫  

,
)(

1
)(

10
dsdr

ra
sbY

st

β
∞

α

∞









= ∫∫  
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.)()( 1

0
dsdrrasbZ

st

α∞ α∞






= ∫∫  

Here, we recall some results, which are needed in the proof of our main 

result. The following holds. 

Proposition 1. Assume .)P( 1  Then: 

)( 1i  For (1), including (9), the class −
∞−,lM  is nonempty if and only if 

.∞<J  Moreover, for any ,0, ∞<< ll  there exists −
∞−∈ ,lMx  such 

that .)(lim l=∞→ txt  

)( 2i  For (1) [9] the class −
− l,0M  is nonempty if and only if .][ ∞<∞< ZY  

Moreover, for any ,0, ∞<< ll  there exists −
−∈ l,0Mx  such that 

.)(lim ]1[
l−=∞→ txt  

)( 3i  Any solution of (1) is oscillatory if and only if .∞=Y  

Proposition 1 follows from [15, 19], see also [1, Theorems 3.13.11, 

3.13.12]. Concerning the half-linear case .β=α  we refer to [3, Theorems 6 

and 7]. Observe that these results are proved by assuming the positivity of 

the function b. Nevertheless, it is easy to verify that they continue to hold 

also in case when (2) is valid. 

As already claimed, the problem of coexistence of the above types of 

nonoscillatory solutions is completely solved for the half-linear equation (9) in 

[3, Corollary 1]. Using this result, we obtain the following. 

Proposition 2. For equation (9) at most two of the subclasses 
−

∞−
−

∞−
−

− ,,0,0 , ll MMM  are nonempty. 

The relations between the convergence of the integrals YJ ,  and Z are 

completely described in [11, Lemma 3] if β=/α  and in [8, Lemma 2] if .β=α  

Here we report some of these results, which will be useful. 

Lemma 1. )( 1i  If 1≥α  and ,∞=Z  then .∞=J  

)( 2i  If β<α<0  and ,∞<J  then .∞<Y  
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We close this section with two inequalities, which are needed in the 
sequel. The first one is a Hölder-type inequality and it is proved in [9, Lemma 
1]. 

Lemma 2. Let µλ,  be such that 1,1 >µλ>µ  and let gf ,  be 

nonnegative continuous functions for .Tt ≥  Then 

µλ

















 τ∫∫ dsdtfsg
t

s

t

T
)()(  

.)()(
1
1

11 −µλµτ−µ
µ











τ






τ








−µλ

−µ
λ≤ ∫ ∫ ddssgf

t

T T
 

Lemma 3. Let ,0>λ  and let YX ,  be two positive numbers. Then 

,)()( λλ
λ

λ +σ≤+ YXYX  

where 

1=σλ  if 1<λ  and 12 −λ
λ =σ  if .1≥λ  (11) 

Proof. If ,1≥λ  the assertion follows from the convexity of the function 

.)0( ≥θθ λ  Let 10 <λ<  and consider for 0≥θ  the function λθ+=θ 1)(G  

.)1( λθ+−  Since 0)0( =G  and G is increasing, putting XY=θ  the 

assertion follows. 

3. The Coexistence Problem 

The main result is the following. 

Theorem 1. Assume (4). If ,∞<J  then for equation (1) the subclass 

,,0
−

∞−M  is empty. 

This result will be proved by using some integral inequalities, a half 
linearization technique and a sharp asymptotic estimate for nonoscillatory 
solutions of (1). We start by stating the decay rate of intermediate solutions of 
(1). The following holds. 

Lemma 4. If (4) holds, ,∞<J  and ,10 <α<  then for any −
∞−∈ ,0Mx  

we have 
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∫ >
β

∞→

t

tt
drrb

tx

tx

0
.0)(

)(

)(
inflim

]1[
 

Proof. Without loss of generality, suppose for 01 ttt ≥≥  

.0)(,1)(0 ]1[ <<< txtx  (12) 

Integrating (1), we get for 1tt ≥  

.)()()()(
1

1
]1[]1[

∫
β−=

t

t
dssxsbtxtx  (13) 

In view of Lemma 3 we have 

,)()()()(
β∞

β

β

β

β∞β






 ′σ+






 ′σ≤






 ′= ∫∫∫ t

t

tt
drrxdrrxdrrxtx  

where tt ≥  and βσ  is defined in (11). Hence, from (13) we obtain 

drdssxdssxrbtxtx
t

t t

t

r∫ ∫∫

















 ′+






 ′σ−≥

β∞β

β
1

)()()()()( 1
]1[]1[  (14) 

.)()()()()(
11

1
]1[

∫∫ ∫∫
β∞β

β 





 ′σ−






 ′σ−

t

t

t

t t
b

t

r
drrbdssxdrdssxrbtx  

Setting 

,1 1 α−









α−β

α−
β=M  

in view of Lemma 2 with )()(,, 1 τ′=τα=µβ=λ − xf  and ,)()( rbrg =  we 

obtain 

drdssxrb
t

r

t

t

β







 ′∫∫ )()(

1
 

.)()()(
11 1

1 α−βαατ






 ττ′











τ






τ′≤ ∫∫ ∫

t

t

t

t t
dxddrrbxM  

Since, in view of (12), we have 
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,1)()()(0 1
1

<−=ττ′≤ ∫ txtxdx
t

t
 

taking into account that ]1[x  is nondecreasing for ,1tt ≥  we get 

drdssxrb
t

r

t

t

β







 ′∫∫ )()(

1
 

αατα
α











τ






τ








τ
≤ ∫ ∫

t

t t
ddrrbx

a
M

1 1

1
1]1[

1
)()(

)(
1

 

.)(
)(

1)(
1

]1[

1 1
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τ∫ ∫ ddrrb

a
txM

t
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Thus, from (14) we have 

)()( 1
]1[]1[ txtx −  

αατ

β 












τ








τ

σ−≥ ∫ ∫ ddrrb
a

txM
t

t t

1
]1[

1 1
)(

)(
1

)(  

.)()(
1

drrbdssx
t

tt ∫∫
β∞

β 





 ′σ−  

Since 0)(]1[ <tx  and 

,)()( txdssx
t

β
β∞

=





 ′∫  

we obtain 

drrb
tx

tx
ddrrb

a
M

tx

tx t

t

t

t t ∫∫ ∫
β

β

αατ

β σ−
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τ
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)(
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)(

)(
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or 

.
)(

)(
)(

)(
1

1)(
)(

)(
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1
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]1[ 1 11 tx

tx
ddrrb

a
Mdrrb

tx
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t
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τ

σ−≥σ

αατ

β

β

β ∫ ∫∫  

Since ∞<J  and ,)(lim ]1[ ∞−=∞→ txt  the assertion follows. 
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Now we are in position to prove Theorem 1. 

Proof of Theorem 1. By contradiction, suppose that there exists 
−

∞−∈ ,0Mx  such that 0)(,1)(0 ]1[ <≤< txtx  on 011 ,),[ ttt ≥∞  and 

)(lim txt ∞→ .0=  

First, suppose .10 <α<  In view of Lemma 4, there exist 0>ε  such 

that for 1ttt ≥≥  

.)()()( ]1[

0
txdrrbtx

t

t
ε≥∫

β  (15) 

Without loss of generality, suppose 

2)(
)(

1 1
1

0

α∞ α

ε<







∫ ∫ dsdrrb

sat

s

t
 (16) 

From the equality 

,
)(
)(

)()()(
1]1[
dr

ra

rx
drrxtxtx

t

t

t

t ∫∫
α














=′−=−  

in view of (15), we have for tt ≥  

.)()(
)(

11)()(
111

0
dsdrrbsx

sa
txtx

s

t

t

t

α
αβ

αα

























ε
≤− ∫∫  

Since x is positive decreasing, ,1)( ≤sx  and ,α>β  in view of (16) we obtain 

.)(
2
1)(

)(
1)(1)()(

111

0
txdsdrrb

sa
txtxtx

s

t

t

t
≤
























ε
≤−

ααα

∫∫  

Thus 

,)()(
2
1

txtx ≤  

which gives a contradiction as ,∞→t  because .0)(lim =∞→ txt  

Now, assume .1 α≤  Consider on ),[ 1 ∞t  the half-linear equation 

,0)(sgn)()())(sgn)()(( =+′′′ αα
tztztbtztzta x  (17) 
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where 

.)()()( txtbtbx
α−β=  

Clearly, xz =  is a solution of (17) in the class .,0
−

∞−M  We claim that 

∫
∞

∞=
1

.)(
t

x dttb  (18) 

Indeed, integrating (17) on ,),( 1 tt  we get 

∫
α=−=−

t

t
x

t dsszsbtztztxtx
1

)()()()()()( ]1[
1

]1[][
1

]1[  

or, since z is decreasing for ,1tt ≥  

,)()()()(
1

1
]1[

1
]1[

∫
α≤−

t

t
x dssbtztxtx  

which gives (18), because .)(lim ]1[ ∞−=∞→ txt  

Since 1)( ≤tx  on ,),[ 1 ∞t  we have .)()( tbtbx ≤  Hence, from ∞<J  we obtain 

.)(
)(

1 1

1 1
∞<








α∞

∫ ∫ dsdrrb
sat

s

t
x  

Applying Proposition 1, we get that (17) has solutions also in the class 

.,0
−

−lM  In view of Proposition 2, the three types of nonoscillatory solutions 

cannot coexist in the half-linear case. Thus, the class −
∞−,lM  is empty for 

(17) and, again from Proposition 1, we obtain 

,)()( 1

1
∞=








α∞ α−∞

∫∫ dsdrrasb
st

x  

which implies .∞=Z  Since ,1≥α  applying Lemma 1 we get ,∞=J  which 

is a contradiction. 

From Theorem 1 we get the following coexistence result. 

Corollary 1. Assume (4). For (1) solutions in the class −
∞−,lM  cannot 

coexist with solutions in the class .,0
−

∞−M  Consequently, at most two of the 
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subclasses −
∞−

−
∞−

−
− ,,0,0 ,, ll MMM  are nonempty for (1). 

Proof. Let .,
−

∞−∈ lMz  From Proposition 1 we have .∞<J  Hence, 

Theorem 1 gives the assertion. 

A necessary condition for the existence of solutions in the class −
∞−,0M  is 

given by the following. 

Corollary 2. If (4) holds and (1) has solutions in the class ,,0
−

∞−M  then 

., ∞<∞= YJ  Moreover, (1) has also infinitely many solutions in the class 

−
−l,0M  and every nonoscillatory solution of (1) tends to zero as ,∞→t  i.e. 

., ∅=−
∞−lM  

Proof. Let us show that .∞=J  By contradiction, assume .∞<J  Now, 

from Lemma )(-1 2i  we get ∞<Y  and so, in virtue of Proposition 1, both 

classes −
∞−

−
− ,,0 , ll MM  are nonempty. Since (1) has also solutions in the class 

.,0
−

∞−M  we obtain a contradiction with Corollary 1. Thus ∞=J  and 

., ∅=−
∞−lM  Moreover, since (1) has nonoscillatory solutions, again from 

Proposition 1, we get ∞<Y  and the assertion follows. 

The following examples illustrate Corollary 1. 

Example 1. Consider for et ≥  the equation 

0sgn
sin

)sgnlog( =′′+′′′ βα
xx

t

t
xxtt  

where 10 <α<  and .α>β  Clearly, (2) and (4) hold. From 

dt
tt

t
dsdrrb

sa

T

e

s

e

T

e ∫∫∫
αα

α 





 −

≤







11

1 log
1log

)(
)(

1
 

we obtain .∞<J  Thus, in view of Theorem 1, we have .,0 ∅=−
∞−M  

Moreover, from Lemma 1 we get ∞<Y  and so, in virtue of Proposition 1, 

both classes −
∞−

−
− ,,0 , ll MM  are nonempty. 
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Example 2. Consider for 1≥t  the equation 

,0sgn)sgn( 31154
0

51 =+′′′ xxtcxxt  (19) 

where 

.
2
7

10
1 51

0 





=c  

Clearly, (2) and (4) holds. It is easy to shows that 27)( −= ttx  is a solution of 

(19) and .)27()( 10151]1[ ttx −=  Since ,)(lim ]1[ ∞−=∞→ txt  we have 

.,0
−

∞−∈ Mx  Moreover, a standard calculation shows that .∞<Y  Hence, 

from Proposition 1 and Corollary 1, for equation (19) we have ∅=/
−

−l,0M  

and ., ∅=−
∞−lM  

4. Concluding Remarks 

1. A summary. For the reader’s convenience, we briefly summarize the 

situation when )P( 2  holds. In this case, any solution P∈x  is nondecreasing 

for large t and the class P  can be divided into the three subclasses, [13]: 

,}0,)(,)(:{ ]1[
, ∞<<=∞∞=∞∈=+

∞ xxxxx lll PM  

,}0)(,)(:{ ]1[
0, =∞∞=∞∈=+

∞ xxx PM  (20) 

,}0,0)(,)(:{ ]1[
0, ∞<<=∞=∞∈=+

xx xxx lll PM  

The superscript symbol + means that solutions are eventually positive 

increasing. Solutions in ,, 0,,
+
∞

+
∞ MM l  and +

0,lM  continue to be referred as 

dominant solutions, intermediate solutions and subdominant solutions, 

respectively, since if ++
∞

+
∞ ∈∈∈ 0,0,, ,, ll MMM zyx  we have for large t 

.)()()( tztytz ≤≤  

The problem concerning the coexistence of these three types of 

nonoscillatory solutions has been solved in a negative way in [25] in the 
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sublinear case, and in [9] in the superlinear case. Summarizing these results 

with ones in [17] and using Corollary 1, we get the following complete answer 

to the question posed in [2, 24] on the triple coexistence of nonoscillatory 

solutions of (1). 

Using the terminology of subdominant solutions, intermediate solutions 

and dominant solutions for classes −
∞−

−
− ,0,0 , MM l  and −

∞−,lM  defined in 

case )P( 1  by (10) and for classes +
∞

+
ll ,0, , MM  and +

∞ 0,M  defined in case 

)P( 2  by (20) respectively, the following holds. 

Corollary 3. Assume (2) and either )P( 1  or .)P( 2  Then (1) does not have 

simultaneously subdominant solutions, intermediate solutions and dominant 

solutions. 

In other words, the triple coexistence for nonoscillatory solutions of (1) is 

impossible for any positive value of βα,  independently on the convergence of 

the integrals ,aI  and .bI  

2. The sublinear case. In case ,)P( 1  necessary and suficient conditions 

for the existence of subdominant solutions and dominant solutions are given 

in Proposition 1. Observe that Proposition 1 can be applied also when 
.0>β>α  

In the sublinear case, the intermediate solutions can be also 

characterized by means of the convergence of integrals J and Y, as the 

following result shows. 

Theorem 2. [17] Let 0>β>α  and assume that (2) and the case )P( 1  

hold. Then (1) has solutions in the class −
∞−,0M  if and only if ∞<J  and 

.∞=Y  

We recall that in the sublinear case, the asymptotic growth of 

intermediate solutions of (1) can be found in [14, 20], where the study is 

accomplished in the framework of regular variation. This approach is 

motivated by the monograph of Marić [22] which provides a powerful tool for 

obtaining a precise asymptotic analysis of various kinds of nonoscillatory 

solutions. The papers [20, 14] require additional assumptions on the function 
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b, in particular the positiveness of b. Since Theorem 2 is valid when b has a 

sequence of zeros, clustering at infinity, it should be interesting to obtain 

asymptotics for intermediate solutions also in this case. 

3. The superlinear case. In the superlinear case, in spite of many 

examples of equations of type (1) having solutions in the class −
∞−,0M  which 

can be easily produced, until now no necessary and sufficient conditions for 

their existence are known. This difficulty is due to the problem of finding 

sharp upper and lower bounds, [1, page 241], [20, page 2]. 

When (4) holds, sufficient conditions for existence of intermediate 

solutions can be found in [9, 10] where monotonicity properties of a suitable 

energy function are used. Nevertheless, we point out that [9, 10] require 

additional assumptions on the function b, like the positiveness. Now, the 

following question arises. In the superlinear case, does equation (1) have 

intermediate solutions when b has a sequence of zeros, clustering at infinity? 

Recall that in the superlinear case equation (1) can have non-continuable 

solutions, if b vanishes at some ,01 tt >  [27]. For this reason, the above 

question seems very difficult. 

4. A change of variable. For any solution x of (1), consider the change of 

variable .]1[xz =  Then z is a solution of the dual equation to (1) 

0sgn)()sgn)(( 1111 =′+′′′ αα−ββ− zztazztb  (21) 

and .)(sgn)()( 11]1[ txzztbtz −=′′= ββ−  Equation (21) is obtained from (1), 

when a is replaced by β−1b  and b by .1 α−a  Moreover 1−β  plays the role of 

α  and vice versa. Thus, this transformation maps superlinear [sublinear] 

equations of type (1) into superlinear [sublinear] equations of the same type. 

It is easy to shows that the condition )]P[()P( 21  for (1) becomes the condition 

)]P[()P( 12  for (21). Consequently, it is often used in the literature for deriving 

the corresponding results for the case )P( 1  from known results for the case 

)P( 2  or vice-versa. Since this transformation requires the positivity of b, this 

transformation does not work in the case considered in this paper. We refer to 

[26, page 94] for more details on this topic. 



ZUZANA DOŠLÁ and MAURO MARINI 102 

5. Extensions 

In the discrete case, for the half-linear difference equation 

,0sgn)sgn( 11 =+∆∆∆ +
α

+
α

nnnnnn xxbxxa  

where ∆  is the forward difference operator ,1 nnn xxx −=∆ +  the coexistence 

problem between nonoscillatory solutions with a different growth at infinity 
has been completely solved in [5, Theorem 3.1.], for any positive value of ,α  

independently of the convergence of the series 

.,1

0

1

0
∑∑
∞

=

α∞

=

=







=

n

nb

n n
a bS

a
S  

Later on, a partial answer to the same problem for the Emden-Fowler type 
discrete equation 

,0sgn)sgn( 11 =+∆∆∆ +
β

+
α

nnnnnn xxbxxa  

has been given in [6, Theorems 2.4 and 3.3]. It would be interesting to 
complete the study on the coexistence both for Emden-Fowler difference 
equations and dynamic equations on time-scale. 
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