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Although quite recent as a forensic research domain, computer vision analysis of scenes is likely to
become more and more important in the near future, thanks to its robustness to image alterations at
the signal level, such as image compression and filtering. However, the experimental assessment of
vision-based forensic algorithms is a particularly critical task, since they cannot be tested on massive

amounts of data, and their performance can heavily depend on user skill. In this paper we investigate
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on the accuracy and reliability of a vision-based, user-supervised method for the estimation of the cam-
era principal point, to be used in cropping and splicing detection. Results of an extensive experimental
evaluation show how the estimation accuracy depends on perspective conditions as well as on the
selected image features. Such evidence led us to define a novel visual feature, referred to as Minimum
Vanishing Angle, which can be used to assess the reliability of the method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Image Forensics has been proposed as a solution for authenti-
cating the contents of digital images [1-3]. This technology is
based on the observation that each phase of the image history -
from the acquisition process, through its storage in a compressed
format, to any editing operation - leaves distinctive traces on the
data, as a sort of digital fingerprint [4]. It is then possible to deter-
mine whether a digital image is authentic or modified, by detecting
the presence, the absence or the incongruence of such traces, that
are intrinsically tied to the digital content itself. Forensic traces can
be found both at “signal level” (invisible footprints introduced in
the signal statistics, like demosaicing artifacts [5], sensor noise
[6], or compression artifacts [7,8]) and at “scene level” (inconsis-
tencies in shadows [9], lighting [10,11], or in perspective and
geometry of objects [12,13]). The former are typically detected
by automatic methods, but they often exhibit lower effectiveness
when the investigated content has been subjected to an unknown
chain of processes (e.g., filtering, resizing, compression) that may
partially or completely spoil the traces left by previous operations
[14]. The latter usually require particular constraints on the scene
(e.g. the presence of Lambertian convex surfaces for lighting esti-
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mation [15]) but have the advantage of being robust to common
image processing operations, thus appearing suitable even for
low resolution images, or when the content has undergone multi-
ple compressions. While in the literature a great effort has been
devoted to evaluate the performance of signal-based forensic
methods in terms of detection accuracy and reliability, a limited
analysis has been carried out until now on scene-based techniques.
This is mainly due to the fact that such algorithms are usually
tested on small datasets only, since they cannot exclude some
human intervention, e.g. image feature selection or analysis
supervision.

This paper represents - to the best of our knowledge - the first
attempt to analytically evaluate the performance of a scene level
trace. In particular, we addressed the problem of estimating the
camera principal point (PP) (whose position in the image under
analysis is usually detected by exploiting vanishing points related
to three mutually orthogonal directions [16]); whose application in
a forensic scenario has been proposed in some recent works [17-
19]. For our evaluation, several tests have been performed, on both
synthetic and on real images, by varying both the point of view - so
as to obtain different perspective conditions - and the number and
position of the extracted features. A critical study of the obtained
results has led us to define a novel feature, referred to as Minimum
Vanishing Angle (MVA), allowing us to measure the reliability of the
estimated PP. Using the MVA concept, we have also been able to
establish a feature selection criterion. Specifically, one should just
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care about choosing the image lines that provide the widest possi-
ble MVA, since the accuracy of PP estimation relies more on MVA
amplitude than on the amount of data (i.e. image lines) used.

The paper is organized as follows: in Section 2 the State of the
Art is briefly presented, and in Section 3 we briefly review the the-
ory behind the adopted PP estimation method. In Section 4 we
introduce the MVA and its relation with the image perspective con-
ditions. Then in Section 5 an in deep analysis of the reliability of
the method is given. Section 6 presents two possible forensic appli-
cations of the PP: cropping detection - for which we provide a
detailed accuracy analysis — and splicing detection. Section 7 con-
cludes the paper and summarizes the contributions in light of the
achieved results.

2. State of the art

The estimation of the PP from a single image is a known issue in
computer vision and photogrammetry, usually embedded into the
camera calibration problem [20, Chapter 2]. In order to calibrate
the camera, accurate off-line techniques usually require a known
pattern in the scene [21,22]. Other methods use video sequences
or multiple images to self-calibrate the camera while solving the
Structure from Motion problem [23]. In addition, other scene ele-
ments such as coaxial circles, or Manhattan-World structure [24]
can be exploited for calibration tasks [25-28].

Reported methods assume to use genuine images only, without
any malicious modification. This hypothesis allows the authors to
impose constraints on the parameters to ease and improve the esti-
mation (for example, the PP is often initialized in the image cen-
ter). In a forensic application scenario, however, this assumption
doesn’t hold; Moreover, we have to typically deal with single
images already acquired. So, a calibration approach has to exploit
useful characteristics of the scene. Given the abundance of images
depicting man-made environments, we focus on techniques based
on the Manhattan-World assumption.

Given these difficulties, in the forensic literature only a few
methods have been presented that try to exploit the camera PP
as a clue for tampering detection. In [17], the authors presented
a method based on the estimation of the homography mapping a
person’s eyes to the image plane. Then, the PP is recovered by
homography decomposition (supposing focal length is known)
and exploited for splicing detection. A similar approach, that
exploits circles in the scene to obtain the PP position, is presented
in [18]. In [19], the authors notice that asymmetric cropping of an
image introduces a correspondent shift of the principal point.
Hence, they suggested that the distance between the estimated
PP and the image center can be exploited as evidence of cropping.
Slightly different, but still related to this topic, is the approach
described in [29] where, instead of estimating the PP, tampering
detection is based on the direct observation of the vanishing points
of different 3D structures (e.g. buildings).

3. Principal point estimation

The mapping between the 3D world and its 2D images is usually
modeled as a central projection of a world point onto the image
plane (pinhole model [30], see Fig. 1a). The projection rule can be
formally written as m = K[|0)]M, where m= (x,y,1)" and
M= (X,Y,Z,1)" are the homogeneous coordinates of a 2D image
point and its corresponding 3D world point respectively, whereas
K is the camera matrix, embedding the internal parameters of
the acquisition device. I is the identity matrix, and 0 a column vec-
tor of zeros. Typically, the camera matrix is represented as

s b
K=|0 pof p|, (1)
0 0 1

where f is the focal length, while the aspect ratio p and skew s take
into account the actual shape of a pixel. Lastly, (p,, p,) are the coor-
dinates of the PP (see again Fig. 1a). Modern cameras have reached a
high level of quality, with unity aspect ratio and zero skew. So,
without significant loss of accuracy, the K matrix can be modeled
with p =1 and s = 0, passing from 5 to 3 degrees of freedom [31].

To obtain the PP, we can exploit the relation among three van-
ishing points, related to mutually orthogonal directions in the 3D
space [16]. A vanishing point (VP) is the intersection point of all
the projected lines that are mutually parallel in the scene (i.e. they
share the same 3D direction). Note that, in a practical scenario, if
more than two concurrent image lines are available, their intersec-
tion will not be unique (see Fig. 1b) - since noise can perturb the
image line detection - and the VP has to be estimated with an opti-
mization algorithm. In our experiments we employ the solution
reported in [16], where after initializing the VP by solving a linear
least square problem, a non-linear optimization is carried out.

Let v; and v, be two VPs related to 3D orthogonal directions.

Then v] wv, = 0, where w = (KKT)A is the image of the absolute
conic, depending on the three camera parameters f and (p,p,).
Given three vanishing points corresponding to three orthogonal
directions, we can thus define three independent linear constraints
on w, and finally estimate w by solving a linear homogeneous sys-
tem. Eventually K can be obtained using the Cholesky factorization
of w, from which both focal length and principal point can be esti-
mated [16].

The estimation of the PP on a single image can be summarized
in three main steps: (1) selection of three groups of concurrent
image lines, corresponding to mutually orthogonal directions in
the scene; (2) estimation of vanishing points; and (3) computation
of w and recovery of f and (py,p,).

Note that the first step can be done in a manual or automatic
way. In the computer vision field, many works have appeared deal-
ing with the problem of line selection and grouping for VP estima-
tion by using Expectation-Maximization approaches [32], the
Hough transform [33], or robust estimators, such as the J-Linkage
algorithm [34] and employed in [35]. If the camera calibration is
known, mutually orthogonal line clusters can be selected automat-
ically [36-38]. On the other hand, with no a priori information
about camera calibration (which is our case), it can be extremely
hard to check the vanishing point orthogonality without user inter-
vention or by imposing simple heuristics, such as the selection of
the most populated clusters. So, in this work we preferred to use
a manual line selection scheme. Moreover, notice that also in
[29] parallel lines are validated by the user, while in [19] no speci-
fic indication is given about the method used to automatically
detect orthogonal vanishing points.

4. Perspective analysis

In this section, we evaluate the performance of the PP estima-
tion algorithm under different perspective conditions, so as to
determine if and how its accuracy changes when passing from
weak to strong perspective images. The following two subsections
report the results of synthetic and real world tests respectively.

4.1. Synthetic tests
In order to carry out extensive tests, a synthetic dataset featur-

ing 248 representative camera poses was built as follows. A 3D
cube with unit length sides was placed in the center of the world
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Fig. 1. (a) Pinhole camera model: Given the camera center C, expressed in the world coordinate system {X,Y,Z}, and the image plane 7 orthogonal to the Z-axis, the principal
point PP is the intersection of the Z-axis with 7, while the focal length fis the distance between C and 7. A 3D point M is projected in m on the image plane as m = K[I|0]M. (b)
In red, green and blue three sets of image lines corresponding to orthogonal 3D directions. Since noise can perturb the line orientations the intersection can be not unique, as
shown in the magnified area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

coordinate frame with its X,Y,Z axes aligned with the cube. Then,
248 camera center positions were sampled over a sphere of radius
r, by varying their azimuth by an angle « € (0, w/4] and their alti-
tude by an angle € (0,7/2) with steps of % and Z respectively;
all other perspective conditions can be deduced by symmetry.
Since the VPs are invariant to translation, the camera distance with
respect to the world coordinate frame (i.e. the radius r) was kept
fixed. In the camera coordinate frame, the z-axis is the line passing
through the camera center and the world coordinate origin. The x-
axis is perpendicular to the z-axis and parallel to the world plane
defined by X and Y and, finally, the y-axis is obtained from the cross
product between the unit vectors of the z and x axes (see Fig. 2).

We excluded extrema positions - i.e. when «=0,8=0,
B = m/2 - that produce orthographic images of the cube, thus lead-
ing to known degeneracies in VP estimation. Likewise, camera roll
was not taken into account considering that, as any pure rotation,
no parallax effects are induced, thus leaving the perspective
appearance of the image unaltered. From each camera pose
P(«, B), an image of the cube was acquired by using a virtual cam-
era with known PP and focal length. With noise-free measure-
ments (i.e., line points are selected with no error), the PPs were
estimated with an Euclidean error with respect to the ground truth
lower than 1079 pixels in all the positions. The behavior in the
presence of noise was then evaluated by carrying out a Monte
Carlo simulation: for each pose we collected 1000 principal points
PP(c, B) = {PP1(2, B), ..., PP1oo0(c, B)} by perturbing the line points
with a noise from a zero mean Gaussian distribution with standard
deviation ¢ = 0.5 pixel - representing an uncertainty of at most
1.5 pixel radius in points selection. For each test we determined
a robust index for the dispersion of the collected PP(«, ) as fol-
lows: we trimmed the 5% of the points with highest distance from
the ground truth PP, then we calculated the standard deviations
(STD,, STD,) of the remaining points along the x and y axes and
we chose their maximum as a dispersion index of the estimated
PP for that position.

Fig. 2. Synthetic data setup. A cube is placed at the center of the world coordinate
system O, with its sides aligned with the axis X,Y,Z. The image is taken from the
camera - represented here as a pyramid - with center o(x, ) with a relative
coordinate system x, y,z. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Results are graphically reported in Fig. 3a, where the synthetic
cube is placed in the origin of the coordinate frame aligned with
the orthogonal axes, while each point represents a camera position,
colored according to the correspondent estimated dispersion.
Notice that the scattering of the estimated PPs is strictly related
to the image perspective: Most of the poses have comparable
uncertainty, except when marginal o or g occurs. In those cases,
the computation accuracy of the VPs strongly drops, and the PP
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Fig. 3. 3D plots representing results obtained with the synthetic data setup: in both figures, the virtual cube is placed in the origin of the coordinate system, aligned with the
orthogonal axis. Colored points represent the tested camera positions. In (a) we report the maximum STD (between x and y-axis) of the estimated PP: the PP dispersion is
bigger for reddish and, lower for blueish points. In (b) the same camera poses are reported but with color related to the MVA: poses with wider MVA are reported in blue,
while poses with narrower MVA are in red. Note that poses with lower STD are characterized by wider MVA, and vice versa. In both plots, the thresholds used to assign colors
are obtained from the deciles (i.e. ten quantile with step of 10%) of the respective distribution (STD and MVA). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

estimates become unreliable and virtually useless for forensic
purposes.

These results suggest the possibility to define a novel image fea-
ture to be used by the forensic analyst to evaluate the expected
accuracy. Firstly, given a vanishing point v;, let 9; be the widest
angle among those obtained from the pairwise intersection of lines
concurrent to v; (see Fig. 5). Then, given 0, 0>, and 05, related to
three mutually orthogonal VPs, we can define the Minimum Vanish-
ing Angle (MVA) as

MVA = min(01,62,63) (2)

A visual representation of the MVA values for different camera
poses is reported in Fig. 3b. Its comparison with the results in
Fig. 3a confirms our intuition that the proposed feature is a sensible
indicator of PP dispersion. Indeed, small MVAs are associated to
marginal poses characterized by a weaker perspective. Notice that
also in [29] the authors try to define a way to evaluate the quality
of the estimates: They propose to use the distance between the
VP and the PP, the latter supposed to be in the image center. How-
ever, this criterion may lead to erroneous evaluations in the pres-
ence of cropping, since the PP would not be close to the image
center. Moreover, relying on a distance-based criterion instead than
on an angle-based criterion such as ours, would inevitably intro-
duce a dependency on image resolution.

4.2. Tests on real images

To compare the synthetic data with real experiments we clus-
tered the 248 synthetic poses in three groups according to their
correspondent MVAs: Weak Perspective (MVA < 1.5°), Mid Per-
spective (1.5° < MVA < 4°), and Strong Perspective (MVA > 4°).
Then we considered 12 images from the York Urban Database
[39] spanning several MVAs between 0° and 7.52°. For each image
25 different PPs were computed, as described in Section 3, by let-
ting 25 different users to select three lines for each direction. In
Fig. 4 we reported the name of the selected images, their MVAs
estimated by users selection and the perspective group they belong
to (Weak, Mid or Strong).

The achieved results are compared in Fig. 6. Crosses represent
the estimated PPs on real images: in red, green and blue for the
images belonging to Weak, Mid and Strong perspective groups

respectively. The plotted ellipses represent the 95% confidence
ellipses estimated on the corresponding synthetic clusters. Syn-
thetic results show that the estimation is expected to be extremely
noisy on the Weak perspective cluster while more accuracy and
stability is expected on the Mid and Strong cluster where the
MVA is wide enough. Real data confirm the synthetic prediction
(STD, is 435.69, 38.52 and 29.69 pixels on Weak, Mid and Strong
perspective clusters respectively). Looking at the picture, a hori-
zontal dispersion of the real data sticks out. This is due to the fact
that the images of the considered dataset are characterized by
small altitudes, while the synthetic data is built considering all
possible viewing angles.

5. Image characteristic analysis

In the previous section we defined the MVA feature, after
observing a strong relationship between the amplitude of the van-
ishing angles and the PP estimation accuracy. In practical cases, the
scene may allow the forensic analyst to extract more lines for each
direction and possibly forming even wider MVAs. In this section we
investigate more deeply the estimation accuracy with reference to
the MVA amplitude. For this purpose, we take into account only
MVAs with sufficient amplitude able to provide reliable results,
and we evaluate how increasing it improves the estimation
accuracy.

We also study how the performance is sensitive to an increase
in the number of lines intersecting in the same VP: Since VPs are
obtained by minimization, we expect an accuracy improvement
when more data are available. As for the tests of Section 4, a syn-
thetic image dataset is used first, then tests on real images are car-
ried out to corroborate the synthetic results.

5.1. Synthetic tests

We generated different MVAs with different numbers of lines:
starting with two lines for each VP, with an angle of incidence of
5°, we progressively added new lines into the image and increased
the angle. More specifically, we used n = {2,3,4,5} lines, with a
length of 200 px, and angles 0 = {5°,10°,15°,20°} (see Fig. 7 for
some synthetic image examples). Gaussian noise with zero mean
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(P1040863)

(P1020830) (P1040798)

Fig. 4. Twelve images, with associated names, from the York Urban Database [39], used in the real test to assess results obtained with the synthetic cube dataset. Top row
shows images with strong perspective, with MVAs spanning from 7.52° to 5.53°. Second row includes mid perspective images with MVAs from 3.96° to 2.11°. Finally, the last
row shows images with low perspective and MVAs from 1.09° to ~0.00°. MVA here reported are the mean value of the MVAs computed on each image during the tests, since

any user can select different lines and obtain slightly dissimilar MVA.

VP

l

l4

I3

Fig. 5. Graphical visualization of angles obtained from the pairwise intersection of
lines concurrent to the same VP. In this case 0; correspond to o 4 since it is widest
angle available.

and standard deviation o = 0.5 pixel was added to the point coor-
dinates, and the evaluation was repeated 1000 times for each
image.

Table 1 shows the maximum STDs (as defined in Section 4.1) for
the estimated PPs, along the x and y image directions. As clearly
visible, the accuracy is almost stable when adding new lines, while
it significantly grows using well spaced lines (i.e., wider MVAs).

5.2. Tests on real images

As before, the results obtained with the synthetic data were val-
idated on real tests with the help of 25 different users, having to
select up to five lines per VP, with quasi regular spacing. For this
purpose, the image of a cube-like checkerboard pattern was used.

The considered image allows the user to select either narrow or
wide MVAs of approximatively 5° and 20° respectively. 25 PPs
were collected in both cases - i.e. the narrow (Fig. 8a) and wide
(Fig. 8b) selection schemes - and the results were evaluated with
respect to MVA amplitude and number of lines.

The PPs estimated on the real images are represented as colored
dots in Fig. 9a - in red for angles of 5°, in blue for wider angles
(20°). The 95% confidence ellipses of PPs obtained during the syn-
thetic tests (see Section 5.1) are also shown, with the same color
coding. In Fig. 9b, a similar plot considering instead the line num-
ber is presented. Almost all PPs obtained on the real images fall
inside the associated ellipse, confirming that synthetic results are
in close agreement with the real ones. Furthermore, these tests
corroborate the observation that increasing the MVA clearly
improves the estimation stability (Fig. 9a), while adding more lines
does not significantly affect the performance (Fig. 9b).

In conclusion, results obtained in Sections 4 and 5 can be sum-
marized in two main outcomes: (i) Images characterized by a nar-
row MVA should not be used for forensic analysis based on PP. (ii)
To improve accuracy, the selection of few well spaced lines is
preferable over many, closely spaced lines.

6. Forensic case studies

In [19] the distance between the PP and the image center is
exploited to identify asymmetrically cropped images (see
Fig. 10). Once computed, the image and the PP are normalized in
the interval [-1, 1]. Then a cropping threshold (CT) - i.e. the radius
of a circle centered in the estimated PP - is defined, and the image
is labeled as cropped if the distance of the PP from the image center
exceeds CT. In the following tests we show how the achieved
results can support the analyst in assessing the cropping detection
performance:
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Fig. 6. Comparison of results achieved from synthetic and real images. Crosses represent the estimated PPs (red for subway, green for hall, blue for building). Ellipses enclose
the PPs distribution obtained in synthetic tests. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

NI

(c) (d)

Fig. 7. Example images produced to test the PP estimation algorithm with reference to the extracted features. On the left, images with two lines for each VP, with different
minimum vanishing angle (i.e. MVA = {5,20}); on the right, similar images but with five lines. Lines with the same color converge to the same vanishing point. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Max STD of estimated PPs between x and y direction.
MVAs
5° 10° 15° 20°
#Lines
2 18.55 10.15 7.09 5.98
3 19.54 9.85 6.59 5.56
4 18.67 9.53 6.17 5.12
5 17.03 8.74 6.12 479
e Perspective-based Test: we verify that the MVA amplitude can e Characteristic-based Test: we assess the performance variations
suggest whether the cropping detection is applicable on a query when more lines and wider MVAs are available on the image.
image. The test is performed on the synthetic and real data The test is performed on the synthetic and real data defined
defined in Section 4 and confirms that the technique cannot in Section 5.

be applied on images with a narrow MVA.
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Fig. 8. Examples of lines selected by the user on the real image searching for (a) narrow and (b) wide MVAs.
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Fig. 9. Results on real images obtained by varying MVA ans and line number. In (a) dots represent estimated PPs, clustered with respect to the MVA, while in (b) PPs are
grouped by the line number. Reported ellipses represent the PP dispersion on the synthetic data. The coordinate system is centered in the ground truth PP.

e Robustness Test: we verify the robustness of the cropping detec-
tion to image compression and resizing. We consider a practical
case where the image has been exchanged through Facebook at
low quality, thus having been resized and compressed.

In our experiments we consider both cropping percentage (CP)
- i.e. the size of the cut - and CT from 0% to 50% of the image size,
with steps of 5%. Results are reported for an upper-left cropping
only, where both dimensions of the image have been cut with
the same percentage, thus leaving unchanged the image aspect
ratio. However, tests were performed on all the other eleven cases
of asymmetric cropping too (upper, left, right, bottom, upper-left,
upper-right, bottom-left, bottom-right, left-upper-right, upper-
right-bottom, right-bottom-left, bottom-left-upper). These results
are summarized in the supplemental material where is shown that
performances significantly increase between Weak and Mid per-
spective in all the cropping cases, confirming that the proposed
feature allows the analyst to decide whether the cropping detec-
tion can possibly be applied to a query image.

When useful, the performance was evaluated using the Receiver
Operating Characteristic (ROC) curve, where each point corre-
sponds to True Positive (TP) and False Alarm (FA) rates for a given
CT. The Area Under Curve (AUC) is used to compare the overall per-
formance under different conditions: the more the AUC is close to
one, the better is the detector accuracy. In some cases the mean

accuracy was also reported (computed as the average of TP and
TN rates on all considered cropping percentages). For the sake of
presentation, results have been grouped into two clusters, corre-
sponding to slightly cropped (lower than 25% of the image) or
strongly cropped (between 25% and 50%) images.

6.1. Perspective-based test

In this test we assess the performance of the cropping detection
with reference to perspective conditions. We considered both syn-
thetic and real PPs acquired in Sections 4.1 and 4.2 respectively.
The cropping detection performance was evaluated separately on
the three clusters (Weak, Mid and Strong Perspective) for both syn-
thetic and real PPs. In Fig. 11 we reported the ROC curves consid-
ering slightly and strongly cropped images, while in Table 2 we
reported the AUC values. In Table 3 we summarize the cropping
detection performance on the three clusters for different CTs,
namely: FA rate, TP rate for both slight and strong cropping, and
the mean accuracy. Note that we only report results considering
the CTs in [0.05,0.25], since we noticed a progressive performance
drop for higher CTs.

These results suggest that, given a threshold, the false alarm
rate may strongly depend on the MVA. For instance, a false alarm
of 0.03 on the Mid perspective cluster (real data) corresponds to
a threshold of 0.25 of the image. However, the same threshold on
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Fig. 10. In a pristine image (surrounded by a red border) the image center (red
cross) falls near the PP (purple dot). On the other hand, if an upper-right cut (green
area) is performed, the image center (green cross) shifts falling away from the PP,
that remains fixed. The green area is related to the cropping percentage (CP). Blue
and cyan circles, centered on the PP, represent instead two cropping thresholds
(CT): note that in this example, using the smaller CT (blue circle) the cropping will
be successfully detected, since the center of the cropped image center (green cross)
fall outside the circle. On the other hand, using the bigger threshold (cyan circle),
the image will be erroneously labeled as pristine. Note that in this figure we
changed the aspect ratio of the original image (Fig. 4(P1030004)) so to visualize the
normalization process in [—1,1]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the Weak perspective cluster corresponds to a false alarm of 0.73.
Both synthetic and real results confirm that the cropping detection
can hardly be applied on Weak perspective images and a threshold
on the MVA can be chosen to discern unusable images (AUC passes
from 0.73 to 1 from Weak to Mid perspective on real images). Fur-
thermore we notice that, on images characterized by decent per-
spective (MVA > 1.5), the technique is extremely effective when
the applied cropping is greater than 25% of the image.

6.2. Characteristic-based test

In this test we assess the performance of the cropping detection
with reference to the number of lines and their MVAs. We tested

] Low Perspective - left-top cut

Mid Perspective - left-top cut
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the cropping detection on the synthetic PPs acquired in Sections
5.1 (for angles of 5° or 20°, and with 2 or 5 lines) and on the real
data acquired in Section 5.2. Firstly, we compared the results
obtained when the VPs are estimated from 5° to 20° MVAs; the
performances are shown through the ROC curves in Fig. 12a and
b. Secondly, we compared the results achieved using 2 or 5 lines
to detect each vanishing point; the corresponding ROC curves are
reported in Fig. 12c and d. In Table 4 the AUCs for the two exper-
iments have been reported to compare the overall performances.
To be consistent with the previous test we briefly report in Table 5
the mean accuracy at varying CT for each of the cases. The achieved
results show that wider MVAs produce a significant improvement
in the detection rate. For instance, with a CT of 0.10, the mean
accuracy passes from 0.79 to 0.97 on the synthetic data. This
behavior is confirmed by real data: with the same CT the mean
accuracy passes from 0.67 to 0.99. As expected, performances are
slightly affected by increasing line numbers. Indeed mean accuracy
improvements are always at most 5% for all the synthetic and real
cases.

In [19] the authors state that a CT of 0.1 and 0.15 can fit differ-
ent demands. Anyway this threshold is set regardless of image con-
tent. The achieved results suggest instead that a more fitting
threshold could be selected according to the available MVA. Syn-
thetic results show that the best performances are obtained with
a CT of 0.20 when a 5° MVA is available on the image. Conversely,
with a 20° MVA, a CT of 0.10 should be preferred to achieve the
best accuracy. Real data confirmed that two different thresholds
should be considered according to MVA amplitude: 0.25 for a 5°
MVA and 0.10 for a 20° MVA.

6.3. Robustness test

In this test we assess whether the technique is usable when the
image has been resized or compressed. We consider a practical
case where the image (considered in the characteristic-based test)
was uploaded on Facebook at low quality version and then down-
loaded: the resolution changes from 2592 x 1944 to 972 x 729,
and its size from 1.4 MB to 80 KB. 25 PPs were collected on the
downloaded image (similarly to Section 5.2) and the cropping
detection was applied as in the characteristic-based test. In Tables
6 and 7 we report the AUC and the mean accuracy at varying CT: by
comparison with the results achieved in the characteristic-based
test, we notice that performances are almost unchanged, with
the only exception of slightly cropped images, when only narrow
MVAs are available, in which case performance drops slightly
(AUC passes from 0.81 to 0.66). This result once more confirms that
the MVA amplitude is crucial to determine the usability of this
technique.
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Fig. 11. ROC curves of the cropping detection for synthetic and real data. The results are reported for (a) weak, (b) mid and (c) strong cluster separately.
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Table 2
AUC for perspective based test on synthetic and real data.
CcP Weak Mid Strong
Synthetic data
<25% 0.60 0.70 0.72
25-50% 0.82 0.97 0.99
Real data
<25% 0.56 0.77 0.81
25-50% 0.73 1.00 1.00

6.4. A practical example of cropping detection

We now show how MVA analysis can practically support the
forensic analyst to assess whether an image has been cropped.
Let us consider the images in Fig. 13a and ¢, downloaded from
the web. The analyst estimates the PP on both images selecting
lines that intersect with the widest possible angles. As a result
he/she obtains that in both cases the normalized distance of the
estimated PP from image center is anomalous (0.3875 and
0.2585 respectively). At first glance this fact leads to the conclusion
that both images have been cropped. On the other hand, the ana-
lyst notices that the MVAs are 4.83 and 1.21 respectively. This
means that he can be much more confident with the first result
while the PP estimation on Fig. 13c is subjected to strong noise.
More specifically, with such a small MVA the estimated PP is unre-
liable for the purpose. Then the analyst concludes that Fig. 13a is
probably cropped while no evidence can be provided on Fig. 13c
by this single test.

Table 3

In Fig. 13b we report the original version of Fig. 13a that can be
found on the web, confirming the achieved results.

6.5. An example of splicing detection

In this section, we provide a simple example of another possible
exploitation of the PP for forensics purposes: Splicing detection. In
such forgeries, visual contents are inserted into the original image
in order to create a plausible composite. Even with careful editing
operations, an added object will likely show different perspective
deformations with respect to the rest of the image. The PP could
then be used to assess if distinct elements into the image have
been subjected to a different projection, so to judge if the image
is pristine or it is the result of a splicing manipulation.

In Fig. 14 a splicing example is reported. Using the image
already presented in Fig. 4(P1030004), we manually inserted a blue
police cabin and then we extracted lines from both the palace (red,
green and blue lines) and the cabin (orange, light green and cyan
lines). Then the PPs were estimated independently from the palace
and the cabin (purple dots). As can be clearly seen, the computed
PPs fall far from each other: This evidence leads to the conclusion
that either the palace or the cabin have been maliciously added
into the image.

A similar splicing detection approach has been presented in
[29], where only a single vanishing direction is used as clue in
order to validate the visual content. However, relying only on a sin-
gle vanishing direction may lead to erroneous conclusions: Observ-
ing again Fig. 14, by using the left vanishing direction only (red and
orange lines), no splicing evidence is found, since the palace and

Cropping detection on both synthetic and real data, considering weak (a and b), mid (c and d), and strong perspective (e and f).

CT FA TP (<25%) TP (25-50%) Mean accuracy
(a) Synthetic weak perspective
0.05 0.96 0.99 1.00 0.52
0.10 0.86 0.96 1.00 0.56
0.15 0.73 0.90 1.00 0.61
0.20 0.62 0.81 1.00 0.65
0.25 0.53 0.71 0.99 0.67
(b) Real weak perspective
0.05 0.97 0.99 1.00 0.52
0.10 0.90 0.96 1.00 0.56
0.15 0.80 0.90 1.00 0.61
0.20 0.75 0.81 1.00 0.65
0.25 0.73 0.71 0.99 0.67
(c) Synthetic mid perspective
0.05 0.92 0.98 1.00 0.54
0.10 0.72 0.93 1.00 0.62
0.15 0.53 0.81 1.00 0.70
0.20 037 0.67 1.00 0.75
0.25 0.25 0.51 0.99 0.77
(d) Real mid perspective
0.05 0.82 0.98 1.00 0.54
0.10 0.53 0.93 1.00 0.62
0.15 0.30 0.81 1.00 0.70
0.20 0.15 0.67 1.00 0.77
0.25 0.03 0.51 0.99 0.77
(e) Synthetic strong perspective
0.05 0.90 0.98 1.00 0.55
0.10 0.67 0.91 1.00 0.65
0.15 0.45 0.78 1.00 0.73
0.20 0.30 0.62 1.00 0.77
0.25 0.10 0.45 0.99 0.80
(f) Real strong perspective
0.05 0.83 0.99 1.00 0.58
0.10 0.45 0.88 1.00 0.75
0.15 0.22 0.70 1.00 0.83
0.20 0.12 0.50 1.00 0.84
0.25 0.07 0.31 0.97 0.82
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Cropping detection using narrow MVAs
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Fig. 12. ROC curve on synthetic and real data with different cropping percentage using (a) narrow vanishing angles and (b) wider vanishing angles, and then using (c) 2 lines

and (d) 5 lines to detect each vanishing point.

Table 4
AUC for characteristic based test on synthetic and real data.
CcP 2 lines 5 lines ~5° MVA ~20° MVA
(a) Synthetic data
<25% 0.87 0.96 0.87 0.99
25-50% 1.00 1.00 1.00 1.00
(b) Real data
<25% 0.86 0.89 0.81 1.00
25-50% 0.99 1.00 0.99 1.00

the cabin share the same vanishing point. On the other hand, by
exploiting the PP, we can provide a more reliable evidence.

7. Conclusions and future work

In this paper we presented for the first an assessment of the
reliability of physical-based features for forensic image authentica-
tion. In particular we focused on the estimation accuracy of the

principal point of an image and its application to the forensic sce-
nario. By observing the principal point estimation accuracy in dif-
ferent perspective conditions, we were able to define a novel
feature, the minimum vanishing angle (MVA), strictly related to
principal point uncertainty. Then we further investigated the
MVA influence on the estimation accuracy by comparing it with
respect to the number of detected lines, exploited for the estima-
tion of the PP. Results underlined that the use of wider vanishing
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Table 5
Mean accuracy for characteristic based test on synthetic and real data.
CT 2 lines 5 lines 5° MVA 20° MVA
(a) Synthetic data
0.05 0.77 0.80 0.63 0.91
0.10 0.90 0.91 0.79 0.97
0.15 0.91 091 0.86 0.93
0.20 0.89 0.89 0.88 0.89
0.25 0.86 0.86 0.86 0.86
(b) Real data
0.05 0.59 0.60 0.58 0.63
0.10 0.82 0.85 0.67 0.99
0.15 0.82 0.83 0.72 0.94
0.20 0.83 0.86 0.79 0.92
0.25 0.82 0.87 0.84 0.87
Table 6
AUC for on Facebook data.
CcP 2 lines 5 lines ~5° MVA ~20° MVA
Facebook data
<25% 0.82 0.82 0.66 1.00
25-50% 0.99 1.00 0.99 1.00
Table 7
Mean accuracy on Facebook data.
CT 2 lines 5 lines ~5° MVA ~20° MVA
Facebook data
0.05 0.61 0.59 0.51 0.71
0.10 0.76 0.80 0.55 1.00
0.15 0.82 0.81 0.69 0.94
0.20 0.84 0.81 0.73 0.92
0.25 0.82 0.82 0.77 0.87

(b)

()

Fig. 13. Two examples of cropping detection (a and c), with lines of mutually orthogonal directions in red, green and blue. The purple dot indicates the image center, while
the cyan cross shows the estimated position of the PP. In both images the MVA is the angle related to the vertical direction (blue lines): in (a) MVA = 4.83, in (b) MVA = 1.21. In
(a) the original version of (a) is presented. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Splicing example: a blue police cabin was added in the left corner of Fig. 4(P1030004). Lines of mutually orthogonal 3D direction have been extracted independently
from the palace (red, green and blue lines) and from the cabin (orange, light green and cyan lines) - note that the vertical vanishing points are not reported due to lack of
space. Then two PPs are estimated: since they are far from each other, we can assess that the image is manipulated. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

angles leads to higher accuracy, while by employing more lines
only slight uncertainty reductions are achieved. As shown in the
case studies presented in the previous Sections, the application
of our criteria to cropping detection allows the analyst to easily
exclude an image that is not suitable for the application of this
technique. Moreover we verified that on resized and compressed
images - as for example pictures downloaded in low quality from
Facebook - the performance only slightly decreases, provided that
wide MVAs are available. Eventually, we showed how the principal
point can be also used for splicing detection.

In future work the proposed MVA will be exploited to analyti-
cally compute a likelihood score to provide more than a binary
decision on the authenticity of the examined image. Moreover,
we are planning to deeply investigate the relation between the
MVA and the best cropping threshold to be used, in order to control
the false alarm rate. For this purpose, automatic techniques for
principal point localization - so as to remove the human-in-the-
loop - will be investigated in order to perform tests on a huge
amount of real data.
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