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Abstract-This paper presents the following for a full-bridge 
Class-DE resonant inverter operating at a fixed duty ratio: (a) 
steady-state analysis using first-harmonic approximation and (b) 
derivation of closed-form expressions for the currents, voltages, 
and powers. The conversion from a series-parallel resonant 
network to a series resonant network is presented. Imposing 
the zero-voltage and zero-derivative switching conditions, the 
expression for a shunt capacitance across the MOSFETs in 
the inverter bridge is derived. The closed-form expressions to 
calculate the values of the resonant components are presented. 
A practical design of a Class-DE resonant inverter supplied by a 
dc input voltage of 230 V, delivering an output power of 920 W, 
and operating at a switching frequency of 100 kHz is considered 
and its design methodology is included. Theoretical results are 
validated by Saber simulations. 

I. INTRODUCTION 

Class-DE inverters are a family of power electronic topolo­
gies for energy conversion, which are duly characterized by 
high efficiency [1]-[4]. An interesting feature of the Class­
DE topology is their ability to achieve both zero-voltage 
switching (ZV S) and zero-derivative switching (ZDS) con­
ditions, thereby yielding high power-conversion efficiency, 
especially at high switching frequencies. This makes them 
suitable for applications such as RF power supplies and RF 
power amplifiers [3], induction heating [4], on-chip converters 
[5], [6], wireless-power transfer systems [7], [8], [20], etc. The 
Class-DE inverter shares a few features of Class-E as well as 
Class-D inverters making them an ideal choice for high-power 
applications [8], [12]- [ 19]. 

Several works in the literature related to the Class-DE 
inverter have focused on the following areas: steady-state 
analysis with half-bridge switching network at a fixed and 
any duty ratio [1], [5], [9], [12] and design of inverter with 
with linear and nonlinear shunt MOSFET capacitances [2], 
[14], [16], [17]. However, a detailed steady-state analysis of a 
full-bridge Class-DE inverter at any duty cycle has not been 
reported. Therefore, this paper aims at the following objec­
tives: (a) develop a theoretical framework for the steady-state 
characteristics of the full-bridge Class-DE inverter operating at 
any duty ratio using the fundamental harmonic approximation, 
(b) derive the expressions for the shunt capacitances and the 
components in the resonant circuit, (c) develop a methodology 
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Fig. I. Circuits of the full-bridge class-DE resonant inverter. (a) Series-parallel 
resonaut circuit with trausformer. (b) Series-parallel resonaut circuit with load 
resistance on primary side. (c) Series resonant circuit. 

to transform a series-parallel topology of the inverter to its 
series resonant form and vice versa, and (d) analyze its 
voltage transfer function, input impedance, and efficiency. A 
high-power, high-frequency full-bridge Class-DE inverter is 
designed. Saber circuit simulations are provided to validate 
the correctness of the theoretically analysis. The switching­
network waveforms demonstrate ZV S operation, while an 
efficiency of 97% is achieved. 

II. FULL-BRIDGE C LASS-DE DC-AC INVERTER 

ANALYSIS 

A. Circuit Description 

Fig. l(a) shows the circuit of the full-bridge Class-DE series 
resonant inverter with a transformer. The circuit constitutes 
four MOSFETs each of them with a shunt capacitor Csw, 
which are used to minimize the switching losses of these 
devices. The inverter is supplied by a DC voltage VI and 
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feeds a resonant tank circuit with a square-wave voltage. The 
switching frequency is is. The anti-parallel diodes provides a 
path for the current to flow from the source to the drain during 
the instants, when the switches are OFF. The pulse-width of 
the gate signal has a duty cycle D. Each MOSFET remains 
ON for an interval DT, where T = 1/  is is the switching 
time period. The gate signals to the switches !vh and !v[4 are 
1 800 out of phase with those provided to the switches !vh and 
!vI3. The duty cycle chosen for each switch is lower than 0.5, 
thereby providing a finite dead time between the switching 
instants. The shunt capacitors in parallel with the MOSFETs 
are used to shape the voltage across the MOSFETs in order 
to achieve ZV S condition under certain operating conditions. 

In Fig. l(a), the series resonant circuit consists of a resonant 
capacitor Cr and a resonant inductor La, while Lm represents 
the magnetizing inductance of the transformer. Fig. I (b) il­
lustrates the use of reflection principle to transfer the load 
resistance RL to the primary side forming the series-parallel 
resonant network. Fig. l(c) shows the conversion of the series­
parallel network comprising of Lr - Cr - Lm - Ri to a series 
resonant network comprising of La - Cr - Ls - Rs. Due 
to a high quality factor of these components, only the first 
harmonic of the tank voltage and current is delivered to the 
load. 

B. Circuit Analysis 

Analysis of a series resonant network is by far easier 
than the series-parallel topology. Therefore, a comprehensive 
analysis of the inverter is first performed on the series resonant 
circuit. Then, using appropriate transformation principles, the 
series topology shown in Fig. I (a) is converted to series­
parallel topology shown in Fig. I (b). The first harmonic 
approximation is used to determine the inverter currents and 
voltages [12]. The subsequent analysis of the inverter is based 
on the following assumptions: 

I) The converter operates in steady state. 
2) The current through the resonant tank is purely sinu­

soidal. 
3) The circuit components are assumed to be ideal and all 

the parasitic components are neglected. 
4) The DC supply voltage and the amplitude of the output 

voltage are constant. 
5) Only the fundamental component is responsible for 

delivering the rated power to the load resistance. 

The steady-state expressions and design equations consider a 
duty cycle of D = 0.4. Therefore, each MOSFET is ON for 
4'iT /5. A symmetrical dead time of td = 'iT /5 is chosen at 
the beginning of each turn-ON event. The current through the 
resonant tank is 

itan = 1m sin (wt + ¢), (I) 

where 1m is the amplitude of the sinusoidal current waveform, 
w = 2 'iT is is the angular operating frequency with 0 < wt .-::: 
2'iT and ¢ is the phase shift between the tank current and the 
tank voltage. Each switching period is divided into four time 
intervals as shown in Table I. Fig. 2 shows the key current and 
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TABLE I 
TIME INTERVAL AND STATE OF THE MOSFETs AT D = 0.4. 

Interval 
tA=ltl, t2J 
tB=[t2, t3l 
tC=[t3, t4l 
tD=[t4, tIl 

Time 
11" /10 <:: wt <911"/10 

911" /10 <:: wt <1l1r /10 
1l1r /10 <:: wt <1911"/10 
1911" /10 <:: wt <2l1r /10 

State 
Ivh,2 on, M3,4 off 

Ml,2,3,4 off 
Ivh,2 on, M3,4 off 

MI,2,3,4 off 

voltage waveforms during indicating the state of the inverter 
during each sub-interval. During time interval tA, !v[1 and !v[2 
are ON to give 

VDSI = VDS2 = 0 
VDS3 = VDS4 = VI. (2) 

Since the voltage across the shunt capacitances are constant, 
their currents are equal to zero. During the interval tE, 
the capacitors CswI and Csw2 begin to charge, while the 
capacitors Csw3 and Csw4 begin to discharge. Applying the 
KVL and KCL to the nodes and the meshes of the circuit, we 
obtain the following equations. 

VI = VDSI + VDS4 = VDS3 + VDS2, (3) 

itan == iCSWl - iCSW4 == iCSW2 - iCSW3· (4) 

Combination of (3) and (4) and their derivative results in 

{,. - C dVDSl C dVD84 {tan - W swI d(wt) - W sw4 d(wt) 
itan = wCsw2 �(S�) - wCsw3 dd(S�)l (5) 

where { dVD81 __ dVDS4 - 1m sin (wt + ¢) d(wt) - d(wt) - W(C

,,

8U

,

" +C

,,

8"

,

'4) dvDS" = _ dVDS,l = 1m sin (wt + � ) d(wt) d(wt) W(C�U'2+C�U'3) <p. 
(6) 

Imposing zero-derivative switching (ZDS) for the voltages 
across the MOSFETs, during turn ON at wt = 'iT /10, we get 

to yield 

sin (� + ¢) = 0 (7) 

'iT ¢ = - 10' (8) 

Thus, solving for capacitor currents provide { iCswI = (C8u�+C8w4)1msin(wt - ;0) 
iCsw2 = (C"

"
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3

.

) 1m sin (wt - ;0) 
iCsw3 = -(C 

c+'o , )1msin(wt - ;0) 
iCsw4 = -(c:::�+'c::::)1m sin (wt - ;0) 

and solving for the switch voltages yields 

(9) 

{ VDSI = W(C8W�r+C8W4) [ -cos (wt+ �) +cos(�)l 
VDS2 = w(C",,�'+C'W3) [ -cos (wt + �) + cos (�) 1 

VDS3 = W(C8W�r+C8W3) [ -cos (wt+ �) +cos(�)l + VI 
VDS4 = W(C8W�'+C8W4) [ -cos (wt + ;0) +cos(�)l + VI. 

(10) 

Imposing the zero-voltage switching (ZV S) condition to VDS3 
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Fig. 2. Waveforms of switch currents, switch voltages, capacitor current, 
resonant current, and the resonant tank voltage. 

and v D S 4 at the end of time interval tE at wt = 1 17T  /10, we 
get 

(11) 

to give 

Csw1 + Csw4 
( ) 1m = 1f WVI = 5.236 Csw1 + Csw4 WVI. (12) 1 -cos "5 

During time interval tc, lvf3 and lvf4 are ON. Therefore, 

VDS1 = VDS2 = VI 

VDS3 = VDS4 = O. (13) 

Finally, during the interval tD, the circuit configuration is dual 
with respect to that achieved during time interval tE, where 
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the currents and voltage are displaced exactly by 1 800• The 
current and voltage expressions are 

iCsw1 = (Cm�+C,w4) 1m sin (wt -- ;0) 
iCsw2 = (C �+'c .)1msin(wt - 1

1f
O) 8'u,2 8'11,;3 

iCsW3 = -- (C8,,�+C'W:J) 1m sin (wt -- ;0) 
iCsw4 = - (C8U�+C8W4) 1m sin (wt - ;0)' 

(14) 

and { VDS1 = W(C8W�'+C8W4) [cos (wt+ ;0) -cos(�)l 
VDS2 = w(C",,�'+C8W3) [+ cos (wt + �) -cos (�) 1 

VDS3 = W(C8W�r+C8W3) [ -cos (wt+ �) +cos(�)l + VI 

VDS4 = w(C'w�'+C'W4) [ -cos (wt + ;0) +cos(�)l + VI. 
(15) 

III. CLOSED-FoRM EXPRESSIONS 

A. Currents, Voltages, and Powers 

The average dc input current can be determined as follows. 
During tA between � < wt :::; ��, itan = iDS1 . Similarly, 
d · t b 1 1 1f t < 1 91f ' . B unng c etween ""1'0 < w _ ""1'0 ' ·ttan = ZDS2· Y 
considering the overall tank current using (5), we obtain the 
average dc input current as 

1 21f 1 
h = - J itand (wt) = ...!.!.':. 27T 0 27T (16) 

Similarly, the tank voltage applied to the resonant circuit is 

Vtan = VDS3 -- VDS1 · (17) 

A Fourier series expansion of Vtan given in (17) yields 

1 00 

Vtan = "2ao + L an cos (nwt - ¢) + bn sin (nwt - ¢). 
n=l 

(18) 

In (18), ao = 0, since Vtan has odd symmetry. From Fig.!, at 
resonance, the voltage drops across Cr and La are equal and 
out of phase by 1800 canceling out each other. Thus, for the 
fundamental component (n = 1 )  and the applied tank voltage 
becomes 

Vtan = VLs + Va = VLm cos (wt - �) + Vm sin (wt - �) . 
(19) 

The Fourier coefficients are an = VLm and bn = Vm, whose 
expressions are determined as follows. From the principle 
of Fourier series, the amplitude of the voltage across the 
inductance Ls is defined as 

VLm = � f (VDS3 -- vDsd cos (wt + 
97T) 

d (wt) 7T 0 10 
sin 81f + 21f 

= VI (5 t) = 6.76VI. 7T 1 + cos ;: 
Similarly, the output voltage amplitude is 

(20) 

Vm = - J (VDS3 - VDS1 ) S111 wt + - d (wt) = -. 
1 21f . (97T) 4VI 
7T 0 10 7T 

(21) 



Applying Ohm's Law, VLm = 1mwLs and Vm 
Therefore, the ratio VLm/Vm is 

VLm wLs 6.76VI 
Vm = Rs = 4VI = 5.3l. 

7r 

Furthermore, the output power is given by 

from which 

V2 [� VI( 1 - cos t 7T) ] 2 
Po = � = �--�----��� 2Rs 2Rs 

v2 
Rs = ---..!I!:..... 2Po 

(22) 

(23) 

(24) 

The input power of the inverter is PI = VI1m. Using (12) 

wV 2 1 - COS.:!7T 
PI = VI 1m = __ 

I � (Csw1 + Csw4) 7T 1 + cos 57T (25) 

2 = 3.OlwVI (Csw1 + Csw4)' 
B. Circuit Components 

Assuming the inverter efficiency as unity, the Po = PI. If 
the shunt capacitances are equal to Csw, then combining (11) 
and (25) provides 

7TPo 1 + cos t7T Po Csw = -, = 0.33-2, (26) wV} 1 - cos t7T wVI 
The quality factor of the series resonant tank responsible to 
provide a pure sinusoidal current waveform is 

Qs = Ws 
(La + Ls) 

= 
wsL. Rs Rs 

Modifying (27), the inductance La is 

(27) 

(28) 

where VLm/Vm is as given in (22). The components La 
and Cr are tuned to resonate at the switching frequency Is. 
Therefore, 

1 
Ws = -yl=== = 27TIs· LaCr 

The resonant capacitance is expressed as 

1 1 Cr = -- = --------;-----------,:-w;La w R (Q _ VL m ) . 
S '8 S Vm 

(29) 

(30) 

Since L = La + Ls, the the resonant frequency between Cr 
and L is 

1 wp = ylLCr' 
(31) 

The inductance Ls in the series form can be converted into 
Lm in parallel to the load inductance. In the version of the 
inverter as shown in Fig. lea), Lm represents the magnetizing 
inductance of transformer. Let the loaded quality factor be 

(32) 
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Converting the series Ls -Rs combination to a parallel Lm -
Rp network has been described in [12]. Thus, the parallel 
inductance Lm and the resistance Rp are 

(33) 

(34) 

IV. VOLTAGE TRANSFER FUNCTION AND EFFICIENCY 

A. Voltage Transfer Function 

From the waveforms in Fig. 2, the tank voltage at the input 
of the resonant tank 

-21m 
[
. ( 47T) (7T)] Vtan = (C , C ) S111 wt + - + cos - + VI, 

W sw2 + sw3 10 5 
(35) 

for the intervals 0 :::; wt < 1307T and �b 7T :::; wt < i� 7T. During 
the intervals 1307T :::; wt < 1707T and �� 7T :::; wt < �b 7T, the value 
of the tank voltage is VI. Similarly, during 1707T :::; wt < �� 7T 
Vtan = w(Csw�

1� Csw3) [sin (wt + �;) - cos (�)] + VI 

Combining these voltages, the fundamental component is 

Vtanl = vtanlm sin (wt - e) 

= VLm cos (wt - �7T) + Vm sin (wt - �7T ) , 

where 

(36) 

(37) 

vtanlm = JV'lm + V;" and e = ¢ + 1jJ. (38) 

In (38), e is the phase of the fundamental tank voltage, 
¢ = -7T /10 as obtained in (8), and 1jJ is the phase shift intro­
duced by the resonant tank. The rms value of the fundamental 
tank voltage is vtanlrms = vtanlm/ J2. The voltage transfer 
function of the full-bridge Class-DE inverter is 

1\." vtanlrms "vs = VI (39) 

and the voltage transfer function of the resonant circuit is 

(40) 

Thus, the overall voltage transfer function of the inverter is 

Va MV I = MvsMvR = -­VI 
c=,----------,� 

= y'V'l� + V;, IMvrl ejCY• 
y 2VI 

In (41), the magnitude IMvrl and phase 0: are 

(41) 

1 IMv RI = -----;============ (42) 

(1 + A)2[1 - nl2 + * (], A�1 - In) 
4 



-1 [ 1 (t� -in f] 
ex = tan QL (1 + A) (1 -i�) 1 (43) 

respectively. The ratio of the resonant to magnetizing induc­
tance is 

A=�. Lm 
(44) 

The ratio of the series-parallel resonant frequency to the 
switching frequency is the normalized frequency given by 

the rms value of the current through the shunt capacitance is 

I Itan1m C swrms = --2- 8� [�7T + sin (�7T)] = 0.055Itan1m· 

(54) 

The rms value of the current through the load resistance is 

(55) 

i -
ip n -is · 

(45) Therefore, the inverter output power is 

The quality factor of the series-parallel tank is 

Rp Qp = wpCrRp = wp (Lr + Lm) 
B. Input Impedance 

The characteristic impedance of the resonant circuit is 

Z = . !Lr +Lm 
a V C . 

The input impedance of the series-parallel tank is 

(46) 

(47) 

(1+A)(1-i�)+jQ1p (f,ltA -in) Zi=Rp 1-jQpin(1+A) 
. (48) 

Thus, the ratio of the magnitude of the input impedance to the 
characteristic impedance is 

�
-Q Zo - p 

(1 + A)2(1 -i�)2 + zh: (t� -in) 
2 

1 + [Qpin (1 + A)]2 
(49) 

Using (38) and (49), the amplitude of the current through the 
resonant tank is 

(50) 

C. Efficiency 

The overall power loss in the resonant circuit is [12] 

Ploss = PCr + PLr + PDs + PCsw 
2 2 = (rCr + rLr)Itan1rms + 4rDsIDSrms (51) 

2 + 8rcswICswrmsl 
where the rms value of the tank current is 

I Itan1m tan1rms = .J2 1 

the rms value of the MOSFET current is 

(52) 

I Itan1m DSrms = --2-
� [�7T -sin (�7T)] = 0.487Itan1ml 27T 5 5 

(53) 
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2 vim + V� lvJ2 PRp = IRprmsRp = 2Rp 
vr· 

Finally, the inverter efficiency can be determined as 

1 
171 = --=--

1 + Pllp • 
Plo.,., 

V. C LASS-DE INVERTER SIMULATION RESULTS 

A. Design Example 

(56) 

(57) 

An inverter with design specification as follows is designed: 
DC input voltage VI = 230 V, output power Po = 921 W, 
and switching frequency is = 100 kHz. A duty cycle D = 0.4 
is considered. The dead time is td = 0.1. Using (14), the 
values of the shunt capacitances are Csw = 4.25 nP. Let us 
assume the quality factor Qs = 10. From (12), Rs = 37.2rl, 
from (15), L = 592 ILH, from (16) La = 565.65 J.LH to yield 
Ls = 26.35 J.LH, and from (17), Cr = 4.48 nP. For the series­
parallel resonant circuit we have Lm = 166.2 J.LH and Rp = 
44.1rl. The parasitic resistances of the MOSFET are rDS = 
15 mrl, shunt and resonant capacitor rcsw = rCr = 0.656 rl, 
and resonant inductor rL = 0.110 rl. According to (31), the 
inverter voltage transfer function is lv1v I = 0.89. Thus, the 
amplitude of the output voltage of the series-parallel network 
is V m = 204 V. Furthermore, the overall inverter power loss 
was calculated as Pzoss = 23.3 W. The inverter efficiency 
calculated using (57) was Til = 97.6%. 

B. Simulation Results 

The inverter designed in the previous section and shown 
in Fig. 1 was simulated on SABER circuit simulator. Fig. 3 

shows the waveforms of the current and voltage waveforms of 
MOSFETs 51 illustrating the ZV S operation. A small portion 
of the switch current flows through the anti-parallel diode, 
causing its drain-source voltage to be equal to zero. Fig. 4 
shows the waveforms of the tank current itan, tank voltage 

Vtan, output voltage va' and output power PRp. The rms value 
of the output current and voltage were 4.98 A and 185 V, 
respectively. The measured rms output power was 921 W, 
the measured input power was 958 W. The measured overall 
efficiency was 96% confirming the theoretical analysis. 
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Fig. 3. Simulated waveforms of the gate-to-source voltage VCSl, drain-to­
source voltage VDS1, and drain current iD1 of the MOSFET Sl showing 
ZVS operation. 

V I. CONCLUSIONS 

This paper has presented the following for a full-bridge 
Class-DE resonant inverter operating at a fixed duty ratio: (a) 
steady-state analysis using first-harmonic approximation and 
(b) derivation of closed-form expressions for the currents, volt­
ages, and powers. The design procedure has been formulated 
for a series resonant tank circuit. Using transformation princi­
ples, the series resonant network has been transformed into a 
series-parallel resonant topology in order to accommodate the 
magnetizing inductance of the transformer. The expressions 
to calculate the values of resonant circuit component and the 
wave-shaping shunt capacitances of the inverter-bridge have 
been derived. The voltage transfer function and the input 
impedance of the series-parallel topology have been analyzed. 
The expression for the overall efficiency of the inverter has 
been derived. Simulations have been performed on an inverter 
operating at a supply voltage of 230 V, output power of 920 
W, and at a switching frequency of 100 kHz. The simulation 
results show the validity of the theoretical predicted analysis. 
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