
INTRODUCTION

Salinity is an increasing problem that affects vast areas
of the world (irrigated, arid and semiarid areas) in particu-
lar where precipitation is insufficient to leash salts from the
root zones (Leland and Eugene, 1999). About 6% of the
global land area is affected by salinity (Flowers and Yeo,
1995) and salt affected soils include about one third of the
world’s irrigated soils presently and that portion is expand-
ing (Robinson and Downton, 1984; Chauhan et al., 1987).

Because of the intensive irrigation practices secondary
salinization is increased in the agricultural soils. And in
combination with the competition of fresh water among
municipal, industrial and agricultural sectors this problem
(salinity) becomes more sever in particular with the grow-
ing water shortage problem, where more than 80 countries
suffer from water shortage each year (Gleick, 1993), taking
into consideration that agriculture consumes more fresh
water than any other human activity (Falkenmark et al.,
1987).

A definition for saline soils adopted from FAO (1997)
is those soils that have an electrical conductivity of the
saturation extract (ECe) of 4 dS m�1 or more. Regardless of
the specific nature of cations or anions the soil was consid-
ered saline when contains excessive amounts of salts in
general. However, Na� and Cl� are considered the most
important and are toxic to plants (Hasegawa et al., 2000).
The toxicity of Na� is due to its ability to inhibit enzyme
function more specifically either directly by binding to in-
hibitory sites or indirectly by displacing K� from activation
sites (Serrano, 1996). Moreover Na� is considered
cytotoxic at cytosolic concentration in excess of about 100
mM (Serrano et al., 1999). The competition between Na�

and K� in the cytosol is likely to be more critical factor in

determining Na� toxicity than cytosolic Na� concentration
per se. Salinity has a major impact on plant growth, and
usually during the first several days of the stress the inhibi-
tion of growth occurs and primarily restricted to the shoot
(Munns and Termaat, 1986). It was found that leaf growth
is more sensitive to salinity than root growth under salt
stress, this can be explained or by water deficit or a specific
salt toxicity in the shoot or in the root, but in case of long
term salinity large amounts of salt is brought into the shoot,
especially into the leaves, by prolonged transpiration which
in turn result in damaging leaves, this process must eventu-
ally limit the supply of assimilates to the growing regions
and might be the main factor determining yield. Another
hypothesis for the mechanism by which salinity reduces
shoot growth. One suggestion is that salinity reduces pho-
tosynthesis which in turn limits the supply of carbohydrates
needed for growth (Yeo and Flowers, 1985; Munns and
Schachtman, 1993). A second is that salinity reduces shoot
growth by reducing turgor in expanding tissues which are
not able to fully osmoregulate in response. A third is that
roots sense salinity and down regulate shoot growth by via
a long distance signal (Termaat et al., 1985; Munns and
Termaat, 1986; Rengel, 1992). Fourth a disturbance in
mineral supply to the shoot, either an excess (Na� or Cl�)
or deficiency, might directly affect growth (Abel and
MacKenzie, 1964; Läuchli and Wieneke, 1979; Flowers
and Yeo, 1981; Jeschke, 1984). It was found also that
NaC1 induced disturbance in the supply of carbon to the
growing zones of shoots might be associated with the in-
creased starch accumulation in mature leaves (Munns and
Schachtman, 1993).

Taking all the previous responses into account and try-
ing to compare between salt tolerant and salt sensitive
genotypes we can say that the key to salt tolerance in plants
is the ability to comprise successfully between osmotic ad-
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justment, ion nutrition, maintenance of energy pool and re-
striction of Na� in order to maintain a low Na�: K� ratio in
the cytosol of cells which is a crucial aspect of survival for
a plant in saline environment. In general halophytes accu-
mulate higher Na� levels in their leaves, than do
glycophytes (Flowers et al., 1977). Salt tolerance involves
tissues and whole plant integration of many different trans-
port processes as compartmentation of ions and synthesis of
organic osmolytes at cellular level.

In order to better understand ionic homeostasis in
plants under salt stress identification of Na� transport path-
ways was as comprising a key gap, not only that but also
the regulation of Na� transport across the plasma and
vacuolar membranes comprises a critical factor in deter-
mining the specific manner in which plant cells handle
extra cellular Na� loads (Niu et al., 1995). In general living
cells in both low and high salt environments try to balance
passive influx of Na� with Na� efflux, either across the
plasma membrane back into the apoplast or across the
tonoplast into the vacuole. For salt tolerance in addition to
the considerable energy required for Na� efflux, time is an
important factor because the rate of Na� uptake will deter-
mine how quickly Na� reaches toxic levels inside the cell.
So it is clear that under high salt conditions limiting Na�

influx into root cells is fundamental and balancing Na� in-
flux with Na� export from the cytoplasm back into the
apoplast is one way of reducing the Na� load (sometimes
termed ‘futile cycling’) (Britto and Kronzucker, 2006;
Malagoli et al., 2008). Futile cycling occurs to a varying
degree in all plants investigated so far with 78�98% of Na�

taken up transported back into the environment
(Kronzucker et al., 2006; Wang et al., 2006; Malagoli et al.,
2008).

The importance of Na� export from root cells for salt
tolerance is evident in the salt over-sensitivity of mutants
that are impaired in the plasma membrane Na� /H�

antiporter SOS1 (Banuelos et al., 1996; Shi et al., 2000).
This system seems to be similarly crucial in salt-sensitive
and salt tolerant species (Oh et al., 2007). A second strat-
egy for removing Na� from the cytoplasm is to compart-
mentalize it in the vacuoles. Na� uptake into the vacuole
also requires energy, but has a dual benefit in saline condi-
tions; it avoids Na� build-up in the apoplast (Oertli, 1968)
and enhances the intracellular solute potential thereby con-
tributing to turgor adjustment. Halophytes exhibit a
marked ability for Na� accumulation, and their tolerance
relies on controlled uptake and compartmentalization of
Na�, K� and Cl� and the synthesis of organic compatible
solutes to prevent Na� cytotoxicity. Several classes of Na�

transporters have been identified such as the NHX-, SOS1-
and HKT1, they have demonstrated significant involve-
ments in Na� sequestration in vacuoles or extrusion from
cells or circulation for the alleviation of sodium stress
under saline conditions, for example, the Na�/H� antiporter
SOS1 mediates the efflux of Na� from root cells into the
soil or cortical apoplast (Banuelos et al., 1996; Shi et al.,

2000; Rus et al., 2004). To date, the SOS1 (salt overly sen-
sitive) are the best characterized class of transporters attrib-
uted with Na� exclusion from the cytosol across the plasma
membrane. It was found in different plant species such as
Arabidposis and tomato a significant increase in salt sensi-
tivity and the tendency to accumulate high amounts of Na�

in the Knockout/Knockdown plants of corresponding SOS1
genes compared with wild types under high salt concentra-
tion (Banuelos et al., 1996; Shi et al., 2000; Oh et al.,
2009). Together with HKT and CHX-type transporters, it
also provides a means for Na� transport into and out of the
xylem (Shi et al., 2002; Hall et al., 2006; Huang et al.,
2006; Munns et al., 2006; Byrt et al., 2007). Much less is
known about the transporters responsible for Na� uptake
into root epidermal and cortical cells. Whereas some HKT
transporters change their K� and Na� selectivity depending
on the ionic conditions, similar to multi-ion channel pores
(Schachtman and Schroeder, 1994; Rubio et al., 1995;
Gassmann et al., 1996; Horie et al., 2001), the only HKT
transporter encoded in the Arabidopsis genome, AtHKT1,
was found to be more Na� selective (Gao-Uozumi et al.,
2000) and moreover was found that when the encoding
genes of some of these transporters is overexpressed the sa-
linity tolerance was improved (He et al., 2005; Agarwal et
al., 2013). So Na� influx into plant roots can occur through
ion channels or other membrane transport proteins that fa-
cilitate passive diffusion of Na� across the plasma mem-
brane in most cases through K� pathways (HKT1), but the
main pathway for Na� uptake in high salt concentrations is
through non selective cation channels (Maathuis and
Amtmann, 1999a; Rus et al., 2001; Maser et al., 2002;
Demidchik and Maathuis, 2007) which -nonselective cation
channels-considered to be partially sensitive to calcium,
where the entry of Na� into roots was inhibited (Tester and
Davenport, 2003). Even of their physicochemical similari-
ties, it is K� rather than Na� that is essential to plant life,
this means that plants in saline habitats have acquired
mechanisms that allow the selective uptake of K� in the
face of considerable competition from Na� (Maathuis and
Amtmann, 1999b). Plant cells employ primary active
transport, mediated by H�-ATPase, and secondary transport
mediated by channels and co-transporters in order to main-
tain high concentrations of K� and low concentrations of
Na� in the cytosol. The overall sub cellular compartmen-
tation of Na� into the vacuole and other organelles, such as
mitochondria and plastids also lowers Na� concentration in
the cytoplasm and at the same time contributes to osmotic
adjustment in order to maintain water uptake under salt
conditions and the AtNHX family of Na�/H� antiporters
which localized in the tonoplast membrane here play an im-
portant role in Na� compartmentation using the H� gradient
as a driving force across the membrane under salinity stress
(Blumwald, 2000; Bassil et al., 2012). The first function-
ally-characterized member of this gene family, AtNHX1,
contributes to Na� and monovalent cation sequestration in
plant vacuoles.

In addition, the role of these vacuolar NHXs in Na�

compartmentation has been strongly supported by the fact
that Arabidopsis atnhx1 mutant exhibited Na� sensitivity
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and less vacuolar Na�/H� antiporter activity (Apse et al.,
2003) and also overexpression of genes encoding vacuolar
AtNHX1 was shown to increase salt tolerance in a range of
plant species with accompaniment increase in tissue Na�

(Apse et al., 1999; Zhang et al., 2001; Agarwal et al.,
2013).

So we can summarize with a simple model for mecha-
nisms of Na� absorption, recirculation, and extrusion by
different classes of Na� channels/transporters; Na� influx
mediated by HKT transporters (Gao-Uozumi et al., 2000;
Maser et al., 2002; Sunarpi et al., 2005), and excessive Na�

in the cytosol is partially transported out of cells by SOS1
antiporters (Shi et al., 2000), and some parte is sequestered
in vacuoles by AtNHX1 topnoplast antiporters (Apse et al.,
1999). AtHKT1.1, and OsHKT1.5 are present in the
plasma membrane of xylem parenchyma cells, and mediate
unloading of Na� from xylem vessels into xylem paren-
chyma cells, thus protecting leaves from Na� over accumu-
lation and Na� damage (leaf Na� exclusion) (Berthomieu et
al., 2003; Ren et al., 2005; Sunarpi et al., 2005).

NaCl SENSING AND GENES DEFENSE ACTIVATION

It is still unclear the sensing mechanism of salt in plant
cell. The dual nature of salt stress, ionic and osmotic,
brings a two sensory modalities. For example a high salt
concentration in soil produces a hyperosmotic stress at root
level. These are distinct from each other, because there are
some responses specific for salt and different from purely
osmotic stress (Deinlein et al., 2014). The Arabidopsis
thaliana histidine kinase receptor protein HK1 should be a
good candidate for salt receptor. It was demonstrated that
HK1 can complement in yeast the loss osmoreceptor SLN1
(Urao et al., 1993) and the overexpression or loss of func-
tion of this protein led to a drought associated phenotype
(Tran et al., 2007). This sensor is known to be coupled
with calcium channel, because after salt exposure, there is
a rapid increased of Ca2� ions in cytosol (Ismail et al.,
2014). The potential candidates for genetic identities of the
Ca2� -permeable channels involved in generating the
cytosolic Ca2� signal in Arabidopsis under salt stress might
include annexin1 as recently suggested (Laohavisit et al.,
2013). High cytosolic levels of calcium ions trigger a reac-
tive oxygen species (ROS) production by activating respi-
ratory burst oxidase homolog F (RBOHF) (Julkowska and
Testerink, 2015). RBOHF plays a pivotal role in salt re-
sponse and more in general in abiotic stress response, in-
deed during pathogen attack the ROS production is due by
respiratory burst oxidase homolog D (Montillet and Hirt,
2013). Molecular evidences suggest that ROS acts as a
secondary signal during stress response by regulating and
modifying gene expression. In particularly ROS influences
the gene expression by modifying transcription factors at
nucleus level (Apel and Hirt, 2004). Moreover, high level
of cytosolic ROS induces mitogen activated protein kinase
(MAPK) such as MAPK3/6 and MAPK9/12, this
phosphorylation cascade has as a final target transcription
factors in nucleus (Kovtun et al., 2000). Other kinases may
be involved in transcription factor induction under salt

stress, in particularly calcium dependent-protein kinases
(CLDPK) (Harmon et al., 2000; Boudsocq and Sheen,
2013) and calcineurin B-like proteins (CBLs) with CBL-
interacting protein kinases (CIPKs) (Weinl and Kudla,
2009). At nuclear level many transcription factors are acti-
vated, like MYB20. It was demonstrated MYB20
overexpressed lines are more tolerant to salt in contrast
knock-out lines are more sensitive under saline condition
(Cui et al., 2013).

Another very important class of transcription factors
are the ABA responsive element-binding protein (AREB1)
and ABA insensitive 5 (ABI5), which activate a gene for
acclimation and also for plasma membrane ion channel and
RBOHF (Umezawa et al., 2013). Activation of acclimation
genes array leads to an accumulation of organic osmolytes,
such as proline, glycine betaine, sugar alcohols,
polyamines, and proteins from the late embryogenesis
abundant (LEA) superfamily. This molecule plays a piv-
otal role in maintaining low intracellular osmotic potential,
to preventing the osmotic damage under salt stress
(Verslues et al., 2006), in particularly the proline is in-
volved in cell proliferation and cell death (Szabados and
Savoure, 2010). Also glycine betaine is proposed as a
protectant of membrane structure and major enzyme
(Guinn et al., 2011). In the last years emerging the idea
that also a chromatin modifications, referred to as epige-
netic modifications, contribute to the adaptation potential of
plants to different environmental stresses (Zhu et al., 2008).
Several research showed that modifications on chromatin
are involved in the resistance responses of plants to salt
stress in the same generation as the stress occurs. In par-
ticularly, hyperosmotic priming was reported for
Arabidopsis plants that have been treated with mild salt
stress in the seedling stage, followed by cultivation under
normal media salt free (Sani et al., 2013). During Na�

stress-free period, no differences between pretreated plants
and control plants were detected. Subsequently, after an
additional salt stress application, the pretreated group accu-
mulated less Na� and thus was more tolerant. This pheno-
type was attributable to epigenetic histone modifications
that mainly affected expression of resistance transcription
factors. Moreover the salinity change methylation level of
chromatin, specifically a target region of transcription fac-
tors (Song et al., 2012).

CONCLUSION AND REMARKS

Salinity stress is well reported to reduce plant growth
and to affect plant development. The impact of salt stress
on the growth of plant leads in altered plant morphology.
The intense research of the last years has shed a light on
numerous details of salinity responses and mechanisms of
adaptation at molecular level. However, many mechanisms
should be elucidated. For example, the regulation of gene
expression and signaling cascades that regulate many Na�

transporters remains unclear. Moreover, it remains to be
assessed which of the sodium ions transport processes re-
viewed here could be employed to enhance plant perform-
ance under salt stress. Indeed both molecular breeding and
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advanced biotechnology methods should be highly helpful
to develop crops with enhanced salt tolerance.

As illustrated in the Fig. 1, in this context, it is impor-
tant to understand the underlying mechanisms that led to
salt resistance and adaptation. Basically, molecular signal-
ing components in plant adaptation and response to salt
stress involved a network of Na� transporters, such as
HKTs and NHXs, hormones, like ABA, transcription fac-
tors, MAPK pathways and ROS. Taken all together these
are the major traits that influence plant resistance and adap-
tation to salt stress. In the next years the major goals will
be to understand the cross-talk between different pathways
that lead to resistance and adaptation. Moreover the stress
tolerant and sensitive plants utilize the same signaling
molecules, for that will be important in the future works to
dissect and discriminate signals from the signaling mole-
cule.
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